xref: /linux/kernel/sched/syscalls.c (revision 665db14d0712ac27f6a0081510bd811efb3faa3c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/syscalls.c
4  *
5  *  Core kernel scheduler syscalls related code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/sched.h>
11 #include <linux/cpuset.h>
12 #include <linux/sched/debug.h>
13 
14 #include <uapi/linux/sched/types.h>
15 
16 #include "sched.h"
17 #include "autogroup.h"
18 
19 static inline int __normal_prio(int policy, int rt_prio, int nice)
20 {
21 	int prio;
22 
23 	if (dl_policy(policy))
24 		prio = MAX_DL_PRIO - 1;
25 	else if (rt_policy(policy))
26 		prio = MAX_RT_PRIO - 1 - rt_prio;
27 	else
28 		prio = NICE_TO_PRIO(nice);
29 
30 	return prio;
31 }
32 
33 /*
34  * Calculate the expected normal priority: i.e. priority
35  * without taking RT-inheritance into account. Might be
36  * boosted by interactivity modifiers. Changes upon fork,
37  * setprio syscalls, and whenever the interactivity
38  * estimator recalculates.
39  */
40 static inline int normal_prio(struct task_struct *p)
41 {
42 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43 }
44 
45 /*
46  * Calculate the current priority, i.e. the priority
47  * taken into account by the scheduler. This value might
48  * be boosted by RT tasks, or might be boosted by
49  * interactivity modifiers. Will be RT if the task got
50  * RT-boosted. If not then it returns p->normal_prio.
51  */
52 static int effective_prio(struct task_struct *p)
53 {
54 	p->normal_prio = normal_prio(p);
55 	/*
56 	 * If we are RT tasks or we were boosted to RT priority,
57 	 * keep the priority unchanged. Otherwise, update priority
58 	 * to the normal priority:
59 	 */
60 	if (!rt_prio(p->prio))
61 		return p->normal_prio;
62 	return p->prio;
63 }
64 
65 void set_user_nice(struct task_struct *p, long nice)
66 {
67 	bool queued, running;
68 	struct rq *rq;
69 	int old_prio;
70 
71 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
72 		return;
73 	/*
74 	 * We have to be careful, if called from sys_setpriority(),
75 	 * the task might be in the middle of scheduling on another CPU.
76 	 */
77 	CLASS(task_rq_lock, rq_guard)(p);
78 	rq = rq_guard.rq;
79 
80 	update_rq_clock(rq);
81 
82 	/*
83 	 * The RT priorities are set via sched_setscheduler(), but we still
84 	 * allow the 'normal' nice value to be set - but as expected
85 	 * it won't have any effect on scheduling until the task is
86 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
87 	 */
88 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
89 		p->static_prio = NICE_TO_PRIO(nice);
90 		return;
91 	}
92 
93 	queued = task_on_rq_queued(p);
94 	running = task_current(rq, p);
95 	if (queued)
96 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
97 	if (running)
98 		put_prev_task(rq, p);
99 
100 	p->static_prio = NICE_TO_PRIO(nice);
101 	set_load_weight(p, true);
102 	old_prio = p->prio;
103 	p->prio = effective_prio(p);
104 
105 	if (queued)
106 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
107 	if (running)
108 		set_next_task(rq, p);
109 
110 	/*
111 	 * If the task increased its priority or is running and
112 	 * lowered its priority, then reschedule its CPU:
113 	 */
114 	p->sched_class->prio_changed(rq, p, old_prio);
115 }
116 EXPORT_SYMBOL(set_user_nice);
117 
118 /*
119  * is_nice_reduction - check if nice value is an actual reduction
120  *
121  * Similar to can_nice() but does not perform a capability check.
122  *
123  * @p: task
124  * @nice: nice value
125  */
126 static bool is_nice_reduction(const struct task_struct *p, const int nice)
127 {
128 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
129 	int nice_rlim = nice_to_rlimit(nice);
130 
131 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
132 }
133 
134 /*
135  * can_nice - check if a task can reduce its nice value
136  * @p: task
137  * @nice: nice value
138  */
139 int can_nice(const struct task_struct *p, const int nice)
140 {
141 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
142 }
143 
144 #ifdef __ARCH_WANT_SYS_NICE
145 
146 /*
147  * sys_nice - change the priority of the current process.
148  * @increment: priority increment
149  *
150  * sys_setpriority is a more generic, but much slower function that
151  * does similar things.
152  */
153 SYSCALL_DEFINE1(nice, int, increment)
154 {
155 	long nice, retval;
156 
157 	/*
158 	 * Setpriority might change our priority at the same moment.
159 	 * We don't have to worry. Conceptually one call occurs first
160 	 * and we have a single winner.
161 	 */
162 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
163 	nice = task_nice(current) + increment;
164 
165 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
166 	if (increment < 0 && !can_nice(current, nice))
167 		return -EPERM;
168 
169 	retval = security_task_setnice(current, nice);
170 	if (retval)
171 		return retval;
172 
173 	set_user_nice(current, nice);
174 	return 0;
175 }
176 
177 #endif
178 
179 /**
180  * task_prio - return the priority value of a given task.
181  * @p: the task in question.
182  *
183  * Return: The priority value as seen by users in /proc.
184  *
185  * sched policy         return value   kernel prio    user prio/nice
186  *
187  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
188  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
189  * deadline                     -101             -1           0
190  */
191 int task_prio(const struct task_struct *p)
192 {
193 	return p->prio - MAX_RT_PRIO;
194 }
195 
196 /**
197  * idle_cpu - is a given CPU idle currently?
198  * @cpu: the processor in question.
199  *
200  * Return: 1 if the CPU is currently idle. 0 otherwise.
201  */
202 int idle_cpu(int cpu)
203 {
204 	struct rq *rq = cpu_rq(cpu);
205 
206 	if (rq->curr != rq->idle)
207 		return 0;
208 
209 	if (rq->nr_running)
210 		return 0;
211 
212 #ifdef CONFIG_SMP
213 	if (rq->ttwu_pending)
214 		return 0;
215 #endif
216 
217 	return 1;
218 }
219 
220 /**
221  * available_idle_cpu - is a given CPU idle for enqueuing work.
222  * @cpu: the CPU in question.
