xref: /linux/kernel/sched/sched.h (revision e3610441d1fb47b1f00e4c38bdf333176e824729)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 
73 #include <trace/events/power.h>
74 #include <trace/events/sched.h>
75 
76 #include "../workqueue_internal.h"
77 
78 struct rq;
79 struct cfs_rq;
80 struct rt_rq;
81 struct sched_group;
82 struct cpuidle_state;
83 
84 #ifdef CONFIG_PARAVIRT
85 # include <asm/paravirt.h>
86 # include <asm/paravirt_api_clock.h>
87 #endif
88 
89 #include <asm/barrier.h>
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 /* task_struct::on_rq states: */
101 #define TASK_ON_RQ_QUEUED	1
102 #define TASK_ON_RQ_MIGRATING	2
103 
104 extern __read_mostly int scheduler_running;
105 
106 extern unsigned long calc_load_update;
107 extern atomic_long_t calc_load_tasks;
108 
109 extern void calc_global_load_tick(struct rq *this_rq);
110 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
111 
112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
113 
114 extern int sysctl_sched_rt_period;
115 extern int sysctl_sched_rt_runtime;
116 extern int sched_rr_timeslice;
117 
118 /*
119  * Asymmetric CPU capacity bits
120  */
121 struct asym_cap_data {
122 	struct list_head link;
123 	struct rcu_head rcu;
124 	unsigned long capacity;
125 	unsigned long cpus[];
126 };
127 
128 extern struct list_head asym_cap_list;
129 
130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
131 
132 /*
133  * Helpers for converting nanosecond timing to jiffy resolution
134  */
135 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
136 
137 /*
138  * Increase resolution of nice-level calculations for 64-bit architectures.
139  * The extra resolution improves shares distribution and load balancing of
140  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
141  * hierarchies, especially on larger systems. This is not a user-visible change
142  * and does not change the user-interface for setting shares/weights.
143  *
144  * We increase resolution only if we have enough bits to allow this increased
145  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
146  * are pretty high and the returns do not justify the increased costs.
147  *
148  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
149  * increase coverage and consistency always enable it on 64-bit platforms.
150  */
151 #ifdef CONFIG_64BIT
152 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load_down(w)					\
155 ({								\
156 	unsigned long __w = (w);				\
157 								\
158 	if (__w)						\
159 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
160 	__w;							\
161 })
162 #else
163 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
164 # define scale_load(w)		(w)
165 # define scale_load_down(w)	(w)
166 #endif
167 
168 /*
169  * Task weight (visible to users) and its load (invisible to users) have
170  * independent resolution, but they should be well calibrated. We use
171  * scale_load() and scale_load_down(w) to convert between them. The
172  * following must be true:
173  *
174  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
175  *
176  */
177 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
178 
179 /*
180  * Single value that decides SCHED_DEADLINE internal math precision.
181  * 10 -> just above 1us
182  * 9  -> just above 0.5us
183  */
184 #define DL_SCALE		10
185 
186 /*
187  * Single value that denotes runtime == period, ie unlimited time.
188  */
189 #define RUNTIME_INF		((u64)~0ULL)
190 
191 static inline int idle_policy(int policy)
192 {
193 	return policy == SCHED_IDLE;
194 }
195 
196 static inline int normal_policy(int policy)
197 {
198 #ifdef CONFIG_SCHED_CLASS_EXT
199 	if (policy == SCHED_EXT)
200 		return true;
201 #endif
202 	return policy == SCHED_NORMAL;
203 }
204 
205 static inline int fair_policy(int policy)
206 {
207 	return normal_policy(policy) || policy == SCHED_BATCH;
208 }
209 
210 static inline int rt_policy(int policy)
211 {
212 	return policy == SCHED_FIFO || policy == SCHED_RR;
213 }
214 
215 static inline int dl_policy(int policy)
216 {
217 	return policy == SCHED_DEADLINE;
218 }
219 
220 static inline bool valid_policy(int policy)
221 {
222 	return idle_policy(policy) || fair_policy(policy) ||
223 		rt_policy(policy) || dl_policy(policy);
224 }
225 
226 static inline int task_has_idle_policy(struct task_struct *p)
227 {
228 	return idle_policy(p->policy);
229 }
230 
231 static inline int task_has_rt_policy(struct task_struct *p)
232 {
233 	return rt_policy(p->policy);
234 }
235 
236 static inline int task_has_dl_policy(struct task_struct *p)
237 {
238 	return dl_policy(p->policy);
239 }
240 
241 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
242 
243 static inline void update_avg(u64 *avg, u64 sample)
244 {
245 	s64 diff = sample - *avg;
246 
247 	*avg += diff / 8;
248 }
249 
250 /*
251  * Shifting a value by an exponent greater *or equal* to the size of said value
252  * is UB; cap at size-1.
253  */
254 #define shr_bound(val, shift)							\
255 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
256 
257 /*
258  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
259  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
260  * maps pretty well onto the shares value used by scheduler and the round-trip
261  * conversions preserve the original value over the entire range.
262  */
263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
264 {
265 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
266 }
267 
268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
269 {
270 	return clamp_t(unsigned long,
271 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
272 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
273 }
274 
275 /*
276  * !! For sched_setattr_nocheck() (kernel) only !!
277  *
278  * This is actually gross. :(
279  *
280  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
281  * tasks, but still be able to sleep. We need this on platforms that cannot
282  * atomically change clock frequency. Remove once fast switching will be
283  * available on such platforms.
284  *
285  * SUGOV stands for SchedUtil GOVernor.
286  */
287 #define SCHED_FLAG_SUGOV	0x10000000
288 
289 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
290 
291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
292 {
293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
294 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
295 #else
296 	return false;
297 #endif
298 }
299 
300 /*
301  * Tells if entity @a should preempt entity @b.
302  */
303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
304 				     const struct sched_dl_entity *b)
305 {
306 	return dl_entity_is_special(a) ||
307 	       dl_time_before(a->deadline, b->deadline);
308 }
309 
310 /*
311  * This is the priority-queue data structure of the RT scheduling class:
312  */
313 struct rt_prio_array {
314 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
315 	struct list_head queue[MAX_RT_PRIO];
316 };
317 
318 struct rt_bandwidth {
319 	/* nests inside the rq lock: */
320 	raw_spinlock_t		rt_runtime_lock;
321 	ktime_t			rt_period;
322 	u64			rt_runtime;
323 	struct hrtimer		rt_period_timer;
324 	unsigned int		rt_period_active;
325 };
326 
327 static inline int dl_bandwidth_enabled(void)
328 {
329 	return sysctl_sched_rt_runtime >= 0;
330 }
331 
332 /*
333  * To keep the bandwidth of -deadline tasks under control
334  * we need some place where:
335  *  - store the maximum -deadline bandwidth of each cpu;
336  *  - cache the fraction of bandwidth that is currently allocated in
337  *    each root domain;
338  *
339  * This is all done in the data structure below. It is similar to the
340  * one used for RT-throttling (rt_bandwidth), with the main difference
341  * that, since here we are only interested in admission control, we
342  * do not decrease any runtime while the group "executes", neither we
343  * need a timer to replenish it.
344  *
345  * With respect to SMP, bandwidth is given on a per root domain basis,
346  * meaning that:
347  *  - bw (< 100%) is the deadline bandwidth of each CPU;
348  *  - total_bw is the currently allocated bandwidth in each root domain;
349  */
350 struct dl_bw {
351 	raw_spinlock_t		lock;
352 	u64			bw;
353 	u64			total_bw;
354 };
355 
356 extern void init_dl_bw(struct dl_bw *dl_b);
357 extern int  sched_dl_global_validate(void);
358 extern void sched_dl_do_global(void);
359 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
362 extern bool __checkparam_dl(const struct sched_attr *attr);
363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
364 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
365 extern int  dl_bw_deactivate(int cpu);
366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
367 /*
368  * SCHED_DEADLINE supports servers (nested scheduling) with the following
369  * interface:
370  *
371  *   dl_se::rq -- runqueue we belong to.
372  *
373  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
374  *                                server when it runs out of tasks to run.
375  *
376  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
377  *                           returns NULL.
378  *
379  *   dl_server_update() -- called from update_curr_common(), propagates runtime
380  *                         to the server.
381  *
382  *   dl_server_start()
383  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
384  *
385  *   dl_server_init() -- initializes the server.
386  */
387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
388 extern void dl_server_start(struct sched_dl_entity *dl_se);
389 extern void dl_server_stop(struct sched_dl_entity *dl_se);
390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
391 		    dl_server_has_tasks_f has_tasks,
392 		    dl_server_pick_f pick_task);
393 
394 extern void dl_server_update_idle_time(struct rq *rq,
395 		    struct task_struct *p);
396 extern void fair_server_init(struct rq *rq);
397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
399 		    u64 runtime, u64 period, bool init);
400 
401 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
402 {
403 	return dl_se->dl_server_active;
404 }
405 
406 #ifdef CONFIG_CGROUP_SCHED
407 
408 extern struct list_head task_groups;
409 
410 struct cfs_bandwidth {
411 #ifdef CONFIG_CFS_BANDWIDTH
412 	raw_spinlock_t		lock;
413 	ktime_t			period;
414 	u64			quota;
415 	u64			runtime;
416 	u64			burst;
417 	u64			runtime_snap;
418 	s64			hierarchical_quota;
419 
420 	u8			idle;
421 	u8			period_active;
422 	u8			slack_started;
423 	struct hrtimer		period_timer;
424 	struct hrtimer		slack_timer;
425 	struct list_head	throttled_cfs_rq;
426 
427 	/* Statistics: */
428 	int			nr_periods;
429 	int			nr_throttled;
430 	int			nr_burst;
431 	u64			throttled_time;
432 	u64			burst_time;
433 #endif
434 };
435 
436 /* Task group related information */
437 struct task_group {
438 	struct cgroup_subsys_state css;
439 
440 #ifdef CONFIG_GROUP_SCHED_WEIGHT
441 	/* A positive value indicates that this is a SCHED_IDLE group. */
442 	int			idle;
443 #endif
444 
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 	/* schedulable entities of this group on each CPU */
447 	struct sched_entity	**se;
448 	/* runqueue "owned" by this group on each CPU */
449 	struct cfs_rq		**cfs_rq;
450 	unsigned long		shares;
451 #ifdef	CONFIG_SMP
452 	/*
453 	 * load_avg can be heavily contended at clock tick time, so put
454 	 * it in its own cache-line separated from the fields above which
455 	 * will also be accessed at each tick.
456 	 */
457 	atomic_long_t		load_avg ____cacheline_aligned;
458 #endif
459 #endif
460 
461 #ifdef CONFIG_RT_GROUP_SCHED
462 	struct sched_rt_entity	**rt_se;
463 	struct rt_rq		**rt_rq;
464 
465 	struct rt_bandwidth	rt_bandwidth;
466 #endif
467 
468 #ifdef CONFIG_EXT_GROUP_SCHED
469 	u32			scx_flags;	/* SCX_TG_* */
470 	u32			scx_weight;
471 #endif
472 
473 	struct rcu_head		rcu;
474 	struct list_head	list;
475 
476 	struct task_group	*parent;
477 	struct list_head	siblings;
478 	struct list_head	children;
479 
480 #ifdef CONFIG_SCHED_AUTOGROUP
481 	struct autogroup	*autogroup;
482 #endif
483 
484 	struct cfs_bandwidth	cfs_bandwidth;
485 
486 #ifdef CONFIG_UCLAMP_TASK_GROUP
487 	/* The two decimal precision [%] value requested from user-space */
488 	unsigned int		uclamp_pct[UCLAMP_CNT];
489 	/* Clamp values requested for a task group */
490 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
491 	/* Effective clamp values used for a task group */
492 	struct uclamp_se	uclamp[UCLAMP_CNT];
493 #endif
494 
495 };
496 
497 #ifdef CONFIG_GROUP_SCHED_WEIGHT
498 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
499 
500 /*
501  * A weight of 0 or 1 can cause arithmetics problems.
502  * A weight of a cfs_rq is the sum of weights of which entities
503  * are queued on this cfs_rq, so a weight of a entity should not be
504  * too large, so as the shares value of a task group.
505  * (The default weight is 1024 - so there's no practical
506  *  limitation from this.)
507  */
508 #define MIN_SHARES		(1UL <<  1)
509 #define MAX_SHARES		(1UL << 18)
510 #endif
511 
512 typedef int (*tg_visitor)(struct task_group *, void *);
513 
514 extern int walk_tg_tree_from(struct task_group *from,
515 			     tg_visitor down, tg_visitor up, void *data);
516 
517 /*
518  * Iterate the full tree, calling @down when first entering a node and @up when
519  * leaving it for the final time.
520  *
521  * Caller must hold rcu_lock or sufficient equivalent.
522  */
523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
524 {
525 	return walk_tg_tree_from(&root_task_group, down, up, data);
526 }
527 
528 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
529 {
530 	return css ? container_of(css, struct task_group, css) : NULL;
531 }
532 
533 extern int tg_nop(struct task_group *tg, void *data);
534 
535 #ifdef CONFIG_FAIR_GROUP_SCHED
536 extern void free_fair_sched_group(struct task_group *tg);
537 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
538 extern void online_fair_sched_group(struct task_group *tg);
539 extern void unregister_fair_sched_group(struct task_group *tg);
540 #else
541 static inline void free_fair_sched_group(struct task_group *tg) { }
542 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
543 {
544        return 1;
545 }
546 static inline void online_fair_sched_group(struct task_group *tg) { }
547 static inline void unregister_fair_sched_group(struct task_group *tg) { }
548 #endif
549 
550 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
551 			struct sched_entity *se, int cpu,
552 			struct sched_entity *parent);
553 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
554 
555 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
556 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
557 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
558 extern bool cfs_task_bw_constrained(struct task_struct *p);
559 
560 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
561 		struct sched_rt_entity *rt_se, int cpu,
562 		struct sched_rt_entity *parent);
563 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
564 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
565 extern long sched_group_rt_runtime(struct task_group *tg);
566 extern long sched_group_rt_period(struct task_group *tg);
567 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
568 
569 extern struct task_group *sched_create_group(struct task_group *parent);
570 extern void sched_online_group(struct task_group *tg,
571 			       struct task_group *parent);
572 extern void sched_destroy_group(struct task_group *tg);
573 extern void sched_release_group(struct task_group *tg);
574 
575 extern void sched_move_task(struct task_struct *tsk);
576 
577 #ifdef CONFIG_FAIR_GROUP_SCHED
578 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
579 
580 extern int sched_group_set_idle(struct task_group *tg, long idle);
581 
582 #ifdef CONFIG_SMP
583 extern void set_task_rq_fair(struct sched_entity *se,
584 			     struct cfs_rq *prev, struct cfs_rq *next);
585 #else /* !CONFIG_SMP */
586 static inline void set_task_rq_fair(struct sched_entity *se,
587 			     struct cfs_rq *prev, struct cfs_rq *next) { }
588 #endif /* CONFIG_SMP */
589 #else /* !CONFIG_FAIR_GROUP_SCHED */
590 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
591 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
592 #endif /* CONFIG_FAIR_GROUP_SCHED */
593 
594 #else /* CONFIG_CGROUP_SCHED */
595 
596 struct cfs_bandwidth { };
597 
598 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
599 
600 #endif	/* CONFIG_CGROUP_SCHED */
601 
602 extern void unregister_rt_sched_group(struct task_group *tg);
603 extern void free_rt_sched_group(struct task_group *tg);
604 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
605 
606 /*
607  * u64_u32_load/u64_u32_store
608  *
609  * Use a copy of a u64 value to protect against data race. This is only
610  * applicable for 32-bits architectures.
