xref: /linux/kernel/sched/syscalls.c (revision 2d8721364ce83956d0a184a64052928589ef15df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/syscalls.c
4  *
5  *  Core kernel scheduler syscalls related code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/sched.h>
11 #include <linux/cpuset.h>
12 #include <linux/sched/debug.h>
13 
14 #include <uapi/linux/sched/types.h>
15 
16 #include "sched.h"
17 #include "autogroup.h"
18 
19 static inline int __normal_prio(int policy, int rt_prio, int nice)
20 {
21 	int prio;
22 
23 	if (dl_policy(policy))
24 		prio = MAX_DL_PRIO - 1;
25 	else if (rt_policy(policy))
26 		prio = MAX_RT_PRIO - 1 - rt_prio;
27 	else
28 		prio = NICE_TO_PRIO(nice);
29 
30 	return prio;
31 }
32 
33 /*
34  * Calculate the expected normal priority: i.e. priority
35  * without taking RT-inheritance into account. Might be
36  * boosted by interactivity modifiers. Changes upon fork,
37  * setprio syscalls, and whenever the interactivity
38  * estimator recalculates.
39  */
40 static inline int normal_prio(struct task_struct *p)
41 {
42 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43 }
44 
45 /*
46  * Calculate the current priority, i.e. the priority
47  * taken into account by the scheduler. This value might
48  * be boosted by RT tasks, or might be boosted by
49  * interactivity modifiers. Will be RT if the task got
50  * RT-boosted. If not then it returns p->normal_prio.
51  */
52 static int effective_prio(struct task_struct *p)
53 {
54 	p->normal_prio = normal_prio(p);
55 	/*
56 	 * If we are RT tasks or we were boosted to RT priority,
57 	 * keep the priority unchanged. Otherwise, update priority
58 	 * to the normal priority:
59 	 */
60 	if (!rt_or_dl_prio(p->prio))
61 		return p->normal_prio;
62 	return p->prio;
63 }
64 
65 void set_user_nice(struct task_struct *p, long nice)
66 {
67 	bool queued, running;
68 	struct rq *rq;
69 	int old_prio;
70 
71 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
72 		return;
73 	/*
74 	 * We have to be careful, if called from sys_setpriority(),
75 	 * the task might be in the middle of scheduling on another CPU.
76 	 */
77 	CLASS(task_rq_lock, rq_guard)(p);
78 	rq = rq_guard.rq;
79 
80 	update_rq_clock(rq);
81 
82 	/*
83 	 * The RT priorities are set via sched_setscheduler(), but we still
84 	 * allow the 'normal' nice value to be set - but as expected
85 	 * it won't have any effect on scheduling until the task is
86 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
87 	 */
88 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
89 		p->static_prio = NICE_TO_PRIO(nice);
90 		return;
91 	}
92 
93 	queued = task_on_rq_queued(p);
94 	running = task_current(rq, p);
95 	if (queued)
96 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
97 	if (running)
98 		put_prev_task(rq, p);
99 
100 	p->static_prio = NICE_TO_PRIO(nice);
101 	set_load_weight(p, true);
102 	old_prio = p->prio;
103 	p->prio = effective_prio(p);
104 
105 	if (queued)
106 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
107 	if (running)
108 		set_next_task(rq, p);
109 
110 	/*
111 	 * If the task increased its priority or is running and
112 	 * lowered its priority, then reschedule its CPU:
113 	 */
114 	p->sched_class->prio_changed(rq, p, old_prio);
115 }
116 EXPORT_SYMBOL(set_user_nice);
117 
118 /*
119  * is_nice_reduction - check if nice value is an actual reduction
120  *
121  * Similar to can_nice() but does not perform a capability check.
122  *
123  * @p: task
124  * @nice: nice value
125  */
126 static bool is_nice_reduction(const struct task_struct *p, const int nice)
127 {
128 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
129 	int nice_rlim = nice_to_rlimit(nice);
130 
131 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
132 }
133 
134 /*
135  * can_nice - check if a task can reduce its nice value
136  * @p: task
137  * @nice: nice value
138  */
139 int can_nice(const struct task_struct *p, const int nice)
140 {
141 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
142 }
143 
144 #ifdef __ARCH_WANT_SYS_NICE
145 
146 /*
147  * sys_nice - change the priority of the current process.
148  * @increment: priority increment
149  *
150  * sys_setpriority is a more generic, but much slower function that
151  * does similar things.
152  */
153 SYSCALL_DEFINE1(nice, int, increment)
154 {
155 	long nice, retval;
156 
157 	/*
158 	 * Setpriority might change our priority at the same moment.
159 	 * We don't have to worry. Conceptually one call occurs first
160 	 * and we have a single winner.
161 	 */
162 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
163 	nice = task_nice(current) + increment;
164 
165 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
166 	if (increment < 0 && !can_nice(current, nice))
167 		return -EPERM;
168 
169 	retval = security_task_setnice(current, nice);
170 	if (retval)
171 		return retval;
172 
173 	set_user_nice(current, nice);
174 	return 0;
175 }
176 
177 #endif
178 
179 /**
180  * task_prio - return the priority value of a given task.
181  * @p: the task in question.
182  *
183  * Return: The priority value as seen by users in /proc.
184  *
185  * sched policy         return value   kernel prio    user prio/nice
186  *
187  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
188  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
189  * deadline                     -101             -1           0
190  */
191 int task_prio(const struct task_struct *p)
192 {
193 	return p->prio - MAX_RT_PRIO;
194 }
195 
196 /**
197  * idle_cpu - is a given CPU idle currently?
198  * @cpu: the processor in question.
199  *
200  * Return: 1 if the CPU is currently idle. 0 otherwise.
