1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_CGROUP_SCHED 78 #include <linux/cgroup.h> 79 #include <linux/psi.h> 80 #endif 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # include <linux/static_key.h> 84 #endif 85 86 #ifdef CONFIG_PARAVIRT 87 # include <asm/paravirt.h> 88 # include <asm/paravirt_api_clock.h> 89 #endif 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 struct rq; 101 struct cpuidle_state; 102 103 /* task_struct::on_rq states: */ 104 #define TASK_ON_RQ_QUEUED 1 105 #define TASK_ON_RQ_MIGRATING 2 106 107 extern __read_mostly int scheduler_running; 108 109 extern unsigned long calc_load_update; 110 extern atomic_long_t calc_load_tasks; 111 112 extern unsigned int sysctl_sched_child_runs_first; 113 114 extern void calc_global_load_tick(struct rq *this_rq); 115 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 116 117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 118 119 extern unsigned int sysctl_sched_rt_period; 120 extern int sysctl_sched_rt_runtime; 121 extern int sched_rr_timeslice; 122 123 /* 124 * Helpers for converting nanosecond timing to jiffy resolution 125 */ 126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 127 128 /* 129 * Increase resolution of nice-level calculations for 64-bit architectures. 130 * The extra resolution improves shares distribution and load balancing of 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 132 * hierarchies, especially on larger systems. This is not a user-visible change 133 * and does not change the user-interface for setting shares/weights. 134 * 135 * We increase resolution only if we have enough bits to allow this increased 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 137 * are pretty high and the returns do not justify the increased costs. 138 * 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 140 * increase coverage and consistency always enable it on 64-bit platforms. 141 */ 142 #ifdef CONFIG_64BIT 143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 145 # define scale_load_down(w) \ 146 ({ \ 147 unsigned long __w = (w); \ 148 if (__w) \ 149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 150 __w; \ 151 }) 152 #else 153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load(w) (w) 155 # define scale_load_down(w) (w) 156 #endif 157 158 /* 159 * Task weight (visible to users) and its load (invisible to users) have 160 * independent resolution, but they should be well calibrated. We use 161 * scale_load() and scale_load_down(w) to convert between them. The 162 * following must be true: 163 * 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 165 * 166 */ 167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 168 169 /* 170 * Single value that decides SCHED_DEADLINE internal math precision. 171 * 10 -> just above 1us 172 * 9 -> just above 0.5us 173 */ 174 #define DL_SCALE 10 175 176 /* 177 * Single value that denotes runtime == period, ie unlimited time. 178 */ 179 #define RUNTIME_INF ((u64)~0ULL) 180 181 static inline int idle_policy(int policy) 182 { 183 return policy == SCHED_IDLE; 184 } 185 static inline int fair_policy(int policy) 186 { 187 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 188 } 189 190 static inline int rt_policy(int policy) 191 { 192 return policy == SCHED_FIFO || policy == SCHED_RR; 193 } 194 195 static inline int dl_policy(int policy) 196 { 197 return policy == SCHED_DEADLINE; 198 } 199 static inline bool valid_policy(int policy) 200 { 201 return idle_policy(policy) || fair_policy(policy) || 202 rt_policy(policy) || dl_policy(policy); 203 } 204 205 static inline int task_has_idle_policy(struct task_struct *p) 206 { 207 return idle_policy(p->policy); 208 } 209 210 static inline int task_has_rt_policy(struct task_struct *p) 211 { 212 return rt_policy(p->policy); 213 } 214 215 static inline int task_has_dl_policy(struct task_struct *p) 216 { 217 return dl_policy(p->policy); 218 } 219 220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 221 222 static inline void update_avg(u64 *avg, u64 sample) 223 { 224 s64 diff = sample - *avg; 225 *avg += diff / 8; 226 } 227 228 /* 229 * Shifting a value by an exponent greater *or equal* to the size of said value 230 * is UB; cap at size-1. 231 */ 232 #define shr_bound(val, shift) \ 233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 234 235 /* 236 * !! For sched_setattr_nocheck() (kernel) only !! 237 * 238 * This is actually gross. :( 239 * 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 241 * tasks, but still be able to sleep. We need this on platforms that cannot 242 * atomically change clock frequency. Remove once fast switching will be 243 * available on such platforms. 244 * 245 * SUGOV stands for SchedUtil GOVernor. 246 */ 247 #define SCHED_FLAG_SUGOV 0x10000000 248 249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 250 251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 252 { 253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 255 #else 256 return false; 257 #endif 258 } 259 260 /* 261 * Tells if entity @a should preempt entity @b. 262 */ 263 static inline bool 264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 265 { 266 return dl_entity_is_special(a) || 267 dl_time_before(a->deadline, b->deadline); 268 } 269 270 /* 271 * This is the priority-queue data structure of the RT scheduling class: 272 */ 273 struct rt_prio_array { 274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 275 struct list_head queue[MAX_RT_PRIO]; 276 }; 277 278 struct rt_bandwidth { 279 /* nests inside the rq lock: */ 280 raw_spinlock_t rt_runtime_lock; 281 ktime_t rt_period; 282 u64 rt_runtime; 283 struct hrtimer rt_period_timer; 284 unsigned int rt_period_active; 285 }; 286 287 void __dl_clear_params(struct task_struct *p); 288 289 struct dl_bandwidth { 290 raw_spinlock_t dl_runtime_lock; 291 u64 dl_runtime; 292 u64 dl_period; 293 }; 294 295 static inline int dl_bandwidth_enabled(void) 296 { 297 return sysctl_sched_rt_runtime >= 0; 298 } 299 300 /* 301 * To keep the bandwidth of -deadline tasks under control 302 * we need some place where: 303 * - store the maximum -deadline bandwidth of each cpu; 304 * - cache the fraction of bandwidth that is currently allocated in 305 * each root domain; 306 * 307 * This is all done in the data structure below. It is similar to the 308 * one used for RT-throttling (rt_bandwidth), with the main difference 309 * that, since here we are only interested in admission control, we 310 * do not decrease any runtime while the group "executes", neither we 311 * need a timer to replenish it. 312 * 313 * With respect to SMP, bandwidth is given on a per root domain basis, 314 * meaning that: 315 * - bw (< 100%) is the deadline bandwidth of each CPU; 316 * - total_bw is the currently allocated bandwidth in each root domain; 317 */ 318 struct dl_bw { 319 raw_spinlock_t lock; 320 u64 bw; 321 u64 total_bw; 322 }; 323 324 /* 325 * Verify the fitness of task @p to run on @cpu taking into account the 326 * CPU original capacity and the runtime/deadline ratio of the task. 327 * 328 * The function will return true if the CPU original capacity of the 329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 330 * task and false otherwise. 331 */ 332 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 333 { 334 unsigned long cap = arch_scale_cpu_capacity(cpu); 335 336 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 337 } 338 339 extern void init_dl_bw(struct dl_bw *dl_b); 340 extern int sched_dl_global_validate(void); 341 extern void sched_dl_do_global(void); 342 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 343 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 344 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 345 extern bool __checkparam_dl(const struct sched_attr *attr); 346 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 347 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 348 extern int dl_cpu_busy(int cpu, struct task_struct *p); 349 350 #ifdef CONFIG_CGROUP_SCHED 351 352 struct cfs_rq; 353 struct rt_rq; 354 355 extern struct list_head task_groups; 356 357 struct cfs_bandwidth { 358 #ifdef CONFIG_CFS_BANDWIDTH 359 raw_spinlock_t lock; 360 ktime_t period; 361 u64 quota; 362 u64 runtime; 363 u64 burst; 364 u64 runtime_snap; 365 s64 hierarchical_quota; 366 367 u8 idle; 368 u8 period_active; 369 u8 slack_started; 370 struct hrtimer period_timer; 371 struct hrtimer slack_timer; 372 struct list_head throttled_cfs_rq; 373 374 /* Statistics: */ 375 int nr_periods; 376 int nr_throttled; 377 int nr_burst; 378 u64 throttled_time; 379 u64 burst_time; 380 #endif 381 }; 382 383 /* Task group related information */ 384 struct task_group { 385 struct cgroup_subsys_state css; 386 387 #ifdef CONFIG_FAIR_GROUP_SCHED 388 /* schedulable entities of this group on each CPU */ 389 struct sched_entity **se; 390 /* runqueue "owned" by this group on each CPU */ 391 struct cfs_rq **cfs_rq; 392 unsigned long shares; 393 394 /* A positive value indicates that this is a SCHED_IDLE group. */ 395 int idle; 396 397 #ifdef CONFIG_SMP 398 /* 399 * load_avg can be heavily contended at clock tick time, so put 400 * it in its own cacheline separated from the fields above which 401 * will also be accessed at each tick. 402 */ 403 atomic_long_t load_avg ____cacheline_aligned; 404 #endif 405 #endif 406 407 #ifdef CONFIG_RT_GROUP_SCHED 408 struct sched_rt_entity **rt_se; 409 struct rt_rq **rt_rq; 410 411 struct rt_bandwidth rt_bandwidth; 412 #endif 413 414 struct rcu_head rcu; 415 struct list_head list; 416 417 struct task_group *parent; 418 struct list_head siblings; 419 struct list_head children; 420 421 #ifdef CONFIG_SCHED_AUTOGROUP 422 struct autogroup *autogroup; 423 #endif 424 425 struct cfs_bandwidth cfs_bandwidth; 426 427 #ifdef CONFIG_UCLAMP_TASK_GROUP 428 /* The two decimal precision [%] value requested from user-space */ 429 unsigned int uclamp_pct[UCLAMP_CNT]; 430 /* Clamp values requested for a task group */ 431 struct uclamp_se uclamp_req[UCLAMP_CNT]; 432 /* Effective clamp values used for a task group */ 433 struct uclamp_se uclamp[UCLAMP_CNT]; 434 #endif 435 436 }; 437 438 #ifdef CONFIG_FAIR_GROUP_SCHED 439 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 440 441 /* 442 * A weight of 0 or 1 can cause arithmetics problems. 443 * A weight of a cfs_rq is the sum of weights of which entities 444 * are queued on this cfs_rq, so a weight of a entity should not be 445 * too large, so as the shares value of a task group. 446 * (The default weight is 1024 - so there's no practical 447 * limitation from this.) 448 */ 449 #define MIN_SHARES (1UL << 1) 450 #define MAX_SHARES (1UL << 18) 451 #endif 452 453 typedef int (*tg_visitor)(struct task_group *, void *); 454 455 extern int walk_tg_tree_from(struct task_group *from, 456 tg_visitor down, tg_visitor up, void *data); 457 458 /* 459 * Iterate the full tree, calling @down when first entering a node and @up when 460 * leaving it for the final time. 461 * 462 * Caller must hold rcu_lock or sufficient equivalent. 