611  */
612 #ifdef CONFIG_64BIT
613 # define u64_u32_load_copy(var, copy)		var
614 # define u64_u32_store_copy(var, copy, val)	(var = val)
615 #else
616 # define u64_u32_load_copy(var, copy)					\
617 ({									\
618 	u64 __val, __val_copy;						\
619 	do {								\
620 		__val_copy = copy;					\
621 		/*							\
622 		 * paired with u64_u32_store_copy(), ordering access	\
623 		 * to var and copy.					\
624 		 */							\
625 		smp_rmb();						\
626 		__val = var;						\
627 	} while (__val != __val_copy);					\
628 	__val;								\
629 })
630 # define u64_u32_store_copy(var, copy, val)				\
631 do {									\
632 	typeof(val) __val = (val);					\
633 	var = __val;							\
634 	/*								\
635 	 * paired with u64_u32_load_copy(), ordering access to var and	\
636 	 * copy.							\
637 	 */								\
638 	smp_wmb();							\
639 	copy = __val;							\
640 } while (0)
641 #endif
642 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
643 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
644 
645 struct balance_callback {
646 	struct balance_callback *next;
647 	void (*func)(struct rq *rq);
648 };
649 
650 /* CFS-related fields in a runqueue */
651 struct cfs_rq {
652 	struct load_weight	load;
653 	unsigned int		nr_queued;
654 	unsigned int		h_nr_queued;       /* SCHED_{NORMAL,BATCH,IDLE} */
655 	unsigned int		h_nr_runnable;     /* SCHED_{NORMAL,BATCH,IDLE} */
656 	unsigned int		h_nr_idle; /* SCHED_IDLE */
657 
658 	s64			avg_vruntime;
659 	u64			avg_load;
660 
661 	u64			min_vruntime;
662 #ifdef CONFIG_SCHED_CORE
663 	unsigned int		forceidle_seq;
664 	u64			min_vruntime_fi;
665 #endif
666 
667 	struct rb_root_cached	tasks_timeline;
668 
669 	/*
670 	 * 'curr' points to currently running entity on this cfs_rq.
671 	 * It is set to NULL otherwise (i.e when none are currently running).
672 	 */
673 	struct sched_entity	*curr;
674 	struct sched_entity	*next;
675 
676 #ifdef CONFIG_SMP
677 	/*
678 	 * CFS load tracking
679 	 */
680 	struct sched_avg	avg;
681 #ifndef CONFIG_64BIT
682 	u64			last_update_time_copy;
683 #endif
684 	struct {
685 		raw_spinlock_t	lock ____cacheline_aligned;
686 		int		nr;
687 		unsigned long	load_avg;
688 		unsigned long	util_avg;
689 		unsigned long	runnable_avg;
690 	} removed;
691 
692 #ifdef CONFIG_FAIR_GROUP_SCHED
693 	u64			last_update_tg_load_avg;
694 	unsigned long		tg_load_avg_contrib;
695 	long			propagate;
696 	long			prop_runnable_sum;
697 
698 	/*
699 	 *   h_load = weight * f(tg)
700 	 *
701 	 * Where f(tg) is the recursive weight fraction assigned to
702 	 * this group.
703 	 */
704 	unsigned long		h_load;
705 	u64			last_h_load_update;
706 	struct sched_entity	*h_load_next;
707 #endif /* CONFIG_FAIR_GROUP_SCHED */
708 #endif /* CONFIG_SMP */
709 
710 #ifdef CONFIG_FAIR_GROUP_SCHED
711 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
712 
713 	/*
714 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
715 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
716 	 * (like users, containers etc.)
717 	 *
718 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
719 	 * This list is used during load balance.
720 	 */
721 	int			on_list;
722 	struct list_head	leaf_cfs_rq_list;
723 	struct task_group	*tg;	/* group that "owns" this runqueue */
724 
725 	/* Locally cached copy of our task_group's idle value */
726 	int			idle;
727 
728 #ifdef CONFIG_CFS_BANDWIDTH
729 	int			runtime_enabled;
730 	s64			runtime_remaining;
731 
732 	u64			throttled_pelt_idle;
733 #ifndef CONFIG_64BIT
734 	u64                     throttled_pelt_idle_copy;
735 #endif
736 	u64			throttled_clock;
737 	u64			throttled_clock_pelt;
738 	u64			throttled_clock_pelt_time;
739 	u64			throttled_clock_self;
740 	u64			throttled_clock_self_time;
741 	int			throttled;
742 	int			throttle_count;
743 	struct list_head	throttled_list;
744 	struct list_head	throttled_csd_list;
745 #endif /* CONFIG_CFS_BANDWIDTH */
746 #endif /* CONFIG_FAIR_GROUP_SCHED */
747 };
748 
749 #ifdef CONFIG_SCHED_CLASS_EXT
750 /* scx_rq->flags, protected by the rq lock */
751 enum scx_rq_flags {
752 	/*
753 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
754 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
755 	 * only while the BPF scheduler considers the CPU to be online.
756 	 */
757 	SCX_RQ_ONLINE		= 1 << 0,
758 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
759 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
760 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
761 	SCX_RQ_BYPASSING	= 1 << 4,
762 
763 	SCX_RQ_IN_WAKEUP	= 1 << 16,
764 	SCX_RQ_IN_BALANCE	= 1 << 17,
765 };
766 
767 struct scx_rq {
768 	struct scx_dispatch_q	local_dsq;
769 	struct list_head	runnable_list;		/* runnable tasks on this rq */
770 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
771 	unsigned long		ops_qseq;
772 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
773 	u32			nr_running;
774 	u32			flags;
775 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
776 	bool			cpu_released;
777 	cpumask_var_t		cpus_to_kick;
778 	cpumask_var_t		cpus_to_kick_if_idle;
779 	cpumask_var_t		cpus_to_preempt;
780 	cpumask_var_t		cpus_to_wait;
781 	unsigned long		pnt_seq;
782 	struct balance_callback	deferred_bal_cb;
783 	struct irq_work		deferred_irq_work;
784 	struct irq_work		kick_cpus_irq_work;
785 };
786 #endif /* CONFIG_SCHED_CLASS_EXT */
787 
788 static inline int rt_bandwidth_enabled(void)
789 {
790 	return sysctl_sched_rt_runtime >= 0;
791 }
792 
793 /* RT IPI pull logic requires IRQ_WORK */
794 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
795 # define HAVE_RT_PUSH_IPI
796 #endif
797 
798 /* Real-Time classes' related field in a runqueue: */
799 struct rt_rq {
800 	struct rt_prio_array	active;
801 	unsigned int		rt_nr_running;
802 	unsigned int		rr_nr_running;
803 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
804 	struct {
805 		int		curr; /* highest queued rt task prio */
806 #ifdef CONFIG_SMP
807 		int		next; /* next highest */
808 #endif
809 	} highest_prio;
810 #endif
811 #ifdef CONFIG_SMP
812 	bool			overloaded;
813 	struct plist_head	pushable_tasks;
814 
815 #endif /* CONFIG_SMP */
816 	int			rt_queued;
817 
818 #ifdef CONFIG_RT_GROUP_SCHED
819 	int			rt_throttled;
820 	u64			rt_time;
821 	u64			rt_runtime;
822 	/* Nests inside the rq lock: */
823 	raw_spinlock_t		rt_runtime_lock;
824 
825 	unsigned int		rt_nr_boosted;
826 
827 	struct rq		*rq;
828 	struct task_group	*tg;
829 #endif
830 };
831 
832 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
833 {
834 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
835 }
836 
837 /* Deadline class' related fields in a runqueue */
838 struct dl_rq {
839 	/* runqueue is an rbtree, ordered by deadline */
840 	struct rb_root_cached	root;
841 
842 	unsigned int		dl_nr_running;
843 
844 #ifdef CONFIG_SMP
845 	/*
846 	 * Deadline values of the currently executing and the
847 	 * earliest ready task on this rq. Caching these facilitates
848 	 * the decision whether or not a ready but not running task
849 	 * should migrate somewhere else.
850 	 */
851 	struct {
852 		u64		curr;
853 		u64		next;
854 	} earliest_dl;
855 
856 	bool			overloaded;
857 
858 	/*
859 	 * Tasks on this rq that can be pushed away. They are kept in
860 	 * an rb-tree, ordered by tasks' deadlines, with caching
861 	 * of the leftmost (earliest deadline) element.
862 	 */
863 	struct rb_root_cached	pushable_dl_tasks_root;
864 #else
865 	struct dl_bw		dl_bw;
866 #endif
867 	/*
868 	 * "Active utilization" for this runqueue: increased when a
869 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
870 	 * task blocks
871 	 */
872 	u64			running_bw;
873 
874 	/*
875 	 * Utilization of the tasks "assigned" to this runqueue (including
876 	 * the tasks that are in runqueue and the tasks that executed on this
877 	 * CPU and blocked). Increased when a task moves to this runqueue, and
878 	 * decreased when the task moves away (migrates, changes scheduling
879 	 * policy, or terminates).
880 	 * This is needed to compute the "inactive utilization" for the
881 	 * runqueue (inactive utilization = this_bw - running_bw).
882 	 */
883 	u64			this_bw;
884 	u64			extra_bw;
885 
886 	/*
887 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
888 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
889 	 */
890 	u64			max_bw;
891 
892 	/*
893 	 * Inverse of the fraction of CPU utilization that can be reclaimed
894 	 * by the GRUB algorithm.
895 	 */
896 	u64			bw_ratio;
897 };
898 
899 #ifdef CONFIG_FAIR_GROUP_SCHED
900 
901 /* An entity is a task if it doesn't "own" a runqueue */
902 #define entity_is_task(se)	(!se->my_q)
903 
904 static inline void se_update_runnable(struct sched_entity *se)
905 {
906 	if (!entity_is_task(se))
907 		se->runnable_weight = se->my_q->h_nr_runnable;
908 }
909 
910 static inline long se_runnable(struct sched_entity *se)
911 {
912 	if (se->sched_delayed)
913 		return false;
914 
915 	if (entity_is_task(se))
916 		return !!se->on_rq;
917 	else
918 		return se->runnable_weight;
919 }
920 
921 #else /* !CONFIG_FAIR_GROUP_SCHED: */
922 
923 #define entity_is_task(se)	1
924 
925 static inline void se_update_runnable(struct sched_entity *se) { }
926 
927 static inline long se_runnable(struct sched_entity *se)
928 {
929 	if (se->sched_delayed)
930 		return false;
931 
932 	return !!se->on_rq;
933 }
934 
935 #endif /* !CONFIG_FAIR_GROUP_SCHED */
936 
937 #ifdef CONFIG_SMP
938 /*
939  * XXX we want to get rid of these helpers and use the full load resolution.
940  */
941 static inline long se_weight(struct sched_entity *se)
942 {
943 	return scale_load_down(se->load.weight);
944 }
945 
946 
947 static inline bool sched_asym_prefer(int a, int b)
948 {
949 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
950 }
951 
952 struct perf_domain {
953 	struct em_perf_domain *em_pd;
954 	struct perf_domain *next;
955 	struct rcu_head rcu;
956 };
957 
958 /*
959  * We add the notion of a root-domain which will be used to define per-domain
960  * variables. Each exclusive cpuset essentially defines an island domain by
961  * fully partitioning the member CPUs from any other cpuset. Whenever a new
962  * exclusive cpuset is created, we also create and attach a new root-domain
963  * object.
964  *
965  */
966 struct root_domain {
967 	atomic_t		refcount;
968 	atomic_t		rto_count;
969 	struct rcu_head		rcu;
970 	cpumask_var_t		span;
971 	cpumask_var_t		online;
972 
973 	/*
974 	 * Indicate pullable load on at least one CPU, e.g:
975 	 * - More than one runnable task
976 	 * - Running task is misfit
977 	 */
978 	bool			overloaded;
979 
980 	/* Indicate one or more CPUs over-utilized (tipping point) */
981 	bool			overutilized;
982 
983 	/*
984 	 * The bit corresponding to a CPU gets set here if such CPU has more
985 	 * than one runnable -deadline task (as it is below for RT tasks).
986 	 */
987 	cpumask_var_t		dlo_mask;
988 	atomic_t		dlo_count;
989 	struct dl_bw		dl_bw;
990 	struct cpudl		cpudl;
991 
992 	/*
993 	 * Indicate whether a root_domain's dl_bw has been checked or
994 	 * updated. It's monotonously increasing value.
995 	 *
996 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
997 	 * that u64 is 'big enough'. So that shouldn't be a concern.
998 	 */
999 	u64 visit_gen;
1000 
1001 #ifdef HAVE_RT_PUSH_IPI
1002 	/*
1003 	 * For IPI pull requests, loop across the rto_mask.
