xref: /linux/kernel/sched/sched.h (revision fe833e4397fbdc3ae13a60202dfc7c335b032499)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_PARAVIRT
78 # include <asm/paravirt.h>
79 # include <asm/paravirt_api_clock.h>
80 #endif
81 
82 #include <asm/barrier.h>
83 
84 #include "cpupri.h"
85 #include "cpudeadline.h"
86 
87 #ifdef CONFIG_SCHED_DEBUG
88 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
89 #else
90 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
91 #endif
92 
93 struct rq;
94 struct cpuidle_state;
95 
96 /* task_struct::on_rq states: */
97 #define TASK_ON_RQ_QUEUED	1
98 #define TASK_ON_RQ_MIGRATING	2
99 
100 extern __read_mostly int scheduler_running;
101 
102 extern unsigned long calc_load_update;
103 extern atomic_long_t calc_load_tasks;
104 
105 extern void calc_global_load_tick(struct rq *this_rq);
106 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
107 
108 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
109 
110 extern int sysctl_sched_rt_period;
111 extern int sysctl_sched_rt_runtime;
112 extern int sched_rr_timeslice;
113 
114 /*
115  * Asymmetric CPU capacity bits
116  */
117 struct asym_cap_data {
118 	struct list_head link;
119 	struct rcu_head rcu;
120 	unsigned long capacity;
121 	unsigned long cpus[];
122 };
123 
124 extern struct list_head asym_cap_list;
125 
126 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
127 
128 /*
129  * Helpers for converting nanosecond timing to jiffy resolution
130  */
131 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
132 
133 /*
134  * Increase resolution of nice-level calculations for 64-bit architectures.
135  * The extra resolution improves shares distribution and load balancing of
136  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
137  * hierarchies, especially on larger systems. This is not a user-visible change
138  * and does not change the user-interface for setting shares/weights.
139  *
140  * We increase resolution only if we have enough bits to allow this increased
141  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
142  * are pretty high and the returns do not justify the increased costs.
143  *
144  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
145  * increase coverage and consistency always enable it on 64-bit platforms.
146  */
147 #ifdef CONFIG_64BIT
148 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
149 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
150 # define scale_load_down(w) \
151 ({ \
152 	unsigned long __w = (w); \
153 	if (__w) \
154 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
155 	__w; \
156 })
157 #else
158 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
159 # define scale_load(w)		(w)
160 # define scale_load_down(w)	(w)
161 #endif
162 
163 /*
164  * Task weight (visible to users) and its load (invisible to users) have
165  * independent resolution, but they should be well calibrated. We use
166  * scale_load() and scale_load_down(w) to convert between them. The
167  * following must be true:
168  *
169  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
170  *
171  */
172 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
173 
174 /*
175  * Single value that decides SCHED_DEADLINE internal math precision.
176  * 10 -> just above 1us
177  * 9  -> just above 0.5us
178  */
179 #define DL_SCALE		10
180 
181 /*
182  * Single value that denotes runtime == period, ie unlimited time.
183  */
184 #define RUNTIME_INF		((u64)~0ULL)
185 
186 static inline int idle_policy(int policy)
187 {
188 	return policy == SCHED_IDLE;
189 }
190 static inline int fair_policy(int policy)
191 {
192 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
193 }
194 
195 static inline int rt_policy(int policy)
196 {
197 	return policy == SCHED_FIFO || policy == SCHED_RR;
198 }
199 
200 static inline int dl_policy(int policy)
201 {
202 	return policy == SCHED_DEADLINE;
203 }
204 static inline bool valid_policy(int policy)
205 {
206 	return idle_policy(policy) || fair_policy(policy) ||
207 		rt_policy(policy) || dl_policy(policy);
208 }
209 
210 static inline int task_has_idle_policy(struct task_struct *p)
211 {
212 	return idle_policy(p->policy);
213 }
214 
215 static inline int task_has_rt_policy(struct task_struct *p)
216 {
217 	return rt_policy(p->policy);
218 }
219 
220 static inline int task_has_dl_policy(struct task_struct *p)
221 {
222 	return dl_policy(p->policy);
223 }
224 
225 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
226 
227 static inline void update_avg(u64 *avg, u64 sample)
228 {
229 	s64 diff = sample - *avg;
230 	*avg += diff / 8;
231 }
232 
233 /*
234  * Shifting a value by an exponent greater *or equal* to the size of said value
235  * is UB; cap at size-1.
236  */
237 #define shr_bound(val, shift)							\
238 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
239 
240 /*
241  * !! For sched_setattr_nocheck() (kernel) only !!
242  *
243  * This is actually gross. :(
244  *
245  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
246  * tasks, but still be able to sleep. We need this on platforms that cannot
247  * atomically change clock frequency. Remove once fast switching will be
248  * available on such platforms.
249  *
250  * SUGOV stands for SchedUtil GOVernor.
251  */
252 #define SCHED_FLAG_SUGOV	0x10000000
253 
254 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
255 
256 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
257 {
258 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
259 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
260 #else
261 	return false;
262 #endif
263 }
264 
265 /*
266  * Tells if entity @a should preempt entity @b.
267  */
268 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
269 				     const struct sched_dl_entity *b)
270 {
271 	return dl_entity_is_special(a) ||
272 	       dl_time_before(a->deadline, b->deadline);
273 }
274 
275 /*
276  * This is the priority-queue data structure of the RT scheduling class:
277  */
278 struct rt_prio_array {
279 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
280 	struct list_head queue[MAX_RT_PRIO];
281 };
282 
283 struct rt_bandwidth {
284 	/* nests inside the rq lock: */
285 	raw_spinlock_t		rt_runtime_lock;
286 	ktime_t			rt_period;
287 	u64			rt_runtime;
288 	struct hrtimer		rt_period_timer;
289 	unsigned int		rt_period_active;
290 };
291 
292 static inline int dl_bandwidth_enabled(void)
293 {
294 	return sysctl_sched_rt_runtime >= 0;
295 }
296 
297 /*
298  * To keep the bandwidth of -deadline tasks under control
299  * we need some place where:
300  *  - store the maximum -deadline bandwidth of each cpu;
301  *  - cache the fraction of bandwidth that is currently allocated in
302  *    each root domain;
303  *
304  * This is all done in the data structure below. It is similar to the
305  * one used for RT-throttling (rt_bandwidth), with the main difference
306  * that, since here we are only interested in admission control, we
307  * do not decrease any runtime while the group "executes", neither we
308  * need a timer to replenish it.
309  *
310  * With respect to SMP, bandwidth is given on a per root domain basis,
311  * meaning that:
312  *  - bw (< 100%) is the deadline bandwidth of each CPU;
313  *  - total_bw is the currently allocated bandwidth in each root domain;
314  */
315 struct dl_bw {
316 	raw_spinlock_t		lock;
317 	u64			bw;
318 	u64			total_bw;
319 };
320 
321 extern void init_dl_bw(struct dl_bw *dl_b);
322 extern int  sched_dl_global_validate(void);
323 extern void sched_dl_do_global(void);
324 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
325 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
326 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
327 extern bool __checkparam_dl(const struct sched_attr *attr);
328 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
329 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
330 extern int  dl_bw_check_overflow(int cpu);
331 
332 /*
333  * SCHED_DEADLINE supports servers (nested scheduling) with the following
334  * interface:
335  *
336  *   dl_se::rq -- runqueue we belong to.
337  *
338  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
339  *                                server when it runs out of tasks to run.
340  *
341  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
342  *                           returns NULL.
343  *
344  *   dl_server_update() -- called from update_curr_common(), propagates runtime
345  *                         to the server.
346  *
347  *   dl_server_start()
348  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
349  *
350  *   dl_server_init() -- initializes the server.
351  */
352 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
353 extern void dl_server_start(struct sched_dl_entity *dl_se);
354 extern void dl_server_stop(struct sched_dl_entity *dl_se);
355 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
356 		    dl_server_has_tasks_f has_tasks,
357 		    dl_server_pick_f pick);
358 
359 #ifdef CONFIG_CGROUP_SCHED
360 
361 struct cfs_rq;
362 struct rt_rq;
363 
364 extern struct list_head task_groups;
365 
366 struct cfs_bandwidth {
367 #ifdef CONFIG_CFS_BANDWIDTH
368 	raw_spinlock_t		lock;
369 	ktime_t			period;
370 	u64			quota;
371 	u64			runtime;
372 	u64			burst;
373 	u64			runtime_snap;
374 	s64			hierarchical_quota;
375 
376 	u8			idle;
377 	u8			period_active;
378 	u8			slack_started;
379 	struct hrtimer		period_timer;
380 	struct hrtimer		slack_timer;
381 	struct list_head	throttled_cfs_rq;
382 
383 	/* Statistics: */
384 	int			nr_periods;
385 	int			nr_throttled;
386 	int			nr_burst;
387 	u64			throttled_time;
388 	u64			burst_time;
389 #endif
390 };
391 
392 /* Task group related information */
393 struct task_group {
394 	struct cgroup_subsys_state css;
395 
396 #ifdef CONFIG_FAIR_GROUP_SCHED
397 	/* schedulable entities of this group on each CPU */
398 	struct sched_entity	**se;
399 	/* runqueue "owned" by this group on each CPU */
400 	struct cfs_rq		**cfs_rq;
401 	unsigned long		shares;
402 
403 	/* A positive value indicates that this is a SCHED_IDLE group. */
404 	int			idle;
405 
406 #ifdef	CONFIG_SMP
407 	/*
408 	 * load_avg can be heavily contended at clock tick time, so put
409 	 * it in its own cacheline separated from the fields above which
410 	 * will also be accessed at each tick.
411 	 */
412 	atomic_long_t		load_avg ____cacheline_aligned;
413 #endif
414 #endif
415 
416 #ifdef CONFIG_RT_GROUP_SCHED
417 	struct sched_rt_entity	**rt_se;
418 	struct rt_rq		**rt_rq;
419 
420 	struct rt_bandwidth	rt_bandwidth;
421 #endif
422 
423 	struct rcu_head		rcu;
424 	struct list_head	list;
425 
426 	struct task_group	*parent;
427 	struct list_head	siblings;
428 	struct list_head	children;
429 
430 #ifdef CONFIG_SCHED_AUTOGROUP
431 	struct autogroup	*autogroup;
432 #endif
433 
434 	struct cfs_bandwidth	cfs_bandwidth;
435 
436 #ifdef CONFIG_UCLAMP_TASK_GROUP
437 	/* The two decimal precision [%] value requested from user-space */
438 	unsigned int		uclamp_pct[UCLAMP_CNT];
439 	/* Clamp values requested for a task group */
440 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
441 	/* Effective clamp values used for a task group */
442 	struct uclamp_se	uclamp[UCLAMP_CNT];
443 #endif
444 
445 };
446 
447 #ifdef CONFIG_FAIR_GROUP_SCHED
448 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
449 
450 /*
451  * A weight of 0 or 1 can cause arithmetics problems.
452  * A weight of a cfs_rq is the sum of weights of which entities
453  * are queued on this cfs_rq, so a weight of a entity should not be
454  * too large, so as the shares value of a task group.
455  * (The default weight is 1024 - so there's no practical
456  *  limitation from this.)
457  */
458 #define MIN_SHARES		(1UL <<  1)
459 #define MAX_SHARES		(1UL << 18)
460 #endif
461 
462 typedef int (*tg_visitor)(struct task_group *, void *);
463 
464 extern int walk_tg_tree_from(struct task_group *from,
465 			     tg_visitor down, tg_visitor up, void *data);
466 
467 /*
468  * Iterate the full tree, calling @down when first entering a node and @up when
469  * leaving it for the final time.
470  *
471  * Caller must hold rcu_lock or sufficient equivalent.