463 */ 464 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 465 { 466 return walk_tg_tree_from(&root_task_group, down, up, data); 467 } 468 469 extern int tg_nop(struct task_group *tg, void *data); 470 471 extern void free_fair_sched_group(struct task_group *tg); 472 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 473 extern void online_fair_sched_group(struct task_group *tg); 474 extern void unregister_fair_sched_group(struct task_group *tg); 475 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 476 struct sched_entity *se, int cpu, 477 struct sched_entity *parent); 478 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 479 480 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 481 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 482 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 483 484 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 485 struct sched_rt_entity *rt_se, int cpu, 486 struct sched_rt_entity *parent); 487 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 488 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 489 extern long sched_group_rt_runtime(struct task_group *tg); 490 extern long sched_group_rt_period(struct task_group *tg); 491 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 492 493 extern struct task_group *sched_create_group(struct task_group *parent); 494 extern void sched_online_group(struct task_group *tg, 495 struct task_group *parent); 496 extern void sched_destroy_group(struct task_group *tg); 497 extern void sched_release_group(struct task_group *tg); 498 499 extern void sched_move_task(struct task_struct *tsk); 500 501 #ifdef CONFIG_FAIR_GROUP_SCHED 502 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 503 504 extern int sched_group_set_idle(struct task_group *tg, long idle); 505 506 #ifdef CONFIG_SMP 507 extern void set_task_rq_fair(struct sched_entity *se, 508 struct cfs_rq *prev, struct cfs_rq *next); 509 #else /* !CONFIG_SMP */ 510 static inline void set_task_rq_fair(struct sched_entity *se, 511 struct cfs_rq *prev, struct cfs_rq *next) { } 512 #endif /* CONFIG_SMP */ 513 #endif /* CONFIG_FAIR_GROUP_SCHED */ 514 515 #else /* CONFIG_CGROUP_SCHED */ 516 517 struct cfs_bandwidth { }; 518 519 #endif /* CONFIG_CGROUP_SCHED */ 520 521 extern void unregister_rt_sched_group(struct task_group *tg); 522 extern void free_rt_sched_group(struct task_group *tg); 523 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 524 525 /* 526 * u64_u32_load/u64_u32_store 527 * 528 * Use a copy of a u64 value to protect against data race. This is only 529 * applicable for 32-bits architectures. 530 */ 531 #ifdef CONFIG_64BIT 532 # define u64_u32_load_copy(var, copy) var 533 # define u64_u32_store_copy(var, copy, val) (var = val) 534 #else 535 # define u64_u32_load_copy(var, copy) \ 536 ({ \ 537 u64 __val, __val_copy; \ 538 do { \ 539 __val_copy = copy; \ 540 /* \ 541 * paired with u64_u32_store_copy(), ordering access \ 542 * to var and copy. \ 543 */ \ 544 smp_rmb(); \ 545 __val = var; \ 546 } while (__val != __val_copy); \ 547 __val; \ 548 }) 549 # define u64_u32_store_copy(var, copy, val) \ 550 do { \ 551 typeof(val) __val = (val); \ 552 var = __val; \ 553 /* \ 554 * paired with u64_u32_load_copy(), ordering access to var and \ 555 * copy. \ 556 */ \ 557 smp_wmb(); \ 558 copy = __val; \ 559 } while (0) 560 #endif 561 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 562 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 563 564 /* CFS-related fields in a runqueue */ 565 struct cfs_rq { 566 struct load_weight load; 567 unsigned int nr_running; 568 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 569 unsigned int idle_nr_running; /* SCHED_IDLE */ 570 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 571 572 u64 exec_clock; 573 u64 min_vruntime; 574 #ifdef CONFIG_SCHED_CORE 575 unsigned int forceidle_seq; 576 u64 min_vruntime_fi; 577 #endif 578 579 #ifndef CONFIG_64BIT 580 u64 min_vruntime_copy; 581 #endif 582 583 struct rb_root_cached tasks_timeline; 584 585 /* 586 * 'curr' points to currently running entity on this cfs_rq. 587 * It is set to NULL otherwise (i.e when none are currently running). 588 */ 589 struct sched_entity *curr; 590 struct sched_entity *next; 591 struct sched_entity *last; 592 struct sched_entity *skip; 593 594 #ifdef CONFIG_SCHED_DEBUG 595 unsigned int nr_spread_over; 596 #endif 597 598 #ifdef CONFIG_SMP 599 /* 600 * CFS load tracking 601 */ 602 struct sched_avg avg; 603 #ifndef CONFIG_64BIT 604 u64 last_update_time_copy; 605 #endif 606 struct { 607 raw_spinlock_t lock ____cacheline_aligned; 608 int nr; 609 unsigned long load_avg; 610 unsigned long util_avg; 611 unsigned long runnable_avg; 612 } removed; 613 614 #ifdef CONFIG_FAIR_GROUP_SCHED 615 unsigned long tg_load_avg_contrib; 616 long propagate; 617 long prop_runnable_sum; 618 619 /* 620 * h_load = weight * f(tg) 621 * 622 * Where f(tg) is the recursive weight fraction assigned to 623 * this group. 624 */ 625 unsigned long h_load; 626 u64 last_h_load_update; 627 struct sched_entity *h_load_next; 628 #endif /* CONFIG_FAIR_GROUP_SCHED */ 629 #endif /* CONFIG_SMP */ 630 631 #ifdef CONFIG_FAIR_GROUP_SCHED 632 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 633 634 /* 635 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 636 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 637 * (like users, containers etc.) 638 * 639 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 640 * This list is used during load balance. 641 */ 642 int on_list; 643 struct list_head leaf_cfs_rq_list; 644 struct task_group *tg; /* group that "owns" this runqueue */ 645 646 /* Locally cached copy of our task_group's idle value */ 647 int idle; 648 649 #ifdef CONFIG_CFS_BANDWIDTH 650 int runtime_enabled; 651 s64 runtime_remaining; 652 653 u64 throttled_pelt_idle; 654 #ifndef CONFIG_64BIT 655 u64 throttled_pelt_idle_copy; 656 #endif 657 u64 throttled_clock; 658 u64 throttled_clock_pelt; 659 u64 throttled_clock_pelt_time; 660 int throttled; 661 int throttle_count; 662 struct list_head throttled_list; 663 #endif /* CONFIG_CFS_BANDWIDTH */ 664 #endif /* CONFIG_FAIR_GROUP_SCHED */ 665 }; 666 667 static inline int rt_bandwidth_enabled(void) 668 { 669 return sysctl_sched_rt_runtime >= 0; 670 } 671 672 /* RT IPI pull logic requires IRQ_WORK */ 673 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 674 # define HAVE_RT_PUSH_IPI 675 #endif 676 677 /* Real-Time classes' related field in a runqueue: */ 678 struct rt_rq { 679 struct rt_prio_array active; 680 unsigned int rt_nr_running; 681 unsigned int rr_nr_running; 682 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 683 struct { 684 int curr; /* highest queued rt task prio */ 685 #ifdef CONFIG_SMP 686 int next; /* next highest */ 687 #endif 688 } highest_prio; 689 #endif 690 #ifdef CONFIG_SMP 691 unsigned int rt_nr_migratory; 692 unsigned int rt_nr_total; 693 int overloaded; 694 struct plist_head pushable_tasks; 695 696 #endif /* CONFIG_SMP */ 697 int rt_queued; 698 699 int rt_throttled; 700 u64 rt_time; 701 u64 rt_runtime; 702 /* Nests inside the rq lock: */ 703 raw_spinlock_t rt_runtime_lock; 704 705 #ifdef CONFIG_RT_GROUP_SCHED 706 unsigned int rt_nr_boosted; 707 708 struct rq *rq; 709 struct task_group *tg; 710 #endif 711 }; 712 713 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 714 { 715 return rt_rq->rt_queued && rt_rq->rt_nr_running; 716 } 717 718 /* Deadline class' related fields in a runqueue */ 719 struct dl_rq { 720 /* runqueue is an rbtree, ordered by deadline */ 721 struct rb_root_cached root; 722 723 unsigned int dl_nr_running; 724 725 #ifdef CONFIG_SMP 726 /* 727 * Deadline values of the currently executing and the 728 * earliest ready task on this rq. Caching these facilitates 729 * the decision whether or not a ready but not running task 730 * should migrate somewhere else. 731 */ 732 struct { 733 u64 curr; 734 u64 next; 735 } earliest_dl; 736 737 unsigned int dl_nr_migratory; 738 int overloaded; 739 740 /* 741 * Tasks on this rq that can be pushed away. They are kept in 742 * an rb-tree, ordered by tasks' deadlines, with caching 743 * of the leftmost (earliest deadline) element. 744 */ 745 struct rb_root_cached pushable_dl_tasks_root; 746 #else 747 struct dl_bw dl_bw; 748 #endif 749 /* 750 * "Active utilization" for this runqueue: increased when a 751 * task wakes up (becomes TASK_RUNNING) and decreased when a 752 * task blocks 753 */ 754 u64 running_bw; 755 756 /* 757 * Utilization of the tasks "assigned" to this runqueue (including 758 * the tasks that are in runqueue and the tasks that executed on this 759 * CPU and blocked). Increased when a task moves to this runqueue, and 760 * decreased when the task moves away (migrates, changes scheduling 761 * policy, or terminates). 762 * This is needed to compute the "inactive utilization" for the 763 * runqueue (inactive utilization = this_bw - running_bw). 764 */ 765 u64 this_bw; 766 u64 extra_bw; 767 768 /* 769 * Inverse of the fraction of CPU utilization that can be reclaimed 770 * by the GRUB algorithm. 771 */ 772 u64 bw_ratio; 773 }; 774 775 #ifdef CONFIG_FAIR_GROUP_SCHED 776 /* An entity is a task if it doesn't "own" a runqueue */ 777 #define entity_is_task(se) (!se->my_q) 778 779 static inline void se_update_runnable(struct sched_entity *se) 780 { 781 if (!entity_is_task(se)) 782 se->runnable_weight = se->my_q->h_nr_running; 783 } 784 785 static inline long se_runnable(struct sched_entity *se) 786 { 787 if (entity_is_task(se)) 788 return !!se->on_rq; 789 else 790 return se->runnable_weight; 791 } 792 793 #else 794 #define entity_is_task(se) 1 795 796 static inline void se_update_runnable(struct sched_entity *se) {} 797 798 static inline long se_runnable(struct sched_entity *se) 799 { 800 return !!se->on_rq; 801 } 802 #endif 803 804 #ifdef CONFIG_SMP 805 /* 806 * XXX we want to get rid of these helpers and use the full load resolution. 807 */ 808 static inline long se_weight(struct sched_entity *se) 809 { 810 return scale_load_down(se->load.weight); 811 } 812 813 814 static inline bool sched_asym_prefer(int a, int b) 815 { 816 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 817 } 818 819 struct perf_domain { 820 struct em_perf_domain *em_pd; 821 struct perf_domain *next; 822 struct rcu_head rcu; 823 }; 824 825 /* Scheduling group status flags */ 826 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 827 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 828 829 /* 830 * We add the notion of a root-domain which will be used to define per-domain 831 * variables. Each exclusive cpuset essentially defines an island domain by 832 * fully partitioning the member CPUs from any other cpuset. Whenever a new 833 * exclusive cpuset is created, we also create and attach a new root-domain 834 * object. 835 * 836 */ 837 struct root_domain { 838 atomic_t refcount; 839 atomic_t rto_count; 840 struct rcu_head rcu; 841 cpumask_var_t span; 842 cpumask_var_t online; 843 844 /* 845 * Indicate pullable load on at least one CPU, e.g: 846 * - More than one runnable task 847 * - Running task is misfit 848 */ 849 int overload; 850 851 /* Indicate one or more cpus over-utilized (tipping point) */ 852 int overutilized; 853 854 /* 855 * The bit corresponding to a CPU gets set here if such CPU has more 856 * than one runnable -deadline task (as it is below for RT tasks). 