1004 	 */
1005 	struct irq_work		rto_push_work;
1006 	raw_spinlock_t		rto_lock;
1007 	/* These are only updated and read within rto_lock */
1008 	int			rto_loop;
1009 	int			rto_cpu;
1010 	/* These atomics are updated outside of a lock */
1011 	atomic_t		rto_loop_next;
1012 	atomic_t		rto_loop_start;
1013 #endif
1014 	/*
1015 	 * The "RT overload" flag: it gets set if a CPU has more than
1016 	 * one runnable RT task.
1017 	 */
1018 	cpumask_var_t		rto_mask;
1019 	struct cpupri		cpupri;
1020 
1021 	/*
1022 	 * NULL-terminated list of performance domains intersecting with the
1023 	 * CPUs of the rd. Protected by RCU.
1024 	 */
1025 	struct perf_domain __rcu *pd;
1026 };
1027 
1028 extern void init_defrootdomain(void);
1029 extern int sched_init_domains(const struct cpumask *cpu_map);
1030 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1031 extern void sched_get_rd(struct root_domain *rd);
1032 extern void sched_put_rd(struct root_domain *rd);
1033 
1034 static inline int get_rd_overloaded(struct root_domain *rd)
1035 {
1036 	return READ_ONCE(rd->overloaded);
1037 }
1038 
1039 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1040 {
1041 	if (get_rd_overloaded(rd) != status)
1042 		WRITE_ONCE(rd->overloaded, status);
1043 }
1044 
1045 #ifdef HAVE_RT_PUSH_IPI
1046 extern void rto_push_irq_work_func(struct irq_work *work);
1047 #endif
1048 #endif /* CONFIG_SMP */
1049 
1050 #ifdef CONFIG_UCLAMP_TASK
1051 /*
1052  * struct uclamp_bucket - Utilization clamp bucket
1053  * @value: utilization clamp value for tasks on this clamp bucket
1054  * @tasks: number of RUNNABLE tasks on this clamp bucket
1055  *
1056  * Keep track of how many tasks are RUNNABLE for a given utilization
1057  * clamp value.
1058  */
1059 struct uclamp_bucket {
1060 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1061 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1062 };
1063 
1064 /*
1065  * struct uclamp_rq - rq's utilization clamp
1066  * @value: currently active clamp values for a rq
1067  * @bucket: utilization clamp buckets affecting a rq
1068  *
1069  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1070  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1071  * (or actually running) with that value.
1072  *
1073  * There are up to UCLAMP_CNT possible different clamp values, currently there
1074  * are only two: minimum utilization and maximum utilization.
1075  *
1076  * All utilization clamping values are MAX aggregated, since:
1077  * - for util_min: we want to run the CPU at least at the max of the minimum
1078  *   utilization required by its currently RUNNABLE tasks.
1079  * - for util_max: we want to allow the CPU to run up to the max of the
1080  *   maximum utilization allowed by its currently RUNNABLE tasks.
1081  *
1082  * Since on each system we expect only a limited number of different
1083  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1084  * the metrics required to compute all the per-rq utilization clamp values.
1085  */
1086 struct uclamp_rq {
1087 	unsigned int value;
1088 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1089 };
1090 
1091 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1092 #endif /* CONFIG_UCLAMP_TASK */
1093 
1094 /*
1095  * This is the main, per-CPU runqueue data structure.
1096  *
1097  * Locking rule: those places that want to lock multiple runqueues
1098  * (such as the load balancing or the thread migration code), lock
1099  * acquire operations must be ordered by ascending &runqueue.
1100  */
1101 struct rq {
1102 	/* runqueue lock: */
1103 	raw_spinlock_t		__lock;
1104 
1105 	unsigned int		nr_running;
1106 #ifdef CONFIG_NUMA_BALANCING
1107 	unsigned int		nr_numa_running;
1108 	unsigned int		nr_preferred_running;
1109 	unsigned int		numa_migrate_on;
1110 #endif
1111 #ifdef CONFIG_NO_HZ_COMMON
1112 #ifdef CONFIG_SMP
1113 	unsigned long		last_blocked_load_update_tick;
1114 	unsigned int		has_blocked_load;
1115 	call_single_data_t	nohz_csd;
1116 #endif /* CONFIG_SMP */
1117 	unsigned int		nohz_tick_stopped;
1118 	atomic_t		nohz_flags;
1119 #endif /* CONFIG_NO_HZ_COMMON */
1120 
1121 #ifdef CONFIG_SMP
1122 	unsigned int		ttwu_pending;
1123 #endif
1124 	u64			nr_switches;
1125 
1126 #ifdef CONFIG_UCLAMP_TASK
1127 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1128 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1129 	unsigned int		uclamp_flags;
1130 #define UCLAMP_FLAG_IDLE 0x01
1131 #endif
1132 
1133 	struct cfs_rq		cfs;
1134 	struct rt_rq		rt;
1135 	struct dl_rq		dl;
1136 #ifdef CONFIG_SCHED_CLASS_EXT
1137 	struct scx_rq		scx;
1138 #endif
1139 
1140 	struct sched_dl_entity	fair_server;
1141 
1142 #ifdef CONFIG_FAIR_GROUP_SCHED
1143 	/* list of leaf cfs_rq on this CPU: */
1144 	struct list_head	leaf_cfs_rq_list;
1145 	struct list_head	*tmp_alone_branch;
1146 #endif /* CONFIG_FAIR_GROUP_SCHED */
1147 
1148 	/*
1149 	 * This is part of a global counter where only the total sum
1150 	 * over all CPUs matters. A task can increase this counter on
1151 	 * one CPU and if it got migrated afterwards it may decrease
1152 	 * it on another CPU. Always updated under the runqueue lock:
1153 	 */
1154 	unsigned int		nr_uninterruptible;
1155 
1156 	union {
1157 		struct task_struct __rcu *donor; /* Scheduler context */
1158 		struct task_struct __rcu *curr;  /* Execution context */
1159 	};
1160 	struct sched_dl_entity	*dl_server;
1161 	struct task_struct	*idle;
1162 	struct task_struct	*stop;
1163 	unsigned long		next_balance;
1164 	struct mm_struct	*prev_mm;
1165 
1166 	unsigned int		clock_update_flags;
1167 	u64			clock;
1168 	/* Ensure that all clocks are in the same cache line */
1169 	u64			clock_task ____cacheline_aligned;
1170 	u64			clock_pelt;
1171 	unsigned long		lost_idle_time;
1172 	u64			clock_pelt_idle;
1173 	u64			clock_idle;
1174 #ifndef CONFIG_64BIT
1175 	u64			clock_pelt_idle_copy;
1176 	u64			clock_idle_copy;
1177 #endif
1178 
1179 	atomic_t		nr_iowait;
1180 
1181 #ifdef CONFIG_SCHED_DEBUG
1182 	u64 last_seen_need_resched_ns;
1183 	int ticks_without_resched;
1184 #endif
1185 
1186 #ifdef CONFIG_MEMBARRIER
1187 	int membarrier_state;
1188 #endif
1189 
1190 #ifdef CONFIG_SMP
1191 	struct root_domain		*rd;
1192 	struct sched_domain __rcu	*sd;
1193 
1194 	unsigned long		cpu_capacity;
1195 
1196 	struct balance_callback *balance_callback;
1197 
1198 	unsigned char		nohz_idle_balance;
1199 	unsigned char		idle_balance;
1200 
1201 	unsigned long		misfit_task_load;
1202 
1203 	/* For active balancing */
1204 	int			active_balance;
1205 	int			push_cpu;
1206 	struct cpu_stop_work	active_balance_work;
1207 
1208 	/* CPU of this runqueue: */
1209 	int			cpu;
1210 	int			online;
1211 
1212 	struct list_head cfs_tasks;
1213 
1214 	struct sched_avg	avg_rt;
1215 	struct sched_avg	avg_dl;
1216 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1217 	struct sched_avg	avg_irq;
1218 #endif
1219 #ifdef CONFIG_SCHED_HW_PRESSURE
1220 	struct sched_avg	avg_hw;
1221 #endif
1222 	u64			idle_stamp;
1223 	u64			avg_idle;
1224 
1225 	/* This is used to determine avg_idle's max value */
1226 	u64			max_idle_balance_cost;
1227 
1228 #ifdef CONFIG_HOTPLUG_CPU
1229 	struct rcuwait		hotplug_wait;
1230 #endif
1231 #endif /* CONFIG_SMP */
1232 
1233 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1234 	u64			prev_irq_time;
1235 	u64			psi_irq_time;
1236 #endif
1237 #ifdef CONFIG_PARAVIRT
1238 	u64			prev_steal_time;
1239 #endif
1240 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1241 	u64			prev_steal_time_rq;
1242 #endif
1243 
1244 	/* calc_load related fields */
1245 	unsigned long		calc_load_update;
1246 	long			calc_load_active;
1247 
1248 #ifdef CONFIG_SCHED_HRTICK
1249 #ifdef CONFIG_SMP
1250 	call_single_data_t	hrtick_csd;
1251 #endif
1252 	struct hrtimer		hrtick_timer;
1253 	ktime_t			hrtick_time;
1254 #endif
1255 
1256 #ifdef CONFIG_SCHEDSTATS
1257 	/* latency stats */
1258 	struct sched_info	rq_sched_info;
1259 	unsigned long long	rq_cpu_time;
1260 
1261 	/* sys_sched_yield() stats */
1262 	unsigned int		yld_count;
1263 
1264 	/* schedule() stats */
1265 	unsigned int		sched_count;
1266 	unsigned int		sched_goidle;
1267 
1268 	/* try_to_wake_up() stats */
1269 	unsigned int		ttwu_count;
1270 	unsigned int		ttwu_local;
1271 #endif
1272 
1273 #ifdef CONFIG_CPU_IDLE
1274 	/* Must be inspected within a RCU lock section */
1275 	struct cpuidle_state	*idle_state;
1276 #endif
1277 
1278 #ifdef CONFIG_SMP
1279 	unsigned int		nr_pinned;
1280 #endif
1281 	unsigned int		push_busy;
1282 	struct cpu_stop_work	push_work;
1283 
1284 #ifdef CONFIG_SCHED_CORE
1285 	/* per rq */
1286 	struct rq		*core;
1287 	struct task_struct	*core_pick;
1288 	struct sched_dl_entity	*core_dl_server;
1289 	unsigned int		core_enabled;
1290 	unsigned int		core_sched_seq;
1291 	struct rb_root		core_tree;
1292 
1293 	/* shared state -- careful with sched_core_cpu_deactivate() */
1294 	unsigned int		core_task_seq;
1295 	unsigned int		core_pick_seq;
1296 	unsigned long		core_cookie;
1297 	unsigned int		core_forceidle_count;
1298 	unsigned int		core_forceidle_seq;
1299 	unsigned int		core_forceidle_occupation;
1300 	u64			core_forceidle_start;
1301 #endif
1302 
1303 	/* Scratch cpumask to be temporarily used under rq_lock */
1304 	cpumask_var_t		scratch_mask;
1305 
1306 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1307 	call_single_data_t	cfsb_csd;
1308 	struct list_head	cfsb_csd_list;
1309 #endif
1310 };
1311 
1312 #ifdef CONFIG_FAIR_GROUP_SCHED
1313 
1314 /* CPU runqueue to which this cfs_rq is attached */
1315 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1316 {
1317 	return cfs_rq->rq;
1318 }
1319 
1320 #else
1321 
1322 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1323 {
1324 	return container_of(cfs_rq, struct rq, cfs);
1325 }
1326 #endif
1327 
1328 static inline int cpu_of(struct rq *rq)
1329 {
1330 #ifdef CONFIG_SMP
1331 	return rq->cpu;
1332 #else
1333 	return 0;
1334 #endif
1335 }
1336 
1337 #define MDF_PUSH		0x01
1338 
1339 static inline bool is_migration_disabled(struct task_struct *p)
1340 {
1341 #ifdef CONFIG_SMP
1342 	return p->migration_disabled;
1343 #else
1344 	return false;
1345 #endif
1346 }
1347 
1348 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1349 
1350 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1351 #define this_rq()		this_cpu_ptr(&runqueues)
1352 #define task_rq(p)		cpu_rq(task_cpu(p))
1353 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1354 #define raw_rq()		raw_cpu_ptr(&runqueues)
1355 
1356 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1357 {
1358 	/* Do nothing */
1359 }
1360 
1361 #ifdef CONFIG_SCHED_CORE
1362 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1363 
1364 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1365 
1366 static inline bool sched_core_enabled(struct rq *rq)
1367 {
1368 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1369 }
1370 
1371 static inline bool sched_core_disabled(void)
1372 {
1373 	return !static_branch_unlikely(&__sched_core_enabled);
1374 }
1375 
1376 /*
1377  * Be careful with this function; not for general use. The return value isn't
1378  * stable unless you actually hold a relevant rq->__lock.
1379  */
1380 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1381 {
1382 	if (sched_core_enabled(rq))
1383 		return &rq->core->__lock;
1384 
1385 	return &rq->__lock;
1386 }
1387 
1388 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1389 {
1390 	if (rq->core_enabled)
1391 		return &rq->core->__lock;
1392 
1393 	return &rq->__lock;
1394 }
1395 
1396 extern bool
1397 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1398 
1399 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1400 
1401 /*
1402  * Helpers to check if the CPU's core cookie matches with the task's cookie
1403  * when core scheduling is enabled.
1404  * A special case is that the task's cookie always matches with CPU's core
1405  * cookie if the CPU is in an idle core.
1406  */
1407 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1408 {
1409 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1410 	if (!sched_core_enabled(rq))
1411 		return true;
1412 
1413 	return rq->core->core_cookie == p->core_cookie;
1414 }
1415 
1416 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1417 {
1418 	bool idle_core = true;
1419 	int cpu;
1420 
1421 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1422 	if (!sched_core_enabled(rq))
1423 		return true;
1424 
1425 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1426 		if (!available_idle_cpu(cpu)) {
1427 			idle_core = false;
1428 			break;
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * A CPU in an idle core is always the best choice for tasks with
1434 	 * cookies.