201  */
202 int idle_cpu(int cpu)
203 {
204 	struct rq *rq = cpu_rq(cpu);
205 
206 	if (rq->curr != rq->idle)
207 		return 0;
208 
209 	if (rq->nr_running)
210 		return 0;
211 
212 #ifdef CONFIG_SMP
213 	if (rq->ttwu_pending)
214 		return 0;
215 #endif
216 
217 	return 1;
218 }
219 
220 /**
221  * available_idle_cpu - is a given CPU idle for enqueuing work.
222  * @cpu: the CPU in question.
223  *
224  * Return: 1 if the CPU is currently idle. 0 otherwise.
225  */
226 int available_idle_cpu(int cpu)
227 {
228 	if (!idle_cpu(cpu))
229 		return 0;
230 
231 	if (vcpu_is_preempted(cpu))
232 		return 0;
233 
234 	return 1;
235 }
236 
237 /**
238  * idle_task - return the idle task for a given CPU.
239  * @cpu: the processor in question.
240  *
241  * Return: The idle task for the CPU @cpu.
242  */
243 struct task_struct *idle_task(int cpu)
244 {
245 	return cpu_rq(cpu)->idle;
246 }
247 
248 #ifdef CONFIG_SCHED_CORE
249 int sched_core_idle_cpu(int cpu)
250 {
251 	struct rq *rq = cpu_rq(cpu);
252 
253 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
254 		return 1;
255 
256 	return idle_cpu(cpu);
257 }
258 
259 #endif
260 
261 /**
262  * find_process_by_pid - find a process with a matching PID value.
263  * @pid: the pid in question.
264  *
265  * The task of @pid, if found. %NULL otherwise.
266  */
267 static struct task_struct *find_process_by_pid(pid_t pid)
268 {
269 	return pid ? find_task_by_vpid(pid) : current;
270 }
271 
272 static struct task_struct *find_get_task(pid_t pid)
273 {
274 	struct task_struct *p;
275 	guard(rcu)();
276 
277 	p = find_process_by_pid(pid);
278 	if (likely(p))
279 		get_task_struct(p);
280 
281 	return p;
282 }
283 
284 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
285 	     find_get_task(pid), pid_t pid)
286 
287 /*
288  * sched_setparam() passes in -1 for its policy, to let the functions
289  * it calls know not to change it.
290  */
291 #define SETPARAM_POLICY	-1
292 
293 static void __setscheduler_params(struct task_struct *p,
294 		const struct sched_attr *attr)
295 {
296 	int policy = attr->sched_policy;
297 
298 	if (policy == SETPARAM_POLICY)
299 		policy = p->policy;
300 
301 	p->policy = policy;
302 
303 	if (dl_policy(policy)) {
304 		__setparam_dl(p, attr);
305 	} else if (fair_policy(policy)) {
306 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
307 		if (attr->sched_runtime) {
308 			p->se.custom_slice = 1;
309 			p->se.slice = clamp_t(u64, attr->sched_runtime,
310 					      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
311 					      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
312 		} else {
313 			p->se.custom_slice = 0;
314 			p->se.slice = sysctl_sched_base_slice;
315 		}
316 	}
317 
318 	/* rt-policy tasks do not have a timerslack */
319 	if (rt_or_dl_task_policy(p)) {
320 		p->timer_slack_ns = 0;
321 	} else if (p->timer_slack_ns == 0) {
322 		/* when switching back to non-rt policy, restore timerslack */
323 		p->timer_slack_ns = p->default_timer_slack_ns;
324 	}
325 
326 	/*
327 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
328 	 * !rt_policy. Always setting this ensures that things like
329 	 * getparam()/getattr() don't report silly values for !rt tasks.
330 	 */
331 	p->rt_priority = attr->sched_priority;
332 	p->normal_prio = normal_prio(p);
333 	set_load_weight(p, true);
334 }
335 
336 /*
337  * Check the target process has a UID that matches the current process's:
338  */
339 static bool check_same_owner(struct task_struct *p)
340 {
341 	const struct cred *cred = current_cred(), *pcred;
342 	guard(rcu)();
343 
344 	pcred = __task_cred(p);
345 	return (uid_eq(cred->euid, pcred->euid) ||
346 		uid_eq(cred->euid, pcred->uid));
347 }
348 
349 #ifdef CONFIG_UCLAMP_TASK
350 
351 static int uclamp_validate(struct task_struct *p,
352 			   const struct sched_attr *attr)
353 {
354 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
355 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
356 
357 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
358 		util_min = attr->sched_util_min;
359 
360 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
361 			return -EINVAL;
362 	}
363 
364 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
365 		util_max = attr->sched_util_max;
366 
367 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
368 			return -EINVAL;
369 	}
370 
371 	if (util_min != -1 && util_max != -1 && util_min > util_max)
372 		return -EINVAL;
373 
374 	/*
375 	 * We have valid uclamp attributes; make sure uclamp is enabled.
376 	 *
377 	 * We need to do that here, because enabling static branches is a
378 	 * blocking operation which obviously cannot be done while holding
379 	 * scheduler locks.
380 	 */
381 	static_branch_enable(&sched_uclamp_used);
382 
383 	return 0;
384 }
385 
386 static bool uclamp_reset(const struct sched_attr *attr,
387 			 enum uclamp_id clamp_id,
388 			 struct uclamp_se *uc_se)
389 {
390 	/* Reset on sched class change for a non user-defined clamp value. */
391 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
392 	    !uc_se->user_defined)
393 		return true;
394 
395 	/* Reset on sched_util_{min,max} == -1. */
396 	if (clamp_id == UCLAMP_MIN &&
397 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
398 	    attr->sched_util_min == -1) {
399 		return true;
400 	}
401 
402 	if (clamp_id == UCLAMP_MAX &&
403 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
404 	    attr->sched_util_max == -1) {
405 		return true;
406 	}
407 
408 	return false;
409 }
410 
411 static void __setscheduler_uclamp(struct task_struct *p,
412 				  const struct sched_attr *attr)
413 {
414 	enum uclamp_id clamp_id;
415 
416 	for_each_clamp_id(clamp_id) {
417 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
418 		unsigned int value;
419 
420 		if (!uclamp_reset(attr, clamp_id, uc_se))
421 			continue;
422 
423 		/*
424 		 * RT by default have a 100% boost value that could be modified
425 		 * at runtime.
