1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/bsearch.h> 7 8 DEFINE_MUTEX(sched_domains_mutex); 9 10 /* Protected by sched_domains_mutex: */ 11 static cpumask_var_t sched_domains_tmpmask; 12 static cpumask_var_t sched_domains_tmpmask2; 13 14 #ifdef CONFIG_SCHED_DEBUG 15 16 static int __init sched_debug_setup(char *str) 17 { 18 sched_debug_verbose = true; 19 20 return 0; 21 } 22 early_param("sched_verbose", sched_debug_setup); 23 24 static inline bool sched_debug(void) 25 { 26 return sched_debug_verbose; 27 } 28 29 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 30 const struct sd_flag_debug sd_flag_debug[] = { 31 #include <linux/sched/sd_flags.h> 32 }; 33 #undef SD_FLAG 34 35 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 36 struct cpumask *groupmask) 37 { 38 struct sched_group *group = sd->groups; 39 unsigned long flags = sd->flags; 40 unsigned int idx; 41 42 cpumask_clear(groupmask); 43 44 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 45 printk(KERN_CONT "span=%*pbl level=%s\n", 46 cpumask_pr_args(sched_domain_span(sd)), sd->name); 47 48 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 49 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 50 } 51 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 52 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 53 } 54 55 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 56 unsigned int flag = BIT(idx); 57 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 58 59 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 60 !(sd->child->flags & flag)) 61 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 62 sd_flag_debug[idx].name); 63 64 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 65 !(sd->parent->flags & flag)) 66 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 67 sd_flag_debug[idx].name); 68 } 69 70 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 71 do { 72 if (!group) { 73 printk("\n"); 74 printk(KERN_ERR "ERROR: group is NULL\n"); 75 break; 76 } 77 78 if (cpumask_empty(sched_group_span(group))) { 79 printk(KERN_CONT "\n"); 80 printk(KERN_ERR "ERROR: empty group\n"); 81 break; 82 } 83 84 if (!(sd->flags & SD_OVERLAP) && 85 cpumask_intersects(groupmask, sched_group_span(group))) { 86 printk(KERN_CONT "\n"); 87 printk(KERN_ERR "ERROR: repeated CPUs\n"); 88 break; 89 } 90 91 cpumask_or(groupmask, groupmask, sched_group_span(group)); 92 93 printk(KERN_CONT " %d:{ span=%*pbl", 94 group->sgc->id, 95 cpumask_pr_args(sched_group_span(group))); 96 97 if ((sd->flags & SD_OVERLAP) && 98 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 99 printk(KERN_CONT " mask=%*pbl", 100 cpumask_pr_args(group_balance_mask(group))); 101 } 102 103 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 104 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 105 106 if (group == sd->groups && sd->child && 107 !cpumask_equal(sched_domain_span(sd->child), 108 sched_group_span(group))) { 109 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 110 } 111 112 printk(KERN_CONT " }"); 113 114 group = group->next; 115 116 if (group != sd->groups) 117 printk(KERN_CONT ","); 118 119 } while (group != sd->groups); 120 printk(KERN_CONT "\n"); 121 122 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 123 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 124 125 if (sd->parent && 126 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 127 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 128 return 0; 129 } 130 131 static void sched_domain_debug(struct sched_domain *sd, int cpu) 132 { 133 int level = 0; 134 135 if (!sched_debug_verbose) 136 return; 137 138 if (!sd) { 139 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 140 return; 141 } 142 143 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 144 145 for (;;) { 146 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 147 break; 148 level++; 149 sd = sd->parent; 150 if (!sd) 151 break; 152 } 153 } 154 #else /* !CONFIG_SCHED_DEBUG */ 155 156 # define sched_debug_verbose 0 157 # define sched_domain_debug(sd, cpu) do { } while (0) 158 static inline bool sched_debug(void) 159 { 160 return false; 161 } 162 #endif /* CONFIG_SCHED_DEBUG */ 163 164 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 165 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 166 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 167 #include <linux/sched/sd_flags.h> 168 0; 169 #undef SD_FLAG 170 171 static int sd_degenerate(struct sched_domain *sd) 172 { 173 if (cpumask_weight(sched_domain_span(sd)) == 1) 174 return 1; 175 176 /* Following flags need at least 2 groups */ 177 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 178 (sd->groups != sd->groups->next)) 179 return 0; 180 181 /* Following flags don't use groups */ 182 if (sd->flags & (SD_WAKE_AFFINE)) 183 return 0; 184 185 return 1; 186 } 187 188 static int 189 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 190 { 191 unsigned long cflags = sd->flags, pflags = parent->flags; 192 193 if (sd_degenerate(parent)) 194 return 1; 195 196 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 197 return 0; 198 199 /* Flags needing groups don't count if only 1 group in parent */ 200 if (parent->groups == parent->groups->next) 201 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 202 203 if (~cflags & pflags) 204 return 0; 205 206 return 1; 207 } 208 209 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 210 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 211 static unsigned int sysctl_sched_energy_aware = 1; 212 static DEFINE_MUTEX(sched_energy_mutex); 213 static bool sched_energy_update; 214 215 static bool sched_is_eas_possible(const struct cpumask *cpu_mask) 216 { 217 bool any_asym_capacity = false; 218 struct cpufreq_policy *policy; 219 struct cpufreq_governor *gov; 220 int i; 221 222 /* EAS is enabled for asymmetric CPU capacity topologies. */ 223 for_each_cpu(i, cpu_mask) { 224 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) { 225 any_asym_capacity = true; 226 break; 227 } 228 } 229 if (!any_asym_capacity) { 230 if (sched_debug()) { 231 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n", 232 cpumask_pr_args(cpu_mask)); 233 } 234 return false; 235 } 236 237 /* EAS definitely does *not* handle SMT */ 238 if (sched_smt_active()) { 239 if (sched_debug()) { 240 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n", 241 cpumask_pr_args(cpu_mask)); 242 } 243 return false; 244 } 245 246 if (!arch_scale_freq_invariant()) { 247 if (sched_debug()) { 248 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported", 249 cpumask_pr_args(cpu_mask)); 250 } 251 return false; 252 } 253 254 /* Do not attempt EAS if schedutil is not being used. */ 255 for_each_cpu(i, cpu_mask) { 256 policy = cpufreq_cpu_get(i); 257 if (!policy) { 258 if (sched_debug()) { 259 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d", 260 cpumask_pr_args(cpu_mask), i); 261 } 262 return false; 263 } 264 gov = policy->governor; 265 cpufreq_cpu_put(policy); 266 if (gov != &schedutil_gov) { 267 if (sched_debug()) { 268 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n", 269 cpumask_pr_args(cpu_mask)); 270 } 271 return false; 272 } 273 } 274 275 return true; 276 } 277 278 void rebuild_sched_domains_energy(void) 279 { 280 mutex_lock(&sched_energy_mutex); 281 sched_energy_update = true; 282 rebuild_sched_domains(); 283 sched_energy_update = false; 284 mutex_unlock(&sched_energy_mutex); 285 } 286 287 #ifdef CONFIG_PROC_SYSCTL 288 static int sched_energy_aware_handler(const struct ctl_table *table, int write, 289 void *buffer, size_t *lenp, loff_t *ppos) 290 { 291 int ret, state; 292 293 if (write && !capable(CAP_SYS_ADMIN)) 294 return -EPERM; 295 296 if (!sched_is_eas_possible(cpu_active_mask)) { 297 if (write) { 298 return -EOPNOTSUPP; 299 } else { 300 *lenp = 0; 301 return 0; 302 } 303 } 304 305 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 306 if (!ret && write) { 307 state = static_branch_unlikely(&sched_energy_present); 308 if (state != sysctl_sched_energy_aware) 309 rebuild_sched_domains_energy(); 310 } 311 312 return ret; 313 } 314 315 static struct ctl_table sched_energy_aware_sysctls[] = { 316 { 317 .procname = "sched_energy_aware", 318 .data = &sysctl_sched_energy_aware, 319 .maxlen = sizeof(unsigned int), 320 .mode = 0644, 321 .proc_handler = sched_energy_aware_handler, 322 .extra1 = SYSCTL_ZERO, 323 .extra2 = SYSCTL_ONE, 324 }, 325 }; 326 327 static int __init sched_energy_aware_sysctl_init(void) 328 { 329 register_sysctl_init("kernel", sched_energy_aware_sysctls); 330 return 0; 331 } 332 333 late_initcall(sched_energy_aware_sysctl_init); 334 #endif 335 336 static void free_pd(struct perf_domain *pd) 337 { 338 struct perf_domain *tmp; 339 340 while (pd) { 341 tmp = pd->next; 342 kfree(pd); 343 pd = tmp; 344 } 345 } 346 347 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 348 { 349 while (pd) { 350 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 351 return pd; 352 pd = pd->next; 353 } 354 355 return NULL; 356 } 357 358 static struct perf_domain *pd_init(int cpu) 359 { 360 struct em_perf_domain *obj = em_cpu_get(cpu); 361 struct perf_domain *pd; 362 363 if (!obj) { 364 if (sched_debug()) 365 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 366 return NULL; 367 } 368 369 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 370 if (!pd) 371 return NULL; 372 pd->em_pd = obj; 373 374 return pd; 375 } 376 377 static void perf_domain_debug(const struct cpumask *cpu_map, 378 struct perf_domain *pd) 379 { 380 if (!sched_debug() || !pd) 381 return; 382 383 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 384 385 while (pd) { 386 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 387 cpumask_first(perf_domain_span(pd)), 388 cpumask_pr_args(perf_domain_span(pd)), 389 em_pd_nr_perf_states(pd->em_pd)); 390 pd = pd->next; 391 } 392 393 printk(KERN_CONT "\n"); 394 } 395 396 static void destroy_perf_domain_rcu(struct rcu_head *rp) 397 { 398 struct perf_domain *pd; 399 400 pd = container_of(rp, struct perf_domain, rcu); 401 free_pd(pd); 402 } 403 404 static void sched_energy_set(bool has_eas) 405 { 406 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 407 if (sched_debug()) 408 pr_info("%s: stopping EAS\n", __func__); 409 static_branch_disable_cpuslocked(&sched_energy_present); 410 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 411 if (sched_debug()) 412 pr_info("%s: starting EAS\n", __func__); 413 static_branch_enable_cpuslocked(&sched_energy_present); 414 } 415 } 416 417 /* 418 * EAS can be used on a root domain if it meets all the following conditions: 419 * 1. an Energy Model (EM) is available; 420 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 421 * 3. no SMT is detected. 