1435 	 */
1436 	return idle_core || rq->core->core_cookie == p->core_cookie;
1437 }
1438 
1439 static inline bool sched_group_cookie_match(struct rq *rq,
1440 					    struct task_struct *p,
1441 					    struct sched_group *group)
1442 {
1443 	int cpu;
1444 
1445 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1446 	if (!sched_core_enabled(rq))
1447 		return true;
1448 
1449 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1450 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1451 			return true;
1452 	}
1453 	return false;
1454 }
1455 
1456 static inline bool sched_core_enqueued(struct task_struct *p)
1457 {
1458 	return !RB_EMPTY_NODE(&p->core_node);
1459 }
1460 
1461 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1462 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1463 
1464 extern void sched_core_get(void);
1465 extern void sched_core_put(void);
1466 
1467 #else /* !CONFIG_SCHED_CORE: */
1468 
1469 static inline bool sched_core_enabled(struct rq *rq)
1470 {
1471 	return false;
1472 }
1473 
1474 static inline bool sched_core_disabled(void)
1475 {
1476 	return true;
1477 }
1478 
1479 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1480 {
1481 	return &rq->__lock;
1482 }
1483 
1484 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1485 {
1486 	return &rq->__lock;
1487 }
1488 
1489 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1490 {
1491 	return true;
1492 }
1493 
1494 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1495 {
1496 	return true;
1497 }
1498 
1499 static inline bool sched_group_cookie_match(struct rq *rq,
1500 					    struct task_struct *p,
1501 					    struct sched_group *group)
1502 {
1503 	return true;
1504 }
1505 
1506 #endif /* !CONFIG_SCHED_CORE */
1507 
1508 static inline void lockdep_assert_rq_held(struct rq *rq)
1509 {
1510 	lockdep_assert_held(__rq_lockp(rq));
1511 }
1512 
1513 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1514 extern bool raw_spin_rq_trylock(struct rq *rq);
1515 extern void raw_spin_rq_unlock(struct rq *rq);
1516 
1517 static inline void raw_spin_rq_lock(struct rq *rq)
1518 {
1519 	raw_spin_rq_lock_nested(rq, 0);
1520 }
1521 
1522 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1523 {
1524 	local_irq_disable();
1525 	raw_spin_rq_lock(rq);
1526 }
1527 
1528 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1529 {
1530 	raw_spin_rq_unlock(rq);
1531 	local_irq_enable();
1532 }
1533 
1534 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1535 {
1536 	unsigned long flags;
1537 
1538 	local_irq_save(flags);
1539 	raw_spin_rq_lock(rq);
1540 
1541 	return flags;
1542 }
1543 
1544 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1545 {
1546 	raw_spin_rq_unlock(rq);
1547 	local_irq_restore(flags);
1548 }
1549 
1550 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1551 do {						\
1552 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1553 } while (0)
1554 
1555 #ifdef CONFIG_SCHED_SMT
1556 extern void __update_idle_core(struct rq *rq);
1557 
1558 static inline void update_idle_core(struct rq *rq)
1559 {
1560 	if (static_branch_unlikely(&sched_smt_present))
1561 		__update_idle_core(rq);
1562 }
1563 
1564 #else
1565 static inline void update_idle_core(struct rq *rq) { }
1566 #endif
1567 
1568 #ifdef CONFIG_FAIR_GROUP_SCHED
1569 
1570 static inline struct task_struct *task_of(struct sched_entity *se)
1571 {
1572 	SCHED_WARN_ON(!entity_is_task(se));
1573 	return container_of(se, struct task_struct, se);
1574 }
1575 
1576 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1577 {
1578 	return p->se.cfs_rq;
1579 }
1580 
1581 /* runqueue on which this entity is (to be) queued */
1582 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1583 {
1584 	return se->cfs_rq;
1585 }
1586 
1587 /* runqueue "owned" by this group */
1588 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1589 {
1590 	return grp->my_q;
1591 }
1592 
1593 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1594 
1595 #define task_of(_se)		container_of(_se, struct task_struct, se)
1596 
1597 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1598 {
1599 	return &task_rq(p)->cfs;
1600 }
1601 
1602 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1603 {
1604 	const struct task_struct *p = task_of(se);
1605 	struct rq *rq = task_rq(p);
1606 
1607 	return &rq->cfs;
1608 }
1609 
1610 /* runqueue "owned" by this group */
1611 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1612 {
1613 	return NULL;
1614 }
1615 
1616 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1617 
1618 extern void update_rq_clock(struct rq *rq);
1619 
1620 /*
1621  * rq::clock_update_flags bits
1622  *
1623  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1624  *  call to __schedule(). This is an optimisation to avoid
1625  *  neighbouring rq clock updates.
1626  *
1627  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1628  *  in effect and calls to update_rq_clock() are being ignored.
1629  *
1630  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1631  *  made to update_rq_clock() since the last time rq::lock was pinned.
1632  *
1633  * If inside of __schedule(), clock_update_flags will have been
1634  * shifted left (a left shift is a cheap operation for the fast path
1635  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1636  *
1637  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1638  *
1639  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1640  * one position though, because the next rq_unpin_lock() will shift it
1641  * back.
1642  */
1643 #define RQCF_REQ_SKIP		0x01
1644 #define RQCF_ACT_SKIP		0x02
1645 #define RQCF_UPDATED		0x04
1646 
1647 static inline void assert_clock_updated(struct rq *rq)
1648 {
1649 	/*
1650 	 * The only reason for not seeing a clock update since the
1651 	 * last rq_pin_lock() is if we're currently skipping updates.
1652 	 */
1653 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1654 }
1655 
1656 static inline u64 rq_clock(struct rq *rq)
1657 {
1658 	lockdep_assert_rq_held(rq);
1659 	assert_clock_updated(rq);
1660 
1661 	return rq->clock;
1662 }
1663 
1664 static inline u64 rq_clock_task(struct rq *rq)
1665 {
1666 	lockdep_assert_rq_held(rq);
1667 	assert_clock_updated(rq);
1668 
1669 	return rq->clock_task;
1670 }
1671 
1672 static inline void rq_clock_skip_update(struct rq *rq)
1673 {
1674 	lockdep_assert_rq_held(rq);
1675 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1676 }
1677 
1678 /*
1679  * See rt task throttling, which is the only time a skip
1680  * request is canceled.
1681  */
1682 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1683 {
1684 	lockdep_assert_rq_held(rq);
1685 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1686 }
1687 
1688 /*
1689  * During cpu offlining and rq wide unthrottling, we can trigger
1690  * an update_rq_clock() for several cfs and rt runqueues (Typically
1691  * when using list_for_each_entry_*)
1692  * rq_clock_start_loop_update() can be called after updating the clock
1693  * once and before iterating over the list to prevent multiple update.
1694  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1695  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1696  */
1697 static inline void rq_clock_start_loop_update(struct rq *rq)
1698 {
1699 	lockdep_assert_rq_held(rq);
1700 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1701 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1702 }
1703 
1704 static inline void rq_clock_stop_loop_update(struct rq *rq)
1705 {
1706 	lockdep_assert_rq_held(rq);
1707 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1708 }
1709 
1710 struct rq_flags {
1711 	unsigned long flags;
1712 	struct pin_cookie cookie;
1713 #ifdef CONFIG_SCHED_DEBUG
1714 	/*
1715 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1716 	 * current pin context is stashed here in case it needs to be
1717 	 * restored in rq_repin_lock().
1718 	 */
1719 	unsigned int clock_update_flags;
1720 #endif
1721 };
1722 
1723 extern struct balance_callback balance_push_callback;
1724 
1725 /*
1726  * Lockdep annotation that avoids accidental unlocks; it's like a
1727  * sticky/continuous lockdep_assert_held().
1728  *
1729  * This avoids code that has access to 'struct rq *rq' (basically everything in
1730  * the scheduler) from accidentally unlocking the rq if they do not also have a
1731  * copy of the (on-stack) 'struct rq_flags rf'.
1732  *
1733  * Also see Documentation/locking/lockdep-design.rst.
1734  */
1735 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1736 {
1737 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1738 
1739 #ifdef CONFIG_SCHED_DEBUG
1740 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1741 	rf->clock_update_flags = 0;
1742 # ifdef CONFIG_SMP
1743 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1744 # endif
1745 #endif
1746 }
1747 
1748 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1749 {
1750 #ifdef CONFIG_SCHED_DEBUG
1751 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1752 		rf->clock_update_flags = RQCF_UPDATED;
1753 #endif
1754 
1755 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1756 }
1757 
1758 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1759 {
1760 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1761 
1762 #ifdef CONFIG_SCHED_DEBUG
1763 	/*
1764 	 * Restore the value we stashed in @rf for this pin context.
1765 	 */
1766 	rq->clock_update_flags |= rf->clock_update_flags;
1767 #endif
1768 }
1769 
1770 extern
1771 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1772 	__acquires(rq->lock);
1773 
1774 extern
1775 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1776 	__acquires(p->pi_lock)
1777 	__acquires(rq->lock);
1778 
1779 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1780 	__releases(rq->lock)
1781 {
1782 	rq_unpin_lock(rq, rf);
1783 	raw_spin_rq_unlock(rq);
1784 }
1785 
1786 static inline void
1787 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1788 	__releases(rq->lock)
1789 	__releases(p->pi_lock)
1790 {
1791 	rq_unpin_lock(rq, rf);
1792 	raw_spin_rq_unlock(rq);
1793 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1794 }
1795 
1796 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1797 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1798 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1799 		    struct rq *rq; struct rq_flags rf)
1800 
1801 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1802 	__acquires(rq->lock)
1803 {
1804 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1805 	rq_pin_lock(rq, rf);
1806 }
1807 
1808 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1809 	__acquires(rq->lock)
1810 {
1811 	raw_spin_rq_lock_irq(rq);
1812 	rq_pin_lock(rq, rf);
1813 }
1814 
1815 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1816 	__acquires(rq->lock)
1817 {
1818 	raw_spin_rq_lock(rq);
1819 	rq_pin_lock(rq, rf);
1820 }
1821 
1822 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1823 	__releases(rq->lock)
1824 {
1825 	rq_unpin_lock(rq, rf);
1826 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1827 }
1828 
1829 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1830 	__releases(rq->lock)
1831 {
1832 	rq_unpin_lock(rq, rf);
1833 	raw_spin_rq_unlock_irq(rq);
1834 }
1835 
1836 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1837 	__releases(rq->lock)
1838 {
1839 	rq_unpin_lock(rq, rf);
1840 	raw_spin_rq_unlock(rq);
1841 }
1842 
1843 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1844 		    rq_lock(_T->lock, &_T->rf),
1845 		    rq_unlock(_T->lock, &_T->rf),
1846 		    struct rq_flags rf)
1847 
1848 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1849 		    rq_lock_irq(_T->lock, &_T->rf),
1850 		    rq_unlock_irq(_T->lock, &_T->rf),
1851 		    struct rq_flags rf)
1852 
1853 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1854 		    rq_lock_irqsave(_T->lock, &_T->rf),
1855 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1856 		    struct rq_flags rf)
1857 
1858 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1859 	__acquires(rq->lock)
1860 {
1861 	struct rq *rq;
1862 
1863 	local_irq_disable();
1864 	rq = this_rq();
1865 	rq_lock(rq, rf);
1866 
1867 	return rq;
1868 }
1869 
1870 #ifdef CONFIG_NUMA
1871 
1872 enum numa_topology_type {
1873 	NUMA_DIRECT,
1874 	NUMA_GLUELESS_MESH,
1875 	NUMA_BACKPLANE,
1876 };
1877 
1878 extern enum numa_topology_type sched_numa_topology_type;
1879 extern int sched_max_numa_distance;
1880 extern bool find_numa_distance(int distance);
1881 extern void sched_init_numa(int offline_node);
1882 extern void sched_update_numa(int cpu, bool online);
1883 extern void sched_domains_numa_masks_set(unsigned int cpu);
1884 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1885 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1886 
1887 #else /* !CONFIG_NUMA: */
1888 
1889 static inline void sched_init_numa(int offline_node) { }
1890 static inline void sched_update_numa(int cpu, bool online) { }
1891 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1892 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1893 
1894 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1895 {
1896 	return nr_cpu_ids;
1897 }
1898 
1899 #endif /* !CONFIG_NUMA */
1900 
1901 #ifdef CONFIG_NUMA_BALANCING
1902 
1903 /* The regions in numa_faults array from task_struct */
1904 enum numa_faults_stats {
1905 	NUMA_MEM = 0,
1906 	NUMA_CPU,
1907 	NUMA_MEMBUF,
1908 	NUMA_CPUBUF
1909 };
1910 
1911 extern void sched_setnuma(struct task_struct *p, int node);
1912 extern int migrate_task_to(struct task_struct *p, int cpu);
1913 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1914 			int cpu, int scpu);
1915 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1916 
1917 #else /* !CONFIG_NUMA_BALANCING: */
1918 
1919 static inline void
1920 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1921 {
1922 }
1923 
1924 #endif /* !CONFIG_NUMA_BALANCING */
1925 
1926 #ifdef CONFIG_SMP
1927 
1928 static inline void
1929 queue_balance_callback(struct rq *rq,
1930 		       struct balance_callback *head,
1931 		       void (*func)(struct rq *rq))
1932 {
1933 	lockdep_assert_rq_held(rq);
1934 
1935 	/*
1936 	 * Don't (re)queue an already queued item; nor queue anything when
1937 	 * balance_push() is active, see the comment with
1938 	 * balance_push_callback.
1939 	 */
1940 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1941 		return;
1942 
1943 	head->func = func;
1944 	head->next = rq->balance_callback;
1945 	rq->balance_callback = head;
1946 }
1947 
1948 #define rcu_dereference_check_sched_domain(p) \
1949 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1950 
1951 /*
1952  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1953  * See destroy_sched_domains: call_rcu for details.
1954  *
1955  * The domain tree of any CPU may only be accessed from within
1956  * preempt-disabled sections.
1957  */
1958 #define for_each_domain(cpu, __sd) \
1959 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1960 			__sd; __sd = __sd->parent)
1961 
1962 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1963 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1964 static const unsigned int SD_SHARED_CHILD_MASK =
1965 #include <linux/sched/sd_flags.h>
1966 0;
1967 #undef SD_FLAG
1968 
1969 /**
1970  * highest_flag_domain - Return highest sched_domain containing flag.
1971  * @cpu:	The CPU whose highest level of sched domain is to
1972  *		be returned.