426 		 */
427 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
428 			value = sysctl_sched_uclamp_util_min_rt_default;
429 		else
430 			value = uclamp_none(clamp_id);
431 
432 		uclamp_se_set(uc_se, value, false);
433 
434 	}
435 
436 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
437 		return;
438 
439 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
440 	    attr->sched_util_min != -1) {
441 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
442 			      attr->sched_util_min, true);
443 	}
444 
445 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
446 	    attr->sched_util_max != -1) {
447 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
448 			      attr->sched_util_max, true);
449 	}
450 }
451 
452 #else /* !CONFIG_UCLAMP_TASK: */
453 
454 static inline int uclamp_validate(struct task_struct *p,
455 				  const struct sched_attr *attr)
456 {
457 	return -EOPNOTSUPP;
458 }
459 static void __setscheduler_uclamp(struct task_struct *p,
460 				  const struct sched_attr *attr) { }
461 #endif
462 
463 /*
464  * Allow unprivileged RT tasks to decrease priority.
465  * Only issue a capable test if needed and only once to avoid an audit
466  * event on permitted non-privileged operations:
467  */
468 static int user_check_sched_setscheduler(struct task_struct *p,
469 					 const struct sched_attr *attr,
470 					 int policy, int reset_on_fork)
471 {
472 	if (fair_policy(policy)) {
473 		if (attr->sched_nice < task_nice(p) &&
474 		    !is_nice_reduction(p, attr->sched_nice))
475 			goto req_priv;
476 	}
477 
478 	if (rt_policy(policy)) {
479 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
480 
481 		/* Can't set/change the rt policy: */
482 		if (policy != p->policy && !rlim_rtprio)
483 			goto req_priv;
484 
485 		/* Can't increase priority: */
486 		if (attr->sched_priority > p->rt_priority &&
487 		    attr->sched_priority > rlim_rtprio)
488 			goto req_priv;
489 	}
490 
491 	/*
492 	 * Can't set/change SCHED_DEADLINE policy at all for now
493 	 * (safest behavior); in the future we would like to allow
494 	 * unprivileged DL tasks to increase their relative deadline
495 	 * or reduce their runtime (both ways reducing utilization)
496 	 */
497 	if (dl_policy(policy))
498 		goto req_priv;
499 
500 	/*
501 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
502 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
503 	 */
504 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
505 		if (!is_nice_reduction(p, task_nice(p)))
506 			goto req_priv;
507 	}
508 
509 	/* Can't change other user's priorities: */
510 	if (!check_same_owner(p))
511 		goto req_priv;
512 
513 	/* Normal users shall not reset the sched_reset_on_fork flag: */
514 	if (p->sched_reset_on_fork && !reset_on_fork)
515 		goto req_priv;
516 
517 	return 0;
518 
519 req_priv:
520 	if (!capable(CAP_SYS_NICE))
521 		return -EPERM;
522 
523 	return 0;
524 }
525 
526 int __sched_setscheduler(struct task_struct *p,
527 			 const struct sched_attr *attr,
528 			 bool user, bool pi)
529 {
530 	int oldpolicy = -1, policy = attr->sched_policy;
531 	int retval, oldprio, newprio, queued, running;
532 	const struct sched_class *prev_class;
533 	struct balance_callback *head;
534 	struct rq_flags rf;
535 	int reset_on_fork;
536 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
537 	struct rq *rq;
538 	bool cpuset_locked = false;
539 
540 	/* The pi code expects interrupts enabled */
541 	BUG_ON(pi && in_interrupt());
542 recheck:
543 	/* Double check policy once rq lock held: */
544 	if (policy < 0) {
545 		reset_on_fork = p->sched_reset_on_fork;
546 		policy = oldpolicy = p->policy;
547 	} else {
548 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
549 
550 		if (!valid_policy(policy))
551 			return -EINVAL;
552 	}
553 
554 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
555 		return -EINVAL;
556 
557 	/*
558 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
559 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
560 	 * SCHED_BATCH and SCHED_IDLE is 0.
561 	 */
562 	if (attr->sched_priority > MAX_RT_PRIO-1)
563 		return -EINVAL;
564 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
565 	    (rt_policy(policy) != (attr->sched_priority != 0)))
566 		return -EINVAL;
567 
568 	if (user) {
569 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
570 		if (retval)
571 			return retval;
572 
573 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
574 			return -EINVAL;
575 
576 		retval = security_task_setscheduler(p);
577 		if (retval)
578 			return retval;
579 	}
580 
581 	/* Update task specific "requested" clamps */
582 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
583 		retval = uclamp_validate(p, attr);
584 		if (retval)
585 			return retval;
586 	}
587 
588 	/*
589 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
590 	 * information.
591 	 */
592 	if (dl_policy(policy) || dl_policy(p->policy)) {
593 		cpuset_locked = true;
594 		cpuset_lock();
595 	}
596 
597 	/*
598 	 * Make sure no PI-waiters arrive (or leave) while we are
599 	 * changing the priority of the task:
600 	 *
601 	 * To be able to change p->policy safely, the appropriate
602 	 * runqueue lock must be held.
603 	 */
604 	rq = task_rq_lock(p, &rf);
605 	update_rq_clock(rq);
606 
607 	/*
608 	 * Changing the policy of the stop threads its a very bad idea:
609 	 */
610 	if (p == rq->stop) {
611 		retval = -EINVAL;
612 		goto unlock;
613 	}
614 
615 	/*
616 	 * If not changing anything there's no need to proceed further,
617 	 * but store a possible modification of reset_on_fork.
