1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5
6 #include <linux/sched/isolation.h>
7 #include <linux/bsearch.h>
8 #include "sched.h"
9
10 DEFINE_MUTEX(sched_domains_mutex);
sched_domains_mutex_lock(void)11 void sched_domains_mutex_lock(void)
12 {
13 mutex_lock(&sched_domains_mutex);
14 }
sched_domains_mutex_unlock(void)15 void sched_domains_mutex_unlock(void)
16 {
17 mutex_unlock(&sched_domains_mutex);
18 }
19
20 /* Protected by sched_domains_mutex: */
21 static cpumask_var_t sched_domains_tmpmask;
22 static cpumask_var_t sched_domains_tmpmask2;
23
sched_debug_setup(char * str)24 static int __init sched_debug_setup(char *str)
25 {
26 sched_debug_verbose = true;
27
28 return 0;
29 }
30 early_param("sched_verbose", sched_debug_setup);
31
sched_debug(void)32 static inline bool sched_debug(void)
33 {
34 return sched_debug_verbose;
35 }
36
37 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
38 const struct sd_flag_debug sd_flag_debug[] = {
39 #include <linux/sched/sd_flags.h>
40 };
41 #undef SD_FLAG
42
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)43 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
44 struct cpumask *groupmask)
45 {
46 struct sched_group *group = sd->groups;
47 unsigned long flags = sd->flags;
48 unsigned int idx;
49
50 cpumask_clear(groupmask);
51
52 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
53 printk(KERN_CONT "span=%*pbl level=%s\n",
54 cpumask_pr_args(sched_domain_span(sd)), sd->name);
55
56 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
57 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
58 }
59 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
60 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
61 }
62
63 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
64 unsigned int flag = BIT(idx);
65 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
66
67 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
68 !(sd->child->flags & flag))
69 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
70 sd_flag_debug[idx].name);
71
72 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
73 !(sd->parent->flags & flag))
74 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
75 sd_flag_debug[idx].name);
76 }
77
78 printk(KERN_DEBUG "%*s groups:", level + 1, "");
79 do {
80 if (!group) {
81 printk("\n");
82 printk(KERN_ERR "ERROR: group is NULL\n");
83 break;
84 }
85
86 if (cpumask_empty(sched_group_span(group))) {
87 printk(KERN_CONT "\n");
88 printk(KERN_ERR "ERROR: empty group\n");
89 break;
90 }
91
92 if (!(sd->flags & SD_NUMA) &&
93 cpumask_intersects(groupmask, sched_group_span(group))) {
94 printk(KERN_CONT "\n");
95 printk(KERN_ERR "ERROR: repeated CPUs\n");
96 break;
97 }
98
99 cpumask_or(groupmask, groupmask, sched_group_span(group));
100
101 printk(KERN_CONT " %d:{ span=%*pbl",
102 group->sgc->id,
103 cpumask_pr_args(sched_group_span(group)));
104
105 if ((sd->flags & SD_NUMA) &&
106 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
107 printk(KERN_CONT " mask=%*pbl",
108 cpumask_pr_args(group_balance_mask(group)));
109 }
110
111 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
112 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
113
114 if (group == sd->groups && sd->child &&
115 !cpumask_equal(sched_domain_span(sd->child),
116 sched_group_span(group))) {
117 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
118 }
119
120 printk(KERN_CONT " }");
121
122 group = group->next;
123
124 if (group != sd->groups)
125 printk(KERN_CONT ",");
126
127 } while (group != sd->groups);
128 printk(KERN_CONT "\n");
129
130 if (!cpumask_equal(sched_domain_span(sd), groupmask))
131 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
132
133 if (sd->parent &&
134 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
135 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
136 return 0;
137 }
138
sched_domain_debug(struct sched_domain * sd,int cpu)139 static void sched_domain_debug(struct sched_domain *sd, int cpu)
140 {
141 int level = 0;
142
143 if (!sched_debug_verbose)
144 return;
145
146 if (!sd) {
147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
148 return;
149 }
150
151 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
152
153 for (;;) {
154 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
155 break;
156 level++;
157 sd = sd->parent;
158 if (!sd)
159 break;
160 }
161 }
162
163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166 #include <linux/sched/sd_flags.h>
167 0;
168 #undef SD_FLAG
169
sd_degenerate(struct sched_domain * sd)170 static int sd_degenerate(struct sched_domain *sd)
171 {
172 if (cpumask_weight(sched_domain_span(sd)) == 1)
173 return 1;
174
175 /* Following flags need at least 2 groups */
176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 (sd->groups != sd->groups->next))
178 return 0;
179
180 /* Following flags don't use groups */
181 if (sd->flags & (SD_WAKE_AFFINE))
182 return 0;
183
184 return 1;
185 }
186
187 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189 {
190 unsigned long cflags = sd->flags, pflags = parent->flags;
191
192 if (sd_degenerate(parent))
193 return 1;
194
195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 return 0;
197
198 /* Flags needing groups don't count if only 1 group in parent */
199 if (parent->groups == parent->groups->next)
200 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
201
202 if (~cflags & pflags)
203 return 0;
204
205 return 1;
206 }
207
208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
209 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
210 static unsigned int sysctl_sched_energy_aware = 1;
211 static DEFINE_MUTEX(sched_energy_mutex);
212 static bool sched_energy_update;
213
sched_is_eas_possible(const struct cpumask * cpu_mask)214 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
215 {
216 bool any_asym_capacity = false;
217 int i;
218
219 /* EAS is enabled for asymmetric CPU capacity topologies. */
220 for_each_cpu(i, cpu_mask) {
221 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
222 any_asym_capacity = true;
223 break;
224 }
225 }
226 if (!any_asym_capacity) {
227 if (sched_debug()) {
228 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
229 cpumask_pr_args(cpu_mask));
230 }
231 return false;
232 }
233
234 /* EAS definitely does *not* handle SMT */
235 if (sched_smt_active()) {
236 if (sched_debug()) {
237 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
238 cpumask_pr_args(cpu_mask));
239 }
240 return false;
241 }
242
243 if (!arch_scale_freq_invariant()) {
244 if (sched_debug()) {
245 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
246 cpumask_pr_args(cpu_mask));
247 }
248 return false;
249 }
250
251 if (!cpufreq_ready_for_eas(cpu_mask)) {
252 if (sched_debug()) {
253 pr_info("rd %*pbl: Checking EAS: cpufreq is not ready\n",
254 cpumask_pr_args(cpu_mask));
255 }
256 return false;
257 }
258
259 return true;
260 }
261
rebuild_sched_domains_energy(void)262 void rebuild_sched_domains_energy(void)
263 {
264 mutex_lock(&sched_energy_mutex);
265 sched_energy_update = true;
266 rebuild_sched_domains();
267 sched_energy_update = false;
268 mutex_unlock(&sched_energy_mutex);
269 }
270
271 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)272 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
273 void *buffer, size_t *lenp, loff_t *ppos)
274 {
275 int ret, state;
276
277 if (write && !capable(CAP_SYS_ADMIN))
278 return -EPERM;
279
280 if (!sched_is_eas_possible(cpu_active_mask)) {
281 if (write) {
282 return -EOPNOTSUPP;
283 } else {
284 *lenp = 0;
285 return 0;
286 }
287 }
288
289 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
290 if (!ret && write) {
291 state = static_branch_unlikely(&sched_energy_present);
292 if (state != sysctl_sched_energy_aware)
293 rebuild_sched_domains_energy();
294 }
295
296 return ret;
297 }
298
299 static const struct ctl_table sched_energy_aware_sysctls[] = {
300 {
301 .procname = "sched_energy_aware",
302 .data = &sysctl_sched_energy_aware,
303 .maxlen = sizeof(unsigned int),
304 .mode = 0644,
305 .proc_handler = sched_energy_aware_handler,
306 .extra1 = SYSCTL_ZERO,
307 .extra2 = SYSCTL_ONE,
308 },
309 };
310
sched_energy_aware_sysctl_init(void)311 static int __init sched_energy_aware_sysctl_init(void)
312 {
313 register_sysctl_init("kernel", sched_energy_aware_sysctls);
314 return 0;
315 }
316
317 late_initcall(sched_energy_aware_sysctl_init);
318 #endif /* CONFIG_PROC_SYSCTL */
319
free_pd(struct perf_domain * pd)320 static void free_pd(struct perf_domain *pd)
321 {
322 struct perf_domain *tmp;
323
324 while (pd) {
325 tmp = pd->next;
326 kfree(pd);
327 pd = tmp;
328 }
329 }
330
find_pd(struct perf_domain * pd,int cpu)331 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
332 {
333 while (pd) {
334 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
335 return pd;
336 pd = pd->next;
337 }
338
339 return NULL;
340 }
341
pd_init(int cpu)342 static struct perf_domain *pd_init(int cpu)
343 {
344 struct em_perf_domain *obj = em_cpu_get(cpu);
345 struct perf_domain *pd;
346
347 if (!obj) {
348 if (sched_debug())
349 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
350 return NULL;
351 }
352
353 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
354 if (!pd)
355 return NULL;
356 pd->em_pd = obj;
357
358 return pd;
359 }
360
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)361 static void perf_domain_debug(const struct cpumask *cpu_map,
362 struct perf_domain *pd)
363 {
364 if (!sched_debug() || !pd)
365 return;
366
367 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
368
369 while (pd) {
370 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
371 cpumask_first(perf_domain_span(pd)),
372 cpumask_pr_args(perf_domain_span(pd)),
373 em_pd_nr_perf_states(pd->em_pd));
374 pd = pd->next;
375 }
376
377 printk(KERN_CONT "\n");
378 }
379
destroy_perf_domain_rcu(struct rcu_head * rp)380 static void destroy_perf_domain_rcu(struct rcu_head *rp)
381 {
382 struct perf_domain *pd;
383
384 pd = container_of(rp, struct perf_domain, rcu);
385 free_pd(pd);
386 }
387
sched_energy_set(bool has_eas)388 static void sched_energy_set(bool has_eas)
389 {
390 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
391 if (sched_debug())
392 pr_info("%s: stopping EAS\n", __func__);
393 static_branch_disable_cpuslocked(&sched_energy_present);
394 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
395 if (sched_debug())
396 pr_info("%s: starting EAS\n", __func__);
397 static_branch_enable_cpuslocked(&sched_energy_present);
398 }
399 }
400
401 /*
402 * EAS can be used on a root domain if it meets all the following conditions:
403 * 1. an Energy Model (EM) is available;
404 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
405 * 3. no SMT is detected.
