xref: /linux/kernel/sched/syscalls.c (revision 07814a9439a3b03d79a1001614b5bc1cab69bcec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/syscalls.c
4  *
5  *  Core kernel scheduler syscalls related code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/sched.h>
11 #include <linux/cpuset.h>
12 #include <linux/sched/debug.h>
13 
14 #include <uapi/linux/sched/types.h>
15 
16 #include "sched.h"
17 #include "autogroup.h"
18 
19 static inline int __normal_prio(int policy, int rt_prio, int nice)
20 {
21 	int prio;
22 
23 	if (dl_policy(policy))
24 		prio = MAX_DL_PRIO - 1;
25 	else if (rt_policy(policy))
26 		prio = MAX_RT_PRIO - 1 - rt_prio;
27 	else
28 		prio = NICE_TO_PRIO(nice);
29 
30 	return prio;
31 }
32 
33 /*
34  * Calculate the expected normal priority: i.e. priority
35  * without taking RT-inheritance into account. Might be
36  * boosted by interactivity modifiers. Changes upon fork,
37  * setprio syscalls, and whenever the interactivity
38  * estimator recalculates.
39  */
40 static inline int normal_prio(struct task_struct *p)
41 {
42 	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43 }
44 
45 /*
46  * Calculate the current priority, i.e. the priority
47  * taken into account by the scheduler. This value might
48  * be boosted by RT tasks, or might be boosted by
49  * interactivity modifiers. Will be RT if the task got
50  * RT-boosted. If not then it returns p->normal_prio.
51  */
52 static int effective_prio(struct task_struct *p)
53 {
54 	p->normal_prio = normal_prio(p);
55 	/*
56 	 * If we are RT tasks or we were boosted to RT priority,
57 	 * keep the priority unchanged. Otherwise, update priority
58 	 * to the normal priority:
59 	 */
60 	if (!rt_prio(p->prio))
61 		return p->normal_prio;
62 	return p->prio;
63 }
64 
65 void set_user_nice(struct task_struct *p, long nice)
66 {
67 	bool queued, running;
68 	struct rq *rq;
69 	int old_prio;
70 
71 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
72 		return;
73 	/*
74 	 * We have to be careful, if called from sys_setpriority(),
75 	 * the task might be in the middle of scheduling on another CPU.
76 	 */
77 	CLASS(task_rq_lock, rq_guard)(p);
78 	rq = rq_guard.rq;
79 
80 	update_rq_clock(rq);
81 
82 	/*
83 	 * The RT priorities are set via sched_setscheduler(), but we still
84 	 * allow the 'normal' nice value to be set - but as expected
85 	 * it won't have any effect on scheduling until the task is
86 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
87 	 */
88 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
89 		p->static_prio = NICE_TO_PRIO(nice);
90 		return;
91 	}
92 
93 	queued = task_on_rq_queued(p);
94 	running = task_current(rq, p);
95 	if (queued)
96 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
97 	if (running)
98 		put_prev_task(rq, p);
99 
100 	p->static_prio = NICE_TO_PRIO(nice);
101 	set_load_weight(p, true);
102 	old_prio = p->prio;
103 	p->prio = effective_prio(p);
104 
105 	if (queued)
106 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
107 	if (running)
108 		set_next_task(rq, p);
109 
110 	/*
111 	 * If the task increased its priority or is running and
112 	 * lowered its priority, then reschedule its CPU:
113 	 */
114 	p->sched_class->prio_changed(rq, p, old_prio);
115 }
116 EXPORT_SYMBOL(set_user_nice);
117 
118 /*
119  * is_nice_reduction - check if nice value is an actual reduction
120  *
121  * Similar to can_nice() but does not perform a capability check.
122  *
123  * @p: task
124  * @nice: nice value
125  */
126 static bool is_nice_reduction(const struct task_struct *p, const int nice)
127 {
128 	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
129 	int nice_rlim = nice_to_rlimit(nice);
130 
131 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
132 }
133 
134 /*
135  * can_nice - check if a task can reduce its nice value
136  * @p: task
137  * @nice: nice value
138  */
139 int can_nice(const struct task_struct *p, const int nice)
140 {
141 	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
142 }
143 
144 #ifdef __ARCH_WANT_SYS_NICE
145 
146 /*
147  * sys_nice - change the priority of the current process.
148  * @increment: priority increment
149  *
150  * sys_setpriority is a more generic, but much slower function that
151  * does similar things.
152  */
153 SYSCALL_DEFINE1(nice, int, increment)
154 {
155 	long nice, retval;
156 
157 	/*
158 	 * Setpriority might change our priority at the same moment.
159 	 * We don't have to worry. Conceptually one call occurs first
160 	 * and we have a single winner.
161 	 */
162 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
163 	nice = task_nice(current) + increment;
164 
165 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
166 	if (increment < 0 && !can_nice(current, nice))
167 		return -EPERM;
168 
169 	retval = security_task_setnice(current, nice);
170 	if (retval)
171 		return retval;
172 
173 	set_user_nice(current, nice);
174 	return 0;
175 }
176 
177 #endif
178 
179 /**
180  * task_prio - return the priority value of a given task.
181  * @p: the task in question.
182  *
183  * Return: The priority value as seen by users in /proc.
184  *
185  * sched policy         return value   kernel prio    user prio/nice
186  *
187  * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
188  * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
189  * deadline                     -101             -1           0
190  */
191 int task_prio(const struct task_struct *p)
192 {
193 	return p->prio - MAX_RT_PRIO;
194 }
195 
196 /**
197  * idle_cpu - is a given CPU idle currently?
198  * @cpu: the processor in question.
199  *
200  * Return: 1 if the CPU is currently idle. 0 otherwise.
201  */
202 int idle_cpu(int cpu)
203 {
204 	struct rq *rq = cpu_rq(cpu);
205 
206 	if (rq->curr != rq->idle)
207 		return 0;
208 
209 	if (rq->nr_running)
210 		return 0;
211 
212 #ifdef CONFIG_SMP
213 	if (rq->ttwu_pending)
214 		return 0;
215 #endif
216 
217 	return 1;
218 }
219 
220 /**
221  * available_idle_cpu - is a given CPU idle for enqueuing work.
222  * @cpu: the CPU in question.
223  *
224  * Return: 1 if the CPU is currently idle. 0 otherwise.
