1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 73 #include <trace/events/power.h> 74 #include <trace/events/sched.h> 75 76 #include "../workqueue_internal.h" 77 78 struct rq; 79 struct cfs_rq; 80 struct rt_rq; 81 struct sched_group; 82 struct cpuidle_state; 83 84 #ifdef CONFIG_PARAVIRT 85 # include <asm/paravirt.h> 86 # include <asm/paravirt_api_clock.h> 87 #endif 88 89 #include <asm/barrier.h> 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 /* task_struct::on_rq states: */ 101 #define TASK_ON_RQ_QUEUED 1 102 #define TASK_ON_RQ_MIGRATING 2 103 104 extern __read_mostly int scheduler_running; 105 106 extern unsigned long calc_load_update; 107 extern atomic_long_t calc_load_tasks; 108 109 extern void calc_global_load_tick(struct rq *this_rq); 110 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 111 112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 113 114 extern int sysctl_sched_rt_period; 115 extern int sysctl_sched_rt_runtime; 116 extern int sched_rr_timeslice; 117 118 /* 119 * Asymmetric CPU capacity bits 120 */ 121 struct asym_cap_data { 122 struct list_head link; 123 struct rcu_head rcu; 124 unsigned long capacity; 125 unsigned long cpus[]; 126 }; 127 128 extern struct list_head asym_cap_list; 129 130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 131 132 /* 133 * Helpers for converting nanosecond timing to jiffy resolution 134 */ 135 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 136 137 /* 138 * Increase resolution of nice-level calculations for 64-bit architectures. 139 * The extra resolution improves shares distribution and load balancing of 140 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 141 * hierarchies, especially on larger systems. This is not a user-visible change 142 * and does not change the user-interface for setting shares/weights. 143 * 144 * We increase resolution only if we have enough bits to allow this increased 145 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 146 * are pretty high and the returns do not justify the increased costs. 147 * 148 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 149 * increase coverage and consistency always enable it on 64-bit platforms. 150 */ 151 #ifdef CONFIG_64BIT 152 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 153 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load_down(w) \ 155 ({ \ 156 unsigned long __w = (w); \ 157 \ 158 if (__w) \ 159 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 160 __w; \ 161 }) 162 #else 163 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 164 # define scale_load(w) (w) 165 # define scale_load_down(w) (w) 166 #endif 167 168 /* 169 * Task weight (visible to users) and its load (invisible to users) have 170 * independent resolution, but they should be well calibrated. We use 171 * scale_load() and scale_load_down(w) to convert between them. The 172 * following must be true: 173 * 174 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 175 * 176 */ 177 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 178 179 /* 180 * Single value that decides SCHED_DEADLINE internal math precision. 181 * 10 -> just above 1us 182 * 9 -> just above 0.5us 183 */ 184 #define DL_SCALE 10 185 186 /* 187 * Single value that denotes runtime == period, ie unlimited time. 188 */ 189 #define RUNTIME_INF ((u64)~0ULL) 190 191 static inline int idle_policy(int policy) 192 { 193 return policy == SCHED_IDLE; 194 } 195 196 static inline int normal_policy(int policy) 197 { 198 #ifdef CONFIG_SCHED_CLASS_EXT 199 if (policy == SCHED_EXT) 200 return true; 201 #endif 202 return policy == SCHED_NORMAL; 203 } 204 205 static inline int fair_policy(int policy) 206 { 207 return normal_policy(policy) || policy == SCHED_BATCH; 208 } 209 210 static inline int rt_policy(int policy) 211 { 212 return policy == SCHED_FIFO || policy == SCHED_RR; 213 } 214 215 static inline int dl_policy(int policy) 216 { 217 return policy == SCHED_DEADLINE; 218 } 219 220 static inline bool valid_policy(int policy) 221 { 222 return idle_policy(policy) || fair_policy(policy) || 223 rt_policy(policy) || dl_policy(policy); 224 } 225 226 static inline int task_has_idle_policy(struct task_struct *p) 227 { 228 return idle_policy(p->policy); 229 } 230 231 static inline int task_has_rt_policy(struct task_struct *p) 232 { 233 return rt_policy(p->policy); 234 } 235 236 static inline int task_has_dl_policy(struct task_struct *p) 237 { 238 return dl_policy(p->policy); 239 } 240 241 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 242 243 static inline void update_avg(u64 *avg, u64 sample) 244 { 245 s64 diff = sample - *avg; 246 247 *avg += diff / 8; 248 } 249 250 /* 251 * Shifting a value by an exponent greater *or equal* to the size of said value 252 * is UB; cap at size-1. 253 */ 254 #define shr_bound(val, shift) \ 255 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 256 257 /* 258 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 259 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 260 * maps pretty well onto the shares value used by scheduler and the round-trip 261 * conversions preserve the original value over the entire range. 262 */ 263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 264 { 265 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 266 } 267 268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 269 { 270 return clamp_t(unsigned long, 271 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 272 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 273 } 274 275 /* 276 * !! For sched_setattr_nocheck() (kernel) only !! 277 * 278 * This is actually gross. :( 279 * 280 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 281 * tasks, but still be able to sleep. We need this on platforms that cannot 282 * atomically change clock frequency. Remove once fast switching will be 283 * available on such platforms. 284 * 285 * SUGOV stands for SchedUtil GOVernor. 286 */ 287 #define SCHED_FLAG_SUGOV 0x10000000 288 289 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 290 291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 292 { 293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 294 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 295 #else 296 return false; 297 #endif 298 } 299 300 /* 301 * Tells if entity @a should preempt entity @b. 302 */ 303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 304 const struct sched_dl_entity *b) 305 { 306 return dl_entity_is_special(a) || 307 dl_time_before(a->deadline, b->deadline); 308 } 309 310 /* 311 * This is the priority-queue data structure of the RT scheduling class: 312 */ 313 struct rt_prio_array { 314 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 315 struct list_head queue[MAX_RT_PRIO]; 316 }; 317 318 struct rt_bandwidth { 319 /* nests inside the rq lock: */ 320 raw_spinlock_t rt_runtime_lock; 321 ktime_t rt_period; 322 u64 rt_runtime; 323 struct hrtimer rt_period_timer; 324 unsigned int rt_period_active; 325 }; 326 327 static inline int dl_bandwidth_enabled(void) 328 { 329 return sysctl_sched_rt_runtime >= 0; 330 } 331 332 /* 333 * To keep the bandwidth of -deadline tasks under control 334 * we need some place where: 335 * - store the maximum -deadline bandwidth of each cpu; 336 * - cache the fraction of bandwidth that is currently allocated in 337 * each root domain; 338 * 339 * This is all done in the data structure below. It is similar to the 340 * one used for RT-throttling (rt_bandwidth), with the main difference 341 * that, since here we are only interested in admission control, we 342 * do not decrease any runtime while the group "executes", neither we 343 * need a timer to replenish it. 344 * 345 * With respect to SMP, bandwidth is given on a per root domain basis, 346 * meaning that: 347 * - bw (< 100%) is the deadline bandwidth of each CPU; 348 * - total_bw is the currently allocated bandwidth in each root domain; 349 */ 350 struct dl_bw { 351 raw_spinlock_t lock; 352 u64 bw; 353 u64 total_bw; 354 }; 355 356 extern void init_dl_bw(struct dl_bw *dl_b); 357 extern int sched_dl_global_validate(void); 358 extern void sched_dl_do_global(void); 359 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 362 extern bool __checkparam_dl(const struct sched_attr *attr); 363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 364 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 365 extern int dl_bw_deactivate(int cpu); 366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 367 /* 368 * SCHED_DEADLINE supports servers (nested scheduling) with the following 369 * interface: 370 * 371 * dl_se::rq -- runqueue we belong to. 372 * 373 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 374 * server when it runs out of tasks to run. 375 * 376 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 377 * returns NULL. 378 * 379 * dl_server_update() -- called from update_curr_common(), propagates runtime 380 * to the server. 381 * 382 * dl_server_start() 383 * dl_server_stop() -- start/stop the server when it has (no) tasks. 384 * 385 * dl_server_init() -- initializes the server. 386 */ 387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 388 extern void dl_server_start(struct sched_dl_entity *dl_se); 389 extern void dl_server_stop(struct sched_dl_entity *dl_se); 390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 391 dl_server_has_tasks_f has_tasks, 392 dl_server_pick_f pick_task); 393 394 extern void dl_server_update_idle_time(struct rq *rq, 395 struct task_struct *p); 396 extern void fair_server_init(struct rq *rq); 397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 399 u64 runtime, u64 period, bool init); 400 401 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 402 { 403 return dl_se->dl_server_active; 404 } 405 406 #ifdef CONFIG_CGROUP_SCHED 407 408 extern struct list_head task_groups; 409 410 struct cfs_bandwidth { 411 #ifdef CONFIG_CFS_BANDWIDTH 412 raw_spinlock_t lock; 413 ktime_t period; 414 u64 quota; 415 u64 runtime; 416 u64 burst; 417 u64 runtime_snap; 418 s64 hierarchical_quota; 419 420 u8 idle; 421 u8 period_active; 422 u8 slack_started; 423 struct hrtimer period_timer; 424 struct hrtimer slack_timer; 425 struct list_head throttled_cfs_rq; 426 427 /* Statistics: */ 428 int nr_periods; 429 int nr_throttled; 430 int nr_burst; 431 u64 throttled_time; 432 u64 burst_time; 433 #endif 434 }; 435 436 /* Task group related information */ 437 struct task_group { 438 struct cgroup_subsys_state css; 439 440 #ifdef CONFIG_GROUP_SCHED_WEIGHT 441 /* A positive value indicates that this is a SCHED_IDLE group. */ 442 int idle; 443 #endif 444 445 #ifdef CONFIG_FAIR_GROUP_SCHED 446 /* schedulable entities of this group on each CPU */ 447 struct sched_entity **se; 448 /* runqueue "owned" by this group on each CPU */ 449 struct cfs_rq **cfs_rq; 450 unsigned long shares; 451 #ifdef CONFIG_SMP 452 /* 453 * load_avg can be heavily contended at clock tick time, so put 454 * it in its own cache-line separated from the fields above which 455 * will also be accessed at each tick. 456 */ 457 atomic_long_t load_avg ____cacheline_aligned; 458 #endif 459 #endif 460 461 #ifdef CONFIG_RT_GROUP_SCHED 462 struct sched_rt_entity **rt_se; 463 struct rt_rq **rt_rq; 464 465 struct rt_bandwidth rt_bandwidth; 466 #endif 467 468 #ifdef CONFIG_EXT_GROUP_SCHED 469 u32 scx_flags; /* SCX_TG_* */ 470 u32 scx_weight; 471 #endif 472 473 struct rcu_head rcu; 474 struct list_head list; 475 476 struct task_group *parent; 477 struct list_head siblings; 478 struct list_head children; 479 480 #ifdef CONFIG_SCHED_AUTOGROUP 481 struct autogroup *autogroup; 482 #endif 483 484 struct cfs_bandwidth cfs_bandwidth; 485 486 #ifdef CONFIG_UCLAMP_TASK_GROUP 487 /* The two decimal precision [%] value requested from user-space */ 488 unsigned int uclamp_pct[UCLAMP_CNT]; 489 /* Clamp values requested for a task group */ 490 struct uclamp_se uclamp_req[UCLAMP_CNT]; 491 /* Effective clamp values used for a task group */ 492 struct uclamp_se uclamp[UCLAMP_CNT]; 493 #endif 494 495 }; 496 497 #ifdef CONFIG_GROUP_SCHED_WEIGHT 498 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 499 500 /* 501 * A weight of 0 or 1 can cause arithmetics problems. 502 * A weight of a cfs_rq is the sum of weights of which entities 503 * are queued on this cfs_rq, so a weight of a entity should not be 504 * too large, so as the shares value of a task group. 505 * (The default weight is 1024 - so there's no practical 506 * limitation from this.) 507 */ 508 #define MIN_SHARES (1UL << 1) 509 #define MAX_SHARES (1UL << 18) 510 #endif 511 512 typedef int (*tg_visitor)(struct task_group *, void *); 513 514 extern int walk_tg_tree_from(struct task_group *from, 515 tg_visitor down, tg_visitor up, void *data); 516 517 /* 518 * Iterate the full tree, calling @down when first entering a node and @up when 519 * leaving it for the final time. 520 * 521 * Caller must hold rcu_lock or sufficient equivalent. 