223  *
224  * Return: 1 if the CPU is currently idle. 0 otherwise.
225  */
226 int available_idle_cpu(int cpu)
227 {
228 	if (!idle_cpu(cpu))
229 		return 0;
230 
231 	if (vcpu_is_preempted(cpu))
232 		return 0;
233 
234 	return 1;
235 }
236 
237 /**
238  * idle_task - return the idle task for a given CPU.
239  * @cpu: the processor in question.
240  *
241  * Return: The idle task for the CPU @cpu.
242  */
243 struct task_struct *idle_task(int cpu)
244 {
245 	return cpu_rq(cpu)->idle;
246 }
247 
248 #ifdef CONFIG_SCHED_CORE
249 int sched_core_idle_cpu(int cpu)
250 {
251 	struct rq *rq = cpu_rq(cpu);
252 
253 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
254 		return 1;
255 
256 	return idle_cpu(cpu);
257 }
258 
259 #endif
260 
261 #ifdef CONFIG_SMP
262 /*
263  * This function computes an effective utilization for the given CPU, to be
264  * used for frequency selection given the linear relation: f = u * f_max.
265  *
266  * The scheduler tracks the following metrics:
267  *
268  *   cpu_util_{cfs,rt,dl,irq}()
269  *   cpu_bw_dl()
270  *
271  * Where the cfs,rt and dl util numbers are tracked with the same metric and
272  * synchronized windows and are thus directly comparable.
273  *
274  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
275  * which excludes things like IRQ and steal-time. These latter are then accrued
276  * in the IRQ utilization.
277  *
278  * The DL bandwidth number OTOH is not a measured metric but a value computed
279  * based on the task model parameters and gives the minimal utilization
280  * required to meet deadlines.
281  */
282 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
283 				 unsigned long *min,
284 				 unsigned long *max)
285 {
286 	unsigned long util, irq, scale;
287 	struct rq *rq = cpu_rq(cpu);
288 
289 	scale = arch_scale_cpu_capacity(cpu);
290 
291 	/*
292 	 * Early check to see if IRQ/steal time saturates the CPU, can be
293 	 * because of inaccuracies in how we track these -- see
294 	 * update_irq_load_avg().
295 	 */
296 	irq = cpu_util_irq(rq);
297 	if (unlikely(irq >= scale)) {
298 		if (min)
299 			*min = scale;
300 		if (max)
301 			*max = scale;
302 		return scale;
303 	}
304 
305 	if (min) {
306 		/*
307 		 * The minimum utilization returns the highest level between:
308 		 * - the computed DL bandwidth needed with the IRQ pressure which
309 		 *   steals time to the deadline task.
310 		 * - The minimum performance requirement for CFS and/or RT.
311 		 */
312 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
313 
314 		/*
315 		 * When an RT task is runnable and uclamp is not used, we must
316 		 * ensure that the task will run at maximum compute capacity.
317 		 */
318 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
319 			*min = max(*min, scale);
320 	}
321 
322 	/*
323 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
324 	 * CFS tasks and we use the same metric to track the effective
325 	 * utilization (PELT windows are synchronized) we can directly add them
326 	 * to obtain the CPU's actual utilization.
327 	 */
328 	util = util_cfs + cpu_util_rt(rq);
329 	util += cpu_util_dl(rq);
330 
331 	/*
332 	 * The maximum hint is a soft bandwidth requirement, which can be lower
333 	 * than the actual utilization because of uclamp_max requirements.
334 	 */
335 	if (max)
336 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
337 
338 	if (util >= scale)
339 		return scale;
340 
341 	/*
342 	 * There is still idle time; further improve the number by using the
343 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
344 	 * need to scale the task numbers:
345 	 *
346 	 *              max - irq
347 	 *   U' = irq + --------- * U
348 	 *                 max
349 	 */
350 	util = scale_irq_capacity(util, irq, scale);
351 	util += irq;
352 
353 	return min(scale, util);
354 }
355 
356 unsigned long sched_cpu_util(int cpu)
357 {
358 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
359 }
360 #endif /* CONFIG_SMP */
361 
362 /**
363  * find_process_by_pid - find a process with a matching PID value.
364  * @pid: the pid in question.
365  *
366  * The task of @pid, if found. %NULL otherwise.
367  */
368 static struct task_struct *find_process_by_pid(pid_t pid)
369 {
370 	return pid ? find_task_by_vpid(pid) : current;
371 }
372 
373 static struct task_struct *find_get_task(pid_t pid)
374 {
375 	struct task_struct *p;
376 	guard(rcu)();
377 
378 	p = find_process_by_pid(pid);
379 	if (likely(p))
380 		get_task_struct(p);
381 
382 	return p;
383 }
384 
385 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
386 	     find_get_task(pid), pid_t pid)
387 
388 /*
389  * sched_setparam() passes in -1 for its policy, to let the functions
390  * it calls know not to change it.
391  */
392 #define SETPARAM_POLICY	-1
393 
394 static void __setscheduler_params(struct task_struct *p,
395 		const struct sched_attr *attr)
396 {
397 	int policy = attr->sched_policy;
398 
399 	if (policy == SETPARAM_POLICY)
400 		policy = p->policy;
401 
402 	p->policy = policy;
403 
404 	if (dl_policy(policy))
405 		__setparam_dl(p, attr);
406 	else if (fair_policy(policy))
407 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
408 
409 	/* rt-policy tasks do not have a timerslack */
410 	if (task_is_realtime(p)) {
411 		p->timer_slack_ns = 0;
412 	} else if (p->timer_slack_ns == 0) {
413 		/* when switching back to non-rt policy, restore timerslack */
414 		p->timer_slack_ns = p->default_timer_slack_ns;
415 	}
416 
417 	/*
418 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
419 	 * !rt_policy. Always setting this ensures that things like
420 	 * getparam()/getattr() don't report silly values for !rt tasks.