225  */
226 int available_idle_cpu(int cpu)
227 {
228 	if (!idle_cpu(cpu))
229 		return 0;
230 
231 	if (vcpu_is_preempted(cpu))
232 		return 0;
233 
234 	return 1;
235 }
236 
237 /**
238  * idle_task - return the idle task for a given CPU.
239  * @cpu: the processor in question.
240  *
241  * Return: The idle task for the CPU @cpu.
242  */
243 struct task_struct *idle_task(int cpu)
244 {
245 	return cpu_rq(cpu)->idle;
246 }
247 
248 #ifdef CONFIG_SCHED_CORE
249 int sched_core_idle_cpu(int cpu)
250 {
251 	struct rq *rq = cpu_rq(cpu);
252 
253 	if (sched_core_enabled(rq) && rq->curr == rq->idle)
254 		return 1;
255 
256 	return idle_cpu(cpu);
257 }
258 
259 #endif
260 
261 #ifdef CONFIG_SMP
262 /*
263  * Load avg and utiliztion metrics need to be updated periodically and before
264  * consumption. This function updates the metrics for all subsystems except for
265  * the fair class. @rq must be locked and have its clock updated.
266  */
267 bool update_other_load_avgs(struct rq *rq)
268 {
269 	u64 now = rq_clock_pelt(rq);
270 	const struct sched_class *curr_class = rq->curr->sched_class;
271 	unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
272 
273 	lockdep_assert_rq_held(rq);
274 
275 	return update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
276 		update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
277 		update_hw_load_avg(now, rq, hw_pressure) |
278 		update_irq_load_avg(rq, 0);
279 }
280 
281 /*
282  * This function computes an effective utilization for the given CPU, to be
283  * used for frequency selection given the linear relation: f = u * f_max.
284  *
285  * The scheduler tracks the following metrics:
286  *
287  *   cpu_util_{cfs,rt,dl,irq}()
288  *   cpu_bw_dl()
289  *
290  * Where the cfs,rt and dl util numbers are tracked with the same metric and
291  * synchronized windows and are thus directly comparable.
292  *
293  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
294  * which excludes things like IRQ and steal-time. These latter are then accrued
295  * in the IRQ utilization.
296  *
297  * The DL bandwidth number OTOH is not a measured metric but a value computed
298  * based on the task model parameters and gives the minimal utilization
299  * required to meet deadlines.
300  */
301 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
302 				 unsigned long *min,
303 				 unsigned long *max)
304 {
305 	unsigned long util, irq, scale;
306 	struct rq *rq = cpu_rq(cpu);
307 
308 	scale = arch_scale_cpu_capacity(cpu);
309 
310 	/*
311 	 * Early check to see if IRQ/steal time saturates the CPU, can be
312 	 * because of inaccuracies in how we track these -- see
313 	 * update_irq_load_avg().
314 	 */
315 	irq = cpu_util_irq(rq);
316 	if (unlikely(irq >= scale)) {
317 		if (min)
318 			*min = scale;
319 		if (max)
320 			*max = scale;
321 		return scale;
322 	}
323 
324 	if (min) {
325 		/*
326 		 * The minimum utilization returns the highest level between:
327 		 * - the computed DL bandwidth needed with the IRQ pressure which
328 		 *   steals time to the deadline task.
329 		 * - The minimum performance requirement for CFS and/or RT.
330 		 */
331 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
332 
333 		/*
334 		 * When an RT task is runnable and uclamp is not used, we must
335 		 * ensure that the task will run at maximum compute capacity.
336 		 */
337 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
338 			*min = max(*min, scale);
339 	}
340 
341 	/*
342 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
343 	 * CFS tasks and we use the same metric to track the effective
344 	 * utilization (PELT windows are synchronized) we can directly add them
345 	 * to obtain the CPU's actual utilization.
346 	 */
347 	util = util_cfs + cpu_util_rt(rq);
348 	util += cpu_util_dl(rq);
349 
350 	/*
351 	 * The maximum hint is a soft bandwidth requirement, which can be lower
352 	 * than the actual utilization because of uclamp_max requirements.
353 	 */
354 	if (max)
355 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
356 
357 	if (util >= scale)
358 		return scale;
359 
360 	/*
361 	 * There is still idle time; further improve the number by using the
362 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
363 	 * need to scale the task numbers:
364 	 *
365 	 *              max - irq
366 	 *   U' = irq + --------- * U
367 	 *                 max
368 	 */
369 	util = scale_irq_capacity(util, irq, scale);
370 	util += irq;
371 
372 	return min(scale, util);
373 }
374 
375 unsigned long sched_cpu_util(int cpu)
376 {
377 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
378 }
379 #endif /* CONFIG_SMP */
380 
381 /**
382  * find_process_by_pid - find a process with a matching PID value.
383  * @pid: the pid in question.
384  *
385  * The task of @pid, if found. %NULL otherwise.
386  */
387 static struct task_struct *find_process_by_pid(pid_t pid)
388 {
389 	return pid ? find_task_by_vpid(pid) : current;
390 }
391 
392 static struct task_struct *find_get_task(pid_t pid)
393 {
394 	struct task_struct *p;
395 	guard(rcu)();
396 
397 	p = find_process_by_pid(pid);
398 	if (likely(p))
399 		get_task_struct(p);
400 
401 	return p;
402 }
403 
404 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
405 	     find_get_task(pid), pid_t pid)
406 
407 /*
408  * sched_setparam() passes in -1 for its policy, to let the functions
409  * it calls know not to change it.
410  */
411 #define SETPARAM_POLICY	-1
412 
413 static void __setscheduler_params(struct task_struct *p,
414 		const struct sched_attr *attr)
415 {
416 	int policy = attr->sched_policy;
417 
418 	if (policy == SETPARAM_POLICY)
419 		policy = p->policy;
420 
421 	p->policy = policy;
422 
423 	if (dl_policy(policy))
424 		__setparam_dl(p, attr);
425 	else if (fair_policy(policy))
426 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
427 
428 	/*
429 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
430 	 * !rt_policy. Always setting this ensures that things like
431 	 * getparam()/getattr() don't report silly values for !rt tasks.