472  */
473 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
474 {
475 	return walk_tg_tree_from(&root_task_group, down, up, data);
476 }
477 
478 extern int tg_nop(struct task_group *tg, void *data);
479 
480 #ifdef CONFIG_FAIR_GROUP_SCHED
481 extern void free_fair_sched_group(struct task_group *tg);
482 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
483 extern void online_fair_sched_group(struct task_group *tg);
484 extern void unregister_fair_sched_group(struct task_group *tg);
485 #else
486 static inline void free_fair_sched_group(struct task_group *tg) { }
487 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
488 {
489        return 1;
490 }
491 static inline void online_fair_sched_group(struct task_group *tg) { }
492 static inline void unregister_fair_sched_group(struct task_group *tg) { }
493 #endif
494 
495 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
496 			struct sched_entity *se, int cpu,
497 			struct sched_entity *parent);
498 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
499 
500 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
501 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
502 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
503 extern bool cfs_task_bw_constrained(struct task_struct *p);
504 
505 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
506 		struct sched_rt_entity *rt_se, int cpu,
507 		struct sched_rt_entity *parent);
508 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
509 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
510 extern long sched_group_rt_runtime(struct task_group *tg);
511 extern long sched_group_rt_period(struct task_group *tg);
512 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
513 
514 extern struct task_group *sched_create_group(struct task_group *parent);
515 extern void sched_online_group(struct task_group *tg,
516 			       struct task_group *parent);
517 extern void sched_destroy_group(struct task_group *tg);
518 extern void sched_release_group(struct task_group *tg);
519 
520 extern void sched_move_task(struct task_struct *tsk);
521 
522 #ifdef CONFIG_FAIR_GROUP_SCHED
523 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
524 
525 extern int sched_group_set_idle(struct task_group *tg, long idle);
526 
527 #ifdef CONFIG_SMP
528 extern void set_task_rq_fair(struct sched_entity *se,
529 			     struct cfs_rq *prev, struct cfs_rq *next);
530 #else /* !CONFIG_SMP */
531 static inline void set_task_rq_fair(struct sched_entity *se,
532 			     struct cfs_rq *prev, struct cfs_rq *next) { }
533 #endif /* CONFIG_SMP */
534 #endif /* CONFIG_FAIR_GROUP_SCHED */
535 
536 #else /* CONFIG_CGROUP_SCHED */
537 
538 struct cfs_bandwidth { };
539 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
540 
541 #endif	/* CONFIG_CGROUP_SCHED */
542 
543 extern void unregister_rt_sched_group(struct task_group *tg);
544 extern void free_rt_sched_group(struct task_group *tg);
545 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
546 
547 /*
548  * u64_u32_load/u64_u32_store
549  *
550  * Use a copy of a u64 value to protect against data race. This is only
551  * applicable for 32-bits architectures.
552  */
553 #ifdef CONFIG_64BIT
554 # define u64_u32_load_copy(var, copy)       var
555 # define u64_u32_store_copy(var, copy, val) (var = val)
556 #else
557 # define u64_u32_load_copy(var, copy)					\
558 ({									\
559 	u64 __val, __val_copy;						\
560 	do {								\
561 		__val_copy = copy;					\
562 		/*							\
563 		 * paired with u64_u32_store_copy(), ordering access	\
564 		 * to var and copy.					\
565 		 */							\
566 		smp_rmb();						\
567 		__val = var;						\
568 	} while (__val != __val_copy);					\
569 	__val;								\
570 })
571 # define u64_u32_store_copy(var, copy, val)				\
572 do {									\
573 	typeof(val) __val = (val);					\
574 	var = __val;							\
575 	/*								\
576 	 * paired with u64_u32_load_copy(), ordering access to var and	\
577 	 * copy.							\
578 	 */								\
579 	smp_wmb();							\
580 	copy = __val;							\
581 } while (0)
582 #endif
583 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
584 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
585 
586 /* CFS-related fields in a runqueue */
587 struct cfs_rq {
588 	struct load_weight	load;
589 	unsigned int		nr_running;
590 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
591 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
592 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
593 
594 	s64			avg_vruntime;
595 	u64			avg_load;
596 
597 	u64			exec_clock;
598 	u64			min_vruntime;
599 #ifdef CONFIG_SCHED_CORE
600 	unsigned int		forceidle_seq;
601 	u64			min_vruntime_fi;
602 #endif
603 
604 #ifndef CONFIG_64BIT
605 	u64			min_vruntime_copy;
606 #endif
607 
608 	struct rb_root_cached	tasks_timeline;
609 
610 	/*
611 	 * 'curr' points to currently running entity on this cfs_rq.
612 	 * It is set to NULL otherwise (i.e when none are currently running).
613 	 */
614 	struct sched_entity	*curr;
615 	struct sched_entity	*next;
616 
617 #ifdef	CONFIG_SCHED_DEBUG
618 	unsigned int		nr_spread_over;
619 #endif
620 
621 #ifdef CONFIG_SMP
622 	/*
623 	 * CFS load tracking
624 	 */
625 	struct sched_avg	avg;
626 #ifndef CONFIG_64BIT
627 	u64			last_update_time_copy;
628 #endif
629 	struct {
630 		raw_spinlock_t	lock ____cacheline_aligned;
631 		int		nr;
632 		unsigned long	load_avg;
633 		unsigned long	util_avg;
634 		unsigned long	runnable_avg;
635 	} removed;
636 
637 #ifdef CONFIG_FAIR_GROUP_SCHED
638 	u64			last_update_tg_load_avg;
639 	unsigned long		tg_load_avg_contrib;
640 	long			propagate;
641 	long			prop_runnable_sum;
642 
643 	/*
644 	 *   h_load = weight * f(tg)
645 	 *
646 	 * Where f(tg) is the recursive weight fraction assigned to
647 	 * this group.
648 	 */
649 	unsigned long		h_load;
650 	u64			last_h_load_update;
651 	struct sched_entity	*h_load_next;
652 #endif /* CONFIG_FAIR_GROUP_SCHED */
653 #endif /* CONFIG_SMP */
654 
655 #ifdef CONFIG_FAIR_GROUP_SCHED
656 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
657 
658 	/*
659 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
660 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
661 	 * (like users, containers etc.)
662 	 *
663 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
664 	 * This list is used during load balance.
665 	 */
666 	int			on_list;
667 	struct list_head	leaf_cfs_rq_list;
668 	struct task_group	*tg;	/* group that "owns" this runqueue */
669 
670 	/* Locally cached copy of our task_group's idle value */
671 	int			idle;
672 
673 #ifdef CONFIG_CFS_BANDWIDTH
674 	int			runtime_enabled;
675 	s64			runtime_remaining;
676 
677 	u64			throttled_pelt_idle;
678 #ifndef CONFIG_64BIT
679 	u64                     throttled_pelt_idle_copy;
680 #endif
681 	u64			throttled_clock;
682 	u64			throttled_clock_pelt;
683 	u64			throttled_clock_pelt_time;
684 	u64			throttled_clock_self;
685 	u64			throttled_clock_self_time;
686 	int			throttled;
687 	int			throttle_count;
688 	struct list_head	throttled_list;
689 	struct list_head	throttled_csd_list;
690 #endif /* CONFIG_CFS_BANDWIDTH */
691 #endif /* CONFIG_FAIR_GROUP_SCHED */
692 };
693 
694 static inline int rt_bandwidth_enabled(void)
695 {
696 	return sysctl_sched_rt_runtime >= 0;
697 }
698 
699 /* RT IPI pull logic requires IRQ_WORK */
700 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
701 # define HAVE_RT_PUSH_IPI
702 #endif
703 
704 /* Real-Time classes' related field in a runqueue: */
705 struct rt_rq {
706 	struct rt_prio_array	active;
707 	unsigned int		rt_nr_running;
708 	unsigned int		rr_nr_running;
709 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
710 	struct {
711 		int		curr; /* highest queued rt task prio */
712 #ifdef CONFIG_SMP
713 		int		next; /* next highest */
714 #endif
715 	} highest_prio;
716 #endif
717 #ifdef CONFIG_SMP
718 	bool			overloaded;
719 	struct plist_head	pushable_tasks;
720 
721 #endif /* CONFIG_SMP */
722 	int			rt_queued;
723 
724 	int			rt_throttled;
725 	u64			rt_time;
726 	u64			rt_runtime;
727 	/* Nests inside the rq lock: */
728 	raw_spinlock_t		rt_runtime_lock;
729 
730 #ifdef CONFIG_RT_GROUP_SCHED
731 	unsigned int		rt_nr_boosted;
732 
733 	struct rq		*rq;
734 	struct task_group	*tg;
735 #endif
736 };
737 
738 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
739 {
740 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
741 }
742 
743 /* Deadline class' related fields in a runqueue */
744 struct dl_rq {
745 	/* runqueue is an rbtree, ordered by deadline */
746 	struct rb_root_cached	root;
747 
748 	unsigned int		dl_nr_running;
749 
750 #ifdef CONFIG_SMP
751 	/*
752 	 * Deadline values of the currently executing and the
753 	 * earliest ready task on this rq. Caching these facilitates
754 	 * the decision whether or not a ready but not running task
755 	 * should migrate somewhere else.
756 	 */
757 	struct {
758 		u64		curr;
759 		u64		next;
760 	} earliest_dl;
761 
762 	bool			overloaded;
763 
764 	/*
765 	 * Tasks on this rq that can be pushed away. They are kept in
766 	 * an rb-tree, ordered by tasks' deadlines, with caching
767 	 * of the leftmost (earliest deadline) element.
768 	 */
769 	struct rb_root_cached	pushable_dl_tasks_root;
770 #else
771 	struct dl_bw		dl_bw;
772 #endif
773 	/*
774 	 * "Active utilization" for this runqueue: increased when a
775 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
776 	 * task blocks
777 	 */
778 	u64			running_bw;
779 
780 	/*
781 	 * Utilization of the tasks "assigned" to this runqueue (including
782 	 * the tasks that are in runqueue and the tasks that executed on this
783 	 * CPU and blocked). Increased when a task moves to this runqueue, and
784 	 * decreased when the task moves away (migrates, changes scheduling
785 	 * policy, or terminates).
786 	 * This is needed to compute the "inactive utilization" for the
787 	 * runqueue (inactive utilization = this_bw - running_bw).
788 	 */
789 	u64			this_bw;
790 	u64			extra_bw;
791 
792 	/*
793 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
794 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
795 	 */
796 	u64			max_bw;
797 
798 	/*
799 	 * Inverse of the fraction of CPU utilization that can be reclaimed
800 	 * by the GRUB algorithm.
801 	 */
802 	u64			bw_ratio;
803 };
804 
805 #ifdef CONFIG_FAIR_GROUP_SCHED
806 /* An entity is a task if it doesn't "own" a runqueue */
807 #define entity_is_task(se)	(!se->my_q)
808 
809 static inline void se_update_runnable(struct sched_entity *se)
810 {
811 	if (!entity_is_task(se))
812 		se->runnable_weight = se->my_q->h_nr_running;
813 }
814 
815 static inline long se_runnable(struct sched_entity *se)
816 {
817 	if (entity_is_task(se))
818 		return !!se->on_rq;
819 	else
820 		return se->runnable_weight;
821 }
822 
823 #else
824 #define entity_is_task(se)	1
825 
826 static inline void se_update_runnable(struct sched_entity *se) {}
827 
828 static inline long se_runnable(struct sched_entity *se)
829 {
830 	return !!se->on_rq;
831 }
832 #endif
833 
834 #ifdef CONFIG_SMP
835 /*
836  * XXX we want to get rid of these helpers and use the full load resolution.
837  */
838 static inline long se_weight(struct sched_entity *se)
839 {
840 	return scale_load_down(se->load.weight);
841 }
842 
843 
844 static inline bool sched_asym_prefer(int a, int b)
845 {
846 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
847 }
848 
849 struct perf_domain {
850 	struct em_perf_domain *em_pd;
851 	struct perf_domain *next;
852 	struct rcu_head rcu;
853 };
854 
855 /*
856  * We add the notion of a root-domain which will be used to define per-domain
857  * variables. Each exclusive cpuset essentially defines an island domain by
858  * fully partitioning the member CPUs from any other cpuset. Whenever a new
859  * exclusive cpuset is created, we also create and attach a new root-domain
860  * object.
861  *
862  */
863 struct root_domain {
864 	atomic_t		refcount;
865 	atomic_t		rto_count;
866 	struct rcu_head		rcu;
867 	cpumask_var_t		span;
868 	cpumask_var_t		online;
869 
870 	/*
871 	 * Indicate pullable load on at least one CPU, e.g:
872 	 * - More than one runnable task
873 	 * - Running task is misfit
874 	 */
875 	bool			overloaded;
876 
877 	/* Indicate one or more cpus over-utilized (tipping point) */
878 	bool			overutilized;
879 
880 	/*
881 	 * The bit corresponding to a CPU gets set here if such CPU has more
882 	 * than one runnable -deadline task (as it is below for RT tasks).
883 	 */
884 	cpumask_var_t		dlo_mask;
885 	atomic_t		dlo_count;
886 	struct dl_bw		dl_bw;
887 	struct cpudl		cpudl;
888 
889 	/*
890 	 * Indicate whether a root_domain's dl_bw has been checked or
891 	 * updated. It's monotonously increasing value.
892 	 *
893 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
894 	 * that u64 is 'big enough'. So that shouldn't be a concern.