857 */ 858 cpumask_var_t dlo_mask; 859 atomic_t dlo_count; 860 struct dl_bw dl_bw; 861 struct cpudl cpudl; 862 863 /* 864 * Indicate whether a root_domain's dl_bw has been checked or 865 * updated. It's monotonously increasing value. 866 * 867 * Also, some corner cases, like 'wrap around' is dangerous, but given 868 * that u64 is 'big enough'. So that shouldn't be a concern. 869 */ 870 u64 visit_gen; 871 872 #ifdef HAVE_RT_PUSH_IPI 873 /* 874 * For IPI pull requests, loop across the rto_mask. 875 */ 876 struct irq_work rto_push_work; 877 raw_spinlock_t rto_lock; 878 /* These are only updated and read within rto_lock */ 879 int rto_loop; 880 int rto_cpu; 881 /* These atomics are updated outside of a lock */ 882 atomic_t rto_loop_next; 883 atomic_t rto_loop_start; 884 #endif 885 /* 886 * The "RT overload" flag: it gets set if a CPU has more than 887 * one runnable RT task. 888 */ 889 cpumask_var_t rto_mask; 890 struct cpupri cpupri; 891 892 unsigned long max_cpu_capacity; 893 894 /* 895 * NULL-terminated list of performance domains intersecting with the 896 * CPUs of the rd. Protected by RCU. 897 */ 898 struct perf_domain __rcu *pd; 899 }; 900 901 extern void init_defrootdomain(void); 902 extern int sched_init_domains(const struct cpumask *cpu_map); 903 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 904 extern void sched_get_rd(struct root_domain *rd); 905 extern void sched_put_rd(struct root_domain *rd); 906 907 #ifdef HAVE_RT_PUSH_IPI 908 extern void rto_push_irq_work_func(struct irq_work *work); 909 #endif 910 #endif /* CONFIG_SMP */ 911 912 #ifdef CONFIG_UCLAMP_TASK 913 /* 914 * struct uclamp_bucket - Utilization clamp bucket 915 * @value: utilization clamp value for tasks on this clamp bucket 916 * @tasks: number of RUNNABLE tasks on this clamp bucket 917 * 918 * Keep track of how many tasks are RUNNABLE for a given utilization 919 * clamp value. 920 */ 921 struct uclamp_bucket { 922 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 923 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 924 }; 925 926 /* 927 * struct uclamp_rq - rq's utilization clamp 928 * @value: currently active clamp values for a rq 929 * @bucket: utilization clamp buckets affecting a rq 930 * 931 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 932 * A clamp value is affecting a rq when there is at least one task RUNNABLE 933 * (or actually running) with that value. 934 * 935 * There are up to UCLAMP_CNT possible different clamp values, currently there 936 * are only two: minimum utilization and maximum utilization. 937 * 938 * All utilization clamping values are MAX aggregated, since: 939 * - for util_min: we want to run the CPU at least at the max of the minimum 940 * utilization required by its currently RUNNABLE tasks. 941 * - for util_max: we want to allow the CPU to run up to the max of the 942 * maximum utilization allowed by its currently RUNNABLE tasks. 943 * 944 * Since on each system we expect only a limited number of different 945 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 946 * the metrics required to compute all the per-rq utilization clamp values. 947 */ 948 struct uclamp_rq { 949 unsigned int value; 950 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 951 }; 952 953 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 954 #endif /* CONFIG_UCLAMP_TASK */ 955 956 /* 957 * This is the main, per-CPU runqueue data structure. 958 * 959 * Locking rule: those places that want to lock multiple runqueues 960 * (such as the load balancing or the thread migration code), lock 961 * acquire operations must be ordered by ascending &runqueue. 962 */ 963 struct rq { 964 /* runqueue lock: */ 965 raw_spinlock_t __lock; 966 967 /* 968 * nr_running and cpu_load should be in the same cacheline because 969 * remote CPUs use both these fields when doing load calculation. 970 */ 971 unsigned int nr_running; 972 #ifdef CONFIG_NUMA_BALANCING 973 unsigned int nr_numa_running; 974 unsigned int nr_preferred_running; 975 unsigned int numa_migrate_on; 976 #endif 977 #ifdef CONFIG_NO_HZ_COMMON 978 #ifdef CONFIG_SMP 979 unsigned long last_blocked_load_update_tick; 980 unsigned int has_blocked_load; 981 call_single_data_t nohz_csd; 982 #endif /* CONFIG_SMP */ 983 unsigned int nohz_tick_stopped; 984 atomic_t nohz_flags; 985 #endif /* CONFIG_NO_HZ_COMMON */ 986 987 #ifdef CONFIG_SMP 988 unsigned int ttwu_pending; 989 #endif 990 u64 nr_switches; 991 992 #ifdef CONFIG_UCLAMP_TASK 993 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 994 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 995 unsigned int uclamp_flags; 996 #define UCLAMP_FLAG_IDLE 0x01 997 #endif 998 999 struct cfs_rq cfs; 1000 struct rt_rq rt; 1001 struct dl_rq dl; 1002 1003 #ifdef CONFIG_FAIR_GROUP_SCHED 1004 /* list of leaf cfs_rq on this CPU: */ 1005 struct list_head leaf_cfs_rq_list; 1006 struct list_head *tmp_alone_branch; 1007 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1008 1009 /* 1010 * This is part of a global counter where only the total sum 1011 * over all CPUs matters. A task can increase this counter on 1012 * one CPU and if it got migrated afterwards it may decrease 1013 * it on another CPU. Always updated under the runqueue lock: 1014 */ 1015 unsigned int nr_uninterruptible; 1016 1017 struct task_struct __rcu *curr; 1018 struct task_struct *idle; 1019 struct task_struct *stop; 1020 unsigned long next_balance; 1021 struct mm_struct *prev_mm; 1022 1023 unsigned int clock_update_flags; 1024 u64 clock; 1025 /* Ensure that all clocks are in the same cache line */ 1026 u64 clock_task ____cacheline_aligned; 1027 u64 clock_pelt; 1028 unsigned long lost_idle_time; 1029 u64 clock_pelt_idle; 1030 u64 clock_idle; 1031 #ifndef CONFIG_64BIT 1032 u64 clock_pelt_idle_copy; 1033 u64 clock_idle_copy; 1034 #endif 1035 1036 atomic_t nr_iowait; 1037 1038 #ifdef CONFIG_SCHED_DEBUG 1039 u64 last_seen_need_resched_ns; 1040 int ticks_without_resched; 1041 #endif 1042 1043 #ifdef CONFIG_MEMBARRIER 1044 int membarrier_state; 1045 #endif 1046 1047 #ifdef CONFIG_SMP 1048 struct root_domain *rd; 1049 struct sched_domain __rcu *sd; 1050 1051 unsigned long cpu_capacity; 1052 unsigned long cpu_capacity_orig; 1053 1054 struct callback_head *balance_callback; 1055 1056 unsigned char nohz_idle_balance; 1057 unsigned char idle_balance; 1058 1059 unsigned long misfit_task_load; 1060 1061 /* For active balancing */ 1062 int active_balance; 1063 int push_cpu; 1064 struct cpu_stop_work active_balance_work; 1065 1066 /* CPU of this runqueue: */ 1067 int cpu; 1068 int online; 1069 1070 struct list_head cfs_tasks; 1071 1072 struct sched_avg avg_rt; 1073 struct sched_avg avg_dl; 1074 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1075 struct sched_avg avg_irq; 1076 #endif 1077 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1078 struct sched_avg avg_thermal; 1079 #endif 1080 u64 idle_stamp; 1081 u64 avg_idle; 1082 1083 unsigned long wake_stamp; 1084 u64 wake_avg_idle; 1085 1086 /* This is used to determine avg_idle's max value */ 1087 u64 max_idle_balance_cost; 1088 1089 #ifdef CONFIG_HOTPLUG_CPU 1090 struct rcuwait hotplug_wait; 1091 #endif 1092 #endif /* CONFIG_SMP */ 1093 1094 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1095 u64 prev_irq_time; 1096 #endif 1097 #ifdef CONFIG_PARAVIRT 1098 u64 prev_steal_time; 1099 #endif 1100 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1101 u64 prev_steal_time_rq; 1102 #endif 1103 1104 /* calc_load related fields */ 1105 unsigned long calc_load_update; 1106 long calc_load_active; 1107 1108 #ifdef CONFIG_SCHED_HRTICK 1109 #ifdef CONFIG_SMP 1110 call_single_data_t hrtick_csd; 1111 #endif 1112 struct hrtimer hrtick_timer; 1113 ktime_t hrtick_time; 1114 #endif 1115 1116 #ifdef CONFIG_SCHEDSTATS 1117 /* latency stats */ 1118 struct sched_info rq_sched_info; 1119 unsigned long long rq_cpu_time; 1120 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1121 1122 /* sys_sched_yield() stats */ 1123 unsigned int yld_count; 1124 1125 /* schedule() stats */ 1126 unsigned int sched_count; 1127 unsigned int sched_goidle; 1128 1129 /* try_to_wake_up() stats */ 1130 unsigned int ttwu_count; 1131 unsigned int ttwu_local; 1132 #endif 1133 1134 #ifdef CONFIG_CPU_IDLE 1135 /* Must be inspected within a rcu lock section */ 1136 struct cpuidle_state *idle_state; 1137 #endif 1138 1139 #ifdef CONFIG_SMP 1140 unsigned int nr_pinned; 1141 #endif 1142 unsigned int push_busy; 1143 struct cpu_stop_work push_work; 1144 1145 #ifdef CONFIG_SCHED_CORE 1146 /* per rq */ 1147 struct rq *core; 1148 struct task_struct *core_pick; 1149 unsigned int core_enabled; 1150 unsigned int core_sched_seq; 1151 struct rb_root core_tree; 1152 1153 /* shared state -- careful with sched_core_cpu_deactivate() */ 1154 unsigned int core_task_seq; 1155 unsigned int core_pick_seq; 1156 unsigned long core_cookie; 1157 unsigned int core_forceidle_count; 1158 unsigned int core_forceidle_seq; 1159 unsigned int core_forceidle_occupation; 1160 u64 core_forceidle_start; 1161 #endif 1162 }; 1163 1164 #ifdef CONFIG_FAIR_GROUP_SCHED 1165 1166 /* CPU runqueue to which this cfs_rq is attached */ 1167 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1168 { 1169 return cfs_rq->rq; 1170 } 1171 1172 #else 1173 1174 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1175 { 1176 return container_of(cfs_rq, struct rq, cfs); 1177 } 1178 #endif 1179 1180 static inline int cpu_of(struct rq *rq) 1181 { 1182 #ifdef CONFIG_SMP 1183 return rq->cpu; 1184 #else 1185 return 0; 1186 #endif 1187 } 1188 1189 #define MDF_PUSH 0x01 1190 1191 static inline bool is_migration_disabled(struct task_struct *p) 1192 { 1193 #ifdef CONFIG_SMP 1194 return p->migration_disabled; 1195 #else 1196 return false; 1197 #endif 1198 } 1199 1200 struct sched_group; 1201 #ifdef CONFIG_SCHED_CORE 1202 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1203 1204 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1205 1206 static inline bool sched_core_enabled(struct rq *rq) 1207 { 1208 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1209 } 1210 1211 static inline bool sched_core_disabled(void) 1212 { 1213 return !static_branch_unlikely(&__sched_core_enabled); 1214 } 1215 1216 /* 1217 * Be careful with this function; not for general use. The return value isn't 1218 * stable unless you actually hold a relevant rq->__lock. 1219 */ 1220 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1221 { 1222 if (sched_core_enabled(rq)) 1223 return &rq->core->__lock; 1224 1225 return &rq->__lock; 1226 } 1227 1228 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1229 { 1230 if (rq->core_enabled) 1231 return &rq->core->__lock; 1232 1233 return &rq->__lock; 1234 } 1235 1236 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1237 1238 /* 1239 * Helpers to check if the CPU's core cookie matches with the task's cookie 1240 * when core scheduling is enabled. 