1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/syscalls.c
4 *
5 * Core kernel scheduler syscalls related code
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat
9 */
10 #include <linux/sched.h>
11 #include <linux/cpuset.h>
12 #include <linux/sched/debug.h>
13
14 #include <uapi/linux/sched/types.h>
15
16 #include "sched.h"
17 #include "autogroup.h"
18
__normal_prio(int policy,int rt_prio,int nice)19 static inline int __normal_prio(int policy, int rt_prio, int nice)
20 {
21 int prio;
22
23 if (dl_policy(policy))
24 prio = MAX_DL_PRIO - 1;
25 else if (rt_policy(policy))
26 prio = MAX_RT_PRIO - 1 - rt_prio;
27 else
28 prio = NICE_TO_PRIO(nice);
29
30 return prio;
31 }
32
33 /*
34 * Calculate the expected normal priority: i.e. priority
35 * without taking RT-inheritance into account. Might be
36 * boosted by interactivity modifiers. Changes upon fork,
37 * setprio syscalls, and whenever the interactivity
38 * estimator recalculates.
39 */
normal_prio(struct task_struct * p)40 static inline int normal_prio(struct task_struct *p)
41 {
42 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
43 }
44
45 /*
46 * Calculate the current priority, i.e. the priority
47 * taken into account by the scheduler. This value might
48 * be boosted by RT tasks, or might be boosted by
49 * interactivity modifiers. Will be RT if the task got
50 * RT-boosted. If not then it returns p->normal_prio.
51 */
effective_prio(struct task_struct * p)52 static int effective_prio(struct task_struct *p)
53 {
54 p->normal_prio = normal_prio(p);
55 /*
56 * If we are RT tasks or we were boosted to RT priority,
57 * keep the priority unchanged. Otherwise, update priority
58 * to the normal priority:
59 */
60 if (!rt_or_dl_prio(p->prio))
61 return p->normal_prio;
62 return p->prio;
63 }
64
set_user_nice(struct task_struct * p,long nice)65 void set_user_nice(struct task_struct *p, long nice)
66 {
67 int old_prio;
68
69 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
70 return;
71 /*
72 * We have to be careful, if called from sys_setpriority(),
73 * the task might be in the middle of scheduling on another CPU.
74 */
75 guard(task_rq_lock)(p);
76
77 /*
78 * The RT priorities are set via sched_setscheduler(), but we still
79 * allow the 'normal' nice value to be set - but as expected
80 * it won't have any effect on scheduling until the task is
81 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
82 */
83 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
84 p->static_prio = NICE_TO_PRIO(nice);
85 return;
86 }
87
88 scoped_guard (sched_change, p, DEQUEUE_SAVE) {
89 p->static_prio = NICE_TO_PRIO(nice);
90 set_load_weight(p, true);
91 old_prio = p->prio;
92 p->prio = effective_prio(p);
93 }
94 }
95 EXPORT_SYMBOL(set_user_nice);
96
97 /*
98 * is_nice_reduction - check if nice value is an actual reduction
99 *
100 * Similar to can_nice() but does not perform a capability check.
101 *
102 * @p: task
103 * @nice: nice value
104 */
is_nice_reduction(const struct task_struct * p,const int nice)105 static bool is_nice_reduction(const struct task_struct *p, const int nice)
106 {
107 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
108 int nice_rlim = nice_to_rlimit(nice);
109
110 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
111 }
112
113 /*
114 * can_nice - check if a task can reduce its nice value
115 * @p: task
116 * @nice: nice value
117 */
can_nice(const struct task_struct * p,const int nice)118 int can_nice(const struct task_struct *p, const int nice)
119 {
120 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
121 }
122
123 #ifdef __ARCH_WANT_SYS_NICE
124
125 /*
126 * sys_nice - change the priority of the current process.
127 * @increment: priority increment
128 *
129 * sys_setpriority is a more generic, but much slower function that
130 * does similar things.
131 */
SYSCALL_DEFINE1(nice,int,increment)132 SYSCALL_DEFINE1(nice, int, increment)
133 {
134 long nice, retval;
135
136 /*
137 * Setpriority might change our priority at the same moment.
138 * We don't have to worry. Conceptually one call occurs first
139 * and we have a single winner.
140 */
141 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
142 nice = task_nice(current) + increment;
143
144 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
145 if (increment < 0 && !can_nice(current, nice))
146 return -EPERM;
147
148 retval = security_task_setnice(current, nice);
149 if (retval)
150 return retval;
151
152 set_user_nice(current, nice);
153 return 0;
154 }
155
156 #endif /* __ARCH_WANT_SYS_NICE */
157
158 /**
159 * task_prio - return the priority value of a given task.
160 * @p: the task in question.
161 *
162 * Return: The priority value as seen by users in /proc.
163 *
164 * sched policy return value kernel prio user prio/nice
165 *
166 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
167 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
168 * deadline -101 -1 0
169 */
task_prio(const struct task_struct * p)170 int task_prio(const struct task_struct *p)
171 {
172 return p->prio - MAX_RT_PRIO;
173 }
174
175 /**
176 * idle_cpu - is a given CPU idle currently?
177 * @cpu: the processor in question.
178 *
179 * Return: 1 if the CPU is currently idle. 0 otherwise.
180 */
idle_cpu(int cpu)181 int idle_cpu(int cpu)
182 {
183 struct rq *rq = cpu_rq(cpu);
184
185 if (rq->curr != rq->idle)
186 return 0;
187
188 if (rq->nr_running)
189 return 0;
190
191 if (rq->ttwu_pending)
192 return 0;
193
194 return 1;
195 }
196
197 /**
198 * available_idle_cpu - is a given CPU idle for enqueuing work.
