1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/syscalls.c 4 * 5 * Core kernel scheduler syscalls related code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/sched.h> 11 #include <linux/cpuset.h> 12 #include <linux/sched/debug.h> 13 14 #include <uapi/linux/sched/types.h> 15 16 #include "sched.h" 17 #include "autogroup.h" 18 19 static inline int __normal_prio(int policy, int rt_prio, int nice) 20 { 21 int prio; 22 23 if (dl_policy(policy)) 24 prio = MAX_DL_PRIO - 1; 25 else if (rt_policy(policy)) 26 prio = MAX_RT_PRIO - 1 - rt_prio; 27 else 28 prio = NICE_TO_PRIO(nice); 29 30 return prio; 31 } 32 33 /* 34 * Calculate the expected normal priority: i.e. priority 35 * without taking RT-inheritance into account. Might be 36 * boosted by interactivity modifiers. Changes upon fork, 37 * setprio syscalls, and whenever the interactivity 38 * estimator recalculates. 39 */ 40 static inline int normal_prio(struct task_struct *p) 41 { 42 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 43 } 44 45 /* 46 * Calculate the current priority, i.e. the priority 47 * taken into account by the scheduler. This value might 48 * be boosted by RT tasks, or might be boosted by 49 * interactivity modifiers. Will be RT if the task got 50 * RT-boosted. If not then it returns p->normal_prio. 51 */ 52 static int effective_prio(struct task_struct *p) 53 { 54 p->normal_prio = normal_prio(p); 55 /* 56 * If we are RT tasks or we were boosted to RT priority, 57 * keep the priority unchanged. Otherwise, update priority 58 * to the normal priority: 59 */ 60 if (!rt_or_dl_prio(p->prio)) 61 return p->normal_prio; 62 return p->prio; 63 } 64 65 void set_user_nice(struct task_struct *p, long nice) 66 { 67 bool queued, running; 68 struct rq *rq; 69 int old_prio; 70 71 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 72 return; 73 /* 74 * We have to be careful, if called from sys_setpriority(), 75 * the task might be in the middle of scheduling on another CPU. 76 */ 77 CLASS(task_rq_lock, rq_guard)(p); 78 rq = rq_guard.rq; 79 80 update_rq_clock(rq); 81 82 /* 83 * The RT priorities are set via sched_setscheduler(), but we still 84 * allow the 'normal' nice value to be set - but as expected 85 * it won't have any effect on scheduling until the task is 86 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 87 */ 88 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 89 p->static_prio = NICE_TO_PRIO(nice); 90 return; 91 } 92 93 queued = task_on_rq_queued(p); 94 running = task_current(rq, p); 95 if (queued) 96 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 97 if (running) 98 put_prev_task(rq, p); 99 100 p->static_prio = NICE_TO_PRIO(nice); 101 set_load_weight(p, true); 102 old_prio = p->prio; 103 p->prio = effective_prio(p); 104 105 if (queued) 106 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 107 if (running) 108 set_next_task(rq, p); 109 110 /* 111 * If the task increased its priority or is running and 112 * lowered its priority, then reschedule its CPU: 113 */ 114 p->sched_class->prio_changed(rq, p, old_prio); 115 } 116 EXPORT_SYMBOL(set_user_nice); 117 118 /* 119 * is_nice_reduction - check if nice value is an actual reduction 120 * 121 * Similar to can_nice() but does not perform a capability check. 122 * 123 * @p: task 124 * @nice: nice value 125 */ 126 static bool is_nice_reduction(const struct task_struct *p, const int nice) 127 { 128 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 129 int nice_rlim = nice_to_rlimit(nice); 130 131 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 132 } 133 134 /* 135 * can_nice - check if a task can reduce its nice value 136 * @p: task 137 * @nice: nice value 138 */ 139 int can_nice(const struct task_struct *p, const int nice) 140 { 141 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 142 } 143 144 #ifdef __ARCH_WANT_SYS_NICE 145 146 /* 147 * sys_nice - change the priority of the current process. 148 * @increment: priority increment 149 * 150 * sys_setpriority is a more generic, but much slower function that 151 * does similar things. 152 */ 153 SYSCALL_DEFINE1(nice, int, increment) 154 { 155 long nice, retval; 156 157 /* 158 * Setpriority might change our priority at the same moment. 159 * We don't have to worry. Conceptually one call occurs first 160 * and we have a single winner. 161 */ 162 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 163 nice = task_nice(current) + increment; 164 165 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 166 if (increment < 0 && !can_nice(current, nice)) 167 return -EPERM; 168 169 retval = security_task_setnice(current, nice); 170 if (retval) 171 return retval; 172 173 set_user_nice(current, nice); 174 return 0; 175 } 176 177 #endif 178 179 /** 180 * task_prio - return the priority value of a given task. 181 * @p: the task in question. 182 * 183 * Return: The priority value as seen by users in /proc. 184 * 185 * sched policy return value kernel prio user prio/nice 186 * 187 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 188 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 189 * deadline -101 -1 0 190 */ 191 int task_prio(const struct task_struct *p) 192 { 193 return p->prio - MAX_RT_PRIO; 194 } 195 196 /** 197 * idle_cpu - is a given CPU idle currently? 198 * @cpu: the processor in question. 199 * 200 * Return: 1 if the CPU is currently idle. 0 otherwise. 