1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/syscalls.c 4 * 5 * Core kernel scheduler syscalls related code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/sched.h> 11 #include <linux/cpuset.h> 12 #include <linux/sched/debug.h> 13 14 #include <uapi/linux/sched/types.h> 15 16 #include "sched.h" 17 #include "autogroup.h" 18 19 static inline int __normal_prio(int policy, int rt_prio, int nice) 20 { 21 int prio; 22 23 if (dl_policy(policy)) 24 prio = MAX_DL_PRIO - 1; 25 else if (rt_policy(policy)) 26 prio = MAX_RT_PRIO - 1 - rt_prio; 27 else 28 prio = NICE_TO_PRIO(nice); 29 30 return prio; 31 } 32 33 /* 34 * Calculate the expected normal priority: i.e. priority 35 * without taking RT-inheritance into account. Might be 36 * boosted by interactivity modifiers. Changes upon fork, 37 * setprio syscalls, and whenever the interactivity 38 * estimator recalculates. 39 */ 40 static inline int normal_prio(struct task_struct *p) 41 { 42 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); 43 } 44 45 /* 46 * Calculate the current priority, i.e. the priority 47 * taken into account by the scheduler. This value might 48 * be boosted by RT tasks, or might be boosted by 49 * interactivity modifiers. Will be RT if the task got 50 * RT-boosted. If not then it returns p->normal_prio. 51 */ 52 static int effective_prio(struct task_struct *p) 53 { 54 p->normal_prio = normal_prio(p); 55 /* 56 * If we are RT tasks or we were boosted to RT priority, 57 * keep the priority unchanged. Otherwise, update priority 58 * to the normal priority: 59 */ 60 if (!rt_or_dl_prio(p->prio)) 61 return p->normal_prio; 62 return p->prio; 63 } 64 65 void set_user_nice(struct task_struct *p, long nice) 66 { 67 int old_prio; 68 69 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) 70 return; 71 /* 72 * We have to be careful, if called from sys_setpriority(), 73 * the task might be in the middle of scheduling on another CPU. 74 */ 75 guard(task_rq_lock)(p); 76 77 /* 78 * The RT priorities are set via sched_setscheduler(), but we still 79 * allow the 'normal' nice value to be set - but as expected 80 * it won't have any effect on scheduling until the task is 81 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: 82 */ 83 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 84 p->static_prio = NICE_TO_PRIO(nice); 85 return; 86 } 87 88 scoped_guard (sched_change, p, DEQUEUE_SAVE) { 89 p->static_prio = NICE_TO_PRIO(nice); 90 set_load_weight(p, true); 91 old_prio = p->prio; 92 p->prio = effective_prio(p); 93 } 94 } 95 EXPORT_SYMBOL(set_user_nice); 96 97 /* 98 * is_nice_reduction - check if nice value is an actual reduction 99 * 100 * Similar to can_nice() but does not perform a capability check. 101 * 102 * @p: task 103 * @nice: nice value 104 */ 105 static bool is_nice_reduction(const struct task_struct *p, const int nice) 106 { 107 /* Convert nice value [19,-20] to rlimit style value [1,40]: */ 108 int nice_rlim = nice_to_rlimit(nice); 109 110 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); 111 } 112 113 /* 114 * can_nice - check if a task can reduce its nice value 115 * @p: task 116 * @nice: nice value 117 */ 118 int can_nice(const struct task_struct *p, const int nice) 119 { 120 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); 121 } 122 123 #ifdef __ARCH_WANT_SYS_NICE 124 125 /* 126 * sys_nice - change the priority of the current process. 127 * @increment: priority increment 128 * 129 * sys_setpriority is a more generic, but much slower function that 130 * does similar things. 131 */ 132 SYSCALL_DEFINE1(nice, int, increment) 133 { 134 long nice, retval; 135 136 /* 137 * Setpriority might change our priority at the same moment. 138 * We don't have to worry. Conceptually one call occurs first 139 * and we have a single winner. 140 */ 141 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); 142 nice = task_nice(current) + increment; 143 144 nice = clamp_val(nice, MIN_NICE, MAX_NICE); 145 if (increment < 0 && !can_nice(current, nice)) 146 return -EPERM; 147 148 retval = security_task_setnice(current, nice); 149 if (retval) 150 return retval; 151 152 set_user_nice(current, nice); 153 return 0; 154 } 155 156 #endif /* __ARCH_WANT_SYS_NICE */ 157 158 /** 159 * task_prio - return the priority value of a given task. 160 * @p: the task in question. 161 * 162 * Return: The priority value as seen by users in /proc. 163 * 164 * sched policy return value kernel prio user prio/nice 165 * 166 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19] 167 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99] 168 * deadline -101 -1 0 169 */ 170 int task_prio(const struct task_struct *p) 171 { 172 return p->prio - MAX_RT_PRIO; 173 } 174 175 /** 176 * idle_cpu - is a given CPU idle currently? 177 * @cpu: the processor in question. 178 * 179 * Return: 1 if the CPU is currently idle. 0 otherwise. 180 */ 181 int idle_cpu(int cpu) 182 { 183 struct rq *rq = cpu_rq(cpu); 184 185 if (rq->curr != rq->idle) 186 return 0; 187 188 if (rq->nr_running) 189 return 0; 190 191 if (rq->ttwu_pending) 192 return 0; 193 194 return 1; 195 } 196 197 /** 198 * available_idle_cpu - is a given CPU idle for enqueuing work. 199 * @cpu: the CPU in question. 200 * 201 * Return: 1 if the CPU is currently idle. 0 otherwise. 