895 	 */
896 	u64 visit_gen;
897 
898 #ifdef HAVE_RT_PUSH_IPI
899 	/*
900 	 * For IPI pull requests, loop across the rto_mask.
901 	 */
902 	struct irq_work		rto_push_work;
903 	raw_spinlock_t		rto_lock;
904 	/* These are only updated and read within rto_lock */
905 	int			rto_loop;
906 	int			rto_cpu;
907 	/* These atomics are updated outside of a lock */
908 	atomic_t		rto_loop_next;
909 	atomic_t		rto_loop_start;
910 #endif
911 	/*
912 	 * The "RT overload" flag: it gets set if a CPU has more than
913 	 * one runnable RT task.
914 	 */
915 	cpumask_var_t		rto_mask;
916 	struct cpupri		cpupri;
917 
918 	/*
919 	 * NULL-terminated list of performance domains intersecting with the
920 	 * CPUs of the rd. Protected by RCU.
921 	 */
922 	struct perf_domain __rcu *pd;
923 };
924 
925 extern void init_defrootdomain(void);
926 extern int sched_init_domains(const struct cpumask *cpu_map);
927 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
928 extern void sched_get_rd(struct root_domain *rd);
929 extern void sched_put_rd(struct root_domain *rd);
930 
931 static inline int get_rd_overloaded(struct root_domain *rd)
932 {
933 	return READ_ONCE(rd->overloaded);
934 }
935 
936 static inline void set_rd_overloaded(struct root_domain *rd, int status)
937 {
938 	if (get_rd_overloaded(rd) != status)
939 		WRITE_ONCE(rd->overloaded, status);
940 }
941 
942 #ifdef HAVE_RT_PUSH_IPI
943 extern void rto_push_irq_work_func(struct irq_work *work);
944 #endif
945 #endif /* CONFIG_SMP */
946 
947 #ifdef CONFIG_UCLAMP_TASK
948 /*
949  * struct uclamp_bucket - Utilization clamp bucket
950  * @value: utilization clamp value for tasks on this clamp bucket
951  * @tasks: number of RUNNABLE tasks on this clamp bucket
952  *
953  * Keep track of how many tasks are RUNNABLE for a given utilization
954  * clamp value.
955  */
956 struct uclamp_bucket {
957 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
958 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
959 };
960 
961 /*
962  * struct uclamp_rq - rq's utilization clamp
963  * @value: currently active clamp values for a rq
964  * @bucket: utilization clamp buckets affecting a rq
965  *
966  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
967  * A clamp value is affecting a rq when there is at least one task RUNNABLE
968  * (or actually running) with that value.
969  *
970  * There are up to UCLAMP_CNT possible different clamp values, currently there
971  * are only two: minimum utilization and maximum utilization.
972  *
973  * All utilization clamping values are MAX aggregated, since:
974  * - for util_min: we want to run the CPU at least at the max of the minimum
975  *   utilization required by its currently RUNNABLE tasks.
976  * - for util_max: we want to allow the CPU to run up to the max of the
977  *   maximum utilization allowed by its currently RUNNABLE tasks.
978  *
979  * Since on each system we expect only a limited number of different
980  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
981  * the metrics required to compute all the per-rq utilization clamp values.
982  */
983 struct uclamp_rq {
984 	unsigned int value;
985 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
986 };
987 
988 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
989 #endif /* CONFIG_UCLAMP_TASK */
990 
991 struct rq;
992 struct balance_callback {
993 	struct balance_callback *next;
994 	void (*func)(struct rq *rq);
995 };
996 
997 /*
998  * This is the main, per-CPU runqueue data structure.
999  *
1000  * Locking rule: those places that want to lock multiple runqueues
1001  * (such as the load balancing or the thread migration code), lock
1002  * acquire operations must be ordered by ascending &runqueue.
1003  */
1004 struct rq {
1005 	/* runqueue lock: */
1006 	raw_spinlock_t		__lock;
1007 
1008 	unsigned int		nr_running;
1009 #ifdef CONFIG_NUMA_BALANCING
1010 	unsigned int		nr_numa_running;
1011 	unsigned int		nr_preferred_running;
1012 	unsigned int		numa_migrate_on;
1013 #endif
1014 #ifdef CONFIG_NO_HZ_COMMON
1015 #ifdef CONFIG_SMP
1016 	unsigned long		last_blocked_load_update_tick;
1017 	unsigned int		has_blocked_load;
1018 	call_single_data_t	nohz_csd;
1019 #endif /* CONFIG_SMP */
1020 	unsigned int		nohz_tick_stopped;
1021 	atomic_t		nohz_flags;
1022 #endif /* CONFIG_NO_HZ_COMMON */
1023 
1024 #ifdef CONFIG_SMP
1025 	unsigned int		ttwu_pending;
1026 #endif
1027 	u64			nr_switches;
1028 
1029 #ifdef CONFIG_UCLAMP_TASK
1030 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1031 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1032 	unsigned int		uclamp_flags;
1033 #define UCLAMP_FLAG_IDLE 0x01
1034 #endif
1035 
1036 	struct cfs_rq		cfs;
1037 	struct rt_rq		rt;
1038 	struct dl_rq		dl;
1039 
1040 #ifdef CONFIG_FAIR_GROUP_SCHED
1041 	/* list of leaf cfs_rq on this CPU: */
1042 	struct list_head	leaf_cfs_rq_list;
1043 	struct list_head	*tmp_alone_branch;
1044 #endif /* CONFIG_FAIR_GROUP_SCHED */
1045 
1046 	/*
1047 	 * This is part of a global counter where only the total sum
1048 	 * over all CPUs matters. A task can increase this counter on
1049 	 * one CPU and if it got migrated afterwards it may decrease
1050 	 * it on another CPU. Always updated under the runqueue lock:
1051 	 */
1052 	unsigned int		nr_uninterruptible;
1053 
1054 	struct task_struct __rcu	*curr;
1055 	struct task_struct	*idle;
1056 	struct task_struct	*stop;
1057 	unsigned long		next_balance;
1058 	struct mm_struct	*prev_mm;
1059 
1060 	unsigned int		clock_update_flags;
1061 	u64			clock;
1062 	/* Ensure that all clocks are in the same cache line */
1063 	u64			clock_task ____cacheline_aligned;
1064 	u64			clock_pelt;
1065 	unsigned long		lost_idle_time;
1066 	u64			clock_pelt_idle;
1067 	u64			clock_idle;
1068 #ifndef CONFIG_64BIT
1069 	u64			clock_pelt_idle_copy;
1070 	u64			clock_idle_copy;
1071 #endif
1072 
1073 	atomic_t		nr_iowait;
1074 
1075 #ifdef CONFIG_SCHED_DEBUG
1076 	u64 last_seen_need_resched_ns;
1077 	int ticks_without_resched;
1078 #endif
1079 
1080 #ifdef CONFIG_MEMBARRIER
1081 	int membarrier_state;
1082 #endif
1083 
1084 #ifdef CONFIG_SMP
1085 	struct root_domain		*rd;
1086 	struct sched_domain __rcu	*sd;
1087 
1088 	unsigned long		cpu_capacity;
1089 
1090 	struct balance_callback *balance_callback;
1091 
1092 	unsigned char		nohz_idle_balance;
1093 	unsigned char		idle_balance;
1094 
1095 	unsigned long		misfit_task_load;
1096 
1097 	/* For active balancing */
1098 	int			active_balance;
1099 	int			push_cpu;
1100 	struct cpu_stop_work	active_balance_work;
1101 
1102 	/* CPU of this runqueue: */
1103 	int			cpu;
1104 	int			online;
1105 
1106 	struct list_head cfs_tasks;
1107 
1108 	struct sched_avg	avg_rt;
1109 	struct sched_avg	avg_dl;
1110 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1111 	struct sched_avg	avg_irq;
1112 #endif
1113 #ifdef CONFIG_SCHED_HW_PRESSURE
1114 	struct sched_avg	avg_hw;
1115 #endif
1116 	u64			idle_stamp;
1117 	u64			avg_idle;
1118 
1119 	/* This is used to determine avg_idle's max value */
1120 	u64			max_idle_balance_cost;
1121 
1122 #ifdef CONFIG_HOTPLUG_CPU
1123 	struct rcuwait		hotplug_wait;
1124 #endif
1125 #endif /* CONFIG_SMP */
1126 
1127 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1128 	u64			prev_irq_time;
1129 #endif
1130 #ifdef CONFIG_PARAVIRT
1131 	u64			prev_steal_time;
1132 #endif
1133 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1134 	u64			prev_steal_time_rq;
1135 #endif
1136 
1137 	/* calc_load related fields */
1138 	unsigned long		calc_load_update;
1139 	long			calc_load_active;
1140 
1141 #ifdef CONFIG_SCHED_HRTICK
1142 #ifdef CONFIG_SMP
1143 	call_single_data_t	hrtick_csd;
1144 #endif
1145 	struct hrtimer		hrtick_timer;
1146 	ktime_t 		hrtick_time;
1147 #endif
1148 
1149 #ifdef CONFIG_SCHEDSTATS
1150 	/* latency stats */
1151 	struct sched_info	rq_sched_info;
1152 	unsigned long long	rq_cpu_time;
1153 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1154 
1155 	/* sys_sched_yield() stats */
1156 	unsigned int		yld_count;
1157 
1158 	/* schedule() stats */
1159 	unsigned int		sched_count;
1160 	unsigned int		sched_goidle;
1161 
1162 	/* try_to_wake_up() stats */
1163 	unsigned int		ttwu_count;
1164 	unsigned int		ttwu_local;
1165 #endif
1166 
1167 #ifdef CONFIG_CPU_IDLE
1168 	/* Must be inspected within a rcu lock section */
1169 	struct cpuidle_state	*idle_state;
1170 #endif
1171 
1172 #ifdef CONFIG_SMP
1173 	unsigned int		nr_pinned;
1174 #endif
1175 	unsigned int		push_busy;
1176 	struct cpu_stop_work	push_work;
1177 
1178 #ifdef CONFIG_SCHED_CORE
1179 	/* per rq */
1180 	struct rq		*core;
1181 	struct task_struct	*core_pick;
1182 	unsigned int		core_enabled;
1183 	unsigned int		core_sched_seq;
1184 	struct rb_root		core_tree;
1185 
1186 	/* shared state -- careful with sched_core_cpu_deactivate() */
1187 	unsigned int		core_task_seq;
1188 	unsigned int		core_pick_seq;
1189 	unsigned long		core_cookie;
1190 	unsigned int		core_forceidle_count;
1191 	unsigned int		core_forceidle_seq;
1192 	unsigned int		core_forceidle_occupation;
1193 	u64			core_forceidle_start;
1194 #endif
1195 
1196 	/* Scratch cpumask to be temporarily used under rq_lock */
1197 	cpumask_var_t		scratch_mask;
1198 
1199 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1200 	call_single_data_t	cfsb_csd;
1201 	struct list_head	cfsb_csd_list;
1202 #endif
1203 };
1204 
1205 #ifdef CONFIG_FAIR_GROUP_SCHED
1206 
1207 /* CPU runqueue to which this cfs_rq is attached */
1208 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1209 {
1210 	return cfs_rq->rq;
1211 }
1212 
1213 #else
1214 
1215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1216 {
1217 	return container_of(cfs_rq, struct rq, cfs);
1218 }
1219 #endif
1220 
1221 static inline int cpu_of(struct rq *rq)
1222 {
1223 #ifdef CONFIG_SMP
1224 	return rq->cpu;
1225 #else
1226 	return 0;
1227 #endif
1228 }
1229 
1230 #define MDF_PUSH	0x01
1231 
1232 static inline bool is_migration_disabled(struct task_struct *p)
1233 {
1234 #ifdef CONFIG_SMP
1235 	return p->migration_disabled;
1236 #else
1237 	return false;
1238 #endif
1239 }
1240 
1241 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1242 
1243 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1244 #define this_rq()		this_cpu_ptr(&runqueues)
1245 #define task_rq(p)		cpu_rq(task_cpu(p))
1246 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1247 #define raw_rq()		raw_cpu_ptr(&runqueues)
1248 
1249 struct sched_group;
1250 #ifdef CONFIG_SCHED_CORE
1251 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1252 
1253 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1254 
1255 static inline bool sched_core_enabled(struct rq *rq)
1256 {
1257 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1258 }
1259 
1260 static inline bool sched_core_disabled(void)
1261 {
1262 	return !static_branch_unlikely(&__sched_core_enabled);
1263 }
1264 
1265 /*
1266  * Be careful with this function; not for general use. The return value isn't
1267  * stable unless you actually hold a relevant rq->__lock.