201 */ 202 int idle_cpu(int cpu) 203 { 204 struct rq *rq = cpu_rq(cpu); 205 206 if (rq->curr != rq->idle) 207 return 0; 208 209 if (rq->nr_running) 210 return 0; 211 212 #ifdef CONFIG_SMP 213 if (rq->ttwu_pending) 214 return 0; 215 #endif 216 217 return 1; 218 } 219 220 /** 221 * available_idle_cpu - is a given CPU idle for enqueuing work. 222 * @cpu: the CPU in question. 223 * 224 * Return: 1 if the CPU is currently idle. 0 otherwise. 225 */ 226 int available_idle_cpu(int cpu) 227 { 228 if (!idle_cpu(cpu)) 229 return 0; 230 231 if (vcpu_is_preempted(cpu)) 232 return 0; 233 234 return 1; 235 } 236 237 /** 238 * idle_task - return the idle task for a given CPU. 239 * @cpu: the processor in question. 240 * 241 * Return: The idle task for the CPU @cpu. 242 */ 243 struct task_struct *idle_task(int cpu) 244 { 245 return cpu_rq(cpu)->idle; 246 } 247 248 #ifdef CONFIG_SCHED_CORE 249 int sched_core_idle_cpu(int cpu) 250 { 251 struct rq *rq = cpu_rq(cpu); 252 253 if (sched_core_enabled(rq) && rq->curr == rq->idle) 254 return 1; 255 256 return idle_cpu(cpu); 257 } 258 259 #endif 260 261 /** 262 * find_process_by_pid - find a process with a matching PID value. 263 * @pid: the pid in question. 264 * 265 * The task of @pid, if found. %NULL otherwise. 266 */ 267 static struct task_struct *find_process_by_pid(pid_t pid) 268 { 269 return pid ? find_task_by_vpid(pid) : current; 270 } 271 272 static struct task_struct *find_get_task(pid_t pid) 273 { 274 struct task_struct *p; 275 guard(rcu)(); 276 277 p = find_process_by_pid(pid); 278 if (likely(p)) 279 get_task_struct(p); 280 281 return p; 282 } 283 284 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), 285 find_get_task(pid), pid_t pid) 286 287 /* 288 * sched_setparam() passes in -1 for its policy, to let the functions 289 * it calls know not to change it. 290 */ 291 #define SETPARAM_POLICY -1 292 293 static void __setscheduler_params(struct task_struct *p, 294 const struct sched_attr *attr) 295 { 296 int policy = attr->sched_policy; 297 298 if (policy == SETPARAM_POLICY) 299 policy = p->policy; 300 301 p->policy = policy; 302 303 if (dl_policy(policy)) { 304 __setparam_dl(p, attr); 305 } else if (fair_policy(policy)) { 306 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 307 if (attr->sched_runtime) { 308 p->se.custom_slice = 1; 309 p->se.slice = clamp_t(u64, attr->sched_runtime, 310 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 311 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 312 } else { 313 p->se.custom_slice = 0; 314 p->se.slice = sysctl_sched_base_slice; 315 } 316 } 317 318 /* rt-policy tasks do not have a timerslack */ 319 if (rt_or_dl_task_policy(p)) { 320 p->timer_slack_ns = 0; 321 } else if (p->timer_slack_ns == 0) { 322 /* when switching back to non-rt policy, restore timerslack */ 323 p->timer_slack_ns = p->default_timer_slack_ns; 324 } 325 326 /* 327 * __sched_setscheduler() ensures attr->sched_priority == 0 when 328 * !rt_policy. Always setting this ensures that things like 329 * getparam()/getattr() don't report silly values for !rt tasks. 330 */ 331 p->rt_priority = attr->sched_priority; 332 p->normal_prio = normal_prio(p); 333 set_load_weight(p, true); 334 } 335 336 /* 337 * Check the target process has a UID that matches the current process's: 338 */ 339 static bool check_same_owner(struct task_struct *p) 340 { 341 const struct cred *cred = current_cred(), *pcred; 342 guard(rcu)(); 343 344 pcred = __task_cred(p); 345 return (uid_eq(cred->euid, pcred->euid) || 346 uid_eq(cred->euid, pcred->uid)); 347 } 348 349 #ifdef CONFIG_UCLAMP_TASK 350 351 static int uclamp_validate(struct task_struct *p, 352 const struct sched_attr *attr) 353 { 354 int util_min = p->uclamp_req[UCLAMP_MIN].value; 355 int util_max = p->uclamp_req[UCLAMP_MAX].value; 356 357 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 358 util_min = attr->sched_util_min; 359 360 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 361 return -EINVAL; 362 } 363 364 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 365 util_max = attr->sched_util_max; 366 367 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 368 return -EINVAL; 369 } 370 371 if (util_min != -1 && util_max != -1 && util_min > util_max) 372 return -EINVAL; 373 374 /* 375 * We have valid uclamp attributes; make sure uclamp is enabled. 376 * 377 * We need to do that here, because enabling static branches is a 378 * blocking operation which obviously cannot be done while holding 379 * scheduler locks. 380 */ 381 static_branch_enable(&sched_uclamp_used); 382 383 return 0; 384 } 385 386 static bool uclamp_reset(const struct sched_attr *attr, 387 enum uclamp_id clamp_id, 388 struct uclamp_se *uc_se) 389 { 390 /* Reset on sched class change for a non user-defined clamp value. */ 391 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 392 !uc_se->user_defined) 393 return true; 394 395 /* Reset on sched_util_{min,max} == -1. */ 396 if (clamp_id == UCLAMP_MIN && 397 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 398 attr->sched_util_min == -1) { 399 return true; 400 } 401 402 if (clamp_id == UCLAMP_MAX && 403 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 404 attr->sched_util_max == -1) { 405 return true; 406 } 407 408 return false; 409 } 410 411 static void __setscheduler_uclamp(struct task_struct *p, 412 const struct sched_attr *attr) 413 { 414 enum uclamp_id clamp_id; 415 416 for_each_clamp_id(clamp_id) { 417 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 418 unsigned int value; 419 420 if (!uclamp_reset(attr, clamp_id, uc_se)) 421 continue; 422 423 /* 424 * RT by default have a 100% boost value that could be modified 425 * at runtime. 