xref: /linux/kernel/sched/sched.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_PARAVIRT
78 # include <asm/paravirt.h>
79 # include <asm/paravirt_api_clock.h>
80 #endif
81 
82 #include "cpupri.h"
83 #include "cpudeadline.h"
84 
85 #ifdef CONFIG_SCHED_DEBUG
86 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
87 #else
88 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
89 #endif
90 
91 struct rq;
92 struct cpuidle_state;
93 
94 /* task_struct::on_rq states: */
95 #define TASK_ON_RQ_QUEUED	1
96 #define TASK_ON_RQ_MIGRATING	2
97 
98 extern __read_mostly int scheduler_running;
99 
100 extern unsigned long calc_load_update;
101 extern atomic_long_t calc_load_tasks;
102 
103 extern void calc_global_load_tick(struct rq *this_rq);
104 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
105 
106 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
107 
108 extern int sysctl_sched_rt_period;
109 extern int sysctl_sched_rt_runtime;
110 extern int sched_rr_timeslice;
111 
112 /*
113  * Helpers for converting nanosecond timing to jiffy resolution
114  */
115 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
116 
117 /*
118  * Increase resolution of nice-level calculations for 64-bit architectures.
119  * The extra resolution improves shares distribution and load balancing of
120  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
121  * hierarchies, especially on larger systems. This is not a user-visible change
122  * and does not change the user-interface for setting shares/weights.
123  *
124  * We increase resolution only if we have enough bits to allow this increased
125  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
126  * are pretty high and the returns do not justify the increased costs.
127  *
128  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
129  * increase coverage and consistency always enable it on 64-bit platforms.
130  */
131 #ifdef CONFIG_64BIT
132 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
133 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load_down(w) \
135 ({ \
136 	unsigned long __w = (w); \
137 	if (__w) \
138 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
139 	__w; \
140 })
141 #else
142 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
143 # define scale_load(w)		(w)
144 # define scale_load_down(w)	(w)
145 #endif
146 
147 /*
148  * Task weight (visible to users) and its load (invisible to users) have
149  * independent resolution, but they should be well calibrated. We use
150  * scale_load() and scale_load_down(w) to convert between them. The
151  * following must be true:
152  *
153  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
154  *
155  */
156 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
157 
158 /*
159  * Single value that decides SCHED_DEADLINE internal math precision.
160  * 10 -> just above 1us
161  * 9  -> just above 0.5us
162  */
163 #define DL_SCALE		10
164 
165 /*
166  * Single value that denotes runtime == period, ie unlimited time.
167  */
168 #define RUNTIME_INF		((u64)~0ULL)
169 
170 static inline int idle_policy(int policy)
171 {
172 	return policy == SCHED_IDLE;
173 }
174 static inline int fair_policy(int policy)
175 {
176 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
177 }
178 
179 static inline int rt_policy(int policy)
180 {
181 	return policy == SCHED_FIFO || policy == SCHED_RR;
182 }
183 
184 static inline int dl_policy(int policy)
185 {
186 	return policy == SCHED_DEADLINE;
187 }
188 static inline bool valid_policy(int policy)
189 {
190 	return idle_policy(policy) || fair_policy(policy) ||
191 		rt_policy(policy) || dl_policy(policy);
192 }
193 
194 static inline int task_has_idle_policy(struct task_struct *p)
195 {
196 	return idle_policy(p->policy);
197 }
198 
199 static inline int task_has_rt_policy(struct task_struct *p)
200 {
201 	return rt_policy(p->policy);
202 }
203 
204 static inline int task_has_dl_policy(struct task_struct *p)
205 {
206 	return dl_policy(p->policy);
207 }
208 
209 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
210 
211 static inline void update_avg(u64 *avg, u64 sample)
212 {
213 	s64 diff = sample - *avg;
214 	*avg += diff / 8;
215 }
216 
217 /*
218  * Shifting a value by an exponent greater *or equal* to the size of said value
219  * is UB; cap at size-1.
220  */
221 #define shr_bound(val, shift)							\
222 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
223 
224 /*
225  * !! For sched_setattr_nocheck() (kernel) only !!
226  *
227  * This is actually gross. :(
228  *
229  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
230  * tasks, but still be able to sleep. We need this on platforms that cannot
231  * atomically change clock frequency. Remove once fast switching will be
232  * available on such platforms.
233  *
234  * SUGOV stands for SchedUtil GOVernor.
235  */
236 #define SCHED_FLAG_SUGOV	0x10000000
237 
238 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
239 
240 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
241 {
242 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
243 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
244 #else
245 	return false;
246 #endif
247 }
248 
249 /*
250  * Tells if entity @a should preempt entity @b.
251  */
252 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
253 				     const struct sched_dl_entity *b)
254 {
255 	return dl_entity_is_special(a) ||
256 	       dl_time_before(a->deadline, b->deadline);
257 }
258 
259 /*
260  * This is the priority-queue data structure of the RT scheduling class:
261  */
262 struct rt_prio_array {
263 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
264 	struct list_head queue[MAX_RT_PRIO];
265 };
266 
267 struct rt_bandwidth {
268 	/* nests inside the rq lock: */
269 	raw_spinlock_t		rt_runtime_lock;
270 	ktime_t			rt_period;
271 	u64			rt_runtime;
272 	struct hrtimer		rt_period_timer;
273 	unsigned int		rt_period_active;
274 };
275 
276 static inline int dl_bandwidth_enabled(void)
277 {
278 	return sysctl_sched_rt_runtime >= 0;
279 }
280 
281 /*
282  * To keep the bandwidth of -deadline tasks under control
283  * we need some place where:
284  *  - store the maximum -deadline bandwidth of each cpu;
285  *  - cache the fraction of bandwidth that is currently allocated in
286  *    each root domain;
287  *
288  * This is all done in the data structure below. It is similar to the
289  * one used for RT-throttling (rt_bandwidth), with the main difference
290  * that, since here we are only interested in admission control, we
291  * do not decrease any runtime while the group "executes", neither we
292  * need a timer to replenish it.
293  *
294  * With respect to SMP, bandwidth is given on a per root domain basis,
295  * meaning that:
296  *  - bw (< 100%) is the deadline bandwidth of each CPU;
297  *  - total_bw is the currently allocated bandwidth in each root domain;
298  */
299 struct dl_bw {
300 	raw_spinlock_t		lock;
301 	u64			bw;
302 	u64			total_bw;
303 };
304 
305 extern void init_dl_bw(struct dl_bw *dl_b);
306 extern int  sched_dl_global_validate(void);
307 extern void sched_dl_do_global(void);
308 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
309 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
310 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
311 extern bool __checkparam_dl(const struct sched_attr *attr);
312 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
313 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
314 extern int  dl_bw_check_overflow(int cpu);
315 
316 /*
317  * SCHED_DEADLINE supports servers (nested scheduling) with the following
318  * interface:
319  *
320  *   dl_se::rq -- runqueue we belong to.
321  *
322  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
323  *                                server when it runs out of tasks to run.
324  *
325  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
326  *                           returns NULL.
327  *
328  *   dl_server_update() -- called from update_curr_common(), propagates runtime
329  *                         to the server.
330  *
331  *   dl_server_start()
332  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
333  *
334  *   dl_server_init() -- initializes the server.
335  */
336 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
337 extern void dl_server_start(struct sched_dl_entity *dl_se);
338 extern void dl_server_stop(struct sched_dl_entity *dl_se);
339 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
340 		    dl_server_has_tasks_f has_tasks,
341 		    dl_server_pick_f pick);
342 
343 #ifdef CONFIG_CGROUP_SCHED
344 
345 struct cfs_rq;
346 struct rt_rq;
347 
348 extern struct list_head task_groups;
349 
350 struct cfs_bandwidth {
351 #ifdef CONFIG_CFS_BANDWIDTH
352 	raw_spinlock_t		lock;
353 	ktime_t			period;
354 	u64			quota;
355 	u64			runtime;
356 	u64			burst;
357 	u64			runtime_snap;
358 	s64			hierarchical_quota;
359 
360 	u8			idle;
361 	u8			period_active;
362 	u8			slack_started;
363 	struct hrtimer		period_timer;
364 	struct hrtimer		slack_timer;
365 	struct list_head	throttled_cfs_rq;
366 
367 	/* Statistics: */
368 	int			nr_periods;
369 	int			nr_throttled;
370 	int			nr_burst;
371 	u64			throttled_time;
372 	u64			burst_time;
373 #endif
374 };
375 
376 /* Task group related information */
377 struct task_group {
378 	struct cgroup_subsys_state css;
379 
380 #ifdef CONFIG_FAIR_GROUP_SCHED
381 	/* schedulable entities of this group on each CPU */
382 	struct sched_entity	**se;
383 	/* runqueue "owned" by this group on each CPU */
384 	struct cfs_rq		**cfs_rq;
385 	unsigned long		shares;
386 
387 	/* A positive value indicates that this is a SCHED_IDLE group. */
388 	int			idle;
389 
390 #ifdef	CONFIG_SMP
391 	/*
392 	 * load_avg can be heavily contended at clock tick time, so put
393 	 * it in its own cacheline separated from the fields above which
394 	 * will also be accessed at each tick.
395 	 */
396 	atomic_long_t		load_avg ____cacheline_aligned;
397 #endif
398 #endif
399 
400 #ifdef CONFIG_RT_GROUP_SCHED
401 	struct sched_rt_entity	**rt_se;
402 	struct rt_rq		**rt_rq;
403 
404 	struct rt_bandwidth	rt_bandwidth;
405 #endif
406 
407 	struct rcu_head		rcu;
408 	struct list_head	list;
409 
410 	struct task_group	*parent;
411 	struct list_head	siblings;
412 	struct list_head	children;
413 
414 #ifdef CONFIG_SCHED_AUTOGROUP
415 	struct autogroup	*autogroup;
416 #endif
417 
418 	struct cfs_bandwidth	cfs_bandwidth;
419 
420 #ifdef CONFIG_UCLAMP_TASK_GROUP
421 	/* The two decimal precision [%] value requested from user-space */
422 	unsigned int		uclamp_pct[UCLAMP_CNT];
423 	/* Clamp values requested for a task group */
424 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
425 	/* Effective clamp values used for a task group */
426 	struct uclamp_se	uclamp[UCLAMP_CNT];
427 #endif
428 
429 };
430 
431 #ifdef CONFIG_FAIR_GROUP_SCHED
432 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
433 
434 /*
435  * A weight of 0 or 1 can cause arithmetics problems.
436  * A weight of a cfs_rq is the sum of weights of which entities
437  * are queued on this cfs_rq, so a weight of a entity should not be
438  * too large, so as the shares value of a task group.
439  * (The default weight is 1024 - so there's no practical
440  *  limitation from this.)
441  */
442 #define MIN_SHARES		(1UL <<  1)
443 #define MAX_SHARES		(1UL << 18)
444 #endif
445 
446 typedef int (*tg_visitor)(struct task_group *, void *);
447 
448 extern int walk_tg_tree_from(struct task_group *from,
449 			     tg_visitor down, tg_visitor up, void *data);
450 
451 /*
452  * Iterate the full tree, calling @down when first entering a node and @up when
453  * leaving it for the final time.
454  *
455  * Caller must hold rcu_lock or sufficient equivalent.