522 */ 523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 524 { 525 return walk_tg_tree_from(&root_task_group, down, up, data); 526 } 527 528 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 529 { 530 return css ? container_of(css, struct task_group, css) : NULL; 531 } 532 533 extern int tg_nop(struct task_group *tg, void *data); 534 535 #ifdef CONFIG_FAIR_GROUP_SCHED 536 extern void free_fair_sched_group(struct task_group *tg); 537 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 538 extern void online_fair_sched_group(struct task_group *tg); 539 extern void unregister_fair_sched_group(struct task_group *tg); 540 #else 541 static inline void free_fair_sched_group(struct task_group *tg) { } 542 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 543 { 544 return 1; 545 } 546 static inline void online_fair_sched_group(struct task_group *tg) { } 547 static inline void unregister_fair_sched_group(struct task_group *tg) { } 548 #endif 549 550 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 551 struct sched_entity *se, int cpu, 552 struct sched_entity *parent); 553 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 554 555 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 556 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 557 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 558 extern bool cfs_task_bw_constrained(struct task_struct *p); 559 560 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 561 struct sched_rt_entity *rt_se, int cpu, 562 struct sched_rt_entity *parent); 563 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 564 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 565 extern long sched_group_rt_runtime(struct task_group *tg); 566 extern long sched_group_rt_period(struct task_group *tg); 567 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 568 569 extern struct task_group *sched_create_group(struct task_group *parent); 570 extern void sched_online_group(struct task_group *tg, 571 struct task_group *parent); 572 extern void sched_destroy_group(struct task_group *tg); 573 extern void sched_release_group(struct task_group *tg); 574 575 extern void sched_move_task(struct task_struct *tsk); 576 577 #ifdef CONFIG_FAIR_GROUP_SCHED 578 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 579 580 extern int sched_group_set_idle(struct task_group *tg, long idle); 581 582 #ifdef CONFIG_SMP 583 extern void set_task_rq_fair(struct sched_entity *se, 584 struct cfs_rq *prev, struct cfs_rq *next); 585 #else /* !CONFIG_SMP */ 586 static inline void set_task_rq_fair(struct sched_entity *se, 587 struct cfs_rq *prev, struct cfs_rq *next) { } 588 #endif /* CONFIG_SMP */ 589 #else /* !CONFIG_FAIR_GROUP_SCHED */ 590 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 591 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 592 #endif /* CONFIG_FAIR_GROUP_SCHED */ 593 594 #else /* CONFIG_CGROUP_SCHED */ 595 596 struct cfs_bandwidth { }; 597 598 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 599 600 #endif /* CONFIG_CGROUP_SCHED */ 601 602 extern void unregister_rt_sched_group(struct task_group *tg); 603 extern void free_rt_sched_group(struct task_group *tg); 604 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 605 606 /* 607 * u64_u32_load/u64_u32_store 608 * 609 * Use a copy of a u64 value to protect against data race. This is only 610 * applicable for 32-bits architectures. 611 */ 612 #ifdef CONFIG_64BIT 613 # define u64_u32_load_copy(var, copy) var 614 # define u64_u32_store_copy(var, copy, val) (var = val) 615 #else 616 # define u64_u32_load_copy(var, copy) \ 617 ({ \ 618 u64 __val, __val_copy; \ 619 do { \ 620 __val_copy = copy; \ 621 /* \ 622 * paired with u64_u32_store_copy(), ordering access \ 623 * to var and copy. \ 624 */ \ 625 smp_rmb(); \ 626 __val = var; \ 627 } while (__val != __val_copy); \ 628 __val; \ 629 }) 630 # define u64_u32_store_copy(var, copy, val) \ 631 do { \ 632 typeof(val) __val = (val); \ 633 var = __val; \ 634 /* \ 635 * paired with u64_u32_load_copy(), ordering access to var and \ 636 * copy. \ 637 */ \ 638 smp_wmb(); \ 639 copy = __val; \ 640 } while (0) 641 #endif 642 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 643 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 644 645 struct balance_callback { 646 struct balance_callback *next; 647 void (*func)(struct rq *rq); 648 }; 649 650 /* CFS-related fields in a runqueue */ 651 struct cfs_rq { 652 struct load_weight load; 653 unsigned int nr_queued; 654 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 655 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 656 unsigned int h_nr_idle; /* SCHED_IDLE */ 657 658 s64 avg_vruntime; 659 u64 avg_load; 660 661 u64 min_vruntime; 662 #ifdef CONFIG_SCHED_CORE 663 unsigned int forceidle_seq; 664 u64 min_vruntime_fi; 665 #endif 666 667 struct rb_root_cached tasks_timeline; 668 669 /* 670 * 'curr' points to currently running entity on this cfs_rq. 671 * It is set to NULL otherwise (i.e when none are currently running). 672 */ 673 struct sched_entity *curr; 674 struct sched_entity *next; 675 676 #ifdef CONFIG_SMP 677 /* 678 * CFS load tracking 679 */ 680 struct sched_avg avg; 681 #ifndef CONFIG_64BIT 682 u64 last_update_time_copy; 683 #endif 684 struct { 685 raw_spinlock_t lock ____cacheline_aligned; 686 int nr; 687 unsigned long load_avg; 688 unsigned long util_avg; 689 unsigned long runnable_avg; 690 } removed; 691 692 #ifdef CONFIG_FAIR_GROUP_SCHED 693 u64 last_update_tg_load_avg; 694 unsigned long tg_load_avg_contrib; 695 long propagate; 696 long prop_runnable_sum; 697 698 /* 699 * h_load = weight * f(tg) 700 * 701 * Where f(tg) is the recursive weight fraction assigned to 702 * this group. 703 */ 704 unsigned long h_load; 705 u64 last_h_load_update; 706 struct sched_entity *h_load_next; 707 #endif /* CONFIG_FAIR_GROUP_SCHED */ 708 #endif /* CONFIG_SMP */ 709 710 #ifdef CONFIG_FAIR_GROUP_SCHED 711 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 712 713 /* 714 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 715 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 716 * (like users, containers etc.) 717 * 718 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 719 * This list is used during load balance. 720 */ 721 int on_list; 722 struct list_head leaf_cfs_rq_list; 723 struct task_group *tg; /* group that "owns" this runqueue */ 724 725 /* Locally cached copy of our task_group's idle value */ 726 int idle; 727 728 #ifdef CONFIG_CFS_BANDWIDTH 729 int runtime_enabled; 730 s64 runtime_remaining; 731 732 u64 throttled_pelt_idle; 733 #ifndef CONFIG_64BIT 734 u64 throttled_pelt_idle_copy; 735 #endif 736 u64 throttled_clock; 737 u64 throttled_clock_pelt; 738 u64 throttled_clock_pelt_time; 739 u64 throttled_clock_self; 740 u64 throttled_clock_self_time; 741 int throttled; 742 int throttle_count; 743 struct list_head throttled_list; 744 struct list_head throttled_csd_list; 745 #endif /* CONFIG_CFS_BANDWIDTH */ 746 #endif /* CONFIG_FAIR_GROUP_SCHED */ 747 }; 748 749 #ifdef CONFIG_SCHED_CLASS_EXT 750 /* scx_rq->flags, protected by the rq lock */ 751 enum scx_rq_flags { 752 /* 753 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 754 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 755 * only while the BPF scheduler considers the CPU to be online. 756 */ 757 SCX_RQ_ONLINE = 1 << 0, 758 SCX_RQ_CAN_STOP_TICK = 1 << 1, 759 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 760 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 761 SCX_RQ_BYPASSING = 1 << 4, 762 763 SCX_RQ_IN_WAKEUP = 1 << 16, 764 SCX_RQ_IN_BALANCE = 1 << 17, 765 }; 766 767 struct scx_rq { 768 struct scx_dispatch_q local_dsq; 769 struct list_head runnable_list; /* runnable tasks on this rq */ 770 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 771 unsigned long ops_qseq; 772 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 773 u32 nr_running; 774 u32 flags; 775 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 776 bool cpu_released; 777 cpumask_var_t cpus_to_kick; 778 cpumask_var_t cpus_to_kick_if_idle; 779 cpumask_var_t cpus_to_preempt; 780 cpumask_var_t cpus_to_wait; 781 unsigned long pnt_seq; 782 struct balance_callback deferred_bal_cb; 783 struct irq_work deferred_irq_work; 784 struct irq_work kick_cpus_irq_work; 785 }; 786 #endif /* CONFIG_SCHED_CLASS_EXT */ 787 788 static inline int rt_bandwidth_enabled(void) 789 { 790 return sysctl_sched_rt_runtime >= 0; 791 } 792 793 /* RT IPI pull logic requires IRQ_WORK */ 794 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 795 # define HAVE_RT_PUSH_IPI 796 #endif 797 798 /* Real-Time classes' related field in a runqueue: */ 799 struct rt_rq { 800 struct rt_prio_array active; 801 unsigned int rt_nr_running; 802 unsigned int rr_nr_running; 803 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 804 struct { 805 int curr; /* highest queued rt task prio */ 806 #ifdef CONFIG_SMP 807 int next; /* next highest */ 808 #endif 809 } highest_prio; 810 #endif 811 #ifdef CONFIG_SMP 812 bool overloaded; 813 struct plist_head pushable_tasks; 814 815 #endif /* CONFIG_SMP */ 816 int rt_queued; 817 818 #ifdef CONFIG_RT_GROUP_SCHED 819 int rt_throttled; 820 u64 rt_time; 821 u64 rt_runtime; 822 /* Nests inside the rq lock: */ 823 raw_spinlock_t rt_runtime_lock; 824 825 unsigned int rt_nr_boosted; 826 827 struct rq *rq; 828 struct task_group *tg; 829 #endif 830 }; 831 832 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 833 { 834 return rt_rq->rt_queued && rt_rq->rt_nr_running; 835 } 836 837 /* Deadline class' related fields in a runqueue */ 838 struct dl_rq { 839 /* runqueue is an rbtree, ordered by deadline */ 840 struct rb_root_cached root; 841 842 unsigned int dl_nr_running; 843 844 #ifdef CONFIG_SMP 845 /* 846 * Deadline values of the currently executing and the 847 * earliest ready task on this rq. Caching these facilitates 848 * the decision whether or not a ready but not running task 849 * should migrate somewhere else. 850 */ 851 struct { 852 u64 curr; 853 u64 next; 854 } earliest_dl; 855 856 bool overloaded; 857 858 /* 859 * Tasks on this rq that can be pushed away. They are kept in 860 * an rb-tree, ordered by tasks' deadlines, with caching 861 * of the leftmost (earliest deadline) element. 862 */ 863 struct rb_root_cached pushable_dl_tasks_root; 864 #else 865 struct dl_bw dl_bw; 866 #endif 867 /* 868 * "Active utilization" for this runqueue: increased when a 869 * task wakes up (becomes TASK_RUNNING) and decreased when a 870 * task blocks 871 */ 872 u64 running_bw; 873 874 /* 875 * Utilization of the tasks "assigned" to this runqueue (including 876 * the tasks that are in runqueue and the tasks that executed on this 877 * CPU and blocked). Increased when a task moves to this runqueue, and 878 * decreased when the task moves away (migrates, changes scheduling 879 * policy, or terminates). 880 * This is needed to compute the "inactive utilization" for the 881 * runqueue (inactive utilization = this_bw - running_bw). 882 */ 883 u64 this_bw; 884 u64 extra_bw; 885 886 /* 887 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 888 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 889 */ 890 u64 max_bw; 891 892 /* 893 * Inverse of the fraction of CPU utilization that can be reclaimed 894 * by the GRUB algorithm. 895 */ 896 u64 bw_ratio; 897 }; 898 899 #ifdef CONFIG_FAIR_GROUP_SCHED 900 901 /* An entity is a task if it doesn't "own" a runqueue */ 902 #define entity_is_task(se) (!se->my_q) 903 904 static inline void se_update_runnable(struct sched_entity *se) 905 { 906 if (!entity_is_task(se)) 907 se->runnable_weight = se->my_q->h_nr_runnable; 908 } 909 910 static inline long se_runnable(struct sched_entity *se) 911 { 912 if (se->sched_delayed) 913 return false; 914 915 if (entity_is_task(se)) 916 return !!se->on_rq; 917 else 918 return se->runnable_weight; 919 } 920 921 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 922 923 #define entity_is_task(se) 1 924 925 static inline void se_update_runnable(struct sched_entity *se) { } 926 927 static inline long se_runnable(struct sched_entity *se) 928 { 929 if (se->sched_delayed) 930 return false; 931 932 return !!se->on_rq; 933 } 934 935 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 936 937 #ifdef CONFIG_SMP 938 /* 939 * XXX we want to get rid of these helpers and use the full load resolution. 940 */ 941 static inline long se_weight(struct sched_entity *se) 942 { 943 return scale_load_down(se->load.weight); 944 } 945 946 947 static inline bool sched_asym_prefer(int a, int b) 948 { 949 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 950 } 951 952 struct perf_domain { 953 struct em_perf_domain *em_pd; 954 struct perf_domain *next; 955 struct rcu_head rcu; 956 }; 957 958 /* 959 * We add the notion of a root-domain which will be used to define per-domain 960 * variables. Each exclusive cpuset essentially defines an island domain by 961 * fully partitioning the member CPUs from any other cpuset. Whenever a new 962 * exclusive cpuset is created, we also create and attach a new root-domain 963 * object. 964 * 965 */ 966 struct root_domain { 967 atomic_t refcount; 968 atomic_t rto_count; 969 struct rcu_head rcu; 970 cpumask_var_t span; 971 cpumask_var_t online; 972 973 /* 974 * Indicate pullable load on at least one CPU, e.g: 975 * - More than one runnable task 976 * - Running task is misfit 977 */ 978 bool overloaded; 979 980 /* Indicate one or more CPUs over-utilized (tipping point) */ 981 bool overutilized; 982 983 /* 984 * The bit corresponding to a CPU gets set here if such CPU has more 985 * than one runnable -deadline task (as it is below for RT tasks). 986 */ 987 cpumask_var_t dlo_mask; 988 atomic_t dlo_count; 989 struct dl_bw dl_bw; 990 struct cpudl cpudl; 991 992 /* 993 * Indicate whether a root_domain's dl_bw has been checked or 994 * updated. It's monotonously increasing value. 995 * 996 * Also, some corner cases, like 'wrap around' is dangerous, but given 997 * that u64 is 'big enough'. So that shouldn't be a concern. 998 */ 999 u64 visit_gen; 1000 1001 #ifdef HAVE_RT_PUSH_IPI 1002 /* 1003 * For IPI pull requests, loop across the rto_mask. 1004 */ 1005 struct irq_work rto_push_work; 1006 raw_spinlock_t rto_lock; 1007 /* These are only updated and read within rto_lock */ 1008 int rto_loop; 1009 int rto_cpu; 1010 /* These atomics are updated outside of a lock */ 1011 atomic_t rto_loop_next; 1012 atomic_t rto_loop_start; 1013 #endif 1014 /* 1015 * The "RT overload" flag: it gets set if a CPU has more than 1016 * one runnable RT task. 1017 */ 1018 cpumask_var_t rto_mask; 1019 struct cpupri cpupri; 1020 1021 /* 1022 * NULL-terminated list of performance domains intersecting with the 1023 * CPUs of the rd. Protected by RCU. 1024 */ 1025 struct perf_domain __rcu *pd; 1026 }; 1027 1028 extern void init_defrootdomain(void); 1029 extern int sched_init_domains(const struct cpumask *cpu_map); 1030 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1031 extern void sched_get_rd(struct root_domain *rd); 1032 extern void sched_put_rd(struct root_domain *rd); 1033 1034 static inline int get_rd_overloaded(struct root_domain *rd) 1035 { 1036 return READ_ONCE(rd->overloaded); 1037 } 1038 1039 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1040 { 1041 if (get_rd_overloaded(rd) != status) 1042 WRITE_ONCE(rd->overloaded, status); 1043 } 1044 1045 #ifdef HAVE_RT_PUSH_IPI 1046 extern void rto_push_irq_work_func(struct irq_work *work); 1047 #endif 1048 #endif /* CONFIG_SMP */ 1049 1050 #ifdef CONFIG_UCLAMP_TASK 1051 /* 1052 * struct uclamp_bucket - Utilization clamp bucket 1053 * @value: utilization clamp value for tasks on this clamp bucket 1054 * @tasks: number of RUNNABLE tasks on this clamp bucket 1055 * 1056 * Keep track of how many tasks are RUNNABLE for a given utilization 1057 * clamp value. 