432 	 */
433 	p->rt_priority = attr->sched_priority;
434 	p->normal_prio = normal_prio(p);
435 	set_load_weight(p, true);
436 }
437 
438 /*
439  * Check the target process has a UID that matches the current process's:
440  */
441 static bool check_same_owner(struct task_struct *p)
442 {
443 	const struct cred *cred = current_cred(), *pcred;
444 	guard(rcu)();
445 
446 	pcred = __task_cred(p);
447 	return (uid_eq(cred->euid, pcred->euid) ||
448 		uid_eq(cred->euid, pcred->uid));
449 }
450 
451 #ifdef CONFIG_UCLAMP_TASK
452 
453 static int uclamp_validate(struct task_struct *p,
454 			   const struct sched_attr *attr)
455 {
456 	int util_min = p->uclamp_req[UCLAMP_MIN].value;
457 	int util_max = p->uclamp_req[UCLAMP_MAX].value;
458 
459 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
460 		util_min = attr->sched_util_min;
461 
462 		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
463 			return -EINVAL;
464 	}
465 
466 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
467 		util_max = attr->sched_util_max;
468 
469 		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
470 			return -EINVAL;
471 	}
472 
473 	if (util_min != -1 && util_max != -1 && util_min > util_max)
474 		return -EINVAL;
475 
476 	/*
477 	 * We have valid uclamp attributes; make sure uclamp is enabled.
478 	 *
479 	 * We need to do that here, because enabling static branches is a
480 	 * blocking operation which obviously cannot be done while holding
481 	 * scheduler locks.
482 	 */
483 	static_branch_enable(&sched_uclamp_used);
484 
485 	return 0;
486 }
487 
488 static bool uclamp_reset(const struct sched_attr *attr,
489 			 enum uclamp_id clamp_id,
490 			 struct uclamp_se *uc_se)
491 {
492 	/* Reset on sched class change for a non user-defined clamp value. */
493 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
494 	    !uc_se->user_defined)
495 		return true;
496 
497 	/* Reset on sched_util_{min,max} == -1. */
498 	if (clamp_id == UCLAMP_MIN &&
499 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
500 	    attr->sched_util_min == -1) {
501 		return true;
502 	}
503 
504 	if (clamp_id == UCLAMP_MAX &&
505 	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
506 	    attr->sched_util_max == -1) {
507 		return true;
508 	}
509 
510 	return false;
511 }
512 
513 static void __setscheduler_uclamp(struct task_struct *p,
514 				  const struct sched_attr *attr)
515 {
516 	enum uclamp_id clamp_id;
517 
518 	for_each_clamp_id(clamp_id) {
519 		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
520 		unsigned int value;
521 
522 		if (!uclamp_reset(attr, clamp_id, uc_se))
523 			continue;
524 
525 		/*
526 		 * RT by default have a 100% boost value that could be modified
527 		 * at runtime.
528 		 */
529 		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
530 			value = sysctl_sched_uclamp_util_min_rt_default;
531 		else
532 			value = uclamp_none(clamp_id);
533 
534 		uclamp_se_set(uc_se, value, false);
535 
536 	}
537 
538 	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
539 		return;
540 
541 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
542 	    attr->sched_util_min != -1) {
543 		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
544 			      attr->sched_util_min, true);
545 	}
546 
547 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
548 	    attr->sched_util_max != -1) {
549 		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
550 			      attr->sched_util_max, true);
551 	}
552 }
553 
554 #else /* !CONFIG_UCLAMP_TASK: */
555 
556 static inline int uclamp_validate(struct task_struct *p,
557 				  const struct sched_attr *attr)
558 {
559 	return -EOPNOTSUPP;
560 }
561 static void __setscheduler_uclamp(struct task_struct *p,
562 				  const struct sched_attr *attr) { }
563 #endif
564 
565 /*
566  * Allow unprivileged RT tasks to decrease priority.
567  * Only issue a capable test if needed and only once to avoid an audit
568  * event on permitted non-privileged operations:
569  */
570 static int user_check_sched_setscheduler(struct task_struct *p,
571 					 const struct sched_attr *attr,
572 					 int policy, int reset_on_fork)
573 {
574 	if (fair_policy(policy)) {
575 		if (attr->sched_nice < task_nice(p) &&
576 		    !is_nice_reduction(p, attr->sched_nice))
577 			goto req_priv;
578 	}
579 
580 	if (rt_policy(policy)) {
581 		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
582 
583 		/* Can't set/change the rt policy: */
584 		if (policy != p->policy && !rlim_rtprio)
585 			goto req_priv;
586 
587 		/* Can't increase priority: */
588 		if (attr->sched_priority > p->rt_priority &&
589 		    attr->sched_priority > rlim_rtprio)
590 			goto req_priv;
591 	}
592 
593 	/*
594 	 * Can't set/change SCHED_DEADLINE policy at all for now
595 	 * (safest behavior); in the future we would like to allow
596 	 * unprivileged DL tasks to increase their relative deadline
597 	 * or reduce their runtime (both ways reducing utilization)
598 	 */
599 	if (dl_policy(policy))
600 		goto req_priv;
601 
602 	/*
603 	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
604 	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
605 	 */
606 	if (task_has_idle_policy(p) && !idle_policy(policy)) {
607 		if (!is_nice_reduction(p, task_nice(p)))
608 			goto req_priv;
609 	}
610 
611 	/* Can't change other user's priorities: */
612 	if (!check_same_owner(p))
613 		goto req_priv;
614 
615 	/* Normal users shall not reset the sched_reset_on_fork flag: */
616 	if (p->sched_reset_on_fork && !reset_on_fork)
617 		goto req_priv;
618 
619 	return 0;
620 
621 req_priv:
622 	if (!capable(CAP_SYS_NICE))
623 		return -EPERM;
624 
625 	return 0;
626 }
627 
628 int __sched_setscheduler(struct task_struct *p,
629 			 const struct sched_attr *attr,
630 			 bool user, bool pi)
631 {
632 	int oldpolicy = -1, policy = attr->sched_policy;
633 	int retval, oldprio, newprio, queued, running;
634 	const struct sched_class *prev_class;
635 	struct balance_callback *head;
636 	struct rq_flags rf;
637 	int reset_on_fork;
638 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
639 	struct rq *rq;
640 	bool cpuset_locked = false;
641 
642 	/* The pi code expects interrupts enabled */
643 	BUG_ON(pi && in_interrupt());
644 recheck:
645 	/* Double check policy once rq lock held: */
646 	if (policy < 0) {
647 		reset_on_fork = p->sched_reset_on_fork;
648 		policy = oldpolicy = p->policy;
649 	} else {
650 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
651 
652 		if (!valid_policy(policy))
653 			return -EINVAL;
654 	}
655 
656 	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
657 		return -EINVAL;
658 
659 	/*
660 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
661 	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
662 	 * SCHED_BATCH and SCHED_IDLE is 0.