199 * @cpu: the CPU in question.
200 *
201 * Return: 1 if the CPU is currently idle. 0 otherwise.
202 */
available_idle_cpu(int cpu)203 int available_idle_cpu(int cpu)
204 {
205 if (!idle_cpu(cpu))
206 return 0;
207
208 if (vcpu_is_preempted(cpu))
209 return 0;
210
211 return 1;
212 }
213
214 /**
215 * idle_task - return the idle task for a given CPU.
216 * @cpu: the processor in question.
217 *
218 * Return: The idle task for the CPU @cpu.
219 */
idle_task(int cpu)220 struct task_struct *idle_task(int cpu)
221 {
222 return cpu_rq(cpu)->idle;
223 }
224
225 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)226 int sched_core_idle_cpu(int cpu)
227 {
228 struct rq *rq = cpu_rq(cpu);
229
230 if (sched_core_enabled(rq) && rq->curr == rq->idle)
231 return 1;
232
233 return idle_cpu(cpu);
234 }
235 #endif /* CONFIG_SCHED_CORE */
236
237 /**
238 * find_process_by_pid - find a process with a matching PID value.
239 * @pid: the pid in question.
240 *
241 * The task of @pid, if found. %NULL otherwise.
242 */
find_process_by_pid(pid_t pid)243 static struct task_struct *find_process_by_pid(pid_t pid)
244 {
245 return pid ? find_task_by_vpid(pid) : current;
246 }
247
find_get_task(pid_t pid)248 static struct task_struct *find_get_task(pid_t pid)
249 {
250 struct task_struct *p;
251 guard(rcu)();
252
253 p = find_process_by_pid(pid);
254 if (likely(p))
255 get_task_struct(p);
256
257 return p;
258 }
259
DEFINE_CLASS(find_get_task,struct task_struct *,if (_T)put_task_struct (_T),find_get_task (pid),pid_t pid)260 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
261 find_get_task(pid), pid_t pid)
262
263 /*
264 * sched_setparam() passes in -1 for its policy, to let the functions
265 * it calls know not to change it.
266 */
267 #define SETPARAM_POLICY -1
268
269 static void __setscheduler_params(struct task_struct *p,
270 const struct sched_attr *attr)
271 {
272 int policy = attr->sched_policy;
273
274 if (policy == SETPARAM_POLICY)
275 policy = p->policy;
276
277 p->policy = policy;
278
279 if (dl_policy(policy))
280 __setparam_dl(p, attr);
281 else if (fair_policy(policy))
282 __setparam_fair(p, attr);
283
284 /* rt-policy tasks do not have a timerslack */
285 if (rt_or_dl_task_policy(p)) {
286 p->timer_slack_ns = 0;
287 } else if (p->timer_slack_ns == 0) {
288 /* when switching back to non-rt policy, restore timerslack */
289 p->timer_slack_ns = p->default_timer_slack_ns;
290 }
291
292 /*
293 * __sched_setscheduler() ensures attr->sched_priority == 0 when
294 * !rt_policy. Always setting this ensures that things like
295 * getparam()/getattr() don't report silly values for !rt tasks.
296 */
297 p->rt_priority = attr->sched_priority;
298 p->normal_prio = normal_prio(p);
299 set_load_weight(p, true);
300 }
301
302 /*
303 * Check the target process has a UID that matches the current process's:
304 */
check_same_owner(struct task_struct * p)305 static bool check_same_owner(struct task_struct *p)
306 {
307 const struct cred *cred = current_cred(), *pcred;
308 guard(rcu)();
309
310 pcred = __task_cred(p);
311 return (uid_eq(cred->euid, pcred->euid) ||
312 uid_eq(cred->euid, pcred->uid));
313 }
314
315 #ifdef CONFIG_UCLAMP_TASK
316
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)317 static int uclamp_validate(struct task_struct *p,
318 const struct sched_attr *attr)
319 {
320 int util_min = p->uclamp_req[UCLAMP_MIN].value;
321 int util_max = p->uclamp_req[UCLAMP_MAX].value;
322
323 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
324 util_min = attr->sched_util_min;
325
326 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
327 return -EINVAL;
328 }
329
330 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
331 util_max = attr->sched_util_max;
332
333 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
334 return -EINVAL;
335 }
336
337 if (util_min != -1 && util_max != -1 && util_min > util_max)
338 return -EINVAL;
339
340 /*
341 * We have valid uclamp attributes; make sure uclamp is enabled.
342 *
343 * We need to do that here, because enabling static branches is a
344 * blocking operation which obviously cannot be done while holding
345 * scheduler locks.
346 */
347 sched_uclamp_enable();
348
349 return 0;
350 }
351
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)352 static bool uclamp_reset(const struct sched_attr *attr,
353 enum uclamp_id clamp_id,
354 struct uclamp_se *uc_se)
355 {
356 /* Reset on sched class change for a non user-defined clamp value. */
357 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
358 !uc_se->user_defined)
359 return true;
360
361 /* Reset on sched_util_{min,max} == -1. */
362 if (clamp_id == UCLAMP_MIN &&
363 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
364 attr->sched_util_min == -1) {
365 return true;
366 }
367
368 if (clamp_id == UCLAMP_MAX &&
369 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
370 attr->sched_util_max == -1) {
371 return true;
372 }
373
374 return false;
375 }
376
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)377 static void __setscheduler_uclamp(struct task_struct *p,
378 const struct sched_attr *attr)
379 {
380 enum uclamp_id clamp_id;
381
382 for_each_clamp_id(clamp_id) {
383 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
384 unsigned int value;
385
386 if (!uclamp_reset(attr, clamp_id, uc_se))
387 continue;
388
389 /*
390 * RT by default have a 100% boost value that could be modified
391 * at runtime.