1973  * @flag:	The flag to check for the highest sched_domain
1974  *		for the given CPU.
1975  *
1976  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1977  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1978  */
1979 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1980 {
1981 	struct sched_domain *sd, *hsd = NULL;
1982 
1983 	for_each_domain(cpu, sd) {
1984 		if (sd->flags & flag) {
1985 			hsd = sd;
1986 			continue;
1987 		}
1988 
1989 		/*
1990 		 * Stop the search if @flag is known to be shared at lower
1991 		 * levels. It will not be found further up.
1992 		 */
1993 		if (flag & SD_SHARED_CHILD_MASK)
1994 			break;
1995 	}
1996 
1997 	return hsd;
1998 }
1999 
2000 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2001 {
2002 	struct sched_domain *sd;
2003 
2004 	for_each_domain(cpu, sd) {
2005 		if (sd->flags & flag)
2006 			break;
2007 	}
2008 
2009 	return sd;
2010 }
2011 
2012 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2013 DECLARE_PER_CPU(int, sd_llc_size);
2014 DECLARE_PER_CPU(int, sd_llc_id);
2015 DECLARE_PER_CPU(int, sd_share_id);
2016 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2017 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2018 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2019 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2020 
2021 extern struct static_key_false sched_asym_cpucapacity;
2022 extern struct static_key_false sched_cluster_active;
2023 
2024 static __always_inline bool sched_asym_cpucap_active(void)
2025 {
2026 	return static_branch_unlikely(&sched_asym_cpucapacity);
2027 }
2028 
2029 struct sched_group_capacity {
2030 	atomic_t		ref;
2031 	/*
2032 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2033 	 * for a single CPU.
2034 	 */
2035 	unsigned long		capacity;
2036 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2037 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2038 	unsigned long		next_update;
2039 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2040 
2041 #ifdef CONFIG_SCHED_DEBUG
2042 	int			id;
2043 #endif
2044 
2045 	unsigned long		cpumask[];		/* Balance mask */
2046 };
2047 
2048 struct sched_group {
2049 	struct sched_group	*next;			/* Must be a circular list */
2050 	atomic_t		ref;
2051 
2052 	unsigned int		group_weight;
2053 	unsigned int		cores;
2054 	struct sched_group_capacity *sgc;
2055 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2056 	int			flags;
2057 
2058 	/*
2059 	 * The CPUs this group covers.
2060 	 *
2061 	 * NOTE: this field is variable length. (Allocated dynamically
2062 	 * by attaching extra space to the end of the structure,
2063 	 * depending on how many CPUs the kernel has booted up with)
2064 	 */
2065 	unsigned long		cpumask[];
2066 };
2067 
2068 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2069 {
2070 	return to_cpumask(sg->cpumask);
2071 }
2072 
2073 /*
2074  * See build_balance_mask().
2075  */
2076 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2077 {
2078 	return to_cpumask(sg->sgc->cpumask);
2079 }
2080 
2081 extern int group_balance_cpu(struct sched_group *sg);
2082 
2083 #ifdef CONFIG_SCHED_DEBUG
2084 extern void update_sched_domain_debugfs(void);
2085 extern void dirty_sched_domain_sysctl(int cpu);
2086 #else
2087 static inline void update_sched_domain_debugfs(void) { }
2088 static inline void dirty_sched_domain_sysctl(int cpu) { }
2089 #endif
2090 
2091 extern int sched_update_scaling(void);
2092 
2093 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2094 {
2095 	if (!p->user_cpus_ptr)
2096 		return cpu_possible_mask; /* &init_task.cpus_mask */
2097 	return p->user_cpus_ptr;
2098 }
2099 
2100 #endif /* CONFIG_SMP */
2101 
2102 #ifdef CONFIG_CGROUP_SCHED
2103 
2104 /*
2105  * Return the group to which this tasks belongs.
2106  *
2107  * We cannot use task_css() and friends because the cgroup subsystem
2108  * changes that value before the cgroup_subsys::attach() method is called,
2109  * therefore we cannot pin it and might observe the wrong value.
2110  *
2111  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2112  * core changes this before calling sched_move_task().
2113  *
2114  * Instead we use a 'copy' which is updated from sched_move_task() while
2115  * holding both task_struct::pi_lock and rq::lock.
2116  */
2117 static inline struct task_group *task_group(struct task_struct *p)
2118 {
2119 	return p->sched_task_group;
2120 }
2121 
2122 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2123 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2124 {
2125 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2126 	struct task_group *tg = task_group(p);
2127 #endif
2128 
2129 #ifdef CONFIG_FAIR_GROUP_SCHED
2130 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2131 	p->se.cfs_rq = tg->cfs_rq[cpu];
2132 	p->se.parent = tg->se[cpu];
2133 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2134 #endif
2135 
2136 #ifdef CONFIG_RT_GROUP_SCHED
2137 	p->rt.rt_rq  = tg->rt_rq[cpu];
2138 	p->rt.parent = tg->rt_se[cpu];
2139 #endif
2140 }
2141 
2142 #else /* !CONFIG_CGROUP_SCHED: */
2143 
2144 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2145 
2146 static inline struct task_group *task_group(struct task_struct *p)
2147 {
2148 	return NULL;
2149 }
2150 
2151 #endif /* !CONFIG_CGROUP_SCHED */
2152 
2153 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2154 {
2155 	set_task_rq(p, cpu);
2156 #ifdef CONFIG_SMP
2157 	/*
2158 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2159 	 * successfully executed on another CPU. We must ensure that updates of
2160 	 * per-task data have been completed by this moment.
2161 	 */
2162 	smp_wmb();
2163 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2164 	p->wake_cpu = cpu;
2165 #endif
2166 }
2167 
2168 /*
2169  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2170  */
2171 #ifdef CONFIG_SCHED_DEBUG
2172 # define const_debug __read_mostly
2173 #else
2174 # define const_debug const
2175 #endif
2176 
2177 #define SCHED_FEAT(name, enabled)	\
2178 	__SCHED_FEAT_##name ,
2179 
2180 enum {
2181 #include "features.h"
2182 	__SCHED_FEAT_NR,
2183 };
2184 
2185 #undef SCHED_FEAT
2186 
2187 #ifdef CONFIG_SCHED_DEBUG
2188 
2189 /*
2190  * To support run-time toggling of sched features, all the translation units
2191  * (but core.c) reference the sysctl_sched_features defined in core.c.
2192  */
2193 extern const_debug unsigned int sysctl_sched_features;
2194 
2195 #ifdef CONFIG_JUMP_LABEL
2196 
2197 #define SCHED_FEAT(name, enabled)					\
2198 static __always_inline bool static_branch_##name(struct static_key *key) \
2199 {									\
2200 	return static_key_##enabled(key);				\
2201 }
2202 
2203 #include "features.h"
2204 #undef SCHED_FEAT
2205 
2206 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2207 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2208 
2209 #else /* !CONFIG_JUMP_LABEL: */
2210 
2211 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2212 
2213 #endif /* !CONFIG_JUMP_LABEL */
2214 
2215 #else /* !SCHED_DEBUG: */
2216 
2217 /*
2218  * Each translation unit has its own copy of sysctl_sched_features to allow
2219  * constants propagation at compile time and compiler optimization based on
2220  * features default.
2221  */
2222 #define SCHED_FEAT(name, enabled)	\
2223 	(1UL << __SCHED_FEAT_##name) * enabled |
2224 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2225 #include "features.h"
2226 	0;
2227 #undef SCHED_FEAT
2228 
2229 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2230 
2231 #endif /* !SCHED_DEBUG */
2232 
2233 extern struct static_key_false sched_numa_balancing;
2234 extern struct static_key_false sched_schedstats;
2235 
2236 static inline u64 global_rt_period(void)
2237 {
2238 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2239 }
2240 
2241 static inline u64 global_rt_runtime(void)
2242 {
2243 	if (sysctl_sched_rt_runtime < 0)
2244 		return RUNTIME_INF;
2245 
2246 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2247 }
2248 
2249 /*
2250  * Is p the current execution context?
2251  */
2252 static inline int task_current(struct rq *rq, struct task_struct *p)
2253 {
2254 	return rq->curr == p;
2255 }
2256 
2257 /*
2258  * Is p the current scheduling context?
2259  *
2260  * Note that it might be the current execution context at the same time if
2261  * rq->curr == rq->donor == p.
2262  */
2263 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2264 {
2265 	return rq->donor == p;
2266 }
2267 
2268 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2269 {
2270 #ifdef CONFIG_SMP
2271 	return p->on_cpu;
2272 #else
2273 	return task_current(rq, p);
2274 #endif
2275 }
2276 
2277 static inline int task_on_rq_queued(struct task_struct *p)
2278 {
2279 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED;
2280 }
2281 
2282 static inline int task_on_rq_migrating(struct task_struct *p)
2283 {
2284 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2285 }
2286 
2287 /* Wake flags. The first three directly map to some SD flag value */
2288 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2289 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2290 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2291 
2292 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2293 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2294 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2295 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2296 
2297 #ifdef CONFIG_SMP
2298 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2299 static_assert(WF_FORK == SD_BALANCE_FORK);
2300 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2301 #endif
2302 
2303 /*
2304  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2305  * of tasks with abnormal "nice" values across CPUs the contribution that
2306  * each task makes to its run queue's load is weighted according to its
2307  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2308  * scaled version of the new time slice allocation that they receive on time
2309  * slice expiry etc.
2310  */
2311 
2312 #define WEIGHT_IDLEPRIO		3
2313 #define WMULT_IDLEPRIO		1431655765
2314 
2315 extern const int		sched_prio_to_weight[40];
2316 extern const u32		sched_prio_to_wmult[40];
2317 
2318 /*
2319  * {de,en}queue flags:
2320  *
2321  * DEQUEUE_SLEEP  - task is no longer runnable
2322  * ENQUEUE_WAKEUP - task just became runnable
2323  *
2324  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2325  *                are in a known state which allows modification. Such pairs
2326  *                should preserve as much state as possible.
2327  *
2328  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2329  *        in the runqueue.
2330  *
2331  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2332  *
2333  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2334  *
2335  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2336  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2337  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2338  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2339  *
2340  */
2341 
2342 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2343 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2344 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2345 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2346 #define DEQUEUE_SPECIAL		0x10
2347 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2348 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2349 
2350 #define ENQUEUE_WAKEUP		0x01
2351 #define ENQUEUE_RESTORE		0x02
2352 #define ENQUEUE_MOVE		0x04
2353 #define ENQUEUE_NOCLOCK		0x08
2354 
2355 #define ENQUEUE_HEAD		0x10
2356 #define ENQUEUE_REPLENISH	0x20
2357 #ifdef CONFIG_SMP
2358 #define ENQUEUE_MIGRATED	0x40
2359 #else
2360 #define ENQUEUE_MIGRATED	0x00
2361 #endif
2362 #define ENQUEUE_INITIAL		0x80
2363 #define ENQUEUE_MIGRATING	0x100
2364 #define ENQUEUE_DELAYED		0x200
2365 #define ENQUEUE_RQ_SELECTED	0x400
2366 
2367 #define RETRY_TASK		((void *)-1UL)
2368 
2369 struct affinity_context {
2370 	const struct cpumask	*new_mask;
2371 	struct cpumask		*user_mask;
2372 	unsigned int		flags;
2373 };
2374 
2375 extern s64 update_curr_common(struct rq *rq);
2376 
2377 struct sched_class {
2378 
2379 #ifdef CONFIG_UCLAMP_TASK
2380 	int uclamp_enabled;
2381 #endif
2382 
2383 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2384 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2385 	void (*yield_task)   (struct rq *rq);
2386 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2387 
2388 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2389 
2390 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2391 	struct task_struct *(*pick_task)(struct rq *rq);
2392 	/*
2393 	 * Optional! When implemented pick_next_task() should be equivalent to:
2394 	 *
2395 	 *   next = pick_task();
2396 	 *   if (next) {
2397 	 *       put_prev_task(prev);
2398 	 *       set_next_task_first(next);
2399 	 *   }
2400 	 */
2401 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2402 
2403 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2404 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2405 
2406 #ifdef CONFIG_SMP
2407 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2408 
2409 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2410 
2411 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2412 
2413 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2414 
2415 	void (*rq_online)(struct rq *rq);
2416 	void (*rq_offline)(struct rq *rq);
2417 
2418 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2419 #endif
2420 
2421 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2422 	void (*task_fork)(struct task_struct *p);
2423 	void (*task_dead)(struct task_struct *p);
2424 
2425 	/*
2426 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2427 	 * cannot assume the switched_from/switched_to pair is serialized by
2428 	 * rq->lock. They are however serialized by p->pi_lock.
2429 	 */
2430 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2431 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2432 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2433 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2434 			      const struct load_weight *lw);
2435 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2436 			      int oldprio);
2437 
2438 	unsigned int (*get_rr_interval)(struct rq *rq,
2439 					struct task_struct *task);
2440 
2441 	void (*update_curr)(struct rq *rq);
2442 
2443 #ifdef CONFIG_FAIR_GROUP_SCHED
2444 	void (*task_change_group)(struct task_struct *p);
2445 #endif
2446 
2447 #ifdef CONFIG_SCHED_CORE
2448 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2449 #endif
2450 };
2451 
2452 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2453 {
2454 	WARN_ON_ONCE(rq->donor != prev);
2455 	prev->sched_class->put_prev_task(rq, prev, NULL);
2456 }
2457 
2458 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2459 {
2460 	next->sched_class->set_next_task(rq, next, false);
2461 }
2462 
2463 static inline void
2464 __put_prev_set_next_dl_server(struct rq *rq,
2465 			      struct task_struct *prev,
2466 			      struct task_struct *next)
2467 {
2468 	prev->dl_server = NULL;
2469 	next->dl_server = rq->dl_server;
2470 	rq->dl_server = NULL;
2471 }
2472 
2473 static inline void put_prev_set_next_task(struct rq *rq,
2474 					  struct task_struct *prev,
2475 					  struct task_struct *next)
2476 {
2477 	WARN_ON_ONCE(rq->curr != prev);
2478 
2479 	__put_prev_set_next_dl_server(rq, prev, next);
2480 
2481 	if (next == prev)
2482 		return;
2483 
2484 	prev->sched_class->put_prev_task(rq, prev, next);
2485 	next->sched_class->set_next_task(rq, next, true);
2486 }
2487 
2488 /*
2489  * Helper to define a sched_class instance; each one is placed in a separate
2490  * section which is ordered by the linker script:
2491  *
2492  *   include/asm-generic/vmlinux.lds.h
2493  *
2494  * *CAREFUL* they are laid out in *REVERSE* order!!!