663 	 */
664 	if (attr->sched_priority > MAX_RT_PRIO-1)
665 		return -EINVAL;
666 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
667 	    (rt_policy(policy) != (attr->sched_priority != 0)))
668 		return -EINVAL;
669 
670 	if (user) {
671 		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
672 		if (retval)
673 			return retval;
674 
675 		if (attr->sched_flags & SCHED_FLAG_SUGOV)
676 			return -EINVAL;
677 
678 		retval = security_task_setscheduler(p);
679 		if (retval)
680 			return retval;
681 	}
682 
683 	/* Update task specific "requested" clamps */
684 	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
685 		retval = uclamp_validate(p, attr);
686 		if (retval)
687 			return retval;
688 	}
689 
690 	/*
691 	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
692 	 * information.
693 	 */
694 	if (dl_policy(policy) || dl_policy(p->policy)) {
695 		cpuset_locked = true;
696 		cpuset_lock();
697 	}
698 
699 	/*
700 	 * Make sure no PI-waiters arrive (or leave) while we are
701 	 * changing the priority of the task:
702 	 *
703 	 * To be able to change p->policy safely, the appropriate
704 	 * runqueue lock must be held.
705 	 */
706 	rq = task_rq_lock(p, &rf);
707 	update_rq_clock(rq);
708 
709 	/*
710 	 * Changing the policy of the stop threads its a very bad idea:
711 	 */
712 	if (p == rq->stop) {
713 		retval = -EINVAL;
714 		goto unlock;
715 	}
716 
717 	retval = scx_check_setscheduler(p, policy);
718 	if (retval)
719 		goto unlock;
720 
721 	/*
722 	 * If not changing anything there's no need to proceed further,
723 	 * but store a possible modification of reset_on_fork.
724 	 */
725 	if (unlikely(policy == p->policy)) {
726 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
727 			goto change;
728 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
729 			goto change;
730 		if (dl_policy(policy) && dl_param_changed(p, attr))
731 			goto change;
732 		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
733 			goto change;
734 
735 		p->sched_reset_on_fork = reset_on_fork;
736 		retval = 0;
737 		goto unlock;
738 	}
739 change:
740 
741 	if (user) {
742 #ifdef CONFIG_RT_GROUP_SCHED
743 		/*
744 		 * Do not allow real-time tasks into groups that have no runtime
745 		 * assigned.
746 		 */
747 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
748 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
749 				!task_group_is_autogroup(task_group(p))) {
750 			retval = -EPERM;
751 			goto unlock;
752 		}
753 #endif
754 #ifdef CONFIG_SMP
755 		if (dl_bandwidth_enabled() && dl_policy(policy) &&
756 				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
757 			cpumask_t *span = rq->rd->span;
758 
759 			/*
760 			 * Don't allow tasks with an affinity mask smaller than
761 			 * the entire root_domain to become SCHED_DEADLINE. We
762 			 * will also fail if there's no bandwidth available.
763 			 */
764 			if (!cpumask_subset(span, p->cpus_ptr) ||
765 			    rq->rd->dl_bw.bw == 0) {
766 				retval = -EPERM;
767 				goto unlock;
768 			}
769 		}
770 #endif
771 	}
772 
773 	/* Re-check policy now with rq lock held: */
774 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
775 		policy = oldpolicy = -1;
776 		task_rq_unlock(rq, p, &rf);
777 		if (cpuset_locked)
778 			cpuset_unlock();
779 		goto recheck;
780 	}
781 
782 	/*
783 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
784 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
785 	 * is available.
786 	 */
787 	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
788 		retval = -EBUSY;
789 		goto unlock;
790 	}
791 
792 	p->sched_reset_on_fork = reset_on_fork;
793 	oldprio = p->prio;
794 
795 	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
796 	if (pi) {
797 		/*
798 		 * Take priority boosted tasks into account. If the new
799 		 * effective priority is unchanged, we just store the new
800 		 * normal parameters and do not touch the scheduler class and
801 		 * the runqueue. This will be done when the task deboost
802 		 * itself.
803 		 */
804 		newprio = rt_effective_prio(p, newprio);
805 		if (newprio == oldprio)
806 			queue_flags &= ~DEQUEUE_MOVE;
807 	}
808 
809 	queued = task_on_rq_queued(p);
810 	running = task_current(rq, p);
811 	if (queued)
812 		dequeue_task(rq, p, queue_flags);
813 	if (running)
814 		put_prev_task(rq, p);
815 
816 	prev_class = p->sched_class;
817 
818 	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
819 		__setscheduler_params(p, attr);
820 		__setscheduler_prio(p, newprio);
821 	}
822 	__setscheduler_uclamp(p, attr);
823 	check_class_changing(rq, p, prev_class);
824 
825 	if (queued) {
826 		/*
827 		 * We enqueue to tail when the priority of a task is
828 		 * increased (user space view).
829 		 */
830 		if (oldprio < p->prio)
831 			queue_flags |= ENQUEUE_HEAD;
832 
833 		enqueue_task(rq, p, queue_flags);
834 	}
835 	if (running)
836 		set_next_task(rq, p);
837 
838 	check_class_changed(rq, p, prev_class, oldprio);
839 
840 	/* Avoid rq from going away on us: */
841 	preempt_disable();
842 	head = splice_balance_callbacks(rq);
843 	task_rq_unlock(rq, p, &rf);
844 
845 	if (pi) {
846 		if (cpuset_locked)
847 			cpuset_unlock();
848 		rt_mutex_adjust_pi(p);
849 	}
850 
851 	/* Run balance callbacks after we've adjusted the PI chain: */
852 	balance_callbacks(rq, head);
853 	preempt_enable();
854 
855 	return 0;
856 
857 unlock:
858 	task_rq_unlock(rq, p, &rf);
859 	if (cpuset_locked)
860 		cpuset_unlock();
861 	return retval;
862 }
863 
864 static int _sched_setscheduler(struct task_struct *p, int policy,
865 			       const struct sched_param *param, bool check)
866 {
867 	struct sched_attr attr = {
868 		.sched_policy   = policy,
869 		.sched_priority = param->sched_priority,
870 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
871 	};
872 
873 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
874 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
875 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
876 		policy &= ~SCHED_RESET_ON_FORK;
877 		attr.sched_policy = policy;
878 	}
879 
880 	return __sched_setscheduler(p, &attr, check, true);
881 }
882 /**
883  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
884  * @p: the task in question.