392 */
393 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
394 value = sysctl_sched_uclamp_util_min_rt_default;
395 else
396 value = uclamp_none(clamp_id);
397
398 uclamp_se_set(uc_se, value, false);
399
400 }
401
402 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
403 return;
404
405 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
406 attr->sched_util_min != -1) {
407 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
408 attr->sched_util_min, true);
409 }
410
411 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
412 attr->sched_util_max != -1) {
413 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
414 attr->sched_util_max, true);
415 }
416 }
417
418 #else /* !CONFIG_UCLAMP_TASK: */
419
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)420 static inline int uclamp_validate(struct task_struct *p,
421 const struct sched_attr *attr)
422 {
423 return -EOPNOTSUPP;
424 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)425 static void __setscheduler_uclamp(struct task_struct *p,
426 const struct sched_attr *attr) { }
427 #endif /* !CONFIG_UCLAMP_TASK */
428
429 /*
430 * Allow unprivileged RT tasks to decrease priority.
431 * Only issue a capable test if needed and only once to avoid an audit
432 * event on permitted non-privileged operations:
433 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)434 static int user_check_sched_setscheduler(struct task_struct *p,
435 const struct sched_attr *attr,
436 int policy, int reset_on_fork)
437 {
438 if (fair_policy(policy)) {
439 if (attr->sched_nice < task_nice(p) &&
440 !is_nice_reduction(p, attr->sched_nice))
441 goto req_priv;
442 }
443
444 if (rt_policy(policy)) {
445 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
446
447 /* Can't set/change the rt policy: */
448 if (policy != p->policy && !rlim_rtprio)
449 goto req_priv;
450
451 /* Can't increase priority: */
452 if (attr->sched_priority > p->rt_priority &&
453 attr->sched_priority > rlim_rtprio)
454 goto req_priv;
455 }
456
457 /*
458 * Can't set/change SCHED_DEADLINE policy at all for now
459 * (safest behavior); in the future we would like to allow
460 * unprivileged DL tasks to increase their relative deadline
461 * or reduce their runtime (both ways reducing utilization)
462 */
463 if (dl_policy(policy))
464 goto req_priv;
465
466 /*
467 * Treat SCHED_IDLE as nice 20. Only allow a switch to
468 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
469 */
470 if (task_has_idle_policy(p) && !idle_policy(policy)) {
471 if (!is_nice_reduction(p, task_nice(p)))
472 goto req_priv;
473 }
474
475 /* Can't change other user's priorities: */
476 if (!check_same_owner(p))
477 goto req_priv;
478
479 /* Normal users shall not reset the sched_reset_on_fork flag: */
480 if (p->sched_reset_on_fork && !reset_on_fork)
481 goto req_priv;
482
483 return 0;
484
485 req_priv:
486 if (!capable(CAP_SYS_NICE))
487 return -EPERM;
488
489 return 0;
490 }
491
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)492 int __sched_setscheduler(struct task_struct *p,
493 const struct sched_attr *attr,
494 bool user, bool pi)
495 {
496 int oldpolicy = -1, policy = attr->sched_policy;
497 int retval, oldprio, newprio;
498 const struct sched_class *prev_class, *next_class;
499 struct balance_callback *head;
500 struct rq_flags rf;
501 int reset_on_fork;
502 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
503 struct rq *rq;
504 bool cpuset_locked = false;
505
506 /* The pi code expects interrupts enabled */
507 BUG_ON(pi && in_interrupt());
508 recheck:
509 /* Double check policy once rq lock held: */
510 if (policy < 0) {
511 reset_on_fork = p->sched_reset_on_fork;
512 policy = oldpolicy = p->policy;
513 } else {
514 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
515
516 if (!valid_policy(policy))
517 return -EINVAL;
518 }
519
520 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
521 return -EINVAL;
522
523 /*
524 * Valid priorities for SCHED_FIFO and SCHED_RR are
525 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
526 * SCHED_BATCH and SCHED_IDLE is 0.
527 */
528 if (attr->sched_priority > MAX_RT_PRIO-1)
529 return -EINVAL;
530 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
531 (rt_policy(policy) != (attr->sched_priority != 0)))
532 return -EINVAL;
533
534 if (user) {
535 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
536 if (retval)
537 return retval;
538
539 if (attr->sched_flags & SCHED_FLAG_SUGOV)
540 return -EINVAL;
541
542 retval = security_task_setscheduler(p);
543 if (retval)
544 return retval;
545 }
546
547 /* Update task specific "requested" clamps */
548 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
549 retval = uclamp_validate(p, attr);
550 if (retval)
551 return retval;
552 }
553
554 /*
555 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
556 * information.
557 */
558 if (dl_policy(policy) || dl_policy(p->policy)) {
559 cpuset_locked = true;
560 cpuset_lock();
561 }
562
563 /*
564 * Make sure no PI-waiters arrive (or leave) while we are
565 * changing the priority of the task:
566 *
567 * To be able to change p->policy safely, the appropriate
568 * runqueue lock must be held.
569 */
570 rq = task_rq_lock(p, &rf);
571 update_rq_clock(rq);
572
573 /*
574 * Changing the policy of the stop threads its a very bad idea:
575 */
576 if (p == rq->stop) {
577 retval = -EINVAL;
578 goto unlock;
579 }
580
581 retval = scx_check_setscheduler(p, policy);
582 if (retval)
583 goto unlock;
584
585 /*
586 * If not changing anything there's no need to proceed further,
587 * but store a possible modification of reset_on_fork.