406 * 4. schedutil is driving the frequency of all CPUs of the rd;
407 * 5. frequency invariance support is present;
408 */
build_perf_domains(const struct cpumask * cpu_map)409 static bool build_perf_domains(const struct cpumask *cpu_map)
410 {
411 int i;
412 struct perf_domain *pd = NULL, *tmp;
413 int cpu = cpumask_first(cpu_map);
414 struct root_domain *rd = cpu_rq(cpu)->rd;
415
416 if (!sysctl_sched_energy_aware)
417 goto free;
418
419 if (!sched_is_eas_possible(cpu_map))
420 goto free;
421
422 for_each_cpu(i, cpu_map) {
423 /* Skip already covered CPUs. */
424 if (find_pd(pd, i))
425 continue;
426
427 /* Create the new pd and add it to the local list. */
428 tmp = pd_init(i);
429 if (!tmp)
430 goto free;
431 tmp->next = pd;
432 pd = tmp;
433 }
434
435 perf_domain_debug(cpu_map, pd);
436
437 /* Attach the new list of performance domains to the root domain. */
438 tmp = rd->pd;
439 rcu_assign_pointer(rd->pd, pd);
440 if (tmp)
441 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
442
443 return !!pd;
444
445 free:
446 free_pd(pd);
447 tmp = rd->pd;
448 rcu_assign_pointer(rd->pd, NULL);
449 if (tmp)
450 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
451
452 return false;
453 }
454 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */
free_pd(struct perf_domain * pd)455 static void free_pd(struct perf_domain *pd) { }
456 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
457
free_rootdomain(struct rcu_head * rcu)458 static void free_rootdomain(struct rcu_head *rcu)
459 {
460 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
461
462 cpupri_cleanup(&rd->cpupri);
463 cpudl_cleanup(&rd->cpudl);
464 free_cpumask_var(rd->dlo_mask);
465 free_cpumask_var(rd->rto_mask);
466 free_cpumask_var(rd->online);
467 free_cpumask_var(rd->span);
468 free_pd(rd->pd);
469 kfree(rd);
470 }
471
rq_attach_root(struct rq * rq,struct root_domain * rd)472 void rq_attach_root(struct rq *rq, struct root_domain *rd)
473 {
474 struct root_domain *old_rd = NULL;
475 struct rq_flags rf;
476
477 rq_lock_irqsave(rq, &rf);
478
479 if (rq->rd) {
480 old_rd = rq->rd;
481
482 if (cpumask_test_cpu(rq->cpu, old_rd->online))
483 set_rq_offline(rq);
484
485 cpumask_clear_cpu(rq->cpu, old_rd->span);
486
487 /*
488 * If we don't want to free the old_rd yet then
489 * set old_rd to NULL to skip the freeing later
490 * in this function:
491 */
492 if (!atomic_dec_and_test(&old_rd->refcount))
493 old_rd = NULL;
494 }
495
496 atomic_inc(&rd->refcount);
497 rq->rd = rd;
498
499 cpumask_set_cpu(rq->cpu, rd->span);
500 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
501 set_rq_online(rq);
502
503 /*
504 * Because the rq is not a task, dl_add_task_root_domain() did not
505 * move the fair server bw to the rd if it already started.
506 * Add it now.
507 */
508 if (rq->fair_server.dl_server)
509 __dl_server_attach_root(&rq->fair_server, rq);
510
511 rq_unlock_irqrestore(rq, &rf);
512
513 if (old_rd)
514 call_rcu(&old_rd->rcu, free_rootdomain);
515 }
516
sched_get_rd(struct root_domain * rd)517 void sched_get_rd(struct root_domain *rd)
518 {
519 atomic_inc(&rd->refcount);
520 }
521
sched_put_rd(struct root_domain * rd)522 void sched_put_rd(struct root_domain *rd)
523 {
524 if (!atomic_dec_and_test(&rd->refcount))
525 return;
526
527 call_rcu(&rd->rcu, free_rootdomain);
528 }
529
init_rootdomain(struct root_domain * rd)530 static int init_rootdomain(struct root_domain *rd)
531 {
532 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
533 goto out;
534 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
535 goto free_span;
536 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
537 goto free_online;
538 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
539 goto free_dlo_mask;
540
541 #ifdef HAVE_RT_PUSH_IPI
542 rd->rto_cpu = -1;
543 raw_spin_lock_init(&rd->rto_lock);
544 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
545 #endif
546
547 rd->visit_cookie = 0;
548 init_dl_bw(&rd->dl_bw);
549 if (cpudl_init(&rd->cpudl) != 0)
550 goto free_rto_mask;
551
552 if (cpupri_init(&rd->cpupri) != 0)
553 goto free_cpudl;
554 return 0;
555
556 free_cpudl:
557 cpudl_cleanup(&rd->cpudl);
558 free_rto_mask:
559 free_cpumask_var(rd->rto_mask);
560 free_dlo_mask:
561 free_cpumask_var(rd->dlo_mask);
562 free_online:
563 free_cpumask_var(rd->online);
564 free_span:
565 free_cpumask_var(rd->span);
566 out:
567 return -ENOMEM;
568 }
569
570 /*
571 * By default the system creates a single root-domain with all CPUs as
572 * members (mimicking the global state we have today).
573 */
574 struct root_domain def_root_domain;
575
init_defrootdomain(void)576 void __init init_defrootdomain(void)
577 {
578 init_rootdomain(&def_root_domain);
579
580 atomic_set(&def_root_domain.refcount, 1);
581 }
582
alloc_rootdomain(void)583 static struct root_domain *alloc_rootdomain(void)
584 {
585 struct root_domain *rd;
586
587 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
588 if (!rd)
589 return NULL;
590
591 if (init_rootdomain(rd) != 0) {
592 kfree(rd);
593 return NULL;
594 }
595
596 return rd;
597 }
598
free_sched_groups(struct sched_group * sg,int free_sgc)599 static void free_sched_groups(struct sched_group *sg, int free_sgc)
600 {
601 struct sched_group *tmp, *first;
602
603 if (!sg)
604 return;
605
606 first = sg;
607 do {
608 tmp = sg->next;
609
610 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
611 kfree(sg->sgc);
612
613 if (atomic_dec_and_test(&sg->ref))
614 kfree(sg);
615 sg = tmp;
616 } while (sg != first);
617 }
618
destroy_sched_domain(struct sched_domain * sd)619 static void destroy_sched_domain(struct sched_domain *sd)
620 {
621 /*
622 * A normal sched domain may have multiple group references, an
623 * overlapping domain, having private groups, only one. Iterate,
624 * dropping group/capacity references, freeing where none remain.
625 */
626 free_sched_groups(sd->groups, 1);
627
628 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
629 kfree(sd->shared);
630 kfree(sd);
631 }
632
destroy_sched_domains_rcu(struct rcu_head * rcu)633 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
634 {
635 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
636
637 while (sd) {
638 struct sched_domain *parent = sd->parent;
639 destroy_sched_domain(sd);
640 sd = parent;
641 }
642 }
643
destroy_sched_domains(struct sched_domain * sd)644 static void destroy_sched_domains(struct sched_domain *sd)
645 {
646 if (sd)
647 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
648 }
649
650 /*
651 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
652 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
653 * select_idle_sibling().
654 *
655 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
656 * of the domain), this allows us to quickly tell if two CPUs are in the same
657 * cache domain, see cpus_share_cache().
658 */
659 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
660 DEFINE_PER_CPU(int, sd_llc_size);
661 DEFINE_PER_CPU(int, sd_llc_id);
662 DEFINE_PER_CPU(int, sd_share_id);
663 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
665 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
666 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
667
668 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
669 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
670
update_top_cache_domain(int cpu)671 static void update_top_cache_domain(int cpu)
672 {
673 struct sched_domain_shared *sds = NULL;
674 struct sched_domain *sd;
675 int id = cpu;
676 int size = 1;
677
678 sd = highest_flag_domain(cpu, SD_SHARE_LLC);
679 if (sd) {
680 id = cpumask_first(sched_domain_span(sd));
681 size = cpumask_weight(sched_domain_span(sd));
682 sds = sd->shared;
683 }
684
685 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
686 per_cpu(sd_llc_size, cpu) = size;
687 per_cpu(sd_llc_id, cpu) = id;
688 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
689
690 sd = lowest_flag_domain(cpu, SD_CLUSTER);
691 if (sd)
692 id = cpumask_first(sched_domain_span(sd));
693
694 /*
695 * This assignment should be placed after the sd_llc_id as
696 * we want this id equals to cluster id on cluster machines
697 * but equals to LLC id on non-Cluster machines.
698 */
699 per_cpu(sd_share_id, cpu) = id;
700
701 sd = lowest_flag_domain(cpu, SD_NUMA);
702 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
703
704 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
705 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
706
707 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
708 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
709 }
710
711 /*
712 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
713 * hold the hotplug lock.
714 */
715 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)716 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
717 {
718 struct rq *rq = cpu_rq(cpu);
719 struct sched_domain *tmp;
720
721 /* Remove the sched domains which do not contribute to scheduling. */
722 for (tmp = sd; tmp; ) {
723 struct sched_domain *parent = tmp->parent;
724 if (!parent)
725 break;
726
727 if (sd_parent_degenerate(tmp, parent)) {
728 tmp->parent = parent->parent;
729
730 if (parent->parent) {
731 parent->parent->child = tmp;
732 parent->parent->groups->flags = tmp->flags;
733 }
734
735 /*
736 * Transfer SD_PREFER_SIBLING down in case of a
737 * degenerate parent; the spans match for this
738 * so the property transfers.
739 */
740 if (parent->flags & SD_PREFER_SIBLING)
741 tmp->flags |= SD_PREFER_SIBLING;
742 destroy_sched_domain(parent);
743 } else
744 tmp = tmp->parent;
745 }
746
747 if (sd && sd_degenerate(sd)) {
748 tmp = sd;
749 sd = sd->parent;
750 destroy_sched_domain(tmp);
751 if (sd) {
752 struct sched_group *sg = sd->groups;
753
754 /*
755 * sched groups hold the flags of the child sched
756 * domain for convenience. Clear such flags since
757 * the child is being destroyed.
758 */
759 do {
760 sg->flags = 0;
761 } while (sg != sd->groups);
762
763 sd->child = NULL;
764 }
765 }
766
767 sched_domain_debug(sd, cpu);
768
769 rq_attach_root(rq, rd);
770 tmp = rq->sd;
771 rcu_assign_pointer(rq->sd, sd);
772 dirty_sched_domain_sysctl(cpu);
773 destroy_sched_domains(tmp);
774
775 update_top_cache_domain(cpu);
776 }
777
778 struct s_data {
779 struct sched_domain * __percpu *sd;
780 struct root_domain *rd;
781 };
782
783 enum s_alloc {
784 sa_rootdomain,
785 sa_sd,
786 sa_sd_storage,
787 sa_none,
788 };
789
790 /*
791 * Return the canonical balance CPU for this group, this is the first CPU
792 * of this group that's also in the balance mask.
793 *
794 * The balance mask are all those CPUs that could actually end up at this
795 * group. See build_balance_mask().
796 *
797 * Also see should_we_balance().
798 */
group_balance_cpu(struct sched_group * sg)799 int group_balance_cpu(struct sched_group *sg)
800 {
801 return cpumask_first(group_balance_mask(sg));
802 }
803
804
805 /*
806 * NUMA topology (first read the regular topology blurb below)
807 *
808 * Given a node-distance table, for example:
809 *
810 * node 0 1 2 3
811 * 0: 10 20 30 20
812 * 1: 20 10 20 30
813 * 2: 30 20 10 20
814 * 3: 20 30 20 10
815 *
816 * which represents a 4 node ring topology like:
817 *
818 * 0 ----- 1
819 * | |
820 * | |
821 * | |
822 * 3 ----- 2
823 *
824 * We want to construct domains and groups to represent this. The way we go
825 * about doing this is to build the domains on 'hops'. For each NUMA level we
826 * construct the mask of all nodes reachable in @level hops.
