1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/syscalls.c 4 * 5 * Core kernel scheduler syscalls related code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/sched.h> 11 #include <linux/cpuset.h> 12 #include <linux/sched/debug.h> 13 14 #include <uapi/linux/sched/types.h> 15 16 #include "sched.h" 17 #include "autogroup.h" 18 19 static inline int __normal_prio(int policy, int rt_prio, int nice) 20 { 21 int prio; 22 23 if (dl_policy(policy)) 24 prio = MAX_DL_PRIO - 1; 25 else if (rt_policy(policy)) 26 prio = MAX_RT_PRIO - 1 - rt_prio; 27 else 28 prio = NICE_TO_PRIO(nice); 29 30 return prio; 31 } 32 33 /* 34 * Calculate the expected normal priority: i.e. priority 35 * without taking RT-inheritance into account. Might be 36 * boosted by interactivity modifiers. Changes upon fork, 37 * setprio syscalls, and whenever the interactivity 38 * estimator recalculates. 39 */ 40 static inline int normal_prio(struct task_struct *p) 41 { 42 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 43 } 44 45 /* 46 * Calculate the current priority, i.e. the priority 47 * taken into account by the scheduler. This value might 48 * be boosted by RT tasks, or might be boosted by 49 * interactivity modifiers. Will be RT if the task got 50 * RT-boosted. If not then it returns p->normal_prio. 51 */ 52 static int effective_prio(struct task_struct *p) 53 { 54 p->normal_prio = normal_prio(p); 55 /* 56 * If we are RT tasks or we were boosted to RT priority, 57 * keep the priority unchanged. Otherwise, update priority 58 * to the normal priority: 59 */ 60 if (!rt_or_dl_prio(p->prio)) 61 return p->normal_prio; 62 return p->prio; 63 } 64 65 void set_user_nice(struct task_struct *p, long nice) 66 { 67 int old_prio; 68 69 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 70 return; 71 /* 72 * We have to be careful, if called from sys_setpriority(), 73 * the task might be in the middle of scheduling on another CPU. 74 */ 75 guard(task_rq_lock)(p); 76 77 /* 78 * The RT priorities are set via sched_setscheduler(), but we still 79 * allow the 'normal' nice value to be set - but as expected 80 * it won't have any effect on scheduling until the task is 81 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 82 */ 83 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 84 p->static_prio = NICE_TO_PRIO(nice); 85 return; 86 } 87 88 scoped_guard (sched_change, p, DEQUEUE_SAVE) { 89 p->static_prio = NICE_TO_PRIO(nice); 90 set_load_weight(p, true); 91 old_prio = p->prio; 92 p->prio = effective_prio(p); 93 } 94 } 95 EXPORT_SYMBOL(set_user_nice); 96 97 /* 98 * is_nice_reduction - check if nice value is an actual reduction 99 * 100 * Similar to can_nice() but does not perform a capability check. 101 * 102 * @p: task 103 * @nice: nice value 104 */ 105 static bool is_nice_reduction(const struct task_struct *p, const int nice) 106 { 107 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 108 int nice_rlim = nice_to_rlimit(nice); 109 110 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 111 } 112 113 /* 114 * can_nice - check if a task can reduce its nice value 115 * @p: task 116 * @nice: nice value 117 */ 118 int can_nice(const struct task_struct *p, const int nice) 119 { 120 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 121 } 122 123 #ifdef __ARCH_WANT_SYS_NICE 124 125 /* 126 * sys_nice - change the priority of the current process. 127 * @increment: priority increment 128 * 129 * sys_setpriority is a more generic, but much slower function that 130 * does similar things. 131 */ 132 SYSCALL_DEFINE1(nice, int, increment) 133 { 134 long nice, retval; 135 136 /* 137 * Setpriority might change our priority at the same moment. 138 * We don't have to worry. Conceptually one call occurs first 139 * and we have a single winner. 140 */ 141 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 142 nice = task_nice(current) + increment; 143 144 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 145 if (increment < 0 && !can_nice(current, nice)) 146 return -EPERM; 147 148 retval = security_task_setnice(current, nice); 149 if (retval) 150 return retval; 151 152 set_user_nice(current, nice); 153 return 0; 154 } 155 156 #endif /* __ARCH_WANT_SYS_NICE */ 157 158 /** 159 * task_prio - return the priority value of a given task. 160 * @p: the task in question. 161 * 162 * Return: The priority value as seen by users in /proc. 163 * 164 * sched policy return value kernel prio user prio/nice 165 * 166 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 167 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 168 * deadline -101 -1 0 169 */ 170 int task_prio(const struct task_struct *p) 171 { 172 return p->prio - MAX_RT_PRIO; 173 } 174 175 /** 176 * idle_cpu - is a given CPU idle currently? 177 * @cpu: the processor in question. 178 * 179 * Return: 1 if the CPU is currently idle. 0 otherwise. 180 */ 181 int idle_cpu(int cpu) 182 { 183 return idle_rq(cpu_rq(cpu)); 184 } 185 186 /** 187 * idle_task - return the idle task for a given CPU. 188 * @cpu: the processor in question. 