1268  */
1269 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1270 {
1271 	if (sched_core_enabled(rq))
1272 		return &rq->core->__lock;
1273 
1274 	return &rq->__lock;
1275 }
1276 
1277 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1278 {
1279 	if (rq->core_enabled)
1280 		return &rq->core->__lock;
1281 
1282 	return &rq->__lock;
1283 }
1284 
1285 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1286 			bool fi);
1287 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1288 
1289 /*
1290  * Helpers to check if the CPU's core cookie matches with the task's cookie
1291  * when core scheduling is enabled.
1292  * A special case is that the task's cookie always matches with CPU's core
1293  * cookie if the CPU is in an idle core.
1294  */
1295 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1296 {
1297 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1298 	if (!sched_core_enabled(rq))
1299 		return true;
1300 
1301 	return rq->core->core_cookie == p->core_cookie;
1302 }
1303 
1304 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1305 {
1306 	bool idle_core = true;
1307 	int cpu;
1308 
1309 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1310 	if (!sched_core_enabled(rq))
1311 		return true;
1312 
1313 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1314 		if (!available_idle_cpu(cpu)) {
1315 			idle_core = false;
1316 			break;
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * A CPU in an idle core is always the best choice for tasks with
1322 	 * cookies.
1323 	 */
1324 	return idle_core || rq->core->core_cookie == p->core_cookie;
1325 }
1326 
1327 static inline bool sched_group_cookie_match(struct rq *rq,
1328 					    struct task_struct *p,
1329 					    struct sched_group *group)
1330 {
1331 	int cpu;
1332 
1333 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1334 	if (!sched_core_enabled(rq))
1335 		return true;
1336 
1337 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1338 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1339 			return true;
1340 	}
1341 	return false;
1342 }
1343 
1344 static inline bool sched_core_enqueued(struct task_struct *p)
1345 {
1346 	return !RB_EMPTY_NODE(&p->core_node);
1347 }
1348 
1349 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1350 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1351 
1352 extern void sched_core_get(void);
1353 extern void sched_core_put(void);
1354 
1355 #else /* !CONFIG_SCHED_CORE */
1356 
1357 static inline bool sched_core_enabled(struct rq *rq)
1358 {
1359 	return false;
1360 }
1361 
1362 static inline bool sched_core_disabled(void)
1363 {
1364 	return true;
1365 }
1366 
1367 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1368 {
1369 	return &rq->__lock;
1370 }
1371 
1372 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1373 {
1374 	return &rq->__lock;
1375 }
1376 
1377 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1378 {
1379 	return true;
1380 }
1381 
1382 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1383 {
1384 	return true;
1385 }
1386 
1387 static inline bool sched_group_cookie_match(struct rq *rq,
1388 					    struct task_struct *p,
1389 					    struct sched_group *group)
1390 {
1391 	return true;
1392 }
1393 #endif /* CONFIG_SCHED_CORE */
1394 
1395 static inline void lockdep_assert_rq_held(struct rq *rq)
1396 {
1397 	lockdep_assert_held(__rq_lockp(rq));
1398 }
1399 
1400 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1401 extern bool raw_spin_rq_trylock(struct rq *rq);
1402 extern void raw_spin_rq_unlock(struct rq *rq);
1403 
1404 static inline void raw_spin_rq_lock(struct rq *rq)
1405 {
1406 	raw_spin_rq_lock_nested(rq, 0);
1407 }
1408 
1409 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1410 {
1411 	local_irq_disable();
1412 	raw_spin_rq_lock(rq);
1413 }
1414 
1415 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1416 {
1417 	raw_spin_rq_unlock(rq);
1418 	local_irq_enable();
1419 }
1420 
1421 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1422 {
1423 	unsigned long flags;
1424 	local_irq_save(flags);
1425 	raw_spin_rq_lock(rq);
1426 	return flags;
1427 }
1428 
1429 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1430 {
1431 	raw_spin_rq_unlock(rq);
1432 	local_irq_restore(flags);
1433 }
1434 
1435 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1436 do {						\
1437 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1438 } while (0)
1439 
1440 #ifdef CONFIG_SCHED_SMT
1441 extern void __update_idle_core(struct rq *rq);
1442 
1443 static inline void update_idle_core(struct rq *rq)
1444 {
1445 	if (static_branch_unlikely(&sched_smt_present))
1446 		__update_idle_core(rq);
1447 }
1448 
1449 #else
1450 static inline void update_idle_core(struct rq *rq) { }
1451 #endif
1452 
1453 #ifdef CONFIG_FAIR_GROUP_SCHED
1454 static inline struct task_struct *task_of(struct sched_entity *se)
1455 {
1456 	SCHED_WARN_ON(!entity_is_task(se));
1457 	return container_of(se, struct task_struct, se);
1458 }
1459 
1460 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1461 {
1462 	return p->se.cfs_rq;
1463 }
1464 
1465 /* runqueue on which this entity is (to be) queued */
1466 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1467 {
1468 	return se->cfs_rq;
1469 }
1470 
1471 /* runqueue "owned" by this group */
1472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1473 {
1474 	return grp->my_q;
1475 }
1476 
1477 #else
1478 
1479 #define task_of(_se)	container_of(_se, struct task_struct, se)
1480 
1481 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1482 {
1483 	return &task_rq(p)->cfs;
1484 }
1485 
1486 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1487 {
1488 	const struct task_struct *p = task_of(se);
1489 	struct rq *rq = task_rq(p);
1490 
1491 	return &rq->cfs;
1492 }
1493 
1494 /* runqueue "owned" by this group */
1495 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1496 {
1497 	return NULL;
1498 }
1499 #endif
1500 
1501 extern void update_rq_clock(struct rq *rq);
1502 
1503 /*
1504  * rq::clock_update_flags bits
1505  *
1506  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1507  *  call to __schedule(). This is an optimisation to avoid
1508  *  neighbouring rq clock updates.
1509  *
1510  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1511  *  in effect and calls to update_rq_clock() are being ignored.
1512  *
1513  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1514  *  made to update_rq_clock() since the last time rq::lock was pinned.
1515  *
1516  * If inside of __schedule(), clock_update_flags will have been
1517  * shifted left (a left shift is a cheap operation for the fast path
1518  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1519  *
1520  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1521  *
1522  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1523  * one position though, because the next rq_unpin_lock() will shift it
1524  * back.
1525  */
1526 #define RQCF_REQ_SKIP		0x01
1527 #define RQCF_ACT_SKIP		0x02
1528 #define RQCF_UPDATED		0x04
1529 
1530 static inline void assert_clock_updated(struct rq *rq)
1531 {
1532 	/*
1533 	 * The only reason for not seeing a clock update since the
1534 	 * last rq_pin_lock() is if we're currently skipping updates.
1535 	 */
1536 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1537 }
1538 
1539 static inline u64 rq_clock(struct rq *rq)
1540 {
1541 	lockdep_assert_rq_held(rq);
1542 	assert_clock_updated(rq);
1543 
1544 	return rq->clock;
1545 }
1546 
1547 static inline u64 rq_clock_task(struct rq *rq)
1548 {
1549 	lockdep_assert_rq_held(rq);
1550 	assert_clock_updated(rq);
1551 
1552 	return rq->clock_task;
1553 }
1554 
1555 static inline void rq_clock_skip_update(struct rq *rq)
1556 {
1557 	lockdep_assert_rq_held(rq);
1558 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1559 }
1560 
1561 /*
1562  * See rt task throttling, which is the only time a skip
1563  * request is canceled.
1564  */
1565 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1566 {
1567 	lockdep_assert_rq_held(rq);
1568 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1569 }
1570 
1571 /*
1572  * During cpu offlining and rq wide unthrottling, we can trigger
1573  * an update_rq_clock() for several cfs and rt runqueues (Typically
1574  * when using list_for_each_entry_*)
1575  * rq_clock_start_loop_update() can be called after updating the clock
1576  * once and before iterating over the list to prevent multiple update.
1577  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1578  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1579  */
1580 static inline void rq_clock_start_loop_update(struct rq *rq)
1581 {
1582 	lockdep_assert_rq_held(rq);
1583 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1584 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1585 }
1586 
1587 static inline void rq_clock_stop_loop_update(struct rq *rq)
1588 {
1589 	lockdep_assert_rq_held(rq);
1590 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1591 }
1592 
1593 struct rq_flags {
1594 	unsigned long flags;
1595 	struct pin_cookie cookie;
1596 #ifdef CONFIG_SCHED_DEBUG
1597 	/*
1598 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1599 	 * current pin context is stashed here in case it needs to be
1600 	 * restored in rq_repin_lock().
1601 	 */
1602 	unsigned int clock_update_flags;
1603 #endif
1604 };
1605 
1606 extern struct balance_callback balance_push_callback;
1607 
1608 /*
1609  * Lockdep annotation that avoids accidental unlocks; it's like a
1610  * sticky/continuous lockdep_assert_held().
1611  *
1612  * This avoids code that has access to 'struct rq *rq' (basically everything in
1613  * the scheduler) from accidentally unlocking the rq if they do not also have a
1614  * copy of the (on-stack) 'struct rq_flags rf'.
1615  *
1616  * Also see Documentation/locking/lockdep-design.rst.
1617  */
1618 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1619 {
1620 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1621 
1622 #ifdef CONFIG_SCHED_DEBUG
1623 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1624 	rf->clock_update_flags = 0;
1625 #ifdef CONFIG_SMP
1626 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1627 #endif
1628 #endif
1629 }
1630 
1631 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1632 {
1633 #ifdef CONFIG_SCHED_DEBUG
1634 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1635 		rf->clock_update_flags = RQCF_UPDATED;
1636 #endif
1637 
1638 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1639 }
1640 
1641 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1642 {
1643 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1644 
1645 #ifdef CONFIG_SCHED_DEBUG
1646 	/*
1647 	 * Restore the value we stashed in @rf for this pin context.
1648 	 */
1649 	rq->clock_update_flags |= rf->clock_update_flags;
1650 #endif
1651 }
1652 
1653 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1654 	__acquires(rq->lock);
1655 
1656 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1657 	__acquires(p->pi_lock)
1658 	__acquires(rq->lock);
1659 
1660 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1661 	__releases(rq->lock)
1662 {
1663 	rq_unpin_lock(rq, rf);
1664 	raw_spin_rq_unlock(rq);
1665 }
1666 
1667 static inline void
1668 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1669 	__releases(rq->lock)
1670 	__releases(p->pi_lock)
1671 {
1672 	rq_unpin_lock(rq, rf);
1673 	raw_spin_rq_unlock(rq);
1674 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1675 }
1676 
1677 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1678 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1679 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1680 		    struct rq *rq; struct rq_flags rf)
1681 
1682 static inline void
1683 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1684 	__acquires(rq->lock)
1685 {
1686 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1687 	rq_pin_lock(rq, rf);
1688 }
1689 
1690 static inline void
1691 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1692 	__acquires(rq->lock)
1693 {
1694 	raw_spin_rq_lock_irq(rq);
1695 	rq_pin_lock(rq, rf);
1696 }
1697 
1698 static inline void
1699 rq_lock(struct rq *rq, struct rq_flags *rf)
1700 	__acquires(rq->lock)
1701 {
1702 	raw_spin_rq_lock(rq);
1703 	rq_pin_lock(rq, rf);
1704 }
1705 
1706 static inline void
1707 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1708 	__releases(rq->lock)
1709 {
1710 	rq_unpin_lock(rq, rf);
1711 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1712 }
1713 
1714 static inline void
1715 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1716 	__releases(rq->lock)
1717 {
1718 	rq_unpin_lock(rq, rf);
1719 	raw_spin_rq_unlock_irq(rq);
1720 }
1721 
1722 static inline void
1723 rq_unlock(struct rq *rq, struct rq_flags *rf)
1724 	__releases(rq->lock)
1725 {
1726 	rq_unpin_lock(rq, rf);
1727 	raw_spin_rq_unlock(rq);
1728 }
1729 
1730 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1731 		    rq_lock(_T->lock, &_T->rf),
1732 		    rq_unlock(_T->lock, &_T->rf),
1733 		    struct rq_flags rf)
1734 
1735 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1736 		    rq_lock_irq(_T->lock, &_T->rf),
1737 		    rq_unlock_irq(_T->lock, &_T->rf),
1738 		    struct rq_flags rf)
1739 
1740 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1741 		    rq_lock_irqsave(_T->lock, &_T->rf),
1742 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1743 		    struct rq_flags rf)
1744 
1745 static inline struct rq *
1746 this_rq_lock_irq(struct rq_flags *rf)
1747 	__acquires(rq->lock)
1748 {
1749 	struct rq *rq;
1750 
1751 	local_irq_disable();
1752 	rq = this_rq();
1753 	rq_lock(rq, rf);
1754 	return rq;
1755 }
1756 
1757 #ifdef CONFIG_NUMA
1758 enum numa_topology_type {
1759 	NUMA_DIRECT,
1760 	NUMA_GLUELESS_MESH,
1761 	NUMA_BACKPLANE,
1762 };
1763 extern enum numa_topology_type sched_numa_topology_type;
1764 extern int sched_max_numa_distance;
1765 extern bool find_numa_distance(int distance);
1766 extern void sched_init_numa(int offline_node);
1767 extern void sched_update_numa(int cpu, bool online);
1768 extern void sched_domains_numa_masks_set(unsigned int cpu);
1769 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1770 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1771 #else
1772 static inline void sched_init_numa(int offline_node) { }
1773 static inline void sched_update_numa(int cpu, bool online) { }
1774 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1775 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1776 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1777 {
1778 	return nr_cpu_ids;
1779 }
1780 #endif
1781 
1782 #ifdef CONFIG_NUMA_BALANCING
1783 /* The regions in numa_faults array from task_struct */
1784 enum numa_faults_stats {
1785 	NUMA_MEM = 0,
1786 	NUMA_CPU,
1787 	NUMA_MEMBUF,
1788 	NUMA_CPUBUF
1789 };
1790 extern void sched_setnuma(struct task_struct *p, int node);
1791 extern int migrate_task_to(struct task_struct *p, int cpu);
1792 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1793 			int cpu, int scpu);
1794 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1795 #else
1796 static inline void
1797 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1798 {
1799 }
1800 #endif /* CONFIG_NUMA_BALANCING */
1801 
1802 #ifdef CONFIG_SMP
1803 
1804 static inline void
1805 queue_balance_callback(struct rq *rq,
1806 		       struct balance_callback *head,
1807 		       void (*func)(struct rq *rq))
1808 {
1809 	lockdep_assert_rq_held(rq);
1810 
1811 	/*
1812 	 * Don't (re)queue an already queued item; nor queue anything when
1813 	 * balance_push() is active, see the comment with
1814 	 * balance_push_callback.