827 *
828 * For the above NUMA topology that gives 3 levels:
829 *
830 * NUMA-2 0-3 0-3 0-3 0-3
831 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
832 *
833 * NUMA-1 0-1,3 0-2 1-3 0,2-3
834 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
835 *
836 * NUMA-0 0 1 2 3
837 *
838 *
839 * As can be seen; things don't nicely line up as with the regular topology.
840 * When we iterate a domain in child domain chunks some nodes can be
841 * represented multiple times -- hence the "overlap" naming for this part of
842 * the topology.
843 *
844 * In order to minimize this overlap, we only build enough groups to cover the
845 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
846 *
847 * Because:
848 *
849 * - the first group of each domain is its child domain; this
850 * gets us the first 0-1,3
851 * - the only uncovered node is 2, who's child domain is 1-3.
852 *
853 * However, because of the overlap, computing a unique CPU for each group is
854 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
855 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
856 * end up at those groups (they would end up in group: 0-1,3).
857 *
858 * To correct this we have to introduce the group balance mask. This mask
859 * will contain those CPUs in the group that can reach this group given the
860 * (child) domain tree.
861 *
862 * With this we can once again compute balance_cpu and sched_group_capacity
863 * relations.
864 *
865 * XXX include words on how balance_cpu is unique and therefore can be
866 * used for sched_group_capacity links.
867 *
868 *
869 * Another 'interesting' topology is:
870 *
871 * node 0 1 2 3
872 * 0: 10 20 20 30
873 * 1: 20 10 20 20
874 * 2: 20 20 10 20
875 * 3: 30 20 20 10
876 *
877 * Which looks a little like:
878 *
879 * 0 ----- 1
880 * | / |
881 * | / |
882 * | / |
883 * 2 ----- 3
884 *
885 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
886 * are not.
887 *
888 * This leads to a few particularly weird cases where the sched_domain's are
889 * not of the same number for each CPU. Consider:
890 *
891 * NUMA-2 0-3 0-3
892 * groups: {0-2},{1-3} {1-3},{0-2}
893 *
894 * NUMA-1 0-2 0-3 0-3 1-3
895 *
896 * NUMA-0 0 1 2 3
897 *
898 */
899
900
901 /*
902 * Build the balance mask; it contains only those CPUs that can arrive at this
903 * group and should be considered to continue balancing.
904 *
905 * We do this during the group creation pass, therefore the group information
906 * isn't complete yet, however since each group represents a (child) domain we
907 * can fully construct this using the sched_domain bits (which are already
908 * complete).
909 */
910 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)911 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
912 {
913 const struct cpumask *sg_span = sched_group_span(sg);
914 struct sd_data *sdd = sd->private;
915 struct sched_domain *sibling;
916 int i;
917
918 cpumask_clear(mask);
919
920 for_each_cpu(i, sg_span) {
921 sibling = *per_cpu_ptr(sdd->sd, i);
922
923 /*
924 * Can happen in the asymmetric case, where these siblings are
925 * unused. The mask will not be empty because those CPUs that
926 * do have the top domain _should_ span the domain.
927 */
928 if (!sibling->child)
929 continue;
930
931 /* If we would not end up here, we can't continue from here */
932 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
933 continue;
934
935 cpumask_set_cpu(i, mask);
936 }
937
938 /* We must not have empty masks here */
939 WARN_ON_ONCE(cpumask_empty(mask));
940 }
941
942 /*
943 * XXX: This creates per-node group entries; since the load-balancer will
944 * immediately access remote memory to construct this group's load-balance
945 * statistics having the groups node local is of dubious benefit.
946 */
947 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)948 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
949 {
950 struct sched_group *sg;
951 struct cpumask *sg_span;
952
953 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
954 GFP_KERNEL, cpu_to_node(cpu));
955
956 if (!sg)
957 return NULL;
958
959 sg_span = sched_group_span(sg);
960 if (sd->child) {
961 cpumask_copy(sg_span, sched_domain_span(sd->child));
962 sg->flags = sd->child->flags;
963 } else {
964 cpumask_copy(sg_span, sched_domain_span(sd));
965 }
966
967 atomic_inc(&sg->ref);
968 return sg;
969 }
970
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)971 static void init_overlap_sched_group(struct sched_domain *sd,
972 struct sched_group *sg)
973 {
974 struct cpumask *mask = sched_domains_tmpmask2;
975 struct sd_data *sdd = sd->private;
976 struct cpumask *sg_span;
977 int cpu;
978
979 build_balance_mask(sd, sg, mask);
980 cpu = cpumask_first(mask);
981
982 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
983 if (atomic_inc_return(&sg->sgc->ref) == 1)
984 cpumask_copy(group_balance_mask(sg), mask);
985 else
986 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
987
988 /*
989 * Initialize sgc->capacity such that even if we mess up the
990 * domains and no possible iteration will get us here, we won't
991 * die on a /0 trap.
992 */
993 sg_span = sched_group_span(sg);
994 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
995 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
996 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
997 }
998
999 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)1000 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1001 {
1002 /*
1003 * The proper descendant would be the one whose child won't span out
1004 * of sd
1005 */
1006 while (sibling->child &&
1007 !cpumask_subset(sched_domain_span(sibling->child),
1008 sched_domain_span(sd)))
1009 sibling = sibling->child;
1010
1011 /*
1012 * As we are referencing sgc across different topology level, we need
1013 * to go down to skip those sched_domains which don't contribute to
1014 * scheduling because they will be degenerated in cpu_attach_domain
1015 */
1016 while (sibling->child &&
1017 cpumask_equal(sched_domain_span(sibling->child),
1018 sched_domain_span(sibling)))
1019 sibling = sibling->child;
1020
1021 return sibling;
1022 }
1023
1024 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1025 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1026 {
1027 struct sched_group *first = NULL, *last = NULL, *sg;
1028 const struct cpumask *span = sched_domain_span(sd);
1029 struct cpumask *covered = sched_domains_tmpmask;
1030 struct sd_data *sdd = sd->private;
1031 struct sched_domain *sibling;
1032 int i;
1033
1034 cpumask_clear(covered);
1035
1036 for_each_cpu_wrap(i, span, cpu) {
1037 struct cpumask *sg_span;
1038
1039 if (cpumask_test_cpu(i, covered))
1040 continue;
1041
1042 sibling = *per_cpu_ptr(sdd->sd, i);
1043
1044 /*
1045 * Asymmetric node setups can result in situations where the
1046 * domain tree is of unequal depth, make sure to skip domains
1047 * that already cover the entire range.
1048 *
1049 * In that case build_sched_domains() will have terminated the
1050 * iteration early and our sibling sd spans will be empty.
1051 * Domains should always include the CPU they're built on, so
1052 * check that.
1053 */
1054 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1055 continue;
1056
1057 /*
1058 * Usually we build sched_group by sibling's child sched_domain
1059 * But for machines whose NUMA diameter are 3 or above, we move
1060 * to build sched_group by sibling's proper descendant's child
1061 * domain because sibling's child sched_domain will span out of
1062 * the sched_domain being built as below.
1063 *
1064 * Smallest diameter=3 topology is:
1065 *
1066 * node 0 1 2 3
1067 * 0: 10 20 30 40
1068 * 1: 20 10 20 30
1069 * 2: 30 20 10 20
1070 * 3: 40 30 20 10
1071 *
1072 * 0 --- 1 --- 2 --- 3
1073 *
1074 * NUMA-3 0-3 N/A N/A 0-3
1075 * groups: {0-2},{1-3} {1-3},{0-2}
1076 *
1077 * NUMA-2 0-2 0-3 0-3 1-3
1078 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1079 *
1080 * NUMA-1 0-1 0-2 1-3 2-3
1081 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1082 *
1083 * NUMA-0 0 1 2 3
1084 *
1085 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1086 * group span isn't a subset of the domain span.
1087 */
1088 if (sibling->child &&
1089 !cpumask_subset(sched_domain_span(sibling->child), span))
1090 sibling = find_descended_sibling(sd, sibling);
1091
1092 sg = build_group_from_child_sched_domain(sibling, cpu);
1093 if (!sg)
1094 goto fail;
1095
1096 sg_span = sched_group_span(sg);
1097 cpumask_or(covered, covered, sg_span);
1098
1099 init_overlap_sched_group(sibling, sg);
1100
1101 if (!first)
1102 first = sg;
1103 if (last)
1104 last->next = sg;
1105 last = sg;
1106 last->next = first;
1107 }
1108 sd->groups = first;
1109
1110 return 0;
1111
1112 fail:
1113 free_sched_groups(first, 0);
1114
1115 return -ENOMEM;
1116 }
1117
1118
1119 /*
1120 * Package topology (also see the load-balance blurb in fair.c)
1121 *
1122 * The scheduler builds a tree structure to represent a number of important
1123 * topology features. By default (default_topology[]) these include:
1124 *
1125 * - Simultaneous multithreading (SMT)
1126 * - Multi-Core Cache (MC)
1127 * - Package (PKG)
1128 *
1129 * Where the last one more or less denotes everything up to a NUMA node.
1130 *
1131 * The tree consists of 3 primary data structures:
1132 *
1133 * sched_domain -> sched_group -> sched_group_capacity
1134 * ^ ^ ^ ^
1135 * `-' `-'
1136 *
1137 * The sched_domains are per-CPU and have a two way link (parent & child) and
1138 * denote the ever growing mask of CPUs belonging to that level of topology.
1139 *
1140 * Each sched_domain has a circular (double) linked list of sched_group's, each
1141 * denoting the domains of the level below (or individual CPUs in case of the
1142 * first domain level). The sched_group linked by a sched_domain includes the
1143 * CPU of that sched_domain [*].
1144 *
1145 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1146 *
1147 * CPU 0 1 2 3 4 5 6 7
1148 *
1149 * PKG [ ]
1150 * MC [ ] [ ]
1151 * SMT [ ] [ ] [ ] [ ]
1152 *
1153 * - or -
1154 *
1155 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1156 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1157 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1158 *
1159 * CPU 0 1 2 3 4 5 6 7
1160 *
1161 * One way to think about it is: sched_domain moves you up and down among these
1162 * topology levels, while sched_group moves you sideways through it, at child
1163 * domain granularity.
1164 *
1165 * sched_group_capacity ensures each unique sched_group has shared storage.
1166 *
1167 * There are two related construction problems, both require a CPU that
1168 * uniquely identify each group (for a given domain):
1169 *
1170 * - The first is the balance_cpu (see should_we_balance() and the
1171 * load-balance blurb in fair.c); for each group we only want 1 CPU to
1172 * continue balancing at a higher domain.
1173 *
1174 * - The second is the sched_group_capacity; we want all identical groups
1175 * to share a single sched_group_capacity.
1176 *
1177 * Since these topologies are exclusive by construction. That is, its
1178 * impossible for an SMT thread to belong to multiple cores, and cores to
1179 * be part of multiple caches. There is a very clear and unique location
1180 * for each CPU in the hierarchy.
1181 *
1182 * Therefore computing a unique CPU for each group is trivial (the iteration
1183 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1184 * group), we can simply pick the first CPU in each group.
1185 *
1186 *
1187 * [*] in other words, the first group of each domain is its child domain.