189 * 190 * Return: The idle task for the CPU @cpu. 191 */ 192 struct task_struct *idle_task(int cpu) 193 { 194 return cpu_rq(cpu)->idle; 195 } 196 197 #ifdef CONFIG_SCHED_CORE 198 int sched_core_idle_cpu(int cpu) 199 { 200 struct rq *rq = cpu_rq(cpu); 201 202 if (sched_core_enabled(rq) && rq->curr == rq->idle) 203 return 1; 204 205 return idle_cpu(cpu); 206 } 207 #endif /* CONFIG_SCHED_CORE */ 208 209 /** 210 * find_process_by_pid - find a process with a matching PID value. 211 * @pid: the pid in question. 212 * 213 * The task of @pid, if found. %NULL otherwise. 214 */ 215 static struct task_struct *find_process_by_pid(pid_t pid) 216 { 217 return pid ? find_task_by_vpid(pid) : current; 218 } 219 220 static struct task_struct *find_get_task(pid_t pid) 221 { 222 struct task_struct *p; 223 guard(rcu)(); 224 225 p = find_process_by_pid(pid); 226 if (likely(p)) 227 get_task_struct(p); 228 229 return p; 230 } 231 232 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), 233 find_get_task(pid), pid_t pid) 234 235 /* 236 * sched_setparam() passes in -1 for its policy, to let the functions 237 * it calls know not to change it. 238 */ 239 #define SETPARAM_POLICY -1 240 241 static void __setscheduler_params(struct task_struct *p, 242 const struct sched_attr *attr) 243 { 244 int policy = attr->sched_policy; 245 246 if (policy == SETPARAM_POLICY) 247 policy = p->policy; 248 249 p->policy = policy; 250 251 if (dl_policy(policy)) 252 __setparam_dl(p, attr); 253 else if (fair_policy(policy)) 254 __setparam_fair(p, attr); 255 256 /* rt-policy tasks do not have a timerslack */ 257 if (rt_or_dl_task_policy(p)) { 258 p->timer_slack_ns = 0; 259 } else if (p->timer_slack_ns == 0) { 260 /* when switching back to non-rt policy, restore timerslack */ 261 p->timer_slack_ns = p->default_timer_slack_ns; 262 } 263 264 /* 265 * __sched_setscheduler() ensures attr->sched_priority == 0 when 266 * !rt_policy. Always setting this ensures that things like 267 * getparam()/getattr() don't report silly values for !rt tasks. 268 */ 269 p->rt_priority = attr->sched_priority; 270 p->normal_prio = normal_prio(p); 271 set_load_weight(p, true); 272 } 273 274 /* 275 * Check the target process has a UID that matches the current process's: 276 */ 277 static bool check_same_owner(struct task_struct *p) 278 { 279 const struct cred *cred = current_cred(), *pcred; 280 guard(rcu)(); 281 282 pcred = __task_cred(p); 283 return (uid_eq(cred->euid, pcred->euid) || 284 uid_eq(cred->euid, pcred->uid)); 285 } 286 287 #ifdef CONFIG_UCLAMP_TASK 288 289 static int uclamp_validate(struct task_struct *p, 290 const struct sched_attr *attr) 291 { 292 int util_min = p->uclamp_req[UCLAMP_MIN].value; 293 int util_max = p->uclamp_req[UCLAMP_MAX].value; 294 295 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 296 util_min = attr->sched_util_min; 297 298 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 299 return -EINVAL; 300 } 301 302 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 303 util_max = attr->sched_util_max; 304 305 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 306 return -EINVAL; 307 } 308 309 if (util_min != -1 && util_max != -1 && util_min > util_max) 310 return -EINVAL; 311 312 /* 313 * We have valid uclamp attributes; make sure uclamp is enabled. 314 * 315 * We need to do that here, because enabling static branches is a 316 * blocking operation which obviously cannot be done while holding 317 * scheduler locks. 318 */ 319 sched_uclamp_enable(); 320 321 return 0; 322 } 323 324 static bool uclamp_reset(const struct sched_attr *attr, 325 enum uclamp_id clamp_id, 326 struct uclamp_se *uc_se) 327 { 328 /* Reset on sched class change for a non user-defined clamp value. */ 329 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 330 !uc_se->user_defined) 331 return true; 332 333 /* Reset on sched_util_{min,max} == -1. */ 334 if (clamp_id == UCLAMP_MIN && 335 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 336 attr->sched_util_min == -1) { 337 return true; 338 } 339 340 if (clamp_id == UCLAMP_MAX && 341 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 342 attr->sched_util_max == -1) { 343 return true; 344 } 345 346 return false; 347 } 348 349 static void __setscheduler_uclamp(struct task_struct *p, 350 const struct sched_attr *attr) 351 { 352 enum uclamp_id clamp_id; 353 354 for_each_clamp_id(clamp_id) { 355 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 356 unsigned int value; 357 358 if (!uclamp_reset(attr, clamp_id, uc_se)) 359 continue; 360 361 /* 362 * RT by default have a 100% boost value that could be modified 363 * at runtime. 364 */ 365 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 366 value = sysctl_sched_uclamp_util_min_rt_default; 367 else 368 value = uclamp_none(clamp_id); 369 370 uclamp_se_set(uc_se, value, false); 371 372 } 373 374 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 375 return; 376 377 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 378 attr->sched_util_min != -1) { 379 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 380 attr->sched_util_min, true); 381 } 382 383 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 384 attr->sched_util_max != -1) { 385 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 386 attr->sched_util_max, true); 387 } 388 } 389 390 #else /* !CONFIG_UCLAMP_TASK: */ 391 392 static inline int uclamp_validate(struct task_struct *p, 393 const struct sched_attr *attr) 394 { 395 return -EOPNOTSUPP; 396 } 397 static void __setscheduler_uclamp(struct task_struct *p, 398 const struct sched_attr *attr) { } 399 #endif /* !CONFIG_UCLAMP_TASK */ 400 401 /* 402 * Allow unprivileged RT tasks to decrease priority. 