885  * @policy: new policy.
886  * @param: structure containing the new RT priority.
887  *
888  * Use sched_set_fifo(), read its comment.
889  *
890  * Return: 0 on success. An error code otherwise.
891  *
892  * NOTE that the task may be already dead.
893  */
894 int sched_setscheduler(struct task_struct *p, int policy,
895 		       const struct sched_param *param)
896 {
897 	return _sched_setscheduler(p, policy, param, true);
898 }
899 
900 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
901 {
902 	return __sched_setscheduler(p, attr, true, true);
903 }
904 
905 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
906 {
907 	return __sched_setscheduler(p, attr, false, true);
908 }
909 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
910 
911 /**
912  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
913  * @p: the task in question.
914  * @policy: new policy.
915  * @param: structure containing the new RT priority.
916  *
917  * Just like sched_setscheduler, only don't bother checking if the
918  * current context has permission.  For example, this is needed in
919  * stop_machine(): we create temporary high priority worker threads,
920  * but our caller might not have that capability.
921  *
922  * Return: 0 on success. An error code otherwise.
923  */
924 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
925 			       const struct sched_param *param)
926 {
927 	return _sched_setscheduler(p, policy, param, false);
928 }
929 
930 /*
931  * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
932  * incapable of resource management, which is the one thing an OS really should
933  * be doing.
934  *
935  * This is of course the reason it is limited to privileged users only.
936  *
937  * Worse still; it is fundamentally impossible to compose static priority
938  * workloads. You cannot take two correctly working static prio workloads
939  * and smash them together and still expect them to work.
940  *
941  * For this reason 'all' FIFO tasks the kernel creates are basically at:
942  *
943  *   MAX_RT_PRIO / 2
944  *
945  * The administrator _MUST_ configure the system, the kernel simply doesn't
946  * know enough information to make a sensible choice.
947  */
948 void sched_set_fifo(struct task_struct *p)
949 {
950 	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
951 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
952 }
953 EXPORT_SYMBOL_GPL(sched_set_fifo);
954 
955 /*
956  * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
957  */
958 void sched_set_fifo_low(struct task_struct *p)
959 {
960 	struct sched_param sp = { .sched_priority = 1 };
961 	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
962 }
963 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
964 
965 void sched_set_normal(struct task_struct *p, int nice)
966 {
967 	struct sched_attr attr = {
968 		.sched_policy = SCHED_NORMAL,
969 		.sched_nice = nice,
970 	};
971 	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
972 }
973 EXPORT_SYMBOL_GPL(sched_set_normal);
974 
975 static int
976 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
977 {
978 	struct sched_param lparam;
979 
980 	if (!param || pid < 0)
981 		return -EINVAL;
982 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
983 		return -EFAULT;
984 
985 	CLASS(find_get_task, p)(pid);
986 	if (!p)
987 		return -ESRCH;
988 
989 	return sched_setscheduler(p, policy, &lparam);
990 }
991 
992 /*
993  * Mimics kernel/events/core.c perf_copy_attr().
994  */
995 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
996 {
997 	u32 size;
998 	int ret;
999 
1000 	/* Zero the full structure, so that a short copy will be nice: */
1001 	memset(attr, 0, sizeof(*attr));
1002 
1003 	ret = get_user(size, &uattr->size);
1004 	if (ret)
1005 		return ret;
1006 
1007 	/* ABI compatibility quirk: */
1008 	if (!size)
1009 		size = SCHED_ATTR_SIZE_VER0;
1010 	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
1011 		goto err_size;
1012 
1013 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
1014 	if (ret) {
1015 		if (ret == -E2BIG)
1016 			goto err_size;
1017 		return ret;
1018 	}
1019 
1020 	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
1021 	    size < SCHED_ATTR_SIZE_VER1)
1022 		return -EINVAL;
1023 
1024 	/*
1025 	 * XXX: Do we want to be lenient like existing syscalls; or do we want
1026 	 * to be strict and return an error on out-of-bounds values?
1027 	 */
1028 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
1029 
1030 	return 0;
1031 
1032 err_size:
1033 	put_user(sizeof(*attr), &uattr->size);
1034 	return -E2BIG;
1035 }
1036 
1037 static void get_params(struct task_struct *p, struct sched_attr *attr)
1038 {
1039 	if (task_has_dl_policy(p))
1040 		__getparam_dl(p, attr);
1041 	else if (task_has_rt_policy(p))
1042 		attr->sched_priority = p->rt_priority;
1043 	else
1044 		attr->sched_nice = task_nice(p);
1045 }
1046 
1047 /**
1048  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
1049  * @pid: the pid in question.
1050  * @policy: new policy.
1051  * @param: structure containing the new RT priority.
1052  *
1053  * Return: 0 on success. An error code otherwise.
1054  */
1055 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1056 {
1057 	if (policy < 0)
1058 		return -EINVAL;
1059 
1060 	return do_sched_setscheduler(pid, policy, param);
1061 }
1062 
1063 /**
1064  * sys_sched_setparam - set/change the RT priority of a thread
1065  * @pid: the pid in question.
1066  * @param: structure containing the new RT priority.
1067  *
1068  * Return: 0 on success. An error code otherwise.
1069  */
1070 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1071 {
1072 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1073 }
1074 
1075 /**
1076  * sys_sched_setattr - same as above, but with extended sched_attr
1077  * @pid: the pid in question.
1078  * @uattr: structure containing the extended parameters.
1079  * @flags: for future extension.
1080  */
1081 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
1082 			       unsigned int, flags)
1083 {
1084 	struct sched_attr attr;
1085 	int retval;
1086 
1087 	if (!uattr || pid < 0 || flags)
1088 		return -EINVAL;
1089 
1090 	retval = sched_copy_attr(uattr, &attr);
1091 	if (retval)
1092 		return retval;
1093 
1094 	if ((int)attr.sched_policy < 0)
1095 		return -EINVAL;
1096 	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
1097 		attr.sched_policy = SETPARAM_POLICY;
1098 
1099 	CLASS(find_get_task, p)(pid);
1100 	if (!p)
1101 		return -ESRCH;
1102 
1103 	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
1104 		get_params(p, &attr);
1105 
1106 	return sched_setattr(p, &attr);
1107 }
1108 
1109 /**
1110  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
1111  * @pid: the pid in question.
