1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_CGROUP_SCHED 78 #include <linux/cgroup.h> 79 #include <linux/psi.h> 80 #endif 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # include <linux/static_key.h> 84 #endif 85 86 #ifdef CONFIG_PARAVIRT 87 # include <asm/paravirt.h> 88 # include <asm/paravirt_api_clock.h> 89 #endif 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 struct rq; 101 struct cpuidle_state; 102 103 /* task_struct::on_rq states: */ 104 #define TASK_ON_RQ_QUEUED 1 105 #define TASK_ON_RQ_MIGRATING 2 106 107 extern __read_mostly int scheduler_running; 108 109 extern unsigned long calc_load_update; 110 extern atomic_long_t calc_load_tasks; 111 112 extern unsigned int sysctl_sched_child_runs_first; 113 114 extern void calc_global_load_tick(struct rq *this_rq); 115 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 116 117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 118 119 extern unsigned int sysctl_sched_rt_period; 120 extern int sysctl_sched_rt_runtime; 121 extern int sched_rr_timeslice; 122 123 /* 124 * Helpers for converting nanosecond timing to jiffy resolution 125 */ 126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 127 128 /* 129 * Increase resolution of nice-level calculations for 64-bit architectures. 130 * The extra resolution improves shares distribution and load balancing of 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 132 * hierarchies, especially on larger systems. This is not a user-visible change 133 * and does not change the user-interface for setting shares/weights. 134 * 135 * We increase resolution only if we have enough bits to allow this increased 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 137 * are pretty high and the returns do not justify the increased costs. 138 * 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 140 * increase coverage and consistency always enable it on 64-bit platforms. 141 */ 142 #ifdef CONFIG_64BIT 143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 145 # define scale_load_down(w) \ 146 ({ \ 147 unsigned long __w = (w); \ 148 if (__w) \ 149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 150 __w; \ 151 }) 152 #else 153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load(w) (w) 155 # define scale_load_down(w) (w) 156 #endif 157 158 /* 159 * Task weight (visible to users) and its load (invisible to users) have 160 * independent resolution, but they should be well calibrated. We use 161 * scale_load() and scale_load_down(w) to convert between them. The 162 * following must be true: 163 * 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 165 * 166 */ 167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 168 169 /* 170 * Single value that decides SCHED_DEADLINE internal math precision. 171 * 10 -> just above 1us 172 * 9 -> just above 0.5us 173 */ 174 #define DL_SCALE 10 175 176 /* 177 * Single value that denotes runtime == period, ie unlimited time. 178 */ 179 #define RUNTIME_INF ((u64)~0ULL) 180 181 static inline int idle_policy(int policy) 182 { 183 return policy == SCHED_IDLE; 184 } 185 static inline int fair_policy(int policy) 186 { 187 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 188 } 189 190 static inline int rt_policy(int policy) 191 { 192 return policy == SCHED_FIFO || policy == SCHED_RR; 193 } 194 195 static inline int dl_policy(int policy) 196 { 197 return policy == SCHED_DEADLINE; 198 } 199 static inline bool valid_policy(int policy) 200 { 201 return idle_policy(policy) || fair_policy(policy) || 202 rt_policy(policy) || dl_policy(policy); 203 } 204 205 static inline int task_has_idle_policy(struct task_struct *p) 206 { 207 return idle_policy(p->policy); 208 } 209 210 static inline int task_has_rt_policy(struct task_struct *p) 211 { 212 return rt_policy(p->policy); 213 } 214 215 static inline int task_has_dl_policy(struct task_struct *p) 216 { 217 return dl_policy(p->policy); 218 } 219 220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 221 222 static inline void update_avg(u64 *avg, u64 sample) 223 { 224 s64 diff = sample - *avg; 225 *avg += diff / 8; 226 } 227 228 /* 229 * Shifting a value by an exponent greater *or equal* to the size of said value 230 * is UB; cap at size-1. 231 */ 232 #define shr_bound(val, shift) \ 233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 234 235 /* 236 * !! For sched_setattr_nocheck() (kernel) only !! 237 * 238 * This is actually gross. :( 239 * 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 241 * tasks, but still be able to sleep. We need this on platforms that cannot 242 * atomically change clock frequency. Remove once fast switching will be 243 * available on such platforms. 