403 * Only issue a capable test if needed and only once to avoid an audit 404 * event on permitted non-privileged operations: 405 */ 406 static int user_check_sched_setscheduler(struct task_struct *p, 407 const struct sched_attr *attr, 408 int policy, int reset_on_fork) 409 { 410 if (fair_policy(policy)) { 411 if (attr->sched_nice < task_nice(p) && 412 !is_nice_reduction(p, attr->sched_nice)) 413 goto req_priv; 414 } 415 416 if (rt_policy(policy)) { 417 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 418 419 /* Can't set/change the rt policy: */ 420 if (policy != p->policy && !rlim_rtprio) 421 goto req_priv; 422 423 /* Can't increase priority: */ 424 if (attr->sched_priority > p->rt_priority && 425 attr->sched_priority > rlim_rtprio) 426 goto req_priv; 427 } 428 429 /* 430 * Can't set/change SCHED_DEADLINE policy at all for now 431 * (safest behavior); in the future we would like to allow 432 * unprivileged DL tasks to increase their relative deadline 433 * or reduce their runtime (both ways reducing utilization) 434 */ 435 if (dl_policy(policy)) 436 goto req_priv; 437 438 /* 439 * Treat SCHED_IDLE as nice 20. Only allow a switch to 440 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 441 */ 442 if (task_has_idle_policy(p) && !idle_policy(policy)) { 443 if (!is_nice_reduction(p, task_nice(p))) 444 goto req_priv; 445 } 446 447 /* Can't change other user's priorities: */ 448 if (!check_same_owner(p)) 449 goto req_priv; 450 451 /* Normal users shall not reset the sched_reset_on_fork flag: */ 452 if (p->sched_reset_on_fork && !reset_on_fork) 453 goto req_priv; 454 455 return 0; 456 457 req_priv: 458 if (!capable(CAP_SYS_NICE)) 459 return -EPERM; 460 461 return 0; 462 } 463 464 int __sched_setscheduler(struct task_struct *p, 465 const struct sched_attr *attr, 466 bool user, bool pi) 467 { 468 int oldpolicy = -1, policy = attr->sched_policy; 469 int retval, oldprio, newprio; 470 const struct sched_class *prev_class, *next_class; 471 struct balance_callback *head; 472 struct rq_flags rf; 473 int reset_on_fork; 474 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 475 struct rq *rq; 476 bool cpuset_locked = false; 477 478 /* The pi code expects interrupts enabled */ 479 BUG_ON(pi && in_interrupt()); 480 recheck: 481 /* Double check policy once rq lock held: */ 482 if (policy < 0) { 483 reset_on_fork = p->sched_reset_on_fork; 484 policy = oldpolicy = p->policy; 485 } else { 486 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 487 488 if (!valid_policy(policy)) 489 return -EINVAL; 490 } 491 492 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 493 return -EINVAL; 494 495 /* 496 * Valid priorities for SCHED_FIFO and SCHED_RR are 497 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 498 * SCHED_BATCH and SCHED_IDLE is 0. 499 */ 500 if (attr->sched_priority > MAX_RT_PRIO-1) 501 return -EINVAL; 502 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 503 (rt_policy(policy) != (attr->sched_priority != 0))) 504 return -EINVAL; 505 506 if (user) { 507 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 508 if (retval) 509 return retval; 510 511 if (attr->sched_flags & SCHED_FLAG_SUGOV) 512 return -EINVAL; 513 514 retval = security_task_setscheduler(p); 515 if (retval) 516 return retval; 517 } 518 519 /* Update task specific "requested" clamps */ 520 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 521 retval = uclamp_validate(p, attr); 522 if (retval) 523 return retval; 524 } 525 526 /* 527 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets 528 * information. 529 */ 530 if (dl_policy(policy) || dl_policy(p->policy)) { 531 cpuset_locked = true; 532 cpuset_lock(); 533 } 534 535 /* 536 * Make sure no PI-waiters arrive (or leave) while we are 537 * changing the priority of the task: 538 * 539 * To be able to change p->policy safely, the appropriate 540 * runqueue lock must be held. 541 */ 542 rq = task_rq_lock(p, &rf); 543 update_rq_clock(rq); 544 545 /* 546 * Changing the policy of the stop threads its a very bad idea: 547 */ 548 if (p == rq->stop) { 549 retval = -EINVAL; 550 goto unlock; 551 } 552 553 retval = scx_check_setscheduler(p, policy); 554 if (retval) 555 goto unlock; 556 557 /* 558 * If not changing anything there's no need to proceed further, 559 * but store a possible modification of reset_on_fork. 560 */ 561 if (unlikely(policy == p->policy)) { 562 if (fair_policy(policy) && 563 (attr->sched_nice != task_nice(p) || 564 (attr->sched_runtime != p->se.slice))) 565 goto change; 566 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 567 goto change; 568 if (dl_policy(policy) && dl_param_changed(p, attr)) 569 goto change; 570 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 571 goto change; 572 573 p->sched_reset_on_fork = reset_on_fork; 574 retval = 0; 575 goto unlock; 576 } 577 change: 578 579 if (user) { 580 #ifdef CONFIG_RT_GROUP_SCHED 581 /* 582 * Do not allow real-time tasks into groups that have no runtime 583 * assigned. 