422 * 4. schedutil is driving the frequency of all CPUs of the rd; 423 * 5. frequency invariance support is present; 424 */ 425 static bool build_perf_domains(const struct cpumask *cpu_map) 426 { 427 int i; 428 struct perf_domain *pd = NULL, *tmp; 429 int cpu = cpumask_first(cpu_map); 430 struct root_domain *rd = cpu_rq(cpu)->rd; 431 432 if (!sysctl_sched_energy_aware) 433 goto free; 434 435 if (!sched_is_eas_possible(cpu_map)) 436 goto free; 437 438 for_each_cpu(i, cpu_map) { 439 /* Skip already covered CPUs. */ 440 if (find_pd(pd, i)) 441 continue; 442 443 /* Create the new pd and add it to the local list. */ 444 tmp = pd_init(i); 445 if (!tmp) 446 goto free; 447 tmp->next = pd; 448 pd = tmp; 449 } 450 451 perf_domain_debug(cpu_map, pd); 452 453 /* Attach the new list of performance domains to the root domain. */ 454 tmp = rd->pd; 455 rcu_assign_pointer(rd->pd, pd); 456 if (tmp) 457 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 458 459 return !!pd; 460 461 free: 462 free_pd(pd); 463 tmp = rd->pd; 464 rcu_assign_pointer(rd->pd, NULL); 465 if (tmp) 466 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 467 468 return false; 469 } 470 #else 471 static void free_pd(struct perf_domain *pd) { } 472 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/ 473 474 static void free_rootdomain(struct rcu_head *rcu) 475 { 476 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 477 478 cpupri_cleanup(&rd->cpupri); 479 cpudl_cleanup(&rd->cpudl); 480 free_cpumask_var(rd->dlo_mask); 481 free_cpumask_var(rd->rto_mask); 482 free_cpumask_var(rd->online); 483 free_cpumask_var(rd->span); 484 free_pd(rd->pd); 485 kfree(rd); 486 } 487 488 void rq_attach_root(struct rq *rq, struct root_domain *rd) 489 { 490 struct root_domain *old_rd = NULL; 491 struct rq_flags rf; 492 493 rq_lock_irqsave(rq, &rf); 494 495 if (rq->rd) { 496 old_rd = rq->rd; 497 498 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 499 set_rq_offline(rq); 500 501 cpumask_clear_cpu(rq->cpu, old_rd->span); 502 503 /* 504 * If we don't want to free the old_rd yet then 505 * set old_rd to NULL to skip the freeing later 506 * in this function: 507 */ 508 if (!atomic_dec_and_test(&old_rd->refcount)) 509 old_rd = NULL; 510 } 511 512 atomic_inc(&rd->refcount); 513 rq->rd = rd; 514 515 cpumask_set_cpu(rq->cpu, rd->span); 516 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 517 set_rq_online(rq); 518 519 /* 520 * Because the rq is not a task, dl_add_task_root_domain() did not 521 * move the fair server bw to the rd if it already started. 522 * Add it now. 523 */ 524 if (rq->fair_server.dl_server) 525 __dl_server_attach_root(&rq->fair_server, rq); 526 527 rq_unlock_irqrestore(rq, &rf); 528 529 if (old_rd) 530 call_rcu(&old_rd->rcu, free_rootdomain); 531 } 532 533 void sched_get_rd(struct root_domain *rd) 534 { 535 atomic_inc(&rd->refcount); 536 } 537 538 void sched_put_rd(struct root_domain *rd) 539 { 540 if (!atomic_dec_and_test(&rd->refcount)) 541 return; 542 543 call_rcu(&rd->rcu, free_rootdomain); 544 } 545 546 static int init_rootdomain(struct root_domain *rd) 547 { 548 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 549 goto out; 550 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 551 goto free_span; 552 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 553 goto free_online; 554 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 555 goto free_dlo_mask; 556 557 #ifdef HAVE_RT_PUSH_IPI 558 rd->rto_cpu = -1; 559 raw_spin_lock_init(&rd->rto_lock); 560 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 561 #endif 562 563 rd->visit_gen = 0; 564 init_dl_bw(&rd->dl_bw); 565 if (cpudl_init(&rd->cpudl) != 0) 566 goto free_rto_mask; 567 568 if (cpupri_init(&rd->cpupri) != 0) 569 goto free_cpudl; 570 return 0; 571 572 free_cpudl: 573 cpudl_cleanup(&rd->cpudl); 574 free_rto_mask: 575 free_cpumask_var(rd->rto_mask); 576 free_dlo_mask: 577 free_cpumask_var(rd->dlo_mask); 578 free_online: 579 free_cpumask_var(rd->online); 580 free_span: 581 free_cpumask_var(rd->span); 582 out: 583 return -ENOMEM; 584 } 585 586 /* 587 * By default the system creates a single root-domain with all CPUs as 588 * members (mimicking the global state we have today). 589 */ 590 struct root_domain def_root_domain; 591 592 void __init init_defrootdomain(void) 593 { 594 init_rootdomain(&def_root_domain); 595 596 atomic_set(&def_root_domain.refcount, 1); 597 } 598 599 static struct root_domain *alloc_rootdomain(void) 600 { 601 struct root_domain *rd; 602 603 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 604 if (!rd) 605 return NULL; 606 607 if (init_rootdomain(rd) != 0) { 608 kfree(rd); 609 return NULL; 610 } 611 612 return rd; 613 } 614 615 static void free_sched_groups(struct sched_group *sg, int free_sgc) 616 { 617 struct sched_group *tmp, *first; 618 619 if (!sg) 620 return; 621 622 first = sg; 623 do { 624 tmp = sg->next; 625 626 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 627 kfree(sg->sgc); 628 629 if (atomic_dec_and_test(&sg->ref)) 630 kfree(sg); 631 sg = tmp; 632 } while (sg != first); 633 } 634 635 static void destroy_sched_domain(struct sched_domain *sd) 636 { 637 /* 638 * A normal sched domain may have multiple group references, an 639 * overlapping domain, having private groups, only one. Iterate, 640 * dropping group/capacity references, freeing where none remain. 641 */ 642 free_sched_groups(sd->groups, 1); 643 644 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 645 kfree(sd->shared); 646 kfree(sd); 647 } 648 649 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 650 { 651 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 652 653 while (sd) { 654 struct sched_domain *parent = sd->parent; 655 destroy_sched_domain(sd); 656 sd = parent; 657 } 658 } 659 660 static void destroy_sched_domains(struct sched_domain *sd) 661 { 662 if (sd) 663 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 664 } 665 666 /* 667 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set 668 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing 669 * select_idle_sibling(). 670 * 671 * Also keep a unique ID per domain (we use the first CPU number in the cpumask 672 * of the domain), this allows us to quickly tell if two CPUs are in the same 673 * cache domain, see cpus_share_cache(). 674 */ 675 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 676 DEFINE_PER_CPU(int, sd_llc_size); 677 DEFINE_PER_CPU(int, sd_llc_id); 678 DEFINE_PER_CPU(int, sd_share_id); 679 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 680 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 681 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 682 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 683 684 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 685 DEFINE_STATIC_KEY_FALSE(sched_cluster_active); 686 687 static void update_top_cache_domain(int cpu) 688 { 689 struct sched_domain_shared *sds = NULL; 690 struct sched_domain *sd; 691 int id = cpu; 692 int size = 1; 693 694 sd = highest_flag_domain(cpu, SD_SHARE_LLC); 695 if (sd) { 696 id = cpumask_first(sched_domain_span(sd)); 697 size = cpumask_weight(sched_domain_span(sd)); 698 sds = sd->shared; 699 } 700 701 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 702 per_cpu(sd_llc_size, cpu) = size; 703 per_cpu(sd_llc_id, cpu) = id; 704 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 705 706 sd = lowest_flag_domain(cpu, SD_CLUSTER); 707 if (sd) 708 id = cpumask_first(sched_domain_span(sd)); 709 710 /* 711 * This assignment should be placed after the sd_llc_id as 712 * we want this id equals to cluster id on cluster machines 713 * but equals to LLC id on non-Cluster machines. 714 */ 715 per_cpu(sd_share_id, cpu) = id; 716 717 sd = lowest_flag_domain(cpu, SD_NUMA); 718 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 719 720 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 721 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 722 723 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 724 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 725 } 726 727 /* 728 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 729 * hold the hotplug lock. 730 */ 731 static void 732 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 733 { 734 struct rq *rq = cpu_rq(cpu); 735 struct sched_domain *tmp; 736 737 /* Remove the sched domains which do not contribute to scheduling. */ 738 for (tmp = sd; tmp; ) { 739 struct sched_domain *parent = tmp->parent; 740 if (!parent) 741 break; 742 743 if (sd_parent_degenerate(tmp, parent)) { 744 tmp->parent = parent->parent; 745 746 if (parent->parent) { 747 parent->parent->child = tmp; 748 parent->parent->groups->flags = tmp->flags; 749 } 750 751 /* 752 * Transfer SD_PREFER_SIBLING down in case of a 753 * degenerate parent; the spans match for this 754 * so the property transfers. 