426 */ 427 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 428 value = sysctl_sched_uclamp_util_min_rt_default; 429 else 430 value = uclamp_none(clamp_id); 431 432 uclamp_se_set(uc_se, value, false); 433 434 } 435 436 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 437 return; 438 439 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 440 attr->sched_util_min != -1) { 441 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 442 attr->sched_util_min, true); 443 } 444 445 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 446 attr->sched_util_max != -1) { 447 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 448 attr->sched_util_max, true); 449 } 450 } 451 452 #else /* !CONFIG_UCLAMP_TASK: */ 453 454 static inline int uclamp_validate(struct task_struct *p, 455 const struct sched_attr *attr) 456 { 457 return -EOPNOTSUPP; 458 } 459 static void __setscheduler_uclamp(struct task_struct *p, 460 const struct sched_attr *attr) { } 461 #endif 462 463 /* 464 * Allow unprivileged RT tasks to decrease priority. 465 * Only issue a capable test if needed and only once to avoid an audit 466 * event on permitted non-privileged operations: 467 */ 468 static int user_check_sched_setscheduler(struct task_struct *p, 469 const struct sched_attr *attr, 470 int policy, int reset_on_fork) 471 { 472 if (fair_policy(policy)) { 473 if (attr->sched_nice < task_nice(p) && 474 !is_nice_reduction(p, attr->sched_nice)) 475 goto req_priv; 476 } 477 478 if (rt_policy(policy)) { 479 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 480 481 /* Can't set/change the rt policy: */ 482 if (policy != p->policy && !rlim_rtprio) 483 goto req_priv; 484 485 /* Can't increase priority: */ 486 if (attr->sched_priority > p->rt_priority && 487 attr->sched_priority > rlim_rtprio) 488 goto req_priv; 489 } 490 491 /* 492 * Can't set/change SCHED_DEADLINE policy at all for now 493 * (safest behavior); in the future we would like to allow 494 * unprivileged DL tasks to increase their relative deadline 495 * or reduce their runtime (both ways reducing utilization) 496 */ 497 if (dl_policy(policy)) 498 goto req_priv; 499 500 /* 501 * Treat SCHED_IDLE as nice 20. Only allow a switch to 502 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 503 */ 504 if (task_has_idle_policy(p) && !idle_policy(policy)) { 505 if (!is_nice_reduction(p, task_nice(p))) 506 goto req_priv; 507 } 508 509 /* Can't change other user's priorities: */ 510 if (!check_same_owner(p)) 511 goto req_priv; 512 513 /* Normal users shall not reset the sched_reset_on_fork flag: */ 514 if (p->sched_reset_on_fork && !reset_on_fork) 515 goto req_priv; 516 517 return 0; 518 519 req_priv: 520 if (!capable(CAP_SYS_NICE)) 521 return -EPERM; 522 523 return 0; 524 } 525 526 int __sched_setscheduler(struct task_struct *p, 527 const struct sched_attr *attr, 528 bool user, bool pi) 529 { 530 int oldpolicy = -1, policy = attr->sched_policy; 531 int retval, oldprio, newprio, queued, running; 532 const struct sched_class *prev_class; 533 struct balance_callback *head; 534 struct rq_flags rf; 535 int reset_on_fork; 536 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 537 struct rq *rq; 538 bool cpuset_locked = false; 539 540 /* The pi code expects interrupts enabled */ 541 BUG_ON(pi && in_interrupt()); 542 recheck: 543 /* Double check policy once rq lock held: */ 544 if (policy < 0) { 545 reset_on_fork = p->sched_reset_on_fork; 546 policy = oldpolicy = p->policy; 547 } else { 548 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 549 550 if (!valid_policy(policy)) 551 return -EINVAL; 552 } 553 554 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 555 return -EINVAL; 556 557 /* 558 * Valid priorities for SCHED_FIFO and SCHED_RR are 559 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 560 * SCHED_BATCH and SCHED_IDLE is 0. 561 */ 562 if (attr->sched_priority > MAX_RT_PRIO-1) 563 return -EINVAL; 564 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 565 (rt_policy(policy) != (attr->sched_priority != 0))) 566 return -EINVAL; 567 568 if (user) { 569 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 570 if (retval) 571 return retval; 572 573 if (attr->sched_flags & SCHED_FLAG_SUGOV) 574 return -EINVAL; 575 576 retval = security_task_setscheduler(p); 577 if (retval) 578 return retval; 579 } 580 581 /* Update task specific "requested" clamps */ 582 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 583 retval = uclamp_validate(p, attr); 584 if (retval) 585 return retval; 586 } 587 588 /* 589 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets 590 * information. 591 */ 592 if (dl_policy(policy) || dl_policy(p->policy)) { 593 cpuset_locked = true; 594 cpuset_lock(); 595 } 596 597 /* 598 * Make sure no PI-waiters arrive (or leave) while we are 599 * changing the priority of the task: 600 * 601 * To be able to change p->policy safely, the appropriate 602 * runqueue lock must be held. 603 */ 604 rq = task_rq_lock(p, &rf); 605 update_rq_clock(rq); 606 607 /* 608 * Changing the policy of the stop threads its a very bad idea: 609 */ 610 if (p == rq->stop) { 611 retval = -EINVAL; 612 goto unlock; 613 } 614 615 retval = scx_check_setscheduler(p, policy); 616 if (retval) 617 goto unlock; 618 619 /* 620 * If not changing anything there's no need to proceed further, 621 * but store a possible modification of reset_on_fork. 622 */ 623 if (unlikely(policy == p->policy)) { 624 if (fair_policy(policy) && 625 (attr->sched_nice != task_nice(p) || 626 (attr->sched_runtime != p->se.slice))) 627 goto change; 628 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 629 goto change; 630 if (dl_policy(policy) && dl_param_changed(p, attr)) 631 goto change; 632 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 633 goto change; 634 635 p->sched_reset_on_fork = reset_on_fork; 636 retval = 0; 637 goto unlock; 638 } 639 change: 640 641 if (user) { 642 #ifdef CONFIG_RT_GROUP_SCHED 643 /* 644 * Do not allow real-time tasks into groups that have no runtime 645 * assigned. 