456  */
457 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
458 {
459 	return walk_tg_tree_from(&root_task_group, down, up, data);
460 }
461 
462 extern int tg_nop(struct task_group *tg, void *data);
463 
464 #ifdef CONFIG_FAIR_GROUP_SCHED
465 extern void free_fair_sched_group(struct task_group *tg);
466 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
467 extern void online_fair_sched_group(struct task_group *tg);
468 extern void unregister_fair_sched_group(struct task_group *tg);
469 #else
470 static inline void free_fair_sched_group(struct task_group *tg) { }
471 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
472 {
473        return 1;
474 }
475 static inline void online_fair_sched_group(struct task_group *tg) { }
476 static inline void unregister_fair_sched_group(struct task_group *tg) { }
477 #endif
478 
479 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
480 			struct sched_entity *se, int cpu,
481 			struct sched_entity *parent);
482 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
483 
484 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
485 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
486 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
487 extern bool cfs_task_bw_constrained(struct task_struct *p);
488 
489 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
490 		struct sched_rt_entity *rt_se, int cpu,
491 		struct sched_rt_entity *parent);
492 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
493 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
494 extern long sched_group_rt_runtime(struct task_group *tg);
495 extern long sched_group_rt_period(struct task_group *tg);
496 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
497 
498 extern struct task_group *sched_create_group(struct task_group *parent);
499 extern void sched_online_group(struct task_group *tg,
500 			       struct task_group *parent);
501 extern void sched_destroy_group(struct task_group *tg);
502 extern void sched_release_group(struct task_group *tg);
503 
504 extern void sched_move_task(struct task_struct *tsk);
505 
506 #ifdef CONFIG_FAIR_GROUP_SCHED
507 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
508 
509 extern int sched_group_set_idle(struct task_group *tg, long idle);
510 
511 #ifdef CONFIG_SMP
512 extern void set_task_rq_fair(struct sched_entity *se,
513 			     struct cfs_rq *prev, struct cfs_rq *next);
514 #else /* !CONFIG_SMP */
515 static inline void set_task_rq_fair(struct sched_entity *se,
516 			     struct cfs_rq *prev, struct cfs_rq *next) { }
517 #endif /* CONFIG_SMP */
518 #endif /* CONFIG_FAIR_GROUP_SCHED */
519 
520 #else /* CONFIG_CGROUP_SCHED */
521 
522 struct cfs_bandwidth { };
523 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
524 
525 #endif	/* CONFIG_CGROUP_SCHED */
526 
527 extern void unregister_rt_sched_group(struct task_group *tg);
528 extern void free_rt_sched_group(struct task_group *tg);
529 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
530 
531 /*
532  * u64_u32_load/u64_u32_store
533  *
534  * Use a copy of a u64 value to protect against data race. This is only
535  * applicable for 32-bits architectures.
536  */
537 #ifdef CONFIG_64BIT
538 # define u64_u32_load_copy(var, copy)       var
539 # define u64_u32_store_copy(var, copy, val) (var = val)
540 #else
541 # define u64_u32_load_copy(var, copy)					\
542 ({									\
543 	u64 __val, __val_copy;						\
544 	do {								\
545 		__val_copy = copy;					\
546 		/*							\
547 		 * paired with u64_u32_store_copy(), ordering access	\
548 		 * to var and copy.					\
549 		 */							\
550 		smp_rmb();						\
551 		__val = var;						\
552 	} while (__val != __val_copy);					\
553 	__val;								\
554 })
555 # define u64_u32_store_copy(var, copy, val)				\
556 do {									\
557 	typeof(val) __val = (val);					\
558 	var = __val;							\
559 	/*								\
560 	 * paired with u64_u32_load_copy(), ordering access to var and	\
561 	 * copy.							\
562 	 */								\
563 	smp_wmb();							\
564 	copy = __val;							\
565 } while (0)
566 #endif
567 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
568 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
569 
570 /* CFS-related fields in a runqueue */
571 struct cfs_rq {
572 	struct load_weight	load;
573 	unsigned int		nr_running;
574 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
575 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
576 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
577 
578 	s64			avg_vruntime;
579 	u64			avg_load;
580 
581 	u64			exec_clock;
582 	u64			min_vruntime;
583 #ifdef CONFIG_SCHED_CORE
584 	unsigned int		forceidle_seq;
585 	u64			min_vruntime_fi;
586 #endif
587 
588 #ifndef CONFIG_64BIT
589 	u64			min_vruntime_copy;
590 #endif
591 
592 	struct rb_root_cached	tasks_timeline;
593 
594 	/*
595 	 * 'curr' points to currently running entity on this cfs_rq.
596 	 * It is set to NULL otherwise (i.e when none are currently running).
597 	 */
598 	struct sched_entity	*curr;
599 	struct sched_entity	*next;
600 
601 #ifdef	CONFIG_SCHED_DEBUG
602 	unsigned int		nr_spread_over;
603 #endif
604 
605 #ifdef CONFIG_SMP
606 	/*
607 	 * CFS load tracking
608 	 */
609 	struct sched_avg	avg;
610 #ifndef CONFIG_64BIT
611 	u64			last_update_time_copy;
612 #endif
613 	struct {
614 		raw_spinlock_t	lock ____cacheline_aligned;
615 		int		nr;
616 		unsigned long	load_avg;
617 		unsigned long	util_avg;
618 		unsigned long	runnable_avg;
619 	} removed;
620 
621 #ifdef CONFIG_FAIR_GROUP_SCHED
622 	u64			last_update_tg_load_avg;
623 	unsigned long		tg_load_avg_contrib;
624 	long			propagate;
625 	long			prop_runnable_sum;
626 
627 	/*
628 	 *   h_load = weight * f(tg)
629 	 *
630 	 * Where f(tg) is the recursive weight fraction assigned to
631 	 * this group.
632 	 */
633 	unsigned long		h_load;
634 	u64			last_h_load_update;
635 	struct sched_entity	*h_load_next;
636 #endif /* CONFIG_FAIR_GROUP_SCHED */
637 #endif /* CONFIG_SMP */
638 
639 #ifdef CONFIG_FAIR_GROUP_SCHED
640 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
641 
642 	/*
643 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
644 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
645 	 * (like users, containers etc.)
646 	 *
647 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
648 	 * This list is used during load balance.
649 	 */
650 	int			on_list;
651 	struct list_head	leaf_cfs_rq_list;
652 	struct task_group	*tg;	/* group that "owns" this runqueue */
653 
654 	/* Locally cached copy of our task_group's idle value */
655 	int			idle;
656 
657 #ifdef CONFIG_CFS_BANDWIDTH
658 	int			runtime_enabled;
659 	s64			runtime_remaining;
660 
661 	u64			throttled_pelt_idle;
662 #ifndef CONFIG_64BIT
663 	u64                     throttled_pelt_idle_copy;
664 #endif
665 	u64			throttled_clock;
666 	u64			throttled_clock_pelt;
667 	u64			throttled_clock_pelt_time;
668 	u64			throttled_clock_self;
669 	u64			throttled_clock_self_time;
670 	int			throttled;
671 	int			throttle_count;
672 	struct list_head	throttled_list;
673 	struct list_head	throttled_csd_list;
674 #endif /* CONFIG_CFS_BANDWIDTH */
675 #endif /* CONFIG_FAIR_GROUP_SCHED */
676 };
677 
678 static inline int rt_bandwidth_enabled(void)
679 {
680 	return sysctl_sched_rt_runtime >= 0;
681 }
682 
683 /* RT IPI pull logic requires IRQ_WORK */
684 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
685 # define HAVE_RT_PUSH_IPI
686 #endif
687 
688 /* Real-Time classes' related field in a runqueue: */
689 struct rt_rq {
690 	struct rt_prio_array	active;
691 	unsigned int		rt_nr_running;
692 	unsigned int		rr_nr_running;
693 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
694 	struct {
695 		int		curr; /* highest queued rt task prio */
696 #ifdef CONFIG_SMP
697 		int		next; /* next highest */
698 #endif
699 	} highest_prio;
700 #endif
701 #ifdef CONFIG_SMP
702 	int			overloaded;
703 	struct plist_head	pushable_tasks;
704 
705 #endif /* CONFIG_SMP */
706 	int			rt_queued;
707 
708 	int			rt_throttled;
709 	u64			rt_time;
710 	u64			rt_runtime;
711 	/* Nests inside the rq lock: */
712 	raw_spinlock_t		rt_runtime_lock;
713 
714 #ifdef CONFIG_RT_GROUP_SCHED
715 	unsigned int		rt_nr_boosted;
716 
717 	struct rq		*rq;
718 	struct task_group	*tg;
719 #endif
720 };
721 
722 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
723 {
724 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
725 }
726 
727 /* Deadline class' related fields in a runqueue */
728 struct dl_rq {
729 	/* runqueue is an rbtree, ordered by deadline */
730 	struct rb_root_cached	root;
731 
732 	unsigned int		dl_nr_running;
733 
734 #ifdef CONFIG_SMP
735 	/*
736 	 * Deadline values of the currently executing and the
737 	 * earliest ready task on this rq. Caching these facilitates
738 	 * the decision whether or not a ready but not running task
739 	 * should migrate somewhere else.
740 	 */
741 	struct {
742 		u64		curr;
743 		u64		next;
744 	} earliest_dl;
745 
746 	int			overloaded;
747 
748 	/*
749 	 * Tasks on this rq that can be pushed away. They are kept in
750 	 * an rb-tree, ordered by tasks' deadlines, with caching
751 	 * of the leftmost (earliest deadline) element.
752 	 */
753 	struct rb_root_cached	pushable_dl_tasks_root;
754 #else
755 	struct dl_bw		dl_bw;
756 #endif
757 	/*
758 	 * "Active utilization" for this runqueue: increased when a
759 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
760 	 * task blocks
761 	 */
762 	u64			running_bw;
763 
764 	/*
765 	 * Utilization of the tasks "assigned" to this runqueue (including
766 	 * the tasks that are in runqueue and the tasks that executed on this
767 	 * CPU and blocked). Increased when a task moves to this runqueue, and
768 	 * decreased when the task moves away (migrates, changes scheduling
769 	 * policy, or terminates).
770 	 * This is needed to compute the "inactive utilization" for the
771 	 * runqueue (inactive utilization = this_bw - running_bw).
772 	 */
773 	u64			this_bw;
774 	u64			extra_bw;
775 
776 	/*
777 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
778 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
779 	 */
780 	u64			max_bw;
781 
782 	/*
783 	 * Inverse of the fraction of CPU utilization that can be reclaimed
784 	 * by the GRUB algorithm.
785 	 */
786 	u64			bw_ratio;
787 };
788 
789 #ifdef CONFIG_FAIR_GROUP_SCHED
790 /* An entity is a task if it doesn't "own" a runqueue */
791 #define entity_is_task(se)	(!se->my_q)
792 
793 static inline void se_update_runnable(struct sched_entity *se)
794 {
795 	if (!entity_is_task(se))
796 		se->runnable_weight = se->my_q->h_nr_running;
797 }
798 
799 static inline long se_runnable(struct sched_entity *se)
800 {
801 	if (entity_is_task(se))
802 		return !!se->on_rq;
803 	else
804 		return se->runnable_weight;
805 }
806 
807 #else
808 #define entity_is_task(se)	1
809 
810 static inline void se_update_runnable(struct sched_entity *se) {}
811 
812 static inline long se_runnable(struct sched_entity *se)
813 {
814 	return !!se->on_rq;
815 }
816 #endif
817 
818 #ifdef CONFIG_SMP
819 /*
820  * XXX we want to get rid of these helpers and use the full load resolution.
821  */
822 static inline long se_weight(struct sched_entity *se)
823 {
824 	return scale_load_down(se->load.weight);
825 }
826 
827 
828 static inline bool sched_asym_prefer(int a, int b)
829 {
830 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
831 }
832 
833 struct perf_domain {
834 	struct em_perf_domain *em_pd;
835 	struct perf_domain *next;
836 	struct rcu_head rcu;
837 };
838 
839 /* Scheduling group status flags */
840 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
841 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
842 
843 /*
844  * We add the notion of a root-domain which will be used to define per-domain
845  * variables. Each exclusive cpuset essentially defines an island domain by
846  * fully partitioning the member CPUs from any other cpuset. Whenever a new
847  * exclusive cpuset is created, we also create and attach a new root-domain
848  * object.
849  *
850  */
851 struct root_domain {
852 	atomic_t		refcount;
853 	atomic_t		rto_count;
854 	struct rcu_head		rcu;
855 	cpumask_var_t		span;
856 	cpumask_var_t		online;
857 
858 	/*
859 	 * Indicate pullable load on at least one CPU, e.g:
860 	 * - More than one runnable task
861 	 * - Running task is misfit
862 	 */
863 	int			overload;
864 
865 	/* Indicate one or more cpus over-utilized (tipping point) */
866 	int			overutilized;
867 
868 	/*
869 	 * The bit corresponding to a CPU gets set here if such CPU has more
870 	 * than one runnable -deadline task (as it is below for RT tasks).
871 	 */
872 	cpumask_var_t		dlo_mask;
873 	atomic_t		dlo_count;
874 	struct dl_bw		dl_bw;
875 	struct cpudl		cpudl;
876 
877 	/*
878 	 * Indicate whether a root_domain's dl_bw has been checked or
879 	 * updated. It's monotonously increasing value.
880 	 *
881 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
882 	 * that u64 is 'big enough'. So that shouldn't be a concern.
883 	 */
884 	u64 visit_gen;
885 
886 #ifdef HAVE_RT_PUSH_IPI
887 	/*
888 	 * For IPI pull requests, loop across the rto_mask.