421 	 */
422 	p->rt_priority = attr->sched_priority;
423 	p->normal_prio = normal_prio(p);
424 	set_load_weight(p, true);
425 }
426 
427 /*
428  * Check the target process has a UID that matches the current process's:
429  */
430 static bool check_same_owner(struct task_struct *p)
431 {
432 	const struct cred *cred = current_cred(), *pcred;
433 	guard(rcu)();
434 
435 	pcred = __task_cred(p);
436 	return (uid_eq(cred->euid, pcred->euid) ||
437 		uid_eq(cred->euid, pcred->uid));
438 }
439 
440 #ifdef CONFIG_UCLAMP_TASK
441 
442 static int uclamp_validate(struct task_struct *p,
443 			   const struct sched_attr *attr)
444 {
445 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
446 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
447 
448 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
449 		util_min = attr->sched_util_min;
450 
451 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
452 			return -EINVAL;
453 	}
454 
455 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
456 		util_max = attr->sched_util_max;
457 
458 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
459 			return -EINVAL;
460 	}
461 
462 	if (util_min != -1 && util_max != -1 && util_min > util_max)
463 		return -EINVAL;
464 
465 	/*
466 	 * We have valid uclamp attributes; make sure uclamp is enabled.
467 	 *
468 	 * We need to do that here, because enabling static branches is a
469 	 * blocking operation which obviously cannot be done while holding
470 	 * scheduler locks.
471 	 */
472 	static_branch_enable(&sched_uclamp_used);
473 
474 	return 0;
475 }
476 
477 static bool uclamp_reset(const struct sched_attr *attr,
478 			 enum uclamp_id clamp_id,
479 			 struct uclamp_se *uc_se)
480 {
481 	/* Reset on sched class change for a non user-defined clamp value. */
482 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
483 	    !uc_se->user_defined)
484 		return true;
485 
486 	/* Reset on sched_util_{min,max} == -1. */
487 	if (clamp_id == UCLAMP_MIN &&
488 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
489 	    attr->sched_util_min == -1) {
490 		return true;
491 	}
492 
493 	if (clamp_id == UCLAMP_MAX &&
494 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
495 	    attr->sched_util_max == -1) {
496 		return true;
497 	}
498 
499 	return false;
500 }
501 
502 static void __setscheduler_uclamp(struct task_struct *p,
503 				  const struct sched_attr *attr)
504 {
505 	enum uclamp_id clamp_id;
506 
507 	for_each_clamp_id(clamp_id) {
508 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
509 		unsigned int value;
510 
511 		if (!uclamp_reset(attr, clamp_id, uc_se))
512 			continue;
513 
514 		/*
515 		 * RT by default have a 100% boost value that could be modified
516 		 * at runtime.
517 		 */
518 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
519 			value = sysctl_sched_uclamp_util_min_rt_default;
520 		else
521 			value = uclamp_none(clamp_id);
522 
523 		uclamp_se_set(uc_se, value, false);
524 
525 	}
526 
527 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
528 		return;
529 
530 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
531 	    attr->sched_util_min != -1) {
532 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
533 			      attr->sched_util_min, true);
534 	}
535 
536 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
537 	    attr->sched_util_max != -1) {
538 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
539 			      attr->sched_util_max, true);
540 	}
541 }
542 
543 #else /* !CONFIG_UCLAMP_TASK: */
544 
545 static inline int uclamp_validate(struct task_struct *p,
546 				  const struct sched_attr *attr)
547 {
548 	return -EOPNOTSUPP;
549 }
550 static void __setscheduler_uclamp(struct task_struct *p,
551 				  const struct sched_attr *attr) { }
552 #endif
553 
554 /*
555  * Allow unprivileged RT tasks to decrease priority.
556  * Only issue a capable test if needed and only once to avoid an audit
557  * event on permitted non-privileged operations:
558  */
559 static int user_check_sched_setscheduler(struct task_struct *p,
560 					 const struct sched_attr *attr,
561 					 int policy, int reset_on_fork)
562 {
563 	if (fair_policy(policy)) {
564 		if (attr->sched_nice < task_nice(p) &&
565 		    !is_nice_reduction(p, attr->sched_nice))
566 			goto req_priv;
567 	}
568 
569 	if (rt_policy(policy)) {
570 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
571 
572 		/* Can't set/change the rt policy: */
573 		if (policy != p->policy && !rlim_rtprio)
574 			goto req_priv;
575 
576 		/* Can't increase priority: */
577 		if (attr->sched_priority > p->rt_priority &&
578 		    attr->sched_priority > rlim_rtprio)
579 			goto req_priv;
580 	}
581 
582 	/*
583 	 * Can't set/change SCHED_DEADLINE policy at all for now
584 	 * (safest behavior); in the future we would like to allow
585 	 * unprivileged DL tasks to increase their relative deadline
586 	 * or reduce their runtime (both ways reducing utilization)
587 	 */
588 	if (dl_policy(policy))
589 		goto req_priv;
590 
591 	/*
592 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
593 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
594 	 */
595 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
596 		if (!is_nice_reduction(p, task_nice(p)))
597 			goto req_priv;
598 	}
599 
600 	/* Can't change other user's priorities: */
601 	if (!check_same_owner(p))
602 		goto req_priv;
603 
604 	/* Normal users shall not reset the sched_reset_on_fork flag: */
605 	if (p->sched_reset_on_fork && !reset_on_fork)
606 		goto req_priv;
607 
608 	return 0;
609 
610 req_priv:
611 	if (!capable(CAP_SYS_NICE))
612 		return -EPERM;
613 
614 	return 0;
615 }
616 
617 int __sched_setscheduler(struct task_struct *p,
618 			 const struct sched_attr *attr,
619 			 bool user, bool pi)
620 {
621 	int oldpolicy = -1, policy = attr->sched_policy;
622 	int retval, oldprio, newprio, queued, running;
623 	const struct sched_class *prev_class;
624 	struct balance_callback *head;
625 	struct rq_flags rf;
626 	int reset_on_fork;
627 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
628 	struct rq *rq;
629 	bool cpuset_locked = false;
630 
631 	/* The pi code expects interrupts enabled */
632 	BUG_ON(pi && in_interrupt());
633 recheck:
634 	/* Double check policy once rq lock held: */
635 	if (policy < 0) {
636 		reset_on_fork = p->sched_reset_on_fork;
637 		policy = oldpolicy = p->policy;
638 	} else {
639 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
640 
641 		if (!valid_policy(policy))
642 			return -EINVAL;
643 	}
644 
645 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
646 		return -EINVAL;
647 
648 	/*
649 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
650 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
651 	 * SCHED_BATCH and SCHED_IDLE is 0.