755 */ 756 if (parent->flags & SD_PREFER_SIBLING) 757 tmp->flags |= SD_PREFER_SIBLING; 758 destroy_sched_domain(parent); 759 } else 760 tmp = tmp->parent; 761 } 762 763 if (sd && sd_degenerate(sd)) { 764 tmp = sd; 765 sd = sd->parent; 766 destroy_sched_domain(tmp); 767 if (sd) { 768 struct sched_group *sg = sd->groups; 769 770 /* 771 * sched groups hold the flags of the child sched 772 * domain for convenience. Clear such flags since 773 * the child is being destroyed. 774 */ 775 do { 776 sg->flags = 0; 777 } while (sg != sd->groups); 778 779 sd->child = NULL; 780 } 781 } 782 783 sched_domain_debug(sd, cpu); 784 785 rq_attach_root(rq, rd); 786 tmp = rq->sd; 787 rcu_assign_pointer(rq->sd, sd); 788 dirty_sched_domain_sysctl(cpu); 789 destroy_sched_domains(tmp); 790 791 update_top_cache_domain(cpu); 792 } 793 794 struct s_data { 795 struct sched_domain * __percpu *sd; 796 struct root_domain *rd; 797 }; 798 799 enum s_alloc { 800 sa_rootdomain, 801 sa_sd, 802 sa_sd_storage, 803 sa_none, 804 }; 805 806 /* 807 * Return the canonical balance CPU for this group, this is the first CPU 808 * of this group that's also in the balance mask. 809 * 810 * The balance mask are all those CPUs that could actually end up at this 811 * group. See build_balance_mask(). 812 * 813 * Also see should_we_balance(). 814 */ 815 int group_balance_cpu(struct sched_group *sg) 816 { 817 return cpumask_first(group_balance_mask(sg)); 818 } 819 820 821 /* 822 * NUMA topology (first read the regular topology blurb below) 823 * 824 * Given a node-distance table, for example: 825 * 826 * node 0 1 2 3 827 * 0: 10 20 30 20 828 * 1: 20 10 20 30 829 * 2: 30 20 10 20 830 * 3: 20 30 20 10 831 * 832 * which represents a 4 node ring topology like: 833 * 834 * 0 ----- 1 835 * | | 836 * | | 837 * | | 838 * 3 ----- 2 839 * 840 * We want to construct domains and groups to represent this. The way we go 841 * about doing this is to build the domains on 'hops'. For each NUMA level we 842 * construct the mask of all nodes reachable in @level hops. 843 * 844 * For the above NUMA topology that gives 3 levels: 845 * 846 * NUMA-2 0-3 0-3 0-3 0-3 847 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 848 * 849 * NUMA-1 0-1,3 0-2 1-3 0,2-3 850 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 851 * 852 * NUMA-0 0 1 2 3 853 * 854 * 855 * As can be seen; things don't nicely line up as with the regular topology. 856 * When we iterate a domain in child domain chunks some nodes can be 857 * represented multiple times -- hence the "overlap" naming for this part of 858 * the topology. 859 * 860 * In order to minimize this overlap, we only build enough groups to cover the 861 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 862 * 863 * Because: 864 * 865 * - the first group of each domain is its child domain; this 866 * gets us the first 0-1,3 867 * - the only uncovered node is 2, who's child domain is 1-3. 868 * 869 * However, because of the overlap, computing a unique CPU for each group is 870 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 871 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 872 * end up at those groups (they would end up in group: 0-1,3). 873 * 874 * To correct this we have to introduce the group balance mask. This mask 875 * will contain those CPUs in the group that can reach this group given the 876 * (child) domain tree. 877 * 878 * With this we can once again compute balance_cpu and sched_group_capacity 879 * relations. 880 * 881 * XXX include words on how balance_cpu is unique and therefore can be 882 * used for sched_group_capacity links. 883 * 884 * 885 * Another 'interesting' topology is: 886 * 887 * node 0 1 2 3 888 * 0: 10 20 20 30 889 * 1: 20 10 20 20 890 * 2: 20 20 10 20 891 * 3: 30 20 20 10 892 * 893 * Which looks a little like: 894 * 895 * 0 ----- 1 896 * | / | 897 * | / | 898 * | / | 899 * 2 ----- 3 900 * 901 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 902 * are not. 903 * 904 * This leads to a few particularly weird cases where the sched_domain's are 905 * not of the same number for each CPU. Consider: 906 * 907 * NUMA-2 0-3 0-3 908 * groups: {0-2},{1-3} {1-3},{0-2} 909 * 910 * NUMA-1 0-2 0-3 0-3 1-3 911 * 912 * NUMA-0 0 1 2 3 913 * 914 */ 915 916 917 /* 918 * Build the balance mask; it contains only those CPUs that can arrive at this 919 * group and should be considered to continue balancing. 920 * 921 * We do this during the group creation pass, therefore the group information 922 * isn't complete yet, however since each group represents a (child) domain we 923 * can fully construct this using the sched_domain bits (which are already 924 * complete). 925 */ 926 static void 927 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 928 { 929 const struct cpumask *sg_span = sched_group_span(sg); 930 struct sd_data *sdd = sd->private; 931 struct sched_domain *sibling; 932 int i; 933 934 cpumask_clear(mask); 935 936 for_each_cpu(i, sg_span) { 937 sibling = *per_cpu_ptr(sdd->sd, i); 938 939 /* 940 * Can happen in the asymmetric case, where these siblings are 941 * unused. The mask will not be empty because those CPUs that 942 * do have the top domain _should_ span the domain. 943 */ 944 if (!sibling->child) 945 continue; 946 947 /* If we would not end up here, we can't continue from here */ 948 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 949 continue; 950 951 cpumask_set_cpu(i, mask); 952 } 953 954 /* We must not have empty masks here */ 955 WARN_ON_ONCE(cpumask_empty(mask)); 956 } 957 958 /* 959 * XXX: This creates per-node group entries; since the load-balancer will 960 * immediately access remote memory to construct this group's load-balance 961 * statistics having the groups node local is of dubious benefit. 962 */ 963 static struct sched_group * 964 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 965 { 966 struct sched_group *sg; 967 struct cpumask *sg_span; 968 969 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 970 GFP_KERNEL, cpu_to_node(cpu)); 971 972 if (!sg) 973 return NULL; 974 975 sg_span = sched_group_span(sg); 976 if (sd->child) { 977 cpumask_copy(sg_span, sched_domain_span(sd->child)); 978 sg->flags = sd->child->flags; 979 } else { 980 cpumask_copy(sg_span, sched_domain_span(sd)); 981 } 982 983 atomic_inc(&sg->ref); 984 return sg; 985 } 986 987 static void init_overlap_sched_group(struct sched_domain *sd, 988 struct sched_group *sg) 989 { 990 struct cpumask *mask = sched_domains_tmpmask2; 991 struct sd_data *sdd = sd->private; 992 struct cpumask *sg_span; 993 int cpu; 994 995 build_balance_mask(sd, sg, mask); 996 cpu = cpumask_first(mask); 997 998 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 999 if (atomic_inc_return(&sg->sgc->ref) == 1) 1000 cpumask_copy(group_balance_mask(sg), mask); 1001 else 1002 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 1003 1004 /* 1005 * Initialize sgc->capacity such that even if we mess up the 1006 * domains and no possible iteration will get us here, we won't 1007 * die on a /0 trap. 1008 */ 1009 sg_span = sched_group_span(sg); 1010 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 1011 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1012 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1013 } 1014 1015 static struct sched_domain * 1016 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 1017 { 1018 /* 1019 * The proper descendant would be the one whose child won't span out 1020 * of sd 1021 */ 1022 while (sibling->child && 1023 !cpumask_subset(sched_domain_span(sibling->child), 1024 sched_domain_span(sd))) 1025 sibling = sibling->child; 1026 1027 /* 1028 * As we are referencing sgc across different topology level, we need 1029 * to go down to skip those sched_domains which don't contribute to 1030 * scheduling because they will be degenerated in cpu_attach_domain 1031 */ 1032 while (sibling->child && 1033 cpumask_equal(sched_domain_span(sibling->child), 1034 sched_domain_span(sibling))) 1035 sibling = sibling->child; 1036 1037 return sibling; 1038 } 1039 1040 static int 1041 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1042 { 1043 struct sched_group *first = NULL, *last = NULL, *sg; 1044 const struct cpumask *span = sched_domain_span(sd); 1045 struct cpumask *covered = sched_domains_tmpmask; 1046 struct sd_data *sdd = sd->private; 1047 struct sched_domain *sibling; 1048 int i; 1049 1050 cpumask_clear(covered); 1051 1052 for_each_cpu_wrap(i, span, cpu) { 1053 struct cpumask *sg_span; 1054 1055 if (cpumask_test_cpu(i, covered)) 1056 continue; 1057 1058 sibling = *per_cpu_ptr(sdd->sd, i); 1059 1060 /* 1061 * Asymmetric node setups can result in situations where the 1062 * domain tree is of unequal depth, make sure to skip domains 1063 * that already cover the entire range. 1064 * 1065 * In that case build_sched_domains() will have terminated the 1066 * iteration early and our sibling sd spans will be empty. 1067 * Domains should always include the CPU they're built on, so 1068 * check that. 1069 */ 1070 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1071 continue; 1072 1073 /* 1074 * Usually we build sched_group by sibling's child sched_domain 1075 * But for machines whose NUMA diameter are 3 or above, we move 1076 * to build sched_group by sibling's proper descendant's child 1077 * domain because sibling's child sched_domain will span out of 1078 * the sched_domain being built as below. 