244 * 245 * SUGOV stands for SchedUtil GOVernor. 246 */ 247 #define SCHED_FLAG_SUGOV 0x10000000 248 249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 250 251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 252 { 253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 255 #else 256 return false; 257 #endif 258 } 259 260 /* 261 * Tells if entity @a should preempt entity @b. 262 */ 263 static inline bool 264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 265 { 266 return dl_entity_is_special(a) || 267 dl_time_before(a->deadline, b->deadline); 268 } 269 270 /* 271 * This is the priority-queue data structure of the RT scheduling class: 272 */ 273 struct rt_prio_array { 274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 275 struct list_head queue[MAX_RT_PRIO]; 276 }; 277 278 struct rt_bandwidth { 279 /* nests inside the rq lock: */ 280 raw_spinlock_t rt_runtime_lock; 281 ktime_t rt_period; 282 u64 rt_runtime; 283 struct hrtimer rt_period_timer; 284 unsigned int rt_period_active; 285 }; 286 287 void __dl_clear_params(struct task_struct *p); 288 289 struct dl_bandwidth { 290 raw_spinlock_t dl_runtime_lock; 291 u64 dl_runtime; 292 u64 dl_period; 293 }; 294 295 static inline int dl_bandwidth_enabled(void) 296 { 297 return sysctl_sched_rt_runtime >= 0; 298 } 299 300 /* 301 * To keep the bandwidth of -deadline tasks under control 302 * we need some place where: 303 * - store the maximum -deadline bandwidth of each cpu; 304 * - cache the fraction of bandwidth that is currently allocated in 305 * each root domain; 306 * 307 * This is all done in the data structure below. It is similar to the 308 * one used for RT-throttling (rt_bandwidth), with the main difference 309 * that, since here we are only interested in admission control, we 310 * do not decrease any runtime while the group "executes", neither we 311 * need a timer to replenish it. 312 * 313 * With respect to SMP, bandwidth is given on a per root domain basis, 314 * meaning that: 315 * - bw (< 100%) is the deadline bandwidth of each CPU; 316 * - total_bw is the currently allocated bandwidth in each root domain; 317 */ 318 struct dl_bw { 319 raw_spinlock_t lock; 320 u64 bw; 321 u64 total_bw; 322 }; 323 324 extern void init_dl_bw(struct dl_bw *dl_b); 325 extern int sched_dl_global_validate(void); 326 extern void sched_dl_do_global(void); 327 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 330 extern bool __checkparam_dl(const struct sched_attr *attr); 331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 332 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 333 extern int dl_cpu_busy(int cpu, struct task_struct *p); 334 335 #ifdef CONFIG_CGROUP_SCHED 336 337 struct cfs_rq; 338 struct rt_rq; 339 340 extern struct list_head task_groups; 341 342 struct cfs_bandwidth { 343 #ifdef CONFIG_CFS_BANDWIDTH 344 raw_spinlock_t lock; 345 ktime_t period; 346 u64 quota; 347 u64 runtime; 348 u64 burst; 349 u64 runtime_snap; 350 s64 hierarchical_quota; 351 352 u8 idle; 353 u8 period_active; 354 u8 slack_started; 355 struct hrtimer period_timer; 356 struct hrtimer slack_timer; 357 struct list_head throttled_cfs_rq; 358 359 /* Statistics: */ 360 int nr_periods; 361 int nr_throttled; 362 int nr_burst; 363 u64 throttled_time; 364 u64 burst_time; 365 #endif 366 }; 367 368 /* Task group related information */ 369 struct task_group { 370 struct cgroup_subsys_state css; 371 372 #ifdef CONFIG_FAIR_GROUP_SCHED 373 /* schedulable entities of this group on each CPU */ 374 struct sched_entity **se; 375 /* runqueue "owned" by this group on each CPU */ 376 struct cfs_rq **cfs_rq; 377 unsigned long shares; 378 379 /* A positive value indicates that this is a SCHED_IDLE group. */ 380 int idle; 381 382 #ifdef CONFIG_SMP 383 /* 384 * load_avg can be heavily contended at clock tick time, so put 385 * it in its own cacheline separated from the fields above which 386 * will also be accessed at each tick. 387 */ 388 atomic_long_t load_avg ____cacheline_aligned; 389 #endif 390 #endif 391 392 #ifdef CONFIG_RT_GROUP_SCHED 393 struct sched_rt_entity **rt_se; 394 struct rt_rq **rt_rq; 395 396 struct rt_bandwidth rt_bandwidth; 397 #endif 398 399 struct rcu_head rcu; 400 struct list_head list; 401 402 struct task_group *parent; 403 struct list_head siblings; 404 struct list_head children; 405 406 #ifdef CONFIG_SCHED_AUTOGROUP 407 struct autogroup *autogroup; 408 #endif 409 410 struct cfs_bandwidth cfs_bandwidth; 411 412 #ifdef CONFIG_UCLAMP_TASK_GROUP 413 /* The two decimal precision [%] value requested from user-space */ 414 unsigned int uclamp_pct[UCLAMP_CNT]; 415 /* Clamp values requested for a task group */ 416 struct uclamp_se uclamp_req[UCLAMP_CNT]; 417 /* Effective clamp values used for a task group */ 418 struct uclamp_se uclamp[UCLAMP_CNT]; 419 #endif 420 421 }; 422 423 #ifdef CONFIG_FAIR_GROUP_SCHED 424 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 425 426 /* 427 * A weight of 0 or 1 can cause arithmetics problems. 