646 */ 647 if (rt_bandwidth_enabled() && rt_policy(policy) && 648 task_group(p)->rt_bandwidth.rt_runtime == 0 && 649 !task_group_is_autogroup(task_group(p))) { 650 retval = -EPERM; 651 goto unlock; 652 } 653 #endif 654 #ifdef CONFIG_SMP 655 if (dl_bandwidth_enabled() && dl_policy(policy) && 656 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 657 cpumask_t *span = rq->rd->span; 658 659 /* 660 * Don't allow tasks with an affinity mask smaller than 661 * the entire root_domain to become SCHED_DEADLINE. We 662 * will also fail if there's no bandwidth available. 663 */ 664 if (!cpumask_subset(span, p->cpus_ptr) || 665 rq->rd->dl_bw.bw == 0) { 666 retval = -EPERM; 667 goto unlock; 668 } 669 } 670 #endif 671 } 672 673 /* Re-check policy now with rq lock held: */ 674 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 675 policy = oldpolicy = -1; 676 task_rq_unlock(rq, p, &rf); 677 if (cpuset_locked) 678 cpuset_unlock(); 679 goto recheck; 680 } 681 682 /* 683 * If setscheduling to SCHED_DEADLINE (or changing the parameters 684 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 685 * is available. 686 */ 687 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 688 retval = -EBUSY; 689 goto unlock; 690 } 691 692 p->sched_reset_on_fork = reset_on_fork; 693 oldprio = p->prio; 694 695 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 696 if (pi) { 697 /* 698 * Take priority boosted tasks into account. If the new 699 * effective priority is unchanged, we just store the new 700 * normal parameters and do not touch the scheduler class and 701 * the runqueue. This will be done when the task deboost 702 * itself. 703 */ 704 newprio = rt_effective_prio(p, newprio); 705 if (newprio == oldprio) 706 queue_flags &= ~DEQUEUE_MOVE; 707 } 708 709 queued = task_on_rq_queued(p); 710 running = task_current(rq, p); 711 if (queued) 712 dequeue_task(rq, p, queue_flags); 713 if (running) 714 put_prev_task(rq, p); 715 716 prev_class = p->sched_class; 717 718 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 719 __setscheduler_params(p, attr); 720 __setscheduler_prio(p, newprio); 721 } 722 __setscheduler_uclamp(p, attr); 723 check_class_changing(rq, p, prev_class); 724 725 if (queued) { 726 /* 727 * We enqueue to tail when the priority of a task is 728 * increased (user space view). 729 */ 730 if (oldprio < p->prio) 731 queue_flags |= ENQUEUE_HEAD; 732 733 enqueue_task(rq, p, queue_flags); 734 } 735 if (running) 736 set_next_task(rq, p); 737 738 check_class_changed(rq, p, prev_class, oldprio); 739 740 /* Avoid rq from going away on us: */ 741 preempt_disable(); 742 head = splice_balance_callbacks(rq); 743 task_rq_unlock(rq, p, &rf); 744 745 if (pi) { 746 if (cpuset_locked) 747 cpuset_unlock(); 748 rt_mutex_adjust_pi(p); 749 } 750 751 /* Run balance callbacks after we've adjusted the PI chain: */ 752 balance_callbacks(rq, head); 753 preempt_enable(); 754 755 return 0; 756 757 unlock: 758 task_rq_unlock(rq, p, &rf); 759 if (cpuset_locked) 760 cpuset_unlock(); 761 return retval; 762 } 763 764 static int _sched_setscheduler(struct task_struct *p, int policy, 765 const struct sched_param *param, bool check) 766 { 767 struct sched_attr attr = { 768 .sched_policy = policy, 769 .sched_priority = param->sched_priority, 770 .sched_nice = PRIO_TO_NICE(p->static_prio), 771 }; 772 773 if (p->se.custom_slice) 774 attr.sched_runtime = p->se.slice; 775 776 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 777 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 778 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 779 policy &= ~SCHED_RESET_ON_FORK; 780 attr.sched_policy = policy; 781 } 782 783 return __sched_setscheduler(p, &attr, check, true); 784 } 785 /** 786 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 787 * @p: the task in question. 788 * @policy: new policy. 789 * @param: structure containing the new RT priority. 790 * 791 * Use sched_set_fifo(), read its comment. 792 * 793 * Return: 0 on success. An error code otherwise. 794 * 795 * NOTE that the task may be already dead. 796 */ 797 int sched_setscheduler(struct task_struct *p, int policy, 798 const struct sched_param *param) 799 { 800 return _sched_setscheduler(p, policy, param, true); 801 } 802 803 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 804 { 805 return __sched_setscheduler(p, attr, true, true); 806 } 807 808 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 809 { 810 return __sched_setscheduler(p, attr, false, true); 811 } 812 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 813 814 /** 815 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. 816 * @p: the task in question. 817 * @policy: new policy. 818 * @param: structure containing the new RT priority. 819 * 820 * Just like sched_setscheduler, only don't bother checking if the 821 * current context has permission. For example, this is needed in 822 * stop_machine(): we create temporary high priority worker threads, 823 * but our caller might not have that capability. 