1241 * A special case is that the task's cookie always matches with CPU's core 1242 * cookie if the CPU is in an idle core. 1243 */ 1244 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1245 { 1246 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1247 if (!sched_core_enabled(rq)) 1248 return true; 1249 1250 return rq->core->core_cookie == p->core_cookie; 1251 } 1252 1253 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1254 { 1255 bool idle_core = true; 1256 int cpu; 1257 1258 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1259 if (!sched_core_enabled(rq)) 1260 return true; 1261 1262 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1263 if (!available_idle_cpu(cpu)) { 1264 idle_core = false; 1265 break; 1266 } 1267 } 1268 1269 /* 1270 * A CPU in an idle core is always the best choice for tasks with 1271 * cookies. 1272 */ 1273 return idle_core || rq->core->core_cookie == p->core_cookie; 1274 } 1275 1276 static inline bool sched_group_cookie_match(struct rq *rq, 1277 struct task_struct *p, 1278 struct sched_group *group) 1279 { 1280 int cpu; 1281 1282 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1283 if (!sched_core_enabled(rq)) 1284 return true; 1285 1286 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1287 if (sched_core_cookie_match(rq, p)) 1288 return true; 1289 } 1290 return false; 1291 } 1292 1293 static inline bool sched_core_enqueued(struct task_struct *p) 1294 { 1295 return !RB_EMPTY_NODE(&p->core_node); 1296 } 1297 1298 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1299 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1300 1301 extern void sched_core_get(void); 1302 extern void sched_core_put(void); 1303 1304 #else /* !CONFIG_SCHED_CORE */ 1305 1306 static inline bool sched_core_enabled(struct rq *rq) 1307 { 1308 return false; 1309 } 1310 1311 static inline bool sched_core_disabled(void) 1312 { 1313 return true; 1314 } 1315 1316 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1317 { 1318 return &rq->__lock; 1319 } 1320 1321 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1322 { 1323 return &rq->__lock; 1324 } 1325 1326 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1327 { 1328 return true; 1329 } 1330 1331 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1332 { 1333 return true; 1334 } 1335 1336 static inline bool sched_group_cookie_match(struct rq *rq, 1337 struct task_struct *p, 1338 struct sched_group *group) 1339 { 1340 return true; 1341 } 1342 #endif /* CONFIG_SCHED_CORE */ 1343 1344 static inline void lockdep_assert_rq_held(struct rq *rq) 1345 { 1346 lockdep_assert_held(__rq_lockp(rq)); 1347 } 1348 1349 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1350 extern bool raw_spin_rq_trylock(struct rq *rq); 1351 extern void raw_spin_rq_unlock(struct rq *rq); 1352 1353 static inline void raw_spin_rq_lock(struct rq *rq) 1354 { 1355 raw_spin_rq_lock_nested(rq, 0); 1356 } 1357 1358 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1359 { 1360 local_irq_disable(); 1361 raw_spin_rq_lock(rq); 1362 } 1363 1364 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1365 { 1366 raw_spin_rq_unlock(rq); 1367 local_irq_enable(); 1368 } 1369 1370 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1371 { 1372 unsigned long flags; 1373 local_irq_save(flags); 1374 raw_spin_rq_lock(rq); 1375 return flags; 1376 } 1377 1378 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1379 { 1380 raw_spin_rq_unlock(rq); 1381 local_irq_restore(flags); 1382 } 1383 1384 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1385 do { \ 1386 flags = _raw_spin_rq_lock_irqsave(rq); \ 1387 } while (0) 1388 1389 #ifdef CONFIG_SCHED_SMT 1390 extern void __update_idle_core(struct rq *rq); 1391 1392 static inline void update_idle_core(struct rq *rq) 1393 { 1394 if (static_branch_unlikely(&sched_smt_present)) 1395 __update_idle_core(rq); 1396 } 1397 1398 #else 1399 static inline void update_idle_core(struct rq *rq) { } 1400 #endif 1401 1402 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1403 1404 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1405 #define this_rq() this_cpu_ptr(&runqueues) 1406 #define task_rq(p) cpu_rq(task_cpu(p)) 1407 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1408 #define raw_rq() raw_cpu_ptr(&runqueues) 1409 1410 #ifdef CONFIG_FAIR_GROUP_SCHED 1411 static inline struct task_struct *task_of(struct sched_entity *se) 1412 { 1413 SCHED_WARN_ON(!entity_is_task(se)); 1414 return container_of(se, struct task_struct, se); 1415 } 1416 1417 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1418 { 1419 return p->se.cfs_rq; 1420 } 1421 1422 /* runqueue on which this entity is (to be) queued */ 1423 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1424 { 1425 return se->cfs_rq; 1426 } 1427 1428 /* runqueue "owned" by this group */ 1429 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1430 { 1431 return grp->my_q; 1432 } 1433 1434 #else 1435 1436 static inline struct task_struct *task_of(struct sched_entity *se) 1437 { 1438 return container_of(se, struct task_struct, se); 1439 } 1440 1441 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1442 { 1443 return &task_rq(p)->cfs; 1444 } 1445 1446 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1447 { 1448 struct task_struct *p = task_of(se); 1449 struct rq *rq = task_rq(p); 1450 1451 return &rq->cfs; 1452 } 1453 1454 /* runqueue "owned" by this group */ 1455 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1456 { 1457 return NULL; 1458 } 1459 #endif 1460 1461 extern void update_rq_clock(struct rq *rq); 1462 1463 /* 1464 * rq::clock_update_flags bits 1465 * 1466 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1467 * call to __schedule(). This is an optimisation to avoid 1468 * neighbouring rq clock updates. 1469 * 1470 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1471 * in effect and calls to update_rq_clock() are being ignored. 1472 * 1473 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1474 * made to update_rq_clock() since the last time rq::lock was pinned. 1475 * 1476 * If inside of __schedule(), clock_update_flags will have been 1477 * shifted left (a left shift is a cheap operation for the fast path 1478 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1479 * 1480 * if (rq-clock_update_flags >= RQCF_UPDATED) 1481 * 1482 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1483 * one position though, because the next rq_unpin_lock() will shift it 1484 * back. 1485 */ 1486 #define RQCF_REQ_SKIP 0x01 1487 #define RQCF_ACT_SKIP 0x02 1488 #define RQCF_UPDATED 0x04 1489 1490 static inline void assert_clock_updated(struct rq *rq) 1491 { 1492 /* 1493 * The only reason for not seeing a clock update since the 1494 * last rq_pin_lock() is if we're currently skipping updates. 1495 */ 1496 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1497 } 1498 1499 static inline u64 rq_clock(struct rq *rq) 1500 { 1501 lockdep_assert_rq_held(rq); 1502 assert_clock_updated(rq); 1503 1504 return rq->clock; 1505 } 1506 1507 static inline u64 rq_clock_task(struct rq *rq) 1508 { 1509 lockdep_assert_rq_held(rq); 1510 assert_clock_updated(rq); 1511 1512 return rq->clock_task; 1513 } 1514 1515 /** 1516 * By default the decay is the default pelt decay period. 1517 * The decay shift can change the decay period in 1518 * multiples of 32. 1519 * Decay shift Decay period(ms) 1520 * 0 32 1521 * 1 64 1522 * 2 128 1523 * 3 256 1524 * 4 512 1525 */ 1526 extern int sched_thermal_decay_shift; 1527 1528 static inline u64 rq_clock_thermal(struct rq *rq) 1529 { 1530 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1531 } 1532 1533 static inline void rq_clock_skip_update(struct rq *rq) 1534 { 1535 lockdep_assert_rq_held(rq); 1536 rq->clock_update_flags |= RQCF_REQ_SKIP; 1537 } 1538 1539 /* 1540 * See rt task throttling, which is the only time a skip 1541 * request is canceled. 1542 */ 1543 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1544 { 1545 lockdep_assert_rq_held(rq); 1546 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1547 } 1548 1549 struct rq_flags { 1550 unsigned long flags; 1551 struct pin_cookie cookie; 1552 #ifdef CONFIG_SCHED_DEBUG 1553 /* 1554 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1555 * current pin context is stashed here in case it needs to be 1556 * restored in rq_repin_lock(). 1557 */ 1558 unsigned int clock_update_flags; 1559 #endif 1560 }; 1561 1562 extern struct callback_head balance_push_callback; 1563 1564 /* 1565 * Lockdep annotation that avoids accidental unlocks; it's like a 1566 * sticky/continuous lockdep_assert_held(). 1567 * 1568 * This avoids code that has access to 'struct rq *rq' (basically everything in 1569 * the scheduler) from accidentally unlocking the rq if they do not also have a 1570 * copy of the (on-stack) 'struct rq_flags rf'. 1571 * 1572 * Also see Documentation/locking/lockdep-design.rst. 1573 */ 1574 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1575 { 1576 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1577 1578 #ifdef CONFIG_SCHED_DEBUG 1579 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1580 rf->clock_update_flags = 0; 1581 #ifdef CONFIG_SMP 1582 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1583 #endif 1584 #endif 1585 } 1586 1587 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1588 { 1589 #ifdef CONFIG_SCHED_DEBUG 1590 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1591 rf->clock_update_flags = RQCF_UPDATED; 1592 #endif 1593 1594 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1595 } 1596 1597 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1598 { 1599 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1600 1601 #ifdef CONFIG_SCHED_DEBUG 1602 /* 1603 * Restore the value we stashed in @rf for this pin context. 1604 */ 1605 rq->clock_update_flags |= rf->clock_update_flags; 1606 #endif 1607 } 1608 1609 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1610 __acquires(rq->lock); 1611 1612 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1613 __acquires(p->pi_lock) 1614 __acquires(rq->lock); 1615 1616 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1617 __releases(rq->lock) 1618 { 1619 rq_unpin_lock(rq, rf); 1620 raw_spin_rq_unlock(rq); 1621 } 1622 1623 static inline void 1624 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1625 __releases(rq->lock) 1626 __releases(p->pi_lock) 1627 { 1628 rq_unpin_lock(rq, rf); 1629 raw_spin_rq_unlock(rq); 1630 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1631 } 1632 1633 static inline void 1634 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1635 __acquires(rq->lock) 1636 { 1637 raw_spin_rq_lock_irqsave(rq, rf->flags); 1638 rq_pin_lock(rq, rf); 1639 } 1640 1641 static inline void 1642 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1643 __acquires(rq->lock) 1644 { 1645 raw_spin_rq_lock_irq(rq); 1646 rq_pin_lock(rq, rf); 1647 } 1648 1649 static inline void 1650 rq_lock(struct rq *rq, struct rq_flags *rf) 1651 __acquires(rq->lock) 1652 { 1653 raw_spin_rq_lock(rq); 1654 rq_pin_lock(rq, rf); 1655 } 1656 1657 static inline void 1658 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1659 __releases(rq->lock) 1660 { 1661 rq_unpin_lock(rq, rf); 1662 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1663 } 1664 1665 static inline void 1666 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1667 __releases(rq->lock) 1668 { 1669 rq_unpin_lock(rq, rf); 1670 raw_spin_rq_unlock_irq(rq); 1671 } 1672 1673 static inline void 1674 rq_unlock(struct rq *rq, struct rq_flags *rf) 1675 __releases(rq->lock) 1676 { 