584 */ 585 if (rt_group_sched_enabled() && 586 rt_bandwidth_enabled() && rt_policy(policy) && 587 task_group(p)->rt_bandwidth.rt_runtime == 0 && 588 !task_group_is_autogroup(task_group(p))) { 589 retval = -EPERM; 590 goto unlock; 591 } 592 #endif /* CONFIG_RT_GROUP_SCHED */ 593 if (dl_bandwidth_enabled() && dl_policy(policy) && 594 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 595 cpumask_t *span = rq->rd->span; 596 597 /* 598 * Don't allow tasks with an affinity mask smaller than 599 * the entire root_domain to become SCHED_DEADLINE. We 600 * will also fail if there's no bandwidth available. 601 */ 602 if (!cpumask_subset(span, p->cpus_ptr) || 603 rq->rd->dl_bw.bw == 0) { 604 retval = -EPERM; 605 goto unlock; 606 } 607 } 608 } 609 610 /* Re-check policy now with rq lock held: */ 611 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 612 policy = oldpolicy = -1; 613 task_rq_unlock(rq, p, &rf); 614 if (cpuset_locked) 615 cpuset_unlock(); 616 goto recheck; 617 } 618 619 /* 620 * If setscheduling to SCHED_DEADLINE (or changing the parameters 621 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 622 * is available. 623 */ 624 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 625 retval = -EBUSY; 626 goto unlock; 627 } 628 629 p->sched_reset_on_fork = reset_on_fork; 630 oldprio = p->prio; 631 632 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 633 if (pi) { 634 /* 635 * Take priority boosted tasks into account. If the new 636 * effective priority is unchanged, we just store the new 637 * normal parameters and do not touch the scheduler class and 638 * the runqueue. This will be done when the task deboost 639 * itself. 640 */ 641 newprio = rt_effective_prio(p, newprio); 642 if (newprio == oldprio && !dl_prio(newprio)) 643 queue_flags &= ~DEQUEUE_MOVE; 644 } 645 646 prev_class = p->sched_class; 647 next_class = __setscheduler_class(policy, newprio); 648 649 if (prev_class != next_class) 650 queue_flags |= DEQUEUE_CLASS; 651 652 scoped_guard (sched_change, p, queue_flags) { 653 654 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 655 __setscheduler_params(p, attr); 656 p->sched_class = next_class; 657 p->prio = newprio; 658 } 659 __setscheduler_uclamp(p, attr); 660 661 if (scope->queued) { 662 /* 663 * We enqueue to tail when the priority of a task is 664 * increased (user space view). 665 */ 666 if (oldprio < p->prio) 667 scope->flags |= ENQUEUE_HEAD; 668 } 669 } 670 671 /* Avoid rq from going away on us: */ 672 preempt_disable(); 673 head = splice_balance_callbacks(rq); 674 task_rq_unlock(rq, p, &rf); 675 676 if (pi) { 677 if (cpuset_locked) 678 cpuset_unlock(); 679 rt_mutex_adjust_pi(p); 680 } 681 682 /* Run balance callbacks after we've adjusted the PI chain: */ 683 balance_callbacks(rq, head); 684 preempt_enable(); 685 686 return 0; 687 688 unlock: 689 task_rq_unlock(rq, p, &rf); 690 if (cpuset_locked) 691 cpuset_unlock(); 692 return retval; 693 } 694 695 static int _sched_setscheduler(struct task_struct *p, int policy, 696 const struct sched_param *param, bool check) 697 { 698 struct sched_attr attr = { 699 .sched_policy = policy, 700 .sched_priority = param->sched_priority, 701 .sched_nice = PRIO_TO_NICE(p->static_prio), 702 }; 703 704 if (p->se.custom_slice) 705 attr.sched_runtime = p->se.slice; 706 707 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 708 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 709 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 710 policy &= ~SCHED_RESET_ON_FORK; 711 attr.sched_policy = policy; 712 } 713 714 return __sched_setscheduler(p, &attr, check, true); 715 } 716 /** 717 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 718 * @p: the task in question. 719 * @policy: new policy. 720 * @param: structure containing the new RT priority. 721 * 722 * Use sched_set_fifo(), read its comment. 723 * 724 * Return: 0 on success. An error code otherwise. 725 * 726 * NOTE that the task may be already dead. 727 */ 728 int sched_setscheduler(struct task_struct *p, int policy, 729 const struct sched_param *param) 730 { 731 return _sched_setscheduler(p, policy, param, true); 732 } 733 734 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 735 { 736 return __sched_setscheduler(p, attr, true, true); 737 } 738 739 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 740 { 741 return __sched_setscheduler(p, attr, false, true); 742 } 743 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 744 745 /** 746 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. 747 * @p: the task in question. 748 * @policy: new policy. 749 * @param: structure containing the new RT priority. 750 * 751 * Just like sched_setscheduler, only don't bother checking if the 752 * current context has permission. For example, this is needed in 753 * stop_machine(): we create temporary high priority worker threads, 754 * but our caller might not have that capability. 755 * 756 * Return: 0 on success. An error code otherwise. 757 */ 758 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 759 const struct sched_param *param) 760 { 761 return _sched_setscheduler(p, policy, param, false); 762 } 763 764 /* 765 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 766 * incapable of resource management, which is the one thing an OS really should 767 * be doing. 