824 * 825 * Return: 0 on success. An error code otherwise. 826 */ 827 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 828 const struct sched_param *param) 829 { 830 return _sched_setscheduler(p, policy, param, false); 831 } 832 833 /* 834 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 835 * incapable of resource management, which is the one thing an OS really should 836 * be doing. 837 * 838 * This is of course the reason it is limited to privileged users only. 839 * 840 * Worse still; it is fundamentally impossible to compose static priority 841 * workloads. You cannot take two correctly working static prio workloads 842 * and smash them together and still expect them to work. 843 * 844 * For this reason 'all' FIFO tasks the kernel creates are basically at: 845 * 846 * MAX_RT_PRIO / 2 847 * 848 * The administrator _MUST_ configure the system, the kernel simply doesn't 849 * know enough information to make a sensible choice. 850 */ 851 void sched_set_fifo(struct task_struct *p) 852 { 853 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 854 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 855 } 856 EXPORT_SYMBOL_GPL(sched_set_fifo); 857 858 /* 859 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 860 */ 861 void sched_set_fifo_low(struct task_struct *p) 862 { 863 struct sched_param sp = { .sched_priority = 1 }; 864 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 865 } 866 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 867 868 void sched_set_normal(struct task_struct *p, int nice) 869 { 870 struct sched_attr attr = { 871 .sched_policy = SCHED_NORMAL, 872 .sched_nice = nice, 873 }; 874 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 875 } 876 EXPORT_SYMBOL_GPL(sched_set_normal); 877 878 static int 879 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 880 { 881 struct sched_param lparam; 882 883 if (!param || pid < 0) 884 return -EINVAL; 885 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 886 return -EFAULT; 887 888 CLASS(find_get_task, p)(pid); 889 if (!p) 890 return -ESRCH; 891 892 return sched_setscheduler(p, policy, &lparam); 893 } 894 895 /* 896 * Mimics kernel/events/core.c perf_copy_attr(). 897 */ 898 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 899 { 900 u32 size; 901 int ret; 902 903 /* Zero the full structure, so that a short copy will be nice: */ 904 memset(attr, 0, sizeof(*attr)); 905 906 ret = get_user(size, &uattr->size); 907 if (ret) 908 return ret; 909 910 /* ABI compatibility quirk: */ 911 if (!size) 912 size = SCHED_ATTR_SIZE_VER0; 913 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 914 goto err_size; 915 916 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 917 if (ret) { 918 if (ret == -E2BIG) 919 goto err_size; 920 return ret; 921 } 922 923 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 924 size < SCHED_ATTR_SIZE_VER1) 925 return -EINVAL; 926 927 /* 928 * XXX: Do we want to be lenient like existing syscalls; or do we want 929 * to be strict and return an error on out-of-bounds values? 930 */ 931 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 932 933 return 0; 934 935 err_size: 936 put_user(sizeof(*attr), &uattr->size); 937 return -E2BIG; 938 } 939 940 static void get_params(struct task_struct *p, struct sched_attr *attr) 941 { 942 if (task_has_dl_policy(p)) { 943 __getparam_dl(p, attr); 944 } else if (task_has_rt_policy(p)) { 945 attr->sched_priority = p->rt_priority; 946 } else { 947 attr->sched_nice = task_nice(p); 948 attr->sched_runtime = p->se.slice; 949 } 950 } 951 952 /** 953 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 954 * @pid: the pid in question. 955 * @policy: new policy. 956 * @param: structure containing the new RT priority. 957 * 958 * Return: 0 on success. An error code otherwise. 959 */ 960 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 961 { 962 if (policy < 0) 963 return -EINVAL; 964 965 return do_sched_setscheduler(pid, policy, param); 966 } 967 968 /** 969 * sys_sched_setparam - set/change the RT priority of a thread 970 * @pid: the pid in question. 971 * @param: structure containing the new RT priority. 972 * 973 * Return: 0 on success. An error code otherwise. 974 */ 975 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 976 { 977 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 978 } 979 980 /** 981 * sys_sched_setattr - same as above, but with extended sched_attr 982 * @pid: the pid in question. 983 * @uattr: structure containing the extended parameters. 984 * @flags: for future extension. 985 */ 986 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 987 unsigned int, flags) 988 { 989 struct sched_attr attr; 990 int retval; 991 992 if (!uattr || pid < 0 || flags) 993 return -EINVAL; 994 995 retval = sched_copy_attr(uattr, &attr); 996 if (retval) 997 return retval; 998 999 if ((int)attr.sched_policy < 0) 1000 return -EINVAL; 1001 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 1002 attr.sched_policy = SETPARAM_POLICY; 1003 1004 CLASS(find_get_task, p)(pid); 1005 if (!p) 1006 return -ESRCH; 1007 1008 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 1009 get_params(p, &attr); 1010 1011 return sched_setattr(p, &attr); 1012 } 1013 1014 /** 1015 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 1016 * @pid: the pid in question. 