202 */ 203 int available_idle_cpu(int cpu) 204 { 205 if (!idle_cpu(cpu)) 206 return 0; 207 208 if (vcpu_is_preempted(cpu)) 209 return 0; 210 211 return 1; 212 } 213 214 /** 215 * idle_task - return the idle task for a given CPU. 216 * @cpu: the processor in question. 217 * 218 * Return: The idle task for the CPU @cpu. 219 */ 220 struct task_struct *idle_task(int cpu) 221 { 222 return cpu_rq(cpu)->idle; 223 } 224 225 #ifdef CONFIG_SCHED_CORE 226 int sched_core_idle_cpu(int cpu) 227 { 228 struct rq *rq = cpu_rq(cpu); 229 230 if (sched_core_enabled(rq) && rq->curr == rq->idle) 231 return 1; 232 233 return idle_cpu(cpu); 234 } 235 #endif /* CONFIG_SCHED_CORE */ 236 237 /** 238 * find_process_by_pid - find a process with a matching PID value. 239 * @pid: the pid in question. 240 * 241 * The task of @pid, if found. %NULL otherwise. 242 */ 243 static struct task_struct *find_process_by_pid(pid_t pid) 244 { 245 return pid ? find_task_by_vpid(pid) : current; 246 } 247 248 static struct task_struct *find_get_task(pid_t pid) 249 { 250 struct task_struct *p; 251 guard(rcu)(); 252 253 p = find_process_by_pid(pid); 254 if (likely(p)) 255 get_task_struct(p); 256 257 return p; 258 } 259 260 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), 261 find_get_task(pid), pid_t pid) 262 263 /* 264 * sched_setparam() passes in -1 for its policy, to let the functions 265 * it calls know not to change it. 266 */ 267 #define SETPARAM_POLICY -1 268 269 static void __setscheduler_params(struct task_struct *p, 270 const struct sched_attr *attr) 271 { 272 int policy = attr->sched_policy; 273 274 if (policy == SETPARAM_POLICY) 275 policy = p->policy; 276 277 p->policy = policy; 278 279 if (dl_policy(policy)) 280 __setparam_dl(p, attr); 281 else if (fair_policy(policy)) 282 __setparam_fair(p, attr); 283 284 /* rt-policy tasks do not have a timerslack */ 285 if (rt_or_dl_task_policy(p)) { 286 p->timer_slack_ns = 0; 287 } else if (p->timer_slack_ns == 0) { 288 /* when switching back to non-rt policy, restore timerslack */ 289 p->timer_slack_ns = p->default_timer_slack_ns; 290 } 291 292 /* 293 * __sched_setscheduler() ensures attr->sched_priority == 0 when 294 * !rt_policy. Always setting this ensures that things like 295 * getparam()/getattr() don't report silly values for !rt tasks. 296 */ 297 p->rt_priority = attr->sched_priority; 298 p->normal_prio = normal_prio(p); 299 set_load_weight(p, true); 300 } 301 302 /* 303 * Check the target process has a UID that matches the current process's: 304 */ 305 static bool check_same_owner(struct task_struct *p) 306 { 307 const struct cred *cred = current_cred(), *pcred; 308 guard(rcu)(); 309 310 pcred = __task_cred(p); 311 return (uid_eq(cred->euid, pcred->euid) || 312 uid_eq(cred->euid, pcred->uid)); 313 } 314 315 #ifdef CONFIG_UCLAMP_TASK 316 317 static int uclamp_validate(struct task_struct *p, 318 const struct sched_attr *attr) 319 { 320 int util_min = p->uclamp_req[UCLAMP_MIN].value; 321 int util_max = p->uclamp_req[UCLAMP_MAX].value; 322 323 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { 324 util_min = attr->sched_util_min; 325 326 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) 327 return -EINVAL; 328 } 329 330 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { 331 util_max = attr->sched_util_max; 332 333 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) 334 return -EINVAL; 335 } 336 337 if (util_min != -1 && util_max != -1 && util_min > util_max) 338 return -EINVAL; 339 340 /* 341 * We have valid uclamp attributes; make sure uclamp is enabled. 342 * 343 * We need to do that here, because enabling static branches is a 344 * blocking operation which obviously cannot be done while holding 345 * scheduler locks. 346 */ 347 sched_uclamp_enable(); 348 349 return 0; 350 } 351 352 static bool uclamp_reset(const struct sched_attr *attr, 353 enum uclamp_id clamp_id, 354 struct uclamp_se *uc_se) 355 { 356 /* Reset on sched class change for a non user-defined clamp value. */ 357 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && 358 !uc_se->user_defined) 359 return true; 360 361 /* Reset on sched_util_{min,max} == -1. */ 362 if (clamp_id == UCLAMP_MIN && 363 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 364 attr->sched_util_min == -1) { 365 return true; 366 } 367 368 if (clamp_id == UCLAMP_MAX && 369 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 370 attr->sched_util_max == -1) { 371 return true; 372 } 373 374 return false; 375 } 376 377 static void __setscheduler_uclamp(struct task_struct *p, 378 const struct sched_attr *attr) 379 { 380 enum uclamp_id clamp_id; 381 382 for_each_clamp_id(clamp_id) { 383 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; 384 unsigned int value; 385 386 if (!uclamp_reset(attr, clamp_id, uc_se)) 387 continue; 388 389 /* 390 * RT by default have a 100% boost value that could be modified 391 * at runtime. 