1079 * 1080 * Smallest diameter=3 topology is: 1081 * 1082 * node 0 1 2 3 1083 * 0: 10 20 30 40 1084 * 1: 20 10 20 30 1085 * 2: 30 20 10 20 1086 * 3: 40 30 20 10 1087 * 1088 * 0 --- 1 --- 2 --- 3 1089 * 1090 * NUMA-3 0-3 N/A N/A 0-3 1091 * groups: {0-2},{1-3} {1-3},{0-2} 1092 * 1093 * NUMA-2 0-2 0-3 0-3 1-3 1094 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1095 * 1096 * NUMA-1 0-1 0-2 1-3 2-3 1097 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1098 * 1099 * NUMA-0 0 1 2 3 1100 * 1101 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1102 * group span isn't a subset of the domain span. 1103 */ 1104 if (sibling->child && 1105 !cpumask_subset(sched_domain_span(sibling->child), span)) 1106 sibling = find_descended_sibling(sd, sibling); 1107 1108 sg = build_group_from_child_sched_domain(sibling, cpu); 1109 if (!sg) 1110 goto fail; 1111 1112 sg_span = sched_group_span(sg); 1113 cpumask_or(covered, covered, sg_span); 1114 1115 init_overlap_sched_group(sibling, sg); 1116 1117 if (!first) 1118 first = sg; 1119 if (last) 1120 last->next = sg; 1121 last = sg; 1122 last->next = first; 1123 } 1124 sd->groups = first; 1125 1126 return 0; 1127 1128 fail: 1129 free_sched_groups(first, 0); 1130 1131 return -ENOMEM; 1132 } 1133 1134 1135 /* 1136 * Package topology (also see the load-balance blurb in fair.c) 1137 * 1138 * The scheduler builds a tree structure to represent a number of important 1139 * topology features. By default (default_topology[]) these include: 1140 * 1141 * - Simultaneous multithreading (SMT) 1142 * - Multi-Core Cache (MC) 1143 * - Package (PKG) 1144 * 1145 * Where the last one more or less denotes everything up to a NUMA node. 1146 * 1147 * The tree consists of 3 primary data structures: 1148 * 1149 * sched_domain -> sched_group -> sched_group_capacity 1150 * ^ ^ ^ ^ 1151 * `-' `-' 1152 * 1153 * The sched_domains are per-CPU and have a two way link (parent & child) and 1154 * denote the ever growing mask of CPUs belonging to that level of topology. 1155 * 1156 * Each sched_domain has a circular (double) linked list of sched_group's, each 1157 * denoting the domains of the level below (or individual CPUs in case of the 1158 * first domain level). The sched_group linked by a sched_domain includes the 1159 * CPU of that sched_domain [*]. 1160 * 1161 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1162 * 1163 * CPU 0 1 2 3 4 5 6 7 1164 * 1165 * PKG [ ] 1166 * MC [ ] [ ] 1167 * SMT [ ] [ ] [ ] [ ] 1168 * 1169 * - or - 1170 * 1171 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1172 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1173 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1174 * 1175 * CPU 0 1 2 3 4 5 6 7 1176 * 1177 * One way to think about it is: sched_domain moves you up and down among these 1178 * topology levels, while sched_group moves you sideways through it, at child 1179 * domain granularity. 1180 * 1181 * sched_group_capacity ensures each unique sched_group has shared storage. 1182 * 1183 * There are two related construction problems, both require a CPU that 1184 * uniquely identify each group (for a given domain): 1185 * 1186 * - The first is the balance_cpu (see should_we_balance() and the 1187 * load-balance blurb in fair.c); for each group we only want 1 CPU to 1188 * continue balancing at a higher domain. 1189 * 1190 * - The second is the sched_group_capacity; we want all identical groups 1191 * to share a single sched_group_capacity. 1192 * 1193 * Since these topologies are exclusive by construction. That is, its 1194 * impossible for an SMT thread to belong to multiple cores, and cores to 1195 * be part of multiple caches. There is a very clear and unique location 1196 * for each CPU in the hierarchy. 1197 * 1198 * Therefore computing a unique CPU for each group is trivial (the iteration 1199 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1200 * group), we can simply pick the first CPU in each group. 1201 * 1202 * 1203 * [*] in other words, the first group of each domain is its child domain. 1204 */ 1205 1206 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1207 { 1208 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1209 struct sched_domain *child = sd->child; 1210 struct sched_group *sg; 1211 bool already_visited; 1212 1213 if (child) 1214 cpu = cpumask_first(sched_domain_span(child)); 1215 1216 sg = *per_cpu_ptr(sdd->sg, cpu); 1217 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1218 1219 /* Increase refcounts for claim_allocations: */ 1220 already_visited = atomic_inc_return(&sg->ref) > 1; 1221 /* sgc visits should follow a similar trend as sg */ 1222 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1223 1224 /* If we have already visited that group, it's already initialized. */ 1225 if (already_visited) 1226 return sg; 1227 1228 if (child) { 1229 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1230 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1231 sg->flags = child->flags; 1232 } else { 1233 cpumask_set_cpu(cpu, sched_group_span(sg)); 1234 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1235 } 1236 1237 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1238 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1239 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1240 1241 return sg; 1242 } 1243 1244 /* 1245 * build_sched_groups will build a circular linked list of the groups 1246 * covered by the given span, will set each group's ->cpumask correctly, 1247 * and will initialize their ->sgc. 1248 * 1249 * Assumes the sched_domain tree is fully constructed 1250 */ 1251 static int 1252 build_sched_groups(struct sched_domain *sd, int cpu) 1253 { 1254 struct sched_group *first = NULL, *last = NULL; 1255 struct sd_data *sdd = sd->private; 1256 const struct cpumask *span = sched_domain_span(sd); 1257 struct cpumask *covered; 1258 int i; 1259 1260 lockdep_assert_held(&sched_domains_mutex); 1261 covered = sched_domains_tmpmask; 1262 1263 cpumask_clear(covered); 1264 1265 for_each_cpu_wrap(i, span, cpu) { 1266 struct sched_group *sg; 1267 1268 if (cpumask_test_cpu(i, covered)) 1269 continue; 1270 1271 sg = get_group(i, sdd); 1272 1273 cpumask_or(covered, covered, sched_group_span(sg)); 1274 1275 if (!first) 1276 first = sg; 1277 if (last) 1278 last->next = sg; 1279 last = sg; 1280 } 1281 last->next = first; 1282 sd->groups = first; 1283 1284 return 0; 1285 } 1286 1287 /* 1288 * Initialize sched groups cpu_capacity. 1289 * 1290 * cpu_capacity indicates the capacity of sched group, which is used while 1291 * distributing the load between different sched groups in a sched domain. 1292 * Typically cpu_capacity for all the groups in a sched domain will be same 1293 * unless there are asymmetries in the topology. If there are asymmetries, 1294 * group having more cpu_capacity will pickup more load compared to the 1295 * group having less cpu_capacity. 1296 */ 1297 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1298 { 1299 struct sched_group *sg = sd->groups; 1300 struct cpumask *mask = sched_domains_tmpmask2; 1301 1302 WARN_ON(!sg); 1303 1304 do { 1305 int cpu, cores = 0, max_cpu = -1; 1306 1307 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1308 1309 cpumask_copy(mask, sched_group_span(sg)); 1310 for_each_cpu(cpu, mask) { 1311 cores++; 1312 #ifdef CONFIG_SCHED_SMT 1313 cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); 1314 #endif 1315 } 1316 sg->cores = cores; 1317 1318 if (!(sd->flags & SD_ASYM_PACKING)) 1319 goto next; 1320 1321 for_each_cpu(cpu, sched_group_span(sg)) { 1322 if (max_cpu < 0) 1323 max_cpu = cpu; 1324 else if (sched_asym_prefer(cpu, max_cpu)) 1325 max_cpu = cpu; 1326 } 1327 sg->asym_prefer_cpu = max_cpu; 1328 1329 next: 1330 sg = sg->next; 1331 } while (sg != sd->groups); 1332 1333 if (cpu != group_balance_cpu(sg)) 1334 return; 1335 1336 update_group_capacity(sd, cpu); 1337 } 1338 1339 /* 1340 * Set of available CPUs grouped by their corresponding capacities 1341 * Each list entry contains a CPU mask reflecting CPUs that share the same 1342 * capacity. 1343 * The lifespan of data is unlimited. 1344 */ 1345 LIST_HEAD(asym_cap_list); 1346 1347 /* 1348 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1349 * Provides sd_flags reflecting the asymmetry scope. 1350 */ 1351 static inline int 1352 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1353 const struct cpumask *cpu_map) 1354 { 1355 struct asym_cap_data *entry; 1356 int count = 0, miss = 0; 1357 1358 /* 1359 * Count how many unique CPU capacities this domain spans across 1360 * (compare sched_domain CPUs mask with ones representing available 1361 * CPUs capacities). Take into account CPUs that might be offline: 1362 * skip those. 1363 */ 1364 list_for_each_entry(entry, &asym_cap_list, link) { 1365 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1366 ++count; 1367 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1368 ++miss; 1369 } 1370 1371 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1372 1373 /* No asymmetry detected */ 1374 if (count < 2) 1375 return 0; 1376 /* Some of the available CPU capacity values have not been detected */ 1377 if (miss) 1378 return SD_ASYM_CPUCAPACITY; 1379 1380 /* Full asymmetry */ 1381 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1382 1383 } 1384 1385 static void free_asym_cap_entry(struct rcu_head *head) 1386 { 1387 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu); 1388 kfree(entry); 1389 } 1390 1391 static inline void asym_cpu_capacity_update_data(int cpu) 1392 { 1393 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1394 struct asym_cap_data *insert_entry = NULL; 1395 struct asym_cap_data *entry; 1396 1397 /* 1398 * Search if capacity already exits. If not, track which the entry 1399 * where we should insert to keep the list ordered descending. 1400 */ 1401 list_for_each_entry(entry, &asym_cap_list, link) { 1402 if (capacity == entry->capacity) 1403 goto done; 1404 else if (!insert_entry && capacity > entry->capacity) 1405 insert_entry = list_prev_entry(entry, link); 1406 } 1407 1408 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1409 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1410 return; 1411 entry->capacity = capacity; 1412 1413 /* If NULL then the new capacity is the smallest, add last. */ 1414 if (!insert_entry) 1415 list_add_tail_rcu(&entry->link, &asym_cap_list); 1416 else 1417 list_add_rcu(&entry->link, &insert_entry->link); 1418 done: 1419 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1420 } 1421 1422 /* 1423 * Build-up/update list of CPUs grouped by their capacities 1424 * An update requires explicit request to rebuild sched domains 1425 * with state indicating CPU topology changes. 