1815 	 */
1816 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1817 		return;
1818 
1819 	head->func = func;
1820 	head->next = rq->balance_callback;
1821 	rq->balance_callback = head;
1822 }
1823 
1824 #define rcu_dereference_check_sched_domain(p) \
1825 	rcu_dereference_check((p), \
1826 			      lockdep_is_held(&sched_domains_mutex))
1827 
1828 /*
1829  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1830  * See destroy_sched_domains: call_rcu for details.
1831  *
1832  * The domain tree of any CPU may only be accessed from within
1833  * preempt-disabled sections.
1834  */
1835 #define for_each_domain(cpu, __sd) \
1836 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1837 			__sd; __sd = __sd->parent)
1838 
1839 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1840 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1841 static const unsigned int SD_SHARED_CHILD_MASK =
1842 #include <linux/sched/sd_flags.h>
1843 0;
1844 #undef SD_FLAG
1845 
1846 /**
1847  * highest_flag_domain - Return highest sched_domain containing flag.
1848  * @cpu:	The CPU whose highest level of sched domain is to
1849  *		be returned.
1850  * @flag:	The flag to check for the highest sched_domain
1851  *		for the given CPU.
1852  *
1853  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1854  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1855  */
1856 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1857 {
1858 	struct sched_domain *sd, *hsd = NULL;
1859 
1860 	for_each_domain(cpu, sd) {
1861 		if (sd->flags & flag) {
1862 			hsd = sd;
1863 			continue;
1864 		}
1865 
1866 		/*
1867 		 * Stop the search if @flag is known to be shared at lower
1868 		 * levels. It will not be found further up.
1869 		 */
1870 		if (flag & SD_SHARED_CHILD_MASK)
1871 			break;
1872 	}
1873 
1874 	return hsd;
1875 }
1876 
1877 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1878 {
1879 	struct sched_domain *sd;
1880 
1881 	for_each_domain(cpu, sd) {
1882 		if (sd->flags & flag)
1883 			break;
1884 	}
1885 
1886 	return sd;
1887 }
1888 
1889 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1890 DECLARE_PER_CPU(int, sd_llc_size);
1891 DECLARE_PER_CPU(int, sd_llc_id);
1892 DECLARE_PER_CPU(int, sd_share_id);
1893 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1894 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1895 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1896 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1897 extern struct static_key_false sched_asym_cpucapacity;
1898 extern struct static_key_false sched_cluster_active;
1899 
1900 static __always_inline bool sched_asym_cpucap_active(void)
1901 {
1902 	return static_branch_unlikely(&sched_asym_cpucapacity);
1903 }
1904 
1905 struct sched_group_capacity {
1906 	atomic_t		ref;
1907 	/*
1908 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1909 	 * for a single CPU.
1910 	 */
1911 	unsigned long		capacity;
1912 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1913 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1914 	unsigned long		next_update;
1915 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1916 
1917 #ifdef CONFIG_SCHED_DEBUG
1918 	int			id;
1919 #endif
1920 
1921 	unsigned long		cpumask[];		/* Balance mask */
1922 };
1923 
1924 struct sched_group {
1925 	struct sched_group	*next;			/* Must be a circular list */
1926 	atomic_t		ref;
1927 
1928 	unsigned int		group_weight;
1929 	unsigned int		cores;
1930 	struct sched_group_capacity *sgc;
1931 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1932 	int			flags;
1933 
1934 	/*
1935 	 * The CPUs this group covers.
1936 	 *
1937 	 * NOTE: this field is variable length. (Allocated dynamically
1938 	 * by attaching extra space to the end of the structure,
1939 	 * depending on how many CPUs the kernel has booted up with)
1940 	 */
1941 	unsigned long		cpumask[];
1942 };
1943 
1944 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1945 {
1946 	return to_cpumask(sg->cpumask);
1947 }
1948 
1949 /*
1950  * See build_balance_mask().
1951  */
1952 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1953 {
1954 	return to_cpumask(sg->sgc->cpumask);
1955 }
1956 
1957 extern int group_balance_cpu(struct sched_group *sg);
1958 
1959 #ifdef CONFIG_SCHED_DEBUG
1960 void update_sched_domain_debugfs(void);
1961 void dirty_sched_domain_sysctl(int cpu);
1962 #else
1963 static inline void update_sched_domain_debugfs(void)
1964 {
1965 }
1966 static inline void dirty_sched_domain_sysctl(int cpu)
1967 {
1968 }
1969 #endif
1970 
1971 extern int sched_update_scaling(void);
1972 
1973 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1974 {
1975 	if (!p->user_cpus_ptr)
1976 		return cpu_possible_mask; /* &init_task.cpus_mask */
1977 	return p->user_cpus_ptr;
1978 }
1979 #endif /* CONFIG_SMP */
1980 
1981 #include "stats.h"
1982 
1983 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1984 
1985 extern void __sched_core_account_forceidle(struct rq *rq);
1986 
1987 static inline void sched_core_account_forceidle(struct rq *rq)
1988 {
1989 	if (schedstat_enabled())
1990 		__sched_core_account_forceidle(rq);
1991 }
1992 
1993 extern void __sched_core_tick(struct rq *rq);
1994 
1995 static inline void sched_core_tick(struct rq *rq)
1996 {
1997 	if (sched_core_enabled(rq) && schedstat_enabled())
1998 		__sched_core_tick(rq);
1999 }
2000 
2001 #else
2002 
2003 static inline void sched_core_account_forceidle(struct rq *rq) {}
2004 
2005 static inline void sched_core_tick(struct rq *rq) {}
2006 
2007 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2008 
2009 #ifdef CONFIG_CGROUP_SCHED
2010 
2011 /*
2012  * Return the group to which this tasks belongs.
2013  *
2014  * We cannot use task_css() and friends because the cgroup subsystem
2015  * changes that value before the cgroup_subsys::attach() method is called,
2016  * therefore we cannot pin it and might observe the wrong value.
2017  *
2018  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2019  * core changes this before calling sched_move_task().
2020  *
2021  * Instead we use a 'copy' which is updated from sched_move_task() while
2022  * holding both task_struct::pi_lock and rq::lock.
2023  */
2024 static inline struct task_group *task_group(struct task_struct *p)
2025 {
2026 	return p->sched_task_group;
2027 }
2028 
2029 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2030 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2031 {
2032 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2033 	struct task_group *tg = task_group(p);
2034 #endif
2035 
2036 #ifdef CONFIG_FAIR_GROUP_SCHED
2037 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2038 	p->se.cfs_rq = tg->cfs_rq[cpu];
2039 	p->se.parent = tg->se[cpu];
2040 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2041 #endif
2042 
2043 #ifdef CONFIG_RT_GROUP_SCHED
2044 	p->rt.rt_rq  = tg->rt_rq[cpu];
2045 	p->rt.parent = tg->rt_se[cpu];
2046 #endif
2047 }
2048 
2049 #else /* CONFIG_CGROUP_SCHED */
2050 
2051 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2052 static inline struct task_group *task_group(struct task_struct *p)
2053 {
2054 	return NULL;
2055 }
2056 
2057 #endif /* CONFIG_CGROUP_SCHED */
2058 
2059 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2060 {
2061 	set_task_rq(p, cpu);
2062 #ifdef CONFIG_SMP
2063 	/*
2064 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2065 	 * successfully executed on another CPU. We must ensure that updates of
2066 	 * per-task data have been completed by this moment.
2067 	 */
2068 	smp_wmb();
2069 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2070 	p->wake_cpu = cpu;
2071 #endif
2072 }
2073 
2074 /*
2075  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2076  */
2077 #ifdef CONFIG_SCHED_DEBUG
2078 # define const_debug __read_mostly
2079 #else
2080 # define const_debug const
2081 #endif
2082 
2083 #define SCHED_FEAT(name, enabled)	\
2084 	__SCHED_FEAT_##name ,
2085 
2086 enum {
2087 #include "features.h"
2088 	__SCHED_FEAT_NR,
2089 };
2090 
2091 #undef SCHED_FEAT
2092 
2093 #ifdef CONFIG_SCHED_DEBUG
2094 
2095 /*
2096  * To support run-time toggling of sched features, all the translation units
2097  * (but core.c) reference the sysctl_sched_features defined in core.c.
2098  */
2099 extern const_debug unsigned int sysctl_sched_features;
2100 
2101 #ifdef CONFIG_JUMP_LABEL
2102 #define SCHED_FEAT(name, enabled)					\
2103 static __always_inline bool static_branch_##name(struct static_key *key) \
2104 {									\
2105 	return static_key_##enabled(key);				\
2106 }
2107 
2108 #include "features.h"
2109 #undef SCHED_FEAT
2110 
2111 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2112 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2113 
2114 #else /* !CONFIG_JUMP_LABEL */
2115 
2116 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2117 
2118 #endif /* CONFIG_JUMP_LABEL */
2119 
2120 #else /* !SCHED_DEBUG */
2121 
2122 /*
2123  * Each translation unit has its own copy of sysctl_sched_features to allow
2124  * constants propagation at compile time and compiler optimization based on
2125  * features default.
2126  */
2127 #define SCHED_FEAT(name, enabled)	\
2128 	(1UL << __SCHED_FEAT_##name) * enabled |
2129 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2130 #include "features.h"
2131 	0;
2132 #undef SCHED_FEAT
2133 
2134 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2135 
2136 #endif /* SCHED_DEBUG */
2137 
2138 extern struct static_key_false sched_numa_balancing;
2139 extern struct static_key_false sched_schedstats;
2140 
2141 static inline u64 global_rt_period(void)
2142 {
2143 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2144 }
2145 
2146 static inline u64 global_rt_runtime(void)
2147 {
2148 	if (sysctl_sched_rt_runtime < 0)
2149 		return RUNTIME_INF;
2150 
2151 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2152 }
2153 
2154 static inline int task_current(struct rq *rq, struct task_struct *p)
2155 {
2156 	return rq->curr == p;
2157 }
2158 
2159 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2160 {
2161 #ifdef CONFIG_SMP
2162 	return p->on_cpu;
2163 #else
2164 	return task_current(rq, p);
2165 #endif
2166 }
2167 
2168 static inline int task_on_rq_queued(struct task_struct *p)
2169 {
2170 	return p->on_rq == TASK_ON_RQ_QUEUED;
2171 }
2172 
2173 static inline int task_on_rq_migrating(struct task_struct *p)
2174 {
2175 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2176 }
2177 
2178 /* Wake flags. The first three directly map to some SD flag value */
2179 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2180 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2181 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2182 
2183 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2184 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2185 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2186 
2187 #ifdef CONFIG_SMP
2188 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2189 static_assert(WF_FORK == SD_BALANCE_FORK);
2190 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2191 #endif
2192 
2193 /*
2194  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2195  * of tasks with abnormal "nice" values across CPUs the contribution that
2196  * each task makes to its run queue's load is weighted according to its
2197  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2198  * scaled version of the new time slice allocation that they receive on time
2199  * slice expiry etc.