1188 */
1189
get_group(int cpu,struct sd_data * sdd)1190 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1191 {
1192 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1193 struct sched_domain *child = sd->child;
1194 struct sched_group *sg;
1195 bool already_visited;
1196
1197 if (child)
1198 cpu = cpumask_first(sched_domain_span(child));
1199
1200 sg = *per_cpu_ptr(sdd->sg, cpu);
1201 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1202
1203 /* Increase refcounts for claim_allocations: */
1204 already_visited = atomic_inc_return(&sg->ref) > 1;
1205 /* sgc visits should follow a similar trend as sg */
1206 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1207
1208 /* If we have already visited that group, it's already initialized. */
1209 if (already_visited)
1210 return sg;
1211
1212 if (child) {
1213 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1214 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1215 sg->flags = child->flags;
1216 } else {
1217 cpumask_set_cpu(cpu, sched_group_span(sg));
1218 cpumask_set_cpu(cpu, group_balance_mask(sg));
1219 }
1220
1221 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1222 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1223 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1224
1225 return sg;
1226 }
1227
1228 /*
1229 * build_sched_groups will build a circular linked list of the groups
1230 * covered by the given span, will set each group's ->cpumask correctly,
1231 * and will initialize their ->sgc.
1232 *
1233 * Assumes the sched_domain tree is fully constructed
1234 */
1235 static int
build_sched_groups(struct sched_domain * sd,int cpu)1236 build_sched_groups(struct sched_domain *sd, int cpu)
1237 {
1238 struct sched_group *first = NULL, *last = NULL;
1239 struct sd_data *sdd = sd->private;
1240 const struct cpumask *span = sched_domain_span(sd);
1241 struct cpumask *covered;
1242 int i;
1243
1244 lockdep_assert_held(&sched_domains_mutex);
1245 covered = sched_domains_tmpmask;
1246
1247 cpumask_clear(covered);
1248
1249 for_each_cpu_wrap(i, span, cpu) {
1250 struct sched_group *sg;
1251
1252 if (cpumask_test_cpu(i, covered))
1253 continue;
1254
1255 sg = get_group(i, sdd);
1256
1257 cpumask_or(covered, covered, sched_group_span(sg));
1258
1259 if (!first)
1260 first = sg;
1261 if (last)
1262 last->next = sg;
1263 last = sg;
1264 }
1265 last->next = first;
1266 sd->groups = first;
1267
1268 return 0;
1269 }
1270
1271 /*
1272 * Initialize sched groups cpu_capacity.
1273 *
1274 * cpu_capacity indicates the capacity of sched group, which is used while
1275 * distributing the load between different sched groups in a sched domain.
1276 * Typically cpu_capacity for all the groups in a sched domain will be same
1277 * unless there are asymmetries in the topology. If there are asymmetries,
1278 * group having more cpu_capacity will pickup more load compared to the
1279 * group having less cpu_capacity.
1280 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1281 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1282 {
1283 struct sched_group *sg = sd->groups;
1284 struct cpumask *mask = sched_domains_tmpmask2;
1285
1286 WARN_ON(!sg);
1287
1288 do {
1289 int cpu, cores = 0, max_cpu = -1;
1290
1291 sg->group_weight = cpumask_weight(sched_group_span(sg));
1292
1293 cpumask_copy(mask, sched_group_span(sg));
1294 for_each_cpu(cpu, mask) {
1295 cores++;
1296 #ifdef CONFIG_SCHED_SMT
1297 cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1298 #endif
1299 }
1300 sg->cores = cores;
1301
1302 if (!(sd->flags & SD_ASYM_PACKING))
1303 goto next;
1304
1305 for_each_cpu(cpu, sched_group_span(sg)) {
1306 if (max_cpu < 0)
1307 max_cpu = cpu;
1308 else if (sched_asym_prefer(cpu, max_cpu))
1309 max_cpu = cpu;
1310 }
1311 sg->asym_prefer_cpu = max_cpu;
1312
1313 next:
1314 sg = sg->next;
1315 } while (sg != sd->groups);
1316
1317 if (cpu != group_balance_cpu(sg))
1318 return;
1319
1320 update_group_capacity(sd, cpu);
1321 }
1322
1323 /* Update the "asym_prefer_cpu" when arch_asym_cpu_priority() changes. */
sched_update_asym_prefer_cpu(int cpu,int old_prio,int new_prio)1324 void sched_update_asym_prefer_cpu(int cpu, int old_prio, int new_prio)
1325 {
1326 int asym_prefer_cpu = cpu;
1327 struct sched_domain *sd;
1328
1329 guard(rcu)();
1330
1331 for_each_domain(cpu, sd) {
1332 struct sched_group *sg;
1333 int group_cpu;
1334
1335 if (!(sd->flags & SD_ASYM_PACKING))
1336 continue;
1337
1338 /*
1339 * Groups of overlapping domain are replicated per NUMA
1340 * node and will require updating "asym_prefer_cpu" on
1341 * each local copy.
1342 *
1343 * If you are hitting this warning, consider moving
1344 * "sg->asym_prefer_cpu" to "sg->sgc->asym_prefer_cpu"
1345 * which is shared by all the overlapping groups.
1346 */
1347 WARN_ON_ONCE(sd->flags & SD_NUMA);
1348
1349 sg = sd->groups;
1350 if (cpu != sg->asym_prefer_cpu) {
1351 /*
1352 * Since the parent is a superset of the current group,
1353 * if the cpu is not the "asym_prefer_cpu" at the
1354 * current level, it cannot be the preferred CPU at a
1355 * higher levels either.
1356 */
1357 if (!sched_asym_prefer(cpu, sg->asym_prefer_cpu))
1358 return;
1359
1360 WRITE_ONCE(sg->asym_prefer_cpu, cpu);
1361 continue;
1362 }
1363
1364 /* Ranking has improved; CPU is still the preferred one. */
1365 if (new_prio >= old_prio)
1366 continue;
1367
1368 for_each_cpu(group_cpu, sched_group_span(sg)) {
1369 if (sched_asym_prefer(group_cpu, asym_prefer_cpu))
1370 asym_prefer_cpu = group_cpu;
1371 }
1372
1373 WRITE_ONCE(sg->asym_prefer_cpu, asym_prefer_cpu);
1374 }
1375 }
1376
1377 /*
1378 * Set of available CPUs grouped by their corresponding capacities
1379 * Each list entry contains a CPU mask reflecting CPUs that share the same
1380 * capacity.
1381 * The lifespan of data is unlimited.
1382 */
1383 LIST_HEAD(asym_cap_list);
1384
1385 /*
1386 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1387 * Provides sd_flags reflecting the asymmetry scope.
1388 */
1389 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1390 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1391 const struct cpumask *cpu_map)
1392 {
1393 struct asym_cap_data *entry;
1394 int count = 0, miss = 0;
1395
1396 /*
1397 * Count how many unique CPU capacities this domain spans across
1398 * (compare sched_domain CPUs mask with ones representing available
1399 * CPUs capacities). Take into account CPUs that might be offline:
1400 * skip those.
1401 */
1402 list_for_each_entry(entry, &asym_cap_list, link) {
1403 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1404 ++count;
1405 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1406 ++miss;
1407 }
1408
1409 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1410
1411 /* No asymmetry detected */
1412 if (count < 2)
1413 return 0;
1414 /* Some of the available CPU capacity values have not been detected */
1415 if (miss)
1416 return SD_ASYM_CPUCAPACITY;
1417
1418 /* Full asymmetry */
1419 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1420
1421 }
1422
free_asym_cap_entry(struct rcu_head * head)1423 static void free_asym_cap_entry(struct rcu_head *head)
1424 {
1425 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1426 kfree(entry);
1427 }
1428
asym_cpu_capacity_update_data(int cpu)1429 static inline void asym_cpu_capacity_update_data(int cpu)
1430 {
1431 unsigned long capacity = arch_scale_cpu_capacity(cpu);
1432 struct asym_cap_data *insert_entry = NULL;
1433 struct asym_cap_data *entry;
1434
1435 /*
1436 * Search if capacity already exits. If not, track which the entry
1437 * where we should insert to keep the list ordered descending.
1438 */
1439 list_for_each_entry(entry, &asym_cap_list, link) {
1440 if (capacity == entry->capacity)
1441 goto done;
1442 else if (!insert_entry && capacity > entry->capacity)
1443 insert_entry = list_prev_entry(entry, link);
1444 }
1445
1446 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1447 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1448 return;
1449 entry->capacity = capacity;
1450
1451 /* If NULL then the new capacity is the smallest, add last. */
1452 if (!insert_entry)
1453 list_add_tail_rcu(&entry->link, &asym_cap_list);
1454 else
1455 list_add_rcu(&entry->link, &insert_entry->link);
1456 done:
1457 __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1458 }
1459
1460 /*
1461 * Build-up/update list of CPUs grouped by their capacities
1462 * An update requires explicit request to rebuild sched domains
1463 * with state indicating CPU topology changes.
1464 */
asym_cpu_capacity_scan(void)1465 static void asym_cpu_capacity_scan(void)
1466 {
1467 struct asym_cap_data *entry, *next;
1468 int cpu;
1469
1470 list_for_each_entry(entry, &asym_cap_list, link)
1471 cpumask_clear(cpu_capacity_span(entry));
1472
1473 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1474 asym_cpu_capacity_update_data(cpu);
1475
1476 list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1477 if (cpumask_empty(cpu_capacity_span(entry))) {
1478 list_del_rcu(&entry->link);
1479 call_rcu(&entry->rcu, free_asym_cap_entry);
1480 }
1481 }
1482
1483 /*
1484 * Only one capacity value has been detected i.e. this system is symmetric.
1485 * No need to keep this data around.
1486 */
1487 if (list_is_singular(&asym_cap_list)) {
1488 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1489 list_del_rcu(&entry->link);
1490 call_rcu(&entry->rcu, free_asym_cap_entry);
1491 }
1492 }
1493
1494 /*
1495 * Initializers for schedule domains
1496 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1497 */
1498
1499 static int default_relax_domain_level = -1;
1500 int sched_domain_level_max;
1501
setup_relax_domain_level(char * str)1502 static int __init setup_relax_domain_level(char *str)
1503 {
1504 if (kstrtoint(str, 0, &default_relax_domain_level))
1505 pr_warn("Unable to set relax_domain_level\n");
1506
1507 return 1;
1508 }
1509 __setup("relax_domain_level=", setup_relax_domain_level);
1510
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1511 static void set_domain_attribute(struct sched_domain *sd,
1512 struct sched_domain_attr *attr)
1513 {
1514 int request;
1515
1516 if (!attr || attr->relax_domain_level < 0) {
1517 if (default_relax_domain_level < 0)
1518 return;
1519 request = default_relax_domain_level;
1520 } else
1521 request = attr->relax_domain_level;
1522
1523 if (sd->level >= request) {
1524 /* Turn off idle balance on this domain: */
1525 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1526 }
1527 }
1528
1529 static void __sdt_free(const struct cpumask *cpu_map);
1530 static int __sdt_alloc(const struct cpumask *cpu_map);
1531
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1532 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1533 const struct cpumask *cpu_map)
1534 {
1535 switch (what) {
1536 case sa_rootdomain:
1537 if (!atomic_read(&d->rd->refcount))
1538 free_rootdomain(&d->rd->rcu);
1539 fallthrough;
1540 case sa_sd:
1541 free_percpu(d->sd);
1542 fallthrough;
1543 case sa_sd_storage:
1544 __sdt_free(cpu_map);
1545 fallthrough;
1546 case sa_none:
1547 break;
1548 }
1549 }
1550
1551 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1552 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1553 {
1554 memset(d, 0, sizeof(*d));
1555
1556 if (__sdt_alloc(cpu_map))
1557 return sa_sd_storage;
1558 d->sd = alloc_percpu(struct sched_domain *);
1559 if (!d->sd)
1560 return sa_sd_storage;
1561 d->rd = alloc_rootdomain();
1562 if (!d->rd)
1563 return sa_sd;
1564
1565 return sa_rootdomain;
1566 }
1567
1568 /*
1569 * NULL the sd_data elements we've used to build the sched_domain and
1570 * sched_group structure so that the subsequent __free_domain_allocs()
1571 * will not free the data we're using.