1677 rq_unpin_lock(rq, rf); 1678 raw_spin_rq_unlock(rq); 1679 } 1680 1681 static inline struct rq * 1682 this_rq_lock_irq(struct rq_flags *rf) 1683 __acquires(rq->lock) 1684 { 1685 struct rq *rq; 1686 1687 local_irq_disable(); 1688 rq = this_rq(); 1689 rq_lock(rq, rf); 1690 return rq; 1691 } 1692 1693 #ifdef CONFIG_NUMA 1694 enum numa_topology_type { 1695 NUMA_DIRECT, 1696 NUMA_GLUELESS_MESH, 1697 NUMA_BACKPLANE, 1698 }; 1699 extern enum numa_topology_type sched_numa_topology_type; 1700 extern int sched_max_numa_distance; 1701 extern bool find_numa_distance(int distance); 1702 extern void sched_init_numa(int offline_node); 1703 extern void sched_update_numa(int cpu, bool online); 1704 extern void sched_domains_numa_masks_set(unsigned int cpu); 1705 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1706 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1707 #else 1708 static inline void sched_init_numa(int offline_node) { } 1709 static inline void sched_update_numa(int cpu, bool online) { } 1710 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1711 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1712 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1713 { 1714 return nr_cpu_ids; 1715 } 1716 #endif 1717 1718 #ifdef CONFIG_NUMA_BALANCING 1719 /* The regions in numa_faults array from task_struct */ 1720 enum numa_faults_stats { 1721 NUMA_MEM = 0, 1722 NUMA_CPU, 1723 NUMA_MEMBUF, 1724 NUMA_CPUBUF 1725 }; 1726 extern void sched_setnuma(struct task_struct *p, int node); 1727 extern int migrate_task_to(struct task_struct *p, int cpu); 1728 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1729 int cpu, int scpu); 1730 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1731 #else 1732 static inline void 1733 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1734 { 1735 } 1736 #endif /* CONFIG_NUMA_BALANCING */ 1737 1738 #ifdef CONFIG_SMP 1739 1740 static inline void 1741 queue_balance_callback(struct rq *rq, 1742 struct callback_head *head, 1743 void (*func)(struct rq *rq)) 1744 { 1745 lockdep_assert_rq_held(rq); 1746 1747 /* 1748 * Don't (re)queue an already queued item; nor queue anything when 1749 * balance_push() is active, see the comment with 1750 * balance_push_callback. 1751 */ 1752 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1753 return; 1754 1755 head->func = (void (*)(struct callback_head *))func; 1756 head->next = rq->balance_callback; 1757 rq->balance_callback = head; 1758 } 1759 1760 #define rcu_dereference_check_sched_domain(p) \ 1761 rcu_dereference_check((p), \ 1762 lockdep_is_held(&sched_domains_mutex)) 1763 1764 /* 1765 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1766 * See destroy_sched_domains: call_rcu for details. 1767 * 1768 * The domain tree of any CPU may only be accessed from within 1769 * preempt-disabled sections. 1770 */ 1771 #define for_each_domain(cpu, __sd) \ 1772 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1773 __sd; __sd = __sd->parent) 1774 1775 /** 1776 * highest_flag_domain - Return highest sched_domain containing flag. 1777 * @cpu: The CPU whose highest level of sched domain is to 1778 * be returned. 1779 * @flag: The flag to check for the highest sched_domain 1780 * for the given CPU. 1781 * 1782 * Returns the highest sched_domain of a CPU which contains the given flag. 1783 */ 1784 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1785 { 1786 struct sched_domain *sd, *hsd = NULL; 1787 1788 for_each_domain(cpu, sd) { 1789 if (!(sd->flags & flag)) 1790 break; 1791 hsd = sd; 1792 } 1793 1794 return hsd; 1795 } 1796 1797 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1798 { 1799 struct sched_domain *sd; 1800 1801 for_each_domain(cpu, sd) { 1802 if (sd->flags & flag) 1803 break; 1804 } 1805 1806 return sd; 1807 } 1808 1809 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1810 DECLARE_PER_CPU(int, sd_llc_size); 1811 DECLARE_PER_CPU(int, sd_llc_id); 1812 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1813 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1814 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1815 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1816 extern struct static_key_false sched_asym_cpucapacity; 1817 1818 struct sched_group_capacity { 1819 atomic_t ref; 1820 /* 1821 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1822 * for a single CPU. 1823 */ 1824 unsigned long capacity; 1825 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1826 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1827 unsigned long next_update; 1828 int imbalance; /* XXX unrelated to capacity but shared group state */ 1829 1830 #ifdef CONFIG_SCHED_DEBUG 1831 int id; 1832 #endif 1833 1834 unsigned long cpumask[]; /* Balance mask */ 1835 }; 1836 1837 struct sched_group { 1838 struct sched_group *next; /* Must be a circular list */ 1839 atomic_t ref; 1840 1841 unsigned int group_weight; 1842 struct sched_group_capacity *sgc; 1843 int asym_prefer_cpu; /* CPU of highest priority in group */ 1844 int flags; 1845 1846 /* 1847 * The CPUs this group covers. 1848 * 1849 * NOTE: this field is variable length. (Allocated dynamically 1850 * by attaching extra space to the end of the structure, 1851 * depending on how many CPUs the kernel has booted up with) 1852 */ 1853 unsigned long cpumask[]; 1854 }; 1855 1856 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1857 { 1858 return to_cpumask(sg->cpumask); 1859 } 1860 1861 /* 1862 * See build_balance_mask(). 1863 */ 1864 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1865 { 1866 return to_cpumask(sg->sgc->cpumask); 1867 } 1868 1869 extern int group_balance_cpu(struct sched_group *sg); 1870 1871 #ifdef CONFIG_SCHED_DEBUG 1872 void update_sched_domain_debugfs(void); 1873 void dirty_sched_domain_sysctl(int cpu); 1874 #else 1875 static inline void update_sched_domain_debugfs(void) 1876 { 1877 } 1878 static inline void dirty_sched_domain_sysctl(int cpu) 1879 { 1880 } 1881 #endif 1882 1883 extern int sched_update_scaling(void); 1884 #endif /* CONFIG_SMP */ 1885 1886 #include "stats.h" 1887 1888 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1889 1890 extern void __sched_core_account_forceidle(struct rq *rq); 1891 1892 static inline void sched_core_account_forceidle(struct rq *rq) 1893 { 1894 if (schedstat_enabled()) 1895 __sched_core_account_forceidle(rq); 1896 } 1897 1898 extern void __sched_core_tick(struct rq *rq); 1899 1900 static inline void sched_core_tick(struct rq *rq) 1901 { 1902 if (sched_core_enabled(rq) && schedstat_enabled()) 1903 __sched_core_tick(rq); 1904 } 1905 1906 #else 1907 1908 static inline void sched_core_account_forceidle(struct rq *rq) {} 1909 1910 static inline void sched_core_tick(struct rq *rq) {} 1911 1912 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1913 1914 #ifdef CONFIG_CGROUP_SCHED 1915 1916 /* 1917 * Return the group to which this tasks belongs. 1918 * 1919 * We cannot use task_css() and friends because the cgroup subsystem 1920 * changes that value before the cgroup_subsys::attach() method is called, 1921 * therefore we cannot pin it and might observe the wrong value. 1922 * 1923 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1924 * core changes this before calling sched_move_task(). 1925 * 1926 * Instead we use a 'copy' which is updated from sched_move_task() while 1927 * holding both task_struct::pi_lock and rq::lock. 1928 */ 1929 static inline struct task_group *task_group(struct task_struct *p) 1930 { 1931 return p->sched_task_group; 1932 } 1933 1934 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1935 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1936 { 1937 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1938 struct task_group *tg = task_group(p); 1939 #endif 1940 1941 #ifdef CONFIG_FAIR_GROUP_SCHED 1942 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1943 p->se.cfs_rq = tg->cfs_rq[cpu]; 1944 p->se.parent = tg->se[cpu]; 1945 #endif 1946 1947 #ifdef CONFIG_RT_GROUP_SCHED 1948 p->rt.rt_rq = tg->rt_rq[cpu]; 1949 p->rt.parent = tg->rt_se[cpu]; 1950 #endif 1951 } 1952 1953 #else /* CONFIG_CGROUP_SCHED */ 1954 1955 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1956 static inline struct task_group *task_group(struct task_struct *p) 1957 { 1958 return NULL; 1959 } 1960 1961 #endif /* CONFIG_CGROUP_SCHED */ 1962 1963 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1964 { 1965 set_task_rq(p, cpu); 1966 #ifdef CONFIG_SMP 1967 /* 1968 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1969 * successfully executed on another CPU. We must ensure that updates of 1970 * per-task data have been completed by this moment. 1971 */ 1972 smp_wmb(); 1973 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1974 p->wake_cpu = cpu; 1975 #endif 1976 } 1977 1978 /* 1979 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1980 */ 1981 #ifdef CONFIG_SCHED_DEBUG 1982 # define const_debug __read_mostly 1983 #else 1984 # define const_debug const 1985 #endif 1986 1987 #define SCHED_FEAT(name, enabled) \ 1988 __SCHED_FEAT_##name , 1989 1990 enum { 1991 #include "features.h" 1992 __SCHED_FEAT_NR, 1993 }; 1994 1995 #undef SCHED_FEAT 1996 1997 #ifdef CONFIG_SCHED_DEBUG 1998 1999 /* 2000 * To support run-time toggling of sched features, all the translation units 2001 * (but core.c) reference the sysctl_sched_features defined in core.c. 2002 */ 2003 extern const_debug unsigned int sysctl_sched_features; 2004 2005 #ifdef CONFIG_JUMP_LABEL 2006 #define SCHED_FEAT(name, enabled) \ 2007 static __always_inline bool static_branch_##name(struct static_key *key) \ 2008 { \ 2009 return static_key_##enabled(key); \ 2010 } 2011 2012 #include "features.h" 2013 #undef SCHED_FEAT 2014 2015 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2016 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2017 2018 #else /* !CONFIG_JUMP_LABEL */ 2019 2020 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2021 2022 #endif /* CONFIG_JUMP_LABEL */ 2023 2024 #else /* !SCHED_DEBUG */ 2025 2026 /* 2027 * Each translation unit has its own copy of sysctl_sched_features to allow 2028 * constants propagation at compile time and compiler optimization based on 2029 * features default. 