2495  *
2496  * Also enforce alignment on the instance, not the type, to guarantee layout.
2497  */
2498 #define DEFINE_SCHED_CLASS(name) \
2499 const struct sched_class name##_sched_class \
2500 	__aligned(__alignof__(struct sched_class)) \
2501 	__section("__" #name "_sched_class")
2502 
2503 /* Defined in include/asm-generic/vmlinux.lds.h */
2504 extern struct sched_class __sched_class_highest[];
2505 extern struct sched_class __sched_class_lowest[];
2506 
2507 extern const struct sched_class stop_sched_class;
2508 extern const struct sched_class dl_sched_class;
2509 extern const struct sched_class rt_sched_class;
2510 extern const struct sched_class fair_sched_class;
2511 extern const struct sched_class idle_sched_class;
2512 
2513 #ifdef CONFIG_SCHED_CLASS_EXT
2514 extern const struct sched_class ext_sched_class;
2515 
2516 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
2517 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
2518 
2519 #define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
2520 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
2521 #else /* !CONFIG_SCHED_CLASS_EXT */
2522 #define scx_enabled()		false
2523 #define scx_switched_all()	false
2524 #endif /* !CONFIG_SCHED_CLASS_EXT */
2525 
2526 /*
2527  * Iterate only active classes. SCX can take over all fair tasks or be
2528  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2529  */
2530 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2531 {
2532 	class++;
2533 #ifdef CONFIG_SCHED_CLASS_EXT
2534 	if (scx_switched_all() && class == &fair_sched_class)
2535 		class++;
2536 	if (!scx_enabled() && class == &ext_sched_class)
2537 		class++;
2538 #endif
2539 	return class;
2540 }
2541 
2542 #define for_class_range(class, _from, _to) \
2543 	for (class = (_from); class < (_to); class++)
2544 
2545 #define for_each_class(class) \
2546 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2547 
2548 #define for_active_class_range(class, _from, _to)				\
2549 	for (class = (_from); class != (_to); class = next_active_class(class))
2550 
2551 #define for_each_active_class(class)						\
2552 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2553 
2554 #define sched_class_above(_a, _b)	((_a) < (_b))
2555 
2556 static inline bool sched_stop_runnable(struct rq *rq)
2557 {
2558 	return rq->stop && task_on_rq_queued(rq->stop);
2559 }
2560 
2561 static inline bool sched_dl_runnable(struct rq *rq)
2562 {
2563 	return rq->dl.dl_nr_running > 0;
2564 }
2565 
2566 static inline bool sched_rt_runnable(struct rq *rq)
2567 {
2568 	return rq->rt.rt_queued > 0;
2569 }
2570 
2571 static inline bool sched_fair_runnable(struct rq *rq)
2572 {
2573 	return rq->cfs.nr_queued > 0;
2574 }
2575 
2576 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2577 extern struct task_struct *pick_task_idle(struct rq *rq);
2578 
2579 #define SCA_CHECK		0x01
2580 #define SCA_MIGRATE_DISABLE	0x02
2581 #define SCA_MIGRATE_ENABLE	0x04
2582 #define SCA_USER		0x08
2583 
2584 #ifdef CONFIG_SMP
2585 
2586 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2587 
2588 extern void sched_balance_trigger(struct rq *rq);
2589 
2590 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2591 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2592 
2593 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2594 {
2595 	/* When not in the task's cpumask, no point in looking further. */
2596 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2597 		return false;
2598 
2599 	/* Can @cpu run a user thread? */
2600 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2601 		return false;
2602 
2603 	return true;
2604 }
2605 
2606 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2607 {
2608 	/*
2609 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2610 	 */
2611 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2612 
2613 	return kmalloc_node(size, GFP_KERNEL, node);
2614 }
2615 
2616 static inline struct task_struct *get_push_task(struct rq *rq)
2617 {
2618 	struct task_struct *p = rq->donor;
2619 
2620 	lockdep_assert_rq_held(rq);
2621 
2622 	if (rq->push_busy)
2623 		return NULL;
2624 
2625 	if (p->nr_cpus_allowed == 1)
2626 		return NULL;
2627 
2628 	if (p->migration_disabled)
2629 		return NULL;
2630 
2631 	rq->push_busy = true;
2632 	return get_task_struct(p);
2633 }
2634 
2635 extern int push_cpu_stop(void *arg);
2636 
2637 #else /* !CONFIG_SMP: */
2638 
2639 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2640 {
2641 	return true;
2642 }
2643 
2644 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2645 					 struct affinity_context *ctx)
2646 {
2647 	return set_cpus_allowed_ptr(p, ctx->new_mask);
2648 }
2649 
2650 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2651 {
2652 	return NULL;
2653 }
2654 
2655 #endif /* !CONFIG_SMP */
2656 
2657 #ifdef CONFIG_CPU_IDLE
2658 
2659 static inline void idle_set_state(struct rq *rq,
2660 				  struct cpuidle_state *idle_state)
2661 {
2662 	rq->idle_state = idle_state;
2663 }
2664 
2665 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2666 {
2667 	SCHED_WARN_ON(!rcu_read_lock_held());
2668 
2669 	return rq->idle_state;
2670 }
2671 
2672 #else /* !CONFIG_CPU_IDLE: */
2673 
2674 static inline void idle_set_state(struct rq *rq,
2675 				  struct cpuidle_state *idle_state)
2676 {
2677 }
2678 
2679 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2680 {
2681 	return NULL;
2682 }
2683 
2684 #endif /* !CONFIG_CPU_IDLE */
2685 
2686 extern void schedule_idle(void);
2687 asmlinkage void schedule_user(void);
2688 
2689 extern void sysrq_sched_debug_show(void);
2690 extern void sched_init_granularity(void);
2691 extern void update_max_interval(void);
2692 
2693 extern void init_sched_dl_class(void);
2694 extern void init_sched_rt_class(void);
2695 extern void init_sched_fair_class(void);
2696 
2697 extern void resched_curr(struct rq *rq);
2698 extern void resched_curr_lazy(struct rq *rq);
2699 extern void resched_cpu(int cpu);
2700 
2701 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2702 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2703 
2704 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2705 
2706 #define BW_SHIFT		20
2707 #define BW_UNIT			(1 << BW_SHIFT)
2708 #define RATIO_SHIFT		8
2709 #define MAX_BW_BITS		(64 - BW_SHIFT)
2710 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2711 
2712 extern unsigned long to_ratio(u64 period, u64 runtime);
2713 
2714 extern void init_entity_runnable_average(struct sched_entity *se);
2715 extern void post_init_entity_util_avg(struct task_struct *p);
2716 
2717 #ifdef CONFIG_NO_HZ_FULL
2718 extern bool sched_can_stop_tick(struct rq *rq);
2719 extern int __init sched_tick_offload_init(void);
2720 
2721 /*
2722  * Tick may be needed by tasks in the runqueue depending on their policy and
2723  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2724  * nohz mode if necessary.
2725  */
2726 static inline void sched_update_tick_dependency(struct rq *rq)
2727 {
2728 	int cpu = cpu_of(rq);
2729 
2730 	if (!tick_nohz_full_cpu(cpu))
2731 		return;
2732 
2733 	if (sched_can_stop_tick(rq))
2734 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2735 	else
2736 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2737 }
2738 #else /* !CONFIG_NO_HZ_FULL: */
2739 static inline int sched_tick_offload_init(void) { return 0; }
2740 static inline void sched_update_tick_dependency(struct rq *rq) { }
2741 #endif /* !CONFIG_NO_HZ_FULL */
2742 
2743 static inline void add_nr_running(struct rq *rq, unsigned count)
2744 {
2745 	unsigned prev_nr = rq->nr_running;
2746 
2747 	rq->nr_running = prev_nr + count;
2748 	if (trace_sched_update_nr_running_tp_enabled()) {
2749 		call_trace_sched_update_nr_running(rq, count);
2750 	}
2751 
2752 #ifdef CONFIG_SMP
2753 	if (prev_nr < 2 && rq->nr_running >= 2)
2754 		set_rd_overloaded(rq->rd, 1);
2755 #endif
2756 
2757 	sched_update_tick_dependency(rq);
2758 }
2759 
2760 static inline void sub_nr_running(struct rq *rq, unsigned count)
2761 {
2762 	rq->nr_running -= count;
2763 	if (trace_sched_update_nr_running_tp_enabled()) {
2764 		call_trace_sched_update_nr_running(rq, -count);
2765 	}
2766 
2767 	/* Check if we still need preemption */
2768 	sched_update_tick_dependency(rq);
2769 }
2770 
2771 static inline void __block_task(struct rq *rq, struct task_struct *p)
2772 {
2773 	if (p->sched_contributes_to_load)
2774 		rq->nr_uninterruptible++;
2775 
2776 	if (p->in_iowait) {
2777 		atomic_inc(&rq->nr_iowait);
2778 		delayacct_blkio_start();
2779 	}
2780 
2781 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2782 
2783 	/*
2784 	 * The moment this write goes through, ttwu() can swoop in and migrate
2785 	 * this task, rendering our rq->__lock ineffective.
2786 	 *
2787 	 * __schedule()				try_to_wake_up()
2788 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2789 	 *   pick_next_task()
2790 	 *     pick_next_task_fair()
2791 	 *       pick_next_entity()
2792 	 *         dequeue_entities()
2793 	 *           __block_task()
2794 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2795 	 *					    break;
2796 	 *
2797 	 *					  ACQUIRE (after ctrl-dep)
2798 	 *
2799 	 *					  cpu = select_task_rq();
2800 	 *					  set_task_cpu(p, cpu);
2801 	 *					  ttwu_queue()
2802 	 *					    ttwu_do_activate()
2803 	 *					      LOCK rq->__lock
2804 	 *					      activate_task()
2805 	 *					        STORE p->on_rq = 1
2806 	 *   UNLOCK rq->__lock
2807 	 *
2808 	 * Callers must ensure to not reference @p after this -- we no longer
2809 	 * own it.
2810 	 */
2811 	smp_store_release(&p->on_rq, 0);
2812 }
2813 
2814 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2815 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2816 
2817 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2818 
2819 #ifdef CONFIG_PREEMPT_RT
2820 # define SCHED_NR_MIGRATE_BREAK 8
2821 #else
2822 # define SCHED_NR_MIGRATE_BREAK 32
2823 #endif
2824 
2825 extern const_debug unsigned int sysctl_sched_nr_migrate;
2826 extern const_debug unsigned int sysctl_sched_migration_cost;
2827 
2828 extern unsigned int sysctl_sched_base_slice;
2829 
2830 #ifdef CONFIG_SCHED_DEBUG
2831 extern int sysctl_resched_latency_warn_ms;
2832 extern int sysctl_resched_latency_warn_once;
2833 
2834 extern unsigned int sysctl_sched_tunable_scaling;
2835 
2836 extern unsigned int sysctl_numa_balancing_scan_delay;
2837 extern unsigned int sysctl_numa_balancing_scan_period_min;
2838 extern unsigned int sysctl_numa_balancing_scan_period_max;
2839 extern unsigned int sysctl_numa_balancing_scan_size;
2840 extern unsigned int sysctl_numa_balancing_hot_threshold;
2841 #endif
2842 
2843 #ifdef CONFIG_SCHED_HRTICK
2844 
2845 /*
2846  * Use hrtick when:
2847  *  - enabled by features
2848  *  - hrtimer is actually high res
2849  */
2850 static inline int hrtick_enabled(struct rq *rq)
2851 {
2852 	if (!cpu_active(cpu_of(rq)))
2853 		return 0;
2854 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2855 }
2856 
2857 static inline int hrtick_enabled_fair(struct rq *rq)
2858 {
2859 	if (!sched_feat(HRTICK))
2860 		return 0;
2861 	return hrtick_enabled(rq);
2862 }
2863 
2864 static inline int hrtick_enabled_dl(struct rq *rq)
2865 {
2866 	if (!sched_feat(HRTICK_DL))
2867 		return 0;
2868 	return hrtick_enabled(rq);
2869 }
2870 
2871 extern void hrtick_start(struct rq *rq, u64 delay);
2872 
2873 #else /* !CONFIG_SCHED_HRTICK: */
2874 
2875 static inline int hrtick_enabled_fair(struct rq *rq)
2876 {
2877 	return 0;
2878 }
2879 
2880 static inline int hrtick_enabled_dl(struct rq *rq)
2881 {
2882 	return 0;
2883 }
2884 
2885 static inline int hrtick_enabled(struct rq *rq)
2886 {
2887 	return 0;
2888 }
2889 
2890 #endif /* !CONFIG_SCHED_HRTICK */
2891 
2892 #ifndef arch_scale_freq_tick
2893 static __always_inline void arch_scale_freq_tick(void) { }
2894 #endif
2895 
2896 #ifndef arch_scale_freq_capacity
2897 /**
2898  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2899  * @cpu: the CPU in question.
2900  *
2901  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2902  *
2903  *     f_curr
2904  *     ------ * SCHED_CAPACITY_SCALE
2905  *     f_max
2906  */
2907 static __always_inline
2908 unsigned long arch_scale_freq_capacity(int cpu)
2909 {
2910 	return SCHED_CAPACITY_SCALE;
2911 }
2912 #endif
2913 
2914 #ifdef CONFIG_SCHED_DEBUG
2915 /*
2916  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2917  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2918  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2919  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2920  */
2921 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2922 {
2923 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2924 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2925 #ifdef CONFIG_SMP
2926 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2927 #endif
2928 }
2929 #else
2930 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2931 #endif
2932 
2933 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2934 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2935 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2936 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2937   _lock; return _t; }
2938 
2939 #ifdef CONFIG_SMP
2940 
2941 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2942 {
2943 #ifdef CONFIG_SCHED_CORE
2944 	/*
2945 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2946 	 * order by core-id first and cpu-id second.