652 	 */
653 	if (attr->sched_priority > MAX_RT_PRIO-1)
654 		return -EINVAL;
655 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
656 	    (rt_policy(policy) != (attr->sched_priority != 0)))
657 		return -EINVAL;
658 
659 	if (user) {
660 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
661 		if (retval)
662 			return retval;
663 
664 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
665 			return -EINVAL;
666 
667 		retval = security_task_setscheduler(p);
668 		if (retval)
669 			return retval;
670 	}
671 
672 	/* Update task specific "requested" clamps */
673 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
674 		retval = uclamp_validate(p, attr);
675 		if (retval)
676 			return retval;
677 	}
678 
679 	/*
680 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
681 	 * information.
682 	 */
683 	if (dl_policy(policy) || dl_policy(p->policy)) {
684 		cpuset_locked = true;
685 		cpuset_lock();
686 	}
687 
688 	/*
689 	 * Make sure no PI-waiters arrive (or leave) while we are
690 	 * changing the priority of the task:
691 	 *
692 	 * To be able to change p->policy safely, the appropriate
693 	 * runqueue lock must be held.
694 	 */
695 	rq = task_rq_lock(p, &rf);
696 	update_rq_clock(rq);
697 
698 	/*
699 	 * Changing the policy of the stop threads its a very bad idea:
700 	 */
701 	if (p == rq->stop) {
702 		retval = -EINVAL;
703 		goto unlock;
704 	}
705 
706 	/*
707 	 * If not changing anything there's no need to proceed further,
708 	 * but store a possible modification of reset_on_fork.
709 	 */
710 	if (unlikely(policy == p->policy)) {
711 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
712 			goto change;
713 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
714 			goto change;
715 		if (dl_policy(policy) && dl_param_changed(p, attr))
716 			goto change;
717 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
718 			goto change;
719 
720 		p->sched_reset_on_fork = reset_on_fork;
721 		retval = 0;
722 		goto unlock;
723 	}
724 change:
725 
726 	if (user) {
727 #ifdef CONFIG_RT_GROUP_SCHED
728 		/*
729 		 * Do not allow real-time tasks into groups that have no runtime
730 		 * assigned.
731 		 */
732 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
733 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
734 				!task_group_is_autogroup(task_group(p))) {
735 			retval = -EPERM;
736 			goto unlock;
737 		}
738 #endif
739 #ifdef CONFIG_SMP
740 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
741 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
742 			cpumask_t *span = rq->rd->span;
743 
744 			/*
745 			 * Don't allow tasks with an affinity mask smaller than
746 			 * the entire root_domain to become SCHED_DEADLINE. We
747 			 * will also fail if there's no bandwidth available.
748 			 */
749 			if (!cpumask_subset(span, p->cpus_ptr) ||
750 			    rq->rd->dl_bw.bw == 0) {
751 				retval = -EPERM;
752 				goto unlock;
753 			}
754 		}
755 #endif
756 	}
757 
758 	/* Re-check policy now with rq lock held: */
759 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
760 		policy = oldpolicy = -1;
761 		task_rq_unlock(rq, p, &rf);
762 		if (cpuset_locked)
763 			cpuset_unlock();
764 		goto recheck;
765 	}
766 
767 	/*
768 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
769 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
770 	 * is available.
771 	 */
772 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
773 		retval = -EBUSY;
774 		goto unlock;
775 	}
776 
777 	p->sched_reset_on_fork = reset_on_fork;
778 	oldprio = p->prio;
779 
780 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
781 	if (pi) {
782 		/*
783 		 * Take priority boosted tasks into account. If the new
784 		 * effective priority is unchanged, we just store the new
785 		 * normal parameters and do not touch the scheduler class and
786 		 * the runqueue. This will be done when the task deboost
787 		 * itself.
788 		 */
789 		newprio = rt_effective_prio(p, newprio);
790 		if (newprio == oldprio)
791 			queue_flags &= ~DEQUEUE_MOVE;
792 	}
793 
794 	queued = task_on_rq_queued(p);
795 	running = task_current(rq, p);
796 	if (queued)
797 		dequeue_task(rq, p, queue_flags);
798 	if (running)
799 		put_prev_task(rq, p);
800 
801 	prev_class = p->sched_class;
802 
803 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
804 		__setscheduler_params(p, attr);
805 		__setscheduler_prio(p, newprio);
806 	}
807 	__setscheduler_uclamp(p, attr);
808 
809 	if (queued) {
810 		/*
811 		 * We enqueue to tail when the priority of a task is
812 		 * increased (user space view).
813 		 */
814 		if (oldprio < p->prio)
815 			queue_flags |= ENQUEUE_HEAD;
816 
817 		enqueue_task(rq, p, queue_flags);
818 	}
819 	if (running)
820 		set_next_task(rq, p);
821 
822 	check_class_changed(rq, p, prev_class, oldprio);
823 
824 	/* Avoid rq from going away on us: */
825 	preempt_disable();
826 	head = splice_balance_callbacks(rq);
827 	task_rq_unlock(rq, p, &rf);
828 
829 	if (pi) {
830 		if (cpuset_locked)
831 			cpuset_unlock();
832 		rt_mutex_adjust_pi(p);
833 	}
834 
835 	/* Run balance callbacks after we've adjusted the PI chain: */
836 	balance_callbacks(rq, head);
837 	preempt_enable();
838 
839 	return 0;
840 
841 unlock:
842 	task_rq_unlock(rq, p, &rf);
843 	if (cpuset_locked)
844 		cpuset_unlock();
845 	return retval;
846 }
847 
848 static int _sched_setscheduler(struct task_struct *p, int policy,
849 			       const struct sched_param *param, bool check)
850 {
851 	struct sched_attr attr = {
852 		.sched_policy   = policy,
853 		.sched_priority = param->sched_priority,
854 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
855 	};
856 
857 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
858 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
859 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
860 		policy &= ~SCHED_RESET_ON_FORK;
861 		attr.sched_policy = policy;
862 	}
863 
864 	return __sched_setscheduler(p, &attr, check, true);
865 }
866 /**
867  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
868  * @p: the task in question.
869  * @policy: new policy.
870  * @param: structure containing the new RT priority.