618 	 */
619 	if (unlikely(policy == p->policy)) {
620 		if (fair_policy(policy) &&
621 		    (attr->sched_nice != task_nice(p) ||
622 		     (attr->sched_runtime != p->se.slice)))
623 			goto change;
624 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
625 			goto change;
626 		if (dl_policy(policy) && dl_param_changed(p, attr))
627 			goto change;
628 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
629 			goto change;
630 
631 		p->sched_reset_on_fork = reset_on_fork;
632 		retval = 0;
633 		goto unlock;
634 	}
635 change:
636 
637 	if (user) {
638 #ifdef CONFIG_RT_GROUP_SCHED
639 		/*
640 		 * Do not allow real-time tasks into groups that have no runtime
641 		 * assigned.
642 		 */
643 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
644 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
645 				!task_group_is_autogroup(task_group(p))) {
646 			retval = -EPERM;
647 			goto unlock;
648 		}
649 #endif
650 #ifdef CONFIG_SMP
651 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
652 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
653 			cpumask_t *span = rq->rd->span;
654 
655 			/*
656 			 * Don't allow tasks with an affinity mask smaller than
657 			 * the entire root_domain to become SCHED_DEADLINE. We
658 			 * will also fail if there's no bandwidth available.
659 			 */
660 			if (!cpumask_subset(span, p->cpus_ptr) ||
661 			    rq->rd->dl_bw.bw == 0) {
662 				retval = -EPERM;
663 				goto unlock;
664 			}
665 		}
666 #endif
667 	}
668 
669 	/* Re-check policy now with rq lock held: */
670 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
671 		policy = oldpolicy = -1;
672 		task_rq_unlock(rq, p, &rf);
673 		if (cpuset_locked)
674 			cpuset_unlock();
675 		goto recheck;
676 	}
677 
678 	/*
679 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
680 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
681 	 * is available.
682 	 */
683 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
684 		retval = -EBUSY;
685 		goto unlock;
686 	}
687 
688 	p->sched_reset_on_fork = reset_on_fork;
689 	oldprio = p->prio;
690 
691 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
692 	if (pi) {
693 		/*
694 		 * Take priority boosted tasks into account. If the new
695 		 * effective priority is unchanged, we just store the new
696 		 * normal parameters and do not touch the scheduler class and
697 		 * the runqueue. This will be done when the task deboost
698 		 * itself.
699 		 */
700 		newprio = rt_effective_prio(p, newprio);
701 		if (newprio == oldprio)
702 			queue_flags &= ~DEQUEUE_MOVE;
703 	}
704 
705 	queued = task_on_rq_queued(p);
706 	running = task_current(rq, p);
707 	if (queued)
708 		dequeue_task(rq, p, queue_flags);
709 	if (running)
710 		put_prev_task(rq, p);
711 
712 	prev_class = p->sched_class;
713 
714 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
715 		__setscheduler_params(p, attr);
716 		__setscheduler_prio(p, newprio);
717 	}
718 	__setscheduler_uclamp(p, attr);
719 
720 	if (queued) {
721 		/*
722 		 * We enqueue to tail when the priority of a task is
723 		 * increased (user space view).
724 		 */
725 		if (oldprio < p->prio)
726 			queue_flags |= ENQUEUE_HEAD;
727 
728 		enqueue_task(rq, p, queue_flags);
729 	}
730 	if (running)
731 		set_next_task(rq, p);
732 
733 	check_class_changed(rq, p, prev_class, oldprio);
734 
735 	/* Avoid rq from going away on us: */
736 	preempt_disable();
737 	head = splice_balance_callbacks(rq);
738 	task_rq_unlock(rq, p, &rf);
739 
740 	if (pi) {
741 		if (cpuset_locked)
742 			cpuset_unlock();
743 		rt_mutex_adjust_pi(p);
744 	}
745 
746 	/* Run balance callbacks after we've adjusted the PI chain: */
747 	balance_callbacks(rq, head);
748 	preempt_enable();
749 
750 	return 0;
751 
752 unlock:
753 	task_rq_unlock(rq, p, &rf);
754 	if (cpuset_locked)
755 		cpuset_unlock();
756 	return retval;
757 }
758 
759 static int _sched_setscheduler(struct task_struct *p, int policy,
760 			       const struct sched_param *param, bool check)
761 {
762 	struct sched_attr attr = {
763 		.sched_policy   = policy,
764 		.sched_priority = param->sched_priority,
765 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
766 	};
767 
768 	if (p->se.custom_slice)
769 		attr.sched_runtime = p->se.slice;
770 
771 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
772 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
773 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
774 		policy &= ~SCHED_RESET_ON_FORK;
775 		attr.sched_policy = policy;
776 	}
777 
778 	return __sched_setscheduler(p, &attr, check, true);
779 }
780 /**
781  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
782  * @p: the task in question.
783  * @policy: new policy.
784  * @param: structure containing the new RT priority.
785  *
786  * Use sched_set_fifo(), read its comment.
787  *
788  * Return: 0 on success. An error code otherwise.
789  *
790  * NOTE that the task may be already dead.
791  */
792 int sched_setscheduler(struct task_struct *p, int policy,
793 		       const struct sched_param *param)
794 {
795 	return _sched_setscheduler(p, policy, param, true);
796 }
797 
798 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
799 {
800 	return __sched_setscheduler(p, attr, true, true);
801 }
802 
803 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
804 {
805 	return __sched_setscheduler(p, attr, false, true);
806 }
807 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
808 
809 /**
810  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
811  * @p: the task in question.
812  * @policy: new policy.
813  * @param: structure containing the new RT priority.
814  *
815  * Just like sched_setscheduler, only don't bother checking if the
816  * current context has permission.  For example, this is needed in
817  * stop_machine(): we create temporary high priority worker threads,
818  * but our caller might not have that capability.
819  *
820  * Return: 0 on success. An error code otherwise.
821  */
822 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
823 			       const struct sched_param *param)
824 {
825 	return _sched_setscheduler(p, policy, param, false);
826 }
827 
828 /*
829  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
830  * incapable of resource management, which is the one thing an OS really should
831  * be doing.