1112  *
1113  * Return: On success, the policy of the thread. Otherwise, a negative error
1114  * code.
1115  */
1116 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1117 {
1118 	struct task_struct *p;
1119 	int retval;
1120 
1121 	if (pid < 0)
1122 		return -EINVAL;
1123 
1124 	guard(rcu)();
1125 	p = find_process_by_pid(pid);
1126 	if (!p)
1127 		return -ESRCH;
1128 
1129 	retval = security_task_getscheduler(p);
1130 	if (!retval) {
1131 		retval = p->policy;
1132 		if (p->sched_reset_on_fork)
1133 			retval |= SCHED_RESET_ON_FORK;
1134 	}
1135 	return retval;
1136 }
1137 
1138 /**
1139  * sys_sched_getparam - get the RT priority of a thread
1140  * @pid: the pid in question.
1141  * @param: structure containing the RT priority.
1142  *
1143  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1144  * code.
1145  */
1146 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1147 {
1148 	struct sched_param lp = { .sched_priority = 0 };
1149 	struct task_struct *p;
1150 	int retval;
1151 
1152 	if (!param || pid < 0)
1153 		return -EINVAL;
1154 
1155 	scoped_guard (rcu) {
1156 		p = find_process_by_pid(pid);
1157 		if (!p)
1158 			return -ESRCH;
1159 
1160 		retval = security_task_getscheduler(p);
1161 		if (retval)
1162 			return retval;
1163 
1164 		if (task_has_rt_policy(p))
1165 			lp.sched_priority = p->rt_priority;
1166 	}
1167 
1168 	/*
1169 	 * This one might sleep, we cannot do it with a spinlock held ...
1170 	 */
1171 	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1172 }
1173 
1174 /*
1175  * Copy the kernel size attribute structure (which might be larger
1176  * than what user-space knows about) to user-space.
1177  *
1178  * Note that all cases are valid: user-space buffer can be larger or
1179  * smaller than the kernel-space buffer. The usual case is that both
1180  * have the same size.
1181  */
1182 static int
1183 sched_attr_copy_to_user(struct sched_attr __user *uattr,
1184 			struct sched_attr *kattr,
1185 			unsigned int usize)
1186 {
1187 	unsigned int ksize = sizeof(*kattr);
1188 
1189 	if (!access_ok(uattr, usize))
1190 		return -EFAULT;
1191 
1192 	/*
1193 	 * sched_getattr() ABI forwards and backwards compatibility:
1194 	 *
1195 	 * If usize == ksize then we just copy everything to user-space and all is good.
1196 	 *
1197 	 * If usize < ksize then we only copy as much as user-space has space for,
1198 	 * this keeps ABI compatibility as well. We skip the rest.
1199 	 *
1200 	 * If usize > ksize then user-space is using a newer version of the ABI,
1201 	 * which part the kernel doesn't know about. Just ignore it - tooling can
1202 	 * detect the kernel's knowledge of attributes from the attr->size value
1203 	 * which is set to ksize in this case.
1204 	 */
1205 	kattr->size = min(usize, ksize);
1206 
1207 	if (copy_to_user(uattr, kattr, kattr->size))
1208 		return -EFAULT;
1209 
1210 	return 0;
1211 }
1212 
1213 /**
1214  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1215  * @pid: the pid in question.
1216  * @uattr: structure containing the extended parameters.
1217  * @usize: sizeof(attr) for fwd/bwd comp.
1218  * @flags: for future extension.
1219  */
1220 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1221 		unsigned int, usize, unsigned int, flags)
1222 {
1223 	struct sched_attr kattr = { };
1224 	struct task_struct *p;
1225 	int retval;
1226 
1227 	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
1228 	    usize < SCHED_ATTR_SIZE_VER0 || flags)
1229 		return -EINVAL;
1230 
1231 	scoped_guard (rcu) {
1232 		p = find_process_by_pid(pid);
1233 		if (!p)
1234 			return -ESRCH;
1235 
1236 		retval = security_task_getscheduler(p);
1237 		if (retval)
1238 			return retval;
1239 
1240 		kattr.sched_policy = p->policy;
1241 		if (p->sched_reset_on_fork)
1242 			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1243 		get_params(p, &kattr);
1244 		kattr.sched_flags &= SCHED_FLAG_ALL;
1245 
1246 #ifdef CONFIG_UCLAMP_TASK
1247 		/*
1248 		 * This could race with another potential updater, but this is fine
1249 		 * because it'll correctly read the old or the new value. We don't need
1250 		 * to guarantee who wins the race as long as it doesn't return garbage.
1251 		 */
1252 		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1253 		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1254 #endif
1255 	}
1256 
1257 	return sched_attr_copy_to_user(uattr, &kattr, usize);
1258 }
1259 
1260 #ifdef CONFIG_SMP
1261 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1262 {
1263 	/*
1264 	 * If the task isn't a deadline task or admission control is
1265 	 * disabled then we don't care about affinity changes.
1266 	 */
1267 	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1268 		return 0;
1269 
1270 	/*
1271 	 * Since bandwidth control happens on root_domain basis,
1272 	 * if admission test is enabled, we only admit -deadline
1273 	 * tasks allowed to run on all the CPUs in the task's
1274 	 * root_domain.
1275 	 */
1276 	guard(rcu)();
1277 	if (!cpumask_subset(task_rq(p)->rd->span, mask))
1278 		return -EBUSY;
1279 
1280 	return 0;
1281 }
1282 #endif /* CONFIG_SMP */
1283 
1284 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1285 {
1286 	int retval;
1287 	cpumask_var_t cpus_allowed, new_mask;
1288 
1289 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1290 		return -ENOMEM;
1291 
1292 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1293 		retval = -ENOMEM;
1294 		goto out_free_cpus_allowed;
1295 	}
1296 
1297 	cpuset_cpus_allowed(p, cpus_allowed);
1298 	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1299 
1300 	ctx->new_mask = new_mask;
1301 	ctx->flags |= SCA_CHECK;
1302 
1303 	retval = dl_task_check_affinity(p, new_mask);
1304 	if (retval)
1305 		goto out_free_new_mask;
1306 
1307 	retval = __set_cpus_allowed_ptr(p, ctx);
1308 	if (retval)
1309 		goto out_free_new_mask;
1310 
1311 	cpuset_cpus_allowed(p, cpus_allowed);
1312 	if (!cpumask_subset(new_mask, cpus_allowed)) {
1313 		/*
1314 		 * We must have raced with a concurrent cpuset update.