2200  */
2201 
2202 #define WEIGHT_IDLEPRIO		3
2203 #define WMULT_IDLEPRIO		1431655765
2204 
2205 extern const int		sched_prio_to_weight[40];
2206 extern const u32		sched_prio_to_wmult[40];
2207 
2208 /*
2209  * {de,en}queue flags:
2210  *
2211  * DEQUEUE_SLEEP  - task is no longer runnable
2212  * ENQUEUE_WAKEUP - task just became runnable
2213  *
2214  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2215  *                are in a known state which allows modification. Such pairs
2216  *                should preserve as much state as possible.
2217  *
2218  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2219  *        in the runqueue.
2220  *
2221  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2222  *
2223  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2224  *
2225  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2226  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2227  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2228  *
2229  */
2230 
2231 #define DEQUEUE_SLEEP		0x01
2232 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2233 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2234 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2235 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2236 
2237 #define ENQUEUE_WAKEUP		0x01
2238 #define ENQUEUE_RESTORE		0x02
2239 #define ENQUEUE_MOVE		0x04
2240 #define ENQUEUE_NOCLOCK		0x08
2241 
2242 #define ENQUEUE_HEAD		0x10
2243 #define ENQUEUE_REPLENISH	0x20
2244 #ifdef CONFIG_SMP
2245 #define ENQUEUE_MIGRATED	0x40
2246 #else
2247 #define ENQUEUE_MIGRATED	0x00
2248 #endif
2249 #define ENQUEUE_INITIAL		0x80
2250 #define ENQUEUE_MIGRATING	0x100
2251 
2252 #define RETRY_TASK		((void *)-1UL)
2253 
2254 struct affinity_context {
2255 	const struct cpumask *new_mask;
2256 	struct cpumask *user_mask;
2257 	unsigned int flags;
2258 };
2259 
2260 extern s64 update_curr_common(struct rq *rq);
2261 
2262 struct sched_class {
2263 
2264 #ifdef CONFIG_UCLAMP_TASK
2265 	int uclamp_enabled;
2266 #endif
2267 
2268 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2269 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2270 	void (*yield_task)   (struct rq *rq);
2271 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2272 
2273 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2274 
2275 	struct task_struct *(*pick_next_task)(struct rq *rq);
2276 
2277 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2278 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2279 
2280 #ifdef CONFIG_SMP
2281 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2282 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2283 
2284 	struct task_struct * (*pick_task)(struct rq *rq);
2285 
2286 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2287 
2288 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2289 
2290 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2291 
2292 	void (*rq_online)(struct rq *rq);
2293 	void (*rq_offline)(struct rq *rq);
2294 
2295 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2296 #endif
2297 
2298 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2299 	void (*task_fork)(struct task_struct *p);
2300 	void (*task_dead)(struct task_struct *p);
2301 
2302 	/*
2303 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2304 	 * cannot assume the switched_from/switched_to pair is serialized by
2305 	 * rq->lock. They are however serialized by p->pi_lock.
2306 	 */
2307 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2308 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2309 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2310 			      int oldprio);
2311 
2312 	unsigned int (*get_rr_interval)(struct rq *rq,
2313 					struct task_struct *task);
2314 
2315 	void (*update_curr)(struct rq *rq);
2316 
2317 #ifdef CONFIG_FAIR_GROUP_SCHED
2318 	void (*task_change_group)(struct task_struct *p);
2319 #endif
2320 
2321 #ifdef CONFIG_SCHED_CORE
2322 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2323 #endif
2324 };
2325 
2326 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2327 {
2328 	WARN_ON_ONCE(rq->curr != prev);
2329 	prev->sched_class->put_prev_task(rq, prev);
2330 }
2331 
2332 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2333 {
2334 	next->sched_class->set_next_task(rq, next, false);
2335 }
2336 
2337 
2338 /*
2339  * Helper to define a sched_class instance; each one is placed in a separate
2340  * section which is ordered by the linker script:
2341  *
2342  *   include/asm-generic/vmlinux.lds.h
2343  *
2344  * *CAREFUL* they are laid out in *REVERSE* order!!!
2345  *
2346  * Also enforce alignment on the instance, not the type, to guarantee layout.
2347  */
2348 #define DEFINE_SCHED_CLASS(name) \
2349 const struct sched_class name##_sched_class \
2350 	__aligned(__alignof__(struct sched_class)) \
2351 	__section("__" #name "_sched_class")
2352 
2353 /* Defined in include/asm-generic/vmlinux.lds.h */
2354 extern struct sched_class __sched_class_highest[];
2355 extern struct sched_class __sched_class_lowest[];
2356 
2357 #define for_class_range(class, _from, _to) \
2358 	for (class = (_from); class < (_to); class++)
2359 
2360 #define for_each_class(class) \
2361 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2362 
2363 #define sched_class_above(_a, _b)	((_a) < (_b))
2364 
2365 extern const struct sched_class stop_sched_class;
2366 extern const struct sched_class dl_sched_class;
2367 extern const struct sched_class rt_sched_class;
2368 extern const struct sched_class fair_sched_class;
2369 extern const struct sched_class idle_sched_class;
2370 
2371 static inline bool sched_stop_runnable(struct rq *rq)
2372 {
2373 	return rq->stop && task_on_rq_queued(rq->stop);
2374 }
2375 
2376 static inline bool sched_dl_runnable(struct rq *rq)
2377 {
2378 	return rq->dl.dl_nr_running > 0;
2379 }
2380 
2381 static inline bool sched_rt_runnable(struct rq *rq)
2382 {
2383 	return rq->rt.rt_queued > 0;
2384 }
2385 
2386 static inline bool sched_fair_runnable(struct rq *rq)
2387 {
2388 	return rq->cfs.nr_running > 0;
2389 }
2390 
2391 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2392 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2393 
2394 #define SCA_CHECK		0x01
2395 #define SCA_MIGRATE_DISABLE	0x02
2396 #define SCA_MIGRATE_ENABLE	0x04
2397 #define SCA_USER		0x08
2398 
2399 #ifdef CONFIG_SMP
2400 
2401 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2402 
2403 extern void sched_balance_trigger(struct rq *rq);
2404 
2405 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2406 
2407 static inline struct task_struct *get_push_task(struct rq *rq)
2408 {
2409 	struct task_struct *p = rq->curr;
2410 
2411 	lockdep_assert_rq_held(rq);
2412 
2413 	if (rq->push_busy)
2414 		return NULL;
2415 
2416 	if (p->nr_cpus_allowed == 1)
2417 		return NULL;
2418 
2419 	if (p->migration_disabled)
2420 		return NULL;
2421 
2422 	rq->push_busy = true;
2423 	return get_task_struct(p);
2424 }
2425 
2426 extern int push_cpu_stop(void *arg);
2427 
2428 #endif
2429 
2430 #ifdef CONFIG_CPU_IDLE
2431 static inline void idle_set_state(struct rq *rq,
2432 				  struct cpuidle_state *idle_state)
2433 {
2434 	rq->idle_state = idle_state;
2435 }
2436 
2437 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2438 {
2439 	SCHED_WARN_ON(!rcu_read_lock_held());
2440 
2441 	return rq->idle_state;
2442 }
2443 #else
2444 static inline void idle_set_state(struct rq *rq,
2445 				  struct cpuidle_state *idle_state)
2446 {
2447 }
2448 
2449 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2450 {
2451 	return NULL;
2452 }
2453 #endif
2454 
2455 extern void schedule_idle(void);
2456 asmlinkage void schedule_user(void);
2457 
2458 extern void sysrq_sched_debug_show(void);
2459 extern void sched_init_granularity(void);
2460 extern void update_max_interval(void);
2461 
2462 extern void init_sched_dl_class(void);
2463 extern void init_sched_rt_class(void);
2464 extern void init_sched_fair_class(void);
2465 
2466 extern void reweight_task(struct task_struct *p, int prio);
2467 
2468 extern void resched_curr(struct rq *rq);
2469 extern void resched_cpu(int cpu);
2470 
2471 extern struct rt_bandwidth def_rt_bandwidth;
2472 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2473 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2474 
2475 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2476 
2477 #define BW_SHIFT		20
2478 #define BW_UNIT			(1 << BW_SHIFT)
2479 #define RATIO_SHIFT		8
2480 #define MAX_BW_BITS		(64 - BW_SHIFT)
2481 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2482 unsigned long to_ratio(u64 period, u64 runtime);
2483 
2484 extern void init_entity_runnable_average(struct sched_entity *se);
2485 extern void post_init_entity_util_avg(struct task_struct *p);
2486 
2487 #ifdef CONFIG_NO_HZ_FULL
2488 extern bool sched_can_stop_tick(struct rq *rq);
2489 extern int __init sched_tick_offload_init(void);
2490 
2491 /*
2492  * Tick may be needed by tasks in the runqueue depending on their policy and
2493  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2494  * nohz mode if necessary.
2495  */
2496 static inline void sched_update_tick_dependency(struct rq *rq)
2497 {
2498 	int cpu = cpu_of(rq);
2499 
2500 	if (!tick_nohz_full_cpu(cpu))
2501 		return;
2502 
2503 	if (sched_can_stop_tick(rq))
2504 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2505 	else
2506 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2507 }
2508 #else
2509 static inline int sched_tick_offload_init(void) { return 0; }
2510 static inline void sched_update_tick_dependency(struct rq *rq) { }
2511 #endif
2512 
2513 static inline void add_nr_running(struct rq *rq, unsigned count)
2514 {
2515 	unsigned prev_nr = rq->nr_running;
2516 
2517 	rq->nr_running = prev_nr + count;
2518 	if (trace_sched_update_nr_running_tp_enabled()) {
2519 		call_trace_sched_update_nr_running(rq, count);
2520 	}
2521 
2522 #ifdef CONFIG_SMP
2523 	if (prev_nr < 2 && rq->nr_running >= 2)
2524 		set_rd_overloaded(rq->rd, 1);
2525 #endif
2526 
2527 	sched_update_tick_dependency(rq);
2528 }
2529 
2530 static inline void sub_nr_running(struct rq *rq, unsigned count)
2531 {
2532 	rq->nr_running -= count;
2533 	if (trace_sched_update_nr_running_tp_enabled()) {
2534 		call_trace_sched_update_nr_running(rq, -count);
2535 	}
2536 
2537 	/* Check if we still need preemption */
2538 	sched_update_tick_dependency(rq);
2539 }
2540 
2541 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2542 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2543 
2544 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2545 
2546 #ifdef CONFIG_PREEMPT_RT
2547 #define SCHED_NR_MIGRATE_BREAK 8
2548 #else
2549 #define SCHED_NR_MIGRATE_BREAK 32
2550 #endif
2551 
2552 extern const_debug unsigned int sysctl_sched_nr_migrate;
2553 extern const_debug unsigned int sysctl_sched_migration_cost;
2554 
2555 extern unsigned int sysctl_sched_base_slice;
2556 
2557 #ifdef CONFIG_SCHED_DEBUG
2558 extern int sysctl_resched_latency_warn_ms;
2559 extern int sysctl_resched_latency_warn_once;
2560 
2561 extern unsigned int sysctl_sched_tunable_scaling;
2562 
2563 extern unsigned int sysctl_numa_balancing_scan_delay;
2564 extern unsigned int sysctl_numa_balancing_scan_period_min;
2565 extern unsigned int sysctl_numa_balancing_scan_period_max;
2566 extern unsigned int sysctl_numa_balancing_scan_size;
2567 extern unsigned int sysctl_numa_balancing_hot_threshold;
2568 #endif
2569 
2570 #ifdef CONFIG_SCHED_HRTICK
2571 
2572 /*
2573  * Use hrtick when:
2574  *  - enabled by features
2575  *  - hrtimer is actually high res
2576  */
2577 static inline int hrtick_enabled(struct rq *rq)
2578 {
2579 	if (!cpu_active(cpu_of(rq)))
2580 		return 0;
2581 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2582 }
2583 
2584 static inline int hrtick_enabled_fair(struct rq *rq)
2585 {
2586 	if (!sched_feat(HRTICK))
2587 		return 0;
2588 	return hrtick_enabled(rq);
2589 }
2590 
2591 static inline int hrtick_enabled_dl(struct rq *rq)
2592 {
2593 	if (!sched_feat(HRTICK_DL))
2594 		return 0;
2595 	return hrtick_enabled(rq);
2596 }
2597 
2598 void hrtick_start(struct rq *rq, u64 delay);
2599 
2600 #else
2601 
2602 static inline int hrtick_enabled_fair(struct rq *rq)
2603 {
2604 	return 0;
2605 }
2606 
2607 static inline int hrtick_enabled_dl(struct rq *rq)
2608 {
2609 	return 0;
2610 }
2611 
2612 static inline int hrtick_enabled(struct rq *rq)
2613 {
2614 	return 0;
2615 }
2616 
2617 #endif /* CONFIG_SCHED_HRTICK */
2618 
2619 #ifndef arch_scale_freq_tick
2620 static __always_inline
2621 void arch_scale_freq_tick(void)
2622 {
2623 }
2624 #endif
2625 
2626 #ifndef arch_scale_freq_capacity
2627 /**
2628  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2629  * @cpu: the CPU in question.