832  *
833  * This is of course the reason it is limited to privileged users only.
834  *
835  * Worse still; it is fundamentally impossible to compose static priority
836  * workloads. You cannot take two correctly working static prio workloads
837  * and smash them together and still expect them to work.
838  *
839  * For this reason 'all' FIFO tasks the kernel creates are basically at:
840  *
841  *   MAX_RT_PRIO / 2
842  *
843  * The administrator _MUST_ configure the system, the kernel simply doesn't
844  * know enough information to make a sensible choice.
845  */
846 void sched_set_fifo(struct task_struct *p)
847 {
848 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
849 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
850 }
851 EXPORT_SYMBOL_GPL(sched_set_fifo);
852 
853 /*
854  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
855  */
856 void sched_set_fifo_low(struct task_struct *p)
857 {
858 	struct sched_param sp = { .sched_priority = 1 };
859 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
860 }
861 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
862 
863 void sched_set_normal(struct task_struct *p, int nice)
864 {
865 	struct sched_attr attr = {
866 		.sched_policy = SCHED_NORMAL,
867 		.sched_nice = nice,
868 	};
869 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
870 }
871 EXPORT_SYMBOL_GPL(sched_set_normal);
872 
873 static int
874 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
875 {
876 	struct sched_param lparam;
877 
878 	if (!param || pid < 0)
879 		return -EINVAL;
880 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
881 		return -EFAULT;
882 
883 	CLASS(find_get_task, p)(pid);
884 	if (!p)
885 		return -ESRCH;
886 
887 	return sched_setscheduler(p, policy, &lparam);
888 }
889 
890 /*
891  * Mimics kernel/events/core.c perf_copy_attr().
892  */
893 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
894 {
895 	u32 size;
896 	int ret;
897 
898 	/* Zero the full structure, so that a short copy will be nice: */
899 	memset(attr, 0, sizeof(*attr));
900 
901 	ret = get_user(size, &uattr->size);
902 	if (ret)
903 		return ret;
904 
905 	/* ABI compatibility quirk: */
906 	if (!size)
907 		size = SCHED_ATTR_SIZE_VER0;
908 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
909 		goto err_size;
910 
911 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
912 	if (ret) {
913 		if (ret == -E2BIG)
914 			goto err_size;
915 		return ret;
916 	}
917 
918 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
919 	    size < SCHED_ATTR_SIZE_VER1)
920 		return -EINVAL;
921 
922 	/*
923 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
924 	 * to be strict and return an error on out-of-bounds values?
925 	 */
926 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
927 
928 	return 0;
929 
930 err_size:
931 	put_user(sizeof(*attr), &uattr->size);
932 	return -E2BIG;
933 }
934 
935 static void get_params(struct task_struct *p, struct sched_attr *attr)
936 {
937 	if (task_has_dl_policy(p)) {
938 		__getparam_dl(p, attr);
939 	} else if (task_has_rt_policy(p)) {
940 		attr->sched_priority = p->rt_priority;
941 	} else {
942 		attr->sched_nice = task_nice(p);
943 		attr->sched_runtime = p->se.slice;
944 	}
945 }
946 
947 /**
948  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
949  * @pid: the pid in question.
950  * @policy: new policy.
951  * @param: structure containing the new RT priority.
952  *
953  * Return: 0 on success. An error code otherwise.
954  */
955 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
956 {
957 	if (policy < 0)
958 		return -EINVAL;
959 
960 	return do_sched_setscheduler(pid, policy, param);
961 }
962 
963 /**
964  * sys_sched_setparam - set/change the RT priority of a thread
965  * @pid: the pid in question.
966  * @param: structure containing the new RT priority.
967  *
968  * Return: 0 on success. An error code otherwise.
969  */
970 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
971 {
972 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
973 }
974 
975 /**
976  * sys_sched_setattr - same as above, but with extended sched_attr
977  * @pid: the pid in question.
978  * @uattr: structure containing the extended parameters.
979  * @flags: for future extension.
980  */
981 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
982 			       unsigned int, flags)
983 {
984 	struct sched_attr attr;
985 	int retval;
986 
987 	if (!uattr || pid < 0 || flags)
988 		return -EINVAL;
989 
990 	retval = sched_copy_attr(uattr, &attr);
991 	if (retval)
992 		return retval;
993 
994 	if ((int)attr.sched_policy < 0)
995 		return -EINVAL;
996 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
997 		attr.sched_policy = SETPARAM_POLICY;
998 
999 	CLASS(find_get_task, p)(pid);
1000 	if (!p)
1001 		return -ESRCH;
1002 
1003 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
1004 		get_params(p, &attr);
1005 
1006 	return sched_setattr(p, &attr);
1007 }
1008 
1009 /**
1010  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
1011  * @pid: the pid in question.
1012  *
1013  * Return: On success, the policy of the thread. Otherwise, a negative error
1014  * code.
1015  */
1016 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1017 {
1018 	struct task_struct *p;
1019 	int retval;
1020 
1021 	if (pid < 0)
1022 		return -EINVAL;
1023 
1024 	guard(rcu)();
1025 	p = find_process_by_pid(pid);
1026 	if (!p)
1027 		return -ESRCH;
1028 
1029 	retval = security_task_getscheduler(p);
1030 	if (!retval) {
1031 		retval = p->policy;
1032 		if (p->sched_reset_on_fork)
1033 			retval |= SCHED_RESET_ON_FORK;
1034 	}
1035 	return retval;
1036 }
1037 
1038 /**
1039  * sys_sched_getparam - get the RT priority of a thread
1040  * @pid: the pid in question.
1041  * @param: structure containing the RT priority.
1042  *
1043  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1044  * code.