1058 */ 1059 struct uclamp_bucket { 1060 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1061 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1062 }; 1063 1064 /* 1065 * struct uclamp_rq - rq's utilization clamp 1066 * @value: currently active clamp values for a rq 1067 * @bucket: utilization clamp buckets affecting a rq 1068 * 1069 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1070 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1071 * (or actually running) with that value. 1072 * 1073 * There are up to UCLAMP_CNT possible different clamp values, currently there 1074 * are only two: minimum utilization and maximum utilization. 1075 * 1076 * All utilization clamping values are MAX aggregated, since: 1077 * - for util_min: we want to run the CPU at least at the max of the minimum 1078 * utilization required by its currently RUNNABLE tasks. 1079 * - for util_max: we want to allow the CPU to run up to the max of the 1080 * maximum utilization allowed by its currently RUNNABLE tasks. 1081 * 1082 * Since on each system we expect only a limited number of different 1083 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1084 * the metrics required to compute all the per-rq utilization clamp values. 1085 */ 1086 struct uclamp_rq { 1087 unsigned int value; 1088 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1089 }; 1090 1091 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1092 #endif /* CONFIG_UCLAMP_TASK */ 1093 1094 /* 1095 * This is the main, per-CPU runqueue data structure. 1096 * 1097 * Locking rule: those places that want to lock multiple runqueues 1098 * (such as the load balancing or the thread migration code), lock 1099 * acquire operations must be ordered by ascending &runqueue. 1100 */ 1101 struct rq { 1102 /* runqueue lock: */ 1103 raw_spinlock_t __lock; 1104 1105 unsigned int nr_running; 1106 #ifdef CONFIG_NUMA_BALANCING 1107 unsigned int nr_numa_running; 1108 unsigned int nr_preferred_running; 1109 unsigned int numa_migrate_on; 1110 #endif 1111 #ifdef CONFIG_NO_HZ_COMMON 1112 #ifdef CONFIG_SMP 1113 unsigned long last_blocked_load_update_tick; 1114 unsigned int has_blocked_load; 1115 call_single_data_t nohz_csd; 1116 #endif /* CONFIG_SMP */ 1117 unsigned int nohz_tick_stopped; 1118 atomic_t nohz_flags; 1119 #endif /* CONFIG_NO_HZ_COMMON */ 1120 1121 #ifdef CONFIG_SMP 1122 unsigned int ttwu_pending; 1123 #endif 1124 u64 nr_switches; 1125 1126 #ifdef CONFIG_UCLAMP_TASK 1127 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1128 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1129 unsigned int uclamp_flags; 1130 #define UCLAMP_FLAG_IDLE 0x01 1131 #endif 1132 1133 struct cfs_rq cfs; 1134 struct rt_rq rt; 1135 struct dl_rq dl; 1136 #ifdef CONFIG_SCHED_CLASS_EXT 1137 struct scx_rq scx; 1138 #endif 1139 1140 struct sched_dl_entity fair_server; 1141 1142 #ifdef CONFIG_FAIR_GROUP_SCHED 1143 /* list of leaf cfs_rq on this CPU: */ 1144 struct list_head leaf_cfs_rq_list; 1145 struct list_head *tmp_alone_branch; 1146 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1147 1148 /* 1149 * This is part of a global counter where only the total sum 1150 * over all CPUs matters. A task can increase this counter on 1151 * one CPU and if it got migrated afterwards it may decrease 1152 * it on another CPU. Always updated under the runqueue lock: 1153 */ 1154 unsigned int nr_uninterruptible; 1155 1156 union { 1157 struct task_struct __rcu *donor; /* Scheduler context */ 1158 struct task_struct __rcu *curr; /* Execution context */ 1159 }; 1160 struct sched_dl_entity *dl_server; 1161 struct task_struct *idle; 1162 struct task_struct *stop; 1163 unsigned long next_balance; 1164 struct mm_struct *prev_mm; 1165 1166 unsigned int clock_update_flags; 1167 u64 clock; 1168 /* Ensure that all clocks are in the same cache line */ 1169 u64 clock_task ____cacheline_aligned; 1170 u64 clock_pelt; 1171 unsigned long lost_idle_time; 1172 u64 clock_pelt_idle; 1173 u64 clock_idle; 1174 #ifndef CONFIG_64BIT 1175 u64 clock_pelt_idle_copy; 1176 u64 clock_idle_copy; 1177 #endif 1178 1179 atomic_t nr_iowait; 1180 1181 #ifdef CONFIG_SCHED_DEBUG 1182 u64 last_seen_need_resched_ns; 1183 int ticks_without_resched; 1184 #endif 1185 1186 #ifdef CONFIG_MEMBARRIER 1187 int membarrier_state; 1188 #endif 1189 1190 #ifdef CONFIG_SMP 1191 struct root_domain *rd; 1192 struct sched_domain __rcu *sd; 1193 1194 unsigned long cpu_capacity; 1195 1196 struct balance_callback *balance_callback; 1197 1198 unsigned char nohz_idle_balance; 1199 unsigned char idle_balance; 1200 1201 unsigned long misfit_task_load; 1202 1203 /* For active balancing */ 1204 int active_balance; 1205 int push_cpu; 1206 struct cpu_stop_work active_balance_work; 1207 1208 /* CPU of this runqueue: */ 1209 int cpu; 1210 int online; 1211 1212 struct list_head cfs_tasks; 1213 1214 struct sched_avg avg_rt; 1215 struct sched_avg avg_dl; 1216 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1217 struct sched_avg avg_irq; 1218 #endif 1219 #ifdef CONFIG_SCHED_HW_PRESSURE 1220 struct sched_avg avg_hw; 1221 #endif 1222 u64 idle_stamp; 1223 u64 avg_idle; 1224 1225 /* This is used to determine avg_idle's max value */ 1226 u64 max_idle_balance_cost; 1227 1228 #ifdef CONFIG_HOTPLUG_CPU 1229 struct rcuwait hotplug_wait; 1230 #endif 1231 #endif /* CONFIG_SMP */ 1232 1233 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1234 u64 prev_irq_time; 1235 u64 psi_irq_time; 1236 #endif 1237 #ifdef CONFIG_PARAVIRT 1238 u64 prev_steal_time; 1239 #endif 1240 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1241 u64 prev_steal_time_rq; 1242 #endif 1243 1244 /* calc_load related fields */ 1245 unsigned long calc_load_update; 1246 long calc_load_active; 1247 1248 #ifdef CONFIG_SCHED_HRTICK 1249 #ifdef CONFIG_SMP 1250 call_single_data_t hrtick_csd; 1251 #endif 1252 struct hrtimer hrtick_timer; 1253 ktime_t hrtick_time; 1254 #endif 1255 1256 #ifdef CONFIG_SCHEDSTATS 1257 /* latency stats */ 1258 struct sched_info rq_sched_info; 1259 unsigned long long rq_cpu_time; 1260 1261 /* sys_sched_yield() stats */ 1262 unsigned int yld_count; 1263 1264 /* schedule() stats */ 1265 unsigned int sched_count; 1266 unsigned int sched_goidle; 1267 1268 /* try_to_wake_up() stats */ 1269 unsigned int ttwu_count; 1270 unsigned int ttwu_local; 1271 #endif 1272 1273 #ifdef CONFIG_CPU_IDLE 1274 /* Must be inspected within a RCU lock section */ 1275 struct cpuidle_state *idle_state; 1276 #endif 1277 1278 #ifdef CONFIG_SMP 1279 unsigned int nr_pinned; 1280 #endif 1281 unsigned int push_busy; 1282 struct cpu_stop_work push_work; 1283 1284 #ifdef CONFIG_SCHED_CORE 1285 /* per rq */ 1286 struct rq *core; 1287 struct task_struct *core_pick; 1288 struct sched_dl_entity *core_dl_server; 1289 unsigned int core_enabled; 1290 unsigned int core_sched_seq; 1291 struct rb_root core_tree; 1292 1293 /* shared state -- careful with sched_core_cpu_deactivate() */ 1294 unsigned int core_task_seq; 1295 unsigned int core_pick_seq; 1296 unsigned long core_cookie; 1297 unsigned int core_forceidle_count; 1298 unsigned int core_forceidle_seq; 1299 unsigned int core_forceidle_occupation; 1300 u64 core_forceidle_start; 1301 #endif 1302 1303 /* Scratch cpumask to be temporarily used under rq_lock */ 1304 cpumask_var_t scratch_mask; 1305 1306 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1307 call_single_data_t cfsb_csd; 1308 struct list_head cfsb_csd_list; 1309 #endif 1310 }; 1311 1312 #ifdef CONFIG_FAIR_GROUP_SCHED 1313 1314 /* CPU runqueue to which this cfs_rq is attached */ 1315 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1316 { 1317 return cfs_rq->rq; 1318 } 1319 1320 #else 1321 1322 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1323 { 1324 return container_of(cfs_rq, struct rq, cfs); 1325 } 1326 #endif 1327 1328 static inline int cpu_of(struct rq *rq) 1329 { 1330 #ifdef CONFIG_SMP 1331 return rq->cpu; 1332 #else 1333 return 0; 1334 #endif 1335 } 1336 1337 #define MDF_PUSH 0x01 1338 1339 static inline bool is_migration_disabled(struct task_struct *p) 1340 { 1341 #ifdef CONFIG_SMP 1342 return p->migration_disabled; 1343 #else 1344 return false; 1345 #endif 1346 } 1347 1348 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1349 1350 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1351 #define this_rq() this_cpu_ptr(&runqueues) 1352 #define task_rq(p) cpu_rq(task_cpu(p)) 1353 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1354 #define raw_rq() raw_cpu_ptr(&runqueues) 1355 1356 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1357 { 1358 /* Do nothing */ 1359 } 1360 1361 #ifdef CONFIG_SCHED_CORE 1362 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1363 1364 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1365 1366 static inline bool sched_core_enabled(struct rq *rq) 1367 { 1368 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1369 } 1370 1371 static inline bool sched_core_disabled(void) 1372 { 1373 return !static_branch_unlikely(&__sched_core_enabled); 1374 } 1375 1376 /* 1377 * Be careful with this function; not for general use. The return value isn't 1378 * stable unless you actually hold a relevant rq->__lock. 1379 */ 1380 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1381 { 1382 if (sched_core_enabled(rq)) 1383 return &rq->core->__lock; 1384 1385 return &rq->__lock; 1386 } 1387 1388 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1389 { 1390 if (rq->core_enabled) 1391 return &rq->core->__lock; 1392 1393 return &rq->__lock; 1394 } 1395 1396 extern bool 1397 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1398 1399 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1400 1401 /* 1402 * Helpers to check if the CPU's core cookie matches with the task's cookie 1403 * when core scheduling is enabled. 1404 * A special case is that the task's cookie always matches with CPU's core 1405 * cookie if the CPU is in an idle core. 1406 */ 1407 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1408 { 1409 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1410 if (!sched_core_enabled(rq)) 1411 return true; 1412 1413 return rq->core->core_cookie == p->core_cookie; 1414 } 1415 1416 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1417 { 1418 bool idle_core = true; 1419 int cpu; 1420 1421 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1422 if (!sched_core_enabled(rq)) 1423 return true; 1424 1425 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1426 if (!available_idle_cpu(cpu)) { 1427 idle_core = false; 1428 break; 1429 } 1430 } 1431 1432 /* 1433 * A CPU in an idle core is always the best choice for tasks with 1434 * cookies. 1435 */ 1436 return idle_core || rq->core->core_cookie == p->core_cookie; 1437 } 1438 1439 static inline bool sched_group_cookie_match(struct rq *rq, 1440 struct task_struct *p, 1441 struct sched_group *group) 1442 { 1443 int cpu; 1444 1445 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1446 if (!sched_core_enabled(rq)) 1447 return true; 1448 1449 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1450 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1451 return true; 1452 } 1453 return false; 1454 } 1455 1456 static inline bool sched_core_enqueued(struct task_struct *p) 1457 { 1458 return !RB_EMPTY_NODE(&p->core_node); 1459 } 1460 1461 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1462 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1463 1464 extern void sched_core_get(void); 1465 extern void sched_core_put(void); 1466 1467 #else /* !CONFIG_SCHED_CORE: */ 1468 1469 static inline bool sched_core_enabled(struct rq *rq) 1470 { 1471 return false; 1472 } 1473 1474 static inline bool sched_core_disabled(void) 1475 { 1476 return true; 1477 } 1478 1479 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1480 { 1481 return &rq->__lock; 1482 } 1483 1484 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1485 { 1486 return &rq->__lock; 1487 } 1488 1489 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1490 { 1491 return true; 1492 } 1493 1494 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1495 { 1496 return true; 1497 } 1498 1499 static inline bool sched_group_cookie_match(struct rq *rq, 1500 struct task_struct *p, 1501 struct sched_group *group) 1502 { 1503 return true; 1504 } 1505 1506 #endif /* !CONFIG_SCHED_CORE */ 1507 1508 static inline void lockdep_assert_rq_held(struct rq *rq) 1509 { 1510 lockdep_assert_held(__rq_lockp(rq)); 1511 } 1512 1513 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1514 extern bool raw_spin_rq_trylock(struct rq *rq); 1515 extern void raw_spin_rq_unlock(struct rq *rq); 1516 1517 static inline void raw_spin_rq_lock(struct rq *rq) 1518 { 1519 raw_spin_rq_lock_nested(rq, 0); 1520 } 1521 1522 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1523 { 1524 local_irq_disable(); 1525 raw_spin_rq_lock(rq); 1526 } 1527 1528 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1529 { 1530 raw_spin_rq_unlock(rq); 1531 local_irq_enable(); 1532 } 1533 1534 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1535 { 1536 unsigned long flags; 1537 1538 local_irq_save(flags); 1539 raw_spin_rq_lock(rq); 1540 1541 return flags; 1542 } 1543 1544 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1545 { 1546 raw_spin_rq_unlock(rq); 1547 local_irq_restore(flags); 1548 } 1549 1550 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1551 do { \ 1552 flags = _raw_spin_rq_lock_irqsave(rq); \ 1553 } while (0) 1554 1555 #ifdef CONFIG_SCHED_SMT 1556 extern void __update_idle_core(struct rq *rq); 1557 1558 static inline void update_idle_core(struct rq *rq) 1559 { 1560 if (static_branch_unlikely(&sched_smt_present)) 1561 __update_idle_core(rq); 1562 } 1563 1564 #else 1565 static inline void update_idle_core(struct rq *rq) { } 1566 #endif 1567 1568 #ifdef CONFIG_FAIR_GROUP_SCHED 1569 1570 static inline struct task_struct *task_of(struct sched_entity *se) 1571 { 1572 SCHED_WARN_ON(!entity_is_task(se)); 1573 return container_of(se, struct task_struct, se); 1574 } 1575 1576 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1577 { 1578 return p->se.cfs_rq; 1579 } 1580 1581 /* runqueue on which this entity is (to be) queued */ 1582 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1583 { 1584 return se->cfs_rq; 1585 } 1586 1587 /* runqueue "owned" by this group */ 1588 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1589 { 1590 return grp->my_q; 1591 } 1592 1593 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1594 1595 #define task_of(_se) container_of(_se, struct task_struct, se) 1596 1597 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1598 { 1599 return &task_rq(p)->cfs; 1600 } 1601 1602 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1603 { 1604 const struct task_struct *p = task_of(se); 1605 struct rq *rq = task_rq(p); 1606 1607 return &rq->cfs; 1608 } 1609 1610 /* runqueue "owned" by this group */ 1611 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1612 { 1613 return NULL; 1614 } 1615 1616 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1617 1618 extern void update_rq_clock(struct rq *rq); 1619 1620 /* 1621 * rq::clock_update_flags bits 1622 * 1623 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1624 * call to __schedule(). This is an optimisation to avoid 1625 * neighbouring rq clock updates. 