1572 */
claim_allocations(int cpu,struct sched_domain * sd)1573 static void claim_allocations(int cpu, struct sched_domain *sd)
1574 {
1575 struct sd_data *sdd = sd->private;
1576
1577 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1578 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1579
1580 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1581 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1582
1583 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1584 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1585
1586 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1587 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1588 }
1589
1590 #ifdef CONFIG_NUMA
1591 enum numa_topology_type sched_numa_topology_type;
1592
1593 /*
1594 * sched_domains_numa_distance is derived from sched_numa_node_distance
1595 * and provides a simplified view of NUMA distances used specifically
1596 * for building NUMA scheduling domains.
1597 */
1598 static int sched_domains_numa_levels;
1599 static int sched_numa_node_levels;
1600
1601 int sched_max_numa_distance;
1602 static int *sched_domains_numa_distance;
1603 static int *sched_numa_node_distance;
1604 static struct cpumask ***sched_domains_numa_masks;
1605 #endif /* CONFIG_NUMA */
1606
1607 /*
1608 * SD_flags allowed in topology descriptions.
1609 *
1610 * These flags are purely descriptive of the topology and do not prescribe
1611 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1612 * function. For details, see include/linux/sched/sd_flags.h.
1613 *
1614 * SD_SHARE_CPUCAPACITY
1615 * SD_SHARE_LLC
1616 * SD_CLUSTER
1617 * SD_NUMA
1618 *
1619 * Odd one out, which beside describing the topology has a quirk also
1620 * prescribes the desired behaviour that goes along with it:
1621 *
1622 * SD_ASYM_PACKING - describes SMT quirks
1623 */
1624 #define TOPOLOGY_SD_FLAGS \
1625 (SD_SHARE_CPUCAPACITY | \
1626 SD_CLUSTER | \
1627 SD_SHARE_LLC | \
1628 SD_NUMA | \
1629 SD_ASYM_PACKING)
1630
1631 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1632 sd_init(struct sched_domain_topology_level *tl,
1633 const struct cpumask *cpu_map,
1634 struct sched_domain *child, int cpu)
1635 {
1636 struct sd_data *sdd = &tl->data;
1637 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1638 int sd_id, sd_weight, sd_flags = 0;
1639 struct cpumask *sd_span;
1640
1641 sd_weight = cpumask_weight(tl->mask(tl, cpu));
1642
1643 if (tl->sd_flags)
1644 sd_flags = (*tl->sd_flags)();
1645 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1646 "wrong sd_flags in topology description\n"))
1647 sd_flags &= TOPOLOGY_SD_FLAGS;
1648
1649 *sd = (struct sched_domain){
1650 .min_interval = sd_weight,
1651 .max_interval = 2*sd_weight,
1652 .busy_factor = 16,
1653 .imbalance_pct = 117,
1654
1655 .cache_nice_tries = 0,
1656
1657 .flags = 1*SD_BALANCE_NEWIDLE
1658 | 1*SD_BALANCE_EXEC
1659 | 1*SD_BALANCE_FORK
1660 | 0*SD_BALANCE_WAKE
1661 | 1*SD_WAKE_AFFINE
1662 | 0*SD_SHARE_CPUCAPACITY
1663 | 0*SD_SHARE_LLC
1664 | 0*SD_SERIALIZE
1665 | 1*SD_PREFER_SIBLING
1666 | 0*SD_NUMA
1667 | sd_flags
1668 ,
1669
1670 .last_balance = jiffies,
1671 .balance_interval = sd_weight,
1672
1673 /* 50% success rate */
1674 .newidle_call = 512,
1675 .newidle_success = 256,
1676 .newidle_ratio = 512,
1677
1678 .max_newidle_lb_cost = 0,
1679 .last_decay_max_lb_cost = jiffies,
1680 .child = child,
1681 .name = tl->name,
1682 };
1683
1684 sd_span = sched_domain_span(sd);
1685 cpumask_and(sd_span, cpu_map, tl->mask(tl, cpu));
1686 sd_id = cpumask_first(sd_span);
1687
1688 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1689
1690 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1691 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1692 "CPU capacity asymmetry not supported on SMT\n");
1693
1694 /*
1695 * Convert topological properties into behaviour.
1696 */
1697 /* Don't attempt to spread across CPUs of different capacities. */
1698 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1699 sd->child->flags &= ~SD_PREFER_SIBLING;
1700
1701 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1702 sd->imbalance_pct = 110;
1703
1704 } else if (sd->flags & SD_SHARE_LLC) {
1705 sd->imbalance_pct = 117;
1706 sd->cache_nice_tries = 1;
1707
1708 #ifdef CONFIG_NUMA
1709 } else if (sd->flags & SD_NUMA) {
1710 sd->cache_nice_tries = 2;
1711
1712 sd->flags &= ~SD_PREFER_SIBLING;
1713 sd->flags |= SD_SERIALIZE;
1714 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1715 sd->flags &= ~(SD_BALANCE_EXEC |
1716 SD_BALANCE_FORK |
1717 SD_WAKE_AFFINE);
1718 }
1719
1720 #endif /* CONFIG_NUMA */
1721 } else {
1722 sd->cache_nice_tries = 1;
1723 }
1724
1725 /*
1726 * For all levels sharing cache; connect a sched_domain_shared
1727 * instance.
1728 */
1729 if (sd->flags & SD_SHARE_LLC) {
1730 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1731 atomic_inc(&sd->shared->ref);
1732 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1733 }
1734
1735 sd->private = sdd;
1736
1737 return sd;
1738 }
1739
1740 #ifdef CONFIG_SCHED_SMT
cpu_smt_flags(void)1741 int cpu_smt_flags(void)
1742 {
1743 return SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
1744 }
1745
tl_smt_mask(struct sched_domain_topology_level * tl,int cpu)1746 const struct cpumask *tl_smt_mask(struct sched_domain_topology_level *tl, int cpu)
1747 {
1748 return cpu_smt_mask(cpu);
1749 }
1750 #endif
1751
1752 #ifdef CONFIG_SCHED_CLUSTER
cpu_cluster_flags(void)1753 int cpu_cluster_flags(void)
1754 {
1755 return SD_CLUSTER | SD_SHARE_LLC;
1756 }
1757
tl_cls_mask(struct sched_domain_topology_level * tl,int cpu)1758 const struct cpumask *tl_cls_mask(struct sched_domain_topology_level *tl, int cpu)
1759 {
1760 return cpu_clustergroup_mask(cpu);
1761 }
1762 #endif
1763
1764 #ifdef CONFIG_SCHED_MC
cpu_core_flags(void)1765 int cpu_core_flags(void)
1766 {
1767 return SD_SHARE_LLC;
1768 }
1769
tl_mc_mask(struct sched_domain_topology_level * tl,int cpu)1770 const struct cpumask *tl_mc_mask(struct sched_domain_topology_level *tl, int cpu)
1771 {
1772 return cpu_coregroup_mask(cpu);
1773 }
1774 #endif
1775
tl_pkg_mask(struct sched_domain_topology_level * tl,int cpu)1776 const struct cpumask *tl_pkg_mask(struct sched_domain_topology_level *tl, int cpu)
1777 {
1778 return cpu_node_mask(cpu);
1779 }
1780
1781 /*
1782 * Topology list, bottom-up.
1783 */
1784 static struct sched_domain_topology_level default_topology[] = {
1785 #ifdef CONFIG_SCHED_SMT
1786 SDTL_INIT(tl_smt_mask, cpu_smt_flags, SMT),
1787 #endif
1788
1789 #ifdef CONFIG_SCHED_CLUSTER
1790 SDTL_INIT(tl_cls_mask, cpu_cluster_flags, CLS),
1791 #endif
1792
1793 #ifdef CONFIG_SCHED_MC
1794 SDTL_INIT(tl_mc_mask, cpu_core_flags, MC),
1795 #endif
1796 SDTL_INIT(tl_pkg_mask, NULL, PKG),
1797 { NULL, },
1798 };
1799
1800 static struct sched_domain_topology_level *sched_domain_topology =
1801 default_topology;
1802 static struct sched_domain_topology_level *sched_domain_topology_saved;
1803
1804 #define for_each_sd_topology(tl) \
1805 for (tl = sched_domain_topology; tl->mask; tl++)
1806
set_sched_topology(struct sched_domain_topology_level * tl)1807 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1808 {
1809 if (WARN_ON_ONCE(sched_smp_initialized))
1810 return;
1811
1812 sched_domain_topology = tl;
1813 sched_domain_topology_saved = NULL;
1814 }
1815
1816 #ifdef CONFIG_NUMA
cpu_numa_flags(void)1817 static int cpu_numa_flags(void)
1818 {
1819 return SD_NUMA;
1820 }
1821
sd_numa_mask(struct sched_domain_topology_level * tl,int cpu)1822 static const struct cpumask *sd_numa_mask(struct sched_domain_topology_level *tl, int cpu)
1823 {
1824 return sched_domains_numa_masks[tl->numa_level][cpu_to_node(cpu)];
1825 }
1826
sched_numa_warn(const char * str)1827 static void sched_numa_warn(const char *str)
1828 {
1829 static int done = false;
1830 int i,j;
1831
1832 if (done)
1833 return;
1834
1835 done = true;
1836
1837 printk(KERN_WARNING "ERROR: %s\n\n", str);
1838
1839 for (i = 0; i < nr_node_ids; i++) {
1840 printk(KERN_WARNING " ");
1841 for (j = 0; j < nr_node_ids; j++) {
1842 if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1843 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1844 else
1845 printk(KERN_CONT " %02d ", node_distance(i,j));
1846 }
1847 printk(KERN_CONT "\n");
1848 }
1849 printk(KERN_WARNING "\n");
1850 }
1851
find_numa_distance(int distance)1852 bool find_numa_distance(int distance)
1853 {
1854 bool found = false;
1855 int i, *distances;
1856
1857 if (distance == node_distance(0, 0))
1858 return true;
1859
1860 rcu_read_lock();
1861 distances = rcu_dereference(sched_numa_node_distance);
1862 if (!distances)
1863 goto unlock;
1864 for (i = 0; i < sched_numa_node_levels; i++) {
1865 if (distances[i] == distance) {
1866 found = true;
1867 break;
1868 }
1869 }
1870 unlock:
1871 rcu_read_unlock();
1872
1873 return found;
1874 }
1875
1876 #define for_each_cpu_node_but(n, nbut) \
1877 for_each_node_state(n, N_CPU) \
1878 if (n == nbut) \
1879 continue; \
1880 else
1881
1882 /*
1883 * A system can have three types of NUMA topology:
1884 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1885 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1886 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1887 *
1888 * The difference between a glueless mesh topology and a backplane
1889 * topology lies in whether communication between not directly
1890 * connected nodes goes through intermediary nodes (where programs
1891 * could run), or through backplane controllers. This affects
1892 * placement of programs.