1426 */ 1427 static void asym_cpu_capacity_scan(void) 1428 { 1429 struct asym_cap_data *entry, *next; 1430 int cpu; 1431 1432 list_for_each_entry(entry, &asym_cap_list, link) 1433 cpumask_clear(cpu_capacity_span(entry)); 1434 1435 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1436 asym_cpu_capacity_update_data(cpu); 1437 1438 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1439 if (cpumask_empty(cpu_capacity_span(entry))) { 1440 list_del_rcu(&entry->link); 1441 call_rcu(&entry->rcu, free_asym_cap_entry); 1442 } 1443 } 1444 1445 /* 1446 * Only one capacity value has been detected i.e. this system is symmetric. 1447 * No need to keep this data around. 1448 */ 1449 if (list_is_singular(&asym_cap_list)) { 1450 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1451 list_del_rcu(&entry->link); 1452 call_rcu(&entry->rcu, free_asym_cap_entry); 1453 } 1454 } 1455 1456 /* 1457 * Initializers for schedule domains 1458 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1459 */ 1460 1461 static int default_relax_domain_level = -1; 1462 int sched_domain_level_max; 1463 1464 static int __init setup_relax_domain_level(char *str) 1465 { 1466 if (kstrtoint(str, 0, &default_relax_domain_level)) 1467 pr_warn("Unable to set relax_domain_level\n"); 1468 1469 return 1; 1470 } 1471 __setup("relax_domain_level=", setup_relax_domain_level); 1472 1473 static void set_domain_attribute(struct sched_domain *sd, 1474 struct sched_domain_attr *attr) 1475 { 1476 int request; 1477 1478 if (!attr || attr->relax_domain_level < 0) { 1479 if (default_relax_domain_level < 0) 1480 return; 1481 request = default_relax_domain_level; 1482 } else 1483 request = attr->relax_domain_level; 1484 1485 if (sd->level >= request) { 1486 /* Turn off idle balance on this domain: */ 1487 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1488 } 1489 } 1490 1491 static void __sdt_free(const struct cpumask *cpu_map); 1492 static int __sdt_alloc(const struct cpumask *cpu_map); 1493 1494 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1495 const struct cpumask *cpu_map) 1496 { 1497 switch (what) { 1498 case sa_rootdomain: 1499 if (!atomic_read(&d->rd->refcount)) 1500 free_rootdomain(&d->rd->rcu); 1501 fallthrough; 1502 case sa_sd: 1503 free_percpu(d->sd); 1504 fallthrough; 1505 case sa_sd_storage: 1506 __sdt_free(cpu_map); 1507 fallthrough; 1508 case sa_none: 1509 break; 1510 } 1511 } 1512 1513 static enum s_alloc 1514 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1515 { 1516 memset(d, 0, sizeof(*d)); 1517 1518 if (__sdt_alloc(cpu_map)) 1519 return sa_sd_storage; 1520 d->sd = alloc_percpu(struct sched_domain *); 1521 if (!d->sd) 1522 return sa_sd_storage; 1523 d->rd = alloc_rootdomain(); 1524 if (!d->rd) 1525 return sa_sd; 1526 1527 return sa_rootdomain; 1528 } 1529 1530 /* 1531 * NULL the sd_data elements we've used to build the sched_domain and 1532 * sched_group structure so that the subsequent __free_domain_allocs() 1533 * will not free the data we're using. 1534 */ 1535 static void claim_allocations(int cpu, struct sched_domain *sd) 1536 { 1537 struct sd_data *sdd = sd->private; 1538 1539 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1540 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1541 1542 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1543 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1544 1545 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1546 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1547 1548 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1549 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1550 } 1551 1552 #ifdef CONFIG_NUMA 1553 enum numa_topology_type sched_numa_topology_type; 1554 1555 static int sched_domains_numa_levels; 1556 static int sched_domains_curr_level; 1557 1558 int sched_max_numa_distance; 1559 static int *sched_domains_numa_distance; 1560 static struct cpumask ***sched_domains_numa_masks; 1561 #endif 1562 1563 /* 1564 * SD_flags allowed in topology descriptions. 1565 * 1566 * These flags are purely descriptive of the topology and do not prescribe 1567 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1568 * function. For details, see include/linux/sched/sd_flags.h. 1569 * 1570 * SD_SHARE_CPUCAPACITY 1571 * SD_SHARE_LLC 1572 * SD_CLUSTER 1573 * SD_NUMA 1574 * 1575 * Odd one out, which beside describing the topology has a quirk also 1576 * prescribes the desired behaviour that goes along with it: 1577 * 1578 * SD_ASYM_PACKING - describes SMT quirks 1579 */ 1580 #define TOPOLOGY_SD_FLAGS \ 1581 (SD_SHARE_CPUCAPACITY | \ 1582 SD_CLUSTER | \ 1583 SD_SHARE_LLC | \ 1584 SD_NUMA | \ 1585 SD_ASYM_PACKING) 1586 1587 static struct sched_domain * 1588 sd_init(struct sched_domain_topology_level *tl, 1589 const struct cpumask *cpu_map, 1590 struct sched_domain *child, int cpu) 1591 { 1592 struct sd_data *sdd = &tl->data; 1593 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1594 int sd_id, sd_weight, sd_flags = 0; 1595 struct cpumask *sd_span; 1596 1597 #ifdef CONFIG_NUMA 1598 /* 1599 * Ugly hack to pass state to sd_numa_mask()... 1600 */ 1601 sched_domains_curr_level = tl->numa_level; 1602 #endif 1603 1604 sd_weight = cpumask_weight(tl->mask(cpu)); 1605 1606 if (tl->sd_flags) 1607 sd_flags = (*tl->sd_flags)(); 1608 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1609 "wrong sd_flags in topology description\n")) 1610 sd_flags &= TOPOLOGY_SD_FLAGS; 1611 1612 *sd = (struct sched_domain){ 1613 .min_interval = sd_weight, 1614 .max_interval = 2*sd_weight, 1615 .busy_factor = 16, 1616 .imbalance_pct = 117, 1617 1618 .cache_nice_tries = 0, 1619 1620 .flags = 1*SD_BALANCE_NEWIDLE 1621 | 1*SD_BALANCE_EXEC 1622 | 1*SD_BALANCE_FORK 1623 | 0*SD_BALANCE_WAKE 1624 | 1*SD_WAKE_AFFINE 1625 | 0*SD_SHARE_CPUCAPACITY 1626 | 0*SD_SHARE_LLC 1627 | 0*SD_SERIALIZE 1628 | 1*SD_PREFER_SIBLING 1629 | 0*SD_NUMA 1630 | sd_flags 1631 , 1632 1633 .last_balance = jiffies, 1634 .balance_interval = sd_weight, 1635 .max_newidle_lb_cost = 0, 1636 .last_decay_max_lb_cost = jiffies, 1637 .child = child, 1638 #ifdef CONFIG_SCHED_DEBUG 1639 .name = tl->name, 1640 #endif 1641 }; 1642 1643 sd_span = sched_domain_span(sd); 1644 cpumask_and(sd_span, cpu_map, tl->mask(cpu)); 1645 sd_id = cpumask_first(sd_span); 1646 1647 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1648 1649 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1650 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1651 "CPU capacity asymmetry not supported on SMT\n"); 1652 1653 /* 1654 * Convert topological properties into behaviour. 1655 */ 1656 /* Don't attempt to spread across CPUs of different capacities. */ 1657 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1658 sd->child->flags &= ~SD_PREFER_SIBLING; 1659 1660 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1661 sd->imbalance_pct = 110; 1662 1663 } else if (sd->flags & SD_SHARE_LLC) { 1664 sd->imbalance_pct = 117; 1665 sd->cache_nice_tries = 1; 1666 1667 #ifdef CONFIG_NUMA 1668 } else if (sd->flags & SD_NUMA) { 1669 sd->cache_nice_tries = 2; 1670 1671 sd->flags &= ~SD_PREFER_SIBLING; 1672 sd->flags |= SD_SERIALIZE; 1673 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1674 sd->flags &= ~(SD_BALANCE_EXEC | 1675 SD_BALANCE_FORK | 1676 SD_WAKE_AFFINE); 1677 } 1678 1679 #endif 1680 } else { 1681 sd->cache_nice_tries = 1; 1682 } 1683 1684 /* 1685 * For all levels sharing cache; connect a sched_domain_shared 1686 * instance. 1687 */ 1688 if (sd->flags & SD_SHARE_LLC) { 1689 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1690 atomic_inc(&sd->shared->ref); 1691 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1692 } 1693 1694 sd->private = sdd; 1695 1696 return sd; 1697 } 1698 1699 /* 1700 * Topology list, bottom-up. 1701 */ 1702 static struct sched_domain_topology_level default_topology[] = { 1703 #ifdef CONFIG_SCHED_SMT 1704 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, 1705 #endif 1706 1707 #ifdef CONFIG_SCHED_CLUSTER 1708 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) }, 1709 #endif 1710 1711 #ifdef CONFIG_SCHED_MC 1712 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 1713 #endif 1714 { cpu_cpu_mask, SD_INIT_NAME(PKG) }, 1715 { NULL, }, 1716 }; 1717 1718 static struct sched_domain_topology_level *sched_domain_topology = 1719 default_topology; 1720 static struct sched_domain_topology_level *sched_domain_topology_saved; 1721 1722 #define for_each_sd_topology(tl) \ 1723 for (tl = sched_domain_topology; tl->mask; tl++) 1724 1725 void __init set_sched_topology(struct sched_domain_topology_level *tl) 1726 { 1727 if (WARN_ON_ONCE(sched_smp_initialized)) 1728 return; 1729 1730 sched_domain_topology = tl; 1731 sched_domain_topology_saved = NULL; 1732 } 1733 1734 #ifdef CONFIG_NUMA 1735 1736 static const struct cpumask *sd_numa_mask(int cpu) 1737 { 1738 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; 1739 } 1740 1741 static void sched_numa_warn(const char *str) 1742 { 1743 static int done = false; 1744 int i,j; 1745 1746 if (done) 1747 return; 1748 1749 done = true; 1750 1751 printk(KERN_WARNING "ERROR: %s\n\n", str); 1752 1753 for (i = 0; i < nr_node_ids; i++) { 1754 printk(KERN_WARNING " "); 1755 for (j = 0; j < nr_node_ids; j++) { 1756 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1757 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1758 else 1759 printk(KERN_CONT " %02d ", node_distance(i,j)); 1760 } 1761 printk(KERN_CONT "\n"); 1762 } 1763 printk(KERN_WARNING "\n"); 1764 } 1765 1766 bool find_numa_distance(int distance) 1767 { 1768 bool found = false; 1769 int i, *distances; 1770 1771 if (distance == node_distance(0, 0)) 1772 return true; 1773 1774 rcu_read_lock(); 1775 distances = rcu_dereference(sched_domains_numa_distance); 1776 if (!distances) 1777 goto unlock; 1778 for (i = 0; i < sched_domains_numa_levels; i++) { 1779 if (distances[i] == distance) { 1780 found = true; 1781 break; 1782 } 1783 } 1784 unlock: 1785 rcu_read_unlock(); 1786 1787 return found; 1788 } 1789 1790 #define for_each_cpu_node_but(n, nbut) \ 1791 for_each_node_state(n, N_CPU) \ 1792 if (n == nbut) \ 1793 continue; \ 1794 else 1795 1796 /* 1797 * A system can have three types of NUMA topology: 1798 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1799 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1800 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1801 * 1802 * The difference between a glueless mesh topology and a backplane 1803 * topology lies in whether communication between not directly 1804 * connected nodes goes through intermediary nodes (where programs 1805 * could run), or through backplane controllers. This affects 1806 * placement of programs. 