2947 	 *
2948 	 * Notably:
2949 	 *
2950 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2951 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2952 	 *
2953 	 * when only cpu-id is considered.
2954 	 */
2955 	if (rq1->core->cpu < rq2->core->cpu)
2956 		return true;
2957 	if (rq1->core->cpu > rq2->core->cpu)
2958 		return false;
2959 
2960 	/*
2961 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2962 	 */
2963 #endif
2964 	return rq1->cpu < rq2->cpu;
2965 }
2966 
2967 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2968 
2969 #ifdef CONFIG_PREEMPTION
2970 
2971 /*
2972  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2973  * way at the expense of forcing extra atomic operations in all
2974  * invocations.  This assures that the double_lock is acquired using the
2975  * same underlying policy as the spinlock_t on this architecture, which
2976  * reduces latency compared to the unfair variant below.  However, it
2977  * also adds more overhead and therefore may reduce throughput.
2978  */
2979 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2980 	__releases(this_rq->lock)
2981 	__acquires(busiest->lock)
2982 	__acquires(this_rq->lock)
2983 {
2984 	raw_spin_rq_unlock(this_rq);
2985 	double_rq_lock(this_rq, busiest);
2986 
2987 	return 1;
2988 }
2989 
2990 #else /* !CONFIG_PREEMPTION: */
2991 /*
2992  * Unfair double_lock_balance: Optimizes throughput at the expense of
2993  * latency by eliminating extra atomic operations when the locks are
2994  * already in proper order on entry.  This favors lower CPU-ids and will
2995  * grant the double lock to lower CPUs over higher ids under contention,
2996  * regardless of entry order into the function.
2997  */
2998 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2999 	__releases(this_rq->lock)
3000 	__acquires(busiest->lock)
3001 	__acquires(this_rq->lock)
3002 {
3003 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3004 	    likely(raw_spin_rq_trylock(busiest))) {
3005 		double_rq_clock_clear_update(this_rq, busiest);
3006 		return 0;
3007 	}
3008 
3009 	if (rq_order_less(this_rq, busiest)) {
3010 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3011 		double_rq_clock_clear_update(this_rq, busiest);
3012 		return 0;
3013 	}
3014 
3015 	raw_spin_rq_unlock(this_rq);
3016 	double_rq_lock(this_rq, busiest);
3017 
3018 	return 1;
3019 }
3020 
3021 #endif /* !CONFIG_PREEMPTION */
3022 
3023 /*
3024  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3025  */
3026 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3027 {
3028 	lockdep_assert_irqs_disabled();
3029 
3030 	return _double_lock_balance(this_rq, busiest);
3031 }
3032 
3033 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3034 	__releases(busiest->lock)
3035 {
3036 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3037 		raw_spin_rq_unlock(busiest);
3038 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3039 }
3040 
3041 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3042 {
3043 	if (l1 > l2)
3044 		swap(l1, l2);
3045 
3046 	spin_lock(l1);
3047 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3048 }
3049 
3050 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3051 {
3052 	if (l1 > l2)
3053 		swap(l1, l2);
3054 
3055 	spin_lock_irq(l1);
3056 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3057 }
3058 
3059 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3060 {
3061 	if (l1 > l2)
3062 		swap(l1, l2);
3063 
3064 	raw_spin_lock(l1);
3065 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3066 }
3067 
3068 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3069 {
3070 	raw_spin_unlock(l1);
3071 	raw_spin_unlock(l2);
3072 }
3073 
3074 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3075 		    double_raw_lock(_T->lock, _T->lock2),
3076 		    double_raw_unlock(_T->lock, _T->lock2))
3077 
3078 /*
3079  * double_rq_unlock - safely unlock two runqueues
3080  *
3081  * Note this does not restore interrupts like task_rq_unlock,
3082  * you need to do so manually after calling.
3083  */
3084 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3085 	__releases(rq1->lock)
3086 	__releases(rq2->lock)
3087 {
3088 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3089 		raw_spin_rq_unlock(rq2);
3090 	else
3091 		__release(rq2->lock);
3092 	raw_spin_rq_unlock(rq1);
3093 }
3094 
3095 extern void set_rq_online (struct rq *rq);
3096 extern void set_rq_offline(struct rq *rq);
3097 
3098 extern bool sched_smp_initialized;
3099 
3100 #else /* !CONFIG_SMP: */
3101 
3102 /*
3103  * double_rq_lock - safely lock two runqueues
3104  *
3105  * Note this does not disable interrupts like task_rq_lock,
3106  * you need to do so manually before calling.
3107  */
3108 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3109 	__acquires(rq1->lock)
3110 	__acquires(rq2->lock)
3111 {
3112 	WARN_ON_ONCE(!irqs_disabled());
3113 	WARN_ON_ONCE(rq1 != rq2);
3114 	raw_spin_rq_lock(rq1);
3115 	__acquire(rq2->lock);	/* Fake it out ;) */
3116 	double_rq_clock_clear_update(rq1, rq2);
3117 }
3118 
3119 /*
3120  * double_rq_unlock - safely unlock two runqueues
3121  *
3122  * Note this does not restore interrupts like task_rq_unlock,
3123  * you need to do so manually after calling.
3124  */
3125 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3126 	__releases(rq1->lock)
3127 	__releases(rq2->lock)
3128 {
3129 	WARN_ON_ONCE(rq1 != rq2);
3130 	raw_spin_rq_unlock(rq1);
3131 	__release(rq2->lock);
3132 }
3133 
3134 #endif /* !CONFIG_SMP */
3135 
3136 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3137 		    double_rq_lock(_T->lock, _T->lock2),
3138 		    double_rq_unlock(_T->lock, _T->lock2))
3139 
3140 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3141 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3142 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3143 
3144 #ifdef	CONFIG_SCHED_DEBUG
3145 extern bool sched_debug_verbose;
3146 
3147 extern void print_cfs_stats(struct seq_file *m, int cpu);
3148 extern void print_rt_stats(struct seq_file *m, int cpu);
3149 extern void print_dl_stats(struct seq_file *m, int cpu);
3150 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3151 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3152 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3153 
3154 extern void resched_latency_warn(int cpu, u64 latency);
3155 # ifdef CONFIG_NUMA_BALANCING
3156 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3157 extern void
3158 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3159 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3160 # endif /* CONFIG_NUMA_BALANCING */
3161 #else /* !CONFIG_SCHED_DEBUG: */
3162 static inline void resched_latency_warn(int cpu, u64 latency) { }
3163 #endif /* !CONFIG_SCHED_DEBUG */
3164 
3165 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3166 extern void init_rt_rq(struct rt_rq *rt_rq);
3167 extern void init_dl_rq(struct dl_rq *dl_rq);
3168 
3169 extern void cfs_bandwidth_usage_inc(void);
3170 extern void cfs_bandwidth_usage_dec(void);
3171 
3172 #ifdef CONFIG_NO_HZ_COMMON
3173 
3174 #define NOHZ_BALANCE_KICK_BIT	0
3175 #define NOHZ_STATS_KICK_BIT	1
3176 #define NOHZ_NEWILB_KICK_BIT	2
3177 #define NOHZ_NEXT_KICK_BIT	3
3178 
3179 /* Run sched_balance_domains() */
3180 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3181 /* Update blocked load */
3182 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3183 /* Update blocked load when entering idle */
3184 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3185 /* Update nohz.next_balance */
3186 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3187 
3188 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3189 
3190 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3191 
3192 extern void nohz_balance_exit_idle(struct rq *rq);
3193 #else /* !CONFIG_NO_HZ_COMMON: */
3194 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3195 #endif /* !CONFIG_NO_HZ_COMMON */
3196 
3197 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3198 extern void nohz_run_idle_balance(int cpu);
3199 #else
3200 static inline void nohz_run_idle_balance(int cpu) { }
3201 #endif
3202 
3203 #include "stats.h"
3204 
3205 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3206 
3207 extern void __sched_core_account_forceidle(struct rq *rq);
3208 
3209 static inline void sched_core_account_forceidle(struct rq *rq)
3210 {
3211 	if (schedstat_enabled())
3212 		__sched_core_account_forceidle(rq);
3213 }
3214 
3215 extern void __sched_core_tick(struct rq *rq);
3216 
3217 static inline void sched_core_tick(struct rq *rq)
3218 {
3219 	if (sched_core_enabled(rq) && schedstat_enabled())
3220 		__sched_core_tick(rq);
3221 }
3222 
3223 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3224 
3225 static inline void sched_core_account_forceidle(struct rq *rq) { }
3226 
3227 static inline void sched_core_tick(struct rq *rq) { }
3228 
3229 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3230 
3231 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3232 
3233 struct irqtime {
3234 	u64			total;
3235 	u64			tick_delta;
3236 	u64			irq_start_time;
3237 	struct u64_stats_sync	sync;
3238 };
3239 
3240 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3241 DECLARE_STATIC_KEY_FALSE(sched_clock_irqtime);
3242 
3243 static inline int irqtime_enabled(void)
3244 {
3245 	return static_branch_likely(&sched_clock_irqtime);
3246 }
3247 
3248 /*
3249  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3250  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3251  * and never move forward.
3252  */
3253 static inline u64 irq_time_read(int cpu)
3254 {
3255 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3256 	unsigned int seq;
3257 	u64 total;
3258 
3259 	do {
3260 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3261 		total = irqtime->total;
3262 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3263 
3264 	return total;
3265 }
3266 
3267 #else
3268 
3269 static inline int irqtime_enabled(void)
3270 {
3271 	return 0;
3272 }
3273 
3274 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3275 
3276 #ifdef CONFIG_CPU_FREQ
3277 
3278 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3279 
3280 /**
3281  * cpufreq_update_util - Take a note about CPU utilization changes.
3282  * @rq: Runqueue to carry out the update for.
3283  * @flags: Update reason flags.
3284  *
3285  * This function is called by the scheduler on the CPU whose utilization is
3286  * being updated.
3287  *
3288  * It can only be called from RCU-sched read-side critical sections.
3289  *
3290  * The way cpufreq is currently arranged requires it to evaluate the CPU
3291  * performance state (frequency/voltage) on a regular basis to prevent it from
3292  * being stuck in a completely inadequate performance level for too long.
3293  * That is not guaranteed to happen if the updates are only triggered from CFS
3294  * and DL, though, because they may not be coming in if only RT tasks are
3295  * active all the time (or there are RT tasks only).
3296  *
3297  * As a workaround for that issue, this function is called periodically by the
3298  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3299  * but that really is a band-aid.  Going forward it should be replaced with
3300  * solutions targeted more specifically at RT tasks.
3301  */
3302 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3303 {
3304 	struct update_util_data *data;
3305 
3306 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3307 						  cpu_of(rq)));
3308 	if (data)
3309 		data->func(data, rq_clock(rq), flags);
3310 }
3311 #else /* !CONFIG_CPU_FREQ: */
3312 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3313 #endif /* !CONFIG_CPU_FREQ */
3314 
3315 #ifdef arch_scale_freq_capacity
3316 # ifndef arch_scale_freq_invariant
3317 #  define arch_scale_freq_invariant()	true
3318 # endif
3319 #else
3320 # define arch_scale_freq_invariant()	false
3321 #endif
3322 
3323 #ifdef CONFIG_SMP
3324 
3325 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3326 				 unsigned long *min,
3327 				 unsigned long *max);
3328 
3329 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3330 				 unsigned long min,
3331 				 unsigned long max);
3332 
3333 
3334 /*
3335  * Verify the fitness of task @p to run on @cpu taking into account the
3336  * CPU original capacity and the runtime/deadline ratio of the task.
3337  *
3338  * The function will return true if the original capacity of @cpu is
3339  * greater than or equal to task's deadline density right shifted by
3340  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3341  */
3342 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3343 {
3344 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3345 
3346 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3347 }
3348 
3349 static inline unsigned long cpu_bw_dl(struct rq *rq)
3350 {
3351 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3352 }
3353 
3354 static inline unsigned long cpu_util_dl(struct rq *rq)
3355 {
3356 	return READ_ONCE(rq->avg_dl.util_avg);
3357 }
3358 
3359 
3360 extern unsigned long cpu_util_cfs(int cpu);
3361 extern unsigned long cpu_util_cfs_boost(int cpu);
3362 
3363 static inline unsigned long cpu_util_rt(struct rq *rq)
3364 {
3365 	return READ_ONCE(rq->avg_rt.util_avg);
3366 }
3367 
3368 #else /* !CONFIG_SMP */
3369 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3370 #endif /* CONFIG_SMP */
3371 
3372 #ifdef CONFIG_UCLAMP_TASK
3373 
3374 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3375 
3376 static inline unsigned long uclamp_rq_get(struct rq *rq,
3377 					  enum uclamp_id clamp_id)
3378 {
3379 	return READ_ONCE(rq->uclamp[clamp_id].value);
3380 }
3381 
3382 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3383 				 unsigned int value)
3384 {
3385 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3386 }
3387 
3388 static inline bool uclamp_rq_is_idle(struct rq *rq)
3389 {
3390 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3391 }
3392 
3393 /* Is the rq being capped/throttled by uclamp_max? */
3394 static inline bool uclamp_rq_is_capped(struct rq *rq)
3395 {
3396 	unsigned long rq_util;
3397 	unsigned long max_util;
3398 
3399 	if (!static_branch_likely(&sched_uclamp_used))
3400 		return false;
3401 
3402 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3403 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3404 
3405 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3406 }
3407 
3408 /*
3409  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3410  * by default in the fast path and only gets turned on once userspace performs
3411  * an operation that requires it.
3412  *
3413  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3414  * hence is active.