889 	 */
890 	struct irq_work		rto_push_work;
891 	raw_spinlock_t		rto_lock;
892 	/* These are only updated and read within rto_lock */
893 	int			rto_loop;
894 	int			rto_cpu;
895 	/* These atomics are updated outside of a lock */
896 	atomic_t		rto_loop_next;
897 	atomic_t		rto_loop_start;
898 #endif
899 	/*
900 	 * The "RT overload" flag: it gets set if a CPU has more than
901 	 * one runnable RT task.
902 	 */
903 	cpumask_var_t		rto_mask;
904 	struct cpupri		cpupri;
905 
906 	unsigned long		max_cpu_capacity;
907 
908 	/*
909 	 * NULL-terminated list of performance domains intersecting with the
910 	 * CPUs of the rd. Protected by RCU.
911 	 */
912 	struct perf_domain __rcu *pd;
913 };
914 
915 extern void init_defrootdomain(void);
916 extern int sched_init_domains(const struct cpumask *cpu_map);
917 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
918 extern void sched_get_rd(struct root_domain *rd);
919 extern void sched_put_rd(struct root_domain *rd);
920 
921 #ifdef HAVE_RT_PUSH_IPI
922 extern void rto_push_irq_work_func(struct irq_work *work);
923 #endif
924 #endif /* CONFIG_SMP */
925 
926 #ifdef CONFIG_UCLAMP_TASK
927 /*
928  * struct uclamp_bucket - Utilization clamp bucket
929  * @value: utilization clamp value for tasks on this clamp bucket
930  * @tasks: number of RUNNABLE tasks on this clamp bucket
931  *
932  * Keep track of how many tasks are RUNNABLE for a given utilization
933  * clamp value.
934  */
935 struct uclamp_bucket {
936 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
937 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
938 };
939 
940 /*
941  * struct uclamp_rq - rq's utilization clamp
942  * @value: currently active clamp values for a rq
943  * @bucket: utilization clamp buckets affecting a rq
944  *
945  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
946  * A clamp value is affecting a rq when there is at least one task RUNNABLE
947  * (or actually running) with that value.
948  *
949  * There are up to UCLAMP_CNT possible different clamp values, currently there
950  * are only two: minimum utilization and maximum utilization.
951  *
952  * All utilization clamping values are MAX aggregated, since:
953  * - for util_min: we want to run the CPU at least at the max of the minimum
954  *   utilization required by its currently RUNNABLE tasks.
955  * - for util_max: we want to allow the CPU to run up to the max of the
956  *   maximum utilization allowed by its currently RUNNABLE tasks.
957  *
958  * Since on each system we expect only a limited number of different
959  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
960  * the metrics required to compute all the per-rq utilization clamp values.
961  */
962 struct uclamp_rq {
963 	unsigned int value;
964 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
965 };
966 
967 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
968 #endif /* CONFIG_UCLAMP_TASK */
969 
970 struct rq;
971 struct balance_callback {
972 	struct balance_callback *next;
973 	void (*func)(struct rq *rq);
974 };
975 
976 /*
977  * This is the main, per-CPU runqueue data structure.
978  *
979  * Locking rule: those places that want to lock multiple runqueues
980  * (such as the load balancing or the thread migration code), lock
981  * acquire operations must be ordered by ascending &runqueue.
982  */
983 struct rq {
984 	/* runqueue lock: */
985 	raw_spinlock_t		__lock;
986 
987 	unsigned int		nr_running;
988 #ifdef CONFIG_NUMA_BALANCING
989 	unsigned int		nr_numa_running;
990 	unsigned int		nr_preferred_running;
991 	unsigned int		numa_migrate_on;
992 #endif
993 #ifdef CONFIG_NO_HZ_COMMON
994 #ifdef CONFIG_SMP
995 	unsigned long		last_blocked_load_update_tick;
996 	unsigned int		has_blocked_load;
997 	call_single_data_t	nohz_csd;
998 #endif /* CONFIG_SMP */
999 	unsigned int		nohz_tick_stopped;
1000 	atomic_t		nohz_flags;
1001 #endif /* CONFIG_NO_HZ_COMMON */
1002 
1003 #ifdef CONFIG_SMP
1004 	unsigned int		ttwu_pending;
1005 #endif
1006 	u64			nr_switches;
1007 
1008 #ifdef CONFIG_UCLAMP_TASK
1009 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1010 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1011 	unsigned int		uclamp_flags;
1012 #define UCLAMP_FLAG_IDLE 0x01
1013 #endif
1014 
1015 	struct cfs_rq		cfs;
1016 	struct rt_rq		rt;
1017 	struct dl_rq		dl;
1018 
1019 #ifdef CONFIG_FAIR_GROUP_SCHED
1020 	/* list of leaf cfs_rq on this CPU: */
1021 	struct list_head	leaf_cfs_rq_list;
1022 	struct list_head	*tmp_alone_branch;
1023 #endif /* CONFIG_FAIR_GROUP_SCHED */
1024 
1025 	/*
1026 	 * This is part of a global counter where only the total sum
1027 	 * over all CPUs matters. A task can increase this counter on
1028 	 * one CPU and if it got migrated afterwards it may decrease
1029 	 * it on another CPU. Always updated under the runqueue lock:
1030 	 */
1031 	unsigned int		nr_uninterruptible;
1032 
1033 	struct task_struct __rcu	*curr;
1034 	struct task_struct	*idle;
1035 	struct task_struct	*stop;
1036 	unsigned long		next_balance;
1037 	struct mm_struct	*prev_mm;
1038 
1039 	unsigned int		clock_update_flags;
1040 	u64			clock;
1041 	/* Ensure that all clocks are in the same cache line */
1042 	u64			clock_task ____cacheline_aligned;
1043 	u64			clock_pelt;
1044 	unsigned long		lost_idle_time;
1045 	u64			clock_pelt_idle;
1046 	u64			clock_idle;
1047 #ifndef CONFIG_64BIT
1048 	u64			clock_pelt_idle_copy;
1049 	u64			clock_idle_copy;
1050 #endif
1051 
1052 	atomic_t		nr_iowait;
1053 
1054 #ifdef CONFIG_SCHED_DEBUG
1055 	u64 last_seen_need_resched_ns;
1056 	int ticks_without_resched;
1057 #endif
1058 
1059 #ifdef CONFIG_MEMBARRIER
1060 	int membarrier_state;
1061 #endif
1062 
1063 #ifdef CONFIG_SMP
1064 	struct root_domain		*rd;
1065 	struct sched_domain __rcu	*sd;
1066 
1067 	unsigned long		cpu_capacity;
1068 
1069 	struct balance_callback *balance_callback;
1070 
1071 	unsigned char		nohz_idle_balance;
1072 	unsigned char		idle_balance;
1073 
1074 	unsigned long		misfit_task_load;
1075 
1076 	/* For active balancing */
1077 	int			active_balance;
1078 	int			push_cpu;
1079 	struct cpu_stop_work	active_balance_work;
1080 
1081 	/* CPU of this runqueue: */
1082 	int			cpu;
1083 	int			online;
1084 
1085 	struct list_head cfs_tasks;
1086 
1087 	struct sched_avg	avg_rt;
1088 	struct sched_avg	avg_dl;
1089 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1090 	struct sched_avg	avg_irq;
1091 #endif
1092 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1093 	struct sched_avg	avg_thermal;
1094 #endif
1095 	u64			idle_stamp;
1096 	u64			avg_idle;
1097 
1098 	/* This is used to determine avg_idle's max value */
1099 	u64			max_idle_balance_cost;
1100 
1101 #ifdef CONFIG_HOTPLUG_CPU
1102 	struct rcuwait		hotplug_wait;
1103 #endif
1104 #endif /* CONFIG_SMP */
1105 
1106 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1107 	u64			prev_irq_time;
1108 #endif
1109 #ifdef CONFIG_PARAVIRT
1110 	u64			prev_steal_time;
1111 #endif
1112 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1113 	u64			prev_steal_time_rq;
1114 #endif
1115 
1116 	/* calc_load related fields */
1117 	unsigned long		calc_load_update;
1118 	long			calc_load_active;
1119 
1120 #ifdef CONFIG_SCHED_HRTICK
1121 #ifdef CONFIG_SMP
1122 	call_single_data_t	hrtick_csd;
1123 #endif
1124 	struct hrtimer		hrtick_timer;
1125 	ktime_t 		hrtick_time;
1126 #endif
1127 
1128 #ifdef CONFIG_SCHEDSTATS
1129 	/* latency stats */
1130 	struct sched_info	rq_sched_info;
1131 	unsigned long long	rq_cpu_time;
1132 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1133 
1134 	/* sys_sched_yield() stats */
1135 	unsigned int		yld_count;
1136 
1137 	/* schedule() stats */
1138 	unsigned int		sched_count;
1139 	unsigned int		sched_goidle;
1140 
1141 	/* try_to_wake_up() stats */
1142 	unsigned int		ttwu_count;
1143 	unsigned int		ttwu_local;
1144 #endif
1145 
1146 #ifdef CONFIG_CPU_IDLE
1147 	/* Must be inspected within a rcu lock section */
1148 	struct cpuidle_state	*idle_state;
1149 #endif
1150 
1151 #ifdef CONFIG_SMP
1152 	unsigned int		nr_pinned;
1153 #endif
1154 	unsigned int		push_busy;
1155 	struct cpu_stop_work	push_work;
1156 
1157 #ifdef CONFIG_SCHED_CORE
1158 	/* per rq */
1159 	struct rq		*core;
1160 	struct task_struct	*core_pick;
1161 	unsigned int		core_enabled;
1162 	unsigned int		core_sched_seq;
1163 	struct rb_root		core_tree;
1164 
1165 	/* shared state -- careful with sched_core_cpu_deactivate() */
1166 	unsigned int		core_task_seq;
1167 	unsigned int		core_pick_seq;
1168 	unsigned long		core_cookie;
1169 	unsigned int		core_forceidle_count;
1170 	unsigned int		core_forceidle_seq;
1171 	unsigned int		core_forceidle_occupation;
1172 	u64			core_forceidle_start;
1173 #endif
1174 
1175 	/* Scratch cpumask to be temporarily used under rq_lock */
1176 	cpumask_var_t		scratch_mask;
1177 
1178 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1179 	call_single_data_t	cfsb_csd;
1180 	struct list_head	cfsb_csd_list;
1181 #endif
1182 };
1183 
1184 #ifdef CONFIG_FAIR_GROUP_SCHED
1185 
1186 /* CPU runqueue to which this cfs_rq is attached */
1187 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1188 {
1189 	return cfs_rq->rq;
1190 }
1191 
1192 #else
1193 
1194 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1195 {
1196 	return container_of(cfs_rq, struct rq, cfs);
1197 }
1198 #endif
1199 
1200 static inline int cpu_of(struct rq *rq)
1201 {
1202 #ifdef CONFIG_SMP
1203 	return rq->cpu;
1204 #else
1205 	return 0;
1206 #endif
1207 }
1208 
1209 #define MDF_PUSH	0x01
1210 
1211 static inline bool is_migration_disabled(struct task_struct *p)
1212 {
1213 #ifdef CONFIG_SMP
1214 	return p->migration_disabled;
1215 #else
1216 	return false;
1217 #endif
1218 }
1219 
1220 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1221 
1222 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1223 #define this_rq()		this_cpu_ptr(&runqueues)
1224 #define task_rq(p)		cpu_rq(task_cpu(p))
1225 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1226 #define raw_rq()		raw_cpu_ptr(&runqueues)
1227 
1228 struct sched_group;
1229 #ifdef CONFIG_SCHED_CORE
1230 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1231 
1232 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1233 
1234 static inline bool sched_core_enabled(struct rq *rq)
1235 {
1236 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1237 }
1238 
1239 static inline bool sched_core_disabled(void)
1240 {
1241 	return !static_branch_unlikely(&__sched_core_enabled);
1242 }
1243 
1244 /*
1245  * Be careful with this function; not for general use. The return value isn't
1246  * stable unless you actually hold a relevant rq->__lock.
1247  */
1248 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1249 {
1250 	if (sched_core_enabled(rq))
1251 		return &rq->core->__lock;
1252 
1253 	return &rq->__lock;
1254 }
1255 
1256 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1257 {
1258 	if (rq->core_enabled)
1259 		return &rq->core->__lock;
1260 
1261 	return &rq->__lock;
1262 }
1263 
1264 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1265 			bool fi);
1266 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1267 
1268 /*
1269  * Helpers to check if the CPU's core cookie matches with the task's cookie
1270  * when core scheduling is enabled.
1271  * A special case is that the task's cookie always matches with CPU's core
1272  * cookie if the CPU is in an idle core.