392 */ 393 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) 394 value = sysctl_sched_uclamp_util_min_rt_default; 395 else 396 value = uclamp_none(clamp_id); 397 398 uclamp_se_set(uc_se, value, false); 399 400 } 401 402 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) 403 return; 404 405 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && 406 attr->sched_util_min != -1) { 407 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], 408 attr->sched_util_min, true); 409 } 410 411 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && 412 attr->sched_util_max != -1) { 413 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], 414 attr->sched_util_max, true); 415 } 416 } 417 418 #else /* !CONFIG_UCLAMP_TASK: */ 419 420 static inline int uclamp_validate(struct task_struct *p, 421 const struct sched_attr *attr) 422 { 423 return -EOPNOTSUPP; 424 } 425 static void __setscheduler_uclamp(struct task_struct *p, 426 const struct sched_attr *attr) { } 427 #endif /* !CONFIG_UCLAMP_TASK */ 428 429 /* 430 * Allow unprivileged RT tasks to decrease priority. 431 * Only issue a capable test if needed and only once to avoid an audit 432 * event on permitted non-privileged operations: 433 */ 434 static int user_check_sched_setscheduler(struct task_struct *p, 435 const struct sched_attr *attr, 436 int policy, int reset_on_fork) 437 { 438 if (fair_policy(policy)) { 439 if (attr->sched_nice < task_nice(p) && 440 !is_nice_reduction(p, attr->sched_nice)) 441 goto req_priv; 442 } 443 444 if (rt_policy(policy)) { 445 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); 446 447 /* Can't set/change the rt policy: */ 448 if (policy != p->policy && !rlim_rtprio) 449 goto req_priv; 450 451 /* Can't increase priority: */ 452 if (attr->sched_priority > p->rt_priority && 453 attr->sched_priority > rlim_rtprio) 454 goto req_priv; 455 } 456 457 /* 458 * Can't set/change SCHED_DEADLINE policy at all for now 459 * (safest behavior); in the future we would like to allow 460 * unprivileged DL tasks to increase their relative deadline 461 * or reduce their runtime (both ways reducing utilization) 462 */ 463 if (dl_policy(policy)) 464 goto req_priv; 465 466 /* 467 * Treat SCHED_IDLE as nice 20. Only allow a switch to 468 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. 469 */ 470 if (task_has_idle_policy(p) && !idle_policy(policy)) { 471 if (!is_nice_reduction(p, task_nice(p))) 472 goto req_priv; 473 } 474 475 /* Can't change other user's priorities: */ 476 if (!check_same_owner(p)) 477 goto req_priv; 478 479 /* Normal users shall not reset the sched_reset_on_fork flag: */ 480 if (p->sched_reset_on_fork && !reset_on_fork) 481 goto req_priv; 482 483 return 0; 484 485 req_priv: 486 if (!capable(CAP_SYS_NICE)) 487 return -EPERM; 488 489 return 0; 490 } 491 492 int __sched_setscheduler(struct task_struct *p, 493 const struct sched_attr *attr, 494 bool user, bool pi) 495 { 496 int oldpolicy = -1, policy = attr->sched_policy; 497 int retval, oldprio, newprio; 498 const struct sched_class *prev_class, *next_class; 499 struct balance_callback *head; 500 struct rq_flags rf; 501 int reset_on_fork; 502 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 503 struct rq *rq; 504 bool cpuset_locked = false; 505 506 /* The pi code expects interrupts enabled */ 507 BUG_ON(pi && in_interrupt()); 508 recheck: 509 /* Double check policy once rq lock held: */ 510 if (policy < 0) { 511 reset_on_fork = p->sched_reset_on_fork; 512 policy = oldpolicy = p->policy; 513 } else { 514 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); 515 516 if (!valid_policy(policy)) 517 return -EINVAL; 518 } 519 520 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) 521 return -EINVAL; 522 523 /* 524 * Valid priorities for SCHED_FIFO and SCHED_RR are 525 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, 526 * SCHED_BATCH and SCHED_IDLE is 0. 527 */ 528 if (attr->sched_priority > MAX_RT_PRIO-1) 529 return -EINVAL; 530 if ((dl_policy(policy) && !__checkparam_dl(attr)) || 531 (rt_policy(policy) != (attr->sched_priority != 0))) 532 return -EINVAL; 533 534 if (user) { 535 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); 536 if (retval) 537 return retval; 538 539 if (attr->sched_flags & SCHED_FLAG_SUGOV) 540 return -EINVAL; 541 542 retval = security_task_setscheduler(p); 543 if (retval) 544 return retval; 545 } 546 547 /* Update task specific "requested" clamps */ 548 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { 549 retval = uclamp_validate(p, attr); 550 if (retval) 551 return retval; 552 } 553 554 /* 555 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets 556 * information. 557 */ 558 if (dl_policy(policy) || dl_policy(p->policy)) { 559 cpuset_locked = true; 560 cpuset_lock(); 561 } 562 563 /* 564 * Make sure no PI-waiters arrive (or leave) while we are 565 * changing the priority of the task: 566 * 567 * To be able to change p->policy safely, the appropriate 568 * runqueue lock must be held. 569 */ 570 rq = task_rq_lock(p, &rf); 571 update_rq_clock(rq); 572 573 /* 574 * Changing the policy of the stop threads its a very bad idea: 575 */ 576 if (p == rq->stop) { 577 retval = -EINVAL; 578 goto unlock; 579 } 580 581 retval = scx_check_setscheduler(p, policy); 582 if (retval) 583 goto unlock; 584 585 /* 586 * If not changing anything there's no need to proceed further, 587 * but store a possible modification of reset_on_fork. 588 */ 589 if (unlikely(policy == p->policy)) { 590 if (fair_policy(policy) && 591 (attr->sched_nice != task_nice(p) || 592 (attr->sched_runtime != p->se.slice))) 593 goto change; 594 if (rt_policy(policy) && attr->sched_priority != p->rt_priority) 595 goto change; 596 if (dl_policy(policy) && dl_param_changed(p, attr)) 597 goto change; 598 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) 599 goto change; 600 601 p->sched_reset_on_fork = reset_on_fork; 602 retval = 0; 603 goto unlock; 604 } 605 change: 606 607 if (user) { 608 #ifdef CONFIG_RT_GROUP_SCHED 609 /* 610 * Do not allow real-time tasks into groups that have no runtime 611 * assigned. 