1315 		 * Just reset the cpumask to the cpuset's cpus_allowed.
1316 		 */
1317 		cpumask_copy(new_mask, cpus_allowed);
1318 
1319 		/*
1320 		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1321 		 * will restore the previous user_cpus_ptr value.
1322 		 *
1323 		 * In the unlikely event a previous user_cpus_ptr exists,
1324 		 * we need to further restrict the mask to what is allowed
1325 		 * by that old user_cpus_ptr.
1326 		 */
1327 		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1328 			bool empty = !cpumask_and(new_mask, new_mask,
1329 						  ctx->user_mask);
1330 
1331 			if (WARN_ON_ONCE(empty))
1332 				cpumask_copy(new_mask, cpus_allowed);
1333 		}
1334 		__set_cpus_allowed_ptr(p, ctx);
1335 		retval = -EINVAL;
1336 	}
1337 
1338 out_free_new_mask:
1339 	free_cpumask_var(new_mask);
1340 out_free_cpus_allowed:
1341 	free_cpumask_var(cpus_allowed);
1342 	return retval;
1343 }
1344 
1345 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1346 {
1347 	struct affinity_context ac;
1348 	struct cpumask *user_mask;
1349 	int retval;
1350 
1351 	CLASS(find_get_task, p)(pid);
1352 	if (!p)
1353 		return -ESRCH;
1354 
1355 	if (p->flags & PF_NO_SETAFFINITY)
1356 		return -EINVAL;
1357 
1358 	if (!check_same_owner(p)) {
1359 		guard(rcu)();
1360 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1361 			return -EPERM;
1362 	}
1363 
1364 	retval = security_task_setscheduler(p);
1365 	if (retval)
1366 		return retval;
1367 
1368 	/*
1369 	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1370 	 * alloc_user_cpus_ptr() returns NULL.
1371 	 */
1372 	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1373 	if (user_mask) {
1374 		cpumask_copy(user_mask, in_mask);
1375 	} else if (IS_ENABLED(CONFIG_SMP)) {
1376 		return -ENOMEM;
1377 	}
1378 
1379 	ac = (struct affinity_context){
1380 		.new_mask  = in_mask,
1381 		.user_mask = user_mask,
1382 		.flags     = SCA_USER,
1383 	};
1384 
1385 	retval = __sched_setaffinity(p, &ac);
1386 	kfree(ac.user_mask);
1387 
1388 	return retval;
1389 }
1390 
1391 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1392 			     struct cpumask *new_mask)
1393 {
1394 	if (len < cpumask_size())
1395 		cpumask_clear(new_mask);
1396 	else if (len > cpumask_size())
1397 		len = cpumask_size();
1398 
1399 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1400 }
1401 
1402 /**
1403  * sys_sched_setaffinity - set the CPU affinity of a process
1404  * @pid: pid of the process
1405  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1406  * @user_mask_ptr: user-space pointer to the new CPU mask
1407  *
1408  * Return: 0 on success. An error code otherwise.
1409  */
1410 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1411 		unsigned long __user *, user_mask_ptr)
1412 {
1413 	cpumask_var_t new_mask;
1414 	int retval;
1415 
1416 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1417 		return -ENOMEM;
1418 
1419 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1420 	if (retval == 0)
1421 		retval = sched_setaffinity(pid, new_mask);
1422 	free_cpumask_var(new_mask);
1423 	return retval;
1424 }
1425 
1426 long sched_getaffinity(pid_t pid, struct cpumask *mask)
1427 {
1428 	struct task_struct *p;
1429 	int retval;
1430 
1431 	guard(rcu)();
1432 	p = find_process_by_pid(pid);
1433 	if (!p)
1434 		return -ESRCH;
1435 
1436 	retval = security_task_getscheduler(p);
1437 	if (retval)
1438 		return retval;
1439 
1440 	guard(raw_spinlock_irqsave)(&p->pi_lock);
1441 	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1442 
1443 	return 0;
1444 }
1445 
1446 /**
1447  * sys_sched_getaffinity - get the CPU affinity of a process
1448  * @pid: pid of the process
1449  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1450  * @user_mask_ptr: user-space pointer to hold the current CPU mask
1451  *
1452  * Return: size of CPU mask copied to user_mask_ptr on success. An
1453  * error code otherwise.
1454  */
1455 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1456 		unsigned long __user *, user_mask_ptr)
1457 {
1458 	int ret;
1459 	cpumask_var_t mask;
1460 
1461 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1462 		return -EINVAL;
1463 	if (len & (sizeof(unsigned long)-1))
1464 		return -EINVAL;
1465 
1466 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1467 		return -ENOMEM;
1468 
1469 	ret = sched_getaffinity(pid, mask);
1470 	if (ret == 0) {
1471 		unsigned int retlen = min(len, cpumask_size());
1472 
1473 		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1474 			ret = -EFAULT;
1475 		else
1476 			ret = retlen;
1477 	}
1478 	free_cpumask_var(mask);
1479 
1480 	return ret;
1481 }
1482 
1483 static void do_sched_yield(void)
1484 {
1485 	struct rq_flags rf;
1486 	struct rq *rq;
1487 
1488 	rq = this_rq_lock_irq(&rf);
1489 
1490 	schedstat_inc(rq->yld_count);
1491 	current->sched_class->yield_task(rq);
1492 
1493 	preempt_disable();
1494 	rq_unlock_irq(rq, &rf);
1495 	sched_preempt_enable_no_resched();
1496 
1497 	schedule();
1498 }
1499 
1500 /**
1501  * sys_sched_yield - yield the current processor to other threads.
1502  *
1503  * This function yields the current CPU to other tasks. If there are no
1504  * other threads running on this CPU then this function will return.
1505  *
1506  * Return: 0.
1507  */
1508 SYSCALL_DEFINE0(sched_yield)
1509 {
1510 	do_sched_yield();
1511 	return 0;
1512 }
1513 
1514 /**
1515  * yield - yield the current processor to other threads.
1516  *
1517  * Do not ever use this function, there's a 99% chance you're doing it wrong.
1518  *
1519  * The scheduler is at all times free to pick the calling task as the most
1520  * eligible task to run, if removing the yield() call from your code breaks
1521  * it, it's already broken.