1626 * 1627 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1628 * in effect and calls to update_rq_clock() are being ignored. 1629 * 1630 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1631 * made to update_rq_clock() since the last time rq::lock was pinned. 1632 * 1633 * If inside of __schedule(), clock_update_flags will have been 1634 * shifted left (a left shift is a cheap operation for the fast path 1635 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1636 * 1637 * if (rq-clock_update_flags >= RQCF_UPDATED) 1638 * 1639 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1640 * one position though, because the next rq_unpin_lock() will shift it 1641 * back. 1642 */ 1643 #define RQCF_REQ_SKIP 0x01 1644 #define RQCF_ACT_SKIP 0x02 1645 #define RQCF_UPDATED 0x04 1646 1647 static inline void assert_clock_updated(struct rq *rq) 1648 { 1649 /* 1650 * The only reason for not seeing a clock update since the 1651 * last rq_pin_lock() is if we're currently skipping updates. 1652 */ 1653 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1654 } 1655 1656 static inline u64 rq_clock(struct rq *rq) 1657 { 1658 lockdep_assert_rq_held(rq); 1659 assert_clock_updated(rq); 1660 1661 return rq->clock; 1662 } 1663 1664 static inline u64 rq_clock_task(struct rq *rq) 1665 { 1666 lockdep_assert_rq_held(rq); 1667 assert_clock_updated(rq); 1668 1669 return rq->clock_task; 1670 } 1671 1672 static inline void rq_clock_skip_update(struct rq *rq) 1673 { 1674 lockdep_assert_rq_held(rq); 1675 rq->clock_update_flags |= RQCF_REQ_SKIP; 1676 } 1677 1678 /* 1679 * See rt task throttling, which is the only time a skip 1680 * request is canceled. 1681 */ 1682 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1683 { 1684 lockdep_assert_rq_held(rq); 1685 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1686 } 1687 1688 /* 1689 * During cpu offlining and rq wide unthrottling, we can trigger 1690 * an update_rq_clock() for several cfs and rt runqueues (Typically 1691 * when using list_for_each_entry_*) 1692 * rq_clock_start_loop_update() can be called after updating the clock 1693 * once and before iterating over the list to prevent multiple update. 1694 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1695 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1696 */ 1697 static inline void rq_clock_start_loop_update(struct rq *rq) 1698 { 1699 lockdep_assert_rq_held(rq); 1700 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); 1701 rq->clock_update_flags |= RQCF_ACT_SKIP; 1702 } 1703 1704 static inline void rq_clock_stop_loop_update(struct rq *rq) 1705 { 1706 lockdep_assert_rq_held(rq); 1707 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1708 } 1709 1710 struct rq_flags { 1711 unsigned long flags; 1712 struct pin_cookie cookie; 1713 #ifdef CONFIG_SCHED_DEBUG 1714 /* 1715 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1716 * current pin context is stashed here in case it needs to be 1717 * restored in rq_repin_lock(). 1718 */ 1719 unsigned int clock_update_flags; 1720 #endif 1721 }; 1722 1723 extern struct balance_callback balance_push_callback; 1724 1725 /* 1726 * Lockdep annotation that avoids accidental unlocks; it's like a 1727 * sticky/continuous lockdep_assert_held(). 1728 * 1729 * This avoids code that has access to 'struct rq *rq' (basically everything in 1730 * the scheduler) from accidentally unlocking the rq if they do not also have a 1731 * copy of the (on-stack) 'struct rq_flags rf'. 1732 * 1733 * Also see Documentation/locking/lockdep-design.rst. 1734 */ 1735 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1736 { 1737 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1738 1739 #ifdef CONFIG_SCHED_DEBUG 1740 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1741 rf->clock_update_flags = 0; 1742 # ifdef CONFIG_SMP 1743 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1744 # endif 1745 #endif 1746 } 1747 1748 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1749 { 1750 #ifdef CONFIG_SCHED_DEBUG 1751 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1752 rf->clock_update_flags = RQCF_UPDATED; 1753 #endif 1754 1755 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1756 } 1757 1758 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1759 { 1760 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1761 1762 #ifdef CONFIG_SCHED_DEBUG 1763 /* 1764 * Restore the value we stashed in @rf for this pin context. 1765 */ 1766 rq->clock_update_flags |= rf->clock_update_flags; 1767 #endif 1768 } 1769 1770 extern 1771 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1772 __acquires(rq->lock); 1773 1774 extern 1775 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1776 __acquires(p->pi_lock) 1777 __acquires(rq->lock); 1778 1779 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1780 __releases(rq->lock) 1781 { 1782 rq_unpin_lock(rq, rf); 1783 raw_spin_rq_unlock(rq); 1784 } 1785 1786 static inline void 1787 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1788 __releases(rq->lock) 1789 __releases(p->pi_lock) 1790 { 1791 rq_unpin_lock(rq, rf); 1792 raw_spin_rq_unlock(rq); 1793 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1794 } 1795 1796 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1797 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1798 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1799 struct rq *rq; struct rq_flags rf) 1800 1801 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1802 __acquires(rq->lock) 1803 { 1804 raw_spin_rq_lock_irqsave(rq, rf->flags); 1805 rq_pin_lock(rq, rf); 1806 } 1807 1808 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1809 __acquires(rq->lock) 1810 { 1811 raw_spin_rq_lock_irq(rq); 1812 rq_pin_lock(rq, rf); 1813 } 1814 1815 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1816 __acquires(rq->lock) 1817 { 1818 raw_spin_rq_lock(rq); 1819 rq_pin_lock(rq, rf); 1820 } 1821 1822 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1823 __releases(rq->lock) 1824 { 1825 rq_unpin_lock(rq, rf); 1826 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1827 } 1828 1829 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1830 __releases(rq->lock) 1831 { 1832 rq_unpin_lock(rq, rf); 1833 raw_spin_rq_unlock_irq(rq); 1834 } 1835 1836 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1837 __releases(rq->lock) 1838 { 1839 rq_unpin_lock(rq, rf); 1840 raw_spin_rq_unlock(rq); 1841 } 1842 1843 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1844 rq_lock(_T->lock, &_T->rf), 1845 rq_unlock(_T->lock, &_T->rf), 1846 struct rq_flags rf) 1847 1848 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1849 rq_lock_irq(_T->lock, &_T->rf), 1850 rq_unlock_irq(_T->lock, &_T->rf), 1851 struct rq_flags rf) 1852 1853 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1854 rq_lock_irqsave(_T->lock, &_T->rf), 1855 rq_unlock_irqrestore(_T->lock, &_T->rf), 1856 struct rq_flags rf) 1857 1858 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1859 __acquires(rq->lock) 1860 { 1861 struct rq *rq; 1862 1863 local_irq_disable(); 1864 rq = this_rq(); 1865 rq_lock(rq, rf); 1866 1867 return rq; 1868 } 1869 1870 #ifdef CONFIG_NUMA 1871 1872 enum numa_topology_type { 1873 NUMA_DIRECT, 1874 NUMA_GLUELESS_MESH, 1875 NUMA_BACKPLANE, 1876 }; 1877 1878 extern enum numa_topology_type sched_numa_topology_type; 1879 extern int sched_max_numa_distance; 1880 extern bool find_numa_distance(int distance); 1881 extern void sched_init_numa(int offline_node); 1882 extern void sched_update_numa(int cpu, bool online); 1883 extern void sched_domains_numa_masks_set(unsigned int cpu); 1884 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1885 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1886 1887 #else /* !CONFIG_NUMA: */ 1888 1889 static inline void sched_init_numa(int offline_node) { } 1890 static inline void sched_update_numa(int cpu, bool online) { } 1891 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1892 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1893 1894 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1895 { 1896 return nr_cpu_ids; 1897 } 1898 1899 #endif /* !CONFIG_NUMA */ 1900 1901 #ifdef CONFIG_NUMA_BALANCING 1902 1903 /* The regions in numa_faults array from task_struct */ 1904 enum numa_faults_stats { 1905 NUMA_MEM = 0, 1906 NUMA_CPU, 1907 NUMA_MEMBUF, 1908 NUMA_CPUBUF 1909 }; 1910 1911 extern void sched_setnuma(struct task_struct *p, int node); 1912 extern int migrate_task_to(struct task_struct *p, int cpu); 1913 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1914 int cpu, int scpu); 1915 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1916 1917 #else /* !CONFIG_NUMA_BALANCING: */ 1918 1919 static inline void 1920 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1921 { 1922 } 1923 1924 #endif /* !CONFIG_NUMA_BALANCING */ 1925 1926 #ifdef CONFIG_SMP 1927 1928 static inline void 1929 queue_balance_callback(struct rq *rq, 1930 struct balance_callback *head, 1931 void (*func)(struct rq *rq)) 1932 { 1933 lockdep_assert_rq_held(rq); 1934 1935 /* 1936 * Don't (re)queue an already queued item; nor queue anything when 1937 * balance_push() is active, see the comment with 1938 * balance_push_callback. 1939 */ 1940 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1941 return; 1942 1943 head->func = func; 1944 head->next = rq->balance_callback; 1945 rq->balance_callback = head; 1946 } 1947 1948 #define rcu_dereference_check_sched_domain(p) \ 1949 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1950 1951 /* 1952 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1953 * See destroy_sched_domains: call_rcu for details. 1954 * 1955 * The domain tree of any CPU may only be accessed from within 1956 * preempt-disabled sections. 1957 */ 1958 #define for_each_domain(cpu, __sd) \ 1959 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1960 __sd; __sd = __sd->parent) 1961 1962 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1963 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1964 static const unsigned int SD_SHARED_CHILD_MASK = 1965 #include <linux/sched/sd_flags.h> 1966 0; 1967 #undef SD_FLAG 1968 1969 /** 1970 * highest_flag_domain - Return highest sched_domain containing flag. 1971 * @cpu: The CPU whose highest level of sched domain is to 1972 * be returned. 1973 * @flag: The flag to check for the highest sched_domain 1974 * for the given CPU. 1975 * 1976 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1977 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1978 */ 1979 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1980 { 1981 struct sched_domain *sd, *hsd = NULL; 1982 1983 for_each_domain(cpu, sd) { 1984 if (sd->flags & flag) { 1985 hsd = sd; 1986 continue; 1987 } 1988 1989 /* 1990 * Stop the search if @flag is known to be shared at lower 1991 * levels. It will not be found further up. 1992 */ 1993 if (flag & SD_SHARED_CHILD_MASK) 1994 break; 1995 } 1996 1997 return hsd; 1998 } 1999 2000 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2001 { 2002 struct sched_domain *sd; 2003 2004 for_each_domain(cpu, sd) { 2005 if (sd->flags & flag) 2006 break; 2007 } 2008 2009 return sd; 2010 } 2011 2012 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2013 DECLARE_PER_CPU(int, sd_llc_size); 2014 DECLARE_PER_CPU(int, sd_llc_id); 2015 DECLARE_PER_CPU(int, sd_share_id); 2016 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2017 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2018 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2019 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2020 2021 extern struct static_key_false sched_asym_cpucapacity; 2022 extern struct static_key_false sched_cluster_active; 2023 2024 static __always_inline bool sched_asym_cpucap_active(void) 2025 { 2026 return static_branch_unlikely(&sched_asym_cpucapacity); 2027 } 2028 2029 struct sched_group_capacity { 2030 atomic_t ref; 2031 /* 2032 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2033 * for a single CPU. 2034 */ 2035 unsigned long capacity; 2036 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2037 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2038 unsigned long next_update; 2039 int imbalance; /* XXX unrelated to capacity but shared group state */ 2040 2041 #ifdef CONFIG_SCHED_DEBUG 2042 int id; 2043 #endif 2044 2045 unsigned long cpumask[]; /* Balance mask */ 2046 }; 2047 2048 struct sched_group { 2049 struct sched_group *next; /* Must be a circular list */ 2050 atomic_t ref; 2051 2052 unsigned int group_weight; 2053 unsigned int cores; 2054 struct sched_group_capacity *sgc; 2055 int asym_prefer_cpu; /* CPU of highest priority in group */ 2056 int flags; 2057 2058 /* 2059 * The CPUs this group covers. 