768 * 769 * This is of course the reason it is limited to privileged users only. 770 * 771 * Worse still; it is fundamentally impossible to compose static priority 772 * workloads. You cannot take two correctly working static prio workloads 773 * and smash them together and still expect them to work. 774 * 775 * For this reason 'all' FIFO tasks the kernel creates are basically at: 776 * 777 * MAX_RT_PRIO / 2 778 * 779 * The administrator _MUST_ configure the system, the kernel simply doesn't 780 * know enough information to make a sensible choice. 781 */ 782 void sched_set_fifo(struct task_struct *p) 783 { 784 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 785 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 786 } 787 EXPORT_SYMBOL_GPL(sched_set_fifo); 788 789 /* 790 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 791 */ 792 void sched_set_fifo_low(struct task_struct *p) 793 { 794 struct sched_param sp = { .sched_priority = 1 }; 795 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 796 } 797 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 798 799 /* 800 * Used when the primary interrupt handler is forced into a thread, in addition 801 * to the (always threaded) secondary handler. The secondary handler gets a 802 * slightly lower priority so that the primary handler can preempt it, thereby 803 * emulating the behavior of a non-PREEMPT_RT system where the primary handler 804 * runs in hard interrupt context. 805 */ 806 void sched_set_fifo_secondary(struct task_struct *p) 807 { 808 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 - 1 }; 809 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 810 } 811 812 void sched_set_normal(struct task_struct *p, int nice) 813 { 814 struct sched_attr attr = { 815 .sched_policy = SCHED_NORMAL, 816 .sched_nice = nice, 817 }; 818 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 819 } 820 EXPORT_SYMBOL_GPL(sched_set_normal); 821 822 static int 823 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 824 { 825 struct sched_param lparam; 826 827 if (unlikely(!param || pid < 0)) 828 return -EINVAL; 829 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 830 return -EFAULT; 831 832 CLASS(find_get_task, p)(pid); 833 if (!p) 834 return -ESRCH; 835 836 return sched_setscheduler(p, policy, &lparam); 837 } 838 839 /* 840 * Mimics kernel/events/core.c perf_copy_attr(). 841 */ 842 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 843 { 844 u32 size; 845 int ret; 846 847 /* Zero the full structure, so that a short copy will be nice: */ 848 memset(attr, 0, sizeof(*attr)); 849 850 ret = get_user(size, &uattr->size); 851 if (ret) 852 return ret; 853 854 /* ABI compatibility quirk: */ 855 if (!size) 856 size = SCHED_ATTR_SIZE_VER0; 857 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 858 goto err_size; 859 860 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 861 if (ret) { 862 if (ret == -E2BIG) 863 goto err_size; 864 return ret; 865 } 866 867 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 868 size < SCHED_ATTR_SIZE_VER1) 869 return -EINVAL; 870 871 /* 872 * XXX: Do we want to be lenient like existing syscalls; or do we want 873 * to be strict and return an error on out-of-bounds values? 874 */ 875 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 876 877 return 0; 878 879 err_size: 880 put_user(sizeof(*attr), &uattr->size); 881 return -E2BIG; 882 } 883 884 static void get_params(struct task_struct *p, struct sched_attr *attr) 885 { 886 if (task_has_dl_policy(p)) { 887 __getparam_dl(p, attr); 888 } else if (task_has_rt_policy(p)) { 889 attr->sched_priority = p->rt_priority; 890 } else { 891 attr->sched_nice = task_nice(p); 892 attr->sched_runtime = p->se.slice; 893 } 894 } 895 896 /** 897 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 898 * @pid: the pid in question. 899 * @policy: new policy. 900 * @param: structure containing the new RT priority. 901 * 902 * Return: 0 on success. An error code otherwise. 903 */ 904 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 905 { 906 if (policy < 0) 907 return -EINVAL; 908 909 return do_sched_setscheduler(pid, policy, param); 910 } 911 912 /** 913 * sys_sched_setparam - set/change the RT priority of a thread 914 * @pid: the pid in question. 915 * @param: structure containing the new RT priority. 916 * 917 * Return: 0 on success. An error code otherwise. 918 */ 919 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 920 { 921 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 922 } 923 924 /** 925 * sys_sched_setattr - same as above, but with extended sched_attr 926 * @pid: the pid in question. 927 * @uattr: structure containing the extended parameters. 928 * @flags: for future extension. 929 */ 930 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 931 unsigned int, flags) 932 { 933 struct sched_attr attr; 934 int retval; 935 936 if (unlikely(!uattr || pid < 0 || flags)) 937 return -EINVAL; 938 939 retval = sched_copy_attr(uattr, &attr); 940 if (retval) 941 return retval; 942 943 if ((int)attr.sched_policy < 0) 944 return -EINVAL; 945 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 946 attr.sched_policy = SETPARAM_POLICY; 947 948 CLASS(find_get_task, p)(pid); 949 if (!p) 950 return -ESRCH; 951 952 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 953 get_params(p, &attr); 954 955 return sched_setattr(p, &attr); 956 } 957 958 /** 959 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 960 * @pid: the pid in question. 