1522  *
1523  * Typical broken usage is:
1524  *
1525  * while (!event)
1526  *	yield();
1527  *
1528  * where one assumes that yield() will let 'the other' process run that will
1529  * make event true. If the current task is a SCHED_FIFO task that will never
1530  * happen. Never use yield() as a progress guarantee!!
1531  *
1532  * If you want to use yield() to wait for something, use wait_event().
1533  * If you want to use yield() to be 'nice' for others, use cond_resched().
1534  * If you still want to use yield(), do not!
1535  */
1536 void __sched yield(void)
1537 {
1538 	set_current_state(TASK_RUNNING);
1539 	do_sched_yield();
1540 }
1541 EXPORT_SYMBOL(yield);
1542 
1543 /**
1544  * yield_to - yield the current processor to another thread in
1545  * your thread group, or accelerate that thread toward the
1546  * processor it's on.
1547  * @p: target task
1548  * @preempt: whether task preemption is allowed or not
1549  *
1550  * It's the caller's job to ensure that the target task struct
1551  * can't go away on us before we can do any checks.
1552  *
1553  * Return:
1554  *	true (>0) if we indeed boosted the target task.
1555  *	false (0) if we failed to boost the target.
1556  *	-ESRCH if there's no task to yield to.
1557  */
1558 int __sched yield_to(struct task_struct *p, bool preempt)
1559 {
1560 	struct task_struct *curr = current;
1561 	struct rq *rq, *p_rq;
1562 	int yielded = 0;
1563 
1564 	scoped_guard (irqsave) {
1565 		rq = this_rq();
1566 
1567 again:
1568 		p_rq = task_rq(p);
1569 		/*
1570 		 * If we're the only runnable task on the rq and target rq also
1571 		 * has only one task, there's absolutely no point in yielding.
1572 		 */
1573 		if (rq->nr_running == 1 && p_rq->nr_running == 1)
1574 			return -ESRCH;
1575 
1576 		guard(double_rq_lock)(rq, p_rq);
1577 		if (task_rq(p) != p_rq)
1578 			goto again;
1579 
1580 		if (!curr->sched_class->yield_to_task)
1581 			return 0;
1582 
1583 		if (curr->sched_class != p->sched_class)
1584 			return 0;
1585 
1586 		if (task_on_cpu(p_rq, p) || !task_is_running(p))
1587 			return 0;
1588 
1589 		yielded = curr->sched_class->yield_to_task(rq, p);
1590 		if (yielded) {
1591 			schedstat_inc(rq->yld_count);
1592 			/*
1593 			 * Make p's CPU reschedule; pick_next_entity
1594 			 * takes care of fairness.
1595 			 */
1596 			if (preempt && rq != p_rq)
1597 				resched_curr(p_rq);
1598 		}
1599 	}
1600 
1601 	if (yielded)
1602 		schedule();
1603 
1604 	return yielded;
1605 }
1606 EXPORT_SYMBOL_GPL(yield_to);
1607 
1608 /**
1609  * sys_sched_get_priority_max - return maximum RT priority.
1610  * @policy: scheduling class.
1611  *
1612  * Return: On success, this syscall returns the maximum
1613  * rt_priority that can be used by a given scheduling class.
1614  * On failure, a negative error code is returned.
1615  */
1616 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1617 {
1618 	int ret = -EINVAL;
1619 
1620 	switch (policy) {
1621 	case SCHED_FIFO:
1622 	case SCHED_RR:
1623 		ret = MAX_RT_PRIO-1;
1624 		break;
1625 	case SCHED_DEADLINE:
1626 	case SCHED_NORMAL:
1627 	case SCHED_BATCH:
1628 	case SCHED_IDLE:
1629 	case SCHED_EXT:
1630 		ret = 0;
1631 		break;
1632 	}
1633 	return ret;
1634 }
1635 
1636 /**
1637  * sys_sched_get_priority_min - return minimum RT priority.
1638  * @policy: scheduling class.
1639  *
1640  * Return: On success, this syscall returns the minimum
1641  * rt_priority that can be used by a given scheduling class.
1642  * On failure, a negative error code is returned.
1643  */
1644 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1645 {
1646 	int ret = -EINVAL;
1647 
1648 	switch (policy) {
1649 	case SCHED_FIFO:
1650 	case SCHED_RR:
1651 		ret = 1;
1652 		break;
1653 	case SCHED_DEADLINE:
1654 	case SCHED_NORMAL:
1655 	case SCHED_BATCH:
1656 	case SCHED_IDLE:
1657 	case SCHED_EXT:
1658 		ret = 0;
1659 	}
1660 	return ret;
1661 }
1662 
1663 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1664 {
1665 	unsigned int time_slice = 0;
1666 	int retval;
1667 
1668 	if (pid < 0)
1669 		return -EINVAL;
1670 
1671 	scoped_guard (rcu) {
1672 		struct task_struct *p = find_process_by_pid(pid);
1673 		if (!p)
1674 			return -ESRCH;
1675 
1676 		retval = security_task_getscheduler(p);
1677 		if (retval)
1678 			return retval;
1679 
1680 		scoped_guard (task_rq_lock, p) {
1681 			struct rq *rq = scope.rq;
1682 			if (p->sched_class->get_rr_interval)
1683 				time_slice = p->sched_class->get_rr_interval(rq, p);
1684 		}
1685 	}
1686 
1687 	jiffies_to_timespec64(time_slice, t);
1688 	return 0;
1689 }
1690 
1691 /**
1692  * sys_sched_rr_get_interval - return the default time-slice of a process.
1693  * @pid: pid of the process.
1694  * @interval: userspace pointer to the time-slice value.
1695  *
1696  * this syscall writes the default time-slice value of a given process
1697  * into the user-space timespec buffer. A value of '0' means infinity.
1698  *
1699  * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1700  * an error code.
1701  */
1702 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1703 		struct __kernel_timespec __user *, interval)
1704 {
1705 	struct timespec64 t;
1706 	int retval = sched_rr_get_interval(pid, &t);
1707 
1708 	if (retval == 0)
1709 		retval = put_timespec64(&t, interval);
1710 
1711 	return retval;
1712 }
1713 
1714 #ifdef CONFIG_COMPAT_32BIT_TIME
1715 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1716 		struct old_timespec32 __user *, interval)
1717 {
1718 	struct timespec64 t;
1719 	int retval = sched_rr_get_interval(pid, &t);
1720 
1721 	if (retval == 0)
1722 		retval = put_old_timespec32(&t, interval);
1723 	return retval;
1724 }
1725 #endif
1726