2060 * 2061 * NOTE: this field is variable length. (Allocated dynamically 2062 * by attaching extra space to the end of the structure, 2063 * depending on how many CPUs the kernel has booted up with) 2064 */ 2065 unsigned long cpumask[]; 2066 }; 2067 2068 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2069 { 2070 return to_cpumask(sg->cpumask); 2071 } 2072 2073 /* 2074 * See build_balance_mask(). 2075 */ 2076 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2077 { 2078 return to_cpumask(sg->sgc->cpumask); 2079 } 2080 2081 extern int group_balance_cpu(struct sched_group *sg); 2082 2083 #ifdef CONFIG_SCHED_DEBUG 2084 extern void update_sched_domain_debugfs(void); 2085 extern void dirty_sched_domain_sysctl(int cpu); 2086 #else 2087 static inline void update_sched_domain_debugfs(void) { } 2088 static inline void dirty_sched_domain_sysctl(int cpu) { } 2089 #endif 2090 2091 extern int sched_update_scaling(void); 2092 2093 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2094 { 2095 if (!p->user_cpus_ptr) 2096 return cpu_possible_mask; /* &init_task.cpus_mask */ 2097 return p->user_cpus_ptr; 2098 } 2099 2100 #endif /* CONFIG_SMP */ 2101 2102 #ifdef CONFIG_CGROUP_SCHED 2103 2104 /* 2105 * Return the group to which this tasks belongs. 2106 * 2107 * We cannot use task_css() and friends because the cgroup subsystem 2108 * changes that value before the cgroup_subsys::attach() method is called, 2109 * therefore we cannot pin it and might observe the wrong value. 2110 * 2111 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2112 * core changes this before calling sched_move_task(). 2113 * 2114 * Instead we use a 'copy' which is updated from sched_move_task() while 2115 * holding both task_struct::pi_lock and rq::lock. 2116 */ 2117 static inline struct task_group *task_group(struct task_struct *p) 2118 { 2119 return p->sched_task_group; 2120 } 2121 2122 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2123 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2124 { 2125 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2126 struct task_group *tg = task_group(p); 2127 #endif 2128 2129 #ifdef CONFIG_FAIR_GROUP_SCHED 2130 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2131 p->se.cfs_rq = tg->cfs_rq[cpu]; 2132 p->se.parent = tg->se[cpu]; 2133 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2134 #endif 2135 2136 #ifdef CONFIG_RT_GROUP_SCHED 2137 p->rt.rt_rq = tg->rt_rq[cpu]; 2138 p->rt.parent = tg->rt_se[cpu]; 2139 #endif 2140 } 2141 2142 #else /* !CONFIG_CGROUP_SCHED: */ 2143 2144 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2145 2146 static inline struct task_group *task_group(struct task_struct *p) 2147 { 2148 return NULL; 2149 } 2150 2151 #endif /* !CONFIG_CGROUP_SCHED */ 2152 2153 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2154 { 2155 set_task_rq(p, cpu); 2156 #ifdef CONFIG_SMP 2157 /* 2158 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2159 * successfully executed on another CPU. We must ensure that updates of 2160 * per-task data have been completed by this moment. 2161 */ 2162 smp_wmb(); 2163 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2164 p->wake_cpu = cpu; 2165 #endif 2166 } 2167 2168 /* 2169 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 2170 */ 2171 #ifdef CONFIG_SCHED_DEBUG 2172 # define const_debug __read_mostly 2173 #else 2174 # define const_debug const 2175 #endif 2176 2177 #define SCHED_FEAT(name, enabled) \ 2178 __SCHED_FEAT_##name , 2179 2180 enum { 2181 #include "features.h" 2182 __SCHED_FEAT_NR, 2183 }; 2184 2185 #undef SCHED_FEAT 2186 2187 #ifdef CONFIG_SCHED_DEBUG 2188 2189 /* 2190 * To support run-time toggling of sched features, all the translation units 2191 * (but core.c) reference the sysctl_sched_features defined in core.c. 2192 */ 2193 extern const_debug unsigned int sysctl_sched_features; 2194 2195 #ifdef CONFIG_JUMP_LABEL 2196 2197 #define SCHED_FEAT(name, enabled) \ 2198 static __always_inline bool static_branch_##name(struct static_key *key) \ 2199 { \ 2200 return static_key_##enabled(key); \ 2201 } 2202 2203 #include "features.h" 2204 #undef SCHED_FEAT 2205 2206 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2207 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2208 2209 #else /* !CONFIG_JUMP_LABEL: */ 2210 2211 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2212 2213 #endif /* !CONFIG_JUMP_LABEL */ 2214 2215 #else /* !SCHED_DEBUG: */ 2216 2217 /* 2218 * Each translation unit has its own copy of sysctl_sched_features to allow 2219 * constants propagation at compile time and compiler optimization based on 2220 * features default. 2221 */ 2222 #define SCHED_FEAT(name, enabled) \ 2223 (1UL << __SCHED_FEAT_##name) * enabled | 2224 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2225 #include "features.h" 2226 0; 2227 #undef SCHED_FEAT 2228 2229 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2230 2231 #endif /* !SCHED_DEBUG */ 2232 2233 extern struct static_key_false sched_numa_balancing; 2234 extern struct static_key_false sched_schedstats; 2235 2236 static inline u64 global_rt_period(void) 2237 { 2238 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2239 } 2240 2241 static inline u64 global_rt_runtime(void) 2242 { 2243 if (sysctl_sched_rt_runtime < 0) 2244 return RUNTIME_INF; 2245 2246 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2247 } 2248 2249 /* 2250 * Is p the current execution context? 2251 */ 2252 static inline int task_current(struct rq *rq, struct task_struct *p) 2253 { 2254 return rq->curr == p; 2255 } 2256 2257 /* 2258 * Is p the current scheduling context? 2259 * 2260 * Note that it might be the current execution context at the same time if 2261 * rq->curr == rq->donor == p. 2262 */ 2263 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2264 { 2265 return rq->donor == p; 2266 } 2267 2268 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2269 { 2270 #ifdef CONFIG_SMP 2271 return p->on_cpu; 2272 #else 2273 return task_current(rq, p); 2274 #endif 2275 } 2276 2277 static inline int task_on_rq_queued(struct task_struct *p) 2278 { 2279 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2280 } 2281 2282 static inline int task_on_rq_migrating(struct task_struct *p) 2283 { 2284 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2285 } 2286 2287 /* Wake flags. The first three directly map to some SD flag value */ 2288 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2289 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2290 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2291 2292 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2293 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2294 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2295 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2296 2297 #ifdef CONFIG_SMP 2298 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2299 static_assert(WF_FORK == SD_BALANCE_FORK); 2300 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2301 #endif 2302 2303 /* 2304 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2305 * of tasks with abnormal "nice" values across CPUs the contribution that 2306 * each task makes to its run queue's load is weighted according to its 2307 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2308 * scaled version of the new time slice allocation that they receive on time 2309 * slice expiry etc. 2310 */ 2311 2312 #define WEIGHT_IDLEPRIO 3 2313 #define WMULT_IDLEPRIO 1431655765 2314 2315 extern const int sched_prio_to_weight[40]; 2316 extern const u32 sched_prio_to_wmult[40]; 2317 2318 /* 2319 * {de,en}queue flags: 2320 * 2321 * DEQUEUE_SLEEP - task is no longer runnable 2322 * ENQUEUE_WAKEUP - task just became runnable 2323 * 2324 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2325 * are in a known state which allows modification. Such pairs 2326 * should preserve as much state as possible. 2327 * 2328 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2329 * in the runqueue. 2330 * 2331 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2332 * 2333 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2334 * 2335 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2336 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2337 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2338 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2339 * 2340 */ 2341 2342 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2343 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2344 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2345 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2346 #define DEQUEUE_SPECIAL 0x10 2347 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2348 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2349 2350 #define ENQUEUE_WAKEUP 0x01 2351 #define ENQUEUE_RESTORE 0x02 2352 #define ENQUEUE_MOVE 0x04 2353 #define ENQUEUE_NOCLOCK 0x08 2354 2355 #define ENQUEUE_HEAD 0x10 2356 #define ENQUEUE_REPLENISH 0x20 2357 #ifdef CONFIG_SMP 2358 #define ENQUEUE_MIGRATED 0x40 2359 #else 2360 #define ENQUEUE_MIGRATED 0x00 2361 #endif 2362 #define ENQUEUE_INITIAL 0x80 2363 #define ENQUEUE_MIGRATING 0x100 2364 #define ENQUEUE_DELAYED 0x200 2365 #define ENQUEUE_RQ_SELECTED 0x400 2366 2367 #define RETRY_TASK ((void *)-1UL) 2368 2369 struct affinity_context { 2370 const struct cpumask *new_mask; 2371 struct cpumask *user_mask; 2372 unsigned int flags; 2373 }; 2374 2375 extern s64 update_curr_common(struct rq *rq); 2376 2377 struct sched_class { 2378 2379 #ifdef CONFIG_UCLAMP_TASK 2380 int uclamp_enabled; 2381 #endif 2382 2383 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2384 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2385 void (*yield_task) (struct rq *rq); 2386 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2387 2388 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2389 2390 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2391 struct task_struct *(*pick_task)(struct rq *rq); 2392 /* 2393 * Optional! When implemented pick_next_task() should be equivalent to: 2394 * 2395 * next = pick_task(); 2396 * if (next) { 2397 * put_prev_task(prev); 2398 * set_next_task_first(next); 2399 * } 2400 */ 2401 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2402 2403 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2404 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2405 2406 #ifdef CONFIG_SMP 2407 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2408 2409 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2410 2411 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2412 2413 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2414 2415 void (*rq_online)(struct rq *rq); 2416 void (*rq_offline)(struct rq *rq); 2417 2418 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2419 #endif 2420 2421 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2422 void (*task_fork)(struct task_struct *p); 2423 void (*task_dead)(struct task_struct *p); 2424 2425 /* 2426 * The switched_from() call is allowed to drop rq->lock, therefore we 2427 * cannot assume the switched_from/switched_to pair is serialized by 2428 * rq->lock. They are however serialized by p->pi_lock. 2429 */ 2430 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2431 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2432 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2433 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2434 const struct load_weight *lw); 2435 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2436 int oldprio); 2437 2438 unsigned int (*get_rr_interval)(struct rq *rq, 2439 struct task_struct *task); 2440 2441 void (*update_curr)(struct rq *rq); 2442 2443 #ifdef CONFIG_FAIR_GROUP_SCHED 2444 void (*task_change_group)(struct task_struct *p); 2445 #endif 2446 2447 #ifdef CONFIG_SCHED_CORE 2448 int (*task_is_throttled)(struct task_struct *p, int cpu); 2449 #endif 2450 }; 2451 2452 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2453 { 2454 WARN_ON_ONCE(rq->donor != prev); 2455 prev->sched_class->put_prev_task(rq, prev, NULL); 2456 } 2457 2458 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2459 { 2460 next->sched_class->set_next_task(rq, next, false); 2461 } 2462 2463 static inline void 2464 __put_prev_set_next_dl_server(struct rq *rq, 2465 struct task_struct *prev, 2466 struct task_struct *next) 2467 { 2468 prev->dl_server = NULL; 2469 next->dl_server = rq->dl_server; 2470 rq->dl_server = NULL; 2471 } 2472 2473 static inline void put_prev_set_next_task(struct rq *rq, 2474 struct task_struct *prev, 2475 struct task_struct *next) 2476 { 2477 WARN_ON_ONCE(rq->curr != prev); 2478 2479 __put_prev_set_next_dl_server(rq, prev, next); 2480 2481 if (next == prev) 2482 return; 2483 2484 prev->sched_class->put_prev_task(rq, prev, next); 2485 next->sched_class->set_next_task(rq, next, true); 2486 } 2487 2488 /* 2489 * Helper to define a sched_class instance; each one is placed in a separate 2490 * section which is ordered by the linker script: 2491 * 2492 * include/asm-generic/vmlinux.lds.h 2493 * 2494 * *CAREFUL* they are laid out in *REVERSE* order!!! 2495 * 2496 * Also enforce alignment on the instance, not the type, to guarantee layout. 