612 */ 613 if (rt_group_sched_enabled() && 614 rt_bandwidth_enabled() && rt_policy(policy) && 615 task_group(p)->rt_bandwidth.rt_runtime == 0 && 616 !task_group_is_autogroup(task_group(p))) { 617 retval = -EPERM; 618 goto unlock; 619 } 620 #endif /* CONFIG_RT_GROUP_SCHED */ 621 if (dl_bandwidth_enabled() && dl_policy(policy) && 622 !(attr->sched_flags & SCHED_FLAG_SUGOV)) { 623 cpumask_t *span = rq->rd->span; 624 625 /* 626 * Don't allow tasks with an affinity mask smaller than 627 * the entire root_domain to become SCHED_DEADLINE. We 628 * will also fail if there's no bandwidth available. 629 */ 630 if (!cpumask_subset(span, p->cpus_ptr) || 631 rq->rd->dl_bw.bw == 0) { 632 retval = -EPERM; 633 goto unlock; 634 } 635 } 636 } 637 638 /* Re-check policy now with rq lock held: */ 639 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { 640 policy = oldpolicy = -1; 641 task_rq_unlock(rq, p, &rf); 642 if (cpuset_locked) 643 cpuset_unlock(); 644 goto recheck; 645 } 646 647 /* 648 * If setscheduling to SCHED_DEADLINE (or changing the parameters 649 * of a SCHED_DEADLINE task) we need to check if enough bandwidth 650 * is available. 651 */ 652 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { 653 retval = -EBUSY; 654 goto unlock; 655 } 656 657 p->sched_reset_on_fork = reset_on_fork; 658 oldprio = p->prio; 659 660 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); 661 if (pi) { 662 /* 663 * Take priority boosted tasks into account. If the new 664 * effective priority is unchanged, we just store the new 665 * normal parameters and do not touch the scheduler class and 666 * the runqueue. This will be done when the task deboost 667 * itself. 668 */ 669 newprio = rt_effective_prio(p, newprio); 670 if (newprio == oldprio) 671 queue_flags &= ~DEQUEUE_MOVE; 672 } 673 674 prev_class = p->sched_class; 675 next_class = __setscheduler_class(policy, newprio); 676 677 if (prev_class != next_class) 678 queue_flags |= DEQUEUE_CLASS; 679 680 scoped_guard (sched_change, p, queue_flags) { 681 682 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { 683 __setscheduler_params(p, attr); 684 p->sched_class = next_class; 685 p->prio = newprio; 686 } 687 __setscheduler_uclamp(p, attr); 688 689 if (scope->queued) { 690 /* 691 * We enqueue to tail when the priority of a task is 692 * increased (user space view). 693 */ 694 if (oldprio < p->prio) 695 scope->flags |= ENQUEUE_HEAD; 696 } 697 } 698 699 /* Avoid rq from going away on us: */ 700 preempt_disable(); 701 head = splice_balance_callbacks(rq); 702 task_rq_unlock(rq, p, &rf); 703 704 if (pi) { 705 if (cpuset_locked) 706 cpuset_unlock(); 707 rt_mutex_adjust_pi(p); 708 } 709 710 /* Run balance callbacks after we've adjusted the PI chain: */ 711 balance_callbacks(rq, head); 712 preempt_enable(); 713 714 return 0; 715 716 unlock: 717 task_rq_unlock(rq, p, &rf); 718 if (cpuset_locked) 719 cpuset_unlock(); 720 return retval; 721 } 722 723 static int _sched_setscheduler(struct task_struct *p, int policy, 724 const struct sched_param *param, bool check) 725 { 726 struct sched_attr attr = { 727 .sched_policy = policy, 728 .sched_priority = param->sched_priority, 729 .sched_nice = PRIO_TO_NICE(p->static_prio), 730 }; 731 732 if (p->se.custom_slice) 733 attr.sched_runtime = p->se.slice; 734 735 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */ 736 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { 737 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 738 policy &= ~SCHED_RESET_ON_FORK; 739 attr.sched_policy = policy; 740 } 741 742 return __sched_setscheduler(p, &attr, check, true); 743 } 744 /** 745 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. 746 * @p: the task in question. 747 * @policy: new policy. 748 * @param: structure containing the new RT priority. 749 * 750 * Use sched_set_fifo(), read its comment. 751 * 752 * Return: 0 on success. An error code otherwise. 753 * 754 * NOTE that the task may be already dead. 755 */ 756 int sched_setscheduler(struct task_struct *p, int policy, 757 const struct sched_param *param) 758 { 759 return _sched_setscheduler(p, policy, param, true); 760 } 761 762 int sched_setattr(struct task_struct *p, const struct sched_attr *attr) 763 { 764 return __sched_setscheduler(p, attr, true, true); 765 } 766 767 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) 768 { 769 return __sched_setscheduler(p, attr, false, true); 770 } 771 EXPORT_SYMBOL_GPL(sched_setattr_nocheck); 772 773 /** 774 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. 775 * @p: the task in question. 776 * @policy: new policy. 777 * @param: structure containing the new RT priority. 778 * 779 * Just like sched_setscheduler, only don't bother checking if the 780 * current context has permission. For example, this is needed in 781 * stop_machine(): we create temporary high priority worker threads, 782 * but our caller might not have that capability. 783 * 784 * Return: 0 on success. An error code otherwise. 785 */ 786 int sched_setscheduler_nocheck(struct task_struct *p, int policy, 787 const struct sched_param *param) 788 { 789 return _sched_setscheduler(p, policy, param, false); 790 } 791 792 /* 793 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally 794 * incapable of resource management, which is the one thing an OS really should 795 * be doing. 