588 */
589 if (unlikely(policy == p->policy)) {
590 if (fair_policy(policy) &&
591 (attr->sched_nice != task_nice(p) ||
592 (attr->sched_runtime != p->se.slice)))
593 goto change;
594 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
595 goto change;
596 if (dl_policy(policy) && dl_param_changed(p, attr))
597 goto change;
598 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
599 goto change;
600
601 p->sched_reset_on_fork = reset_on_fork;
602 retval = 0;
603 goto unlock;
604 }
605 change:
606
607 if (user) {
608 #ifdef CONFIG_RT_GROUP_SCHED
609 /*
610 * Do not allow real-time tasks into groups that have no runtime
611 * assigned.
612 */
613 if (rt_group_sched_enabled() &&
614 rt_bandwidth_enabled() && rt_policy(policy) &&
615 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
616 !task_group_is_autogroup(task_group(p))) {
617 retval = -EPERM;
618 goto unlock;
619 }
620 #endif /* CONFIG_RT_GROUP_SCHED */
621 if (dl_bandwidth_enabled() && dl_policy(policy) &&
622 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
623 cpumask_t *span = rq->rd->span;
624
625 /*
626 * Don't allow tasks with an affinity mask smaller than
627 * the entire root_domain to become SCHED_DEADLINE. We
628 * will also fail if there's no bandwidth available.
629 */
630 if (!cpumask_subset(span, p->cpus_ptr) ||
631 rq->rd->dl_bw.bw == 0) {
632 retval = -EPERM;
633 goto unlock;
634 }
635 }
636 }
637
638 /* Re-check policy now with rq lock held: */
639 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
640 policy = oldpolicy = -1;
641 task_rq_unlock(rq, p, &rf);
642 if (cpuset_locked)
643 cpuset_unlock();
644 goto recheck;
645 }
646
647 /*
648 * If setscheduling to SCHED_DEADLINE (or changing the parameters
649 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
650 * is available.
651 */
652 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
653 retval = -EBUSY;
654 goto unlock;
655 }
656
657 p->sched_reset_on_fork = reset_on_fork;
658 oldprio = p->prio;
659
660 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
661 if (pi) {
662 /*
663 * Take priority boosted tasks into account. If the new
664 * effective priority is unchanged, we just store the new
665 * normal parameters and do not touch the scheduler class and
666 * the runqueue. This will be done when the task deboost
667 * itself.
668 */
669 newprio = rt_effective_prio(p, newprio);
670 if (newprio == oldprio)
671 queue_flags &= ~DEQUEUE_MOVE;
672 }
673
674 prev_class = p->sched_class;
675 next_class = __setscheduler_class(policy, newprio);
676
677 if (prev_class != next_class)
678 queue_flags |= DEQUEUE_CLASS;
679
680 scoped_guard (sched_change, p, queue_flags) {
681
682 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
683 __setscheduler_params(p, attr);
684 p->sched_class = next_class;
685 p->prio = newprio;
686 }
687 __setscheduler_uclamp(p, attr);
688
689 if (scope->queued) {
690 /*
691 * We enqueue to tail when the priority of a task is
692 * increased (user space view).
693 */
694 if (oldprio < p->prio)
695 scope->flags |= ENQUEUE_HEAD;
696 }
697 }
698
699 /* Avoid rq from going away on us: */
700 preempt_disable();
701 head = splice_balance_callbacks(rq);
702 task_rq_unlock(rq, p, &rf);
703
704 if (pi) {
705 if (cpuset_locked)
706 cpuset_unlock();
707 rt_mutex_adjust_pi(p);
708 }
709
710 /* Run balance callbacks after we've adjusted the PI chain: */
711 balance_callbacks(rq, head);
712 preempt_enable();
713
714 return 0;
715
716 unlock:
717 task_rq_unlock(rq, p, &rf);
718 if (cpuset_locked)
719 cpuset_unlock();
720 return retval;
721 }
722
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)723 static int _sched_setscheduler(struct task_struct *p, int policy,
724 const struct sched_param *param, bool check)
725 {
726 struct sched_attr attr = {
727 .sched_policy = policy,
728 .sched_priority = param->sched_priority,
729 .sched_nice = PRIO_TO_NICE(p->static_prio),
730 };
731
732 if (p->se.custom_slice)
733 attr.sched_runtime = p->se.slice;
734
735 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
736 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
737 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
738 policy &= ~SCHED_RESET_ON_FORK;
739 attr.sched_policy = policy;
740 }
741
742 return __sched_setscheduler(p, &attr, check, true);
743 }
744 /**
745 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
746 * @p: the task in question.
747 * @policy: new policy.
748 * @param: structure containing the new RT priority.
749 *
750 * Use sched_set_fifo(), read its comment.
751 *
752 * Return: 0 on success. An error code otherwise.
753 *
754 * NOTE that the task may be already dead.
755 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)756 int sched_setscheduler(struct task_struct *p, int policy,
757 const struct sched_param *param)
758 {
759 return _sched_setscheduler(p, policy, param, true);
760 }
761
sched_setattr(struct task_struct * p,const struct sched_attr * attr)762 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
763 {
764 return __sched_setscheduler(p, attr, true, true);
765 }
766
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)767 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
768 {
769 return __sched_setscheduler(p, attr, false, true);
770 }
771 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
772
773 /**
774 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space.
775 * @p: the task in question.
776 * @policy: new policy.
777 * @param: structure containing the new RT priority.
778 *
779 * Just like sched_setscheduler, only don't bother checking if the
780 * current context has permission. For example, this is needed in
781 * stop_machine(): we create temporary high priority worker threads,
782 * but our caller might not have that capability.
783 *
784 * Return: 0 on success. An error code otherwise.