2030 */ 2031 #define SCHED_FEAT(name, enabled) \ 2032 (1UL << __SCHED_FEAT_##name) * enabled | 2033 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2034 #include "features.h" 2035 0; 2036 #undef SCHED_FEAT 2037 2038 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2039 2040 #endif /* SCHED_DEBUG */ 2041 2042 extern struct static_key_false sched_numa_balancing; 2043 extern struct static_key_false sched_schedstats; 2044 2045 static inline u64 global_rt_period(void) 2046 { 2047 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2048 } 2049 2050 static inline u64 global_rt_runtime(void) 2051 { 2052 if (sysctl_sched_rt_runtime < 0) 2053 return RUNTIME_INF; 2054 2055 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2056 } 2057 2058 static inline int task_current(struct rq *rq, struct task_struct *p) 2059 { 2060 return rq->curr == p; 2061 } 2062 2063 static inline int task_running(struct rq *rq, struct task_struct *p) 2064 { 2065 #ifdef CONFIG_SMP 2066 return p->on_cpu; 2067 #else 2068 return task_current(rq, p); 2069 #endif 2070 } 2071 2072 static inline int task_on_rq_queued(struct task_struct *p) 2073 { 2074 return p->on_rq == TASK_ON_RQ_QUEUED; 2075 } 2076 2077 static inline int task_on_rq_migrating(struct task_struct *p) 2078 { 2079 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2080 } 2081 2082 /* Wake flags. The first three directly map to some SD flag value */ 2083 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2084 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2085 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2086 2087 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2088 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2089 2090 #ifdef CONFIG_SMP 2091 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2092 static_assert(WF_FORK == SD_BALANCE_FORK); 2093 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2094 #endif 2095 2096 /* 2097 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2098 * of tasks with abnormal "nice" values across CPUs the contribution that 2099 * each task makes to its run queue's load is weighted according to its 2100 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2101 * scaled version of the new time slice allocation that they receive on time 2102 * slice expiry etc. 2103 */ 2104 2105 #define WEIGHT_IDLEPRIO 3 2106 #define WMULT_IDLEPRIO 1431655765 2107 2108 extern const int sched_prio_to_weight[40]; 2109 extern const u32 sched_prio_to_wmult[40]; 2110 2111 /* 2112 * {de,en}queue flags: 2113 * 2114 * DEQUEUE_SLEEP - task is no longer runnable 2115 * ENQUEUE_WAKEUP - task just became runnable 2116 * 2117 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2118 * are in a known state which allows modification. Such pairs 2119 * should preserve as much state as possible. 2120 * 2121 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2122 * in the runqueue. 2123 * 2124 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2125 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2126 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2127 * 2128 */ 2129 2130 #define DEQUEUE_SLEEP 0x01 2131 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2132 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2133 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2134 2135 #define ENQUEUE_WAKEUP 0x01 2136 #define ENQUEUE_RESTORE 0x02 2137 #define ENQUEUE_MOVE 0x04 2138 #define ENQUEUE_NOCLOCK 0x08 2139 2140 #define ENQUEUE_HEAD 0x10 2141 #define ENQUEUE_REPLENISH 0x20 2142 #ifdef CONFIG_SMP 2143 #define ENQUEUE_MIGRATED 0x40 2144 #else 2145 #define ENQUEUE_MIGRATED 0x00 2146 #endif 2147 2148 #define RETRY_TASK ((void *)-1UL) 2149 2150 struct sched_class { 2151 2152 #ifdef CONFIG_UCLAMP_TASK 2153 int uclamp_enabled; 2154 #endif 2155 2156 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2157 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2158 void (*yield_task) (struct rq *rq); 2159 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2160 2161 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2162 2163 struct task_struct *(*pick_next_task)(struct rq *rq); 2164 2165 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2166 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2167 2168 #ifdef CONFIG_SMP 2169 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2170 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2171 2172 struct task_struct * (*pick_task)(struct rq *rq); 2173 2174 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2175 2176 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2177 2178 void (*set_cpus_allowed)(struct task_struct *p, 2179 const struct cpumask *newmask, 2180 u32 flags); 2181 2182 void (*rq_online)(struct rq *rq); 2183 void (*rq_offline)(struct rq *rq); 2184 2185 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2186 #endif 2187 2188 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2189 void (*task_fork)(struct task_struct *p); 2190 void (*task_dead)(struct task_struct *p); 2191 2192 /* 2193 * The switched_from() call is allowed to drop rq->lock, therefore we 2194 * cannot assume the switched_from/switched_to pair is serialized by 2195 * rq->lock. They are however serialized by p->pi_lock. 2196 */ 2197 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2198 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2199 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2200 int oldprio); 2201 2202 unsigned int (*get_rr_interval)(struct rq *rq, 2203 struct task_struct *task); 2204 2205 void (*update_curr)(struct rq *rq); 2206 2207 #define TASK_SET_GROUP 0 2208 #define TASK_MOVE_GROUP 1 2209 2210 #ifdef CONFIG_FAIR_GROUP_SCHED 2211 void (*task_change_group)(struct task_struct *p, int type); 2212 #endif 2213 }; 2214 2215 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2216 { 2217 WARN_ON_ONCE(rq->curr != prev); 2218 prev->sched_class->put_prev_task(rq, prev); 2219 } 2220 2221 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2222 { 2223 next->sched_class->set_next_task(rq, next, false); 2224 } 2225 2226 2227 /* 2228 * Helper to define a sched_class instance; each one is placed in a separate 2229 * section which is ordered by the linker script: 2230 * 2231 * include/asm-generic/vmlinux.lds.h 2232 * 2233 * *CAREFUL* they are laid out in *REVERSE* order!!! 2234 * 2235 * Also enforce alignment on the instance, not the type, to guarantee layout. 2236 */ 2237 #define DEFINE_SCHED_CLASS(name) \ 2238 const struct sched_class name##_sched_class \ 2239 __aligned(__alignof__(struct sched_class)) \ 2240 __section("__" #name "_sched_class") 2241 2242 /* Defined in include/asm-generic/vmlinux.lds.h */ 2243 extern struct sched_class __sched_class_highest[]; 2244 extern struct sched_class __sched_class_lowest[]; 2245 2246 #define for_class_range(class, _from, _to) \ 2247 for (class = (_from); class < (_to); class++) 2248 2249 #define for_each_class(class) \ 2250 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2251 2252 #define sched_class_above(_a, _b) ((_a) < (_b)) 2253 2254 extern const struct sched_class stop_sched_class; 2255 extern const struct sched_class dl_sched_class; 2256 extern const struct sched_class rt_sched_class; 2257 extern const struct sched_class fair_sched_class; 2258 extern const struct sched_class idle_sched_class; 2259 2260 static inline bool sched_stop_runnable(struct rq *rq) 2261 { 2262 return rq->stop && task_on_rq_queued(rq->stop); 2263 } 2264 2265 static inline bool sched_dl_runnable(struct rq *rq) 2266 { 2267 return rq->dl.dl_nr_running > 0; 2268 } 2269 2270 static inline bool sched_rt_runnable(struct rq *rq) 2271 { 2272 return rq->rt.rt_queued > 0; 2273 } 2274 2275 static inline bool sched_fair_runnable(struct rq *rq) 2276 { 2277 return rq->cfs.nr_running > 0; 2278 } 2279 2280 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2281 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2282 2283 #define SCA_CHECK 0x01 2284 #define SCA_MIGRATE_DISABLE 0x02 2285 #define SCA_MIGRATE_ENABLE 0x04 2286 #define SCA_USER 0x08 2287 2288 #ifdef CONFIG_SMP 2289 2290 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2291 2292 extern void trigger_load_balance(struct rq *rq); 2293 2294 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2295 2296 static inline struct task_struct *get_push_task(struct rq *rq) 2297 { 2298 struct task_struct *p = rq->curr; 2299 2300 lockdep_assert_rq_held(rq); 2301 2302 if (rq->push_busy) 2303 return NULL; 2304 2305 if (p->nr_cpus_allowed == 1) 2306 return NULL; 2307 2308 if (p->migration_disabled) 2309 return NULL; 2310 2311 rq->push_busy = true; 2312 return get_task_struct(p); 2313 } 2314 2315 extern int push_cpu_stop(void *arg); 2316 2317 #endif 2318 2319 #ifdef CONFIG_CPU_IDLE 2320 static inline void idle_set_state(struct rq *rq, 2321 struct cpuidle_state *idle_state) 2322 { 2323 rq->idle_state = idle_state; 2324 } 2325 2326 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2327 { 2328 SCHED_WARN_ON(!rcu_read_lock_held()); 2329 2330 return rq->idle_state; 2331 } 2332 #else 2333 static inline void idle_set_state(struct rq *rq, 2334 struct cpuidle_state *idle_state) 2335 { 2336 } 2337 2338 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2339 { 2340 return NULL; 2341 } 2342 #endif 2343 2344 extern void schedule_idle(void); 2345 2346 extern void sysrq_sched_debug_show(void); 2347 extern void sched_init_granularity(void); 2348 extern void update_max_interval(void); 2349 2350 extern void init_sched_dl_class(void); 2351 extern void init_sched_rt_class(void); 2352 extern void init_sched_fair_class(void); 2353 2354 extern void reweight_task(struct task_struct *p, int prio); 2355 2356 extern void resched_curr(struct rq *rq); 2357 extern void resched_cpu(int cpu); 2358 2359 extern struct rt_bandwidth def_rt_bandwidth; 2360 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2361 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2362 2363 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2364 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2365 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2366 2367 #define BW_SHIFT 20 2368 #define BW_UNIT (1 << BW_SHIFT) 2369 #define RATIO_SHIFT 8 2370 #define MAX_BW_BITS (64 - BW_SHIFT) 2371 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2372 unsigned long to_ratio(u64 period, u64 runtime); 2373 2374 extern void init_entity_runnable_average(struct sched_entity *se); 2375 extern void post_init_entity_util_avg(struct task_struct *p); 2376 2377 #ifdef CONFIG_NO_HZ_FULL 2378 extern bool sched_can_stop_tick(struct rq *rq); 2379 extern int __init sched_tick_offload_init(void); 2380 2381 /* 2382 * Tick may be needed by tasks in the runqueue depending on their policy and 2383 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2384 * nohz mode if necessary. 