796 * 797 * This is of course the reason it is limited to privileged users only. 798 * 799 * Worse still; it is fundamentally impossible to compose static priority 800 * workloads. You cannot take two correctly working static prio workloads 801 * and smash them together and still expect them to work. 802 * 803 * For this reason 'all' FIFO tasks the kernel creates are basically at: 804 * 805 * MAX_RT_PRIO / 2 806 * 807 * The administrator _MUST_ configure the system, the kernel simply doesn't 808 * know enough information to make a sensible choice. 809 */ 810 void sched_set_fifo(struct task_struct *p) 811 { 812 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; 813 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 814 } 815 EXPORT_SYMBOL_GPL(sched_set_fifo); 816 817 /* 818 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. 819 */ 820 void sched_set_fifo_low(struct task_struct *p) 821 { 822 struct sched_param sp = { .sched_priority = 1 }; 823 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 824 } 825 EXPORT_SYMBOL_GPL(sched_set_fifo_low); 826 827 /* 828 * Used when the primary interrupt handler is forced into a thread, in addition 829 * to the (always threaded) secondary handler. The secondary handler gets a 830 * slightly lower priority so that the primary handler can preempt it, thereby 831 * emulating the behavior of a non-PREEMPT_RT system where the primary handler 832 * runs in hard interrupt context. 833 */ 834 void sched_set_fifo_secondary(struct task_struct *p) 835 { 836 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 - 1 }; 837 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); 838 } 839 840 void sched_set_normal(struct task_struct *p, int nice) 841 { 842 struct sched_attr attr = { 843 .sched_policy = SCHED_NORMAL, 844 .sched_nice = nice, 845 }; 846 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); 847 } 848 EXPORT_SYMBOL_GPL(sched_set_normal); 849 850 static int 851 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) 852 { 853 struct sched_param lparam; 854 855 if (unlikely(!param || pid < 0)) 856 return -EINVAL; 857 if (copy_from_user(&lparam, param, sizeof(struct sched_param))) 858 return -EFAULT; 859 860 CLASS(find_get_task, p)(pid); 861 if (!p) 862 return -ESRCH; 863 864 return sched_setscheduler(p, policy, &lparam); 865 } 866 867 /* 868 * Mimics kernel/events/core.c perf_copy_attr(). 869 */ 870 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) 871 { 872 u32 size; 873 int ret; 874 875 /* Zero the full structure, so that a short copy will be nice: */ 876 memset(attr, 0, sizeof(*attr)); 877 878 ret = get_user(size, &uattr->size); 879 if (ret) 880 return ret; 881 882 /* ABI compatibility quirk: */ 883 if (!size) 884 size = SCHED_ATTR_SIZE_VER0; 885 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) 886 goto err_size; 887 888 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 889 if (ret) { 890 if (ret == -E2BIG) 891 goto err_size; 892 return ret; 893 } 894 895 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && 896 size < SCHED_ATTR_SIZE_VER1) 897 return -EINVAL; 898 899 /* 900 * XXX: Do we want to be lenient like existing syscalls; or do we want 901 * to be strict and return an error on out-of-bounds values? 902 */ 903 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); 904 905 return 0; 906 907 err_size: 908 put_user(sizeof(*attr), &uattr->size); 909 return -E2BIG; 910 } 911 912 static void get_params(struct task_struct *p, struct sched_attr *attr) 913 { 914 if (task_has_dl_policy(p)) { 915 __getparam_dl(p, attr); 916 } else if (task_has_rt_policy(p)) { 917 attr->sched_priority = p->rt_priority; 918 } else { 919 attr->sched_nice = task_nice(p); 920 attr->sched_runtime = p->se.slice; 921 } 922 } 923 924 /** 925 * sys_sched_setscheduler - set/change the scheduler policy and RT priority 926 * @pid: the pid in question. 927 * @policy: new policy. 928 * @param: structure containing the new RT priority. 929 * 930 * Return: 0 on success. An error code otherwise. 931 */ 932 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) 933 { 934 if (policy < 0) 935 return -EINVAL; 936 937 return do_sched_setscheduler(pid, policy, param); 938 } 939 940 /** 941 * sys_sched_setparam - set/change the RT priority of a thread 942 * @pid: the pid in question. 943 * @param: structure containing the new RT priority. 944 * 945 * Return: 0 on success. An error code otherwise. 946 */ 947 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) 948 { 949 return do_sched_setscheduler(pid, SETPARAM_POLICY, param); 950 } 951 952 /** 953 * sys_sched_setattr - same as above, but with extended sched_attr 954 * @pid: the pid in question. 955 * @uattr: structure containing the extended parameters. 956 * @flags: for future extension. 957 */ 958 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, 959 unsigned int, flags) 960 { 961 struct sched_attr attr; 962 int retval; 963 964 if (unlikely(!uattr || pid < 0 || flags)) 965 return -EINVAL; 966 967 retval = sched_copy_attr(uattr, &attr); 968 if (retval) 969 return retval; 970 971 if ((int)attr.sched_policy < 0) 972 return -EINVAL; 973 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) 974 attr.sched_policy = SETPARAM_POLICY; 975 976 CLASS(find_get_task, p)(pid); 977 if (!p) 978 return -ESRCH; 979 980 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) 981 get_params(p, &attr); 982 983 return sched_setattr(p, &attr); 984 } 985 986 /** 987 * sys_sched_getscheduler - get the policy (scheduling class) of a thread 988 * @pid: the pid in question. 