1273  */
1274 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1275 {
1276 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277 	if (!sched_core_enabled(rq))
1278 		return true;
1279 
1280 	return rq->core->core_cookie == p->core_cookie;
1281 }
1282 
1283 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1284 {
1285 	bool idle_core = true;
1286 	int cpu;
1287 
1288 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1289 	if (!sched_core_enabled(rq))
1290 		return true;
1291 
1292 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1293 		if (!available_idle_cpu(cpu)) {
1294 			idle_core = false;
1295 			break;
1296 		}
1297 	}
1298 
1299 	/*
1300 	 * A CPU in an idle core is always the best choice for tasks with
1301 	 * cookies.
1302 	 */
1303 	return idle_core || rq->core->core_cookie == p->core_cookie;
1304 }
1305 
1306 static inline bool sched_group_cookie_match(struct rq *rq,
1307 					    struct task_struct *p,
1308 					    struct sched_group *group)
1309 {
1310 	int cpu;
1311 
1312 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1313 	if (!sched_core_enabled(rq))
1314 		return true;
1315 
1316 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1317 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1318 			return true;
1319 	}
1320 	return false;
1321 }
1322 
1323 static inline bool sched_core_enqueued(struct task_struct *p)
1324 {
1325 	return !RB_EMPTY_NODE(&p->core_node);
1326 }
1327 
1328 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1329 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1330 
1331 extern void sched_core_get(void);
1332 extern void sched_core_put(void);
1333 
1334 #else /* !CONFIG_SCHED_CORE */
1335 
1336 static inline bool sched_core_enabled(struct rq *rq)
1337 {
1338 	return false;
1339 }
1340 
1341 static inline bool sched_core_disabled(void)
1342 {
1343 	return true;
1344 }
1345 
1346 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1347 {
1348 	return &rq->__lock;
1349 }
1350 
1351 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1352 {
1353 	return &rq->__lock;
1354 }
1355 
1356 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1357 {
1358 	return true;
1359 }
1360 
1361 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1362 {
1363 	return true;
1364 }
1365 
1366 static inline bool sched_group_cookie_match(struct rq *rq,
1367 					    struct task_struct *p,
1368 					    struct sched_group *group)
1369 {
1370 	return true;
1371 }
1372 #endif /* CONFIG_SCHED_CORE */
1373 
1374 static inline void lockdep_assert_rq_held(struct rq *rq)
1375 {
1376 	lockdep_assert_held(__rq_lockp(rq));
1377 }
1378 
1379 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1380 extern bool raw_spin_rq_trylock(struct rq *rq);
1381 extern void raw_spin_rq_unlock(struct rq *rq);
1382 
1383 static inline void raw_spin_rq_lock(struct rq *rq)
1384 {
1385 	raw_spin_rq_lock_nested(rq, 0);
1386 }
1387 
1388 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1389 {
1390 	local_irq_disable();
1391 	raw_spin_rq_lock(rq);
1392 }
1393 
1394 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1395 {
1396 	raw_spin_rq_unlock(rq);
1397 	local_irq_enable();
1398 }
1399 
1400 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1401 {
1402 	unsigned long flags;
1403 	local_irq_save(flags);
1404 	raw_spin_rq_lock(rq);
1405 	return flags;
1406 }
1407 
1408 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1409 {
1410 	raw_spin_rq_unlock(rq);
1411 	local_irq_restore(flags);
1412 }
1413 
1414 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1415 do {						\
1416 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1417 } while (0)
1418 
1419 #ifdef CONFIG_SCHED_SMT
1420 extern void __update_idle_core(struct rq *rq);
1421 
1422 static inline void update_idle_core(struct rq *rq)
1423 {
1424 	if (static_branch_unlikely(&sched_smt_present))
1425 		__update_idle_core(rq);
1426 }
1427 
1428 #else
1429 static inline void update_idle_core(struct rq *rq) { }
1430 #endif
1431 
1432 #ifdef CONFIG_FAIR_GROUP_SCHED
1433 static inline struct task_struct *task_of(struct sched_entity *se)
1434 {
1435 	SCHED_WARN_ON(!entity_is_task(se));
1436 	return container_of(se, struct task_struct, se);
1437 }
1438 
1439 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1440 {
1441 	return p->se.cfs_rq;
1442 }
1443 
1444 /* runqueue on which this entity is (to be) queued */
1445 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1446 {
1447 	return se->cfs_rq;
1448 }
1449 
1450 /* runqueue "owned" by this group */
1451 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1452 {
1453 	return grp->my_q;
1454 }
1455 
1456 #else
1457 
1458 #define task_of(_se)	container_of(_se, struct task_struct, se)
1459 
1460 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1461 {
1462 	return &task_rq(p)->cfs;
1463 }
1464 
1465 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1466 {
1467 	const struct task_struct *p = task_of(se);
1468 	struct rq *rq = task_rq(p);
1469 
1470 	return &rq->cfs;
1471 }
1472 
1473 /* runqueue "owned" by this group */
1474 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1475 {
1476 	return NULL;
1477 }
1478 #endif
1479 
1480 extern void update_rq_clock(struct rq *rq);
1481 
1482 /*
1483  * rq::clock_update_flags bits
1484  *
1485  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1486  *  call to __schedule(). This is an optimisation to avoid
1487  *  neighbouring rq clock updates.
1488  *
1489  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1490  *  in effect and calls to update_rq_clock() are being ignored.
1491  *
1492  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1493  *  made to update_rq_clock() since the last time rq::lock was pinned.
1494  *
1495  * If inside of __schedule(), clock_update_flags will have been
1496  * shifted left (a left shift is a cheap operation for the fast path
1497  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1498  *
1499  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1500  *
1501  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1502  * one position though, because the next rq_unpin_lock() will shift it
1503  * back.
1504  */
1505 #define RQCF_REQ_SKIP		0x01
1506 #define RQCF_ACT_SKIP		0x02
1507 #define RQCF_UPDATED		0x04
1508 
1509 static inline void assert_clock_updated(struct rq *rq)
1510 {
1511 	/*
1512 	 * The only reason for not seeing a clock update since the
1513 	 * last rq_pin_lock() is if we're currently skipping updates.
1514 	 */
1515 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1516 }
1517 
1518 static inline u64 rq_clock(struct rq *rq)
1519 {
1520 	lockdep_assert_rq_held(rq);
1521 	assert_clock_updated(rq);
1522 
1523 	return rq->clock;
1524 }
1525 
1526 static inline u64 rq_clock_task(struct rq *rq)
1527 {
1528 	lockdep_assert_rq_held(rq);
1529 	assert_clock_updated(rq);
1530 
1531 	return rq->clock_task;
1532 }
1533 
1534 /**
1535  * By default the decay is the default pelt decay period.
1536  * The decay shift can change the decay period in
1537  * multiples of 32.
1538  *  Decay shift		Decay period(ms)
1539  *	0			32
1540  *	1			64
1541  *	2			128
1542  *	3			256
1543  *	4			512
1544  */
1545 extern int sched_thermal_decay_shift;
1546 
1547 static inline u64 rq_clock_thermal(struct rq *rq)
1548 {
1549 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1550 }
1551 
1552 static inline void rq_clock_skip_update(struct rq *rq)
1553 {
1554 	lockdep_assert_rq_held(rq);
1555 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1556 }
1557 
1558 /*
1559  * See rt task throttling, which is the only time a skip
1560  * request is canceled.
1561  */
1562 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1563 {
1564 	lockdep_assert_rq_held(rq);
1565 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1566 }
1567 
1568 /*
1569  * During cpu offlining and rq wide unthrottling, we can trigger
1570  * an update_rq_clock() for several cfs and rt runqueues (Typically
1571  * when using list_for_each_entry_*)
1572  * rq_clock_start_loop_update() can be called after updating the clock
1573  * once and before iterating over the list to prevent multiple update.
1574  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1575  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1576  */
1577 static inline void rq_clock_start_loop_update(struct rq *rq)
1578 {
1579 	lockdep_assert_rq_held(rq);
1580 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1581 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1582 }
1583 
1584 static inline void rq_clock_stop_loop_update(struct rq *rq)
1585 {
1586 	lockdep_assert_rq_held(rq);
1587 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1588 }
1589 
1590 struct rq_flags {
1591 	unsigned long flags;
1592 	struct pin_cookie cookie;
1593 #ifdef CONFIG_SCHED_DEBUG
1594 	/*
1595 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1596 	 * current pin context is stashed here in case it needs to be
1597 	 * restored in rq_repin_lock().
1598 	 */
1599 	unsigned int clock_update_flags;
1600 #endif
1601 };
1602 
1603 extern struct balance_callback balance_push_callback;
1604 
1605 /*
1606  * Lockdep annotation that avoids accidental unlocks; it's like a
1607  * sticky/continuous lockdep_assert_held().
1608  *
1609  * This avoids code that has access to 'struct rq *rq' (basically everything in
1610  * the scheduler) from accidentally unlocking the rq if they do not also have a
1611  * copy of the (on-stack) 'struct rq_flags rf'.
1612  *
1613  * Also see Documentation/locking/lockdep-design.rst.
1614  */
1615 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1616 {
1617 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1618 
1619 #ifdef CONFIG_SCHED_DEBUG
1620 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1621 	rf->clock_update_flags = 0;
1622 #ifdef CONFIG_SMP
1623 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1624 #endif
1625 #endif
1626 }
1627 
1628 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1629 {
1630 #ifdef CONFIG_SCHED_DEBUG
1631 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1632 		rf->clock_update_flags = RQCF_UPDATED;
1633 #endif
1634 
1635 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1636 }
1637 
1638 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1639 {
1640 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1641 
1642 #ifdef CONFIG_SCHED_DEBUG
1643 	/*
1644 	 * Restore the value we stashed in @rf for this pin context.
1645 	 */
1646 	rq->clock_update_flags |= rf->clock_update_flags;
1647 #endif
1648 }
1649 
1650 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1651 	__acquires(rq->lock);
1652 
1653 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1654 	__acquires(p->pi_lock)
1655 	__acquires(rq->lock);
1656 
1657 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1658 	__releases(rq->lock)
1659 {
1660 	rq_unpin_lock(rq, rf);
1661 	raw_spin_rq_unlock(rq);
1662 }
1663 
1664 static inline void
1665 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1666 	__releases(rq->lock)
1667 	__releases(p->pi_lock)
1668 {
1669 	rq_unpin_lock(rq, rf);
1670 	raw_spin_rq_unlock(rq);
1671 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1672 }
1673 
1674 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1675 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1676 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1677 		    struct rq *rq; struct rq_flags rf)
1678 
1679 static inline void
1680 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1681 	__acquires(rq->lock)
1682 {
1683 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1684 	rq_pin_lock(rq, rf);
1685 }
1686 
1687 static inline void
1688 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1689 	__acquires(rq->lock)
1690 {
1691 	raw_spin_rq_lock_irq(rq);
1692 	rq_pin_lock(rq, rf);
1693 }
1694 
1695 static inline void
1696 rq_lock(struct rq *rq, struct rq_flags *rf)
1697 	__acquires(rq->lock)
1698 {
1699 	raw_spin_rq_lock(rq);
1700 	rq_pin_lock(rq, rf);
1701 }
1702 
1703 static inline void
1704 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1705 	__releases(rq->lock)
1706 {
1707 	rq_unpin_lock(rq, rf);
1708 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1709 }
1710 
1711 static inline void
1712 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1713 	__releases(rq->lock)
1714 {
1715 	rq_unpin_lock(rq, rf);
1716 	raw_spin_rq_unlock_irq(rq);
1717 }
1718 
1719 static inline void
1720 rq_unlock(struct rq *rq, struct rq_flags *rf)
1721 	__releases(rq->lock)
1722 {
1723 	rq_unpin_lock(rq, rf);
1724 	raw_spin_rq_unlock(rq);
1725 }
1726 
1727 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1728 		    rq_lock(_T->lock, &_T->rf),
1729 		    rq_unlock(_T->lock, &_T->rf),
1730 		    struct rq_flags rf)
1731 
1732 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1733 		    rq_lock_irq(_T->lock, &_T->rf),
1734 		    rq_unlock_irq(_T->lock, &_T->rf),
1735 		    struct rq_flags rf)
1736 
1737 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1738 		    rq_lock_irqsave(_T->lock, &_T->rf),
1739 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1740 		    struct rq_flags rf)
1741 
1742 static inline struct rq *
1743 this_rq_lock_irq(struct rq_flags *rf)
1744 	__acquires(rq->lock)
1745 {
1746 	struct rq *rq;
1747 
1748 	local_irq_disable();
1749 	rq = this_rq();
1750 	rq_lock(rq, rf);
1751 	return rq;
1752 }
1753 
1754 #ifdef CONFIG_NUMA
1755 enum numa_topology_type {
1756 	NUMA_DIRECT,
1757 	NUMA_GLUELESS_MESH,
1758 	NUMA_BACKPLANE,
1759 };
1760 extern enum numa_topology_type sched_numa_topology_type;
1761 extern int sched_max_numa_distance;
1762 extern bool find_numa_distance(int distance);
1763 extern void sched_init_numa(int offline_node);
1764 extern void sched_update_numa(int cpu, bool online);
1765 extern void sched_domains_numa_masks_set(unsigned int cpu);
1766 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1767 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1768 #else
1769 static inline void sched_init_numa(int offline_node) { }
1770 static inline void sched_update_numa(int cpu, bool online) { }
1771 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1772 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1773 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1774 {
1775 	return nr_cpu_ids;
1776 }
1777 #endif
1778 
1779 #ifdef CONFIG_NUMA_BALANCING
1780 /* The regions in numa_faults array from task_struct */
1781 enum numa_faults_stats {
1782 	NUMA_MEM = 0,
1783 	NUMA_CPU,
1784 	NUMA_MEMBUF,
1785 	NUMA_CPUBUF
1786 };
1787 extern void sched_setnuma(struct task_struct *p, int node);
1788 extern int migrate_task_to(struct task_struct *p, int cpu);
1789 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1790 			int cpu, int scpu);
1791 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1792 #else
1793 static inline void
1794 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1795 {
1796 }
1797 #endif /* CONFIG_NUMA_BALANCING */
1798 
1799 #ifdef CONFIG_SMP
1800 
1801 static inline void
1802 queue_balance_callback(struct rq *rq,
1803 		       struct balance_callback *head,
1804 		       void (*func)(struct rq *rq))
1805 {
1806 	lockdep_assert_rq_held(rq);
1807 
1808 	/*
1809 	 * Don't (re)queue an already queued item; nor queue anything when
1810 	 * balance_push() is active, see the comment with
1811 	 * balance_push_callback.