871  *
872  * Use sched_set_fifo(), read its comment.
873  *
874  * Return: 0 on success. An error code otherwise.
875  *
876  * NOTE that the task may be already dead.
877  */
878 int sched_setscheduler(struct task_struct *p, int policy,
879 		       const struct sched_param *param)
880 {
881 	return _sched_setscheduler(p, policy, param, true);
882 }
883 
884 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
885 {
886 	return __sched_setscheduler(p, attr, true, true);
887 }
888 
889 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
890 {
891 	return __sched_setscheduler(p, attr, false, true);
892 }
893 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
894 
895 /**
896  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
897  * @p: the task in question.
898  * @policy: new policy.
899  * @param: structure containing the new RT priority.
900  *
901  * Just like sched_setscheduler, only don't bother checking if the
902  * current context has permission.  For example, this is needed in
903  * stop_machine(): we create temporary high priority worker threads,
904  * but our caller might not have that capability.
905  *
906  * Return: 0 on success. An error code otherwise.
907  */
908 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
909 			       const struct sched_param *param)
910 {
911 	return _sched_setscheduler(p, policy, param, false);
912 }
913 
914 /*
915  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
916  * incapable of resource management, which is the one thing an OS really should
917  * be doing.
918  *
919  * This is of course the reason it is limited to privileged users only.
920  *
921  * Worse still; it is fundamentally impossible to compose static priority
922  * workloads. You cannot take two correctly working static prio workloads
923  * and smash them together and still expect them to work.
924  *
925  * For this reason 'all' FIFO tasks the kernel creates are basically at:
926  *
927  *   MAX_RT_PRIO / 2
928  *
929  * The administrator _MUST_ configure the system, the kernel simply doesn't
930  * know enough information to make a sensible choice.
931  */
932 void sched_set_fifo(struct task_struct *p)
933 {
934 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
935 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
936 }
937 EXPORT_SYMBOL_GPL(sched_set_fifo);
938 
939 /*
940  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
941  */
942 void sched_set_fifo_low(struct task_struct *p)
943 {
944 	struct sched_param sp = { .sched_priority = 1 };
945 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
946 }
947 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
948 
949 void sched_set_normal(struct task_struct *p, int nice)
950 {
951 	struct sched_attr attr = {
952 		.sched_policy = SCHED_NORMAL,
953 		.sched_nice = nice,
954 	};
955 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
956 }
957 EXPORT_SYMBOL_GPL(sched_set_normal);
958 
959 static int
960 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
961 {
962 	struct sched_param lparam;
963 
964 	if (!param || pid < 0)
965 		return -EINVAL;
966 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
967 		return -EFAULT;
968 
969 	CLASS(find_get_task, p)(pid);
970 	if (!p)
971 		return -ESRCH;
972 
973 	return sched_setscheduler(p, policy, &lparam);
974 }
975 
976 /*
977  * Mimics kernel/events/core.c perf_copy_attr().
978  */
979 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
980 {
981 	u32 size;
982 	int ret;
983 
984 	/* Zero the full structure, so that a short copy will be nice: */
985 	memset(attr, 0, sizeof(*attr));
986 
987 	ret = get_user(size, &uattr->size);
988 	if (ret)
989 		return ret;
990 
991 	/* ABI compatibility quirk: */
992 	if (!size)
993 		size = SCHED_ATTR_SIZE_VER0;
994 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
995 		goto err_size;
996 
997 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
998 	if (ret) {
999 		if (ret == -E2BIG)
1000 			goto err_size;
1001 		return ret;
1002 	}
1003 
1004 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
1005 	    size < SCHED_ATTR_SIZE_VER1)
1006 		return -EINVAL;
1007 
1008 	/*
1009 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
1010 	 * to be strict and return an error on out-of-bounds values?
1011 	 */
1012 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
1013 
1014 	return 0;
1015 
1016 err_size:
1017 	put_user(sizeof(*attr), &uattr->size);
1018 	return -E2BIG;
1019 }
1020 
1021 static void get_params(struct task_struct *p, struct sched_attr *attr)
1022 {
1023 	if (task_has_dl_policy(p))
1024 		__getparam_dl(p, attr);
1025 	else if (task_has_rt_policy(p))
1026 		attr->sched_priority = p->rt_priority;
1027 	else
1028 		attr->sched_nice = task_nice(p);
1029 }
1030 
1031 /**
1032  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
1033  * @pid: the pid in question.
1034  * @policy: new policy.
1035  * @param: structure containing the new RT priority.
1036  *
1037  * Return: 0 on success. An error code otherwise.
1038  */
1039 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1040 {
1041 	if (policy < 0)
1042 		return -EINVAL;
1043 
1044 	return do_sched_setscheduler(pid, policy, param);
1045 }
1046 
1047 /**
1048  * sys_sched_setparam - set/change the RT priority of a thread
1049  * @pid: the pid in question.
1050  * @param: structure containing the new RT priority.
1051  *
1052  * Return: 0 on success. An error code otherwise.
1053  */
1054 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1055 {
1056 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1057 }
1058 
1059 /**
1060  * sys_sched_setattr - same as above, but with extended sched_attr
1061  * @pid: the pid in question.
1062  * @uattr: structure containing the extended parameters.
1063  * @flags: for future extension.
1064  */
1065 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
1066 			       unsigned int, flags)
1067 {
1068 	struct sched_attr attr;
1069 	int retval;
1070 
1071 	if (!uattr || pid < 0 || flags)
1072 		return -EINVAL;
1073 
1074 	retval = sched_copy_attr(uattr, &attr);
1075 	if (retval)
1076 		return retval;
1077 
1078 	if ((int)attr.sched_policy < 0)
1079 		return -EINVAL;
1080 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
1081 		attr.sched_policy = SETPARAM_POLICY;
1082 
1083 	CLASS(find_get_task, p)(pid);
1084 	if (!p)
1085 		return -ESRCH;
1086 
1087 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
1088 		get_params(p, &attr);
1089 
1090 	return sched_setattr(p, &attr);
1091 }
1092 
1093 /**
1094  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
1095  * @pid: the pid in question.
1096  *
1097  * Return: On success, the policy of the thread. Otherwise, a negative error
1098  * code.