428 * A weight of a cfs_rq is the sum of weights of which entities 429 * are queued on this cfs_rq, so a weight of a entity should not be 430 * too large, so as the shares value of a task group. 431 * (The default weight is 1024 - so there's no practical 432 * limitation from this.) 433 */ 434 #define MIN_SHARES (1UL << 1) 435 #define MAX_SHARES (1UL << 18) 436 #endif 437 438 typedef int (*tg_visitor)(struct task_group *, void *); 439 440 extern int walk_tg_tree_from(struct task_group *from, 441 tg_visitor down, tg_visitor up, void *data); 442 443 /* 444 * Iterate the full tree, calling @down when first entering a node and @up when 445 * leaving it for the final time. 446 * 447 * Caller must hold rcu_lock or sufficient equivalent. 448 */ 449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 450 { 451 return walk_tg_tree_from(&root_task_group, down, up, data); 452 } 453 454 extern int tg_nop(struct task_group *tg, void *data); 455 456 extern void free_fair_sched_group(struct task_group *tg); 457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 458 extern void online_fair_sched_group(struct task_group *tg); 459 extern void unregister_fair_sched_group(struct task_group *tg); 460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 461 struct sched_entity *se, int cpu, 462 struct sched_entity *parent); 463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 464 465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 468 469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 470 struct sched_rt_entity *rt_se, int cpu, 471 struct sched_rt_entity *parent); 472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 474 extern long sched_group_rt_runtime(struct task_group *tg); 475 extern long sched_group_rt_period(struct task_group *tg); 476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 477 478 extern struct task_group *sched_create_group(struct task_group *parent); 479 extern void sched_online_group(struct task_group *tg, 480 struct task_group *parent); 481 extern void sched_destroy_group(struct task_group *tg); 482 extern void sched_release_group(struct task_group *tg); 483 484 extern void sched_move_task(struct task_struct *tsk); 485 486 #ifdef CONFIG_FAIR_GROUP_SCHED 487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 488 489 extern int sched_group_set_idle(struct task_group *tg, long idle); 490 491 #ifdef CONFIG_SMP 492 extern void set_task_rq_fair(struct sched_entity *se, 493 struct cfs_rq *prev, struct cfs_rq *next); 494 #else /* !CONFIG_SMP */ 495 static inline void set_task_rq_fair(struct sched_entity *se, 496 struct cfs_rq *prev, struct cfs_rq *next) { } 497 #endif /* CONFIG_SMP */ 498 #endif /* CONFIG_FAIR_GROUP_SCHED */ 499 500 #else /* CONFIG_CGROUP_SCHED */ 501 502 struct cfs_bandwidth { }; 503 504 #endif /* CONFIG_CGROUP_SCHED */ 505 506 extern void unregister_rt_sched_group(struct task_group *tg); 507 extern void free_rt_sched_group(struct task_group *tg); 508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 509 510 /* 511 * u64_u32_load/u64_u32_store 512 * 513 * Use a copy of a u64 value to protect against data race. This is only 514 * applicable for 32-bits architectures. 515 */ 516 #ifdef CONFIG_64BIT 517 # define u64_u32_load_copy(var, copy) var 518 # define u64_u32_store_copy(var, copy, val) (var = val) 519 #else 520 # define u64_u32_load_copy(var, copy) \ 521 ({ \ 522 u64 __val, __val_copy; \ 523 do { \ 524 __val_copy = copy; \ 525 /* \ 526 * paired with u64_u32_store_copy(), ordering access \ 527 * to var and copy. \ 528 */ \ 529 smp_rmb(); \ 530 __val = var; \ 531 } while (__val != __val_copy); \ 532 __val; \ 533 }) 534 # define u64_u32_store_copy(var, copy, val) \ 535 do { \ 536 typeof(val) __val = (val); \ 537 var = __val; \ 538 /* \ 539 * paired with u64_u32_load_copy(), ordering access to var and \ 540 * copy. \ 541 */ \ 542 smp_wmb(); \ 543 copy = __val; \ 544 } while (0) 545 #endif 546 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 548 549 /* CFS-related fields in a runqueue */ 550 struct cfs_rq { 551 struct load_weight load; 552 unsigned int nr_running; 553 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 554 unsigned int idle_nr_running; /* SCHED_IDLE */ 555 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 556 557 u64 exec_clock; 558 u64 min_vruntime; 559 #ifdef CONFIG_SCHED_CORE 560 unsigned int forceidle_seq; 561 u64 min_vruntime_fi; 562 #endif 563 564 #ifndef CONFIG_64BIT 565 u64 min_vruntime_copy; 566 #endif 567 568 struct rb_root_cached tasks_timeline; 569 570 /* 571 * 'curr' points to currently running entity on this cfs_rq. 572 * It is set to NULL otherwise (i.e when none are currently running). 