961 * 962 * Return: On success, the policy of the thread. Otherwise, a negative error 963 * code. 964 */ 965 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 966 { 967 struct task_struct *p; 968 int retval; 969 970 if (pid < 0) 971 return -EINVAL; 972 973 guard(rcu)(); 974 p = find_process_by_pid(pid); 975 if (!p) 976 return -ESRCH; 977 978 retval = security_task_getscheduler(p); 979 if (!retval) { 980 retval = p->policy; 981 if (p->sched_reset_on_fork) 982 retval |= SCHED_RESET_ON_FORK; 983 } 984 return retval; 985 } 986 987 /** 988 * sys_sched_getparam - get the RT priority of a thread 989 * @pid: the pid in question. 990 * @param: structure containing the RT priority. 991 * 992 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 993 * code. 994 */ 995 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 996 { 997 struct sched_param lp = { .sched_priority = 0 }; 998 struct task_struct *p; 999 int retval; 1000 1001 if (unlikely(!param || pid < 0)) 1002 return -EINVAL; 1003 1004 scoped_guard (rcu) { 1005 p = find_process_by_pid(pid); 1006 if (!p) 1007 return -ESRCH; 1008 1009 retval = security_task_getscheduler(p); 1010 if (retval) 1011 return retval; 1012 1013 if (task_has_rt_policy(p)) 1014 lp.sched_priority = p->rt_priority; 1015 } 1016 1017 /* 1018 * This one might sleep, we cannot do it with a spinlock held ... 1019 */ 1020 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 1021 } 1022 1023 /** 1024 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 1025 * @pid: the pid in question. 1026 * @uattr: structure containing the extended parameters. 1027 * @usize: sizeof(attr) for fwd/bwd comp. 1028 * @flags: for future extension. 1029 */ 1030 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 1031 unsigned int, usize, unsigned int, flags) 1032 { 1033 struct sched_attr kattr = { }; 1034 struct task_struct *p; 1035 int retval; 1036 1037 if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE || 1038 usize < SCHED_ATTR_SIZE_VER0 || flags)) 1039 return -EINVAL; 1040 1041 scoped_guard (rcu) { 1042 p = find_process_by_pid(pid); 1043 if (!p) 1044 return -ESRCH; 1045 1046 retval = security_task_getscheduler(p); 1047 if (retval) 1048 return retval; 1049 1050 kattr.sched_policy = p->policy; 1051 if (p->sched_reset_on_fork) 1052 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 1053 get_params(p, &kattr); 1054 kattr.sched_flags &= SCHED_FLAG_ALL; 1055 1056 #ifdef CONFIG_UCLAMP_TASK 1057 /* 1058 * This could race with another potential updater, but this is fine 1059 * because it'll correctly read the old or the new value. We don't need 1060 * to guarantee who wins the race as long as it doesn't return garbage. 1061 */ 1062 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 1063 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 1064 #endif 1065 } 1066 1067 kattr.size = min(usize, sizeof(kattr)); 1068 return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL); 1069 } 1070 1071 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1072 { 1073 /* 1074 * If the task isn't a deadline task or admission control is 1075 * disabled then we don't care about affinity changes. 1076 */ 1077 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 1078 return 0; 1079 1080 /* 1081 * The special/sugov task isn't part of regular bandwidth/admission 1082 * control so let userspace change affinities. 1083 */ 1084 if (dl_entity_is_special(&p->dl)) 1085 return 0; 1086 1087 /* 1088 * Since bandwidth control happens on root_domain basis, 1089 * if admission test is enabled, we only admit -deadline 1090 * tasks allowed to run on all the CPUs in the task's 1091 * root_domain. 1092 */ 1093 guard(rcu)(); 1094 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 1095 return -EBUSY; 1096 1097 return 0; 1098 } 1099 1100 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 1101 { 1102 int retval; 1103 cpumask_var_t cpus_allowed, new_mask; 1104 1105 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 1106 return -ENOMEM; 1107 1108 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 1109 retval = -ENOMEM; 1110 goto out_free_cpus_allowed; 1111 } 1112 1113 cpuset_cpus_allowed(p, cpus_allowed); 1114 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 1115 1116 ctx->new_mask = new_mask; 1117 ctx->flags |= SCA_CHECK; 1118 1119 retval = dl_task_check_affinity(p, new_mask); 1120 if (retval) 1121 goto out_free_new_mask; 1122 1123 retval = __set_cpus_allowed_ptr(p, ctx); 1124 if (retval) 1125 goto out_free_new_mask; 1126 1127 cpuset_cpus_allowed(p, cpus_allowed); 1128 if (!cpumask_subset(new_mask, cpus_allowed)) { 1129 /* 1130 * We must have raced with a concurrent cpuset update. 1131 * Just reset the cpumask to the cpuset's cpus_allowed. 1132 */ 1133 cpumask_copy(new_mask, cpus_allowed); 1134 1135 /* 1136 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 1137 * will restore the previous user_cpus_ptr value. 