1017 * 1018 * Return: On success, the policy of the thread. Otherwise, a negative error 1019 * code. 1020 */ 1021 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 1022 { 1023 struct task_struct *p; 1024 int retval; 1025 1026 if (pid < 0) 1027 return -EINVAL; 1028 1029 guard(rcu)(); 1030 p = find_process_by_pid(pid); 1031 if (!p) 1032 return -ESRCH; 1033 1034 retval = security_task_getscheduler(p); 1035 if (!retval) { 1036 retval = p->policy; 1037 if (p->sched_reset_on_fork) 1038 retval |= SCHED_RESET_ON_FORK; 1039 } 1040 return retval; 1041 } 1042 1043 /** 1044 * sys_sched_getparam - get the RT priority of a thread 1045 * @pid: the pid in question. 1046 * @param: structure containing the RT priority. 1047 * 1048 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 1049 * code. 1050 */ 1051 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 1052 { 1053 struct sched_param lp = { .sched_priority = 0 }; 1054 struct task_struct *p; 1055 int retval; 1056 1057 if (!param || pid < 0) 1058 return -EINVAL; 1059 1060 scoped_guard (rcu) { 1061 p = find_process_by_pid(pid); 1062 if (!p) 1063 return -ESRCH; 1064 1065 retval = security_task_getscheduler(p); 1066 if (retval) 1067 return retval; 1068 1069 if (task_has_rt_policy(p)) 1070 lp.sched_priority = p->rt_priority; 1071 } 1072 1073 /* 1074 * This one might sleep, we cannot do it with a spinlock held ... 1075 */ 1076 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 1077 } 1078 1079 /* 1080 * Copy the kernel size attribute structure (which might be larger 1081 * than what user-space knows about) to user-space. 1082 * 1083 * Note that all cases are valid: user-space buffer can be larger or 1084 * smaller than the kernel-space buffer. The usual case is that both 1085 * have the same size. 1086 */ 1087 static int 1088 sched_attr_copy_to_user(struct sched_attr __user *uattr, 1089 struct sched_attr *kattr, 1090 unsigned int usize) 1091 { 1092 unsigned int ksize = sizeof(*kattr); 1093 1094 if (!access_ok(uattr, usize)) 1095 return -EFAULT; 1096 1097 /* 1098 * sched_getattr() ABI forwards and backwards compatibility: 1099 * 1100 * If usize == ksize then we just copy everything to user-space and all is good. 1101 * 1102 * If usize < ksize then we only copy as much as user-space has space for, 1103 * this keeps ABI compatibility as well. We skip the rest. 1104 * 1105 * If usize > ksize then user-space is using a newer version of the ABI, 1106 * which part the kernel doesn't know about. Just ignore it - tooling can 1107 * detect the kernel's knowledge of attributes from the attr->size value 1108 * which is set to ksize in this case. 1109 */ 1110 kattr->size = min(usize, ksize); 1111 1112 if (copy_to_user(uattr, kattr, kattr->size)) 1113 return -EFAULT; 1114 1115 return 0; 1116 } 1117 1118 /** 1119 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 1120 * @pid: the pid in question. 1121 * @uattr: structure containing the extended parameters. 1122 * @usize: sizeof(attr) for fwd/bwd comp. 1123 * @flags: for future extension. 1124 */ 1125 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 1126 unsigned int, usize, unsigned int, flags) 1127 { 1128 struct sched_attr kattr = { }; 1129 struct task_struct *p; 1130 int retval; 1131 1132 if (!uattr || pid < 0 || usize > PAGE_SIZE || 1133 usize < SCHED_ATTR_SIZE_VER0 || flags) 1134 return -EINVAL; 1135 1136 scoped_guard (rcu) { 1137 p = find_process_by_pid(pid); 1138 if (!p) 1139 return -ESRCH; 1140 1141 retval = security_task_getscheduler(p); 1142 if (retval) 1143 return retval; 1144 1145 kattr.sched_policy = p->policy; 1146 if (p->sched_reset_on_fork) 1147 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 1148 get_params(p, &kattr); 1149 kattr.sched_flags &= SCHED_FLAG_ALL; 1150 1151 #ifdef CONFIG_UCLAMP_TASK 1152 /* 1153 * This could race with another potential updater, but this is fine 1154 * because it'll correctly read the old or the new value. We don't need 1155 * to guarantee who wins the race as long as it doesn't return garbage. 1156 */ 1157 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 1158 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 1159 #endif 1160 } 1161 1162 return sched_attr_copy_to_user(uattr, &kattr, usize); 1163 } 1164 1165 #ifdef CONFIG_SMP 1166 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1167 { 1168 /* 1169 * If the task isn't a deadline task or admission control is 1170 * disabled then we don't care about affinity changes. 1171 */ 1172 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 1173 return 0; 1174 1175 /* 1176 * Since bandwidth control happens on root_domain basis, 1177 * if admission test is enabled, we only admit -deadline 1178 * tasks allowed to run on all the CPUs in the task's 1179 * root_domain. 1180 */ 1181 guard(rcu)(); 1182 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 1183 return -EBUSY; 1184 1185 return 0; 1186 } 1187 #endif /* CONFIG_SMP */ 1188 1189 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 1190 { 1191 int retval; 1192 cpumask_var_t cpus_allowed, new_mask; 1193 1194 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 1195 return -ENOMEM; 1196 1197 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 1198 retval = -ENOMEM; 1199 goto out_free_cpus_allowed; 1200 } 1201 1202 cpuset_cpus_allowed(p, cpus_allowed); 1203 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 1204 1205 ctx->new_mask = new_mask; 1206 ctx->flags |= SCA_CHECK; 1207 1208 retval = dl_task_check_affinity(p, new_mask); 1209 if (retval) 1210 goto out_free_new_mask; 1211 1212 retval = __set_cpus_allowed_ptr(p, ctx); 1213 if (retval) 1214 goto out_free_new_mask; 1215 1216 cpuset_cpus_allowed(p, cpus_allowed); 1217 if (!cpumask_subset(new_mask, cpus_allowed)) { 1218 /* 1219 * We must have raced with a concurrent cpuset update. 