573 */ 574 struct sched_entity *curr; 575 struct sched_entity *next; 576 struct sched_entity *last; 577 struct sched_entity *skip; 578 579 #ifdef CONFIG_SCHED_DEBUG 580 unsigned int nr_spread_over; 581 #endif 582 583 #ifdef CONFIG_SMP 584 /* 585 * CFS load tracking 586 */ 587 struct sched_avg avg; 588 #ifndef CONFIG_64BIT 589 u64 last_update_time_copy; 590 #endif 591 struct { 592 raw_spinlock_t lock ____cacheline_aligned; 593 int nr; 594 unsigned long load_avg; 595 unsigned long util_avg; 596 unsigned long runnable_avg; 597 } removed; 598 599 #ifdef CONFIG_FAIR_GROUP_SCHED 600 unsigned long tg_load_avg_contrib; 601 long propagate; 602 long prop_runnable_sum; 603 604 /* 605 * h_load = weight * f(tg) 606 * 607 * Where f(tg) is the recursive weight fraction assigned to 608 * this group. 609 */ 610 unsigned long h_load; 611 u64 last_h_load_update; 612 struct sched_entity *h_load_next; 613 #endif /* CONFIG_FAIR_GROUP_SCHED */ 614 #endif /* CONFIG_SMP */ 615 616 #ifdef CONFIG_FAIR_GROUP_SCHED 617 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 618 619 /* 620 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 621 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 622 * (like users, containers etc.) 623 * 624 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 625 * This list is used during load balance. 626 */ 627 int on_list; 628 struct list_head leaf_cfs_rq_list; 629 struct task_group *tg; /* group that "owns" this runqueue */ 630 631 /* Locally cached copy of our task_group's idle value */ 632 int idle; 633 634 #ifdef CONFIG_CFS_BANDWIDTH 635 int runtime_enabled; 636 s64 runtime_remaining; 637 638 u64 throttled_pelt_idle; 639 #ifndef CONFIG_64BIT 640 u64 throttled_pelt_idle_copy; 641 #endif 642 u64 throttled_clock; 643 u64 throttled_clock_pelt; 644 u64 throttled_clock_pelt_time; 645 int throttled; 646 int throttle_count; 647 struct list_head throttled_list; 648 #endif /* CONFIG_CFS_BANDWIDTH */ 649 #endif /* CONFIG_FAIR_GROUP_SCHED */ 650 }; 651 652 static inline int rt_bandwidth_enabled(void) 653 { 654 return sysctl_sched_rt_runtime >= 0; 655 } 656 657 /* RT IPI pull logic requires IRQ_WORK */ 658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 659 # define HAVE_RT_PUSH_IPI 660 #endif 661 662 /* Real-Time classes' related field in a runqueue: */ 663 struct rt_rq { 664 struct rt_prio_array active; 665 unsigned int rt_nr_running; 666 unsigned int rr_nr_running; 667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 668 struct { 669 int curr; /* highest queued rt task prio */ 670 #ifdef CONFIG_SMP 671 int next; /* next highest */ 672 #endif 673 } highest_prio; 674 #endif 675 #ifdef CONFIG_SMP 676 unsigned int rt_nr_migratory; 677 unsigned int rt_nr_total; 678 int overloaded; 679 struct plist_head pushable_tasks; 680 681 #endif /* CONFIG_SMP */ 682 int rt_queued; 683 684 int rt_throttled; 685 u64 rt_time; 686 u64 rt_runtime; 687 /* Nests inside the rq lock: */ 688 raw_spinlock_t rt_runtime_lock; 689 690 #ifdef CONFIG_RT_GROUP_SCHED 691 unsigned int rt_nr_boosted; 692 693 struct rq *rq; 694 struct task_group *tg; 695 #endif 696 }; 697 698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 699 { 700 return rt_rq->rt_queued && rt_rq->rt_nr_running; 701 } 702 703 /* Deadline class' related fields in a runqueue */ 704 struct dl_rq { 705 /* runqueue is an rbtree, ordered by deadline */ 706 struct rb_root_cached root; 707 708 unsigned int dl_nr_running; 709 710 #ifdef CONFIG_SMP 711 /* 712 * Deadline values of the currently executing and the 713 * earliest ready task on this rq. Caching these facilitates 714 * the decision whether or not a ready but not running task 715 * should migrate somewhere else. 716 */ 717 struct { 718 u64 curr; 719 u64 next; 720 } earliest_dl; 721 722 unsigned int dl_nr_migratory; 723 int overloaded; 724 725 /* 726 * Tasks on this rq that can be pushed away. They are kept in 727 * an rb-tree, ordered by tasks' deadlines, with caching 728 * of the leftmost (earliest deadline) element. 