989 * 990 * Return: On success, the policy of the thread. Otherwise, a negative error 991 * code. 992 */ 993 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) 994 { 995 struct task_struct *p; 996 int retval; 997 998 if (pid < 0) 999 return -EINVAL; 1000 1001 guard(rcu)(); 1002 p = find_process_by_pid(pid); 1003 if (!p) 1004 return -ESRCH; 1005 1006 retval = security_task_getscheduler(p); 1007 if (!retval) { 1008 retval = p->policy; 1009 if (p->sched_reset_on_fork) 1010 retval |= SCHED_RESET_ON_FORK; 1011 } 1012 return retval; 1013 } 1014 1015 /** 1016 * sys_sched_getparam - get the RT priority of a thread 1017 * @pid: the pid in question. 1018 * @param: structure containing the RT priority. 1019 * 1020 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error 1021 * code. 1022 */ 1023 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) 1024 { 1025 struct sched_param lp = { .sched_priority = 0 }; 1026 struct task_struct *p; 1027 int retval; 1028 1029 if (unlikely(!param || pid < 0)) 1030 return -EINVAL; 1031 1032 scoped_guard (rcu) { 1033 p = find_process_by_pid(pid); 1034 if (!p) 1035 return -ESRCH; 1036 1037 retval = security_task_getscheduler(p); 1038 if (retval) 1039 return retval; 1040 1041 if (task_has_rt_policy(p)) 1042 lp.sched_priority = p->rt_priority; 1043 } 1044 1045 /* 1046 * This one might sleep, we cannot do it with a spinlock held ... 1047 */ 1048 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; 1049 } 1050 1051 /** 1052 * sys_sched_getattr - similar to sched_getparam, but with sched_attr 1053 * @pid: the pid in question. 1054 * @uattr: structure containing the extended parameters. 1055 * @usize: sizeof(attr) for fwd/bwd comp. 1056 * @flags: for future extension. 1057 */ 1058 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, 1059 unsigned int, usize, unsigned int, flags) 1060 { 1061 struct sched_attr kattr = { }; 1062 struct task_struct *p; 1063 int retval; 1064 1065 if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE || 1066 usize < SCHED_ATTR_SIZE_VER0 || flags)) 1067 return -EINVAL; 1068 1069 scoped_guard (rcu) { 1070 p = find_process_by_pid(pid); 1071 if (!p) 1072 return -ESRCH; 1073 1074 retval = security_task_getscheduler(p); 1075 if (retval) 1076 return retval; 1077 1078 kattr.sched_policy = p->policy; 1079 if (p->sched_reset_on_fork) 1080 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; 1081 get_params(p, &kattr); 1082 kattr.sched_flags &= SCHED_FLAG_ALL; 1083 1084 #ifdef CONFIG_UCLAMP_TASK 1085 /* 1086 * This could race with another potential updater, but this is fine 1087 * because it'll correctly read the old or the new value. We don't need 1088 * to guarantee who wins the race as long as it doesn't return garbage. 1089 */ 1090 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; 1091 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; 1092 #endif 1093 } 1094 1095 kattr.size = min(usize, sizeof(kattr)); 1096 return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL); 1097 } 1098 1099 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) 1100 { 1101 /* 1102 * If the task isn't a deadline task or admission control is 1103 * disabled then we don't care about affinity changes. 1104 */ 1105 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) 1106 return 0; 1107 1108 /* 1109 * The special/sugov task isn't part of regular bandwidth/admission 1110 * control so let userspace change affinities. 1111 */ 1112 if (dl_entity_is_special(&p->dl)) 1113 return 0; 1114 1115 /* 1116 * Since bandwidth control happens on root_domain basis, 1117 * if admission test is enabled, we only admit -deadline 1118 * tasks allowed to run on all the CPUs in the task's 1119 * root_domain. 1120 */ 1121 guard(rcu)(); 1122 if (!cpumask_subset(task_rq(p)->rd->span, mask)) 1123 return -EBUSY; 1124 1125 return 0; 1126 } 1127 1128 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) 1129 { 1130 int retval; 1131 cpumask_var_t cpus_allowed, new_mask; 1132 1133 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) 1134 return -ENOMEM; 1135 1136 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { 1137 retval = -ENOMEM; 1138 goto out_free_cpus_allowed; 1139 } 1140 1141 cpuset_cpus_allowed(p, cpus_allowed); 1142 cpumask_and(new_mask, ctx->new_mask, cpus_allowed); 1143 1144 ctx->new_mask = new_mask; 1145 ctx->flags |= SCA_CHECK; 1146 1147 retval = dl_task_check_affinity(p, new_mask); 1148 if (retval) 1149 goto out_free_new_mask; 1150 1151 retval = __set_cpus_allowed_ptr(p, ctx); 1152 if (retval) 1153 goto out_free_new_mask; 1154 1155 cpuset_cpus_allowed(p, cpus_allowed); 1156 if (!cpumask_subset(new_mask, cpus_allowed)) { 1157 /* 1158 * We must have raced with a concurrent cpuset update. 1159 * Just reset the cpumask to the cpuset's cpus_allowed. 1160 */ 1161 cpumask_copy(new_mask, cpus_allowed); 1162 1163 /* 1164 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() 1165 * will restore the previous user_cpus_ptr value. 