1099  */
1100 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1101 {
1102 	struct task_struct *p;
1103 	int retval;
1104 
1105 	if (pid < 0)
1106 		return -EINVAL;
1107 
1108 	guard(rcu)();
1109 	p = find_process_by_pid(pid);
1110 	if (!p)
1111 		return -ESRCH;
1112 
1113 	retval = security_task_getscheduler(p);
1114 	if (!retval) {
1115 		retval = p->policy;
1116 		if (p->sched_reset_on_fork)
1117 			retval |= SCHED_RESET_ON_FORK;
1118 	}
1119 	return retval;
1120 }
1121 
1122 /**
1123  * sys_sched_getparam - get the RT priority of a thread
1124  * @pid: the pid in question.
1125  * @param: structure containing the RT priority.
1126  *
1127  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1128  * code.
1129  */
1130 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1131 {
1132 	struct sched_param lp = { .sched_priority = 0 };
1133 	struct task_struct *p;
1134 	int retval;
1135 
1136 	if (!param || pid < 0)
1137 		return -EINVAL;
1138 
1139 	scoped_guard (rcu) {
1140 		p = find_process_by_pid(pid);
1141 		if (!p)
1142 			return -ESRCH;
1143 
1144 		retval = security_task_getscheduler(p);
1145 		if (retval)
1146 			return retval;
1147 
1148 		if (task_has_rt_policy(p))
1149 			lp.sched_priority = p->rt_priority;
1150 	}
1151 
1152 	/*
1153 	 * This one might sleep, we cannot do it with a spinlock held ...
1154 	 */
1155 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1156 }
1157 
1158 /*
1159  * Copy the kernel size attribute structure (which might be larger
1160  * than what user-space knows about) to user-space.
1161  *
1162  * Note that all cases are valid: user-space buffer can be larger or
1163  * smaller than the kernel-space buffer. The usual case is that both
1164  * have the same size.
1165  */
1166 static int
1167 sched_attr_copy_to_user(struct sched_attr __user *uattr,
1168 			struct sched_attr *kattr,
1169 			unsigned int usize)
1170 {
1171 	unsigned int ksize = sizeof(*kattr);
1172 
1173 	if (!access_ok(uattr, usize))
1174 		return -EFAULT;
1175 
1176 	/*
1177 	 * sched_getattr() ABI forwards and backwards compatibility:
1178 	 *
1179 	 * If usize == ksize then we just copy everything to user-space and all is good.
1180 	 *
1181 	 * If usize < ksize then we only copy as much as user-space has space for,
1182 	 * this keeps ABI compatibility as well. We skip the rest.
1183 	 *
1184 	 * If usize > ksize then user-space is using a newer version of the ABI,
1185 	 * which part the kernel doesn't know about. Just ignore it - tooling can
1186 	 * detect the kernel's knowledge of attributes from the attr->size value
1187 	 * which is set to ksize in this case.
1188 	 */
1189 	kattr->size = min(usize, ksize);
1190 
1191 	if (copy_to_user(uattr, kattr, kattr->size))
1192 		return -EFAULT;
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1199  * @pid: the pid in question.
1200  * @uattr: structure containing the extended parameters.
1201  * @usize: sizeof(attr) for fwd/bwd comp.
1202  * @flags: for future extension.
1203  */
1204 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1205 		unsigned int, usize, unsigned int, flags)
1206 {
1207 	struct sched_attr kattr = { };
1208 	struct task_struct *p;
1209 	int retval;
1210 
1211 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
1212 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
1213 		return -EINVAL;
1214 
1215 	scoped_guard (rcu) {
1216 		p = find_process_by_pid(pid);
1217 		if (!p)
1218 			return -ESRCH;
1219 
1220 		retval = security_task_getscheduler(p);
1221 		if (retval)
1222 			return retval;
1223 
1224 		kattr.sched_policy = p->policy;
1225 		if (p->sched_reset_on_fork)
1226 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1227 		get_params(p, &kattr);
1228 		kattr.sched_flags &= SCHED_FLAG_ALL;
1229 
1230 #ifdef CONFIG_UCLAMP_TASK
1231 		/*
1232 		 * This could race with another potential updater, but this is fine
1233 		 * because it'll correctly read the old or the new value. We don't need
1234 		 * to guarantee who wins the race as long as it doesn't return garbage.
1235 		 */
1236 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1237 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1238 #endif
1239 	}
1240 
1241 	return sched_attr_copy_to_user(uattr, &kattr, usize);
1242 }
1243 
1244 #ifdef CONFIG_SMP
1245 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1246 {
1247 	/*
1248 	 * If the task isn't a deadline task or admission control is
1249 	 * disabled then we don't care about affinity changes.
1250 	 */
1251 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1252 		return 0;
1253 
1254 	/*
1255 	 * Since bandwidth control happens on root_domain basis,
1256 	 * if admission test is enabled, we only admit -deadline
1257 	 * tasks allowed to run on all the CPUs in the task's
1258 	 * root_domain.
1259 	 */
1260 	guard(rcu)();
1261 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
1262 		return -EBUSY;
1263 
1264 	return 0;
1265 }
1266 #endif /* CONFIG_SMP */
1267 
1268 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1269 {
1270 	int retval;
1271 	cpumask_var_t cpus_allowed, new_mask;
1272 
1273 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1274 		return -ENOMEM;
1275 
1276 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1277 		retval = -ENOMEM;
1278 		goto out_free_cpus_allowed;
1279 	}
1280 
1281 	cpuset_cpus_allowed(p, cpus_allowed);
1282 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1283 
1284 	ctx->new_mask = new_mask;
1285 	ctx->flags |= SCA_CHECK;
1286 
1287 	retval = dl_task_check_affinity(p, new_mask);
1288 	if (retval)
1289 		goto out_free_new_mask;
1290 
1291 	retval = __set_cpus_allowed_ptr(p, ctx);
1292 	if (retval)
1293 		goto out_free_new_mask;
1294 
1295 	cpuset_cpus_allowed(p, cpus_allowed);
1296 	if (!cpumask_subset(new_mask, cpus_allowed)) {
1297 		/*
1298 		 * We must have raced with a concurrent cpuset update.
1299 		 * Just reset the cpumask to the cpuset's cpus_allowed.