2497 */ 2498 #define DEFINE_SCHED_CLASS(name) \ 2499 const struct sched_class name##_sched_class \ 2500 __aligned(__alignof__(struct sched_class)) \ 2501 __section("__" #name "_sched_class") 2502 2503 /* Defined in include/asm-generic/vmlinux.lds.h */ 2504 extern struct sched_class __sched_class_highest[]; 2505 extern struct sched_class __sched_class_lowest[]; 2506 2507 extern const struct sched_class stop_sched_class; 2508 extern const struct sched_class dl_sched_class; 2509 extern const struct sched_class rt_sched_class; 2510 extern const struct sched_class fair_sched_class; 2511 extern const struct sched_class idle_sched_class; 2512 2513 #ifdef CONFIG_SCHED_CLASS_EXT 2514 extern const struct sched_class ext_sched_class; 2515 2516 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */ 2517 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 2518 2519 #define scx_enabled() static_branch_unlikely(&__scx_ops_enabled) 2520 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 2521 #else /* !CONFIG_SCHED_CLASS_EXT */ 2522 #define scx_enabled() false 2523 #define scx_switched_all() false 2524 #endif /* !CONFIG_SCHED_CLASS_EXT */ 2525 2526 /* 2527 * Iterate only active classes. SCX can take over all fair tasks or be 2528 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2529 */ 2530 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2531 { 2532 class++; 2533 #ifdef CONFIG_SCHED_CLASS_EXT 2534 if (scx_switched_all() && class == &fair_sched_class) 2535 class++; 2536 if (!scx_enabled() && class == &ext_sched_class) 2537 class++; 2538 #endif 2539 return class; 2540 } 2541 2542 #define for_class_range(class, _from, _to) \ 2543 for (class = (_from); class < (_to); class++) 2544 2545 #define for_each_class(class) \ 2546 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2547 2548 #define for_active_class_range(class, _from, _to) \ 2549 for (class = (_from); class != (_to); class = next_active_class(class)) 2550 2551 #define for_each_active_class(class) \ 2552 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2553 2554 #define sched_class_above(_a, _b) ((_a) < (_b)) 2555 2556 static inline bool sched_stop_runnable(struct rq *rq) 2557 { 2558 return rq->stop && task_on_rq_queued(rq->stop); 2559 } 2560 2561 static inline bool sched_dl_runnable(struct rq *rq) 2562 { 2563 return rq->dl.dl_nr_running > 0; 2564 } 2565 2566 static inline bool sched_rt_runnable(struct rq *rq) 2567 { 2568 return rq->rt.rt_queued > 0; 2569 } 2570 2571 static inline bool sched_fair_runnable(struct rq *rq) 2572 { 2573 return rq->cfs.nr_queued > 0; 2574 } 2575 2576 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2577 extern struct task_struct *pick_task_idle(struct rq *rq); 2578 2579 #define SCA_CHECK 0x01 2580 #define SCA_MIGRATE_DISABLE 0x02 2581 #define SCA_MIGRATE_ENABLE 0x04 2582 #define SCA_USER 0x08 2583 2584 #ifdef CONFIG_SMP 2585 2586 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2587 2588 extern void sched_balance_trigger(struct rq *rq); 2589 2590 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2591 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2592 2593 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2594 { 2595 /* When not in the task's cpumask, no point in looking further. */ 2596 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2597 return false; 2598 2599 /* Can @cpu run a user thread? */ 2600 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2601 return false; 2602 2603 return true; 2604 } 2605 2606 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2607 { 2608 /* 2609 * See do_set_cpus_allowed() above for the rcu_head usage. 2610 */ 2611 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2612 2613 return kmalloc_node(size, GFP_KERNEL, node); 2614 } 2615 2616 static inline struct task_struct *get_push_task(struct rq *rq) 2617 { 2618 struct task_struct *p = rq->donor; 2619 2620 lockdep_assert_rq_held(rq); 2621 2622 if (rq->push_busy) 2623 return NULL; 2624 2625 if (p->nr_cpus_allowed == 1) 2626 return NULL; 2627 2628 if (p->migration_disabled) 2629 return NULL; 2630 2631 rq->push_busy = true; 2632 return get_task_struct(p); 2633 } 2634 2635 extern int push_cpu_stop(void *arg); 2636 2637 #else /* !CONFIG_SMP: */ 2638 2639 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2640 { 2641 return true; 2642 } 2643 2644 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2645 struct affinity_context *ctx) 2646 { 2647 return set_cpus_allowed_ptr(p, ctx->new_mask); 2648 } 2649 2650 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2651 { 2652 return NULL; 2653 } 2654 2655 #endif /* !CONFIG_SMP */ 2656 2657 #ifdef CONFIG_CPU_IDLE 2658 2659 static inline void idle_set_state(struct rq *rq, 2660 struct cpuidle_state *idle_state) 2661 { 2662 rq->idle_state = idle_state; 2663 } 2664 2665 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2666 { 2667 SCHED_WARN_ON(!rcu_read_lock_held()); 2668 2669 return rq->idle_state; 2670 } 2671 2672 #else /* !CONFIG_CPU_IDLE: */ 2673 2674 static inline void idle_set_state(struct rq *rq, 2675 struct cpuidle_state *idle_state) 2676 { 2677 } 2678 2679 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2680 { 2681 return NULL; 2682 } 2683 2684 #endif /* !CONFIG_CPU_IDLE */ 2685 2686 extern void schedule_idle(void); 2687 asmlinkage void schedule_user(void); 2688 2689 extern void sysrq_sched_debug_show(void); 2690 extern void sched_init_granularity(void); 2691 extern void update_max_interval(void); 2692 2693 extern void init_sched_dl_class(void); 2694 extern void init_sched_rt_class(void); 2695 extern void init_sched_fair_class(void); 2696 2697 extern void resched_curr(struct rq *rq); 2698 extern void resched_curr_lazy(struct rq *rq); 2699 extern void resched_cpu(int cpu); 2700 2701 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2702 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2703 2704 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2705 2706 #define BW_SHIFT 20 2707 #define BW_UNIT (1 << BW_SHIFT) 2708 #define RATIO_SHIFT 8 2709 #define MAX_BW_BITS (64 - BW_SHIFT) 2710 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2711 2712 extern unsigned long to_ratio(u64 period, u64 runtime); 2713 2714 extern void init_entity_runnable_average(struct sched_entity *se); 2715 extern void post_init_entity_util_avg(struct task_struct *p); 2716 2717 #ifdef CONFIG_NO_HZ_FULL 2718 extern bool sched_can_stop_tick(struct rq *rq); 2719 extern int __init sched_tick_offload_init(void); 2720 2721 /* 2722 * Tick may be needed by tasks in the runqueue depending on their policy and 2723 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2724 * nohz mode if necessary. 2725 */ 2726 static inline void sched_update_tick_dependency(struct rq *rq) 2727 { 2728 int cpu = cpu_of(rq); 2729 2730 if (!tick_nohz_full_cpu(cpu)) 2731 return; 2732 2733 if (sched_can_stop_tick(rq)) 2734 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2735 else 2736 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2737 } 2738 #else /* !CONFIG_NO_HZ_FULL: */ 2739 static inline int sched_tick_offload_init(void) { return 0; } 2740 static inline void sched_update_tick_dependency(struct rq *rq) { } 2741 #endif /* !CONFIG_NO_HZ_FULL */ 2742 2743 static inline void add_nr_running(struct rq *rq, unsigned count) 2744 { 2745 unsigned prev_nr = rq->nr_running; 2746 2747 rq->nr_running = prev_nr + count; 2748 if (trace_sched_update_nr_running_tp_enabled()) { 2749 call_trace_sched_update_nr_running(rq, count); 2750 } 2751 2752 #ifdef CONFIG_SMP 2753 if (prev_nr < 2 && rq->nr_running >= 2) 2754 set_rd_overloaded(rq->rd, 1); 2755 #endif 2756 2757 sched_update_tick_dependency(rq); 2758 } 2759 2760 static inline void sub_nr_running(struct rq *rq, unsigned count) 2761 { 2762 rq->nr_running -= count; 2763 if (trace_sched_update_nr_running_tp_enabled()) { 2764 call_trace_sched_update_nr_running(rq, -count); 2765 } 2766 2767 /* Check if we still need preemption */ 2768 sched_update_tick_dependency(rq); 2769 } 2770 2771 static inline void __block_task(struct rq *rq, struct task_struct *p) 2772 { 2773 if (p->sched_contributes_to_load) 2774 rq->nr_uninterruptible++; 2775 2776 if (p->in_iowait) { 2777 atomic_inc(&rq->nr_iowait); 2778 delayacct_blkio_start(); 2779 } 2780 2781 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2782 2783 /* 2784 * The moment this write goes through, ttwu() can swoop in and migrate 2785 * this task, rendering our rq->__lock ineffective. 2786 * 2787 * __schedule() try_to_wake_up() 2788 * LOCK rq->__lock LOCK p->pi_lock 2789 * pick_next_task() 2790 * pick_next_task_fair() 2791 * pick_next_entity() 2792 * dequeue_entities() 2793 * __block_task() 2794 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2795 * break; 2796 * 2797 * ACQUIRE (after ctrl-dep) 2798 * 2799 * cpu = select_task_rq(); 2800 * set_task_cpu(p, cpu); 2801 * ttwu_queue() 2802 * ttwu_do_activate() 2803 * LOCK rq->__lock 2804 * activate_task() 2805 * STORE p->on_rq = 1 2806 * UNLOCK rq->__lock 2807 * 2808 * Callers must ensure to not reference @p after this -- we no longer 2809 * own it. 2810 */ 2811 smp_store_release(&p->on_rq, 0); 2812 } 2813 2814 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2815 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2816 2817 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2818 2819 #ifdef CONFIG_PREEMPT_RT 2820 # define SCHED_NR_MIGRATE_BREAK 8 2821 #else 2822 # define SCHED_NR_MIGRATE_BREAK 32 2823 #endif 2824 2825 extern const_debug unsigned int sysctl_sched_nr_migrate; 2826 extern const_debug unsigned int sysctl_sched_migration_cost; 2827 2828 extern unsigned int sysctl_sched_base_slice; 2829 2830 #ifdef CONFIG_SCHED_DEBUG 2831 extern int sysctl_resched_latency_warn_ms; 2832 extern int sysctl_resched_latency_warn_once; 2833 2834 extern unsigned int sysctl_sched_tunable_scaling; 2835 2836 extern unsigned int sysctl_numa_balancing_scan_delay; 2837 extern unsigned int sysctl_numa_balancing_scan_period_min; 2838 extern unsigned int sysctl_numa_balancing_scan_period_max; 2839 extern unsigned int sysctl_numa_balancing_scan_size; 2840 extern unsigned int sysctl_numa_balancing_hot_threshold; 2841 #endif 2842 2843 #ifdef CONFIG_SCHED_HRTICK 2844 2845 /* 2846 * Use hrtick when: 2847 * - enabled by features 2848 * - hrtimer is actually high res 2849 */ 2850 static inline int hrtick_enabled(struct rq *rq) 2851 { 2852 if (!cpu_active(cpu_of(rq))) 2853 return 0; 2854 return hrtimer_is_hres_active(&rq->hrtick_timer); 2855 } 2856 2857 static inline int hrtick_enabled_fair(struct rq *rq) 2858 { 2859 if (!sched_feat(HRTICK)) 2860 return 0; 2861 return hrtick_enabled(rq); 2862 } 2863 2864 static inline int hrtick_enabled_dl(struct rq *rq) 2865 { 2866 if (!sched_feat(HRTICK_DL)) 2867 return 0; 2868 return hrtick_enabled(rq); 2869 } 2870 2871 extern void hrtick_start(struct rq *rq, u64 delay); 2872 2873 #else /* !CONFIG_SCHED_HRTICK: */ 2874 2875 static inline int hrtick_enabled_fair(struct rq *rq) 2876 { 2877 return 0; 2878 } 2879 2880 static inline int hrtick_enabled_dl(struct rq *rq) 2881 { 2882 return 0; 2883 } 2884 2885 static inline int hrtick_enabled(struct rq *rq) 2886 { 2887 return 0; 2888 } 2889 2890 #endif /* !CONFIG_SCHED_HRTICK */ 2891 2892 #ifndef arch_scale_freq_tick 2893 static __always_inline void arch_scale_freq_tick(void) { } 2894 #endif 2895 2896 #ifndef arch_scale_freq_capacity 2897 /** 2898 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2899 * @cpu: the CPU in question. 2900 * 2901 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2902 * 2903 * f_curr 2904 * ------ * SCHED_CAPACITY_SCALE 2905 * f_max 2906 */ 2907 static __always_inline 2908 unsigned long arch_scale_freq_capacity(int cpu) 2909 { 2910 return SCHED_CAPACITY_SCALE; 2911 } 2912 #endif 2913 2914 #ifdef CONFIG_SCHED_DEBUG 2915 /* 2916 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2917 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2918 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2919 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2920 */ 2921 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2922 { 2923 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2924 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2925 #ifdef CONFIG_SMP 2926 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2927 #endif 2928 } 2929 #else 2930 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { } 2931 #endif 2932 2933 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2934 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2935 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2936 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2937 _lock; return _t; } 2938 2939 #ifdef CONFIG_SMP 2940 2941 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2942 { 2943 #ifdef CONFIG_SCHED_CORE 2944 /* 2945 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2946 * order by core-id first and cpu-id second. 2947 * 2948 * Notably: 2949 * 2950 * double_rq_lock(0,3); will take core-0, core-1 lock 2951 * double_rq_lock(1,2); will take core-1, core-0 lock 2952 * 2953 * when only cpu-id is considered. 2954 */ 2955 if (rq1->core->cpu < rq2->core->cpu) 2956 return true; 2957 if (rq1->core->cpu > rq2->core->cpu) 2958 return false; 2959 2960 /* 2961 * __sched_core_flip() relies on SMT having cpu-id lock order. 2962 */ 2963 #endif 2964 return rq1->cpu < rq2->cpu; 2965 } 2966 2967 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2968 2969 #ifdef CONFIG_PREEMPTION 2970 2971 /* 2972 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2973 * way at the expense of forcing extra atomic operations in all 2974 * invocations. This assures that the double_lock is acquired using the 2975 * same underlying policy as the spinlock_t on this architecture, which 2976 * reduces latency compared to the unfair variant below. However, it 2977 * also adds more overhead and therefore may reduce throughput. 2978 */ 2979 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2980 __releases(this_rq->lock) 2981 __acquires(busiest->lock) 2982 __acquires(this_rq->lock) 2983 { 2984 raw_spin_rq_unlock(this_rq); 2985 double_rq_lock(this_rq, busiest); 2986 2987 return 1; 2988 } 2989 2990 #else /* !CONFIG_PREEMPTION: */ 2991 /* 2992 * Unfair double_lock_balance: Optimizes throughput at the expense of 2993 * latency by eliminating extra atomic operations when the locks are 2994 * already in proper order on entry. This favors lower CPU-ids and will 2995 * grant the double lock to lower CPUs over higher ids under contention, 2996 * regardless of entry order into the function. 