785 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)786 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
787 const struct sched_param *param)
788 {
789 return _sched_setscheduler(p, policy, param, false);
790 }
791
792 /*
793 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
794 * incapable of resource management, which is the one thing an OS really should
795 * be doing.
796 *
797 * This is of course the reason it is limited to privileged users only.
798 *
799 * Worse still; it is fundamentally impossible to compose static priority
800 * workloads. You cannot take two correctly working static prio workloads
801 * and smash them together and still expect them to work.
802 *
803 * For this reason 'all' FIFO tasks the kernel creates are basically at:
804 *
805 * MAX_RT_PRIO / 2
806 *
807 * The administrator _MUST_ configure the system, the kernel simply doesn't
808 * know enough information to make a sensible choice.
809 */
sched_set_fifo(struct task_struct * p)810 void sched_set_fifo(struct task_struct *p)
811 {
812 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
813 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
814 }
815 EXPORT_SYMBOL_GPL(sched_set_fifo);
816
817 /*
818 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
819 */
sched_set_fifo_low(struct task_struct * p)820 void sched_set_fifo_low(struct task_struct *p)
821 {
822 struct sched_param sp = { .sched_priority = 1 };
823 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
824 }
825 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
826
827 /*
828 * Used when the primary interrupt handler is forced into a thread, in addition
829 * to the (always threaded) secondary handler. The secondary handler gets a
830 * slightly lower priority so that the primary handler can preempt it, thereby
831 * emulating the behavior of a non-PREEMPT_RT system where the primary handler
832 * runs in hard interrupt context.
833 */
sched_set_fifo_secondary(struct task_struct * p)834 void sched_set_fifo_secondary(struct task_struct *p)
835 {
836 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 - 1 };
837 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
838 }
839
sched_set_normal(struct task_struct * p,int nice)840 void sched_set_normal(struct task_struct *p, int nice)
841 {
842 struct sched_attr attr = {
843 .sched_policy = SCHED_NORMAL,
844 .sched_nice = nice,
845 };
846 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
847 }
848 EXPORT_SYMBOL_GPL(sched_set_normal);
849
850 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)851 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
852 {
853 struct sched_param lparam;
854
855 if (unlikely(!param || pid < 0))
856 return -EINVAL;
857 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
858 return -EFAULT;
859
860 CLASS(find_get_task, p)(pid);
861 if (!p)
862 return -ESRCH;
863
864 return sched_setscheduler(p, policy, &lparam);
865 }
866
867 /*
868 * Mimics kernel/events/core.c perf_copy_attr().
869 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)870 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
871 {
872 u32 size;
873 int ret;
874
875 /* Zero the full structure, so that a short copy will be nice: */
876 memset(attr, 0, sizeof(*attr));
877
878 ret = get_user(size, &uattr->size);
879 if (ret)
880 return ret;
881
882 /* ABI compatibility quirk: */
883 if (!size)
884 size = SCHED_ATTR_SIZE_VER0;
885 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
886 goto err_size;
887
888 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
889 if (ret) {
890 if (ret == -E2BIG)
891 goto err_size;
892 return ret;
893 }
894
895 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
896 size < SCHED_ATTR_SIZE_VER1)
897 return -EINVAL;
898
899 /*
900 * XXX: Do we want to be lenient like existing syscalls; or do we want
901 * to be strict and return an error on out-of-bounds values?
902 */
903 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
904
905 return 0;
906
907 err_size:
908 put_user(sizeof(*attr), &uattr->size);
909 return -E2BIG;
910 }
911
get_params(struct task_struct * p,struct sched_attr * attr)912 static void get_params(struct task_struct *p, struct sched_attr *attr)
913 {
914 if (task_has_dl_policy(p)) {
915 __getparam_dl(p, attr);
916 } else if (task_has_rt_policy(p)) {
917 attr->sched_priority = p->rt_priority;
918 } else {
919 attr->sched_nice = task_nice(p);
920 attr->sched_runtime = p->se.slice;
921 }
922 }
923
924 /**
925 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
926 * @pid: the pid in question.
927 * @policy: new policy.
928 * @param: structure containing the new RT priority.
929 *
930 * Return: 0 on success. An error code otherwise.
931 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)932 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
933 {
934 if (policy < 0)
935 return -EINVAL;
936
937 return do_sched_setscheduler(pid, policy, param);
938 }
939
940 /**
941 * sys_sched_setparam - set/change the RT priority of a thread
942 * @pid: the pid in question.
943 * @param: structure containing the new RT priority.
944 *
945 * Return: 0 on success. An error code otherwise.
946 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)947 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
948 {
949 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
950 }
951
952 /**
953 * sys_sched_setattr - same as above, but with extended sched_attr
954 * @pid: the pid in question.
955 * @uattr: structure containing the extended parameters.
956 * @flags: for future extension.
957 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)958 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
959 unsigned int, flags)
960 {
961 struct sched_attr attr;
962 int retval;
963
964 if (unlikely(!uattr || pid < 0 || flags))
965 return -EINVAL;
966
967 retval = sched_copy_attr(uattr, &attr);
968 if (retval)
969 return retval;
970
971 if ((int)attr.sched_policy < 0)
972 return -EINVAL;
973 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
974 attr.sched_policy = SETPARAM_POLICY;
975
976 CLASS(find_get_task, p)(pid);
977 if (!p)
978 return -ESRCH;
979
980 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
981 get_params(p, &attr);
982
983 return sched_setattr(p, &attr);
984 }
985
986 /**
987 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
988 * @pid: the pid in question.
989 *
990 * Return: On success, the policy of the thread. Otherwise, a negative error
991 * code.