1812 	 */
1813 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1814 		return;
1815 
1816 	head->func = func;
1817 	head->next = rq->balance_callback;
1818 	rq->balance_callback = head;
1819 }
1820 
1821 #define rcu_dereference_check_sched_domain(p) \
1822 	rcu_dereference_check((p), \
1823 			      lockdep_is_held(&sched_domains_mutex))
1824 
1825 /*
1826  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1827  * See destroy_sched_domains: call_rcu for details.
1828  *
1829  * The domain tree of any CPU may only be accessed from within
1830  * preempt-disabled sections.
1831  */
1832 #define for_each_domain(cpu, __sd) \
1833 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1834 			__sd; __sd = __sd->parent)
1835 
1836 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1837 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1838 static const unsigned int SD_SHARED_CHILD_MASK =
1839 #include <linux/sched/sd_flags.h>
1840 0;
1841 #undef SD_FLAG
1842 
1843 /**
1844  * highest_flag_domain - Return highest sched_domain containing flag.
1845  * @cpu:	The CPU whose highest level of sched domain is to
1846  *		be returned.
1847  * @flag:	The flag to check for the highest sched_domain
1848  *		for the given CPU.
1849  *
1850  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1851  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1852  */
1853 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1854 {
1855 	struct sched_domain *sd, *hsd = NULL;
1856 
1857 	for_each_domain(cpu, sd) {
1858 		if (sd->flags & flag) {
1859 			hsd = sd;
1860 			continue;
1861 		}
1862 
1863 		/*
1864 		 * Stop the search if @flag is known to be shared at lower
1865 		 * levels. It will not be found further up.
1866 		 */
1867 		if (flag & SD_SHARED_CHILD_MASK)
1868 			break;
1869 	}
1870 
1871 	return hsd;
1872 }
1873 
1874 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1875 {
1876 	struct sched_domain *sd;
1877 
1878 	for_each_domain(cpu, sd) {
1879 		if (sd->flags & flag)
1880 			break;
1881 	}
1882 
1883 	return sd;
1884 }
1885 
1886 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1887 DECLARE_PER_CPU(int, sd_llc_size);
1888 DECLARE_PER_CPU(int, sd_llc_id);
1889 DECLARE_PER_CPU(int, sd_share_id);
1890 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1891 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1892 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1893 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1894 extern struct static_key_false sched_asym_cpucapacity;
1895 extern struct static_key_false sched_cluster_active;
1896 
1897 static __always_inline bool sched_asym_cpucap_active(void)
1898 {
1899 	return static_branch_unlikely(&sched_asym_cpucapacity);
1900 }
1901 
1902 struct sched_group_capacity {
1903 	atomic_t		ref;
1904 	/*
1905 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1906 	 * for a single CPU.
1907 	 */
1908 	unsigned long		capacity;
1909 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1910 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1911 	unsigned long		next_update;
1912 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1913 
1914 #ifdef CONFIG_SCHED_DEBUG
1915 	int			id;
1916 #endif
1917 
1918 	unsigned long		cpumask[];		/* Balance mask */
1919 };
1920 
1921 struct sched_group {
1922 	struct sched_group	*next;			/* Must be a circular list */
1923 	atomic_t		ref;
1924 
1925 	unsigned int		group_weight;
1926 	unsigned int		cores;
1927 	struct sched_group_capacity *sgc;
1928 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1929 	int			flags;
1930 
1931 	/*
1932 	 * The CPUs this group covers.
1933 	 *
1934 	 * NOTE: this field is variable length. (Allocated dynamically
1935 	 * by attaching extra space to the end of the structure,
1936 	 * depending on how many CPUs the kernel has booted up with)
1937 	 */
1938 	unsigned long		cpumask[];
1939 };
1940 
1941 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1942 {
1943 	return to_cpumask(sg->cpumask);
1944 }
1945 
1946 /*
1947  * See build_balance_mask().
1948  */
1949 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1950 {
1951 	return to_cpumask(sg->sgc->cpumask);
1952 }
1953 
1954 extern int group_balance_cpu(struct sched_group *sg);
1955 
1956 #ifdef CONFIG_SCHED_DEBUG
1957 void update_sched_domain_debugfs(void);
1958 void dirty_sched_domain_sysctl(int cpu);
1959 #else
1960 static inline void update_sched_domain_debugfs(void)
1961 {
1962 }
1963 static inline void dirty_sched_domain_sysctl(int cpu)
1964 {
1965 }
1966 #endif
1967 
1968 extern int sched_update_scaling(void);
1969 
1970 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1971 {
1972 	if (!p->user_cpus_ptr)
1973 		return cpu_possible_mask; /* &init_task.cpus_mask */
1974 	return p->user_cpus_ptr;
1975 }
1976 #endif /* CONFIG_SMP */
1977 
1978 #include "stats.h"
1979 
1980 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1981 
1982 extern void __sched_core_account_forceidle(struct rq *rq);
1983 
1984 static inline void sched_core_account_forceidle(struct rq *rq)
1985 {
1986 	if (schedstat_enabled())
1987 		__sched_core_account_forceidle(rq);
1988 }
1989 
1990 extern void __sched_core_tick(struct rq *rq);
1991 
1992 static inline void sched_core_tick(struct rq *rq)
1993 {
1994 	if (sched_core_enabled(rq) && schedstat_enabled())
1995 		__sched_core_tick(rq);
1996 }
1997 
1998 #else
1999 
2000 static inline void sched_core_account_forceidle(struct rq *rq) {}
2001 
2002 static inline void sched_core_tick(struct rq *rq) {}
2003 
2004 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2005 
2006 #ifdef CONFIG_CGROUP_SCHED
2007 
2008 /*
2009  * Return the group to which this tasks belongs.
2010  *
2011  * We cannot use task_css() and friends because the cgroup subsystem
2012  * changes that value before the cgroup_subsys::attach() method is called,
2013  * therefore we cannot pin it and might observe the wrong value.
2014  *
2015  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2016  * core changes this before calling sched_move_task().
2017  *
2018  * Instead we use a 'copy' which is updated from sched_move_task() while
2019  * holding both task_struct::pi_lock and rq::lock.
2020  */
2021 static inline struct task_group *task_group(struct task_struct *p)
2022 {
2023 	return p->sched_task_group;
2024 }
2025 
2026 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2027 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2028 {
2029 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2030 	struct task_group *tg = task_group(p);
2031 #endif
2032 
2033 #ifdef CONFIG_FAIR_GROUP_SCHED
2034 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2035 	p->se.cfs_rq = tg->cfs_rq[cpu];
2036 	p->se.parent = tg->se[cpu];
2037 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2038 #endif
2039 
2040 #ifdef CONFIG_RT_GROUP_SCHED
2041 	p->rt.rt_rq  = tg->rt_rq[cpu];
2042 	p->rt.parent = tg->rt_se[cpu];
2043 #endif
2044 }
2045 
2046 #else /* CONFIG_CGROUP_SCHED */
2047 
2048 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2049 static inline struct task_group *task_group(struct task_struct *p)
2050 {
2051 	return NULL;
2052 }
2053 
2054 #endif /* CONFIG_CGROUP_SCHED */
2055 
2056 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2057 {
2058 	set_task_rq(p, cpu);
2059 #ifdef CONFIG_SMP
2060 	/*
2061 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2062 	 * successfully executed on another CPU. We must ensure that updates of
2063 	 * per-task data have been completed by this moment.
2064 	 */
2065 	smp_wmb();
2066 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2067 	p->wake_cpu = cpu;
2068 #endif
2069 }
2070 
2071 /*
2072  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2073  */
2074 #ifdef CONFIG_SCHED_DEBUG
2075 # define const_debug __read_mostly
2076 #else
2077 # define const_debug const
2078 #endif
2079 
2080 #define SCHED_FEAT(name, enabled)	\
2081 	__SCHED_FEAT_##name ,
2082 
2083 enum {
2084 #include "features.h"
2085 	__SCHED_FEAT_NR,
2086 };
2087 
2088 #undef SCHED_FEAT
2089 
2090 #ifdef CONFIG_SCHED_DEBUG
2091 
2092 /*
2093  * To support run-time toggling of sched features, all the translation units
2094  * (but core.c) reference the sysctl_sched_features defined in core.c.
2095  */
2096 extern const_debug unsigned int sysctl_sched_features;
2097 
2098 #ifdef CONFIG_JUMP_LABEL
2099 #define SCHED_FEAT(name, enabled)					\
2100 static __always_inline bool static_branch_##name(struct static_key *key) \
2101 {									\
2102 	return static_key_##enabled(key);				\
2103 }
2104 
2105 #include "features.h"
2106 #undef SCHED_FEAT
2107 
2108 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2109 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2110 
2111 #else /* !CONFIG_JUMP_LABEL */
2112 
2113 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2114 
2115 #endif /* CONFIG_JUMP_LABEL */
2116 
2117 #else /* !SCHED_DEBUG */
2118 
2119 /*
2120  * Each translation unit has its own copy of sysctl_sched_features to allow
2121  * constants propagation at compile time and compiler optimization based on
2122  * features default.
2123  */
2124 #define SCHED_FEAT(name, enabled)	\
2125 	(1UL << __SCHED_FEAT_##name) * enabled |
2126 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2127 #include "features.h"
2128 	0;
2129 #undef SCHED_FEAT
2130 
2131 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2132 
2133 #endif /* SCHED_DEBUG */
2134 
2135 extern struct static_key_false sched_numa_balancing;
2136 extern struct static_key_false sched_schedstats;
2137 
2138 static inline u64 global_rt_period(void)
2139 {
2140 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2141 }
2142 
2143 static inline u64 global_rt_runtime(void)
2144 {
2145 	if (sysctl_sched_rt_runtime < 0)
2146 		return RUNTIME_INF;
2147 
2148 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2149 }
2150 
2151 static inline int task_current(struct rq *rq, struct task_struct *p)
2152 {
2153 	return rq->curr == p;
2154 }
2155 
2156 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2157 {
2158 #ifdef CONFIG_SMP
2159 	return p->on_cpu;
2160 #else
2161 	return task_current(rq, p);
2162 #endif
2163 }
2164 
2165 static inline int task_on_rq_queued(struct task_struct *p)
2166 {
2167 	return p->on_rq == TASK_ON_RQ_QUEUED;
2168 }
2169 
2170 static inline int task_on_rq_migrating(struct task_struct *p)
2171 {
2172 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2173 }
2174 
2175 /* Wake flags. The first three directly map to some SD flag value */
2176 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2177 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2178 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2179 
2180 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2181 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2182 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2183 
2184 #ifdef CONFIG_SMP
2185 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2186 static_assert(WF_FORK == SD_BALANCE_FORK);
2187 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2188 #endif
2189 
2190 /*
2191  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2192  * of tasks with abnormal "nice" values across CPUs the contribution that
2193  * each task makes to its run queue's load is weighted according to its
2194  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2195  * scaled version of the new time slice allocation that they receive on time
2196  * slice expiry etc.