1166 * 1167 * In the unlikely event a previous user_cpus_ptr exists, 1168 * we need to further restrict the mask to what is allowed 1169 * by that old user_cpus_ptr. 1170 */ 1171 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { 1172 bool empty = !cpumask_and(new_mask, new_mask, 1173 ctx->user_mask); 1174 1175 if (empty) 1176 cpumask_copy(new_mask, cpus_allowed); 1177 } 1178 __set_cpus_allowed_ptr(p, ctx); 1179 retval = -EINVAL; 1180 } 1181 1182 out_free_new_mask: 1183 free_cpumask_var(new_mask); 1184 out_free_cpus_allowed: 1185 free_cpumask_var(cpus_allowed); 1186 return retval; 1187 } 1188 1189 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) 1190 { 1191 struct affinity_context ac; 1192 struct cpumask *user_mask; 1193 int retval; 1194 1195 CLASS(find_get_task, p)(pid); 1196 if (!p) 1197 return -ESRCH; 1198 1199 if (p->flags & PF_NO_SETAFFINITY) 1200 return -EINVAL; 1201 1202 if (!check_same_owner(p)) { 1203 guard(rcu)(); 1204 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) 1205 return -EPERM; 1206 } 1207 1208 retval = security_task_setscheduler(p); 1209 if (retval) 1210 return retval; 1211 1212 /* 1213 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and 1214 * alloc_user_cpus_ptr() returns NULL. 1215 */ 1216 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); 1217 if (user_mask) { 1218 cpumask_copy(user_mask, in_mask); 1219 } else { 1220 return -ENOMEM; 1221 } 1222 1223 ac = (struct affinity_context){ 1224 .new_mask = in_mask, 1225 .user_mask = user_mask, 1226 .flags = SCA_USER, 1227 }; 1228 1229 retval = __sched_setaffinity(p, &ac); 1230 kfree(ac.user_mask); 1231 1232 return retval; 1233 } 1234 1235 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, 1236 struct cpumask *new_mask) 1237 { 1238 if (len < cpumask_size()) 1239 cpumask_clear(new_mask); 1240 else if (len > cpumask_size()) 1241 len = cpumask_size(); 1242 1243 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; 1244 } 1245 1246 /** 1247 * sys_sched_setaffinity - set the CPU affinity of a process 1248 * @pid: pid of the process 1249 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 1250 * @user_mask_ptr: user-space pointer to the new CPU mask 1251 * 1252 * Return: 0 on success. An error code otherwise. 1253 */ 1254 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, 1255 unsigned long __user *, user_mask_ptr) 1256 { 1257 cpumask_var_t new_mask; 1258 int retval; 1259 1260 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) 1261 return -ENOMEM; 1262 1263 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); 1264 if (retval == 0) 1265 retval = sched_setaffinity(pid, new_mask); 1266 free_cpumask_var(new_mask); 1267 return retval; 1268 } 1269 1270 long sched_getaffinity(pid_t pid, struct cpumask *mask) 1271 { 1272 struct task_struct *p; 1273 int retval; 1274 1275 guard(rcu)(); 1276 p = find_process_by_pid(pid); 1277 if (!p) 1278 return -ESRCH; 1279 1280 retval = security_task_getscheduler(p); 1281 if (retval) 1282 return retval; 1283 1284 guard(raw_spinlock_irqsave)(&p->pi_lock); 1285 cpumask_and(mask, &p->cpus_mask, cpu_active_mask); 1286 1287 return 0; 1288 } 1289 1290 /** 1291 * sys_sched_getaffinity - get the CPU affinity of a process 1292 * @pid: pid of the process 1293 * @len: length in bytes of the bitmask pointed to by user_mask_ptr 1294 * @user_mask_ptr: user-space pointer to hold the current CPU mask 1295 * 1296 * Return: size of CPU mask copied to user_mask_ptr on success. An 1297 * error code otherwise. 1298 */ 1299 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, 1300 unsigned long __user *, user_mask_ptr) 1301 { 1302 int ret; 1303 cpumask_var_t mask; 1304 1305 if ((len * BITS_PER_BYTE) < nr_cpu_ids) 1306 return -EINVAL; 1307 if (len & (sizeof(unsigned long)-1)) 1308 return -EINVAL; 1309 1310 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 1311 return -ENOMEM; 1312 1313 ret = sched_getaffinity(pid, mask); 1314 if (ret == 0) { 1315 unsigned int retlen = min(len, cpumask_size()); 1316 1317 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) 1318 ret = -EFAULT; 1319 else 1320 ret = retlen; 1321 } 1322 free_cpumask_var(mask); 1323 1324 return ret; 1325 } 1326 1327 static void do_sched_yield(void) 1328 { 1329 struct rq_flags rf; 1330 struct rq *rq; 1331 1332 rq = this_rq_lock_irq(&rf); 1333 1334 schedstat_inc(rq->yld_count); 1335 rq->donor->sched_class->yield_task(rq); 1336 1337 preempt_disable(); 1338 rq_unlock_irq(rq, &rf); 1339 sched_preempt_enable_no_resched(); 1340 1341 schedule(); 1342 } 1343 1344 /** 1345 * sys_sched_yield - yield the current processor to other threads. 1346 * 1347 * This function yields the current CPU to other tasks. If there are no 1348 * other threads running on this CPU then this function will return. 1349 * 1350 * Return: 0. 1351 */ 1352 SYSCALL_DEFINE0(sched_yield) 1353 { 1354 do_sched_yield(); 1355 return 0; 1356 } 1357 1358 /** 1359 * yield - yield the current processor to other threads. 1360 * 1361 * Do not ever use this function, there's a 99% chance you're doing it wrong. 1362 * 1363 * The scheduler is at all times free to pick the calling task as the most 1364 * eligible task to run, if removing the yield() call from your code breaks 1365 * it, it's already broken. 1366 * 1367 * Typical broken usage is: 1368 * 1369 * while (!event) 1370 * yield(); 1371 * 1372 * where one assumes that yield() will let 'the other' process run that will 1373 * make event true. If the current task is a SCHED_FIFO task that will never 1374 * happen. Never use yield() as a progress guarantee!! 