992 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)993 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
994 {
995 struct task_struct *p;
996 int retval;
997
998 if (pid < 0)
999 return -EINVAL;
1000
1001 guard(rcu)();
1002 p = find_process_by_pid(pid);
1003 if (!p)
1004 return -ESRCH;
1005
1006 retval = security_task_getscheduler(p);
1007 if (!retval) {
1008 retval = p->policy;
1009 if (p->sched_reset_on_fork)
1010 retval |= SCHED_RESET_ON_FORK;
1011 }
1012 return retval;
1013 }
1014
1015 /**
1016 * sys_sched_getparam - get the RT priority of a thread
1017 * @pid: the pid in question.
1018 * @param: structure containing the RT priority.
1019 *
1020 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
1021 * code.
1022 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)1023 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1024 {
1025 struct sched_param lp = { .sched_priority = 0 };
1026 struct task_struct *p;
1027 int retval;
1028
1029 if (unlikely(!param || pid < 0))
1030 return -EINVAL;
1031
1032 scoped_guard (rcu) {
1033 p = find_process_by_pid(pid);
1034 if (!p)
1035 return -ESRCH;
1036
1037 retval = security_task_getscheduler(p);
1038 if (retval)
1039 return retval;
1040
1041 if (task_has_rt_policy(p))
1042 lp.sched_priority = p->rt_priority;
1043 }
1044
1045 /*
1046 * This one might sleep, we cannot do it with a spinlock held ...
1047 */
1048 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
1049 }
1050
1051 /**
1052 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
1053 * @pid: the pid in question.
1054 * @uattr: structure containing the extended parameters.
1055 * @usize: sizeof(attr) for fwd/bwd comp.
1056 * @flags: for future extension.
1057 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)1058 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1059 unsigned int, usize, unsigned int, flags)
1060 {
1061 struct sched_attr kattr = { };
1062 struct task_struct *p;
1063 int retval;
1064
1065 if (unlikely(!uattr || pid < 0 || usize > PAGE_SIZE ||
1066 usize < SCHED_ATTR_SIZE_VER0 || flags))
1067 return -EINVAL;
1068
1069 scoped_guard (rcu) {
1070 p = find_process_by_pid(pid);
1071 if (!p)
1072 return -ESRCH;
1073
1074 retval = security_task_getscheduler(p);
1075 if (retval)
1076 return retval;
1077
1078 kattr.sched_policy = p->policy;
1079 if (p->sched_reset_on_fork)
1080 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
1081 get_params(p, &kattr);
1082 kattr.sched_flags &= SCHED_FLAG_ALL;
1083
1084 #ifdef CONFIG_UCLAMP_TASK
1085 /*
1086 * This could race with another potential updater, but this is fine
1087 * because it'll correctly read the old or the new value. We don't need
1088 * to guarantee who wins the race as long as it doesn't return garbage.
1089 */
1090 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
1091 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
1092 #endif
1093 }
1094
1095 kattr.size = min(usize, sizeof(kattr));
1096 return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
1097 }
1098
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1099 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1100 {
1101 /*
1102 * If the task isn't a deadline task or admission control is
1103 * disabled then we don't care about affinity changes.
1104 */
1105 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
1106 return 0;
1107
1108 /*
1109 * The special/sugov task isn't part of regular bandwidth/admission
1110 * control so let userspace change affinities.
1111 */
1112 if (dl_entity_is_special(&p->dl))
1113 return 0;
1114
1115 /*
1116 * Since bandwidth control happens on root_domain basis,
1117 * if admission test is enabled, we only admit -deadline
1118 * tasks allowed to run on all the CPUs in the task's
1119 * root_domain.
1120 */
1121 guard(rcu)();
1122 if (!cpumask_subset(task_rq(p)->rd->span, mask))
1123 return -EBUSY;
1124
1125 return 0;
1126 }
1127
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)1128 int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1129 {
1130 int retval;
1131 cpumask_var_t cpus_allowed, new_mask;
1132
1133 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
1134 return -ENOMEM;
1135
1136 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
1137 retval = -ENOMEM;
1138 goto out_free_cpus_allowed;
1139 }
1140
1141 cpuset_cpus_allowed(p, cpus_allowed);
1142 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
1143
1144 ctx->new_mask = new_mask;
1145 ctx->flags |= SCA_CHECK;
1146
1147 retval = dl_task_check_affinity(p, new_mask);
1148 if (retval)
1149 goto out_free_new_mask;
1150
1151 retval = __set_cpus_allowed_ptr(p, ctx);
1152 if (retval)
1153 goto out_free_new_mask;
1154
1155 cpuset_cpus_allowed(p, cpus_allowed);
1156 if (!cpumask_subset(new_mask, cpus_allowed)) {
1157 /*
1158 * We must have raced with a concurrent cpuset update.
1159 * Just reset the cpumask to the cpuset's cpus_allowed.
1160 */
1161 cpumask_copy(new_mask, cpus_allowed);
1162
1163 /*
1164 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
1165 * will restore the previous user_cpus_ptr value.
1166 *
1167 * In the unlikely event a previous user_cpus_ptr exists,
1168 * we need to further restrict the mask to what is allowed
1169 * by that old user_cpus_ptr.