1220 * Just reset the cpumask to the cpuset's cpus_allowed. 1221 */ 1222 cpumask_copy(new_mask, cpus_allowed); 1223 1224 /* 1225 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 1226 * will restore the previous user_cpus_ptr value. 1227 * 1228 * In the unlikely event a previous user_cpus_ptr exists, 1229 * we need to further restrict the mask to what is allowed 1230 * by that old user_cpus_ptr. 1231 */ 1232 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 1233 bool empty = !cpumask_and(new_mask, new_mask, 1234 ctx->user_mask); 1235 1236 if (WARN_ON_ONCE(empty)) 1237 cpumask_copy(new_mask, cpus_allowed); 1238 } 1239 __set_cpus_allowed_ptr(p, ctx); 1240 retval = -EINVAL; 1241 } 1242 1243 out_free_new_mask: 1244 free_cpumask_var(new_mask); 1245 out_free_cpus_allowed: 1246 free_cpumask_var(cpus_allowed); 1247 return retval; 1248 } 1249 1250 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 1251 { 1252 struct affinity_context ac; 1253 struct cpumask *user_mask; 1254 int retval; 1255 1256 CLASS(find_get_task, p)(pid); 1257 if (!p) 1258 return -ESRCH; 1259 1260 if (p->flags & PF_NO_SETAFFINITY) 1261 return -EINVAL; 1262 1263 if (!check_same_owner(p)) { 1264 guard(rcu)(); 1265 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1266 return -EPERM; 1267 } 1268 1269 retval = security_task_setscheduler(p); 1270 if (retval) 1271 return retval; 1272 1273 /* 1274 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 1275 * alloc_user_cpus_ptr() returns NULL. 1276 */ 1277 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 1278 if (user_mask) { 1279 cpumask_copy(user_mask, in_mask); 1280 } else if (IS_ENABLED(CONFIG_SMP)) { 1281 return -ENOMEM; 1282 } 1283 1284 ac = (struct affinity_context){ 1285 .new_mask = in_mask, 1286 .user_mask = user_mask, 1287 .flags = SCA_USER, 1288 }; 1289 1290 retval = __sched_setaffinity(p, &ac); 1291 kfree(ac.user_mask); 1292 1293 return retval; 1294 } 1295 1296 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 1297 struct cpumask *new_mask) 1298 { 1299 if (len < cpumask_size()) 1300 cpumask_clear(new_mask); 1301 else if (len > cpumask_size()) 1302 len = cpumask_size(); 1303 1304 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 1305 } 1306 1307 /** 1308 * sys_sched_setaffinity - set the CPU affinity of a process 1309 * @pid: pid of the process 1310 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 1311 * @user_mask_ptr: user-space pointer to the new CPU mask 1312 * 1313 * Return: 0 on success. An error code otherwise. 1314 */ 1315 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 1316 unsigned long __user *, user_mask_ptr) 1317 { 1318 cpumask_var_t new_mask; 1319 int retval; 1320 1321 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 1322 return -ENOMEM; 1323 1324 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 1325 if (retval == 0) 1326 retval = sched_setaffinity(pid, new_mask); 1327 free_cpumask_var(new_mask); 1328 return retval; 1329 } 1330 1331 long sched_getaffinity(pid_t pid, struct cpumask *mask) 1332 { 1333 struct task_struct *p; 1334 int retval; 1335 1336 guard(rcu)(); 1337 p = find_process_by_pid(pid); 1338 if (!p) 1339 return -ESRCH; 1340 1341 retval = security_task_getscheduler(p); 1342 if (retval) 1343 return retval; 1344 1345 guard(raw_spinlock_irqsave)(&p->pi_lock); 1346 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 1347 1348 return 0; 1349 } 1350 1351 /** 1352 * sys_sched_getaffinity - get the CPU affinity of a process 1353 * @pid: pid of the process 1354 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 1355 * @user_mask_ptr: user-space pointer to hold the current CPU mask 1356 * 1357 * Return: size of CPU mask copied to user_mask_ptr on success. An 1358 * error code otherwise. 1359 */ 1360 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 1361 unsigned long __user *, user_mask_ptr) 1362 { 1363 int ret; 1364 cpumask_var_t mask; 1365 1366 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 1367 return -EINVAL; 1368 if (len & (sizeof(unsigned long)-1)) 1369 return -EINVAL; 1370 1371 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 1372 return -ENOMEM; 1373 1374 ret = sched_getaffinity(pid, mask); 1375 if (ret == 0) { 1376 unsigned int retlen = min(len, cpumask_size()); 1377 1378 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 1379 ret = -EFAULT; 1380 else 1381 ret = retlen; 1382 } 1383 free_cpumask_var(mask); 1384 1385 return ret; 1386 } 1387 1388 static void do_sched_yield(void) 1389 { 1390 struct rq_flags rf; 1391 struct rq *rq; 1392 1393 rq = this_rq_lock_irq(&rf); 1394 1395 schedstat_inc(rq->yld_count); 1396 current->sched_class->yield_task(rq); 1397 1398 preempt_disable(); 1399 rq_unlock_irq(rq, &rf); 1400 sched_preempt_enable_no_resched(); 1401 1402 schedule(); 1403 } 1404 1405 /** 1406 * sys_sched_yield - yield the current processor to other threads. 1407 * 1408 * This function yields the current CPU to other tasks. If there are no 1409 * other threads running on this CPU then this function will return. 1410 * 1411 * Return: 0. 1412 */ 1413 SYSCALL_DEFINE0(sched_yield) 1414 { 1415 do_sched_yield(); 1416 return 0; 1417 } 1418 1419 /** 1420 * yield - yield the current processor to other threads. 1421 * 1422 * Do not ever use this function, there's a 99% chance you're doing it wrong. 1423 * 1424 * The scheduler is at all times free to pick the calling task as the most 1425 * eligible task to run, if removing the yield() call from your code breaks 1426 * it, it's already broken. 