729 */ 730 struct rb_root_cached pushable_dl_tasks_root; 731 #else 732 struct dl_bw dl_bw; 733 #endif 734 /* 735 * "Active utilization" for this runqueue: increased when a 736 * task wakes up (becomes TASK_RUNNING) and decreased when a 737 * task blocks 738 */ 739 u64 running_bw; 740 741 /* 742 * Utilization of the tasks "assigned" to this runqueue (including 743 * the tasks that are in runqueue and the tasks that executed on this 744 * CPU and blocked). Increased when a task moves to this runqueue, and 745 * decreased when the task moves away (migrates, changes scheduling 746 * policy, or terminates). 747 * This is needed to compute the "inactive utilization" for the 748 * runqueue (inactive utilization = this_bw - running_bw). 749 */ 750 u64 this_bw; 751 u64 extra_bw; 752 753 /* 754 * Inverse of the fraction of CPU utilization that can be reclaimed 755 * by the GRUB algorithm. 756 */ 757 u64 bw_ratio; 758 }; 759 760 #ifdef CONFIG_FAIR_GROUP_SCHED 761 /* An entity is a task if it doesn't "own" a runqueue */ 762 #define entity_is_task(se) (!se->my_q) 763 764 static inline void se_update_runnable(struct sched_entity *se) 765 { 766 if (!entity_is_task(se)) 767 se->runnable_weight = se->my_q->h_nr_running; 768 } 769 770 static inline long se_runnable(struct sched_entity *se) 771 { 772 if (entity_is_task(se)) 773 return !!se->on_rq; 774 else 775 return se->runnable_weight; 776 } 777 778 #else 779 #define entity_is_task(se) 1 780 781 static inline void se_update_runnable(struct sched_entity *se) {} 782 783 static inline long se_runnable(struct sched_entity *se) 784 { 785 return !!se->on_rq; 786 } 787 #endif 788 789 #ifdef CONFIG_SMP 790 /* 791 * XXX we want to get rid of these helpers and use the full load resolution. 792 */ 793 static inline long se_weight(struct sched_entity *se) 794 { 795 return scale_load_down(se->load.weight); 796 } 797 798 799 static inline bool sched_asym_prefer(int a, int b) 800 { 801 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 802 } 803 804 struct perf_domain { 805 struct em_perf_domain *em_pd; 806 struct perf_domain *next; 807 struct rcu_head rcu; 808 }; 809 810 /* Scheduling group status flags */ 811 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 812 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 813 814 /* 815 * We add the notion of a root-domain which will be used to define per-domain 816 * variables. Each exclusive cpuset essentially defines an island domain by 817 * fully partitioning the member CPUs from any other cpuset. Whenever a new 818 * exclusive cpuset is created, we also create and attach a new root-domain 819 * object. 820 * 821 */ 822 struct root_domain { 823 atomic_t refcount; 824 atomic_t rto_count; 825 struct rcu_head rcu; 826 cpumask_var_t span; 827 cpumask_var_t online; 828 829 /* 830 * Indicate pullable load on at least one CPU, e.g: 831 * - More than one runnable task 832 * - Running task is misfit 833 */ 834 int overload; 835 836 /* Indicate one or more cpus over-utilized (tipping point) */ 837 int overutilized; 838 839 /* 840 * The bit corresponding to a CPU gets set here if such CPU has more 841 * than one runnable -deadline task (as it is below for RT tasks). 842 */ 843 cpumask_var_t dlo_mask; 844 atomic_t dlo_count; 845 struct dl_bw dl_bw; 846 struct cpudl cpudl; 847 848 /* 849 * Indicate whether a root_domain's dl_bw has been checked or 850 * updated. It's monotonously increasing value. 851 * 852 * Also, some corner cases, like 'wrap around' is dangerous, but given 853 * that u64 is 'big enough'. So that shouldn't be a concern. 854 */ 855 u64 visit_gen; 856 857 #ifdef HAVE_RT_PUSH_IPI 858 /* 859 * For IPI pull requests, loop across the rto_mask. 860 */ 861 struct irq_work rto_push_work; 862 raw_spinlock_t rto_lock; 863 /* These are only updated and read within rto_lock */ 864 int rto_loop; 865 int rto_cpu; 866 /* These atomics are updated outside of a lock */ 867 atomic_t rto_loop_next; 868 atomic_t rto_loop_start; 869 #endif 870 /* 871 * The "RT overload" flag: it gets set if a CPU has more than 872 * one runnable RT task. 873 */ 874 cpumask_var_t rto_mask; 875 struct cpupri cpupri; 876 877 unsigned long max_cpu_capacity; 878 879 /* 880 * NULL-terminated list of performance domains intersecting with the 881 * CPUs of the rd. Protected by RCU. 882 */ 883 struct perf_domain __rcu *pd; 884 }; 885 886 extern void init_defrootdomain(void); 887 extern int sched_init_domains(const struct cpumask *cpu_map); 888 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 889 extern void sched_get_rd(struct root_domain *rd); 890 extern void sched_put_rd(struct root_domain *rd); 891 892 #ifdef HAVE_RT_PUSH_IPI 893 extern void rto_push_irq_work_func(struct irq_work *work); 894 #endif 895 #endif /* CONFIG_SMP */ 896 897 #ifdef CONFIG_UCLAMP_TASK 898 /* 899 * struct uclamp_bucket - Utilization clamp bucket 900 * @value: utilization clamp value for tasks on this clamp bucket 901 * @tasks: number of RUNNABLE tasks on this clamp bucket 902 * 903 * Keep track of how many tasks are RUNNABLE for a given utilization 904 * clamp value. 