2197  */
2198 
2199 #define WEIGHT_IDLEPRIO		3
2200 #define WMULT_IDLEPRIO		1431655765
2201 
2202 extern const int		sched_prio_to_weight[40];
2203 extern const u32		sched_prio_to_wmult[40];
2204 
2205 /*
2206  * {de,en}queue flags:
2207  *
2208  * DEQUEUE_SLEEP  - task is no longer runnable
2209  * ENQUEUE_WAKEUP - task just became runnable
2210  *
2211  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2212  *                are in a known state which allows modification. Such pairs
2213  *                should preserve as much state as possible.
2214  *
2215  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2216  *        in the runqueue.
2217  *
2218  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2219  *
2220  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2221  *
2222  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2223  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2224  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2225  *
2226  */
2227 
2228 #define DEQUEUE_SLEEP		0x01
2229 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2230 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2231 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2232 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2233 
2234 #define ENQUEUE_WAKEUP		0x01
2235 #define ENQUEUE_RESTORE		0x02
2236 #define ENQUEUE_MOVE		0x04
2237 #define ENQUEUE_NOCLOCK		0x08
2238 
2239 #define ENQUEUE_HEAD		0x10
2240 #define ENQUEUE_REPLENISH	0x20
2241 #ifdef CONFIG_SMP
2242 #define ENQUEUE_MIGRATED	0x40
2243 #else
2244 #define ENQUEUE_MIGRATED	0x00
2245 #endif
2246 #define ENQUEUE_INITIAL		0x80
2247 #define ENQUEUE_MIGRATING	0x100
2248 
2249 #define RETRY_TASK		((void *)-1UL)
2250 
2251 struct affinity_context {
2252 	const struct cpumask *new_mask;
2253 	struct cpumask *user_mask;
2254 	unsigned int flags;
2255 };
2256 
2257 extern s64 update_curr_common(struct rq *rq);
2258 
2259 struct sched_class {
2260 
2261 #ifdef CONFIG_UCLAMP_TASK
2262 	int uclamp_enabled;
2263 #endif
2264 
2265 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2266 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2267 	void (*yield_task)   (struct rq *rq);
2268 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2269 
2270 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2271 
2272 	struct task_struct *(*pick_next_task)(struct rq *rq);
2273 
2274 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2275 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2276 
2277 #ifdef CONFIG_SMP
2278 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2279 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2280 
2281 	struct task_struct * (*pick_task)(struct rq *rq);
2282 
2283 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2284 
2285 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2286 
2287 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2288 
2289 	void (*rq_online)(struct rq *rq);
2290 	void (*rq_offline)(struct rq *rq);
2291 
2292 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2293 #endif
2294 
2295 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2296 	void (*task_fork)(struct task_struct *p);
2297 	void (*task_dead)(struct task_struct *p);
2298 
2299 	/*
2300 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2301 	 * cannot assume the switched_from/switched_to pair is serialized by
2302 	 * rq->lock. They are however serialized by p->pi_lock.
2303 	 */
2304 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2305 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2306 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2307 			      int oldprio);
2308 
2309 	unsigned int (*get_rr_interval)(struct rq *rq,
2310 					struct task_struct *task);
2311 
2312 	void (*update_curr)(struct rq *rq);
2313 
2314 #ifdef CONFIG_FAIR_GROUP_SCHED
2315 	void (*task_change_group)(struct task_struct *p);
2316 #endif
2317 
2318 #ifdef CONFIG_SCHED_CORE
2319 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2320 #endif
2321 };
2322 
2323 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2324 {
2325 	WARN_ON_ONCE(rq->curr != prev);
2326 	prev->sched_class->put_prev_task(rq, prev);
2327 }
2328 
2329 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2330 {
2331 	next->sched_class->set_next_task(rq, next, false);
2332 }
2333 
2334 
2335 /*
2336  * Helper to define a sched_class instance; each one is placed in a separate
2337  * section which is ordered by the linker script:
2338  *
2339  *   include/asm-generic/vmlinux.lds.h
2340  *
2341  * *CAREFUL* they are laid out in *REVERSE* order!!!
2342  *
2343  * Also enforce alignment on the instance, not the type, to guarantee layout.
2344  */
2345 #define DEFINE_SCHED_CLASS(name) \
2346 const struct sched_class name##_sched_class \
2347 	__aligned(__alignof__(struct sched_class)) \
2348 	__section("__" #name "_sched_class")
2349 
2350 /* Defined in include/asm-generic/vmlinux.lds.h */
2351 extern struct sched_class __sched_class_highest[];
2352 extern struct sched_class __sched_class_lowest[];
2353 
2354 #define for_class_range(class, _from, _to) \
2355 	for (class = (_from); class < (_to); class++)
2356 
2357 #define for_each_class(class) \
2358 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2359 
2360 #define sched_class_above(_a, _b)	((_a) < (_b))
2361 
2362 extern const struct sched_class stop_sched_class;
2363 extern const struct sched_class dl_sched_class;
2364 extern const struct sched_class rt_sched_class;
2365 extern const struct sched_class fair_sched_class;
2366 extern const struct sched_class idle_sched_class;
2367 
2368 static inline bool sched_stop_runnable(struct rq *rq)
2369 {
2370 	return rq->stop && task_on_rq_queued(rq->stop);
2371 }
2372 
2373 static inline bool sched_dl_runnable(struct rq *rq)
2374 {
2375 	return rq->dl.dl_nr_running > 0;
2376 }
2377 
2378 static inline bool sched_rt_runnable(struct rq *rq)
2379 {
2380 	return rq->rt.rt_queued > 0;
2381 }
2382 
2383 static inline bool sched_fair_runnable(struct rq *rq)
2384 {
2385 	return rq->cfs.nr_running > 0;
2386 }
2387 
2388 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2389 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2390 
2391 #define SCA_CHECK		0x01
2392 #define SCA_MIGRATE_DISABLE	0x02
2393 #define SCA_MIGRATE_ENABLE	0x04
2394 #define SCA_USER		0x08
2395 
2396 #ifdef CONFIG_SMP
2397 
2398 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2399 
2400 extern void trigger_load_balance(struct rq *rq);
2401 
2402 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2403 
2404 static inline struct task_struct *get_push_task(struct rq *rq)
2405 {
2406 	struct task_struct *p = rq->curr;
2407 
2408 	lockdep_assert_rq_held(rq);
2409 
2410 	if (rq->push_busy)
2411 		return NULL;
2412 
2413 	if (p->nr_cpus_allowed == 1)
2414 		return NULL;
2415 
2416 	if (p->migration_disabled)
2417 		return NULL;
2418 
2419 	rq->push_busy = true;
2420 	return get_task_struct(p);
2421 }
2422 
2423 extern int push_cpu_stop(void *arg);
2424 
2425 #endif
2426 
2427 #ifdef CONFIG_CPU_IDLE
2428 static inline void idle_set_state(struct rq *rq,
2429 				  struct cpuidle_state *idle_state)
2430 {
2431 	rq->idle_state = idle_state;
2432 }
2433 
2434 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2435 {
2436 	SCHED_WARN_ON(!rcu_read_lock_held());
2437 
2438 	return rq->idle_state;
2439 }
2440 #else
2441 static inline void idle_set_state(struct rq *rq,
2442 				  struct cpuidle_state *idle_state)
2443 {
2444 }
2445 
2446 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2447 {
2448 	return NULL;
2449 }
2450 #endif
2451 
2452 extern void schedule_idle(void);
2453 asmlinkage void schedule_user(void);
2454 
2455 extern void sysrq_sched_debug_show(void);
2456 extern void sched_init_granularity(void);
2457 extern void update_max_interval(void);
2458 
2459 extern void init_sched_dl_class(void);
2460 extern void init_sched_rt_class(void);
2461 extern void init_sched_fair_class(void);
2462 
2463 extern void reweight_task(struct task_struct *p, int prio);
2464 
2465 extern void resched_curr(struct rq *rq);
2466 extern void resched_cpu(int cpu);
2467 
2468 extern struct rt_bandwidth def_rt_bandwidth;
2469 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2470 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2471 
2472 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2473 
2474 #define BW_SHIFT		20
2475 #define BW_UNIT			(1 << BW_SHIFT)
2476 #define RATIO_SHIFT		8
2477 #define MAX_BW_BITS		(64 - BW_SHIFT)
2478 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2479 unsigned long to_ratio(u64 period, u64 runtime);
2480 
2481 extern void init_entity_runnable_average(struct sched_entity *se);
2482 extern void post_init_entity_util_avg(struct task_struct *p);
2483 
2484 #ifdef CONFIG_NO_HZ_FULL
2485 extern bool sched_can_stop_tick(struct rq *rq);
2486 extern int __init sched_tick_offload_init(void);
2487 
2488 /*
2489  * Tick may be needed by tasks in the runqueue depending on their policy and
2490  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2491  * nohz mode if necessary.
2492  */
2493 static inline void sched_update_tick_dependency(struct rq *rq)
2494 {
2495 	int cpu = cpu_of(rq);
2496 
2497 	if (!tick_nohz_full_cpu(cpu))
2498 		return;
2499 
2500 	if (sched_can_stop_tick(rq))
2501 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2502 	else
2503 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2504 }
2505 #else
2506 static inline int sched_tick_offload_init(void) { return 0; }
2507 static inline void sched_update_tick_dependency(struct rq *rq) { }
2508 #endif
2509 
2510 static inline void add_nr_running(struct rq *rq, unsigned count)
2511 {
2512 	unsigned prev_nr = rq->nr_running;
2513 
2514 	rq->nr_running = prev_nr + count;
2515 	if (trace_sched_update_nr_running_tp_enabled()) {
2516 		call_trace_sched_update_nr_running(rq, count);
2517 	}
2518 
2519 #ifdef CONFIG_SMP
2520 	if (prev_nr < 2 && rq->nr_running >= 2) {
2521 		if (!READ_ONCE(rq->rd->overload))
2522 			WRITE_ONCE(rq->rd->overload, 1);
2523 	}
2524 #endif
2525 
2526 	sched_update_tick_dependency(rq);
2527 }
2528 
2529 static inline void sub_nr_running(struct rq *rq, unsigned count)
2530 {
2531 	rq->nr_running -= count;
2532 	if (trace_sched_update_nr_running_tp_enabled()) {
2533 		call_trace_sched_update_nr_running(rq, -count);
2534 	}
2535 
2536 	/* Check if we still need preemption */
2537 	sched_update_tick_dependency(rq);
2538 }
2539 
2540 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2541 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2542 
2543 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2544 
2545 #ifdef CONFIG_PREEMPT_RT
2546 #define SCHED_NR_MIGRATE_BREAK 8
2547 #else
2548 #define SCHED_NR_MIGRATE_BREAK 32
2549 #endif
2550 
2551 extern const_debug unsigned int sysctl_sched_nr_migrate;
2552 extern const_debug unsigned int sysctl_sched_migration_cost;
2553 
2554 extern unsigned int sysctl_sched_base_slice;
2555 
2556 #ifdef CONFIG_SCHED_DEBUG
2557 extern int sysctl_resched_latency_warn_ms;
2558 extern int sysctl_resched_latency_warn_once;
2559 
2560 extern unsigned int sysctl_sched_tunable_scaling;
2561 
2562 extern unsigned int sysctl_numa_balancing_scan_delay;
2563 extern unsigned int sysctl_numa_balancing_scan_period_min;
2564 extern unsigned int sysctl_numa_balancing_scan_period_max;
2565 extern unsigned int sysctl_numa_balancing_scan_size;
2566 extern unsigned int sysctl_numa_balancing_hot_threshold;
2567 #endif
2568 
2569 #ifdef CONFIG_SCHED_HRTICK
2570 
2571 /*
2572  * Use hrtick when:
2573  *  - enabled by features
2574  *  - hrtimer is actually high res
2575  */
2576 static inline int hrtick_enabled(struct rq *rq)
2577 {
2578 	if (!cpu_active(cpu_of(rq)))
2579 		return 0;
2580 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2581 }
2582 
2583 static inline int hrtick_enabled_fair(struct rq *rq)
2584 {
2585 	if (!sched_feat(HRTICK))
2586 		return 0;
2587 	return hrtick_enabled(rq);
2588 }
2589 
2590 static inline int hrtick_enabled_dl(struct rq *rq)
2591 {
2592 	if (!sched_feat(HRTICK_DL))
2593 		return 0;
2594 	return hrtick_enabled(rq);
2595 }
2596 
2597 void hrtick_start(struct rq *rq, u64 delay);
2598 
2599 #else
2600 
2601 static inline int hrtick_enabled_fair(struct rq *rq)
2602 {
2603 	return 0;
2604 }
2605 
2606 static inline int hrtick_enabled_dl(struct rq *rq)
2607 {
2608 	return 0;
2609 }
2610 
2611 static inline int hrtick_enabled(struct rq *rq)
2612 {
2613 	return 0;
2614 }
2615 
2616 #endif /* CONFIG_SCHED_HRTICK */
2617 
2618 #ifndef arch_scale_freq_tick
2619 static __always_inline
2620 void arch_scale_freq_tick(void)
2621 {
2622 }
2623 #endif
2624 
2625 #ifndef arch_scale_freq_capacity
2626 /**
2627  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2628  * @cpu: the CPU in question.