3415  */
3416 static inline bool uclamp_is_used(void)
3417 {
3418 	return static_branch_likely(&sched_uclamp_used);
3419 }
3420 
3421 #define for_each_clamp_id(clamp_id) \
3422 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3423 
3424 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3425 
3426 
3427 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3428 {
3429 	if (clamp_id == UCLAMP_MIN)
3430 		return 0;
3431 	return SCHED_CAPACITY_SCALE;
3432 }
3433 
3434 /* Integer rounded range for each bucket */
3435 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3436 
3437 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3438 {
3439 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3440 }
3441 
3442 static inline void
3443 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3444 {
3445 	uc_se->value = value;
3446 	uc_se->bucket_id = uclamp_bucket_id(value);
3447 	uc_se->user_defined = user_defined;
3448 }
3449 
3450 #else /* !CONFIG_UCLAMP_TASK: */
3451 
3452 static inline unsigned long
3453 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3454 {
3455 	if (clamp_id == UCLAMP_MIN)
3456 		return 0;
3457 
3458 	return SCHED_CAPACITY_SCALE;
3459 }
3460 
3461 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3462 
3463 static inline bool uclamp_is_used(void)
3464 {
3465 	return false;
3466 }
3467 
3468 static inline unsigned long
3469 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3470 {
3471 	if (clamp_id == UCLAMP_MIN)
3472 		return 0;
3473 
3474 	return SCHED_CAPACITY_SCALE;
3475 }
3476 
3477 static inline void
3478 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3479 {
3480 }
3481 
3482 static inline bool uclamp_rq_is_idle(struct rq *rq)
3483 {
3484 	return false;
3485 }
3486 
3487 #endif /* !CONFIG_UCLAMP_TASK */
3488 
3489 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3490 
3491 static inline unsigned long cpu_util_irq(struct rq *rq)
3492 {
3493 	return READ_ONCE(rq->avg_irq.util_avg);
3494 }
3495 
3496 static inline
3497 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3498 {
3499 	util *= (max - irq);
3500 	util /= max;
3501 
3502 	return util;
3503 
3504 }
3505 
3506 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3507 
3508 static inline unsigned long cpu_util_irq(struct rq *rq)
3509 {
3510 	return 0;
3511 }
3512 
3513 static inline
3514 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3515 {
3516 	return util;
3517 }
3518 
3519 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3520 
3521 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr);
3522 
3523 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3524 
3525 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3526 
3527 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3528 
3529 static inline bool sched_energy_enabled(void)
3530 {
3531 	return static_branch_unlikely(&sched_energy_present);
3532 }
3533 
3534 extern struct cpufreq_governor schedutil_gov;
3535 
3536 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3537 
3538 #define perf_domain_span(pd) NULL
3539 
3540 static inline bool sched_energy_enabled(void) { return false; }
3541 
3542 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3543 
3544 #ifdef CONFIG_MEMBARRIER
3545 
3546 /*
3547  * The scheduler provides memory barriers required by membarrier between:
3548  * - prior user-space memory accesses and store to rq->membarrier_state,
3549  * - store to rq->membarrier_state and following user-space memory accesses.
3550  * In the same way it provides those guarantees around store to rq->curr.
3551  */
3552 static inline void membarrier_switch_mm(struct rq *rq,
3553 					struct mm_struct *prev_mm,
3554 					struct mm_struct *next_mm)
3555 {
3556 	int membarrier_state;
3557 
3558 	if (prev_mm == next_mm)
3559 		return;
3560 
3561 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3562 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3563 		return;
3564 
3565 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3566 }
3567 
3568 #else /* !CONFIG_MEMBARRIER :*/
3569 
3570 static inline void membarrier_switch_mm(struct rq *rq,
3571 					struct mm_struct *prev_mm,
3572 					struct mm_struct *next_mm)
3573 {
3574 }
3575 
3576 #endif /* !CONFIG_MEMBARRIER */
3577 
3578 #ifdef CONFIG_SMP
3579 static inline bool is_per_cpu_kthread(struct task_struct *p)
3580 {
3581 	if (!(p->flags & PF_KTHREAD))
3582 		return false;
3583 
3584 	if (p->nr_cpus_allowed != 1)
3585 		return false;
3586 
3587 	return true;
3588 }
3589 #endif
3590 
3591 extern void swake_up_all_locked(struct swait_queue_head *q);
3592 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3593 
3594 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3595 
3596 #ifdef CONFIG_PREEMPT_DYNAMIC
3597 extern int preempt_dynamic_mode;
3598 extern int sched_dynamic_mode(const char *str);
3599 extern void sched_dynamic_update(int mode);
3600 #endif
3601 
3602 #ifdef CONFIG_SCHED_MM_CID
3603 
3604 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3605 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3606 
3607 extern raw_spinlock_t cid_lock;
3608 extern int use_cid_lock;
3609 
3610 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3611 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3612 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3613 extern void init_sched_mm_cid(struct task_struct *t);
3614 
3615 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3616 {
3617 	if (cid < 0)
3618 		return;
3619 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3620 }
3621 
3622 /*
3623  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3624  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3625  * be held to transition to other states.
3626  *
3627  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3628  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3629  */
3630 static inline void mm_cid_put_lazy(struct task_struct *t)
3631 {
3632 	struct mm_struct *mm = t->mm;
3633 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3634 	int cid;
3635 
3636 	lockdep_assert_irqs_disabled();
3637 	cid = __this_cpu_read(pcpu_cid->cid);
3638 	if (!mm_cid_is_lazy_put(cid) ||
3639 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3640 		return;
3641 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3642 }
3643 
3644 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3645 {
3646 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3647 	int cid, res;
3648 
3649 	lockdep_assert_irqs_disabled();
3650 	cid = __this_cpu_read(pcpu_cid->cid);
3651 	for (;;) {
3652 		if (mm_cid_is_unset(cid))
3653 			return MM_CID_UNSET;
3654 		/*
3655 		 * Attempt transition from valid or lazy-put to unset.
3656 		 */
3657 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3658 		if (res == cid)
3659 			break;
3660 		cid = res;
3661 	}
3662 	return cid;
3663 }
3664 
3665 static inline void mm_cid_put(struct mm_struct *mm)
3666 {
3667 	int cid;
3668 
3669 	lockdep_assert_irqs_disabled();
3670 	cid = mm_cid_pcpu_unset(mm);
3671 	if (cid == MM_CID_UNSET)
3672 		return;
3673 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3674 }
3675 
3676 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3677 {
3678 	struct cpumask *cidmask = mm_cidmask(mm);
3679 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3680 	int cid = __this_cpu_read(pcpu_cid->recent_cid);
3681 
3682 	/* Try to re-use recent cid. This improves cache locality. */
3683 	if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
3684 		return cid;
3685 	/*
3686 	 * Expand cid allocation if the maximum number of concurrency
3687 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3688 	 * and number of threads. Expanding cid allocation as much as
3689 	 * possible improves cache locality.
3690 	 */
3691 	cid = atomic_read(&mm->max_nr_cid);
3692 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3693 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3694 			continue;
3695 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3696 			return cid;
3697 	}
3698 	/*
3699 	 * Find the first available concurrency id.
3700 	 * Retry finding first zero bit if the mask is temporarily
3701 	 * filled. This only happens during concurrent remote-clear
3702 	 * which owns a cid without holding a rq lock.
3703 	 */
3704 	for (;;) {
3705 		cid = cpumask_first_zero(cidmask);
3706 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3707 			break;
3708 		cpu_relax();
3709 	}
3710 	if (cpumask_test_and_set_cpu(cid, cidmask))
3711 		return -1;
3712 
3713 	return cid;
3714 }
3715 
3716 /*
3717  * Save a snapshot of the current runqueue time of this cpu
3718  * with the per-cpu cid value, allowing to estimate how recently it was used.
3719  */
3720 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3721 {
3722 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3723 
3724 	lockdep_assert_rq_held(rq);
3725 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3726 }
3727 
3728 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3729 			       struct mm_struct *mm)
3730 {
3731 	int cid;
3732 
3733 	/*
3734 	 * All allocations (even those using the cid_lock) are lock-free. If
3735 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3736 	 * guarantee forward progress.
3737 	 */
3738 	if (!READ_ONCE(use_cid_lock)) {
3739 		cid = __mm_cid_try_get(t, mm);
3740 		if (cid >= 0)
3741 			goto end;
3742 		raw_spin_lock(&cid_lock);
3743 	} else {
3744 		raw_spin_lock(&cid_lock);
3745 		cid = __mm_cid_try_get(t, mm);
3746 		if (cid >= 0)
3747 			goto unlock;
3748 	}
3749 
3750 	/*
3751 	 * cid concurrently allocated. Retry while forcing following
3752 	 * allocations to use the cid_lock to ensure forward progress.
3753 	 */
3754 	WRITE_ONCE(use_cid_lock, 1);
3755 	/*
3756 	 * Set use_cid_lock before allocation. Only care about program order
3757 	 * because this is only required for forward progress.
3758 	 */
3759 	barrier();
3760 	/*
3761 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3762 	 * all newcoming allocations observe the use_cid_lock flag set.
3763 	 */
3764 	do {
3765 		cid = __mm_cid_try_get(t, mm);
3766 		cpu_relax();
3767 	} while (cid < 0);
3768 	/*
3769 	 * Allocate before clearing use_cid_lock. Only care about
3770 	 * program order because this is for forward progress.
3771 	 */
3772 	barrier();
3773 	WRITE_ONCE(use_cid_lock, 0);
3774 unlock:
3775 	raw_spin_unlock(&cid_lock);
3776 end:
3777 	mm_cid_snapshot_time(rq, mm);
3778 
3779 	return cid;
3780 }
3781 
3782 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3783 			     struct mm_struct *mm)
3784 {
3785 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3786 	struct cpumask *cpumask;
3787 	int cid;
3788 
3789 	lockdep_assert_rq_held(rq);
3790 	cpumask = mm_cidmask(mm);
3791 	cid = __this_cpu_read(pcpu_cid->cid);
3792 	if (mm_cid_is_valid(cid)) {
3793 		mm_cid_snapshot_time(rq, mm);
3794 		return cid;
3795 	}
3796 	if (mm_cid_is_lazy_put(cid)) {
3797 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3798 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3799 	}
3800 	cid = __mm_cid_get(rq, t, mm);
3801 	__this_cpu_write(pcpu_cid->cid, cid);
3802 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3803 
3804 	return cid;
3805 }
3806 
3807 static inline void switch_mm_cid(struct rq *rq,
3808 				 struct task_struct *prev,
3809 				 struct task_struct *next)
3810 {
3811 	/*
3812 	 * Provide a memory barrier between rq->curr store and load of
3813 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3814 	 *
3815 	 * Should be adapted if context_switch() is modified.
3816 	 */
3817 	if (!next->mm) {                                // to kernel
3818 		/*
3819 		 * user -> kernel transition does not guarantee a barrier, but
3820 		 * we can use the fact that it performs an atomic operation in
3821 		 * mmgrab().
3822 		 */
3823 		if (prev->mm)                           // from user
3824 			smp_mb__after_mmgrab();
3825 		/*
3826 		 * kernel -> kernel transition does not change rq->curr->mm
3827 		 * state. It stays NULL.
3828 		 */
3829 	} else {                                        // to user
3830 		/*
3831 		 * kernel -> user transition does not provide a barrier
3832 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3833 		 * Provide it here.
3834 		 */
3835 		if (!prev->mm) {                        // from kernel
3836 			smp_mb();
3837 		} else {				// from user
3838 			/*
3839 			 * user->user transition relies on an implicit
3840 			 * memory barrier in switch_mm() when
3841 			 * current->mm changes. If the architecture
3842 			 * switch_mm() does not have an implicit memory
3843 			 * barrier, it is emitted here.  If current->mm
3844 			 * is unchanged, no barrier is needed.
3845 			 */
3846 			smp_mb__after_switch_mm();
3847 		}
3848 	}
3849 	if (prev->mm_cid_active) {
3850 		mm_cid_snapshot_time(rq, prev->mm);
3851 		mm_cid_put_lazy(prev);
3852 		prev->mm_cid = -1;
3853 	}
3854 	if (next->mm_cid_active)
3855 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3856 }
3857 
3858 #else /* !CONFIG_SCHED_MM_CID: */
3859 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3860 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3861 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3862 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3863 static inline void init_sched_mm_cid(struct task_struct *t) { }
3864 #endif /* !CONFIG_SCHED_MM_CID */
3865 
3866 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3867 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3868 #ifdef CONFIG_SMP
3869 static inline
3870 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3871 {
3872 	lockdep_assert_rq_held(src_rq);
3873 	lockdep_assert_rq_held(dst_rq);
3874 
3875 	deactivate_task(src_rq, task, 0);
3876 	set_task_cpu(task, dst_rq->cpu);
3877 	activate_task(dst_rq, task, 0);
3878 }
3879 
3880 static inline
3881 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3882 {
3883 	if (!task_on_cpu(rq, p) &&
3884 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3885 		return true;
3886 
3887 	return false;
3888 }
3889 #endif
3890 
3891 #ifdef CONFIG_RT_MUTEXES
3892 
3893 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3894 {
3895 	if (pi_task)
3896 		prio = min(prio, pi_task->prio);
3897 
3898 	return prio;
3899 }
3900 
3901 static inline int rt_effective_prio(struct task_struct *p, int prio)
3902 {
3903 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3904 
3905 	return __rt_effective_prio(pi_task, prio);
3906 }
3907 
3908 #else /* !CONFIG_RT_MUTEXES: */
3909 
3910 static inline int rt_effective_prio(struct task_struct *p, int prio)
3911 {
3912 	return prio;
3913 }
3914 
3915 #endif /* !CONFIG_RT_MUTEXES */
3916 
3917 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3918 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3919 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3920 extern void set_load_weight(struct task_struct *p, bool update_load);
3921 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3922 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3923 
3924 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3925 				 const struct sched_class *prev_class);
3926 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3927 				const struct sched_class *prev_class,
3928 				int oldprio);
3929 
3930 #ifdef CONFIG_SMP
3931 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3932 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3933 #else
3934 
3935 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3936 {
3937 	return NULL;
3938 }
3939 
3940 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3941 {
3942 }
3943 
3944 #endif
3945 
3946 #ifdef CONFIG_SCHED_CLASS_EXT
3947 /*
3948  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3949  * and establish invariants.
3950  */
3951 struct sched_enq_and_set_ctx {
3952 	struct task_struct	*p;
3953 	int			queue_flags;
3954 	bool			queued;
3955 	bool			running;
3956 };
3957 
3958 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3959 			    struct sched_enq_and_set_ctx *ctx);
3960 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3961 
3962 #endif /* CONFIG_SCHED_CLASS_EXT */
3963 
3964 #include "ext.h"
3965 
3966 #endif /* _KERNEL_SCHED_SCHED_H */
3967