2385 */ 2386 static inline void sched_update_tick_dependency(struct rq *rq) 2387 { 2388 int cpu = cpu_of(rq); 2389 2390 if (!tick_nohz_full_cpu(cpu)) 2391 return; 2392 2393 if (sched_can_stop_tick(rq)) 2394 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2395 else 2396 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2397 } 2398 #else 2399 static inline int sched_tick_offload_init(void) { return 0; } 2400 static inline void sched_update_tick_dependency(struct rq *rq) { } 2401 #endif 2402 2403 static inline void add_nr_running(struct rq *rq, unsigned count) 2404 { 2405 unsigned prev_nr = rq->nr_running; 2406 2407 rq->nr_running = prev_nr + count; 2408 if (trace_sched_update_nr_running_tp_enabled()) { 2409 call_trace_sched_update_nr_running(rq, count); 2410 } 2411 2412 #ifdef CONFIG_SMP 2413 if (prev_nr < 2 && rq->nr_running >= 2) { 2414 if (!READ_ONCE(rq->rd->overload)) 2415 WRITE_ONCE(rq->rd->overload, 1); 2416 } 2417 #endif 2418 2419 sched_update_tick_dependency(rq); 2420 } 2421 2422 static inline void sub_nr_running(struct rq *rq, unsigned count) 2423 { 2424 rq->nr_running -= count; 2425 if (trace_sched_update_nr_running_tp_enabled()) { 2426 call_trace_sched_update_nr_running(rq, -count); 2427 } 2428 2429 /* Check if we still need preemption */ 2430 sched_update_tick_dependency(rq); 2431 } 2432 2433 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2434 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2435 2436 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2437 2438 extern const_debug unsigned int sysctl_sched_nr_migrate; 2439 extern const_debug unsigned int sysctl_sched_migration_cost; 2440 2441 #ifdef CONFIG_SCHED_DEBUG 2442 extern unsigned int sysctl_sched_latency; 2443 extern unsigned int sysctl_sched_min_granularity; 2444 extern unsigned int sysctl_sched_idle_min_granularity; 2445 extern unsigned int sysctl_sched_wakeup_granularity; 2446 extern int sysctl_resched_latency_warn_ms; 2447 extern int sysctl_resched_latency_warn_once; 2448 2449 extern unsigned int sysctl_sched_tunable_scaling; 2450 2451 extern unsigned int sysctl_numa_balancing_scan_delay; 2452 extern unsigned int sysctl_numa_balancing_scan_period_min; 2453 extern unsigned int sysctl_numa_balancing_scan_period_max; 2454 extern unsigned int sysctl_numa_balancing_scan_size; 2455 #endif 2456 2457 #ifdef CONFIG_SCHED_HRTICK 2458 2459 /* 2460 * Use hrtick when: 2461 * - enabled by features 2462 * - hrtimer is actually high res 2463 */ 2464 static inline int hrtick_enabled(struct rq *rq) 2465 { 2466 if (!cpu_active(cpu_of(rq))) 2467 return 0; 2468 return hrtimer_is_hres_active(&rq->hrtick_timer); 2469 } 2470 2471 static inline int hrtick_enabled_fair(struct rq *rq) 2472 { 2473 if (!sched_feat(HRTICK)) 2474 return 0; 2475 return hrtick_enabled(rq); 2476 } 2477 2478 static inline int hrtick_enabled_dl(struct rq *rq) 2479 { 2480 if (!sched_feat(HRTICK_DL)) 2481 return 0; 2482 return hrtick_enabled(rq); 2483 } 2484 2485 void hrtick_start(struct rq *rq, u64 delay); 2486 2487 #else 2488 2489 static inline int hrtick_enabled_fair(struct rq *rq) 2490 { 2491 return 0; 2492 } 2493 2494 static inline int hrtick_enabled_dl(struct rq *rq) 2495 { 2496 return 0; 2497 } 2498 2499 static inline int hrtick_enabled(struct rq *rq) 2500 { 2501 return 0; 2502 } 2503 2504 #endif /* CONFIG_SCHED_HRTICK */ 2505 2506 #ifndef arch_scale_freq_tick 2507 static __always_inline 2508 void arch_scale_freq_tick(void) 2509 { 2510 } 2511 #endif 2512 2513 #ifndef arch_scale_freq_capacity 2514 /** 2515 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2516 * @cpu: the CPU in question. 2517 * 2518 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2519 * 2520 * f_curr 2521 * ------ * SCHED_CAPACITY_SCALE 2522 * f_max 2523 */ 2524 static __always_inline 2525 unsigned long arch_scale_freq_capacity(int cpu) 2526 { 2527 return SCHED_CAPACITY_SCALE; 2528 } 2529 #endif 2530 2531 #ifdef CONFIG_SCHED_DEBUG 2532 /* 2533 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2534 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2535 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2536 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2537 */ 2538 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2539 { 2540 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2541 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2542 #ifdef CONFIG_SMP 2543 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2544 #endif 2545 } 2546 #else 2547 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2548 #endif 2549 2550 #ifdef CONFIG_SMP 2551 2552 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2553 { 2554 #ifdef CONFIG_SCHED_CORE 2555 /* 2556 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2557 * order by core-id first and cpu-id second. 2558 * 2559 * Notably: 2560 * 2561 * double_rq_lock(0,3); will take core-0, core-1 lock 2562 * double_rq_lock(1,2); will take core-1, core-0 lock 2563 * 2564 * when only cpu-id is considered. 2565 */ 2566 if (rq1->core->cpu < rq2->core->cpu) 2567 return true; 2568 if (rq1->core->cpu > rq2->core->cpu) 2569 return false; 2570 2571 /* 2572 * __sched_core_flip() relies on SMT having cpu-id lock order. 2573 */ 2574 #endif 2575 return rq1->cpu < rq2->cpu; 2576 } 2577 2578 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2579 2580 #ifdef CONFIG_PREEMPTION 2581 2582 /* 2583 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2584 * way at the expense of forcing extra atomic operations in all 2585 * invocations. This assures that the double_lock is acquired using the 2586 * same underlying policy as the spinlock_t on this architecture, which 2587 * reduces latency compared to the unfair variant below. However, it 2588 * also adds more overhead and therefore may reduce throughput. 2589 */ 2590 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2591 __releases(this_rq->lock) 2592 __acquires(busiest->lock) 2593 __acquires(this_rq->lock) 2594 { 2595 raw_spin_rq_unlock(this_rq); 2596 double_rq_lock(this_rq, busiest); 2597 2598 return 1; 2599 } 2600 2601 #else 2602 /* 2603 * Unfair double_lock_balance: Optimizes throughput at the expense of 2604 * latency by eliminating extra atomic operations when the locks are 2605 * already in proper order on entry. This favors lower CPU-ids and will 2606 * grant the double lock to lower CPUs over higher ids under contention, 2607 * regardless of entry order into the function. 2608 */ 2609 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2610 __releases(this_rq->lock) 2611 __acquires(busiest->lock) 2612 __acquires(this_rq->lock) 2613 { 2614 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2615 likely(raw_spin_rq_trylock(busiest))) { 2616 double_rq_clock_clear_update(this_rq, busiest); 2617 return 0; 2618 } 2619 2620 if (rq_order_less(this_rq, busiest)) { 2621 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2622 double_rq_clock_clear_update(this_rq, busiest); 2623 return 0; 2624 } 2625 2626 raw_spin_rq_unlock(this_rq); 2627 double_rq_lock(this_rq, busiest); 2628 2629 return 1; 2630 } 2631 2632 #endif /* CONFIG_PREEMPTION */ 2633 2634 /* 2635 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2636 */ 2637 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2638 { 2639 lockdep_assert_irqs_disabled(); 2640 2641 return _double_lock_balance(this_rq, busiest); 2642 } 2643 2644 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2645 __releases(busiest->lock) 2646 { 2647 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2648 raw_spin_rq_unlock(busiest); 2649 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2650 } 2651 2652 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2653 { 2654 if (l1 > l2) 2655 swap(l1, l2); 2656 2657 spin_lock(l1); 2658 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2659 } 2660 2661 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2662 { 2663 if (l1 > l2) 2664 swap(l1, l2); 2665 2666 spin_lock_irq(l1); 2667 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2668 } 2669 2670 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2671 { 2672 if (l1 > l2) 2673 swap(l1, l2); 2674 2675 raw_spin_lock(l1); 2676 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2677 } 2678 2679 /* 2680 * double_rq_unlock - safely unlock two runqueues 2681 * 2682 * Note this does not restore interrupts like task_rq_unlock, 2683 * you need to do so manually after calling. 2684 */ 2685 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2686 __releases(rq1->lock) 2687 __releases(rq2->lock) 2688 { 2689 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2690 raw_spin_rq_unlock(rq2); 2691 else 2692 __release(rq2->lock); 2693 raw_spin_rq_unlock(rq1); 2694 } 2695 2696 extern void set_rq_online (struct rq *rq); 2697 extern void set_rq_offline(struct rq *rq); 2698 extern bool sched_smp_initialized; 2699 2700 #else /* CONFIG_SMP */ 2701 2702 /* 2703 * double_rq_lock - safely lock two runqueues 2704 * 2705 * Note this does not disable interrupts like task_rq_lock, 2706 * you need to do so manually before calling. 2707 */ 2708 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2709 __acquires(rq1->lock) 2710 __acquires(rq2->lock) 2711 { 2712 BUG_ON(!irqs_disabled()); 2713 BUG_ON(rq1 != rq2); 2714 raw_spin_rq_lock(rq1); 2715 __acquire(rq2->lock); /* Fake it out ;) */ 2716 double_rq_clock_clear_update(rq1, rq2); 2717 } 2718 2719 /* 2720 * double_rq_unlock - safely unlock two runqueues 2721 * 2722 * Note this does not restore interrupts like task_rq_unlock, 2723 * you need to do so manually after calling. 2724 */ 2725 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2726 __releases(rq1->lock) 2727 __releases(rq2->lock) 2728 { 2729 BUG_ON(rq1 != rq2); 2730 raw_spin_rq_unlock(rq1); 2731 __release(rq2->lock); 2732 } 2733 2734 #endif 2735 2736 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2737 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2738 2739 #ifdef CONFIG_SCHED_DEBUG 2740 extern bool sched_debug_verbose; 2741 2742 extern void print_cfs_stats(struct seq_file *m, int cpu); 2743 extern void print_rt_stats(struct seq_file *m, int cpu); 2744 extern void print_dl_stats(struct seq_file *m, int cpu); 2745 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2746 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2747 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2748 2749 extern void resched_latency_warn(int cpu, u64 latency); 2750 #ifdef CONFIG_NUMA_BALANCING 2751 extern void 2752 show_numa_stats(struct task_struct *p, struct seq_file *m); 2753 extern void 2754 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2755 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2756 #endif /* CONFIG_NUMA_BALANCING */ 2757 #else 2758 static inline void resched_latency_warn(int cpu, u64 latency) {} 2759 #endif /* CONFIG_SCHED_DEBUG */ 2760 2761 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2762 extern void init_rt_rq(struct rt_rq *rt_rq); 2763 extern void init_dl_rq(struct dl_rq *dl_rq); 2764 2765 extern void cfs_bandwidth_usage_inc(void); 2766 extern void cfs_bandwidth_usage_dec(void); 2767 2768 #ifdef CONFIG_NO_HZ_COMMON 2769 #define NOHZ_BALANCE_KICK_BIT 0 2770 #define NOHZ_STATS_KICK_BIT 1 2771 #define NOHZ_NEWILB_KICK_BIT 2 2772 #define NOHZ_NEXT_KICK_BIT 3 2773 2774 /* Run rebalance_domains() */ 2775 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2776 /* Update blocked load */ 2777 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2778 /* Update blocked load when entering idle */ 2779 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2780 /* Update nohz.next_balance */ 2781 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2782 2783 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2784 2785 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2786 2787 extern void nohz_balance_exit_idle(struct rq *rq); 2788 #else 2789 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2790 #endif 2791 2792 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2793 extern void nohz_run_idle_balance(int cpu); 2794 #else 2795 static inline void nohz_run_idle_balance(int cpu) { } 2796 #endif 2797 2798 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2799 struct irqtime { 2800 u64 total; 2801 u64 tick_delta; 2802 u64 irq_start_time; 2803 struct u64_stats_sync sync; 2804 }; 2805 2806 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2807 2808 /* 2809 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2810 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2811 * and never move forward. 