1138 * 1139 * In the unlikely event a previous user_cpus_ptr exists, 1140 * we need to further restrict the mask to what is allowed 1141 * by that old user_cpus_ptr. 1142 */ 1143 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 1144 bool empty = !cpumask_and(new_mask, new_mask, 1145 ctx->user_mask); 1146 1147 if (empty) 1148 cpumask_copy(new_mask, cpus_allowed); 1149 } 1150 __set_cpus_allowed_ptr(p, ctx); 1151 retval = -EINVAL; 1152 } 1153 1154 out_free_new_mask: 1155 free_cpumask_var(new_mask); 1156 out_free_cpus_allowed: 1157 free_cpumask_var(cpus_allowed); 1158 return retval; 1159 } 1160 1161 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 1162 { 1163 struct affinity_context ac; 1164 struct cpumask *user_mask; 1165 int retval; 1166 1167 CLASS(find_get_task, p)(pid); 1168 if (!p) 1169 return -ESRCH; 1170 1171 if (p->flags & PF_NO_SETAFFINITY) 1172 return -EINVAL; 1173 1174 if (!check_same_owner(p)) { 1175 guard(rcu)(); 1176 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1177 return -EPERM; 1178 } 1179 1180 retval = security_task_setscheduler(p); 1181 if (retval) 1182 return retval; 1183 1184 /* 1185 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 1186 * alloc_user_cpus_ptr() returns NULL. 1187 */ 1188 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 1189 if (user_mask) { 1190 cpumask_copy(user_mask, in_mask); 1191 } else { 1192 return -ENOMEM; 1193 } 1194 1195 ac = (struct affinity_context){ 1196 .new_mask = in_mask, 1197 .user_mask = user_mask, 1198 .flags = SCA_USER, 1199 }; 1200 1201 retval = __sched_setaffinity(p, &ac); 1202 kfree(ac.user_mask); 1203 1204 return retval; 1205 } 1206 1207 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 1208 struct cpumask *new_mask) 1209 { 1210 if (len < cpumask_size()) 1211 cpumask_clear(new_mask); 1212 else if (len > cpumask_size()) 1213 len = cpumask_size(); 1214 1215 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 1216 } 1217 1218 /** 1219 * sys_sched_setaffinity - set the CPU affinity of a process 1220 * @pid: pid of the process 1221 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 1222 * @user_mask_ptr: user-space pointer to the new CPU mask 1223 * 1224 * Return: 0 on success. An error code otherwise. 1225 */ 1226 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 1227 unsigned long __user *, user_mask_ptr) 1228 { 1229 cpumask_var_t new_mask; 1230 int retval; 1231 1232 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 1233 return -ENOMEM; 1234 1235 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 1236 if (retval == 0) 1237 retval = sched_setaffinity(pid, new_mask); 1238 free_cpumask_var(new_mask); 1239 return retval; 1240 } 1241 1242 long sched_getaffinity(pid_t pid, struct cpumask *mask) 1243 { 1244 struct task_struct *p; 1245 int retval; 1246 1247 guard(rcu)(); 1248 p = find_process_by_pid(pid); 1249 if (!p) 1250 return -ESRCH; 1251 1252 retval = security_task_getscheduler(p); 1253 if (retval) 1254 return retval; 1255 1256 guard(raw_spinlock_irqsave)(&p->pi_lock); 1257 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * sys_sched_getaffinity - get the CPU affinity of a process 1264 * @pid: pid of the process 1265 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 1266 * @user_mask_ptr: user-space pointer to hold the current CPU mask 1267 * 1268 * Return: size of CPU mask copied to user_mask_ptr on success. An 1269 * error code otherwise. 1270 */ 1271 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 1272 unsigned long __user *, user_mask_ptr) 1273 { 1274 int ret; 1275 cpumask_var_t mask; 1276 1277 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 1278 return -EINVAL; 1279 if (len & (sizeof(unsigned long)-1)) 1280 return -EINVAL; 1281 1282 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 1283 return -ENOMEM; 1284 1285 ret = sched_getaffinity(pid, mask); 1286 if (ret == 0) { 1287 unsigned int retlen = min(len, cpumask_size()); 1288 1289 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 1290 ret = -EFAULT; 1291 else 1292 ret = retlen; 1293 } 1294 free_cpumask_var(mask); 1295 1296 return ret; 1297 } 1298 1299 static void do_sched_yield(void) 1300 { 1301 struct rq_flags rf; 1302 struct rq *rq; 1303 1304 rq = this_rq_lock_irq(&rf); 1305 1306 schedstat_inc(rq->yld_count); 1307 rq->donor->sched_class->yield_task(rq); 1308 1309 preempt_disable(); 1310 rq_unlock_irq(rq, &rf); 1311 sched_preempt_enable_no_resched(); 1312 1313 schedule(); 1314 } 1315 1316 /** 1317 * sys_sched_yield - yield the current processor to other threads. 1318 * 1319 * This function yields the current CPU to other tasks. If there are no 1320 * other threads running on this CPU then this function will return. 1321 * 1322 * Return: 0. 1323 */ 1324 SYSCALL_DEFINE0(sched_yield) 1325 { 1326 do_sched_yield(); 1327 return 0; 1328 } 1329 1330 /** 1331 * yield - yield the current processor to other threads. 1332 * 1333 * Do not ever use this function, there's a 99% chance you're doing it wrong. 1334 * 1335 * The scheduler is at all times free to pick the calling task as the most 1336 * eligible task to run, if removing the yield() call from your code breaks 1337 * it, it's already broken. 1338 * 1339 * Typical broken usage is: 1340 * 1341 * while (!event) 1342 * yield(); 1343 * 1344 * where one assumes that yield() will let 'the other' process run that will 1345 * make event true. If the current task is a SCHED_FIFO task that will never 1346 * happen. Never use yield() as a progress guarantee!! 