905 */ 906 struct uclamp_bucket { 907 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 908 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 909 }; 910 911 /* 912 * struct uclamp_rq - rq's utilization clamp 913 * @value: currently active clamp values for a rq 914 * @bucket: utilization clamp buckets affecting a rq 915 * 916 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 917 * A clamp value is affecting a rq when there is at least one task RUNNABLE 918 * (or actually running) with that value. 919 * 920 * There are up to UCLAMP_CNT possible different clamp values, currently there 921 * are only two: minimum utilization and maximum utilization. 922 * 923 * All utilization clamping values are MAX aggregated, since: 924 * - for util_min: we want to run the CPU at least at the max of the minimum 925 * utilization required by its currently RUNNABLE tasks. 926 * - for util_max: we want to allow the CPU to run up to the max of the 927 * maximum utilization allowed by its currently RUNNABLE tasks. 928 * 929 * Since on each system we expect only a limited number of different 930 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 931 * the metrics required to compute all the per-rq utilization clamp values. 932 */ 933 struct uclamp_rq { 934 unsigned int value; 935 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 936 }; 937 938 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 939 #endif /* CONFIG_UCLAMP_TASK */ 940 941 struct rq; 942 struct balance_callback { 943 struct balance_callback *next; 944 void (*func)(struct rq *rq); 945 }; 946 947 /* 948 * This is the main, per-CPU runqueue data structure. 949 * 950 * Locking rule: those places that want to lock multiple runqueues 951 * (such as the load balancing or the thread migration code), lock 952 * acquire operations must be ordered by ascending &runqueue. 953 */ 954 struct rq { 955 /* runqueue lock: */ 956 raw_spinlock_t __lock; 957 958 /* 959 * nr_running and cpu_load should be in the same cacheline because 960 * remote CPUs use both these fields when doing load calculation. 961 */ 962 unsigned int nr_running; 963 #ifdef CONFIG_NUMA_BALANCING 964 unsigned int nr_numa_running; 965 unsigned int nr_preferred_running; 966 unsigned int numa_migrate_on; 967 #endif 968 #ifdef CONFIG_NO_HZ_COMMON 969 #ifdef CONFIG_SMP 970 unsigned long last_blocked_load_update_tick; 971 unsigned int has_blocked_load; 972 call_single_data_t nohz_csd; 973 #endif /* CONFIG_SMP */ 974 unsigned int nohz_tick_stopped; 975 atomic_t nohz_flags; 976 #endif /* CONFIG_NO_HZ_COMMON */ 977 978 #ifdef CONFIG_SMP 979 unsigned int ttwu_pending; 980 #endif 981 u64 nr_switches; 982 983 #ifdef CONFIG_UCLAMP_TASK 984 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 985 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 986 unsigned int uclamp_flags; 987 #define UCLAMP_FLAG_IDLE 0x01 988 #endif 989 990 struct cfs_rq cfs; 991 struct rt_rq rt; 992 struct dl_rq dl; 993 994 #ifdef CONFIG_FAIR_GROUP_SCHED 995 /* list of leaf cfs_rq on this CPU: */ 996 struct list_head leaf_cfs_rq_list; 997 struct list_head *tmp_alone_branch; 998 #endif /* CONFIG_FAIR_GROUP_SCHED */ 999 1000 /* 1001 * This is part of a global counter where only the total sum 1002 * over all CPUs matters. A task can increase this counter on 1003 * one CPU and if it got migrated afterwards it may decrease 1004 * it on another CPU. Always updated under the runqueue lock: 1005 */ 1006 unsigned int nr_uninterruptible; 1007 1008 struct task_struct __rcu *curr; 1009 struct task_struct *idle; 1010 struct task_struct *stop; 1011 unsigned long next_balance; 1012 struct mm_struct *prev_mm; 1013 1014 unsigned int clock_update_flags; 1015 u64 clock; 1016 /* Ensure that all clocks are in the same cache line */ 1017 u64 clock_task ____cacheline_aligned; 1018 u64 clock_pelt; 1019 unsigned long lost_idle_time; 1020 u64 clock_pelt_idle; 1021 u64 clock_idle; 1022 #ifndef CONFIG_64BIT 1023 u64 clock_pelt_idle_copy; 1024 u64 clock_idle_copy; 1025 #endif 1026 1027 atomic_t nr_iowait; 1028 1029 #ifdef CONFIG_SCHED_DEBUG 1030 u64 last_seen_need_resched_ns; 1031 int ticks_without_resched; 1032 #endif 1033 1034 #ifdef CONFIG_MEMBARRIER 1035 int membarrier_state; 1036 #endif 1037 1038 #ifdef CONFIG_SMP 