2997 */ 2998 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2999 __releases(this_rq->lock) 3000 __acquires(busiest->lock) 3001 __acquires(this_rq->lock) 3002 { 3003 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 3004 likely(raw_spin_rq_trylock(busiest))) { 3005 double_rq_clock_clear_update(this_rq, busiest); 3006 return 0; 3007 } 3008 3009 if (rq_order_less(this_rq, busiest)) { 3010 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 3011 double_rq_clock_clear_update(this_rq, busiest); 3012 return 0; 3013 } 3014 3015 raw_spin_rq_unlock(this_rq); 3016 double_rq_lock(this_rq, busiest); 3017 3018 return 1; 3019 } 3020 3021 #endif /* !CONFIG_PREEMPTION */ 3022 3023 /* 3024 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 3025 */ 3026 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 3027 { 3028 lockdep_assert_irqs_disabled(); 3029 3030 return _double_lock_balance(this_rq, busiest); 3031 } 3032 3033 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3034 __releases(busiest->lock) 3035 { 3036 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3037 raw_spin_rq_unlock(busiest); 3038 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3039 } 3040 3041 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3042 { 3043 if (l1 > l2) 3044 swap(l1, l2); 3045 3046 spin_lock(l1); 3047 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3048 } 3049 3050 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3051 { 3052 if (l1 > l2) 3053 swap(l1, l2); 3054 3055 spin_lock_irq(l1); 3056 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3057 } 3058 3059 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3060 { 3061 if (l1 > l2) 3062 swap(l1, l2); 3063 3064 raw_spin_lock(l1); 3065 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3066 } 3067 3068 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3069 { 3070 raw_spin_unlock(l1); 3071 raw_spin_unlock(l2); 3072 } 3073 3074 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3075 double_raw_lock(_T->lock, _T->lock2), 3076 double_raw_unlock(_T->lock, _T->lock2)) 3077 3078 /* 3079 * double_rq_unlock - safely unlock two runqueues 3080 * 3081 * Note this does not restore interrupts like task_rq_unlock, 3082 * you need to do so manually after calling. 3083 */ 3084 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3085 __releases(rq1->lock) 3086 __releases(rq2->lock) 3087 { 3088 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3089 raw_spin_rq_unlock(rq2); 3090 else 3091 __release(rq2->lock); 3092 raw_spin_rq_unlock(rq1); 3093 } 3094 3095 extern void set_rq_online (struct rq *rq); 3096 extern void set_rq_offline(struct rq *rq); 3097 3098 extern bool sched_smp_initialized; 3099 3100 #else /* !CONFIG_SMP: */ 3101 3102 /* 3103 * double_rq_lock - safely lock two runqueues 3104 * 3105 * Note this does not disable interrupts like task_rq_lock, 3106 * you need to do so manually before calling. 3107 */ 3108 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 3109 __acquires(rq1->lock) 3110 __acquires(rq2->lock) 3111 { 3112 WARN_ON_ONCE(!irqs_disabled()); 3113 WARN_ON_ONCE(rq1 != rq2); 3114 raw_spin_rq_lock(rq1); 3115 __acquire(rq2->lock); /* Fake it out ;) */ 3116 double_rq_clock_clear_update(rq1, rq2); 3117 } 3118 3119 /* 3120 * double_rq_unlock - safely unlock two runqueues 3121 * 3122 * Note this does not restore interrupts like task_rq_unlock, 3123 * you need to do so manually after calling. 3124 */ 3125 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3126 __releases(rq1->lock) 3127 __releases(rq2->lock) 3128 { 3129 WARN_ON_ONCE(rq1 != rq2); 3130 raw_spin_rq_unlock(rq1); 3131 __release(rq2->lock); 3132 } 3133 3134 #endif /* !CONFIG_SMP */ 3135 3136 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3137 double_rq_lock(_T->lock, _T->lock2), 3138 double_rq_unlock(_T->lock, _T->lock2)) 3139 3140 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3141 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3142 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3143 3144 #ifdef CONFIG_SCHED_DEBUG 3145 extern bool sched_debug_verbose; 3146 3147 extern void print_cfs_stats(struct seq_file *m, int cpu); 3148 extern void print_rt_stats(struct seq_file *m, int cpu); 3149 extern void print_dl_stats(struct seq_file *m, int cpu); 3150 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3151 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3152 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3153 3154 extern void resched_latency_warn(int cpu, u64 latency); 3155 # ifdef CONFIG_NUMA_BALANCING 3156 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3157 extern void 3158 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3159 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3160 # endif /* CONFIG_NUMA_BALANCING */ 3161 #else /* !CONFIG_SCHED_DEBUG: */ 3162 static inline void resched_latency_warn(int cpu, u64 latency) { } 3163 #endif /* !CONFIG_SCHED_DEBUG */ 3164 3165 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3166 extern void init_rt_rq(struct rt_rq *rt_rq); 3167 extern void init_dl_rq(struct dl_rq *dl_rq); 3168 3169 extern void cfs_bandwidth_usage_inc(void); 3170 extern void cfs_bandwidth_usage_dec(void); 3171 3172 #ifdef CONFIG_NO_HZ_COMMON 3173 3174 #define NOHZ_BALANCE_KICK_BIT 0 3175 #define NOHZ_STATS_KICK_BIT 1 3176 #define NOHZ_NEWILB_KICK_BIT 2 3177 #define NOHZ_NEXT_KICK_BIT 3 3178 3179 /* Run sched_balance_domains() */ 3180 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3181 /* Update blocked load */ 3182 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3183 /* Update blocked load when entering idle */ 3184 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3185 /* Update nohz.next_balance */ 3186 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3187 3188 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3189 3190 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3191 3192 extern void nohz_balance_exit_idle(struct rq *rq); 3193 #else /* !CONFIG_NO_HZ_COMMON: */ 3194 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3195 #endif /* !CONFIG_NO_HZ_COMMON */ 3196 3197 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 3198 extern void nohz_run_idle_balance(int cpu); 3199 #else 3200 static inline void nohz_run_idle_balance(int cpu) { } 3201 #endif 3202 3203 #include "stats.h" 3204 3205 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3206 3207 extern void __sched_core_account_forceidle(struct rq *rq); 3208 3209 static inline void sched_core_account_forceidle(struct rq *rq) 3210 { 3211 if (schedstat_enabled()) 3212 __sched_core_account_forceidle(rq); 3213 } 3214 3215 extern void __sched_core_tick(struct rq *rq); 3216 3217 static inline void sched_core_tick(struct rq *rq) 3218 { 3219 if (sched_core_enabled(rq) && schedstat_enabled()) 3220 __sched_core_tick(rq); 3221 } 3222 3223 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3224 3225 static inline void sched_core_account_forceidle(struct rq *rq) { } 3226 3227 static inline void sched_core_tick(struct rq *rq) { } 3228 3229 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3230 3231 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3232 3233 struct irqtime { 3234 u64 total; 3235 u64 tick_delta; 3236 u64 irq_start_time; 3237 struct u64_stats_sync sync; 3238 }; 3239 3240 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3241 DECLARE_STATIC_KEY_FALSE(sched_clock_irqtime); 3242 3243 static inline int irqtime_enabled(void) 3244 { 3245 return static_branch_likely(&sched_clock_irqtime); 3246 } 3247 3248 /* 3249 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3250 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3251 * and never move forward. 3252 */ 3253 static inline u64 irq_time_read(int cpu) 3254 { 3255 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3256 unsigned int seq; 3257 u64 total; 3258 3259 do { 3260 seq = __u64_stats_fetch_begin(&irqtime->sync); 3261 total = irqtime->total; 3262 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3263 3264 return total; 3265 } 3266 3267 #else 3268 3269 static inline int irqtime_enabled(void) 3270 { 3271 return 0; 3272 } 3273 3274 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3275 3276 #ifdef CONFIG_CPU_FREQ 3277 3278 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3279 3280 /** 3281 * cpufreq_update_util - Take a note about CPU utilization changes. 3282 * @rq: Runqueue to carry out the update for. 3283 * @flags: Update reason flags. 3284 * 3285 * This function is called by the scheduler on the CPU whose utilization is 3286 * being updated. 3287 * 3288 * It can only be called from RCU-sched read-side critical sections. 3289 * 3290 * The way cpufreq is currently arranged requires it to evaluate the CPU 3291 * performance state (frequency/voltage) on a regular basis to prevent it from 3292 * being stuck in a completely inadequate performance level for too long. 3293 * That is not guaranteed to happen if the updates are only triggered from CFS 3294 * and DL, though, because they may not be coming in if only RT tasks are 3295 * active all the time (or there are RT tasks only). 3296 * 3297 * As a workaround for that issue, this function is called periodically by the 3298 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3299 * but that really is a band-aid. Going forward it should be replaced with 3300 * solutions targeted more specifically at RT tasks. 3301 */ 3302 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3303 { 3304 struct update_util_data *data; 3305 3306 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3307 cpu_of(rq))); 3308 if (data) 3309 data->func(data, rq_clock(rq), flags); 3310 } 3311 #else /* !CONFIG_CPU_FREQ: */ 3312 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3313 #endif /* !CONFIG_CPU_FREQ */ 3314 3315 #ifdef arch_scale_freq_capacity 3316 # ifndef arch_scale_freq_invariant 3317 # define arch_scale_freq_invariant() true 3318 # endif 3319 #else 3320 # define arch_scale_freq_invariant() false 3321 #endif 3322 3323 #ifdef CONFIG_SMP 3324 3325 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3326 unsigned long *min, 3327 unsigned long *max); 3328 3329 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3330 unsigned long min, 3331 unsigned long max); 3332 3333 3334 /* 3335 * Verify the fitness of task @p to run on @cpu taking into account the 3336 * CPU original capacity and the runtime/deadline ratio of the task. 3337 * 3338 * The function will return true if the original capacity of @cpu is 3339 * greater than or equal to task's deadline density right shifted by 3340 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3341 */ 3342 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3343 { 3344 unsigned long cap = arch_scale_cpu_capacity(cpu); 3345 3346 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3347 } 3348 3349 static inline unsigned long cpu_bw_dl(struct rq *rq) 3350 { 3351 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3352 } 3353 3354 static inline unsigned long cpu_util_dl(struct rq *rq) 3355 { 3356 return READ_ONCE(rq->avg_dl.util_avg); 3357 } 3358 3359 3360 extern unsigned long cpu_util_cfs(int cpu); 3361 extern unsigned long cpu_util_cfs_boost(int cpu); 3362 3363 static inline unsigned long cpu_util_rt(struct rq *rq) 3364 { 3365 return READ_ONCE(rq->avg_rt.util_avg); 3366 } 3367 3368 #else /* !CONFIG_SMP */ 3369 static inline bool update_other_load_avgs(struct rq *rq) { return false; } 3370 #endif /* CONFIG_SMP */ 3371 3372 #ifdef CONFIG_UCLAMP_TASK 3373 3374 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3375 3376 static inline unsigned long uclamp_rq_get(struct rq *rq, 3377 enum uclamp_id clamp_id) 3378 { 3379 return READ_ONCE(rq->uclamp[clamp_id].value); 3380 } 3381 3382 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3383 unsigned int value) 3384 { 3385 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3386 } 3387 3388 static inline bool uclamp_rq_is_idle(struct rq *rq) 3389 { 3390 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3391 } 3392 3393 /* Is the rq being capped/throttled by uclamp_max? */ 3394 static inline bool uclamp_rq_is_capped(struct rq *rq) 3395 { 3396 unsigned long rq_util; 3397 unsigned long max_util; 3398 3399 if (!static_branch_likely(&sched_uclamp_used)) 3400 return false; 3401 3402 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3403 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3404 3405 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3406 } 3407 3408 /* 3409 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3410 * by default in the fast path and only gets turned on once userspace performs 3411 * an operation that requires it. 3412 * 3413 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3414 * hence is active. 