2629  *
2630  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2631  *
2632  *     f_curr
2633  *     ------ * SCHED_CAPACITY_SCALE
2634  *     f_max
2635  */
2636 static __always_inline
2637 unsigned long arch_scale_freq_capacity(int cpu)
2638 {
2639 	return SCHED_CAPACITY_SCALE;
2640 }
2641 #endif
2642 
2643 #ifdef CONFIG_SCHED_DEBUG
2644 /*
2645  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2646  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2647  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2648  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2649  */
2650 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2651 {
2652 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2653 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2654 #ifdef CONFIG_SMP
2655 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2656 #endif
2657 }
2658 #else
2659 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2660 #endif
2661 
2662 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2663 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2664 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2665 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2666   _lock; return _t; }
2667 
2668 #ifdef CONFIG_SMP
2669 
2670 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2671 {
2672 #ifdef CONFIG_SCHED_CORE
2673 	/*
2674 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2675 	 * order by core-id first and cpu-id second.
2676 	 *
2677 	 * Notably:
2678 	 *
2679 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2680 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2681 	 *
2682 	 * when only cpu-id is considered.
2683 	 */
2684 	if (rq1->core->cpu < rq2->core->cpu)
2685 		return true;
2686 	if (rq1->core->cpu > rq2->core->cpu)
2687 		return false;
2688 
2689 	/*
2690 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2691 	 */
2692 #endif
2693 	return rq1->cpu < rq2->cpu;
2694 }
2695 
2696 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2697 
2698 #ifdef CONFIG_PREEMPTION
2699 
2700 /*
2701  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2702  * way at the expense of forcing extra atomic operations in all
2703  * invocations.  This assures that the double_lock is acquired using the
2704  * same underlying policy as the spinlock_t on this architecture, which
2705  * reduces latency compared to the unfair variant below.  However, it
2706  * also adds more overhead and therefore may reduce throughput.
2707  */
2708 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2709 	__releases(this_rq->lock)
2710 	__acquires(busiest->lock)
2711 	__acquires(this_rq->lock)
2712 {
2713 	raw_spin_rq_unlock(this_rq);
2714 	double_rq_lock(this_rq, busiest);
2715 
2716 	return 1;
2717 }
2718 
2719 #else
2720 /*
2721  * Unfair double_lock_balance: Optimizes throughput at the expense of
2722  * latency by eliminating extra atomic operations when the locks are
2723  * already in proper order on entry.  This favors lower CPU-ids and will
2724  * grant the double lock to lower CPUs over higher ids under contention,
2725  * regardless of entry order into the function.
2726  */
2727 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2728 	__releases(this_rq->lock)
2729 	__acquires(busiest->lock)
2730 	__acquires(this_rq->lock)
2731 {
2732 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2733 	    likely(raw_spin_rq_trylock(busiest))) {
2734 		double_rq_clock_clear_update(this_rq, busiest);
2735 		return 0;
2736 	}
2737 
2738 	if (rq_order_less(this_rq, busiest)) {
2739 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2740 		double_rq_clock_clear_update(this_rq, busiest);
2741 		return 0;
2742 	}
2743 
2744 	raw_spin_rq_unlock(this_rq);
2745 	double_rq_lock(this_rq, busiest);
2746 
2747 	return 1;
2748 }
2749 
2750 #endif /* CONFIG_PREEMPTION */
2751 
2752 /*
2753  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2754  */
2755 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2756 {
2757 	lockdep_assert_irqs_disabled();
2758 
2759 	return _double_lock_balance(this_rq, busiest);
2760 }
2761 
2762 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2763 	__releases(busiest->lock)
2764 {
2765 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2766 		raw_spin_rq_unlock(busiest);
2767 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2768 }
2769 
2770 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2771 {
2772 	if (l1 > l2)
2773 		swap(l1, l2);
2774 
2775 	spin_lock(l1);
2776 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2777 }
2778 
2779 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2780 {
2781 	if (l1 > l2)
2782 		swap(l1, l2);
2783 
2784 	spin_lock_irq(l1);
2785 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2786 }
2787 
2788 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2789 {
2790 	if (l1 > l2)
2791 		swap(l1, l2);
2792 
2793 	raw_spin_lock(l1);
2794 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2795 }
2796 
2797 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2798 {
2799 	raw_spin_unlock(l1);
2800 	raw_spin_unlock(l2);
2801 }
2802 
2803 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2804 		    double_raw_lock(_T->lock, _T->lock2),
2805 		    double_raw_unlock(_T->lock, _T->lock2))
2806 
2807 /*
2808  * double_rq_unlock - safely unlock two runqueues
2809  *
2810  * Note this does not restore interrupts like task_rq_unlock,
2811  * you need to do so manually after calling.
2812  */
2813 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2814 	__releases(rq1->lock)
2815 	__releases(rq2->lock)
2816 {
2817 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2818 		raw_spin_rq_unlock(rq2);
2819 	else
2820 		__release(rq2->lock);
2821 	raw_spin_rq_unlock(rq1);
2822 }
2823 
2824 extern void set_rq_online (struct rq *rq);
2825 extern void set_rq_offline(struct rq *rq);
2826 extern bool sched_smp_initialized;
2827 
2828 #else /* CONFIG_SMP */
2829 
2830 /*
2831  * double_rq_lock - safely lock two runqueues
2832  *
2833  * Note this does not disable interrupts like task_rq_lock,
2834  * you need to do so manually before calling.
2835  */
2836 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2837 	__acquires(rq1->lock)
2838 	__acquires(rq2->lock)
2839 {
2840 	WARN_ON_ONCE(!irqs_disabled());
2841 	WARN_ON_ONCE(rq1 != rq2);
2842 	raw_spin_rq_lock(rq1);
2843 	__acquire(rq2->lock);	/* Fake it out ;) */
2844 	double_rq_clock_clear_update(rq1, rq2);
2845 }
2846 
2847 /*
2848  * double_rq_unlock - safely unlock two runqueues
2849  *
2850  * Note this does not restore interrupts like task_rq_unlock,
2851  * you need to do so manually after calling.
2852  */
2853 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2854 	__releases(rq1->lock)
2855 	__releases(rq2->lock)
2856 {
2857 	WARN_ON_ONCE(rq1 != rq2);
2858 	raw_spin_rq_unlock(rq1);
2859 	__release(rq2->lock);
2860 }
2861 
2862 #endif
2863 
2864 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2865 		    double_rq_lock(_T->lock, _T->lock2),
2866 		    double_rq_unlock(_T->lock, _T->lock2))
2867 
2868 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2869 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2870 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2871 
2872 #ifdef	CONFIG_SCHED_DEBUG
2873 extern bool sched_debug_verbose;
2874 
2875 extern void print_cfs_stats(struct seq_file *m, int cpu);
2876 extern void print_rt_stats(struct seq_file *m, int cpu);
2877 extern void print_dl_stats(struct seq_file *m, int cpu);
2878 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2879 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2880 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2881 
2882 extern void resched_latency_warn(int cpu, u64 latency);
2883 #ifdef CONFIG_NUMA_BALANCING
2884 extern void
2885 show_numa_stats(struct task_struct *p, struct seq_file *m);
2886 extern void
2887 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2888 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2889 #endif /* CONFIG_NUMA_BALANCING */
2890 #else
2891 static inline void resched_latency_warn(int cpu, u64 latency) {}
2892 #endif /* CONFIG_SCHED_DEBUG */
2893 
2894 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2895 extern void init_rt_rq(struct rt_rq *rt_rq);
2896 extern void init_dl_rq(struct dl_rq *dl_rq);
2897 
2898 extern void cfs_bandwidth_usage_inc(void);
2899 extern void cfs_bandwidth_usage_dec(void);
2900 
2901 #ifdef CONFIG_NO_HZ_COMMON
2902 #define NOHZ_BALANCE_KICK_BIT	0
2903 #define NOHZ_STATS_KICK_BIT	1
2904 #define NOHZ_NEWILB_KICK_BIT	2
2905 #define NOHZ_NEXT_KICK_BIT	3
2906 
2907 /* Run rebalance_domains() */
2908 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2909 /* Update blocked load */
2910 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2911 /* Update blocked load when entering idle */
2912 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2913 /* Update nohz.next_balance */
2914 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2915 
2916 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2917 
2918 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2919 
2920 extern void nohz_balance_exit_idle(struct rq *rq);
2921 #else
2922 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2923 #endif
2924 
2925 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2926 extern void nohz_run_idle_balance(int cpu);
2927 #else
2928 static inline void nohz_run_idle_balance(int cpu) { }
2929 #endif
2930 
2931 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2932 struct irqtime {
2933 	u64			total;
2934 	u64			tick_delta;
2935 	u64			irq_start_time;
2936 	struct u64_stats_sync	sync;
2937 };
2938 
2939 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2940 
2941 /*
2942  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2943  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2944  * and never move forward.
2945  */
2946 static inline u64 irq_time_read(int cpu)
2947 {
2948 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2949 	unsigned int seq;
2950 	u64 total;
2951 
2952 	do {
2953 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2954 		total = irqtime->total;
2955 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2956 
2957 	return total;
2958 }
2959 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2960 
2961 #ifdef CONFIG_CPU_FREQ
2962 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2963 
2964 /**
2965  * cpufreq_update_util - Take a note about CPU utilization changes.
2966  * @rq: Runqueue to carry out the update for.
2967  * @flags: Update reason flags.
2968  *
2969  * This function is called by the scheduler on the CPU whose utilization is
2970  * being updated.
2971  *
2972  * It can only be called from RCU-sched read-side critical sections.
2973  *
2974  * The way cpufreq is currently arranged requires it to evaluate the CPU
2975  * performance state (frequency/voltage) on a regular basis to prevent it from
2976  * being stuck in a completely inadequate performance level for too long.
2977  * That is not guaranteed to happen if the updates are only triggered from CFS
2978  * and DL, though, because they may not be coming in if only RT tasks are
2979  * active all the time (or there are RT tasks only).
2980  *
2981  * As a workaround for that issue, this function is called periodically by the
2982  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2983  * but that really is a band-aid.  Going forward it should be replaced with
2984  * solutions targeted more specifically at RT tasks.
2985  */
2986 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2987 {
2988 	struct update_util_data *data;
2989 
2990 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2991 						  cpu_of(rq)));
2992 	if (data)
2993 		data->func(data, rq_clock(rq), flags);
2994 }
2995 #else
2996 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2997 #endif /* CONFIG_CPU_FREQ */
2998 
2999 #ifdef arch_scale_freq_capacity
3000 # ifndef arch_scale_freq_invariant
3001 #  define arch_scale_freq_invariant()	true
3002 # endif
3003 #else
3004 # define arch_scale_freq_invariant()	false
3005 #endif
3006 
3007 #ifdef CONFIG_SMP
3008 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3009 				 unsigned long *min,
3010 				 unsigned long *max);
3011 
3012 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3013 				 unsigned long min,
3014 				 unsigned long max);
3015 
3016 
3017 /*
3018  * Verify the fitness of task @p to run on @cpu taking into account the
3019  * CPU original capacity and the runtime/deadline ratio of the task.