1039 struct root_domain *rd; 1040 struct sched_domain __rcu *sd; 1041 1042 unsigned long cpu_capacity; 1043 unsigned long cpu_capacity_orig; 1044 1045 struct balance_callback *balance_callback; 1046 1047 unsigned char nohz_idle_balance; 1048 unsigned char idle_balance; 1049 1050 unsigned long misfit_task_load; 1051 1052 /* For active balancing */ 1053 int active_balance; 1054 int push_cpu; 1055 struct cpu_stop_work active_balance_work; 1056 1057 /* CPU of this runqueue: */ 1058 int cpu; 1059 int online; 1060 1061 struct list_head cfs_tasks; 1062 1063 struct sched_avg avg_rt; 1064 struct sched_avg avg_dl; 1065 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1066 struct sched_avg avg_irq; 1067 #endif 1068 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1069 struct sched_avg avg_thermal; 1070 #endif 1071 u64 idle_stamp; 1072 u64 avg_idle; 1073 1074 unsigned long wake_stamp; 1075 u64 wake_avg_idle; 1076 1077 /* This is used to determine avg_idle's max value */ 1078 u64 max_idle_balance_cost; 1079 1080 #ifdef CONFIG_HOTPLUG_CPU 1081 struct rcuwait hotplug_wait; 1082 #endif 1083 #endif /* CONFIG_SMP */ 1084 1085 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1086 u64 prev_irq_time; 1087 #endif 1088 #ifdef CONFIG_PARAVIRT 1089 u64 prev_steal_time; 1090 #endif 1091 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1092 u64 prev_steal_time_rq; 1093 #endif 1094 1095 /* calc_load related fields */ 1096 unsigned long calc_load_update; 1097 long calc_load_active; 1098 1099 #ifdef CONFIG_SCHED_HRTICK 1100 #ifdef CONFIG_SMP 1101 call_single_data_t hrtick_csd; 1102 #endif 1103 struct hrtimer hrtick_timer; 1104 ktime_t hrtick_time; 1105 #endif 1106 1107 #ifdef CONFIG_SCHEDSTATS 1108 /* latency stats */ 1109 struct sched_info rq_sched_info; 1110 unsigned long long rq_cpu_time; 1111 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1112 1113 /* sys_sched_yield() stats */ 1114 unsigned int yld_count; 1115 1116 /* schedule() stats */ 1117 unsigned int sched_count; 1118 unsigned int sched_goidle; 1119 1120 /* try_to_wake_up() stats */ 1121 unsigned int ttwu_count; 1122 unsigned int ttwu_local; 1123 #endif 1124 1125 #ifdef CONFIG_CPU_IDLE 1126 /* Must be inspected within a rcu lock section */ 1127 struct cpuidle_state *idle_state; 1128 #endif 1129 1130 #ifdef CONFIG_SMP 1131 unsigned int nr_pinned; 1132 #endif 1133 unsigned int push_busy; 1134 struct cpu_stop_work push_work; 1135 1136 #ifdef CONFIG_SCHED_CORE 1137 /* per rq */ 1138 struct rq *core; 1139 struct task_struct *core_pick; 1140 unsigned int core_enabled; 1141 unsigned int core_sched_seq; 1142 struct rb_root core_tree; 1143 1144 /* shared state -- careful with sched_core_cpu_deactivate() */ 1145 unsigned int core_task_seq; 1146 unsigned int core_pick_seq; 1147 unsigned long core_cookie; 1148 unsigned int core_forceidle_count; 1149 unsigned int core_forceidle_seq; 1150 unsigned int core_forceidle_occupation; 1151 u64 core_forceidle_start; 1152 #endif 1153 }; 1154 1155 #ifdef CONFIG_FAIR_GROUP_SCHED 1156 1157 /* CPU runqueue to which this cfs_rq is attached */ 1158 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1159 { 1160 return cfs_rq->rq; 1161 } 1162 1163 #else 1164 1165 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1166 { 1167 return container_of(cfs_rq, struct rq, cfs); 1168 } 1169 #endif 1170 1171 static inline int cpu_of(struct rq *rq) 1172 { 1173 #ifdef CONFIG_SMP 1174 return rq->cpu; 1175 #else 1176 return 0; 1177 #endif 1178 } 1179 1180 #define MDF_PUSH 0x01 1181 1182 static inline bool is_migration_disabled(struct task_struct *p) 1183 { 1184 #ifdef CONFIG_SMP 1185 return p->migration_disabled; 1186 #else 1187 return false; 1188 #endif 1189 } 1190 1191 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1192 1193 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1194 #define this_rq() this_cpu_ptr(&runqueues) 1195 #define task_rq(p) cpu_rq(task_cpu(p)) 1196 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1197 #define raw_rq() raw_cpu_ptr(&runqueues) 1198 1199 struct sched_group; 1200 #ifdef CONFIG_SCHED_CORE 1201 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1202 1203 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1204 1205 static inline bool sched_core_enabled(struct rq *rq) 1206 { 1207 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1208 } 1209 1210 static inline bool sched_core_disabled(void) 1211 { 1212 return !static_branch_unlikely(&__sched_core_enabled); 1213 } 1214 1215 /* 1216 * Be careful with this function; not for general use. The return value isn't 1217 * stable unless you actually hold a relevant rq->__lock. 1218 */ 1219 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1220 { 1221 if (sched_core_enabled(rq)) 1222 return &rq->core->__lock; 1223 1224 return &rq->__lock; 1225 } 1226 1227 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1228 { 1229 if (rq->core_enabled) 1230 return &rq->core->__lock; 1231 1232 return &rq->__lock; 1233 } 1234 1235 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1236 1237 /* 1238 * Helpers to check if the CPU's core cookie matches with the task's cookie 1239 * when core scheduling is enabled. 