1300 		 */
1301 		cpumask_copy(new_mask, cpus_allowed);
1302 
1303 		/*
1304 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1305 		 * will restore the previous user_cpus_ptr value.
1306 		 *
1307 		 * In the unlikely event a previous user_cpus_ptr exists,
1308 		 * we need to further restrict the mask to what is allowed
1309 		 * by that old user_cpus_ptr.
1310 		 */
1311 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1312 			bool empty = !cpumask_and(new_mask, new_mask,
1313 						  ctx->user_mask);
1314 
1315 			if (WARN_ON_ONCE(empty))
1316 				cpumask_copy(new_mask, cpus_allowed);
1317 		}
1318 		__set_cpus_allowed_ptr(p, ctx);
1319 		retval = -EINVAL;
1320 	}
1321 
1322 out_free_new_mask:
1323 	free_cpumask_var(new_mask);
1324 out_free_cpus_allowed:
1325 	free_cpumask_var(cpus_allowed);
1326 	return retval;
1327 }
1328 
1329 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1330 {
1331 	struct affinity_context ac;
1332 	struct cpumask *user_mask;
1333 	int retval;
1334 
1335 	CLASS(find_get_task, p)(pid);
1336 	if (!p)
1337 		return -ESRCH;
1338 
1339 	if (p->flags & PF_NO_SETAFFINITY)
1340 		return -EINVAL;
1341 
1342 	if (!check_same_owner(p)) {
1343 		guard(rcu)();
1344 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1345 			return -EPERM;
1346 	}
1347 
1348 	retval = security_task_setscheduler(p);
1349 	if (retval)
1350 		return retval;
1351 
1352 	/*
1353 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1354 	 * alloc_user_cpus_ptr() returns NULL.
1355 	 */
1356 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1357 	if (user_mask) {
1358 		cpumask_copy(user_mask, in_mask);
1359 	} else if (IS_ENABLED(CONFIG_SMP)) {
1360 		return -ENOMEM;
1361 	}
1362 
1363 	ac = (struct affinity_context){
1364 		.new_mask  = in_mask,
1365 		.user_mask = user_mask,
1366 		.flags     = SCA_USER,
1367 	};
1368 
1369 	retval = __sched_setaffinity(p, &ac);
1370 	kfree(ac.user_mask);
1371 
1372 	return retval;
1373 }
1374 
1375 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1376 			     struct cpumask *new_mask)
1377 {
1378 	if (len < cpumask_size())
1379 		cpumask_clear(new_mask);
1380 	else if (len > cpumask_size())
1381 		len = cpumask_size();
1382 
1383 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1384 }
1385 
1386 /**
1387  * sys_sched_setaffinity - set the CPU affinity of a process
1388  * @pid: pid of the process
1389  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1390  * @user_mask_ptr: user-space pointer to the new CPU mask
1391  *
1392  * Return: 0 on success. An error code otherwise.
1393  */
1394 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1395 		unsigned long __user *, user_mask_ptr)
1396 {
1397 	cpumask_var_t new_mask;
1398 	int retval;
1399 
1400 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1401 		return -ENOMEM;
1402 
1403 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1404 	if (retval == 0)
1405 		retval = sched_setaffinity(pid, new_mask);
1406 	free_cpumask_var(new_mask);
1407 	return retval;
1408 }
1409 
1410 long sched_getaffinity(pid_t pid, struct cpumask *mask)
1411 {
1412 	struct task_struct *p;
1413 	int retval;
1414 
1415 	guard(rcu)();
1416 	p = find_process_by_pid(pid);
1417 	if (!p)
1418 		return -ESRCH;
1419 
1420 	retval = security_task_getscheduler(p);
1421 	if (retval)
1422 		return retval;
1423 
1424 	guard(raw_spinlock_irqsave)(&p->pi_lock);
1425 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1426 
1427 	return 0;
1428 }
1429 
1430 /**
1431  * sys_sched_getaffinity - get the CPU affinity of a process
1432  * @pid: pid of the process
1433  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1434  * @user_mask_ptr: user-space pointer to hold the current CPU mask
1435  *
1436  * Return: size of CPU mask copied to user_mask_ptr on success. An
1437  * error code otherwise.
1438  */
1439 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1440 		unsigned long __user *, user_mask_ptr)
1441 {
1442 	int ret;
1443 	cpumask_var_t mask;
1444 
1445 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1446 		return -EINVAL;
1447 	if (len & (sizeof(unsigned long)-1))
1448 		return -EINVAL;
1449 
1450 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1451 		return -ENOMEM;
1452 
1453 	ret = sched_getaffinity(pid, mask);
1454 	if (ret == 0) {
1455 		unsigned int retlen = min(len, cpumask_size());
1456 
1457 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1458 			ret = -EFAULT;
1459 		else
1460 			ret = retlen;
1461 	}
1462 	free_cpumask_var(mask);
1463 
1464 	return ret;
1465 }
1466 
1467 static void do_sched_yield(void)
1468 {
1469 	struct rq_flags rf;
1470 	struct rq *rq;
1471 
1472 	rq = this_rq_lock_irq(&rf);
1473 
1474 	schedstat_inc(rq->yld_count);
1475 	current->sched_class->yield_task(rq);
1476 
1477 	preempt_disable();
1478 	rq_unlock_irq(rq, &rf);
1479 	sched_preempt_enable_no_resched();
1480 
1481 	schedule();
1482 }
1483 
1484 /**
1485  * sys_sched_yield - yield the current processor to other threads.
1486  *
1487  * This function yields the current CPU to other tasks. If there are no
1488  * other threads running on this CPU then this function will return.
1489  *
1490  * Return: 0.
1491  */
1492 SYSCALL_DEFINE0(sched_yield)
1493 {
1494 	do_sched_yield();
1495 	return 0;
1496 }
1497 
1498 /**
1499  * yield - yield the current processor to other threads.
1500  *
1501  * Do not ever use this function, there's a 99% chance you're doing it wrong.
1502  *
1503  * The scheduler is at all times free to pick the calling task as the most
1504  * eligible task to run, if removing the yield() call from your code breaks
1505  * it, it's already broken.