1347 * 1348 * If you want to use yield() to wait for something, use wait_event(). 1349 * If you want to use yield() to be 'nice' for others, use cond_resched(). 1350 * If you still want to use yield(), do not! 1351 */ 1352 void __sched yield(void) 1353 { 1354 set_current_state(TASK_RUNNING); 1355 do_sched_yield(); 1356 } 1357 EXPORT_SYMBOL(yield); 1358 1359 /** 1360 * yield_to - yield the current processor to another thread in 1361 * your thread group, or accelerate that thread toward the 1362 * processor it's on. 1363 * @p: target task 1364 * @preempt: whether task preemption is allowed or not 1365 * 1366 * It's the caller's job to ensure that the target task struct 1367 * can't go away on us before we can do any checks. 1368 * 1369 * Return: 1370 * true (>0) if we indeed boosted the target task. 1371 * false (0) if we failed to boost the target. 1372 * -ESRCH if there's no task to yield to. 1373 */ 1374 int __sched yield_to(struct task_struct *p, bool preempt) 1375 { 1376 struct task_struct *curr; 1377 struct rq *rq, *p_rq; 1378 int yielded = 0; 1379 1380 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 1381 rq = this_rq(); 1382 curr = rq->donor; 1383 1384 again: 1385 p_rq = task_rq(p); 1386 /* 1387 * If we're the only runnable task on the rq and target rq also 1388 * has only one task, there's absolutely no point in yielding. 1389 */ 1390 if (rq->nr_running == 1 && p_rq->nr_running == 1) 1391 return -ESRCH; 1392 1393 guard(double_rq_lock)(rq, p_rq); 1394 if (task_rq(p) != p_rq) 1395 goto again; 1396 1397 if (!curr->sched_class->yield_to_task) 1398 return 0; 1399 1400 if (curr->sched_class != p->sched_class) 1401 return 0; 1402 1403 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 1404 return 0; 1405 1406 yielded = curr->sched_class->yield_to_task(rq, p); 1407 if (yielded) { 1408 schedstat_inc(rq->yld_count); 1409 /* 1410 * Make p's CPU reschedule; pick_next_entity 1411 * takes care of fairness. 1412 */ 1413 if (preempt && rq != p_rq) 1414 resched_curr(p_rq); 1415 } 1416 } 1417 1418 if (yielded) 1419 schedule(); 1420 1421 return yielded; 1422 } 1423 EXPORT_SYMBOL_GPL(yield_to); 1424 1425 /** 1426 * sys_sched_get_priority_max - return maximum RT priority. 1427 * @policy: scheduling class. 1428 * 1429 * Return: On success, this syscall returns the maximum 1430 * rt_priority that can be used by a given scheduling class. 1431 * On failure, a negative error code is returned. 1432 */ 1433 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 1434 { 1435 int ret = -EINVAL; 1436 1437 switch (policy) { 1438 case SCHED_FIFO: 1439 case SCHED_RR: 1440 ret = MAX_RT_PRIO-1; 1441 break; 1442 case SCHED_DEADLINE: 1443 case SCHED_NORMAL: 1444 case SCHED_BATCH: 1445 case SCHED_IDLE: 1446 case SCHED_EXT: 1447 ret = 0; 1448 break; 1449 } 1450 return ret; 1451 } 1452 1453 /** 1454 * sys_sched_get_priority_min - return minimum RT priority. 1455 * @policy: scheduling class. 1456 * 1457 * Return: On success, this syscall returns the minimum 1458 * rt_priority that can be used by a given scheduling class. 1459 * On failure, a negative error code is returned. 1460 */ 1461 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 1462 { 1463 int ret = -EINVAL; 1464 1465 switch (policy) { 1466 case SCHED_FIFO: 1467 case SCHED_RR: 1468 ret = 1; 1469 break; 1470 case SCHED_DEADLINE: 1471 case SCHED_NORMAL: 1472 case SCHED_BATCH: 1473 case SCHED_IDLE: 1474 case SCHED_EXT: 1475 ret = 0; 1476 } 1477 return ret; 1478 } 1479 1480 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 1481 { 1482 unsigned int time_slice = 0; 1483 int retval; 1484 1485 if (pid < 0) 1486 return -EINVAL; 1487 1488 scoped_guard (rcu) { 1489 struct task_struct *p = find_process_by_pid(pid); 1490 if (!p) 1491 return -ESRCH; 1492 1493 retval = security_task_getscheduler(p); 1494 if (retval) 1495 return retval; 1496 1497 scoped_guard (task_rq_lock, p) { 1498 struct rq *rq = scope.rq; 1499 if (p->sched_class->get_rr_interval) 1500 time_slice = p->sched_class->get_rr_interval(rq, p); 1501 } 1502 } 1503 1504 jiffies_to_timespec64(time_slice, t); 1505 return 0; 1506 } 1507 1508 /** 1509 * sys_sched_rr_get_interval - return the default time-slice of a process. 1510 * @pid: pid of the process. 1511 * @interval: userspace pointer to the time-slice value. 1512 * 1513 * this syscall writes the default time-slice value of a given process 1514 * into the user-space timespec buffer. A value of '0' means infinity. 1515 * 1516 * Return: On success, 0 and the time-slice is in @interval. Otherwise, 1517 * an error code. 1518 */ 1519 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 1520 struct __kernel_timespec __user *, interval) 1521 { 1522 struct timespec64 t; 1523 int retval = sched_rr_get_interval(pid, &t); 1524 1525 if (retval == 0) 1526 retval = put_timespec64(&t, interval); 1527 1528 return retval; 1529 } 1530 1531 #ifdef CONFIG_COMPAT_32BIT_TIME 1532 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 1533 struct old_timespec32 __user *, interval) 1534 { 1535 struct timespec64 t; 1536 int retval = sched_rr_get_interval(pid, &t); 1537 1538 if (retval == 0) 1539 retval = put_old_timespec32(&t, interval); 1540 return retval; 1541 } 1542 #endif 1543