3415 */ 3416 static inline bool uclamp_is_used(void) 3417 { 3418 return static_branch_likely(&sched_uclamp_used); 3419 } 3420 3421 #define for_each_clamp_id(clamp_id) \ 3422 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3423 3424 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3425 3426 3427 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3428 { 3429 if (clamp_id == UCLAMP_MIN) 3430 return 0; 3431 return SCHED_CAPACITY_SCALE; 3432 } 3433 3434 /* Integer rounded range for each bucket */ 3435 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3436 3437 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3438 { 3439 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3440 } 3441 3442 static inline void 3443 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3444 { 3445 uc_se->value = value; 3446 uc_se->bucket_id = uclamp_bucket_id(value); 3447 uc_se->user_defined = user_defined; 3448 } 3449 3450 #else /* !CONFIG_UCLAMP_TASK: */ 3451 3452 static inline unsigned long 3453 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3454 { 3455 if (clamp_id == UCLAMP_MIN) 3456 return 0; 3457 3458 return SCHED_CAPACITY_SCALE; 3459 } 3460 3461 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3462 3463 static inline bool uclamp_is_used(void) 3464 { 3465 return false; 3466 } 3467 3468 static inline unsigned long 3469 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3470 { 3471 if (clamp_id == UCLAMP_MIN) 3472 return 0; 3473 3474 return SCHED_CAPACITY_SCALE; 3475 } 3476 3477 static inline void 3478 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3479 { 3480 } 3481 3482 static inline bool uclamp_rq_is_idle(struct rq *rq) 3483 { 3484 return false; 3485 } 3486 3487 #endif /* !CONFIG_UCLAMP_TASK */ 3488 3489 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3490 3491 static inline unsigned long cpu_util_irq(struct rq *rq) 3492 { 3493 return READ_ONCE(rq->avg_irq.util_avg); 3494 } 3495 3496 static inline 3497 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3498 { 3499 util *= (max - irq); 3500 util /= max; 3501 3502 return util; 3503 3504 } 3505 3506 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3507 3508 static inline unsigned long cpu_util_irq(struct rq *rq) 3509 { 3510 return 0; 3511 } 3512 3513 static inline 3514 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3515 { 3516 return util; 3517 } 3518 3519 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3520 3521 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3522 3523 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3524 3525 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3526 3527 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3528 3529 static inline bool sched_energy_enabled(void) 3530 { 3531 return static_branch_unlikely(&sched_energy_present); 3532 } 3533 3534 extern struct cpufreq_governor schedutil_gov; 3535 3536 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3537 3538 #define perf_domain_span(pd) NULL 3539 3540 static inline bool sched_energy_enabled(void) { return false; } 3541 3542 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3543 3544 #ifdef CONFIG_MEMBARRIER 3545 3546 /* 3547 * The scheduler provides memory barriers required by membarrier between: 3548 * - prior user-space memory accesses and store to rq->membarrier_state, 3549 * - store to rq->membarrier_state and following user-space memory accesses. 3550 * In the same way it provides those guarantees around store to rq->curr. 3551 */ 3552 static inline void membarrier_switch_mm(struct rq *rq, 3553 struct mm_struct *prev_mm, 3554 struct mm_struct *next_mm) 3555 { 3556 int membarrier_state; 3557 3558 if (prev_mm == next_mm) 3559 return; 3560 3561 membarrier_state = atomic_read(&next_mm->membarrier_state); 3562 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3563 return; 3564 3565 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3566 } 3567 3568 #else /* !CONFIG_MEMBARRIER :*/ 3569 3570 static inline void membarrier_switch_mm(struct rq *rq, 3571 struct mm_struct *prev_mm, 3572 struct mm_struct *next_mm) 3573 { 3574 } 3575 3576 #endif /* !CONFIG_MEMBARRIER */ 3577 3578 #ifdef CONFIG_SMP 3579 static inline bool is_per_cpu_kthread(struct task_struct *p) 3580 { 3581 if (!(p->flags & PF_KTHREAD)) 3582 return false; 3583 3584 if (p->nr_cpus_allowed != 1) 3585 return false; 3586 3587 return true; 3588 } 3589 #endif 3590 3591 extern void swake_up_all_locked(struct swait_queue_head *q); 3592 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3593 3594 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3595 3596 #ifdef CONFIG_PREEMPT_DYNAMIC 3597 extern int preempt_dynamic_mode; 3598 extern int sched_dynamic_mode(const char *str); 3599 extern void sched_dynamic_update(int mode); 3600 #endif 3601 3602 #ifdef CONFIG_SCHED_MM_CID 3603 3604 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3605 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3606 3607 extern raw_spinlock_t cid_lock; 3608 extern int use_cid_lock; 3609 3610 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3611 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3612 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3613 extern void init_sched_mm_cid(struct task_struct *t); 3614 3615 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3616 { 3617 if (cid < 0) 3618 return; 3619 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3620 } 3621 3622 /* 3623 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3624 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3625 * be held to transition to other states. 3626 * 3627 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3628 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3629 */ 3630 static inline void mm_cid_put_lazy(struct task_struct *t) 3631 { 3632 struct mm_struct *mm = t->mm; 3633 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3634 int cid; 3635 3636 lockdep_assert_irqs_disabled(); 3637 cid = __this_cpu_read(pcpu_cid->cid); 3638 if (!mm_cid_is_lazy_put(cid) || 3639 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3640 return; 3641 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3642 } 3643 3644 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3645 { 3646 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3647 int cid, res; 3648 3649 lockdep_assert_irqs_disabled(); 3650 cid = __this_cpu_read(pcpu_cid->cid); 3651 for (;;) { 3652 if (mm_cid_is_unset(cid)) 3653 return MM_CID_UNSET; 3654 /* 3655 * Attempt transition from valid or lazy-put to unset. 3656 */ 3657 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3658 if (res == cid) 3659 break; 3660 cid = res; 3661 } 3662 return cid; 3663 } 3664 3665 static inline void mm_cid_put(struct mm_struct *mm) 3666 { 3667 int cid; 3668 3669 lockdep_assert_irqs_disabled(); 3670 cid = mm_cid_pcpu_unset(mm); 3671 if (cid == MM_CID_UNSET) 3672 return; 3673 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3674 } 3675 3676 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3677 { 3678 struct cpumask *cidmask = mm_cidmask(mm); 3679 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3680 int cid = __this_cpu_read(pcpu_cid->recent_cid); 3681 3682 /* Try to re-use recent cid. This improves cache locality. */ 3683 if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask)) 3684 return cid; 3685 /* 3686 * Expand cid allocation if the maximum number of concurrency 3687 * IDs allocated (max_nr_cid) is below the number cpus allowed 3688 * and number of threads. Expanding cid allocation as much as 3689 * possible improves cache locality. 3690 */ 3691 cid = atomic_read(&mm->max_nr_cid); 3692 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3693 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3694 continue; 3695 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3696 return cid; 3697 } 3698 /* 3699 * Find the first available concurrency id. 3700 * Retry finding first zero bit if the mask is temporarily 3701 * filled. This only happens during concurrent remote-clear 3702 * which owns a cid without holding a rq lock. 3703 */ 3704 for (;;) { 3705 cid = cpumask_first_zero(cidmask); 3706 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3707 break; 3708 cpu_relax(); 3709 } 3710 if (cpumask_test_and_set_cpu(cid, cidmask)) 3711 return -1; 3712 3713 return cid; 3714 } 3715 3716 /* 3717 * Save a snapshot of the current runqueue time of this cpu 3718 * with the per-cpu cid value, allowing to estimate how recently it was used. 3719 */ 3720 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3721 { 3722 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3723 3724 lockdep_assert_rq_held(rq); 3725 WRITE_ONCE(pcpu_cid->time, rq->clock); 3726 } 3727 3728 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3729 struct mm_struct *mm) 3730 { 3731 int cid; 3732 3733 /* 3734 * All allocations (even those using the cid_lock) are lock-free. If 3735 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3736 * guarantee forward progress. 3737 */ 3738 if (!READ_ONCE(use_cid_lock)) { 3739 cid = __mm_cid_try_get(t, mm); 3740 if (cid >= 0) 3741 goto end; 3742 raw_spin_lock(&cid_lock); 3743 } else { 3744 raw_spin_lock(&cid_lock); 3745 cid = __mm_cid_try_get(t, mm); 3746 if (cid >= 0) 3747 goto unlock; 3748 } 3749 3750 /* 3751 * cid concurrently allocated. Retry while forcing following 3752 * allocations to use the cid_lock to ensure forward progress. 3753 */ 3754 WRITE_ONCE(use_cid_lock, 1); 3755 /* 3756 * Set use_cid_lock before allocation. Only care about program order 3757 * because this is only required for forward progress. 3758 */ 3759 barrier(); 3760 /* 3761 * Retry until it succeeds. It is guaranteed to eventually succeed once 3762 * all newcoming allocations observe the use_cid_lock flag set. 3763 */ 3764 do { 3765 cid = __mm_cid_try_get(t, mm); 3766 cpu_relax(); 3767 } while (cid < 0); 3768 /* 3769 * Allocate before clearing use_cid_lock. Only care about 3770 * program order because this is for forward progress. 3771 */ 3772 barrier(); 3773 WRITE_ONCE(use_cid_lock, 0); 3774 unlock: 3775 raw_spin_unlock(&cid_lock); 3776 end: 3777 mm_cid_snapshot_time(rq, mm); 3778 3779 return cid; 3780 } 3781 3782 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3783 struct mm_struct *mm) 3784 { 3785 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3786 struct cpumask *cpumask; 3787 int cid; 3788 3789 lockdep_assert_rq_held(rq); 3790 cpumask = mm_cidmask(mm); 3791 cid = __this_cpu_read(pcpu_cid->cid); 3792 if (mm_cid_is_valid(cid)) { 3793 mm_cid_snapshot_time(rq, mm); 3794 return cid; 3795 } 3796 if (mm_cid_is_lazy_put(cid)) { 3797 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3798 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3799 } 3800 cid = __mm_cid_get(rq, t, mm); 3801 __this_cpu_write(pcpu_cid->cid, cid); 3802 __this_cpu_write(pcpu_cid->recent_cid, cid); 3803 3804 return cid; 3805 } 3806 3807 static inline void switch_mm_cid(struct rq *rq, 3808 struct task_struct *prev, 3809 struct task_struct *next) 3810 { 3811 /* 3812 * Provide a memory barrier between rq->curr store and load of 3813 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3814 * 3815 * Should be adapted if context_switch() is modified. 3816 */ 3817 if (!next->mm) { // to kernel 3818 /* 3819 * user -> kernel transition does not guarantee a barrier, but 3820 * we can use the fact that it performs an atomic operation in 3821 * mmgrab(). 3822 */ 3823 if (prev->mm) // from user 3824 smp_mb__after_mmgrab(); 3825 /* 3826 * kernel -> kernel transition does not change rq->curr->mm 3827 * state. It stays NULL. 3828 */ 3829 } else { // to user 3830 /* 3831 * kernel -> user transition does not provide a barrier 3832 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3833 * Provide it here. 3834 */ 3835 if (!prev->mm) { // from kernel 3836 smp_mb(); 3837 } else { // from user 3838 /* 3839 * user->user transition relies on an implicit 3840 * memory barrier in switch_mm() when 3841 * current->mm changes. If the architecture 3842 * switch_mm() does not have an implicit memory 3843 * barrier, it is emitted here. If current->mm 3844 * is unchanged, no barrier is needed. 3845 */ 3846 smp_mb__after_switch_mm(); 3847 } 3848 } 3849 if (prev->mm_cid_active) { 3850 mm_cid_snapshot_time(rq, prev->mm); 3851 mm_cid_put_lazy(prev); 3852 prev->mm_cid = -1; 3853 } 3854 if (next->mm_cid_active) 3855 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3856 } 3857 3858 #else /* !CONFIG_SCHED_MM_CID: */ 3859 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3860 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3861 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3862 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3863 static inline void init_sched_mm_cid(struct task_struct *t) { } 3864 #endif /* !CONFIG_SCHED_MM_CID */ 3865 3866 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3867 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3868 #ifdef CONFIG_SMP 3869 static inline 3870 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3871 { 3872 lockdep_assert_rq_held(src_rq); 3873 lockdep_assert_rq_held(dst_rq); 3874 3875 deactivate_task(src_rq, task, 0); 3876 set_task_cpu(task, dst_rq->cpu); 3877 activate_task(dst_rq, task, 0); 3878 } 3879 3880 static inline 3881 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3882 { 3883 if (!task_on_cpu(rq, p) && 3884 cpumask_test_cpu(cpu, &p->cpus_mask)) 3885 return true; 3886 3887 return false; 3888 } 3889 #endif 3890 3891 #ifdef CONFIG_RT_MUTEXES 3892 3893 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3894 { 3895 if (pi_task) 3896 prio = min(prio, pi_task->prio); 3897 3898 return prio; 3899 } 3900 3901 static inline int rt_effective_prio(struct task_struct *p, int prio) 3902 { 3903 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3904 3905 return __rt_effective_prio(pi_task, prio); 3906 } 3907 3908 #else /* !CONFIG_RT_MUTEXES: */ 3909 3910 static inline int rt_effective_prio(struct task_struct *p, int prio) 3911 { 3912 return prio; 3913 } 3914 3915 #endif /* !CONFIG_RT_MUTEXES */ 3916 3917 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3918 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3919 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3920 extern void set_load_weight(struct task_struct *p, bool update_load); 3921 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3922 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3923 3924 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3925 const struct sched_class *prev_class); 3926 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3927 const struct sched_class *prev_class, 3928 int oldprio); 3929 3930 #ifdef CONFIG_SMP 3931 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3932 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3933 #else 3934 3935 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 3936 { 3937 return NULL; 3938 } 3939 3940 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 3941 { 3942 } 3943 3944 #endif 3945 3946 #ifdef CONFIG_SCHED_CLASS_EXT 3947 /* 3948 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3949 * and establish invariants. 3950 */ 3951 struct sched_enq_and_set_ctx { 3952 struct task_struct *p; 3953 int queue_flags; 3954 bool queued; 3955 bool running; 3956 }; 3957 3958 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3959 struct sched_enq_and_set_ctx *ctx); 3960 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3961 3962 #endif /* CONFIG_SCHED_CLASS_EXT */ 3963 3964 #include "ext.h" 3965 3966 #endif /* _KERNEL_SCHED_SCHED_H */ 3967