1893 *
1894 * The type of topology can be discerned with the following tests:
1895 * - If the maximum distance between any nodes is 1 hop, the system
1896 * is directly connected.
1897 * - If for two nodes A and B, located N > 1 hops away from each other,
1898 * there is an intermediary node C, which is < N hops away from both
1899 * nodes A and B, the system is a glueless mesh.
1900 */
init_numa_topology_type(int offline_node)1901 static void init_numa_topology_type(int offline_node)
1902 {
1903 int a, b, c, n;
1904
1905 n = sched_max_numa_distance;
1906
1907 if (sched_domains_numa_levels <= 2) {
1908 sched_numa_topology_type = NUMA_DIRECT;
1909 return;
1910 }
1911
1912 for_each_cpu_node_but(a, offline_node) {
1913 for_each_cpu_node_but(b, offline_node) {
1914 /* Find two nodes furthest removed from each other. */
1915 if (node_distance(a, b) < n)
1916 continue;
1917
1918 /* Is there an intermediary node between a and b? */
1919 for_each_cpu_node_but(c, offline_node) {
1920 if (node_distance(a, c) < n &&
1921 node_distance(b, c) < n) {
1922 sched_numa_topology_type =
1923 NUMA_GLUELESS_MESH;
1924 return;
1925 }
1926 }
1927
1928 sched_numa_topology_type = NUMA_BACKPLANE;
1929 return;
1930 }
1931 }
1932
1933 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1934 sched_numa_topology_type = NUMA_DIRECT;
1935 }
1936
1937
1938 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1939
1940 /*
1941 * An architecture could modify its NUMA distance, to change
1942 * grouping of NUMA nodes and number of NUMA levels when creating
1943 * NUMA level sched domains.
1944 *
1945 * A NUMA level is created for each unique
1946 * arch_sched_node_distance.
1947 */
numa_node_dist(int i,int j)1948 static int numa_node_dist(int i, int j)
1949 {
1950 return node_distance(i, j);
1951 }
1952
1953 int arch_sched_node_distance(int from, int to)
1954 __weak __alias(numa_node_dist);
1955
modified_sched_node_distance(void)1956 static bool modified_sched_node_distance(void)
1957 {
1958 return numa_node_dist != arch_sched_node_distance;
1959 }
1960
sched_record_numa_dist(int offline_node,int (* n_dist)(int,int),int ** dist,int * levels)1961 static int sched_record_numa_dist(int offline_node, int (*n_dist)(int, int),
1962 int **dist, int *levels)
1963 {
1964 unsigned long *distance_map __free(bitmap) = NULL;
1965 int nr_levels = 0;
1966 int i, j;
1967 int *distances;
1968
1969 /*
1970 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1971 * unique distances in the node_distance() table.
1972 */
1973 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1974 if (!distance_map)
1975 return -ENOMEM;
1976
1977 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1978 for_each_cpu_node_but(i, offline_node) {
1979 for_each_cpu_node_but(j, offline_node) {
1980 int distance = n_dist(i, j);
1981
1982 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1983 sched_numa_warn("Invalid distance value range");
1984 return -EINVAL;
1985 }
1986
1987 bitmap_set(distance_map, distance, 1);
1988 }
1989 }
1990 /*
1991 * We can now figure out how many unique distance values there are and
1992 * allocate memory accordingly.
1993 */
1994 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1995
1996 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1997 if (!distances)
1998 return -ENOMEM;
1999
2000 for (i = 0, j = 0; i < nr_levels; i++, j++) {
2001 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
2002 distances[i] = j;
2003 }
2004 *dist = distances;
2005 *levels = nr_levels;
2006
2007 return 0;
2008 }
2009
sched_init_numa(int offline_node)2010 void sched_init_numa(int offline_node)
2011 {
2012 struct sched_domain_topology_level *tl;
2013 int nr_levels, nr_node_levels;
2014 int i, j;
2015 int *distances, *domain_distances;
2016 struct cpumask ***masks;
2017
2018 /* Record the NUMA distances from SLIT table */
2019 if (sched_record_numa_dist(offline_node, numa_node_dist, &distances,
2020 &nr_node_levels))
2021 return;
2022
2023 /* Record modified NUMA distances for building sched domains */
2024 if (modified_sched_node_distance()) {
2025 if (sched_record_numa_dist(offline_node, arch_sched_node_distance,
2026 &domain_distances, &nr_levels)) {
2027 kfree(distances);
2028 return;
2029 }
2030 } else {
2031 domain_distances = distances;
2032 nr_levels = nr_node_levels;
2033 }
2034 rcu_assign_pointer(sched_numa_node_distance, distances);
2035 WRITE_ONCE(sched_max_numa_distance, distances[nr_node_levels - 1]);
2036 WRITE_ONCE(sched_numa_node_levels, nr_node_levels);
2037
2038 /*
2039 * 'nr_levels' contains the number of unique distances
2040 *
2041 * The sched_domains_numa_distance[] array includes the actual distance
2042 * numbers.
2043 */
2044
2045 /*
2046 * Here, we should temporarily reset sched_domains_numa_levels to 0.
2047 * If it fails to allocate memory for array sched_domains_numa_masks[][],
2048 * the array will contain less then 'nr_levels' members. This could be
2049 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
2050 * in other functions.
2051 *
2052 * We reset it to 'nr_levels' at the end of this function.
2053 */
2054 rcu_assign_pointer(sched_domains_numa_distance, domain_distances);
2055
2056 sched_domains_numa_levels = 0;
2057
2058 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
2059 if (!masks)
2060 return;
2061
2062 /*
2063 * Now for each level, construct a mask per node which contains all
2064 * CPUs of nodes that are that many hops away from us.
2065 */
2066 for (i = 0; i < nr_levels; i++) {
2067 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
2068 if (!masks[i])
2069 return;
2070
2071 for_each_cpu_node_but(j, offline_node) {
2072 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
2073 int k;
2074
2075 if (!mask)
2076 return;
2077
2078 masks[i][j] = mask;
2079
2080 for_each_cpu_node_but(k, offline_node) {
2081 if (sched_debug() &&
2082 (arch_sched_node_distance(j, k) !=
2083 arch_sched_node_distance(k, j)))
2084 sched_numa_warn("Node-distance not symmetric");
2085
2086 if (arch_sched_node_distance(j, k) >
2087 sched_domains_numa_distance[i])
2088 continue;
2089
2090 cpumask_or(mask, mask, cpumask_of_node(k));
2091 }
2092 }
2093 }
2094 rcu_assign_pointer(sched_domains_numa_masks, masks);
2095
2096 /* Compute default topology size */
2097 for (i = 0; sched_domain_topology[i].mask; i++);
2098
2099 tl = kzalloc((i + nr_levels + 1) *
2100 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
2101 if (!tl)
2102 return;
2103
2104 /*
2105 * Copy the default topology bits..
2106 */
2107 for (i = 0; sched_domain_topology[i].mask; i++)
2108 tl[i] = sched_domain_topology[i];
2109
2110 /*
2111 * Add the NUMA identity distance, aka single NODE.
2112 */
2113 tl[i++] = SDTL_INIT(sd_numa_mask, NULL, NODE);
2114
2115 /*
2116 * .. and append 'j' levels of NUMA goodness.
2117 */
2118 for (j = 1; j < nr_levels; i++, j++) {
2119 tl[i] = SDTL_INIT(sd_numa_mask, cpu_numa_flags, NUMA);
2120 tl[i].numa_level = j;
2121 }
2122
2123 sched_domain_topology_saved = sched_domain_topology;
2124 sched_domain_topology = tl;
2125
2126 sched_domains_numa_levels = nr_levels;
2127
2128 init_numa_topology_type(offline_node);
2129 }
2130
2131
sched_reset_numa(void)2132 static void sched_reset_numa(void)
2133 {
2134 int nr_levels, *distances, *dom_distances = NULL;
2135 struct cpumask ***masks;
2136
2137 nr_levels = sched_domains_numa_levels;
2138 sched_numa_node_levels = 0;
2139 sched_domains_numa_levels = 0;
2140 sched_max_numa_distance = 0;
2141 sched_numa_topology_type = NUMA_DIRECT;
2142 distances = sched_numa_node_distance;
2143 if (sched_numa_node_distance != sched_domains_numa_distance)
2144 dom_distances = sched_domains_numa_distance;
2145 rcu_assign_pointer(sched_numa_node_distance, NULL);
2146 rcu_assign_pointer(sched_domains_numa_distance, NULL);
2147 masks = sched_domains_numa_masks;
2148 rcu_assign_pointer(sched_domains_numa_masks, NULL);
2149 if (distances || masks) {
2150 int i, j;
2151
2152 synchronize_rcu();
2153 kfree(distances);
2154 kfree(dom_distances);
2155 for (i = 0; i < nr_levels && masks; i++) {
2156 if (!masks[i])
2157 continue;
2158 for_each_node(j)
2159 kfree(masks[i][j]);
2160 kfree(masks[i]);
2161 }
2162 kfree(masks);
2163 }
2164 if (sched_domain_topology_saved) {
2165 kfree(sched_domain_topology);
2166 sched_domain_topology = sched_domain_topology_saved;
2167 sched_domain_topology_saved = NULL;
2168 }
2169 }
2170
2171 /*
2172 * Call with hotplug lock held
2173 */
sched_update_numa(int cpu,bool online)2174 void sched_update_numa(int cpu, bool online)
2175 {
2176 int node;
2177
2178 node = cpu_to_node(cpu);
2179 /*
2180 * Scheduler NUMA topology is updated when the first CPU of a
2181 * node is onlined or the last CPU of a node is offlined.
2182 */
2183 if (cpumask_weight(cpumask_of_node(node)) != 1)
2184 return;
2185
2186 sched_reset_numa();
2187 sched_init_numa(online ? NUMA_NO_NODE : node);
2188 }
2189
sched_domains_numa_masks_set(unsigned int cpu)2190 void sched_domains_numa_masks_set(unsigned int cpu)
2191 {
2192 int node = cpu_to_node(cpu);
2193 int i, j;
2194
2195 for (i = 0; i < sched_domains_numa_levels; i++) {
2196 for (j = 0; j < nr_node_ids; j++) {
2197 if (!node_state(j, N_CPU))
2198 continue;
2199
2200 /* Set ourselves in the remote node's masks */
2201 if (arch_sched_node_distance(j, node) <=
2202 sched_domains_numa_distance[i])
2203 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2204 }
2205 }
2206 }
2207
sched_domains_numa_masks_clear(unsigned int cpu)2208 void sched_domains_numa_masks_clear(unsigned int cpu)
2209 {
2210 int i, j;
2211
2212 for (i = 0; i < sched_domains_numa_levels; i++) {
2213 for (j = 0; j < nr_node_ids; j++) {
2214 if (sched_domains_numa_masks[i][j])
2215 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2216 }
2217 }
2218 }
2219
2220 /*
2221 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2222 * closest to @cpu from @cpumask.