1045  */
1046 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1047 {
1048 	struct sched_param lp = { .sched_priority = 0 };
1049 	struct task_struct *p;
1050 	int retval;
1051 
1052 	if (!param || pid < 0)
1053 		return -EINVAL;
1054 
1055 	scoped_guard (rcu) {
1056 		p = find_process_by_pid(pid);
1057 		if (!p)
1058 			return -ESRCH;
1059 
1060 		retval = security_task_getscheduler(p);
1061 		if (retval)
1062 			return retval;
1063 
1064 		if (task_has_rt_policy(p))
1065 			lp.sched_priority = p->rt_priority;
1066 	}
1067 
1068 	/*
1069 	 * This one might sleep, we cannot do it with a spinlock held ...
1070 	 */
1071 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1072 }
1073 
1074 /*
1075  * Copy the kernel size attribute structure (which might be larger
1076  * than what user-space knows about) to user-space.
1077  *
1078  * Note that all cases are valid: user-space buffer can be larger or
1079  * smaller than the kernel-space buffer. The usual case is that both
1080  * have the same size.
1081  */
1082 static int
1083 sched_attr_copy_to_user(struct sched_attr __user *uattr,
1084 			struct sched_attr *kattr,
1085 			unsigned int usize)
1086 {
1087 	unsigned int ksize = sizeof(*kattr);
1088 
1089 	if (!access_ok(uattr, usize))
1090 		return -EFAULT;
1091 
1092 	/*
1093 	 * sched_getattr() ABI forwards and backwards compatibility:
1094 	 *
1095 	 * If usize == ksize then we just copy everything to user-space and all is good.
1096 	 *
1097 	 * If usize < ksize then we only copy as much as user-space has space for,
1098 	 * this keeps ABI compatibility as well. We skip the rest.
1099 	 *
1100 	 * If usize > ksize then user-space is using a newer version of the ABI,
1101 	 * which part the kernel doesn't know about. Just ignore it - tooling can
1102 	 * detect the kernel's knowledge of attributes from the attr->size value
1103 	 * which is set to ksize in this case.
1104 	 */
1105 	kattr->size = min(usize, ksize);
1106 
1107 	if (copy_to_user(uattr, kattr, kattr->size))
1108 		return -EFAULT;
1109 
1110 	return 0;
1111 }
1112 
1113 /**
1114  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1115  * @pid: the pid in question.
1116  * @uattr: structure containing the extended parameters.
1117  * @usize: sizeof(attr) for fwd/bwd comp.
1118  * @flags: for future extension.
1119  */
1120 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1121 		unsigned int, usize, unsigned int, flags)
1122 {
1123 	struct sched_attr kattr = { };
1124 	struct task_struct *p;
1125 	int retval;
1126 
1127 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
1128 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
1129 		return -EINVAL;
1130 
1131 	scoped_guard (rcu) {
1132 		p = find_process_by_pid(pid);
1133 		if (!p)
1134 			return -ESRCH;
1135 
1136 		retval = security_task_getscheduler(p);
1137 		if (retval)
1138 			return retval;
1139 
1140 		kattr.sched_policy = p->policy;
1141 		if (p->sched_reset_on_fork)
1142 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1143 		get_params(p, &kattr);
1144 		kattr.sched_flags &= SCHED_FLAG_ALL;
1145 
1146 #ifdef CONFIG_UCLAMP_TASK
1147 		/*
1148 		 * This could race with another potential updater, but this is fine
1149 		 * because it'll correctly read the old or the new value. We don't need
1150 		 * to guarantee who wins the race as long as it doesn't return garbage.
1151 		 */
1152 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1153 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1154 #endif
1155 	}
1156 
1157 	return sched_attr_copy_to_user(uattr, &kattr, usize);
1158 }
1159 
1160 #ifdef CONFIG_SMP
1161 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1162 {
1163 	/*
1164 	 * If the task isn't a deadline task or admission control is
1165 	 * disabled then we don't care about affinity changes.
1166 	 */
1167 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1168 		return 0;
1169 
1170 	/*
1171 	 * Since bandwidth control happens on root_domain basis,
1172 	 * if admission test is enabled, we only admit -deadline
1173 	 * tasks allowed to run on all the CPUs in the task's
1174 	 * root_domain.
1175 	 */
1176 	guard(rcu)();
1177 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
1178 		return -EBUSY;
1179 
1180 	return 0;
1181 }
1182 #endif /* CONFIG_SMP */
1183 
1184 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1185 {
1186 	int retval;
1187 	cpumask_var_t cpus_allowed, new_mask;
1188 
1189 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1190 		return -ENOMEM;
1191 
1192 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1193 		retval = -ENOMEM;
1194 		goto out_free_cpus_allowed;
1195 	}
1196 
1197 	cpuset_cpus_allowed(p, cpus_allowed);
1198 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1199 
1200 	ctx->new_mask = new_mask;
1201 	ctx->flags |= SCA_CHECK;
1202 
1203 	retval = dl_task_check_affinity(p, new_mask);
1204 	if (retval)
1205 		goto out_free_new_mask;
1206 
1207 	retval = __set_cpus_allowed_ptr(p, ctx);
1208 	if (retval)
1209 		goto out_free_new_mask;
1210 
1211 	cpuset_cpus_allowed(p, cpus_allowed);
1212 	if (!cpumask_subset(new_mask, cpus_allowed)) {
1213 		/*
1214 		 * We must have raced with a concurrent cpuset update.
1215 		 * Just reset the cpumask to the cpuset's cpus_allowed.
1216 		 */
1217 		cpumask_copy(new_mask, cpus_allowed);
1218 
1219 		/*
1220 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1221 		 * will restore the previous user_cpus_ptr value.
1222 		 *
1223 		 * In the unlikely event a previous user_cpus_ptr exists,
1224 		 * we need to further restrict the mask to what is allowed
1225 		 * by that old user_cpus_ptr.