1170 */
1171 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
1172 bool empty = !cpumask_and(new_mask, new_mask,
1173 ctx->user_mask);
1174
1175 if (empty)
1176 cpumask_copy(new_mask, cpus_allowed);
1177 }
1178 __set_cpus_allowed_ptr(p, ctx);
1179 retval = -EINVAL;
1180 }
1181
1182 out_free_new_mask:
1183 free_cpumask_var(new_mask);
1184 out_free_cpus_allowed:
1185 free_cpumask_var(cpus_allowed);
1186 return retval;
1187 }
1188
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)1189 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1190 {
1191 struct affinity_context ac;
1192 struct cpumask *user_mask;
1193 int retval;
1194
1195 CLASS(find_get_task, p)(pid);
1196 if (!p)
1197 return -ESRCH;
1198
1199 if (p->flags & PF_NO_SETAFFINITY)
1200 return -EINVAL;
1201
1202 if (!check_same_owner(p)) {
1203 guard(rcu)();
1204 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1205 return -EPERM;
1206 }
1207
1208 retval = security_task_setscheduler(p);
1209 if (retval)
1210 return retval;
1211
1212 /*
1213 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
1214 * alloc_user_cpus_ptr() returns NULL.
1215 */
1216 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
1217 if (user_mask) {
1218 cpumask_copy(user_mask, in_mask);
1219 } else {
1220 return -ENOMEM;
1221 }
1222
1223 ac = (struct affinity_context){
1224 .new_mask = in_mask,
1225 .user_mask = user_mask,
1226 .flags = SCA_USER,
1227 };
1228
1229 retval = __sched_setaffinity(p, &ac);
1230 kfree(ac.user_mask);
1231
1232 return retval;
1233 }
1234
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)1235 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
1236 struct cpumask *new_mask)
1237 {
1238 if (len < cpumask_size())
1239 cpumask_clear(new_mask);
1240 else if (len > cpumask_size())
1241 len = cpumask_size();
1242
1243 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
1244 }
1245
1246 /**
1247 * sys_sched_setaffinity - set the CPU affinity of a process
1248 * @pid: pid of the process
1249 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1250 * @user_mask_ptr: user-space pointer to the new CPU mask
1251 *
1252 * Return: 0 on success. An error code otherwise.
1253 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)1254 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
1255 unsigned long __user *, user_mask_ptr)
1256 {
1257 cpumask_var_t new_mask;
1258 int retval;
1259
1260 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
1261 return -ENOMEM;
1262
1263 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
1264 if (retval == 0)
1265 retval = sched_setaffinity(pid, new_mask);
1266 free_cpumask_var(new_mask);
1267 return retval;
1268 }
1269
sched_getaffinity(pid_t pid,struct cpumask * mask)1270 long sched_getaffinity(pid_t pid, struct cpumask *mask)
1271 {
1272 struct task_struct *p;
1273 int retval;
1274
1275 guard(rcu)();
1276 p = find_process_by_pid(pid);
1277 if (!p)
1278 return -ESRCH;
1279
1280 retval = security_task_getscheduler(p);
1281 if (retval)
1282 return retval;
1283
1284 guard(raw_spinlock_irqsave)(&p->pi_lock);
1285 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
1286
1287 return 0;
1288 }
1289
1290 /**
1291 * sys_sched_getaffinity - get the CPU affinity of a process
1292 * @pid: pid of the process
1293 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
1294 * @user_mask_ptr: user-space pointer to hold the current CPU mask
1295 *
1296 * Return: size of CPU mask copied to user_mask_ptr on success. An
1297 * error code otherwise.
1298 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)1299 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
1300 unsigned long __user *, user_mask_ptr)
1301 {
1302 int ret;
1303 cpumask_var_t mask;
1304
1305 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
1306 return -EINVAL;
1307 if (len & (sizeof(unsigned long)-1))
1308 return -EINVAL;
1309
1310 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1311 return -ENOMEM;
1312
1313 ret = sched_getaffinity(pid, mask);
1314 if (ret == 0) {
1315 unsigned int retlen = min(len, cpumask_size());
1316
1317 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
1318 ret = -EFAULT;
1319 else
1320 ret = retlen;
1321 }
1322 free_cpumask_var(mask);
1323
1324 return ret;
1325 }
1326
do_sched_yield(void)1327 static void do_sched_yield(void)
1328 {
1329 struct rq_flags rf;
1330 struct rq *rq;
1331
1332 rq = this_rq_lock_irq(&rf);
1333
1334 schedstat_inc(rq->yld_count);
1335 rq->donor->sched_class->yield_task(rq);
1336
1337 preempt_disable();
1338 rq_unlock_irq(rq, &rf);
1339 sched_preempt_enable_no_resched();
1340
1341 schedule();
1342 }
1343
1344 /**
1345 * sys_sched_yield - yield the current processor to other threads.
1346 *
1347 * This function yields the current CPU to other tasks. If there are no
1348 * other threads running on this CPU then this function will return.
1349 *
1350 * Return: 0.
1351 */
SYSCALL_DEFINE0(sched_yield)1352 SYSCALL_DEFINE0(sched_yield)
1353 {
1354 do_sched_yield();
1355 return 0;
1356 }
1357
1358 /**
1359 * yield - yield the current processor to other threads.
1360 *
1361 * Do not ever use this function, there's a 99% chance you're doing it wrong.
1362 *
1363 * The scheduler is at all times free to pick the calling task as the most
1364 * eligible task to run, if removing the yield() call from your code breaks
1365 * it, it's already broken.
1366 *
1367 * Typical broken usage is:
1368 *
1369 * while (!event)
1370 * yield();
1371 *
1372 * where one assumes that yield() will let 'the other' process run that will
1373 * make event true. If the current task is a SCHED_FIFO task that will never
1374 * happen. Never use yield() as a progress guarantee!!
1375 *
1376 * If you want to use yield() to wait for something, use wait_event().
1377 * If you want to use yield() to be 'nice' for others, use cond_resched().
1378 * If you still want to use yield(), do not!
1379 */
yield(void)1380 void __sched yield(void)
1381 {
1382 set_current_state(TASK_RUNNING);
1383 do_sched_yield();
1384 }
1385 EXPORT_SYMBOL(yield);
1386
1387 /**
1388 * yield_to - yield the current processor to another thread in
1389 * your thread group, or accelerate that thread toward the
1390 * processor it's on.