1427 * 1428 * Typical broken usage is: 1429 * 1430 * while (!event) 1431 * yield(); 1432 * 1433 * where one assumes that yield() will let 'the other' process run that will 1434 * make event true. If the current task is a SCHED_FIFO task that will never 1435 * happen. Never use yield() as a progress guarantee!! 1436 * 1437 * If you want to use yield() to wait for something, use wait_event(). 1438 * If you want to use yield() to be 'nice' for others, use cond_resched(). 1439 * If you still want to use yield(), do not! 1440 */ 1441 void __sched yield(void) 1442 { 1443 set_current_state(TASK_RUNNING); 1444 do_sched_yield(); 1445 } 1446 EXPORT_SYMBOL(yield); 1447 1448 /** 1449 * yield_to - yield the current processor to another thread in 1450 * your thread group, or accelerate that thread toward the 1451 * processor it's on. 1452 * @p: target task 1453 * @preempt: whether task preemption is allowed or not 1454 * 1455 * It's the caller's job to ensure that the target task struct 1456 * can't go away on us before we can do any checks. 1457 * 1458 * Return: 1459 * true (>0) if we indeed boosted the target task. 1460 * false (0) if we failed to boost the target. 1461 * -ESRCH if there's no task to yield to. 1462 */ 1463 int __sched yield_to(struct task_struct *p, bool preempt) 1464 { 1465 struct task_struct *curr = current; 1466 struct rq *rq, *p_rq; 1467 int yielded = 0; 1468 1469 scoped_guard (irqsave) { 1470 rq = this_rq(); 1471 1472 again: 1473 p_rq = task_rq(p); 1474 /* 1475 * If we're the only runnable task on the rq and target rq also 1476 * has only one task, there's absolutely no point in yielding. 1477 */ 1478 if (rq->nr_running == 1 && p_rq->nr_running == 1) 1479 return -ESRCH; 1480 1481 guard(double_rq_lock)(rq, p_rq); 1482 if (task_rq(p) != p_rq) 1483 goto again; 1484 1485 if (!curr->sched_class->yield_to_task) 1486 return 0; 1487 1488 if (curr->sched_class != p->sched_class) 1489 return 0; 1490 1491 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 1492 return 0; 1493 1494 yielded = curr->sched_class->yield_to_task(rq, p); 1495 if (yielded) { 1496 schedstat_inc(rq->yld_count); 1497 /* 1498 * Make p's CPU reschedule; pick_next_entity 1499 * takes care of fairness. 1500 */ 1501 if (preempt && rq != p_rq) 1502 resched_curr(p_rq); 1503 } 1504 } 1505 1506 if (yielded) 1507 schedule(); 1508 1509 return yielded; 1510 } 1511 EXPORT_SYMBOL_GPL(yield_to); 1512 1513 /** 1514 * sys_sched_get_priority_max - return maximum RT priority. 1515 * @policy: scheduling class. 1516 * 1517 * Return: On success, this syscall returns the maximum 1518 * rt_priority that can be used by a given scheduling class. 1519 * On failure, a negative error code is returned. 1520 */ 1521 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 1522 { 1523 int ret = -EINVAL; 1524 1525 switch (policy) { 1526 case SCHED_FIFO: 1527 case SCHED_RR: 1528 ret = MAX_RT_PRIO-1; 1529 break; 1530 case SCHED_DEADLINE: 1531 case SCHED_NORMAL: 1532 case SCHED_BATCH: 1533 case SCHED_IDLE: 1534 case SCHED_EXT: 1535 ret = 0; 1536 break; 1537 } 1538 return ret; 1539 } 1540 1541 /** 1542 * sys_sched_get_priority_min - return minimum RT priority. 1543 * @policy: scheduling class. 1544 * 1545 * Return: On success, this syscall returns the minimum 1546 * rt_priority that can be used by a given scheduling class. 1547 * On failure, a negative error code is returned. 1548 */ 1549 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 1550 { 1551 int ret = -EINVAL; 1552 1553 switch (policy) { 1554 case SCHED_FIFO: 1555 case SCHED_RR: 1556 ret = 1; 1557 break; 1558 case SCHED_DEADLINE: 1559 case SCHED_NORMAL: 1560 case SCHED_BATCH: 1561 case SCHED_IDLE: 1562 case SCHED_EXT: 1563 ret = 0; 1564 } 1565 return ret; 1566 } 1567 1568 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 1569 { 1570 unsigned int time_slice = 0; 1571 int retval; 1572 1573 if (pid < 0) 1574 return -EINVAL; 1575 1576 scoped_guard (rcu) { 1577 struct task_struct *p = find_process_by_pid(pid); 1578 if (!p) 1579 return -ESRCH; 1580 1581 retval = security_task_getscheduler(p); 1582 if (retval) 1583 return retval; 1584 1585 scoped_guard (task_rq_lock, p) { 1586 struct rq *rq = scope.rq; 1587 if (p->sched_class->get_rr_interval) 1588 time_slice = p->sched_class->get_rr_interval(rq, p); 1589 } 1590 } 1591 1592 jiffies_to_timespec64(time_slice, t); 1593 return 0; 1594 } 1595 1596 /** 1597 * sys_sched_rr_get_interval - return the default time-slice of a process. 1598 * @pid: pid of the process. 1599 * @interval: userspace pointer to the time-slice value. 1600 * 1601 * this syscall writes the default time-slice value of a given process 1602 * into the user-space timespec buffer. A value of '0' means infinity. 1603 * 1604 * Return: On success, 0 and the time-slice is in @interval. Otherwise, 1605 * an error code. 1606 */ 1607 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 1608 struct __kernel_timespec __user *, interval) 1609 { 1610 struct timespec64 t; 1611 int retval = sched_rr_get_interval(pid, &t); 1612 1613 if (retval == 0) 1614 retval = put_timespec64(&t, interval); 1615 1616 return retval; 1617 } 1618 1619 #ifdef CONFIG_COMPAT_32BIT_TIME 1620 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 1621 struct old_timespec32 __user *, interval) 1622 { 1623 struct timespec64 t; 1624 int retval = sched_rr_get_interval(pid, &t); 1625 1626 if (retval == 0) 1627 retval = put_old_timespec32(&t, interval); 1628 return retval; 1629 } 1630 #endif 1631