2630  *
2631  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2632  *
2633  *     f_curr
2634  *     ------ * SCHED_CAPACITY_SCALE
2635  *     f_max
2636  */
2637 static __always_inline
2638 unsigned long arch_scale_freq_capacity(int cpu)
2639 {
2640 	return SCHED_CAPACITY_SCALE;
2641 }
2642 #endif
2643 
2644 #ifdef CONFIG_SCHED_DEBUG
2645 /*
2646  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2647  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2648  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2649  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2650  */
2651 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2652 {
2653 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2654 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2655 #ifdef CONFIG_SMP
2656 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2657 #endif
2658 }
2659 #else
2660 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2661 #endif
2662 
2663 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2664 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2665 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2666 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2667   _lock; return _t; }
2668 
2669 #ifdef CONFIG_SMP
2670 
2671 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2672 {
2673 #ifdef CONFIG_SCHED_CORE
2674 	/*
2675 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2676 	 * order by core-id first and cpu-id second.
2677 	 *
2678 	 * Notably:
2679 	 *
2680 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2681 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2682 	 *
2683 	 * when only cpu-id is considered.
2684 	 */
2685 	if (rq1->core->cpu < rq2->core->cpu)
2686 		return true;
2687 	if (rq1->core->cpu > rq2->core->cpu)
2688 		return false;
2689 
2690 	/*
2691 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2692 	 */
2693 #endif
2694 	return rq1->cpu < rq2->cpu;
2695 }
2696 
2697 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2698 
2699 #ifdef CONFIG_PREEMPTION
2700 
2701 /*
2702  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2703  * way at the expense of forcing extra atomic operations in all
2704  * invocations.  This assures that the double_lock is acquired using the
2705  * same underlying policy as the spinlock_t on this architecture, which
2706  * reduces latency compared to the unfair variant below.  However, it
2707  * also adds more overhead and therefore may reduce throughput.
2708  */
2709 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2710 	__releases(this_rq->lock)
2711 	__acquires(busiest->lock)
2712 	__acquires(this_rq->lock)
2713 {
2714 	raw_spin_rq_unlock(this_rq);
2715 	double_rq_lock(this_rq, busiest);
2716 
2717 	return 1;
2718 }
2719 
2720 #else
2721 /*
2722  * Unfair double_lock_balance: Optimizes throughput at the expense of
2723  * latency by eliminating extra atomic operations when the locks are
2724  * already in proper order on entry.  This favors lower CPU-ids and will
2725  * grant the double lock to lower CPUs over higher ids under contention,
2726  * regardless of entry order into the function.
2727  */
2728 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2729 	__releases(this_rq->lock)
2730 	__acquires(busiest->lock)
2731 	__acquires(this_rq->lock)
2732 {
2733 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2734 	    likely(raw_spin_rq_trylock(busiest))) {
2735 		double_rq_clock_clear_update(this_rq, busiest);
2736 		return 0;
2737 	}
2738 
2739 	if (rq_order_less(this_rq, busiest)) {
2740 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2741 		double_rq_clock_clear_update(this_rq, busiest);
2742 		return 0;
2743 	}
2744 
2745 	raw_spin_rq_unlock(this_rq);
2746 	double_rq_lock(this_rq, busiest);
2747 
2748 	return 1;
2749 }
2750 
2751 #endif /* CONFIG_PREEMPTION */
2752 
2753 /*
2754  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2755  */
2756 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2757 {
2758 	lockdep_assert_irqs_disabled();
2759 
2760 	return _double_lock_balance(this_rq, busiest);
2761 }
2762 
2763 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2764 	__releases(busiest->lock)
2765 {
2766 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2767 		raw_spin_rq_unlock(busiest);
2768 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2769 }
2770 
2771 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2772 {
2773 	if (l1 > l2)
2774 		swap(l1, l2);
2775 
2776 	spin_lock(l1);
2777 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2778 }
2779 
2780 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2781 {
2782 	if (l1 > l2)
2783 		swap(l1, l2);
2784 
2785 	spin_lock_irq(l1);
2786 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2787 }
2788 
2789 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2790 {
2791 	if (l1 > l2)
2792 		swap(l1, l2);
2793 
2794 	raw_spin_lock(l1);
2795 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2796 }
2797 
2798 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2799 {
2800 	raw_spin_unlock(l1);
2801 	raw_spin_unlock(l2);
2802 }
2803 
2804 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2805 		    double_raw_lock(_T->lock, _T->lock2),
2806 		    double_raw_unlock(_T->lock, _T->lock2))
2807 
2808 /*
2809  * double_rq_unlock - safely unlock two runqueues
2810  *
2811  * Note this does not restore interrupts like task_rq_unlock,
2812  * you need to do so manually after calling.
2813  */
2814 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2815 	__releases(rq1->lock)
2816 	__releases(rq2->lock)
2817 {
2818 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2819 		raw_spin_rq_unlock(rq2);
2820 	else
2821 		__release(rq2->lock);
2822 	raw_spin_rq_unlock(rq1);
2823 }
2824 
2825 extern void set_rq_online (struct rq *rq);
2826 extern void set_rq_offline(struct rq *rq);
2827 extern bool sched_smp_initialized;
2828 
2829 #else /* CONFIG_SMP */
2830 
2831 /*
2832  * double_rq_lock - safely lock two runqueues
2833  *
2834  * Note this does not disable interrupts like task_rq_lock,
2835  * you need to do so manually before calling.
2836  */
2837 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2838 	__acquires(rq1->lock)
2839 	__acquires(rq2->lock)
2840 {
2841 	WARN_ON_ONCE(!irqs_disabled());
2842 	WARN_ON_ONCE(rq1 != rq2);
2843 	raw_spin_rq_lock(rq1);
2844 	__acquire(rq2->lock);	/* Fake it out ;) */
2845 	double_rq_clock_clear_update(rq1, rq2);
2846 }
2847 
2848 /*
2849  * double_rq_unlock - safely unlock two runqueues
2850  *
2851  * Note this does not restore interrupts like task_rq_unlock,
2852  * you need to do so manually after calling.
2853  */
2854 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2855 	__releases(rq1->lock)
2856 	__releases(rq2->lock)
2857 {
2858 	WARN_ON_ONCE(rq1 != rq2);
2859 	raw_spin_rq_unlock(rq1);
2860 	__release(rq2->lock);
2861 }
2862 
2863 #endif
2864 
2865 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2866 		    double_rq_lock(_T->lock, _T->lock2),
2867 		    double_rq_unlock(_T->lock, _T->lock2))
2868 
2869 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2870 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2871 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2872 
2873 #ifdef	CONFIG_SCHED_DEBUG
2874 extern bool sched_debug_verbose;
2875 
2876 extern void print_cfs_stats(struct seq_file *m, int cpu);
2877 extern void print_rt_stats(struct seq_file *m, int cpu);
2878 extern void print_dl_stats(struct seq_file *m, int cpu);
2879 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2880 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2881 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2882 
2883 extern void resched_latency_warn(int cpu, u64 latency);
2884 #ifdef CONFIG_NUMA_BALANCING
2885 extern void
2886 show_numa_stats(struct task_struct *p, struct seq_file *m);
2887 extern void
2888 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2889 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2890 #endif /* CONFIG_NUMA_BALANCING */
2891 #else
2892 static inline void resched_latency_warn(int cpu, u64 latency) {}
2893 #endif /* CONFIG_SCHED_DEBUG */
2894 
2895 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2896 extern void init_rt_rq(struct rt_rq *rt_rq);
2897 extern void init_dl_rq(struct dl_rq *dl_rq);
2898 
2899 extern void cfs_bandwidth_usage_inc(void);
2900 extern void cfs_bandwidth_usage_dec(void);
2901 
2902 #ifdef CONFIG_NO_HZ_COMMON
2903 #define NOHZ_BALANCE_KICK_BIT	0
2904 #define NOHZ_STATS_KICK_BIT	1
2905 #define NOHZ_NEWILB_KICK_BIT	2
2906 #define NOHZ_NEXT_KICK_BIT	3
2907 
2908 /* Run sched_balance_domains() */
2909 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2910 /* Update blocked load */
2911 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2912 /* Update blocked load when entering idle */
2913 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2914 /* Update nohz.next_balance */
2915 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2916 
2917 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2918 
2919 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2920 
2921 extern void nohz_balance_exit_idle(struct rq *rq);
2922 #else
2923 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2924 #endif
2925 
2926 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2927 extern void nohz_run_idle_balance(int cpu);
2928 #else
2929 static inline void nohz_run_idle_balance(int cpu) { }
2930 #endif
2931 
2932 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2933 struct irqtime {
2934 	u64			total;
2935 	u64			tick_delta;
2936 	u64			irq_start_time;
2937 	struct u64_stats_sync	sync;
2938 };
2939 
2940 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2941 
2942 /*
2943  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2944  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2945  * and never move forward.
2946  */
2947 static inline u64 irq_time_read(int cpu)
2948 {
2949 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2950 	unsigned int seq;
2951 	u64 total;
2952 
2953 	do {
2954 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2955 		total = irqtime->total;
2956 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2957 
2958 	return total;
2959 }
2960 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2961 
2962 #ifdef CONFIG_CPU_FREQ
2963 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2964 
2965 /**
2966  * cpufreq_update_util - Take a note about CPU utilization changes.
2967  * @rq: Runqueue to carry out the update for.
2968  * @flags: Update reason flags.
2969  *
2970  * This function is called by the scheduler on the CPU whose utilization is
2971  * being updated.
2972  *
2973  * It can only be called from RCU-sched read-side critical sections.
2974  *
2975  * The way cpufreq is currently arranged requires it to evaluate the CPU
2976  * performance state (frequency/voltage) on a regular basis to prevent it from
2977  * being stuck in a completely inadequate performance level for too long.
2978  * That is not guaranteed to happen if the updates are only triggered from CFS
2979  * and DL, though, because they may not be coming in if only RT tasks are
2980  * active all the time (or there are RT tasks only).
2981  *
2982  * As a workaround for that issue, this function is called periodically by the
2983  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2984  * but that really is a band-aid.  Going forward it should be replaced with
2985  * solutions targeted more specifically at RT tasks.
2986  */
2987 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2988 {
2989 	struct update_util_data *data;
2990 
2991 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2992 						  cpu_of(rq)));
2993 	if (data)
2994 		data->func(data, rq_clock(rq), flags);
2995 }
2996 #else
2997 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2998 #endif /* CONFIG_CPU_FREQ */
2999 
3000 #ifdef arch_scale_freq_capacity
3001 # ifndef arch_scale_freq_invariant
3002 #  define arch_scale_freq_invariant()	true
3003 # endif
3004 #else
3005 # define arch_scale_freq_invariant()	false
3006 #endif
3007 
3008 #ifdef CONFIG_SMP
3009 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3010 				 unsigned long *min,
3011 				 unsigned long *max);
3012 
3013 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3014 				 unsigned long min,
3015 				 unsigned long max);
3016 
3017 
3018 /*
3019  * Verify the fitness of task @p to run on @cpu taking into account the
3020  * CPU original capacity and the runtime/deadline ratio of the task.