1807 * 1808 * The type of topology can be discerned with the following tests: 1809 * - If the maximum distance between any nodes is 1 hop, the system 1810 * is directly connected. 1811 * - If for two nodes A and B, located N > 1 hops away from each other, 1812 * there is an intermediary node C, which is < N hops away from both 1813 * nodes A and B, the system is a glueless mesh. 1814 */ 1815 static void init_numa_topology_type(int offline_node) 1816 { 1817 int a, b, c, n; 1818 1819 n = sched_max_numa_distance; 1820 1821 if (sched_domains_numa_levels <= 2) { 1822 sched_numa_topology_type = NUMA_DIRECT; 1823 return; 1824 } 1825 1826 for_each_cpu_node_but(a, offline_node) { 1827 for_each_cpu_node_but(b, offline_node) { 1828 /* Find two nodes furthest removed from each other. */ 1829 if (node_distance(a, b) < n) 1830 continue; 1831 1832 /* Is there an intermediary node between a and b? */ 1833 for_each_cpu_node_but(c, offline_node) { 1834 if (node_distance(a, c) < n && 1835 node_distance(b, c) < n) { 1836 sched_numa_topology_type = 1837 NUMA_GLUELESS_MESH; 1838 return; 1839 } 1840 } 1841 1842 sched_numa_topology_type = NUMA_BACKPLANE; 1843 return; 1844 } 1845 } 1846 1847 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1848 sched_numa_topology_type = NUMA_DIRECT; 1849 } 1850 1851 1852 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1853 1854 void sched_init_numa(int offline_node) 1855 { 1856 struct sched_domain_topology_level *tl; 1857 unsigned long *distance_map; 1858 int nr_levels = 0; 1859 int i, j; 1860 int *distances; 1861 struct cpumask ***masks; 1862 1863 /* 1864 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the 1865 * unique distances in the node_distance() table. 1866 */ 1867 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1868 if (!distance_map) 1869 return; 1870 1871 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1872 for_each_cpu_node_but(i, offline_node) { 1873 for_each_cpu_node_but(j, offline_node) { 1874 int distance = node_distance(i, j); 1875 1876 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1877 sched_numa_warn("Invalid distance value range"); 1878 bitmap_free(distance_map); 1879 return; 1880 } 1881 1882 bitmap_set(distance_map, distance, 1); 1883 } 1884 } 1885 /* 1886 * We can now figure out how many unique distance values there are and 1887 * allocate memory accordingly. 1888 */ 1889 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 1890 1891 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 1892 if (!distances) { 1893 bitmap_free(distance_map); 1894 return; 1895 } 1896 1897 for (i = 0, j = 0; i < nr_levels; i++, j++) { 1898 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 1899 distances[i] = j; 1900 } 1901 rcu_assign_pointer(sched_domains_numa_distance, distances); 1902 1903 bitmap_free(distance_map); 1904 1905 /* 1906 * 'nr_levels' contains the number of unique distances 1907 * 1908 * The sched_domains_numa_distance[] array includes the actual distance 1909 * numbers. 1910 */ 1911 1912 /* 1913 * Here, we should temporarily reset sched_domains_numa_levels to 0. 1914 * If it fails to allocate memory for array sched_domains_numa_masks[][], 1915 * the array will contain less then 'nr_levels' members. This could be 1916 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 1917 * in other functions. 1918 * 1919 * We reset it to 'nr_levels' at the end of this function. 1920 */ 1921 sched_domains_numa_levels = 0; 1922 1923 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 1924 if (!masks) 1925 return; 1926 1927 /* 1928 * Now for each level, construct a mask per node which contains all 1929 * CPUs of nodes that are that many hops away from us. 1930 */ 1931 for (i = 0; i < nr_levels; i++) { 1932 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 1933 if (!masks[i]) 1934 return; 1935 1936 for_each_cpu_node_but(j, offline_node) { 1937 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 1938 int k; 1939 1940 if (!mask) 1941 return; 1942 1943 masks[i][j] = mask; 1944 1945 for_each_cpu_node_but(k, offline_node) { 1946 if (sched_debug() && (node_distance(j, k) != node_distance(k, j))) 1947 sched_numa_warn("Node-distance not symmetric"); 1948 1949 if (node_distance(j, k) > sched_domains_numa_distance[i]) 1950 continue; 1951 1952 cpumask_or(mask, mask, cpumask_of_node(k)); 1953 } 1954 } 1955 } 1956 rcu_assign_pointer(sched_domains_numa_masks, masks); 1957 1958 /* Compute default topology size */ 1959 for (i = 0; sched_domain_topology[i].mask; i++); 1960 1961 tl = kzalloc((i + nr_levels + 1) * 1962 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 1963 if (!tl) 1964 return; 1965 1966 /* 1967 * Copy the default topology bits.. 1968 */ 1969 for (i = 0; sched_domain_topology[i].mask; i++) 1970 tl[i] = sched_domain_topology[i]; 1971 1972 /* 1973 * Add the NUMA identity distance, aka single NODE. 1974 */ 1975 tl[i++] = (struct sched_domain_topology_level){ 1976 .mask = sd_numa_mask, 1977 .numa_level = 0, 1978 SD_INIT_NAME(NODE) 1979 }; 1980 1981 /* 1982 * .. and append 'j' levels of NUMA goodness. 1983 */ 1984 for (j = 1; j < nr_levels; i++, j++) { 1985 tl[i] = (struct sched_domain_topology_level){ 1986 .mask = sd_numa_mask, 1987 .sd_flags = cpu_numa_flags, 1988 .flags = SDTL_OVERLAP, 1989 .numa_level = j, 1990 SD_INIT_NAME(NUMA) 1991 }; 1992 } 1993 1994 sched_domain_topology_saved = sched_domain_topology; 1995 sched_domain_topology = tl; 1996 1997 sched_domains_numa_levels = nr_levels; 1998 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]); 1999 2000 init_numa_topology_type(offline_node); 2001 } 2002 2003 2004 static void sched_reset_numa(void) 2005 { 2006 int nr_levels, *distances; 2007 struct cpumask ***masks; 2008 2009 nr_levels = sched_domains_numa_levels; 2010 sched_domains_numa_levels = 0; 2011 sched_max_numa_distance = 0; 2012 sched_numa_topology_type = NUMA_DIRECT; 2013 distances = sched_domains_numa_distance; 2014 rcu_assign_pointer(sched_domains_numa_distance, NULL); 2015 masks = sched_domains_numa_masks; 2016 rcu_assign_pointer(sched_domains_numa_masks, NULL); 2017 if (distances || masks) { 2018 int i, j; 2019 2020 synchronize_rcu(); 2021 kfree(distances); 2022 for (i = 0; i < nr_levels && masks; i++) { 2023 if (!masks[i]) 2024 continue; 2025 for_each_node(j) 2026 kfree(masks[i][j]); 2027 kfree(masks[i]); 2028 } 2029 kfree(masks); 2030 } 2031 if (sched_domain_topology_saved) { 2032 kfree(sched_domain_topology); 2033 sched_domain_topology = sched_domain_topology_saved; 2034 sched_domain_topology_saved = NULL; 2035 } 2036 } 2037 2038 /* 2039 * Call with hotplug lock held 2040 */ 2041 void sched_update_numa(int cpu, bool online) 2042 { 2043 int node; 2044 2045 node = cpu_to_node(cpu); 2046 /* 2047 * Scheduler NUMA topology is updated when the first CPU of a 2048 * node is onlined or the last CPU of a node is offlined. 2049 */ 2050 if (cpumask_weight(cpumask_of_node(node)) != 1) 2051 return; 2052 2053 sched_reset_numa(); 2054 sched_init_numa(online ? NUMA_NO_NODE : node); 2055 } 2056 2057 void sched_domains_numa_masks_set(unsigned int cpu) 2058 { 2059 int node = cpu_to_node(cpu); 2060 int i, j; 2061 2062 for (i = 0; i < sched_domains_numa_levels; i++) { 2063 for (j = 0; j < nr_node_ids; j++) { 2064 if (!node_state(j, N_CPU)) 2065 continue; 2066 2067 /* Set ourselves in the remote node's masks */ 2068 if (node_distance(j, node) <= sched_domains_numa_distance[i]) 2069 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2070 } 2071 } 2072 } 2073 2074 void sched_domains_numa_masks_clear(unsigned int cpu) 2075 { 2076 int i, j; 2077 2078 for (i = 0; i < sched_domains_numa_levels; i++) { 2079 for (j = 0; j < nr_node_ids; j++) { 2080 if (sched_domains_numa_masks[i][j]) 2081 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2082 } 2083 } 2084 } 2085 2086 /* 2087 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2088 * closest to @cpu from @cpumask. 2089 * cpumask: cpumask to find a cpu from 2090 * cpu: cpu to be close to 2091 * 2092 * returns: cpu, or nr_cpu_ids when nothing found. 