1506  *
1507  * Typical broken usage is:
1508  *
1509  * while (!event)
1510  *	yield();
1511  *
1512  * where one assumes that yield() will let 'the other' process run that will
1513  * make event true. If the current task is a SCHED_FIFO task that will never
1514  * happen. Never use yield() as a progress guarantee!!
1515  *
1516  * If you want to use yield() to wait for something, use wait_event().
1517  * If you want to use yield() to be 'nice' for others, use cond_resched().
1518  * If you still want to use yield(), do not!
1519  */
1520 void __sched yield(void)
1521 {
1522 	set_current_state(TASK_RUNNING);
1523 	do_sched_yield();
1524 }
1525 EXPORT_SYMBOL(yield);
1526 
1527 /**
1528  * yield_to - yield the current processor to another thread in
1529  * your thread group, or accelerate that thread toward the
1530  * processor it's on.
1531  * @p: target task
1532  * @preempt: whether task preemption is allowed or not
1533  *
1534  * It's the caller's job to ensure that the target task struct
1535  * can't go away on us before we can do any checks.
1536  *
1537  * Return:
1538  *	true (>0) if we indeed boosted the target task.
1539  *	false (0) if we failed to boost the target.
1540  *	-ESRCH if there's no task to yield to.
1541  */
1542 int __sched yield_to(struct task_struct *p, bool preempt)
1543 {
1544 	struct task_struct *curr = current;
1545 	struct rq *rq, *p_rq;
1546 	int yielded = 0;
1547 
1548 	scoped_guard (irqsave) {
1549 		rq = this_rq();
1550 
1551 again:
1552 		p_rq = task_rq(p);
1553 		/*
1554 		 * If we're the only runnable task on the rq and target rq also
1555 		 * has only one task, there's absolutely no point in yielding.
1556 		 */
1557 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
1558 			return -ESRCH;
1559 
1560 		guard(double_rq_lock)(rq, p_rq);
1561 		if (task_rq(p) != p_rq)
1562 			goto again;
1563 
1564 		if (!curr->sched_class->yield_to_task)
1565 			return 0;
1566 
1567 		if (curr->sched_class != p->sched_class)
1568 			return 0;
1569 
1570 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
1571 			return 0;
1572 
1573 		yielded = curr->sched_class->yield_to_task(rq, p);
1574 		if (yielded) {
1575 			schedstat_inc(rq->yld_count);
1576 			/*
1577 			 * Make p's CPU reschedule; pick_next_entity
1578 			 * takes care of fairness.
1579 			 */
1580 			if (preempt && rq != p_rq)
1581 				resched_curr(p_rq);
1582 		}
1583 	}
1584 
1585 	if (yielded)
1586 		schedule();
1587 
1588 	return yielded;
1589 }
1590 EXPORT_SYMBOL_GPL(yield_to);
1591 
1592 /**
1593  * sys_sched_get_priority_max - return maximum RT priority.
1594  * @policy: scheduling class.
1595  *
1596  * Return: On success, this syscall returns the maximum
1597  * rt_priority that can be used by a given scheduling class.
1598  * On failure, a negative error code is returned.
1599  */
1600 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1601 {
1602 	int ret = -EINVAL;
1603 
1604 	switch (policy) {
1605 	case SCHED_FIFO:
1606 	case SCHED_RR:
1607 		ret = MAX_RT_PRIO-1;
1608 		break;
1609 	case SCHED_DEADLINE:
1610 	case SCHED_NORMAL:
1611 	case SCHED_BATCH:
1612 	case SCHED_IDLE:
1613 		ret = 0;
1614 		break;
1615 	}
1616 	return ret;
1617 }
1618 
1619 /**
1620  * sys_sched_get_priority_min - return minimum RT priority.
1621  * @policy: scheduling class.
1622  *
1623  * Return: On success, this syscall returns the minimum
1624  * rt_priority that can be used by a given scheduling class.
1625  * On failure, a negative error code is returned.
1626  */
1627 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1628 {
1629 	int ret = -EINVAL;
1630 
1631 	switch (policy) {
1632 	case SCHED_FIFO:
1633 	case SCHED_RR:
1634 		ret = 1;
1635 		break;
1636 	case SCHED_DEADLINE:
1637 	case SCHED_NORMAL:
1638 	case SCHED_BATCH:
1639 	case SCHED_IDLE:
1640 		ret = 0;
1641 	}
1642 	return ret;
1643 }
1644 
1645 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1646 {
1647 	unsigned int time_slice = 0;
1648 	int retval;
1649 
1650 	if (pid < 0)
1651 		return -EINVAL;
1652 
1653 	scoped_guard (rcu) {
1654 		struct task_struct *p = find_process_by_pid(pid);
1655 		if (!p)
1656 			return -ESRCH;
1657 
1658 		retval = security_task_getscheduler(p);
1659 		if (retval)
1660 			return retval;
1661 
1662 		scoped_guard (task_rq_lock, p) {
1663 			struct rq *rq = scope.rq;
1664 			if (p->sched_class->get_rr_interval)
1665 				time_slice = p->sched_class->get_rr_interval(rq, p);
1666 		}
1667 	}
1668 
1669 	jiffies_to_timespec64(time_slice, t);
1670 	return 0;
1671 }
1672 
1673 /**
1674  * sys_sched_rr_get_interval - return the default time-slice of a process.
1675  * @pid: pid of the process.
1676  * @interval: userspace pointer to the time-slice value.
1677  *
1678  * this syscall writes the default time-slice value of a given process
1679  * into the user-space timespec buffer. A value of '0' means infinity.
1680  *
1681  * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1682  * an error code.
1683  */
1684 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1685 		struct __kernel_timespec __user *, interval)
1686 {
1687 	struct timespec64 t;
1688 	int retval = sched_rr_get_interval(pid, &t);
1689 
1690 	if (retval == 0)
1691 		retval = put_timespec64(&t, interval);
1692 
1693 	return retval;
1694 }
1695 
1696 #ifdef CONFIG_COMPAT_32BIT_TIME
1697 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1698 		struct old_timespec32 __user *, interval)
1699 {
1700 	struct timespec64 t;
1701 	int retval = sched_rr_get_interval(pid, &t);
1702 
1703 	if (retval == 0)
1704 		retval = put_old_timespec32(&t, interval);
1705 	return retval;
1706 }
1707 #endif
1708