2223 * cpumask: cpumask to find a cpu from
2224 * cpu: cpu to be close to
2225 *
2226 * returns: cpu, or nr_cpu_ids when nothing found.
2227 */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2228 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2229 {
2230 int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2231 struct cpumask ***masks;
2232
2233 rcu_read_lock();
2234 masks = rcu_dereference(sched_domains_numa_masks);
2235 if (!masks)
2236 goto unlock;
2237 for (i = 0; i < sched_domains_numa_levels; i++) {
2238 if (!masks[i][j])
2239 break;
2240 cpu = cpumask_any_and_distribute(cpus, masks[i][j]);
2241 if (cpu < nr_cpu_ids) {
2242 found = cpu;
2243 break;
2244 }
2245 }
2246 unlock:
2247 rcu_read_unlock();
2248
2249 return found;
2250 }
2251
2252 struct __cmp_key {
2253 const struct cpumask *cpus;
2254 struct cpumask ***masks;
2255 int node;
2256 int cpu;
2257 int w;
2258 };
2259
hop_cmp(const void * a,const void * b)2260 static int hop_cmp(const void *a, const void *b)
2261 {
2262 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2263 struct __cmp_key *k = (struct __cmp_key *)a;
2264
2265 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2266 return 1;
2267
2268 if (b == k->masks) {
2269 k->w = 0;
2270 return 0;
2271 }
2272
2273 prev_hop = *((struct cpumask ***)b - 1);
2274 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2275 if (k->w <= k->cpu)
2276 return 0;
2277
2278 return -1;
2279 }
2280
2281 /**
2282 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2283 * from @cpus to @cpu, taking into account distance
2284 * from a given @node.
2285 * @cpus: cpumask to find a cpu from
2286 * @cpu: CPU to start searching
2287 * @node: NUMA node to order CPUs by distance
2288 *
2289 * Return: cpu, or nr_cpu_ids when nothing found.
2290 */
sched_numa_find_nth_cpu(const struct cpumask * cpus,int cpu,int node)2291 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2292 {
2293 struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2294 struct cpumask ***hop_masks;
2295 int hop, ret = nr_cpu_ids;
2296
2297 if (node == NUMA_NO_NODE)
2298 return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2299
2300 rcu_read_lock();
2301
2302 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2303 node = numa_nearest_node(node, N_CPU);
2304 k.node = node;
2305
2306 k.masks = rcu_dereference(sched_domains_numa_masks);
2307 if (!k.masks)
2308 goto unlock;
2309
2310 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2311 if (!hop_masks)
2312 goto unlock;
2313 hop = hop_masks - k.masks;
2314
2315 ret = hop ?
2316 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2317 cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2318 unlock:
2319 rcu_read_unlock();
2320 return ret;
2321 }
2322 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2323
2324 /**
2325 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2326 * @node
2327 * @node: The node to count hops from.
2328 * @hops: Include CPUs up to that many hops away. 0 means local node.
2329 *
2330 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2331 * @node, an error value otherwise.
2332 *
2333 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2334 * read-side section, copy it if required beyond that.
2335 *
2336 * Note that not all hops are equal in distance; see sched_init_numa() for how
2337 * distances and masks are handled.
2338 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2339 * during the lifetime of the system (offline nodes are taken out of the masks).
2340 */
sched_numa_hop_mask(unsigned int node,unsigned int hops)2341 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2342 {
2343 struct cpumask ***masks;
2344
2345 if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2346 return ERR_PTR(-EINVAL);
2347
2348 masks = rcu_dereference(sched_domains_numa_masks);
2349 if (!masks)
2350 return ERR_PTR(-EBUSY);
2351
2352 return masks[hops][node];
2353 }
2354 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2355
2356 #endif /* CONFIG_NUMA */
2357
__sdt_alloc(const struct cpumask * cpu_map)2358 static int __sdt_alloc(const struct cpumask *cpu_map)
2359 {
2360 struct sched_domain_topology_level *tl;
2361 int j;
2362
2363 for_each_sd_topology(tl) {
2364 struct sd_data *sdd = &tl->data;
2365
2366 sdd->sd = alloc_percpu(struct sched_domain *);
2367 if (!sdd->sd)
2368 return -ENOMEM;
2369
2370 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2371 if (!sdd->sds)
2372 return -ENOMEM;
2373
2374 sdd->sg = alloc_percpu(struct sched_group *);
2375 if (!sdd->sg)
2376 return -ENOMEM;
2377
2378 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2379 if (!sdd->sgc)
2380 return -ENOMEM;
2381
2382 for_each_cpu(j, cpu_map) {
2383 struct sched_domain *sd;
2384 struct sched_domain_shared *sds;
2385 struct sched_group *sg;
2386 struct sched_group_capacity *sgc;
2387
2388 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2389 GFP_KERNEL, cpu_to_node(j));
2390 if (!sd)
2391 return -ENOMEM;
2392
2393 *per_cpu_ptr(sdd->sd, j) = sd;
2394
2395 sds = kzalloc_node(sizeof(struct sched_domain_shared),
2396 GFP_KERNEL, cpu_to_node(j));
2397 if (!sds)
2398 return -ENOMEM;
2399
2400 *per_cpu_ptr(sdd->sds, j) = sds;
2401
2402 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2403 GFP_KERNEL, cpu_to_node(j));
2404 if (!sg)
2405 return -ENOMEM;
2406
2407 sg->next = sg;
2408
2409 *per_cpu_ptr(sdd->sg, j) = sg;
2410
2411 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2412 GFP_KERNEL, cpu_to_node(j));
2413 if (!sgc)
2414 return -ENOMEM;
2415
2416 sgc->id = j;
2417
2418 *per_cpu_ptr(sdd->sgc, j) = sgc;
2419 }
2420 }
2421
2422 return 0;
2423 }
2424
__sdt_free(const struct cpumask * cpu_map)2425 static void __sdt_free(const struct cpumask *cpu_map)
2426 {
2427 struct sched_domain_topology_level *tl;
2428 int j;
2429
2430 for_each_sd_topology(tl) {
2431 struct sd_data *sdd = &tl->data;
2432
2433 for_each_cpu(j, cpu_map) {
2434 struct sched_domain *sd;
2435
2436 if (sdd->sd) {
2437 sd = *per_cpu_ptr(sdd->sd, j);
2438 if (sd && (sd->flags & SD_NUMA))
2439 free_sched_groups(sd->groups, 0);
2440 kfree(*per_cpu_ptr(sdd->sd, j));
2441 }
2442
2443 if (sdd->sds)
2444 kfree(*per_cpu_ptr(sdd->sds, j));
2445 if (sdd->sg)
2446 kfree(*per_cpu_ptr(sdd->sg, j));
2447 if (sdd->sgc)
2448 kfree(*per_cpu_ptr(sdd->sgc, j));
2449 }
2450 free_percpu(sdd->sd);
2451 sdd->sd = NULL;
2452 free_percpu(sdd->sds);
2453 sdd->sds = NULL;
2454 free_percpu(sdd->sg);
2455 sdd->sg = NULL;
2456 free_percpu(sdd->sgc);
2457 sdd->sgc = NULL;
2458 }
2459 }
2460
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2461 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2462 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2463 struct sched_domain *child, int cpu)
2464 {
2465 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2466
2467 if (child) {
2468 sd->level = child->level + 1;
2469 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2470 child->parent = sd;
2471
2472 if (!cpumask_subset(sched_domain_span(child),
2473 sched_domain_span(sd))) {
2474 pr_err("BUG: arch topology borken\n");
2475 pr_err(" the %s domain not a subset of the %s domain\n",
2476 child->name, sd->name);
2477 /* Fixup, ensure @sd has at least @child CPUs. */
2478 cpumask_or(sched_domain_span(sd),
2479 sched_domain_span(sd),
2480 sched_domain_span(child));
2481 }
2482
2483 }
2484 set_domain_attribute(sd, attr);
2485
2486 return sd;
2487 }
2488
2489 /*
2490 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2491 * any two given CPUs on non-NUMA topology levels.
2492 */
topology_span_sane(const struct cpumask * cpu_map)2493 static bool topology_span_sane(const struct cpumask *cpu_map)
2494 {
2495 struct sched_domain_topology_level *tl;
2496 struct cpumask *covered, *id_seen;
2497 int cpu;
2498
2499 lockdep_assert_held(&sched_domains_mutex);
2500 covered = sched_domains_tmpmask;
2501 id_seen = sched_domains_tmpmask2;
2502
2503 for_each_sd_topology(tl) {
2504 int tl_common_flags = 0;
2505
2506 if (tl->sd_flags)
2507 tl_common_flags = (*tl->sd_flags)();
2508
2509 /* NUMA levels are allowed to overlap */
2510 if (tl_common_flags & SD_NUMA)
2511 continue;
2512
2513 cpumask_clear(covered);
2514 cpumask_clear(id_seen);
2515
2516 /*
2517 * Non-NUMA levels cannot partially overlap - they must be either
2518 * completely equal or completely disjoint. Otherwise we can end up
2519 * breaking the sched_group lists - i.e. a later get_group() pass
2520 * breaks the linking done for an earlier span.
2521 */
2522 for_each_cpu(cpu, cpu_map) {
2523 const struct cpumask *tl_cpu_mask = tl->mask(tl, cpu);
2524 int id;
2525
2526 /* lowest bit set in this mask is used as a unique id */
2527 id = cpumask_first(tl_cpu_mask);
2528
2529 if (cpumask_test_cpu(id, id_seen)) {
2530 /* First CPU has already been seen, ensure identical spans */
2531 if (!cpumask_equal(tl->mask(tl, id), tl_cpu_mask))
2532 return false;
2533 } else {
2534 /* First CPU hasn't been seen before, ensure it's a completely new span */
2535 if (cpumask_intersects(tl_cpu_mask, covered))
2536 return false;
2537
2538 cpumask_or(covered, covered, tl_cpu_mask);
2539 cpumask_set_cpu(id, id_seen);
2540 }
2541 }
2542 }
2543 return true;
2544 }
2545
2546 /*
2547 * Build sched domains for a given set of CPUs and attach the sched domains
2548 * to the individual CPUs
2549 */
2550 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2551 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2552 {
2553 enum s_alloc alloc_state = sa_none;
2554 struct sched_domain *sd;
2555 struct s_data d;
2556 struct rq *rq = NULL;
2557 int i, ret = -ENOMEM;
2558 bool has_asym = false;
2559 bool has_cluster = false;
2560
2561 if (WARN_ON(cpumask_empty(cpu_map)))
2562 goto error;
2563
2564 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2565 if (alloc_state != sa_rootdomain)
2566 goto error;
2567
2568 /* Set up domains for CPUs specified by the cpu_map: */
2569 for_each_cpu(i, cpu_map) {
2570 struct sched_domain_topology_level *tl;
2571
2572 sd = NULL;
2573 for_each_sd_topology(tl) {
2574
2575 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2576
2577 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2578
2579 if (tl == sched_domain_topology)
2580 *per_cpu_ptr(d.sd, i) = sd;
2581 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2582 break;
2583 }
2584 }
2585
2586 if (WARN_ON(!topology_span_sane(cpu_map)))
2587 goto error;
2588
2589 /* Build the groups for the domains */
2590 for_each_cpu(i, cpu_map) {
2591 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2592 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2593 if (sd->flags & SD_NUMA) {
2594 if (build_overlap_sched_groups(sd, i))
2595 goto error;
2596 } else {
2597 if (build_sched_groups(sd, i))
2598 goto error;
2599 }
2600 }
2601 }
2602
2603 /*
2604 * Calculate an allowed NUMA imbalance such that LLCs do not get
2605 * imbalanced.