2093 */ 2094 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2095 { 2096 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2097 struct cpumask ***masks; 2098 2099 rcu_read_lock(); 2100 masks = rcu_dereference(sched_domains_numa_masks); 2101 if (!masks) 2102 goto unlock; 2103 for (i = 0; i < sched_domains_numa_levels; i++) { 2104 if (!masks[i][j]) 2105 break; 2106 cpu = cpumask_any_and(cpus, masks[i][j]); 2107 if (cpu < nr_cpu_ids) { 2108 found = cpu; 2109 break; 2110 } 2111 } 2112 unlock: 2113 rcu_read_unlock(); 2114 2115 return found; 2116 } 2117 2118 struct __cmp_key { 2119 const struct cpumask *cpus; 2120 struct cpumask ***masks; 2121 int node; 2122 int cpu; 2123 int w; 2124 }; 2125 2126 static int hop_cmp(const void *a, const void *b) 2127 { 2128 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2129 struct __cmp_key *k = (struct __cmp_key *)a; 2130 2131 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2132 return 1; 2133 2134 if (b == k->masks) { 2135 k->w = 0; 2136 return 0; 2137 } 2138 2139 prev_hop = *((struct cpumask ***)b - 1); 2140 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2141 if (k->w <= k->cpu) 2142 return 0; 2143 2144 return -1; 2145 } 2146 2147 /** 2148 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU 2149 * from @cpus to @cpu, taking into account distance 2150 * from a given @node. 2151 * @cpus: cpumask to find a cpu from 2152 * @cpu: CPU to start searching 2153 * @node: NUMA node to order CPUs by distance 2154 * 2155 * Return: cpu, or nr_cpu_ids when nothing found. 2156 */ 2157 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2158 { 2159 struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; 2160 struct cpumask ***hop_masks; 2161 int hop, ret = nr_cpu_ids; 2162 2163 if (node == NUMA_NO_NODE) 2164 return cpumask_nth_and(cpu, cpus, cpu_online_mask); 2165 2166 rcu_read_lock(); 2167 2168 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ 2169 node = numa_nearest_node(node, N_CPU); 2170 k.node = node; 2171 2172 k.masks = rcu_dereference(sched_domains_numa_masks); 2173 if (!k.masks) 2174 goto unlock; 2175 2176 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2177 hop = hop_masks - k.masks; 2178 2179 ret = hop ? 2180 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2181 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2182 unlock: 2183 rcu_read_unlock(); 2184 return ret; 2185 } 2186 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2187 2188 /** 2189 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2190 * @node 2191 * @node: The node to count hops from. 2192 * @hops: Include CPUs up to that many hops away. 0 means local node. 2193 * 2194 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2195 * @node, an error value otherwise. 2196 * 2197 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2198 * read-side section, copy it if required beyond that. 2199 * 2200 * Note that not all hops are equal in distance; see sched_init_numa() for how 2201 * distances and masks are handled. 2202 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2203 * during the lifetime of the system (offline nodes are taken out of the masks). 2204 */ 2205 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2206 { 2207 struct cpumask ***masks; 2208 2209 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2210 return ERR_PTR(-EINVAL); 2211 2212 masks = rcu_dereference(sched_domains_numa_masks); 2213 if (!masks) 2214 return ERR_PTR(-EBUSY); 2215 2216 return masks[hops][node]; 2217 } 2218 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2219 2220 #endif /* CONFIG_NUMA */ 2221 2222 static int __sdt_alloc(const struct cpumask *cpu_map) 2223 { 2224 struct sched_domain_topology_level *tl; 2225 int j; 2226 2227 for_each_sd_topology(tl) { 2228 struct sd_data *sdd = &tl->data; 2229 2230 sdd->sd = alloc_percpu(struct sched_domain *); 2231 if (!sdd->sd) 2232 return -ENOMEM; 2233 2234 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2235 if (!sdd->sds) 2236 return -ENOMEM; 2237 2238 sdd->sg = alloc_percpu(struct sched_group *); 2239 if (!sdd->sg) 2240 return -ENOMEM; 2241 2242 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2243 if (!sdd->sgc) 2244 return -ENOMEM; 2245 2246 for_each_cpu(j, cpu_map) { 2247 struct sched_domain *sd; 2248 struct sched_domain_shared *sds; 2249 struct sched_group *sg; 2250 struct sched_group_capacity *sgc; 2251 2252 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2253 GFP_KERNEL, cpu_to_node(j)); 2254 if (!sd) 2255 return -ENOMEM; 2256 2257 *per_cpu_ptr(sdd->sd, j) = sd; 2258 2259 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2260 GFP_KERNEL, cpu_to_node(j)); 2261 if (!sds) 2262 return -ENOMEM; 2263 2264 *per_cpu_ptr(sdd->sds, j) = sds; 2265 2266 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2267 GFP_KERNEL, cpu_to_node(j)); 2268 if (!sg) 2269 return -ENOMEM; 2270 2271 sg->next = sg; 2272 2273 *per_cpu_ptr(sdd->sg, j) = sg; 2274 2275 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2276 GFP_KERNEL, cpu_to_node(j)); 2277 if (!sgc) 2278 return -ENOMEM; 2279 2280 #ifdef CONFIG_SCHED_DEBUG 2281 sgc->id = j; 2282 #endif 2283 2284 *per_cpu_ptr(sdd->sgc, j) = sgc; 2285 } 2286 } 2287 2288 return 0; 2289 } 2290 2291 static void __sdt_free(const struct cpumask *cpu_map) 2292 { 2293 struct sched_domain_topology_level *tl; 2294 int j; 2295 2296 for_each_sd_topology(tl) { 2297 struct sd_data *sdd = &tl->data; 2298 2299 for_each_cpu(j, cpu_map) { 2300 struct sched_domain *sd; 2301 2302 if (sdd->sd) { 2303 sd = *per_cpu_ptr(sdd->sd, j); 2304 if (sd && (sd->flags & SD_OVERLAP)) 2305 free_sched_groups(sd->groups, 0); 2306 kfree(*per_cpu_ptr(sdd->sd, j)); 2307 } 2308 2309 if (sdd->sds) 2310 kfree(*per_cpu_ptr(sdd->sds, j)); 2311 if (sdd->sg) 2312 kfree(*per_cpu_ptr(sdd->sg, j)); 2313 if (sdd->sgc) 2314 kfree(*per_cpu_ptr(sdd->sgc, j)); 2315 } 2316 free_percpu(sdd->sd); 2317 sdd->sd = NULL; 2318 free_percpu(sdd->sds); 2319 sdd->sds = NULL; 2320 free_percpu(sdd->sg); 2321 sdd->sg = NULL; 2322 free_percpu(sdd->sgc); 2323 sdd->sgc = NULL; 2324 } 2325 } 2326 2327 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2328 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2329 struct sched_domain *child, int cpu) 2330 { 2331 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2332 2333 if (child) { 2334 sd->level = child->level + 1; 2335 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2336 child->parent = sd; 2337 2338 if (!cpumask_subset(sched_domain_span(child), 2339 sched_domain_span(sd))) { 2340 pr_err("BUG: arch topology borken\n"); 2341 #ifdef CONFIG_SCHED_DEBUG 2342 pr_err(" the %s domain not a subset of the %s domain\n", 2343 child->name, sd->name); 2344 #endif 2345 /* Fixup, ensure @sd has at least @child CPUs. */ 2346 cpumask_or(sched_domain_span(sd), 2347 sched_domain_span(sd), 2348 sched_domain_span(child)); 2349 } 2350 2351 } 2352 set_domain_attribute(sd, attr); 2353 2354 return sd; 2355 } 2356 2357 /* 2358 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2359 * any two given CPUs at this (non-NUMA) topology level. 2360 */ 2361 static bool topology_span_sane(struct sched_domain_topology_level *tl, 2362 const struct cpumask *cpu_map, int cpu) 2363 { 2364 int i = cpu + 1; 2365 2366 /* NUMA levels are allowed to overlap */ 2367 if (tl->flags & SDTL_OVERLAP) 2368 return true; 2369 2370 /* 2371 * Non-NUMA levels cannot partially overlap - they must be either 2372 * completely equal or completely disjoint. Otherwise we can end up 2373 * breaking the sched_group lists - i.e. a later get_group() pass 2374 * breaks the linking done for an earlier span. 2375 */ 2376 for_each_cpu_from(i, cpu_map) { 2377 /* 2378 * We should 'and' all those masks with 'cpu_map' to exactly 2379 * match the topology we're about to build, but that can only 2380 * remove CPUs, which only lessens our ability to detect 2381 * overlaps 2382 */ 2383 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) && 2384 cpumask_intersects(tl->mask(cpu), tl->mask(i))) 2385 return false; 2386 } 2387 2388 return true; 2389 } 2390 2391 /* 2392 * Build sched domains for a given set of CPUs and attach the sched domains 2393 * to the individual CPUs 2394 */ 2395 static int 2396 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2397 { 2398 enum s_alloc alloc_state = sa_none; 2399 struct sched_domain *sd; 2400 struct s_data d; 2401 struct rq *rq = NULL; 2402 int i, ret = -ENOMEM; 2403 bool has_asym = false; 2404 bool has_cluster = false; 2405 2406 if (WARN_ON(cpumask_empty(cpu_map))) 2407 goto error; 2408 2409 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2410 if (alloc_state != sa_rootdomain) 2411 goto error; 2412 2413 /* Set up domains for CPUs specified by the cpu_map: */ 2414 for_each_cpu(i, cpu_map) { 2415 struct sched_domain_topology_level *tl; 2416 2417 sd = NULL; 2418 for_each_sd_topology(tl) { 2419 2420 if (WARN_ON(!topology_span_sane(tl, cpu_map, i))) 2421 goto error; 2422 2423 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2424 2425 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2426 2427 if (tl == sched_domain_topology) 2428 *per_cpu_ptr(d.sd, i) = sd; 2429 if (tl->flags & SDTL_OVERLAP) 2430 sd->flags |= SD_OVERLAP; 2431 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2432 break; 2433 } 2434 } 2435 2436 /* Build the groups for the domains */ 2437 for_each_cpu(i, cpu_map) { 2438 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2439 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2440 if (sd->flags & SD_OVERLAP) { 2441 if (build_overlap_sched_groups(sd, i)) 2442 goto error; 2443 } else { 2444 if (build_sched_groups(sd, i)) 2445 goto error; 2446 } 2447 } 2448 } 2449 2450 /* 2451 * Calculate an allowed NUMA imbalance such that LLCs do not get 2452 * imbalanced. 2453 */ 2454 for_each_cpu(i, cpu_map) { 2455 unsigned int imb = 0; 2456 unsigned int imb_span = 1; 2457 2458 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2459 struct sched_domain *child = sd->child; 2460 2461 if (!(sd->flags & SD_SHARE_LLC) && child && 2462 (child->flags & SD_SHARE_LLC)) { 2463 struct sched_domain __rcu *top_p; 2464 unsigned int nr_llcs; 2465 2466 /* 2467 * For a single LLC per node, allow an 2468 * imbalance up to 12.5% of the node. This is 2469 * arbitrary cutoff based two factors -- SMT and 2470 * memory channels. For SMT-2, the intent is to 2471 * avoid premature sharing of HT resources but 2472 * SMT-4 or SMT-8 *may* benefit from a different 2473 * cutoff. For memory channels, this is a very 2474 * rough estimate of how many channels may be 2475 * active and is based on recent CPUs with 2476 * many cores. 