2812 */ 2813 static inline u64 irq_time_read(int cpu) 2814 { 2815 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2816 unsigned int seq; 2817 u64 total; 2818 2819 do { 2820 seq = __u64_stats_fetch_begin(&irqtime->sync); 2821 total = irqtime->total; 2822 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2823 2824 return total; 2825 } 2826 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2827 2828 #ifdef CONFIG_CPU_FREQ 2829 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2830 2831 /** 2832 * cpufreq_update_util - Take a note about CPU utilization changes. 2833 * @rq: Runqueue to carry out the update for. 2834 * @flags: Update reason flags. 2835 * 2836 * This function is called by the scheduler on the CPU whose utilization is 2837 * being updated. 2838 * 2839 * It can only be called from RCU-sched read-side critical sections. 2840 * 2841 * The way cpufreq is currently arranged requires it to evaluate the CPU 2842 * performance state (frequency/voltage) on a regular basis to prevent it from 2843 * being stuck in a completely inadequate performance level for too long. 2844 * That is not guaranteed to happen if the updates are only triggered from CFS 2845 * and DL, though, because they may not be coming in if only RT tasks are 2846 * active all the time (or there are RT tasks only). 2847 * 2848 * As a workaround for that issue, this function is called periodically by the 2849 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2850 * but that really is a band-aid. Going forward it should be replaced with 2851 * solutions targeted more specifically at RT tasks. 2852 */ 2853 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2854 { 2855 struct update_util_data *data; 2856 2857 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2858 cpu_of(rq))); 2859 if (data) 2860 data->func(data, rq_clock(rq), flags); 2861 } 2862 #else 2863 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2864 #endif /* CONFIG_CPU_FREQ */ 2865 2866 #ifdef arch_scale_freq_capacity 2867 # ifndef arch_scale_freq_invariant 2868 # define arch_scale_freq_invariant() true 2869 # endif 2870 #else 2871 # define arch_scale_freq_invariant() false 2872 #endif 2873 2874 #ifdef CONFIG_SMP 2875 static inline unsigned long capacity_orig_of(int cpu) 2876 { 2877 return cpu_rq(cpu)->cpu_capacity_orig; 2878 } 2879 2880 /** 2881 * enum cpu_util_type - CPU utilization type 2882 * @FREQUENCY_UTIL: Utilization used to select frequency 2883 * @ENERGY_UTIL: Utilization used during energy calculation 2884 * 2885 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2886 * need to be aggregated differently depending on the usage made of them. This 2887 * enum is used within effective_cpu_util() to differentiate the types of 2888 * utilization expected by the callers, and adjust the aggregation accordingly. 2889 */ 2890 enum cpu_util_type { 2891 FREQUENCY_UTIL, 2892 ENERGY_UTIL, 2893 }; 2894 2895 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2896 enum cpu_util_type type, 2897 struct task_struct *p); 2898 2899 static inline unsigned long cpu_bw_dl(struct rq *rq) 2900 { 2901 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2902 } 2903 2904 static inline unsigned long cpu_util_dl(struct rq *rq) 2905 { 2906 return READ_ONCE(rq->avg_dl.util_avg); 2907 } 2908 2909 /** 2910 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2911 * @cpu: the CPU to get the utilization for. 2912 * 2913 * The unit of the return value must be the same as the one of CPU capacity 2914 * so that CPU utilization can be compared with CPU capacity. 2915 * 2916 * CPU utilization is the sum of running time of runnable tasks plus the 2917 * recent utilization of currently non-runnable tasks on that CPU. 2918 * It represents the amount of CPU capacity currently used by CFS tasks in 2919 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2920 * capacity at f_max. 2921 * 2922 * The estimated CPU utilization is defined as the maximum between CPU 2923 * utilization and sum of the estimated utilization of the currently 2924 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2925 * previously-executed tasks, which helps better deduce how busy a CPU will 2926 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2927 * of such a task would be significantly decayed at this point of time. 2928 * 2929 * CPU utilization can be higher than the current CPU capacity 2930 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2931 * of rounding errors as well as task migrations or wakeups of new tasks. 2932 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2933 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2934 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2935 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2936 * though since this is useful for predicting the CPU capacity required 2937 * after task migrations (scheduler-driven DVFS). 2938 * 2939 * Return: (Estimated) utilization for the specified CPU. 2940 */ 2941 static inline unsigned long cpu_util_cfs(int cpu) 2942 { 2943 struct cfs_rq *cfs_rq; 2944 unsigned long util; 2945 2946 cfs_rq = &cpu_rq(cpu)->cfs; 2947 util = READ_ONCE(cfs_rq->avg.util_avg); 2948 2949 if (sched_feat(UTIL_EST)) { 2950 util = max_t(unsigned long, util, 2951 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 2952 } 2953 2954 return min(util, capacity_orig_of(cpu)); 2955 } 2956 2957 static inline unsigned long cpu_util_rt(struct rq *rq) 2958 { 2959 return READ_ONCE(rq->avg_rt.util_avg); 2960 } 2961 #endif 2962 2963 #ifdef CONFIG_UCLAMP_TASK 2964 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2965 2966 /** 2967 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2968 * @rq: The rq to clamp against. Must not be NULL. 2969 * @util: The util value to clamp. 2970 * @p: The task to clamp against. Can be NULL if you want to clamp 2971 * against @rq only. 2972 * 2973 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2974 * 2975 * If sched_uclamp_used static key is disabled, then just return the util 2976 * without any clamping since uclamp aggregation at the rq level in the fast 2977 * path is disabled, rendering this operation a NOP. 2978 * 2979 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2980 * will return the correct effective uclamp value of the task even if the 2981 * static key is disabled. 2982 */ 2983 static __always_inline 2984 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2985 struct task_struct *p) 2986 { 2987 unsigned long min_util = 0; 2988 unsigned long max_util = 0; 2989 2990 if (!static_branch_likely(&sched_uclamp_used)) 2991 return util; 2992 2993 if (p) { 2994 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2995 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2996 2997 /* 2998 * Ignore last runnable task's max clamp, as this task will 2999 * reset it. Similarly, no need to read the rq's min clamp. 3000 */ 3001 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 3002 goto out; 3003 } 3004 3005 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 3006 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 3007 out: 3008 /* 3009 * Since CPU's {min,max}_util clamps are MAX aggregated considering 3010 * RUNNABLE tasks with _different_ clamps, we can end up with an 3011 * inversion. Fix it now when the clamps are applied. 3012 */ 3013 if (unlikely(min_util >= max_util)) 3014 return min_util; 3015 3016 return clamp(util, min_util, max_util); 3017 } 3018 3019 /* Is the rq being capped/throttled by uclamp_max? */ 3020 static inline bool uclamp_rq_is_capped(struct rq *rq) 3021 { 3022 unsigned long rq_util; 3023 unsigned long max_util; 3024 3025 if (!static_branch_likely(&sched_uclamp_used)) 3026 return false; 3027 3028 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3029 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3030 3031 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3032 } 3033 3034 /* 3035 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3036 * by default in the fast path and only gets turned on once userspace performs 3037 * an operation that requires it. 3038 * 3039 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3040 * hence is active. 3041 */ 3042 static inline bool uclamp_is_used(void) 3043 { 3044 return static_branch_likely(&sched_uclamp_used); 3045 } 3046 #else /* CONFIG_UCLAMP_TASK */ 3047 static inline 3048 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3049 struct task_struct *p) 3050 { 3051 return util; 3052 } 3053 3054 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3055 3056 static inline bool uclamp_is_used(void) 3057 { 3058 return false; 3059 } 3060 #endif /* CONFIG_UCLAMP_TASK */ 3061 3062 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3063 static inline unsigned long cpu_util_irq(struct rq *rq) 3064 { 3065 return rq->avg_irq.util_avg; 3066 } 3067 3068 static inline 3069 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3070 { 3071 util *= (max - irq); 3072 util /= max; 3073 3074 return util; 3075 3076 } 3077 #else 3078 static inline unsigned long cpu_util_irq(struct rq *rq) 3079 { 3080 return 0; 3081 } 3082 3083 static inline 3084 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3085 { 3086 return util; 3087 } 3088 #endif 3089 3090 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3091 3092 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3093 3094 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3095 3096 static inline bool sched_energy_enabled(void) 3097 { 3098 return static_branch_unlikely(&sched_energy_present); 3099 } 3100 3101 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3102 3103 #define perf_domain_span(pd) NULL 3104 static inline bool sched_energy_enabled(void) { return false; } 3105 3106 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3107 3108 #ifdef CONFIG_MEMBARRIER 3109 /* 3110 * The scheduler provides memory barriers required by membarrier between: 3111 * - prior user-space memory accesses and store to rq->membarrier_state, 3112 * - store to rq->membarrier_state and following user-space memory accesses. 3113 * In the same way it provides those guarantees around store to rq->curr. 3114 */ 3115 static inline void membarrier_switch_mm(struct rq *rq, 3116 struct mm_struct *prev_mm, 3117 struct mm_struct *next_mm) 3118 { 3119 int membarrier_state; 3120 3121 if (prev_mm == next_mm) 3122 return; 3123 3124 membarrier_state = atomic_read(&next_mm->membarrier_state); 3125 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3126 return; 3127 3128 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3129 } 3130 #else 3131 static inline void membarrier_switch_mm(struct rq *rq, 3132 struct mm_struct *prev_mm, 3133 struct mm_struct *next_mm) 3134 { 3135 } 3136 #endif 3137 3138 #ifdef CONFIG_SMP 3139 static inline bool is_per_cpu_kthread(struct task_struct *p) 3140 { 3141 if (!(p->flags & PF_KTHREAD)) 3142 return false; 3143 3144 if (p->nr_cpus_allowed != 1) 3145 return false; 3146 3147 return true; 3148 } 3149 #endif 3150 3151 extern void swake_up_all_locked(struct swait_queue_head *q); 3152 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3153 3154 #ifdef CONFIG_PREEMPT_DYNAMIC 3155 extern int preempt_dynamic_mode; 3156 extern int sched_dynamic_mode(const char *str); 3157 extern void sched_dynamic_update(int mode); 3158 #endif 3159 3160 #endif /* _KERNEL_SCHED_SCHED_H */ 3161