1226 		 */
1227 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1228 			bool empty = !cpumask_and(new_mask, new_mask,
1229 						  ctx->user_mask);
1230 
1231 			if (WARN_ON_ONCE(empty))
1232 				cpumask_copy(new_mask, cpus_allowed);
1233 		}
1234 		__set_cpus_allowed_ptr(p, ctx);
1235 		retval = -EINVAL;
1236 	}
1237 
1238 out_free_new_mask:
1239 	free_cpumask_var(new_mask);
1240 out_free_cpus_allowed:
1241 	free_cpumask_var(cpus_allowed);
1242 	return retval;
1243 }
1244 
1245 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1246 {
1247 	struct affinity_context ac;
1248 	struct cpumask *user_mask;
1249 	int retval;
1250 
1251 	CLASS(find_get_task, p)(pid);
1252 	if (!p)
1253 		return -ESRCH;
1254 
1255 	if (p->flags & PF_NO_SETAFFINITY)
1256 		return -EINVAL;
1257 
1258 	if (!check_same_owner(p)) {
1259 		guard(rcu)();
1260 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1261 			return -EPERM;
1262 	}
1263 
1264 	retval = security_task_setscheduler(p);
1265 	if (retval)
1266 		return retval;
1267 
1268 	/*
1269 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1270 	 * alloc_user_cpus_ptr() returns NULL.
1271 	 */
1272 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1273 	if (user_mask) {
1274 		cpumask_copy(user_mask, in_mask);
1275 	} else if (IS_ENABLED(CONFIG_SMP)) {
1276 		return -ENOMEM;
1277 	}
1278 
1279 	ac = (struct affinity_context){
1280 		.new_mask  = in_mask,
1281 		.user_mask = user_mask,
1282 		.flags     = SCA_USER,
1283 	};
1284 
1285 	retval = __sched_setaffinity(p, &ac);
1286 	kfree(ac.user_mask);
1287 
1288 	return retval;
1289 }
1290 
1291 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1292 			     struct cpumask *new_mask)
1293 {
1294 	if (len < cpumask_size())
1295 		cpumask_clear(new_mask);
1296 	else if (len > cpumask_size())
1297 		len = cpumask_size();
1298 
1299 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1300 }
1301 
1302 /**
1303  * sys_sched_setaffinity - set the CPU affinity of a process
1304  * @pid: pid of the process
1305  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1306  * @user_mask_ptr: user-space pointer to the new CPU mask
1307  *
1308  * Return: 0 on success. An error code otherwise.
1309  */
1310 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1311 		unsigned long __user *, user_mask_ptr)
1312 {
1313 	cpumask_var_t new_mask;
1314 	int retval;
1315 
1316 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1317 		return -ENOMEM;
1318 
1319 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1320 	if (retval == 0)
1321 		retval = sched_setaffinity(pid, new_mask);
1322 	free_cpumask_var(new_mask);
1323 	return retval;
1324 }
1325 
1326 long sched_getaffinity(pid_t pid, struct cpumask *mask)
1327 {
1328 	struct task_struct *p;
1329 	int retval;
1330 
1331 	guard(rcu)();
1332 	p = find_process_by_pid(pid);
1333 	if (!p)
1334 		return -ESRCH;
1335 
1336 	retval = security_task_getscheduler(p);
1337 	if (retval)
1338 		return retval;
1339 
1340 	guard(raw_spinlock_irqsave)(&p->pi_lock);
1341 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1342 
1343 	return 0;
1344 }
1345 
1346 /**
1347  * sys_sched_getaffinity - get the CPU affinity of a process
1348  * @pid: pid of the process
1349  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1350  * @user_mask_ptr: user-space pointer to hold the current CPU mask
1351  *
1352  * Return: size of CPU mask copied to user_mask_ptr on success. An
1353  * error code otherwise.
1354  */
1355 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1356 		unsigned long __user *, user_mask_ptr)
1357 {
1358 	int ret;
1359 	cpumask_var_t mask;
1360 
1361 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1362 		return -EINVAL;
1363 	if (len & (sizeof(unsigned long)-1))
1364 		return -EINVAL;
1365 
1366 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1367 		return -ENOMEM;
1368 
1369 	ret = sched_getaffinity(pid, mask);
1370 	if (ret == 0) {
1371 		unsigned int retlen = min(len, cpumask_size());
1372 
1373 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1374 			ret = -EFAULT;
1375 		else
1376 			ret = retlen;
1377 	}
1378 	free_cpumask_var(mask);
1379 
1380 	return ret;
1381 }
1382 
1383 static void do_sched_yield(void)
1384 {
1385 	struct rq_flags rf;
1386 	struct rq *rq;
1387 
1388 	rq = this_rq_lock_irq(&rf);
1389 
1390 	schedstat_inc(rq->yld_count);
1391 	current->sched_class->yield_task(rq);
1392 
1393 	preempt_disable();
1394 	rq_unlock_irq(rq, &rf);
1395 	sched_preempt_enable_no_resched();
1396 
1397 	schedule();
1398 }
1399 
1400 /**
1401  * sys_sched_yield - yield the current processor to other threads.
1402  *
1403  * This function yields the current CPU to other tasks. If there are no
1404  * other threads running on this CPU then this function will return.
1405  *
1406  * Return: 0.
1407  */
1408 SYSCALL_DEFINE0(sched_yield)
1409 {
1410 	do_sched_yield();
1411 	return 0;
1412 }
1413 
1414 /**
1415  * yield - yield the current processor to other threads.
1416  *
1417  * Do not ever use this function, there's a 99% chance you're doing it wrong.
1418  *
1419  * The scheduler is at all times free to pick the calling task as the most
1420  * eligible task to run, if removing the yield() call from your code breaks
1421  * it, it's already broken.
1422  *
1423  * Typical broken usage is:
1424  *
1425  * while (!event)
1426  *	yield();
1427  *
1428  * where one assumes that yield() will let 'the other' process run that will
1429  * make event true. If the current task is a SCHED_FIFO task that will never
1430  * happen. Never use yield() as a progress guarantee!!
1431  *
1432  * If you want to use yield() to wait for something, use wait_event().
1433  * If you want to use yield() to be 'nice' for others, use cond_resched().