3021  *
3022  * The function will return true if the original capacity of @cpu is
3023  * greater than or equal to task's deadline density right shifted by
3024  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3025  */
3026 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3027 {
3028 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3029 
3030 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3031 }
3032 
3033 static inline unsigned long cpu_bw_dl(struct rq *rq)
3034 {
3035 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3036 }
3037 
3038 static inline unsigned long cpu_util_dl(struct rq *rq)
3039 {
3040 	return READ_ONCE(rq->avg_dl.util_avg);
3041 }
3042 
3043 
3044 extern unsigned long cpu_util_cfs(int cpu);
3045 extern unsigned long cpu_util_cfs_boost(int cpu);
3046 
3047 static inline unsigned long cpu_util_rt(struct rq *rq)
3048 {
3049 	return READ_ONCE(rq->avg_rt.util_avg);
3050 }
3051 #endif
3052 
3053 #ifdef CONFIG_UCLAMP_TASK
3054 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3055 
3056 static inline unsigned long uclamp_rq_get(struct rq *rq,
3057 					  enum uclamp_id clamp_id)
3058 {
3059 	return READ_ONCE(rq->uclamp[clamp_id].value);
3060 }
3061 
3062 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3063 				 unsigned int value)
3064 {
3065 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3066 }
3067 
3068 static inline bool uclamp_rq_is_idle(struct rq *rq)
3069 {
3070 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3071 }
3072 
3073 /* Is the rq being capped/throttled by uclamp_max? */
3074 static inline bool uclamp_rq_is_capped(struct rq *rq)
3075 {
3076 	unsigned long rq_util;
3077 	unsigned long max_util;
3078 
3079 	if (!static_branch_likely(&sched_uclamp_used))
3080 		return false;
3081 
3082 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3083 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3084 
3085 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3086 }
3087 
3088 /*
3089  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3090  * by default in the fast path and only gets turned on once userspace performs
3091  * an operation that requires it.
3092  *
3093  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3094  * hence is active.
3095  */
3096 static inline bool uclamp_is_used(void)
3097 {
3098 	return static_branch_likely(&sched_uclamp_used);
3099 }
3100 #else /* CONFIG_UCLAMP_TASK */
3101 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3102 					     enum uclamp_id clamp_id)
3103 {
3104 	if (clamp_id == UCLAMP_MIN)
3105 		return 0;
3106 
3107 	return SCHED_CAPACITY_SCALE;
3108 }
3109 
3110 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3111 
3112 static inline bool uclamp_is_used(void)
3113 {
3114 	return false;
3115 }
3116 
3117 static inline unsigned long uclamp_rq_get(struct rq *rq,
3118 					  enum uclamp_id clamp_id)
3119 {
3120 	if (clamp_id == UCLAMP_MIN)
3121 		return 0;
3122 
3123 	return SCHED_CAPACITY_SCALE;
3124 }
3125 
3126 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3127 				 unsigned int value)
3128 {
3129 }
3130 
3131 static inline bool uclamp_rq_is_idle(struct rq *rq)
3132 {
3133 	return false;
3134 }
3135 #endif /* CONFIG_UCLAMP_TASK */
3136 
3137 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3138 static inline unsigned long cpu_util_irq(struct rq *rq)
3139 {
3140 	return READ_ONCE(rq->avg_irq.util_avg);
3141 }
3142 
3143 static inline
3144 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3145 {
3146 	util *= (max - irq);
3147 	util /= max;
3148 
3149 	return util;
3150 
3151 }
3152 #else
3153 static inline unsigned long cpu_util_irq(struct rq *rq)
3154 {
3155 	return 0;
3156 }
3157 
3158 static inline
3159 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3160 {
3161 	return util;
3162 }
3163 #endif
3164 
3165 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3166 
3167 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3168 
3169 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3170 
3171 static inline bool sched_energy_enabled(void)
3172 {
3173 	return static_branch_unlikely(&sched_energy_present);
3174 }
3175 
3176 extern struct cpufreq_governor schedutil_gov;
3177 
3178 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3179 
3180 #define perf_domain_span(pd) NULL
3181 static inline bool sched_energy_enabled(void) { return false; }
3182 
3183 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3184 
3185 #ifdef CONFIG_MEMBARRIER
3186 /*
3187  * The scheduler provides memory barriers required by membarrier between:
3188  * - prior user-space memory accesses and store to rq->membarrier_state,
3189  * - store to rq->membarrier_state and following user-space memory accesses.
3190  * In the same way it provides those guarantees around store to rq->curr.
3191  */
3192 static inline void membarrier_switch_mm(struct rq *rq,
3193 					struct mm_struct *prev_mm,
3194 					struct mm_struct *next_mm)
3195 {
3196 	int membarrier_state;
3197 
3198 	if (prev_mm == next_mm)
3199 		return;
3200 
3201 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3202 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3203 		return;
3204 
3205 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3206 }
3207 #else
3208 static inline void membarrier_switch_mm(struct rq *rq,
3209 					struct mm_struct *prev_mm,
3210 					struct mm_struct *next_mm)
3211 {
3212 }
3213 #endif
3214 
3215 #ifdef CONFIG_SMP
3216 static inline bool is_per_cpu_kthread(struct task_struct *p)
3217 {
3218 	if (!(p->flags & PF_KTHREAD))
3219 		return false;
3220 
3221 	if (p->nr_cpus_allowed != 1)
3222 		return false;
3223 
3224 	return true;
3225 }
3226 #endif
3227 
3228 extern void swake_up_all_locked(struct swait_queue_head *q);
3229 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3230 
3231 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3232 
3233 #ifdef CONFIG_PREEMPT_DYNAMIC
3234 extern int preempt_dynamic_mode;
3235 extern int sched_dynamic_mode(const char *str);
3236 extern void sched_dynamic_update(int mode);
3237 #endif
3238 
3239 #ifdef CONFIG_SCHED_MM_CID
3240 
3241 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3242 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3243 
3244 extern raw_spinlock_t cid_lock;
3245 extern int use_cid_lock;
3246 
3247 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3248 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3249 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3250 extern void init_sched_mm_cid(struct task_struct *t);
3251 
3252 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3253 {
3254 	if (cid < 0)
3255 		return;
3256 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3257 }
3258 
3259 /*
3260  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3261  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3262  * be held to transition to other states.
3263  *
3264  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3265  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3266  */
3267 static inline void mm_cid_put_lazy(struct task_struct *t)
3268 {
3269 	struct mm_struct *mm = t->mm;
3270 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3271 	int cid;
3272 
3273 	lockdep_assert_irqs_disabled();
3274 	cid = __this_cpu_read(pcpu_cid->cid);
3275 	if (!mm_cid_is_lazy_put(cid) ||
3276 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3277 		return;
3278 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3279 }
3280 
3281 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3282 {
3283 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3284 	int cid, res;
3285 
3286 	lockdep_assert_irqs_disabled();
3287 	cid = __this_cpu_read(pcpu_cid->cid);
3288 	for (;;) {
3289 		if (mm_cid_is_unset(cid))
3290 			return MM_CID_UNSET;
3291 		/*
3292 		 * Attempt transition from valid or lazy-put to unset.
3293 		 */
3294 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3295 		if (res == cid)
3296 			break;
3297 		cid = res;
3298 	}
3299 	return cid;
3300 }
3301 
3302 static inline void mm_cid_put(struct mm_struct *mm)
3303 {
3304 	int cid;
3305 
3306 	lockdep_assert_irqs_disabled();
3307 	cid = mm_cid_pcpu_unset(mm);
3308 	if (cid == MM_CID_UNSET)
3309 		return;
3310 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3311 }
3312 
3313 static inline int __mm_cid_try_get(struct mm_struct *mm)
3314 {
3315 	struct cpumask *cpumask;
3316 	int cid;
3317 
3318 	cpumask = mm_cidmask(mm);
3319 	/*
3320 	 * Retry finding first zero bit if the mask is temporarily
3321 	 * filled. This only happens during concurrent remote-clear
3322 	 * which owns a cid without holding a rq lock.
3323 	 */
3324 	for (;;) {
3325 		cid = cpumask_first_zero(cpumask);
3326 		if (cid < nr_cpu_ids)
3327 			break;
3328 		cpu_relax();
3329 	}
3330 	if (cpumask_test_and_set_cpu(cid, cpumask))
3331 		return -1;
3332 	return cid;
3333 }
3334 
3335 /*
3336  * Save a snapshot of the current runqueue time of this cpu
3337  * with the per-cpu cid value, allowing to estimate how recently it was used.
3338  */
3339 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3340 {
3341 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3342 
3343 	lockdep_assert_rq_held(rq);
3344 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3345 }
3346 
3347 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3348 {
3349 	int cid;
3350 
3351 	/*
3352 	 * All allocations (even those using the cid_lock) are lock-free. If
3353 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3354 	 * guarantee forward progress.
3355 	 */
3356 	if (!READ_ONCE(use_cid_lock)) {
3357 		cid = __mm_cid_try_get(mm);
3358 		if (cid >= 0)
3359 			goto end;
3360 		raw_spin_lock(&cid_lock);
3361 	} else {
3362 		raw_spin_lock(&cid_lock);
3363 		cid = __mm_cid_try_get(mm);
3364 		if (cid >= 0)
3365 			goto unlock;
3366 	}
3367 
3368 	/*
3369 	 * cid concurrently allocated. Retry while forcing following
3370 	 * allocations to use the cid_lock to ensure forward progress.
3371 	 */
3372 	WRITE_ONCE(use_cid_lock, 1);
3373 	/*
3374 	 * Set use_cid_lock before allocation. Only care about program order
3375 	 * because this is only required for forward progress.
3376 	 */
3377 	barrier();
3378 	/*
3379 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3380 	 * all newcoming allocations observe the use_cid_lock flag set.
3381 	 */
3382 	do {
3383 		cid = __mm_cid_try_get(mm);
3384 		cpu_relax();
3385 	} while (cid < 0);
3386 	/*
3387 	 * Allocate before clearing use_cid_lock. Only care about
3388 	 * program order because this is for forward progress.
3389 	 */
3390 	barrier();
3391 	WRITE_ONCE(use_cid_lock, 0);
3392 unlock:
3393 	raw_spin_unlock(&cid_lock);
3394 end:
3395 	mm_cid_snapshot_time(rq, mm);
3396 	return cid;
3397 }
3398 
3399 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3400 {
3401 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3402 	struct cpumask *cpumask;
3403 	int cid;
3404 
3405 	lockdep_assert_rq_held(rq);
3406 	cpumask = mm_cidmask(mm);
3407 	cid = __this_cpu_read(pcpu_cid->cid);
3408 	if (mm_cid_is_valid(cid)) {
3409 		mm_cid_snapshot_time(rq, mm);
3410 		return cid;
3411 	}
3412 	if (mm_cid_is_lazy_put(cid)) {
3413 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3414 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3415 	}
3416 	cid = __mm_cid_get(rq, mm);
3417 	__this_cpu_write(pcpu_cid->cid, cid);
3418 	return cid;
3419 }
3420 
3421 static inline void switch_mm_cid(struct rq *rq,
3422 				 struct task_struct *prev,
3423 				 struct task_struct *next)
3424 {
3425 	/*
3426 	 * Provide a memory barrier between rq->curr store and load of
3427 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3428 	 *
3429 	 * Should be adapted if context_switch() is modified.
3430 	 */
3431 	if (!next->mm) {                                // to kernel
3432 		/*
3433 		 * user -> kernel transition does not guarantee a barrier, but
3434 		 * we can use the fact that it performs an atomic operation in
3435 		 * mmgrab().
3436 		 */
3437 		if (prev->mm)                           // from user
3438 			smp_mb__after_mmgrab();
3439 		/*
3440 		 * kernel -> kernel transition does not change rq->curr->mm
3441 		 * state. It stays NULL.
3442 		 */
3443 	} else {                                        // to user
3444 		/*
3445 		 * kernel -> user transition does not provide a barrier
3446 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3447 		 * Provide it here.
3448 		 */
3449 		if (!prev->mm) {                        // from kernel
3450 			smp_mb();
3451 		} else {				// from user
3452 			/*
3453 			 * user->user transition relies on an implicit
3454 			 * memory barrier in switch_mm() when
3455 			 * current->mm changes. If the architecture
3456 			 * switch_mm() does not have an implicit memory
3457 			 * barrier, it is emitted here.  If current->mm
3458 			 * is unchanged, no barrier is needed.
3459 			 */
3460 			smp_mb__after_switch_mm();
3461 		}
3462 	}
3463 	if (prev->mm_cid_active) {
3464 		mm_cid_snapshot_time(rq, prev->mm);
3465 		mm_cid_put_lazy(prev);
3466 		prev->mm_cid = -1;
3467 	}
3468 	if (next->mm_cid_active)
3469 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3470 }
3471 
3472 #else
3473 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3474 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3475 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3476 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3477 static inline void init_sched_mm_cid(struct task_struct *t) { }
3478 #endif
3479 
3480 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3481 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3482 
3483 #endif /* _KERNEL_SCHED_SCHED_H */
3484