2477 * 2478 * For multiple LLCs, allow an imbalance 2479 * until multiple tasks would share an LLC 2480 * on one node while LLCs on another node 2481 * remain idle. This assumes that there are 2482 * enough logical CPUs per LLC to avoid SMT 2483 * factors and that there is a correlation 2484 * between LLCs and memory channels. 2485 */ 2486 nr_llcs = sd->span_weight / child->span_weight; 2487 if (nr_llcs == 1) 2488 imb = sd->span_weight >> 3; 2489 else 2490 imb = nr_llcs; 2491 imb = max(1U, imb); 2492 sd->imb_numa_nr = imb; 2493 2494 /* Set span based on the first NUMA domain. */ 2495 top_p = sd->parent; 2496 while (top_p && !(top_p->flags & SD_NUMA)) { 2497 top_p = top_p->parent; 2498 } 2499 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2500 } else { 2501 int factor = max(1U, (sd->span_weight / imb_span)); 2502 2503 sd->imb_numa_nr = imb * factor; 2504 } 2505 } 2506 } 2507 2508 /* Calculate CPU capacity for physical packages and nodes */ 2509 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2510 if (!cpumask_test_cpu(i, cpu_map)) 2511 continue; 2512 2513 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2514 claim_allocations(i, sd); 2515 init_sched_groups_capacity(i, sd); 2516 } 2517 } 2518 2519 /* Attach the domains */ 2520 rcu_read_lock(); 2521 for_each_cpu(i, cpu_map) { 2522 rq = cpu_rq(i); 2523 sd = *per_cpu_ptr(d.sd, i); 2524 2525 cpu_attach_domain(sd, d.rd, i); 2526 2527 if (lowest_flag_domain(i, SD_CLUSTER)) 2528 has_cluster = true; 2529 } 2530 rcu_read_unlock(); 2531 2532 if (has_asym) 2533 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2534 2535 if (has_cluster) 2536 static_branch_inc_cpuslocked(&sched_cluster_active); 2537 2538 if (rq && sched_debug_verbose) 2539 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map)); 2540 2541 ret = 0; 2542 error: 2543 __free_domain_allocs(&d, alloc_state, cpu_map); 2544 2545 return ret; 2546 } 2547 2548 /* Current sched domains: */ 2549 static cpumask_var_t *doms_cur; 2550 2551 /* Number of sched domains in 'doms_cur': */ 2552 static int ndoms_cur; 2553 2554 /* Attributes of custom domains in 'doms_cur' */ 2555 static struct sched_domain_attr *dattr_cur; 2556 2557 /* 2558 * Special case: If a kmalloc() of a doms_cur partition (array of 2559 * cpumask) fails, then fallback to a single sched domain, 2560 * as determined by the single cpumask fallback_doms. 2561 */ 2562 static cpumask_var_t fallback_doms; 2563 2564 /* 2565 * arch_update_cpu_topology lets virtualized architectures update the 2566 * CPU core maps. It is supposed to return 1 if the topology changed 2567 * or 0 if it stayed the same. 2568 */ 2569 int __weak arch_update_cpu_topology(void) 2570 { 2571 return 0; 2572 } 2573 2574 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2575 { 2576 int i; 2577 cpumask_var_t *doms; 2578 2579 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2580 if (!doms) 2581 return NULL; 2582 for (i = 0; i < ndoms; i++) { 2583 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2584 free_sched_domains(doms, i); 2585 return NULL; 2586 } 2587 } 2588 return doms; 2589 } 2590 2591 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2592 { 2593 unsigned int i; 2594 for (i = 0; i < ndoms; i++) 2595 free_cpumask_var(doms[i]); 2596 kfree(doms); 2597 } 2598 2599 /* 2600 * Set up scheduler domains and groups. For now this just excludes isolated 2601 * CPUs, but could be used to exclude other special cases in the future. 2602 */ 2603 int __init sched_init_domains(const struct cpumask *cpu_map) 2604 { 2605 int err; 2606 2607 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2608 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2609 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2610 2611 arch_update_cpu_topology(); 2612 asym_cpu_capacity_scan(); 2613 ndoms_cur = 1; 2614 doms_cur = alloc_sched_domains(ndoms_cur); 2615 if (!doms_cur) 2616 doms_cur = &fallback_doms; 2617 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2618 err = build_sched_domains(doms_cur[0], NULL); 2619 2620 return err; 2621 } 2622 2623 /* 2624 * Detach sched domains from a group of CPUs specified in cpu_map 2625 * These CPUs will now be attached to the NULL domain 2626 */ 2627 static void detach_destroy_domains(const struct cpumask *cpu_map) 2628 { 2629 unsigned int cpu = cpumask_any(cpu_map); 2630 int i; 2631 2632 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2633 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2634 2635 if (static_branch_unlikely(&sched_cluster_active)) 2636 static_branch_dec_cpuslocked(&sched_cluster_active); 2637 2638 rcu_read_lock(); 2639 for_each_cpu(i, cpu_map) 2640 cpu_attach_domain(NULL, &def_root_domain, i); 2641 rcu_read_unlock(); 2642 } 2643 2644 /* handle null as "default" */ 2645 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2646 struct sched_domain_attr *new, int idx_new) 2647 { 2648 struct sched_domain_attr tmp; 2649 2650 /* Fast path: */ 2651 if (!new && !cur) 2652 return 1; 2653 2654 tmp = SD_ATTR_INIT; 2655 2656 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2657 new ? (new + idx_new) : &tmp, 2658 sizeof(struct sched_domain_attr)); 2659 } 2660 2661 /* 2662 * Partition sched domains as specified by the 'ndoms_new' 2663 * cpumasks in the array doms_new[] of cpumasks. This compares 2664 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2665 * It destroys each deleted domain and builds each new domain. 2666 * 2667 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2668 * The masks don't intersect (don't overlap.) We should setup one 2669 * sched domain for each mask. CPUs not in any of the cpumasks will 2670 * not be load balanced. If the same cpumask appears both in the 2671 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2672 * it as it is. 2673 * 2674 * The passed in 'doms_new' should be allocated using 2675 * alloc_sched_domains. This routine takes ownership of it and will 2676 * free_sched_domains it when done with it. If the caller failed the 2677 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2678 * and partition_sched_domains() will fallback to the single partition 2679 * 'fallback_doms', it also forces the domains to be rebuilt. 2680 * 2681 * If doms_new == NULL it will be replaced with cpu_online_mask. 2682 * ndoms_new == 0 is a special case for destroying existing domains, 2683 * and it will not create the default domain. 2684 * 2685 * Call with hotplug lock and sched_domains_mutex held 2686 */ 2687 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2688 struct sched_domain_attr *dattr_new) 2689 { 2690 bool __maybe_unused has_eas = false; 2691 int i, j, n; 2692 int new_topology; 2693 2694 lockdep_assert_held(&sched_domains_mutex); 2695 2696 /* Let the architecture update CPU core mappings: */ 2697 new_topology = arch_update_cpu_topology(); 2698 /* Trigger rebuilding CPU capacity asymmetry data */ 2699 if (new_topology) 2700 asym_cpu_capacity_scan(); 2701 2702 if (!doms_new) { 2703 WARN_ON_ONCE(dattr_new); 2704 n = 0; 2705 doms_new = alloc_sched_domains(1); 2706 if (doms_new) { 2707 n = 1; 2708 cpumask_and(doms_new[0], cpu_active_mask, 2709 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2710 } 2711 } else { 2712 n = ndoms_new; 2713 } 2714 2715 /* Destroy deleted domains: */ 2716 for (i = 0; i < ndoms_cur; i++) { 2717 for (j = 0; j < n && !new_topology; j++) { 2718 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2719 dattrs_equal(dattr_cur, i, dattr_new, j)) { 2720 struct root_domain *rd; 2721 2722 /* 2723 * This domain won't be destroyed and as such 2724 * its dl_bw->total_bw needs to be cleared. It 2725 * will be recomputed in function 2726 * update_tasks_root_domain(). 2727 */ 2728 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd; 2729 dl_clear_root_domain(rd); 2730 goto match1; 2731 } 2732 } 2733 /* No match - a current sched domain not in new doms_new[] */ 2734 detach_destroy_domains(doms_cur[i]); 2735 match1: 2736 ; 2737 } 2738 2739 n = ndoms_cur; 2740 if (!doms_new) { 2741 n = 0; 2742 doms_new = &fallback_doms; 2743 cpumask_and(doms_new[0], cpu_active_mask, 2744 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2745 } 2746 2747 /* Build new domains: */ 2748 for (i = 0; i < ndoms_new; i++) { 2749 for (j = 0; j < n && !new_topology; j++) { 2750 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2751 dattrs_equal(dattr_new, i, dattr_cur, j)) 2752 goto match2; 2753 } 2754 /* No match - add a new doms_new */ 2755 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2756 match2: 2757 ; 2758 } 2759 2760 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2761 /* Build perf domains: */ 2762 for (i = 0; i < ndoms_new; i++) { 2763 for (j = 0; j < n && !sched_energy_update; j++) { 2764 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2765 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2766 has_eas = true; 2767 goto match3; 2768 } 2769 } 2770 /* No match - add perf domains for a new rd */ 2771 has_eas |= build_perf_domains(doms_new[i]); 2772 match3: 2773 ; 2774 } 2775 sched_energy_set(has_eas); 2776 #endif 2777 2778 /* Remember the new sched domains: */ 2779 if (doms_cur != &fallback_doms) 2780 free_sched_domains(doms_cur, ndoms_cur); 2781 2782 kfree(dattr_cur); 2783 doms_cur = doms_new; 2784 dattr_cur = dattr_new; 2785 ndoms_cur = ndoms_new; 2786 2787 update_sched_domain_debugfs(); 2788 } 2789 2790 /* 2791 * Call with hotplug lock held 2792 */ 2793 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2794 struct sched_domain_attr *dattr_new) 2795 { 2796 mutex_lock(&sched_domains_mutex); 2797 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2798 mutex_unlock(&sched_domains_mutex); 2799 } 2800