1391 * @p: target task
1392 * @preempt: whether task preemption is allowed or not
1393 *
1394 * It's the caller's job to ensure that the target task struct
1395 * can't go away on us before we can do any checks.
1396 *
1397 * Return:
1398 * true (>0) if we indeed boosted the target task.
1399 * false (0) if we failed to boost the target.
1400 * -ESRCH if there's no task to yield to.
1401 */
yield_to(struct task_struct * p,bool preempt)1402 int __sched yield_to(struct task_struct *p, bool preempt)
1403 {
1404 struct task_struct *curr;
1405 struct rq *rq, *p_rq;
1406 int yielded = 0;
1407
1408 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
1409 rq = this_rq();
1410 curr = rq->donor;
1411
1412 again:
1413 p_rq = task_rq(p);
1414 /*
1415 * If we're the only runnable task on the rq and target rq also
1416 * has only one task, there's absolutely no point in yielding.
1417 */
1418 if (rq->nr_running == 1 && p_rq->nr_running == 1)
1419 return -ESRCH;
1420
1421 guard(double_rq_lock)(rq, p_rq);
1422 if (task_rq(p) != p_rq)
1423 goto again;
1424
1425 if (!curr->sched_class->yield_to_task)
1426 return 0;
1427
1428 if (curr->sched_class != p->sched_class)
1429 return 0;
1430
1431 if (task_on_cpu(p_rq, p) || !task_is_running(p))
1432 return 0;
1433
1434 yielded = curr->sched_class->yield_to_task(rq, p);
1435 if (yielded) {
1436 schedstat_inc(rq->yld_count);
1437 /*
1438 * Make p's CPU reschedule; pick_next_entity
1439 * takes care of fairness.
1440 */
1441 if (preempt && rq != p_rq)
1442 resched_curr(p_rq);
1443 }
1444 }
1445
1446 if (yielded)
1447 schedule();
1448
1449 return yielded;
1450 }
1451 EXPORT_SYMBOL_GPL(yield_to);
1452
1453 /**
1454 * sys_sched_get_priority_max - return maximum RT priority.
1455 * @policy: scheduling class.
1456 *
1457 * Return: On success, this syscall returns the maximum
1458 * rt_priority that can be used by a given scheduling class.
1459 * On failure, a negative error code is returned.
1460 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)1461 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1462 {
1463 int ret = -EINVAL;
1464
1465 switch (policy) {
1466 case SCHED_FIFO:
1467 case SCHED_RR:
1468 ret = MAX_RT_PRIO-1;
1469 break;
1470 case SCHED_DEADLINE:
1471 case SCHED_NORMAL:
1472 case SCHED_BATCH:
1473 case SCHED_IDLE:
1474 case SCHED_EXT:
1475 ret = 0;
1476 break;
1477 }
1478 return ret;
1479 }
1480
1481 /**
1482 * sys_sched_get_priority_min - return minimum RT priority.
1483 * @policy: scheduling class.
1484 *
1485 * Return: On success, this syscall returns the minimum
1486 * rt_priority that can be used by a given scheduling class.
1487 * On failure, a negative error code is returned.
1488 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)1489 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1490 {
1491 int ret = -EINVAL;
1492
1493 switch (policy) {
1494 case SCHED_FIFO:
1495 case SCHED_RR:
1496 ret = 1;
1497 break;
1498 case SCHED_DEADLINE:
1499 case SCHED_NORMAL:
1500 case SCHED_BATCH:
1501 case SCHED_IDLE:
1502 case SCHED_EXT:
1503 ret = 0;
1504 }
1505 return ret;
1506 }
1507
sched_rr_get_interval(pid_t pid,struct timespec64 * t)1508 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1509 {
1510 unsigned int time_slice = 0;
1511 int retval;
1512
1513 if (pid < 0)
1514 return -EINVAL;
1515
1516 scoped_guard (rcu) {
1517 struct task_struct *p = find_process_by_pid(pid);
1518 if (!p)
1519 return -ESRCH;
1520
1521 retval = security_task_getscheduler(p);
1522 if (retval)
1523 return retval;
1524
1525 scoped_guard (task_rq_lock, p) {
1526 struct rq *rq = scope.rq;
1527 if (p->sched_class->get_rr_interval)
1528 time_slice = p->sched_class->get_rr_interval(rq, p);
1529 }
1530 }
1531
1532 jiffies_to_timespec64(time_slice, t);
1533 return 0;
1534 }
1535
1536 /**
1537 * sys_sched_rr_get_interval - return the default time-slice of a process.
1538 * @pid: pid of the process.
1539 * @interval: userspace pointer to the time-slice value.
1540 *
1541 * this syscall writes the default time-slice value of a given process
1542 * into the user-space timespec buffer. A value of '0' means infinity.
1543 *
1544 * Return: On success, 0 and the time-slice is in @interval. Otherwise,
1545 * an error code.
1546 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)1547 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
1548 struct __kernel_timespec __user *, interval)
1549 {
1550 struct timespec64 t;
1551 int retval = sched_rr_get_interval(pid, &t);
1552
1553 if (retval == 0)
1554 retval = put_timespec64(&t, interval);
1555
1556 return retval;
1557 }
1558
1559 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)1560 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
1561 struct old_timespec32 __user *, interval)
1562 {
1563 struct timespec64 t;
1564 int retval = sched_rr_get_interval(pid, &t);
1565
1566 if (retval == 0)
1567 retval = put_old_timespec32(&t, interval);
1568 return retval;
1569 }
1570 #endif
1571