1434  * If you still want to use yield(), do not!
1435  */
1436 void __sched yield(void)
1437 {
1438 	set_current_state(TASK_RUNNING);
1439 	do_sched_yield();
1440 }
1441 EXPORT_SYMBOL(yield);
1442 
1443 /**
1444  * yield_to - yield the current processor to another thread in
1445  * your thread group, or accelerate that thread toward the
1446  * processor it's on.
1447  * @p: target task
1448  * @preempt: whether task preemption is allowed or not
1449  *
1450  * It's the caller's job to ensure that the target task struct
1451  * can't go away on us before we can do any checks.
1452  *
1453  * Return:
1454  *	true (>0) if we indeed boosted the target task.
1455  *	false (0) if we failed to boost the target.
1456  *	-ESRCH if there's no task to yield to.
1457  */
1458 int __sched yield_to(struct task_struct *p, bool preempt)
1459 {
1460 	struct task_struct *curr = current;
1461 	struct rq *rq, *p_rq;
1462 	int yielded = 0;
1463 
1464 	scoped_guard (irqsave) {
1465 		rq = this_rq();
1466 
1467 again:
1468 		p_rq = task_rq(p);
1469 		/*
1470 		 * If we're the only runnable task on the rq and target rq also
1471 		 * has only one task, there's absolutely no point in yielding.
1472 		 */
1473 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
1474 			return -ESRCH;
1475 
1476 		guard(double_rq_lock)(rq, p_rq);
1477 		if (task_rq(p) != p_rq)
1478 			goto again;
1479 
1480 		if (!curr->sched_class->yield_to_task)
1481 			return 0;
1482 
1483 		if (curr->sched_class != p->sched_class)
1484 			return 0;
1485 
1486 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
1487 			return 0;
1488 
1489 		yielded = curr->sched_class->yield_to_task(rq, p);
1490 		if (yielded) {
1491 			schedstat_inc(rq->yld_count);
1492 			/*
1493 			 * Make p's CPU reschedule; pick_next_entity
1494 			 * takes care of fairness.
1495 			 */
1496 			if (preempt && rq != p_rq)
1497 				resched_curr(p_rq);
1498 		}
1499 	}
1500 
1501 	if (yielded)
1502 		schedule();
1503 
1504 	return yielded;
1505 }
1506 EXPORT_SYMBOL_GPL(yield_to);
1507 
1508 /**
1509  * sys_sched_get_priority_max - return maximum RT priority.
1510  * @policy: scheduling class.
1511  *
1512  * Return: On success, this syscall returns the maximum
1513  * rt_priority that can be used by a given scheduling class.
1514  * On failure, a negative error code is returned.
1515  */
1516 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1517 {
1518 	int ret = -EINVAL;
1519 
1520 	switch (policy) {
1521 	case SCHED_FIFO:
1522 	case SCHED_RR:
1523 		ret = MAX_RT_PRIO-1;
1524 		break;
1525 	case SCHED_DEADLINE:
1526 	case SCHED_NORMAL:
1527 	case SCHED_BATCH:
1528 	case SCHED_IDLE:
1529 		ret = 0;
1530 		break;
1531 	}
1532 	return ret;
1533 }
1534 
1535 /**
1536  * sys_sched_get_priority_min - return minimum RT priority.
1537  * @policy: scheduling class.
1538  *
1539  * Return: On success, this syscall returns the minimum
1540  * rt_priority that can be used by a given scheduling class.
1541  * On failure, a negative error code is returned.
1542  */
1543 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1544 {
1545 	int ret = -EINVAL;
1546 
1547 	switch (policy) {
1548 	case SCHED_FIFO:
1549 	case SCHED_RR:
1550 		ret = 1;
1551 		break;
1552 	case SCHED_DEADLINE:
1553 	case SCHED_NORMAL:
1554 	case SCHED_BATCH:
1555 	case SCHED_IDLE:
1556 		ret = 0;
1557 	}
1558 	return ret;
1559 }
1560 
1561 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1562 {
1563 	unsigned int time_slice = 0;
1564 	int retval;
1565 
1566 	if (pid < 0)
1567 		return -EINVAL;
1568 
1569 	scoped_guard (rcu) {
1570 		struct task_struct *p = find_process_by_pid(pid);
1571 		if (!p)
1572 			return -ESRCH;
1573 
1574 		retval = security_task_getscheduler(p);
1575 		if (retval)
1576 			return retval;
1577 
1578 		scoped_guard (task_rq_lock, p) {
1579 			struct rq *rq = scope.rq;
1580 			if (p->sched_class->get_rr_interval)
1581 				time_slice = p->sched_class->get_rr_interval(rq, p);
1582 		}
1583 	}
1584 
1585 	jiffies_to_timespec64(time_slice, t);
1586 	return 0;
1587 }
1588 
1589 /**
1590  * sys_sched_rr_get_interval - return the default time-slice of a process.
1591  * @pid: pid of the process.
1592  * @interval: userspace pointer to the time-slice value.
1593  *
1594  * this syscall writes the default time-slice value of a given process
1595  * into the user-space timespec buffer. A value of '0' means infinity.
1596  *
1597  * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1598  * an error code.
1599  */
1600 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1601 		struct __kernel_timespec __user *, interval)
1602 {
1603 	struct timespec64 t;
1604 	int retval = sched_rr_get_interval(pid, &t);
1605 
1606 	if (retval == 0)
1607 		retval = put_timespec64(&t, interval);
1608 
1609 	return retval;
1610 }
1611 
1612 #ifdef CONFIG_COMPAT_32BIT_TIME
1613 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1614 		struct old_timespec32 __user *, interval)
1615 {
1616 	struct timespec64 t;
1617 	int retval = sched_rr_get_interval(pid, &t);
1618 
1619 	if (retval == 0)
1620 		retval = put_old_timespec32(&t, interval);
1621 	return retval;
1622 }
1623 #endif
1624