2606 */
2607 for_each_cpu(i, cpu_map) {
2608 unsigned int imb = 0;
2609 unsigned int imb_span = 1;
2610
2611 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2612 struct sched_domain *child = sd->child;
2613
2614 if (!(sd->flags & SD_SHARE_LLC) && child &&
2615 (child->flags & SD_SHARE_LLC)) {
2616 struct sched_domain __rcu *top_p;
2617 unsigned int nr_llcs;
2618
2619 /*
2620 * For a single LLC per node, allow an
2621 * imbalance up to 12.5% of the node. This is
2622 * arbitrary cutoff based two factors -- SMT and
2623 * memory channels. For SMT-2, the intent is to
2624 * avoid premature sharing of HT resources but
2625 * SMT-4 or SMT-8 *may* benefit from a different
2626 * cutoff. For memory channels, this is a very
2627 * rough estimate of how many channels may be
2628 * active and is based on recent CPUs with
2629 * many cores.
2630 *
2631 * For multiple LLCs, allow an imbalance
2632 * until multiple tasks would share an LLC
2633 * on one node while LLCs on another node
2634 * remain idle. This assumes that there are
2635 * enough logical CPUs per LLC to avoid SMT
2636 * factors and that there is a correlation
2637 * between LLCs and memory channels.
2638 */
2639 nr_llcs = sd->span_weight / child->span_weight;
2640 if (nr_llcs == 1)
2641 imb = sd->span_weight >> 3;
2642 else
2643 imb = nr_llcs;
2644 imb = max(1U, imb);
2645 sd->imb_numa_nr = imb;
2646
2647 /* Set span based on the first NUMA domain. */
2648 top_p = sd->parent;
2649 while (top_p && !(top_p->flags & SD_NUMA)) {
2650 top_p = top_p->parent;
2651 }
2652 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2653 } else {
2654 int factor = max(1U, (sd->span_weight / imb_span));
2655
2656 sd->imb_numa_nr = imb * factor;
2657 }
2658 }
2659 }
2660
2661 /* Calculate CPU capacity for physical packages and nodes */
2662 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2663 if (!cpumask_test_cpu(i, cpu_map))
2664 continue;
2665
2666 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2667 claim_allocations(i, sd);
2668 init_sched_groups_capacity(i, sd);
2669 }
2670 }
2671
2672 /* Attach the domains */
2673 rcu_read_lock();
2674 for_each_cpu(i, cpu_map) {
2675 rq = cpu_rq(i);
2676 sd = *per_cpu_ptr(d.sd, i);
2677
2678 cpu_attach_domain(sd, d.rd, i);
2679
2680 if (lowest_flag_domain(i, SD_CLUSTER))
2681 has_cluster = true;
2682 }
2683 rcu_read_unlock();
2684
2685 if (has_asym)
2686 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2687
2688 if (has_cluster)
2689 static_branch_inc_cpuslocked(&sched_cluster_active);
2690
2691 if (rq && sched_debug_verbose)
2692 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2693
2694 ret = 0;
2695 error:
2696 __free_domain_allocs(&d, alloc_state, cpu_map);
2697
2698 return ret;
2699 }
2700
2701 /* Current sched domains: */
2702 static cpumask_var_t *doms_cur;
2703
2704 /* Number of sched domains in 'doms_cur': */
2705 static int ndoms_cur;
2706
2707 /* Attributes of custom domains in 'doms_cur' */
2708 static struct sched_domain_attr *dattr_cur;
2709
2710 /*
2711 * Special case: If a kmalloc() of a doms_cur partition (array of
2712 * cpumask) fails, then fallback to a single sched domain,
2713 * as determined by the single cpumask fallback_doms.
2714 */
2715 static cpumask_var_t fallback_doms;
2716
2717 /*
2718 * arch_update_cpu_topology lets virtualized architectures update the
2719 * CPU core maps. It is supposed to return 1 if the topology changed
2720 * or 0 if it stayed the same.
2721 */
arch_update_cpu_topology(void)2722 int __weak arch_update_cpu_topology(void)
2723 {
2724 return 0;
2725 }
2726
alloc_sched_domains(unsigned int ndoms)2727 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2728 {
2729 int i;
2730 cpumask_var_t *doms;
2731
2732 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2733 if (!doms)
2734 return NULL;
2735 for (i = 0; i < ndoms; i++) {
2736 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2737 free_sched_domains(doms, i);
2738 return NULL;
2739 }
2740 }
2741 return doms;
2742 }
2743
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2744 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2745 {
2746 unsigned int i;
2747 for (i = 0; i < ndoms; i++)
2748 free_cpumask_var(doms[i]);
2749 kfree(doms);
2750 }
2751
2752 /*
2753 * Set up scheduler domains and groups. For now this just excludes isolated
2754 * CPUs, but could be used to exclude other special cases in the future.
2755 */
sched_init_domains(const struct cpumask * cpu_map)2756 int __init sched_init_domains(const struct cpumask *cpu_map)
2757 {
2758 int err;
2759
2760 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2761 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2762 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2763
2764 arch_update_cpu_topology();
2765 asym_cpu_capacity_scan();
2766 ndoms_cur = 1;
2767 doms_cur = alloc_sched_domains(ndoms_cur);
2768 if (!doms_cur)
2769 doms_cur = &fallback_doms;
2770 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2771 err = build_sched_domains(doms_cur[0], NULL);
2772
2773 return err;
2774 }
2775
2776 /*
2777 * Detach sched domains from a group of CPUs specified in cpu_map
2778 * These CPUs will now be attached to the NULL domain
2779 */
detach_destroy_domains(const struct cpumask * cpu_map)2780 static void detach_destroy_domains(const struct cpumask *cpu_map)
2781 {
2782 unsigned int cpu = cpumask_any(cpu_map);
2783 int i;
2784
2785 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2786 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2787
2788 if (static_branch_unlikely(&sched_cluster_active))
2789 static_branch_dec_cpuslocked(&sched_cluster_active);
2790
2791 rcu_read_lock();
2792 for_each_cpu(i, cpu_map)
2793 cpu_attach_domain(NULL, &def_root_domain, i);
2794 rcu_read_unlock();
2795 }
2796
2797 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2798 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2799 struct sched_domain_attr *new, int idx_new)
2800 {
2801 struct sched_domain_attr tmp;
2802
2803 /* Fast path: */
2804 if (!new && !cur)
2805 return 1;
2806
2807 tmp = SD_ATTR_INIT;
2808
2809 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2810 new ? (new + idx_new) : &tmp,
2811 sizeof(struct sched_domain_attr));
2812 }
2813
2814 /*
2815 * Partition sched domains as specified by the 'ndoms_new'
2816 * cpumasks in the array doms_new[] of cpumasks. This compares
2817 * doms_new[] to the current sched domain partitioning, doms_cur[].
2818 * It destroys each deleted domain and builds each new domain.
2819 *
2820 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2821 * The masks don't intersect (don't overlap.) We should setup one
2822 * sched domain for each mask. CPUs not in any of the cpumasks will
2823 * not be load balanced. If the same cpumask appears both in the
2824 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2825 * it as it is.
2826 *
2827 * The passed in 'doms_new' should be allocated using
2828 * alloc_sched_domains. This routine takes ownership of it and will
2829 * free_sched_domains it when done with it. If the caller failed the
2830 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2831 * and partition_sched_domains() will fallback to the single partition
2832 * 'fallback_doms', it also forces the domains to be rebuilt.
2833 *
2834 * If doms_new == NULL it will be replaced with cpu_online_mask.
2835 * ndoms_new == 0 is a special case for destroying existing domains,
2836 * and it will not create the default domain.
2837 *
2838 * Call with hotplug lock and sched_domains_mutex held
2839 */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2840 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2841 struct sched_domain_attr *dattr_new)
2842 {
2843 bool __maybe_unused has_eas = false;
2844 int i, j, n;
2845 int new_topology;
2846
2847 lockdep_assert_held(&sched_domains_mutex);
2848
2849 /* Let the architecture update CPU core mappings: */
2850 new_topology = arch_update_cpu_topology();
2851 /* Trigger rebuilding CPU capacity asymmetry data */
2852 if (new_topology)
2853 asym_cpu_capacity_scan();
2854
2855 if (!doms_new) {
2856 WARN_ON_ONCE(dattr_new);
2857 n = 0;
2858 doms_new = alloc_sched_domains(1);
2859 if (doms_new) {
2860 n = 1;
2861 cpumask_and(doms_new[0], cpu_active_mask,
2862 housekeeping_cpumask(HK_TYPE_DOMAIN));
2863 }
2864 } else {
2865 n = ndoms_new;
2866 }
2867
2868 /* Destroy deleted domains: */
2869 for (i = 0; i < ndoms_cur; i++) {
2870 for (j = 0; j < n && !new_topology; j++) {
2871 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2872 dattrs_equal(dattr_cur, i, dattr_new, j))
2873 goto match1;
2874 }
2875 /* No match - a current sched domain not in new doms_new[] */
2876 detach_destroy_domains(doms_cur[i]);
2877 match1:
2878 ;
2879 }
2880
2881 n = ndoms_cur;
2882 if (!doms_new) {
2883 n = 0;
2884 doms_new = &fallback_doms;
2885 cpumask_and(doms_new[0], cpu_active_mask,
2886 housekeeping_cpumask(HK_TYPE_DOMAIN));
2887 }
2888
2889 /* Build new domains: */
2890 for (i = 0; i < ndoms_new; i++) {
2891 for (j = 0; j < n && !new_topology; j++) {
2892 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2893 dattrs_equal(dattr_new, i, dattr_cur, j))
2894 goto match2;
2895 }
2896 /* No match - add a new doms_new */
2897 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2898 match2:
2899 ;
2900 }
2901
2902 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2903 /* Build perf domains: */
2904 for (i = 0; i < ndoms_new; i++) {
2905 for (j = 0; j < n && !sched_energy_update; j++) {
2906 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2907 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2908 has_eas = true;
2909 goto match3;
2910 }
2911 }
2912 /* No match - add perf domains for a new rd */
2913 has_eas |= build_perf_domains(doms_new[i]);
2914 match3:
2915 ;
2916 }
2917 sched_energy_set(has_eas);
2918 #endif
2919
2920 /* Remember the new sched domains: */
2921 if (doms_cur != &fallback_doms)
2922 free_sched_domains(doms_cur, ndoms_cur);
2923
2924 kfree(dattr_cur);
2925 doms_cur = doms_new;
2926 dattr_cur = dattr_new;
2927 ndoms_cur = ndoms_new;
2928
2929 update_sched_domain_debugfs();
2930 dl_rebuild_rd_accounting();
2931 }
2932
2933 /*
2934 * Call with hotplug lock held
2935 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2936 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2937 struct sched_domain_attr *dattr_new)
2938 {
2939 sched_domains_mutex_lock();
2940 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2941 sched_domains_mutex_unlock();
2942 }
2943