1375 * 1376 * If you want to use yield() to wait for something, use wait_event(). 1377 * If you want to use yield() to be 'nice' for others, use cond_resched(). 1378 * If you still want to use yield(), do not! 1379 */ 1380 void __sched yield(void) 1381 { 1382 set_current_state(TASK_RUNNING); 1383 do_sched_yield(); 1384 } 1385 EXPORT_SYMBOL(yield); 1386 1387 /** 1388 * yield_to - yield the current processor to another thread in 1389 * your thread group, or accelerate that thread toward the 1390 * processor it's on. 1391 * @p: target task 1392 * @preempt: whether task preemption is allowed or not 1393 * 1394 * It's the caller's job to ensure that the target task struct 1395 * can't go away on us before we can do any checks. 1396 * 1397 * Return: 1398 * true (>0) if we indeed boosted the target task. 1399 * false (0) if we failed to boost the target. 1400 * -ESRCH if there's no task to yield to. 1401 */ 1402 int __sched yield_to(struct task_struct *p, bool preempt) 1403 { 1404 struct task_struct *curr; 1405 struct rq *rq, *p_rq; 1406 int yielded = 0; 1407 1408 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 1409 rq = this_rq(); 1410 curr = rq->donor; 1411 1412 again: 1413 p_rq = task_rq(p); 1414 /* 1415 * If we're the only runnable task on the rq and target rq also 1416 * has only one task, there's absolutely no point in yielding. 1417 */ 1418 if (rq->nr_running == 1 && p_rq->nr_running == 1) 1419 return -ESRCH; 1420 1421 guard(double_rq_lock)(rq, p_rq); 1422 if (task_rq(p) != p_rq) 1423 goto again; 1424 1425 if (!curr->sched_class->yield_to_task) 1426 return 0; 1427 1428 if (curr->sched_class != p->sched_class) 1429 return 0; 1430 1431 if (task_on_cpu(p_rq, p) || !task_is_running(p)) 1432 return 0; 1433 1434 yielded = curr->sched_class->yield_to_task(rq, p); 1435 if (yielded) { 1436 schedstat_inc(rq->yld_count); 1437 /* 1438 * Make p's CPU reschedule; pick_next_entity 1439 * takes care of fairness. 1440 */ 1441 if (preempt && rq != p_rq) 1442 resched_curr(p_rq); 1443 } 1444 } 1445 1446 if (yielded) 1447 schedule(); 1448 1449 return yielded; 1450 } 1451 EXPORT_SYMBOL_GPL(yield_to); 1452 1453 /** 1454 * sys_sched_get_priority_max - return maximum RT priority. 1455 * @policy: scheduling class. 1456 * 1457 * Return: On success, this syscall returns the maximum 1458 * rt_priority that can be used by a given scheduling class. 1459 * On failure, a negative error code is returned. 1460 */ 1461 SYSCALL_DEFINE1(sched_get_priority_max, int, policy) 1462 { 1463 int ret = -EINVAL; 1464 1465 switch (policy) { 1466 case SCHED_FIFO: 1467 case SCHED_RR: 1468 ret = MAX_RT_PRIO-1; 1469 break; 1470 case SCHED_DEADLINE: 1471 case SCHED_NORMAL: 1472 case SCHED_BATCH: 1473 case SCHED_IDLE: 1474 case SCHED_EXT: 1475 ret = 0; 1476 break; 1477 } 1478 return ret; 1479 } 1480 1481 /** 1482 * sys_sched_get_priority_min - return minimum RT priority. 1483 * @policy: scheduling class. 1484 * 1485 * Return: On success, this syscall returns the minimum 1486 * rt_priority that can be used by a given scheduling class. 1487 * On failure, a negative error code is returned. 1488 */ 1489 SYSCALL_DEFINE1(sched_get_priority_min, int, policy) 1490 { 1491 int ret = -EINVAL; 1492 1493 switch (policy) { 1494 case SCHED_FIFO: 1495 case SCHED_RR: 1496 ret = 1; 1497 break; 1498 case SCHED_DEADLINE: 1499 case SCHED_NORMAL: 1500 case SCHED_BATCH: 1501 case SCHED_IDLE: 1502 case SCHED_EXT: 1503 ret = 0; 1504 } 1505 return ret; 1506 } 1507 1508 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) 1509 { 1510 unsigned int time_slice = 0; 1511 int retval; 1512 1513 if (pid < 0) 1514 return -EINVAL; 1515 1516 scoped_guard (rcu) { 1517 struct task_struct *p = find_process_by_pid(pid); 1518 if (!p) 1519 return -ESRCH; 1520 1521 retval = security_task_getscheduler(p); 1522 if (retval) 1523 return retval; 1524 1525 scoped_guard (task_rq_lock, p) { 1526 struct rq *rq = scope.rq; 1527 if (p->sched_class->get_rr_interval) 1528 time_slice = p->sched_class->get_rr_interval(rq, p); 1529 } 1530 } 1531 1532 jiffies_to_timespec64(time_slice, t); 1533 return 0; 1534 } 1535 1536 /** 1537 * sys_sched_rr_get_interval - return the default time-slice of a process. 1538 * @pid: pid of the process. 1539 * @interval: userspace pointer to the time-slice value. 1540 * 1541 * this syscall writes the default time-slice value of a given process 1542 * into the user-space timespec buffer. A value of '0' means infinity. 1543 * 1544 * Return: On success, 0 and the time-slice is in @interval. Otherwise, 1545 * an error code. 1546 */ 1547 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, 1548 struct __kernel_timespec __user *, interval) 1549 { 1550 struct timespec64 t; 1551 int retval = sched_rr_get_interval(pid, &t); 1552 1553 if (retval == 0) 1554 retval = put_timespec64(&t, interval); 1555 1556 return retval; 1557 } 1558 1559 #ifdef CONFIG_COMPAT_32BIT_TIME 1560 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, 1561 struct old_timespec32 __user *, interval) 1562 { 1563 struct timespec64 t; 1564 int retval = sched_rr_get_interval(pid, &t); 1565 1566 if (retval == 0) 1567 retval = put_old_timespec32(&t, interval); 1568 return retval; 1569 } 1570 #endif 1571