3020  *
3021  * The function will return true if the original capacity of @cpu is
3022  * greater than or equal to task's deadline density right shifted by
3023  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3024  */
3025 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3026 {
3027 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3028 
3029 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3030 }
3031 
3032 static inline unsigned long cpu_bw_dl(struct rq *rq)
3033 {
3034 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3035 }
3036 
3037 static inline unsigned long cpu_util_dl(struct rq *rq)
3038 {
3039 	return READ_ONCE(rq->avg_dl.util_avg);
3040 }
3041 
3042 
3043 extern unsigned long cpu_util_cfs(int cpu);
3044 extern unsigned long cpu_util_cfs_boost(int cpu);
3045 
3046 static inline unsigned long cpu_util_rt(struct rq *rq)
3047 {
3048 	return READ_ONCE(rq->avg_rt.util_avg);
3049 }
3050 #endif
3051 
3052 #ifdef CONFIG_UCLAMP_TASK
3053 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3054 
3055 static inline unsigned long uclamp_rq_get(struct rq *rq,
3056 					  enum uclamp_id clamp_id)
3057 {
3058 	return READ_ONCE(rq->uclamp[clamp_id].value);
3059 }
3060 
3061 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3062 				 unsigned int value)
3063 {
3064 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3065 }
3066 
3067 static inline bool uclamp_rq_is_idle(struct rq *rq)
3068 {
3069 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3070 }
3071 
3072 /* Is the rq being capped/throttled by uclamp_max? */
3073 static inline bool uclamp_rq_is_capped(struct rq *rq)
3074 {
3075 	unsigned long rq_util;
3076 	unsigned long max_util;
3077 
3078 	if (!static_branch_likely(&sched_uclamp_used))
3079 		return false;
3080 
3081 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3082 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3083 
3084 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3085 }
3086 
3087 /*
3088  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3089  * by default in the fast path and only gets turned on once userspace performs
3090  * an operation that requires it.
3091  *
3092  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3093  * hence is active.
3094  */
3095 static inline bool uclamp_is_used(void)
3096 {
3097 	return static_branch_likely(&sched_uclamp_used);
3098 }
3099 #else /* CONFIG_UCLAMP_TASK */
3100 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3101 					     enum uclamp_id clamp_id)
3102 {
3103 	if (clamp_id == UCLAMP_MIN)
3104 		return 0;
3105 
3106 	return SCHED_CAPACITY_SCALE;
3107 }
3108 
3109 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3110 
3111 static inline bool uclamp_is_used(void)
3112 {
3113 	return false;
3114 }
3115 
3116 static inline unsigned long uclamp_rq_get(struct rq *rq,
3117 					  enum uclamp_id clamp_id)
3118 {
3119 	if (clamp_id == UCLAMP_MIN)
3120 		return 0;
3121 
3122 	return SCHED_CAPACITY_SCALE;
3123 }
3124 
3125 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3126 				 unsigned int value)
3127 {
3128 }
3129 
3130 static inline bool uclamp_rq_is_idle(struct rq *rq)
3131 {
3132 	return false;
3133 }
3134 #endif /* CONFIG_UCLAMP_TASK */
3135 
3136 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3137 static inline unsigned long cpu_util_irq(struct rq *rq)
3138 {
3139 	return READ_ONCE(rq->avg_irq.util_avg);
3140 }
3141 
3142 static inline
3143 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3144 {
3145 	util *= (max - irq);
3146 	util /= max;
3147 
3148 	return util;
3149 
3150 }
3151 #else
3152 static inline unsigned long cpu_util_irq(struct rq *rq)
3153 {
3154 	return 0;
3155 }
3156 
3157 static inline
3158 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3159 {
3160 	return util;
3161 }
3162 #endif
3163 
3164 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3165 
3166 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3167 
3168 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3169 
3170 static inline bool sched_energy_enabled(void)
3171 {
3172 	return static_branch_unlikely(&sched_energy_present);
3173 }
3174 
3175 extern struct cpufreq_governor schedutil_gov;
3176 
3177 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3178 
3179 #define perf_domain_span(pd) NULL
3180 static inline bool sched_energy_enabled(void) { return false; }
3181 
3182 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3183 
3184 #ifdef CONFIG_MEMBARRIER
3185 /*
3186  * The scheduler provides memory barriers required by membarrier between:
3187  * - prior user-space memory accesses and store to rq->membarrier_state,
3188  * - store to rq->membarrier_state and following user-space memory accesses.
3189  * In the same way it provides those guarantees around store to rq->curr.
3190  */
3191 static inline void membarrier_switch_mm(struct rq *rq,
3192 					struct mm_struct *prev_mm,
3193 					struct mm_struct *next_mm)
3194 {
3195 	int membarrier_state;
3196 
3197 	if (prev_mm == next_mm)
3198 		return;
3199 
3200 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3201 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3202 		return;
3203 
3204 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3205 }
3206 #else
3207 static inline void membarrier_switch_mm(struct rq *rq,
3208 					struct mm_struct *prev_mm,
3209 					struct mm_struct *next_mm)
3210 {
3211 }
3212 #endif
3213 
3214 #ifdef CONFIG_SMP
3215 static inline bool is_per_cpu_kthread(struct task_struct *p)
3216 {
3217 	if (!(p->flags & PF_KTHREAD))
3218 		return false;
3219 
3220 	if (p->nr_cpus_allowed != 1)
3221 		return false;
3222 
3223 	return true;
3224 }
3225 #endif
3226 
3227 extern void swake_up_all_locked(struct swait_queue_head *q);
3228 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3229 
3230 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3231 
3232 #ifdef CONFIG_PREEMPT_DYNAMIC
3233 extern int preempt_dynamic_mode;
3234 extern int sched_dynamic_mode(const char *str);
3235 extern void sched_dynamic_update(int mode);
3236 #endif
3237 
3238 #ifdef CONFIG_SCHED_MM_CID
3239 
3240 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3241 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3242 
3243 extern raw_spinlock_t cid_lock;
3244 extern int use_cid_lock;
3245 
3246 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3247 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3248 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3249 extern void init_sched_mm_cid(struct task_struct *t);
3250 
3251 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3252 {
3253 	if (cid < 0)
3254 		return;
3255 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3256 }
3257 
3258 /*
3259  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3260  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3261  * be held to transition to other states.
3262  *
3263  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3264  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3265  */
3266 static inline void mm_cid_put_lazy(struct task_struct *t)
3267 {
3268 	struct mm_struct *mm = t->mm;
3269 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3270 	int cid;
3271 
3272 	lockdep_assert_irqs_disabled();
3273 	cid = __this_cpu_read(pcpu_cid->cid);
3274 	if (!mm_cid_is_lazy_put(cid) ||
3275 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3276 		return;
3277 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3278 }
3279 
3280 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3281 {
3282 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3283 	int cid, res;
3284 
3285 	lockdep_assert_irqs_disabled();
3286 	cid = __this_cpu_read(pcpu_cid->cid);
3287 	for (;;) {
3288 		if (mm_cid_is_unset(cid))
3289 			return MM_CID_UNSET;
3290 		/*
3291 		 * Attempt transition from valid or lazy-put to unset.
3292 		 */
3293 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3294 		if (res == cid)
3295 			break;
3296 		cid = res;
3297 	}
3298 	return cid;
3299 }
3300 
3301 static inline void mm_cid_put(struct mm_struct *mm)
3302 {
3303 	int cid;
3304 
3305 	lockdep_assert_irqs_disabled();
3306 	cid = mm_cid_pcpu_unset(mm);
3307 	if (cid == MM_CID_UNSET)
3308 		return;
3309 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3310 }
3311 
3312 static inline int __mm_cid_try_get(struct mm_struct *mm)
3313 {
3314 	struct cpumask *cpumask;
3315 	int cid;
3316 
3317 	cpumask = mm_cidmask(mm);
3318 	/*
3319 	 * Retry finding first zero bit if the mask is temporarily
3320 	 * filled. This only happens during concurrent remote-clear
3321 	 * which owns a cid without holding a rq lock.
3322 	 */
3323 	for (;;) {
3324 		cid = cpumask_first_zero(cpumask);
3325 		if (cid < nr_cpu_ids)
3326 			break;
3327 		cpu_relax();
3328 	}
3329 	if (cpumask_test_and_set_cpu(cid, cpumask))
3330 		return -1;
3331 	return cid;
3332 }
3333 
3334 /*
3335  * Save a snapshot of the current runqueue time of this cpu
3336  * with the per-cpu cid value, allowing to estimate how recently it was used.
3337  */
3338 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3339 {
3340 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3341 
3342 	lockdep_assert_rq_held(rq);
3343 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3344 }
3345 
3346 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3347 {
3348 	int cid;
3349 
3350 	/*
3351 	 * All allocations (even those using the cid_lock) are lock-free. If
3352 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3353 	 * guarantee forward progress.
3354 	 */
3355 	if (!READ_ONCE(use_cid_lock)) {
3356 		cid = __mm_cid_try_get(mm);
3357 		if (cid >= 0)
3358 			goto end;
3359 		raw_spin_lock(&cid_lock);
3360 	} else {
3361 		raw_spin_lock(&cid_lock);
3362 		cid = __mm_cid_try_get(mm);
3363 		if (cid >= 0)
3364 			goto unlock;
3365 	}
3366 
3367 	/*
3368 	 * cid concurrently allocated. Retry while forcing following
3369 	 * allocations to use the cid_lock to ensure forward progress.
3370 	 */
3371 	WRITE_ONCE(use_cid_lock, 1);
3372 	/*
3373 	 * Set use_cid_lock before allocation. Only care about program order
3374 	 * because this is only required for forward progress.
3375 	 */
3376 	barrier();
3377 	/*
3378 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3379 	 * all newcoming allocations observe the use_cid_lock flag set.
3380 	 */
3381 	do {
3382 		cid = __mm_cid_try_get(mm);
3383 		cpu_relax();
3384 	} while (cid < 0);
3385 	/*
3386 	 * Allocate before clearing use_cid_lock. Only care about
3387 	 * program order because this is for forward progress.
3388 	 */
3389 	barrier();
3390 	WRITE_ONCE(use_cid_lock, 0);
3391 unlock:
3392 	raw_spin_unlock(&cid_lock);
3393 end:
3394 	mm_cid_snapshot_time(rq, mm);
3395 	return cid;
3396 }
3397 
3398 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3399 {
3400 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3401 	struct cpumask *cpumask;
3402 	int cid;
3403 
3404 	lockdep_assert_rq_held(rq);
3405 	cpumask = mm_cidmask(mm);
3406 	cid = __this_cpu_read(pcpu_cid->cid);
3407 	if (mm_cid_is_valid(cid)) {
3408 		mm_cid_snapshot_time(rq, mm);
3409 		return cid;
3410 	}
3411 	if (mm_cid_is_lazy_put(cid)) {
3412 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3413 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3414 	}
3415 	cid = __mm_cid_get(rq, mm);
3416 	__this_cpu_write(pcpu_cid->cid, cid);
3417 	return cid;
3418 }
3419 
3420 static inline void switch_mm_cid(struct rq *rq,
3421 				 struct task_struct *prev,
3422 				 struct task_struct *next)
3423 {
3424 	/*
3425 	 * Provide a memory barrier between rq->curr store and load of
3426 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3427 	 *
3428 	 * Should be adapted if context_switch() is modified.
3429 	 */
3430 	if (!next->mm) {                                // to kernel
3431 		/*
3432 		 * user -> kernel transition does not guarantee a barrier, but
3433 		 * we can use the fact that it performs an atomic operation in
3434 		 * mmgrab().
3435 		 */
3436 		if (prev->mm)                           // from user
3437 			smp_mb__after_mmgrab();
3438 		/*
3439 		 * kernel -> kernel transition does not change rq->curr->mm
3440 		 * state. It stays NULL.
3441 		 */
3442 	} else {                                        // to user
3443 		/*
3444 		 * kernel -> user transition does not provide a barrier
3445 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3446 		 * Provide it here.
3447 		 */
3448 		if (!prev->mm)                          // from kernel
3449 			smp_mb();
3450 		/*
3451 		 * user -> user transition guarantees a memory barrier through
3452 		 * switch_mm() when current->mm changes. If current->mm is
3453 		 * unchanged, no barrier is needed.
3454 		 */
3455 	}
3456 	if (prev->mm_cid_active) {
3457 		mm_cid_snapshot_time(rq, prev->mm);
3458 		mm_cid_put_lazy(prev);
3459 		prev->mm_cid = -1;
3460 	}
3461 	if (next->mm_cid_active)
3462 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3463 }
3464 
3465 #else
3466 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3467 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3468 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3469 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3470 static inline void init_sched_mm_cid(struct task_struct *t) { }
3471 #endif
3472 
3473 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3474 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3475 
3476 #endif /* _KERNEL_SCHED_SCHED_H */
3477