1240 * A special case is that the task's cookie always matches with CPU's core 1241 * cookie if the CPU is in an idle core. 1242 */ 1243 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1244 { 1245 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1246 if (!sched_core_enabled(rq)) 1247 return true; 1248 1249 return rq->core->core_cookie == p->core_cookie; 1250 } 1251 1252 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1253 { 1254 bool idle_core = true; 1255 int cpu; 1256 1257 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1258 if (!sched_core_enabled(rq)) 1259 return true; 1260 1261 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1262 if (!available_idle_cpu(cpu)) { 1263 idle_core = false; 1264 break; 1265 } 1266 } 1267 1268 /* 1269 * A CPU in an idle core is always the best choice for tasks with 1270 * cookies. 1271 */ 1272 return idle_core || rq->core->core_cookie == p->core_cookie; 1273 } 1274 1275 static inline bool sched_group_cookie_match(struct rq *rq, 1276 struct task_struct *p, 1277 struct sched_group *group) 1278 { 1279 int cpu; 1280 1281 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1282 if (!sched_core_enabled(rq)) 1283 return true; 1284 1285 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1286 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1287 return true; 1288 } 1289 return false; 1290 } 1291 1292 static inline bool sched_core_enqueued(struct task_struct *p) 1293 { 1294 return !RB_EMPTY_NODE(&p->core_node); 1295 } 1296 1297 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1298 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1299 1300 extern void sched_core_get(void); 1301 extern void sched_core_put(void); 1302 1303 #else /* !CONFIG_SCHED_CORE */ 1304 1305 static inline bool sched_core_enabled(struct rq *rq) 1306 { 1307 return false; 1308 } 1309 1310 static inline bool sched_core_disabled(void) 1311 { 1312 return true; 1313 } 1314 1315 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1316 { 1317 return &rq->__lock; 1318 } 1319 1320 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1321 { 1322 return &rq->__lock; 1323 } 1324 1325 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1326 { 1327 return true; 1328 } 1329 1330 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1331 { 1332 return true; 1333 } 1334 1335 static inline bool sched_group_cookie_match(struct rq *rq, 1336 struct task_struct *p, 1337 struct sched_group *group) 1338 { 1339 return true; 1340 } 1341 #endif /* CONFIG_SCHED_CORE */ 1342 1343 static inline void lockdep_assert_rq_held(struct rq *rq) 1344 { 1345 lockdep_assert_held(__rq_lockp(rq)); 1346 } 1347 1348 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1349 extern bool raw_spin_rq_trylock(struct rq *rq); 1350 extern void raw_spin_rq_unlock(struct rq *rq); 1351 1352 static inline void raw_spin_rq_lock(struct rq *rq) 1353 { 1354 raw_spin_rq_lock_nested(rq, 0); 1355 } 1356 1357 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1358 { 1359 local_irq_disable(); 1360 raw_spin_rq_lock(rq); 1361 } 1362 1363 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1364 { 1365 raw_spin_rq_unlock(rq); 1366 local_irq_enable(); 1367 } 1368 1369 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1370 { 1371 unsigned long flags; 1372 local_irq_save(flags); 1373 raw_spin_rq_lock(rq); 1374 return flags; 1375 } 1376 1377 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1378 { 1379 raw_spin_rq_unlock(rq); 1380 local_irq_restore(flags); 1381 } 1382 1383 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1384 do { \ 1385 flags = _raw_spin_rq_lock_irqsave(rq); \ 1386 } while (0) 1387 1388 #ifdef CONFIG_SCHED_SMT 1389 extern void __update_idle_core(struct rq *rq); 1390 1391 static inline void update_idle_core(struct rq *rq) 1392 { 1393 if (static_branch_unlikely(&sched_smt_present)) 1394 __update_idle_core(rq); 1395 } 1396 1397 #else 1398 static inline void update_idle_core(struct rq *rq) { } 1399 #endif 1400 1401 #ifdef CONFIG_FAIR_GROUP_SCHED 1402 static inline struct task_struct *task_of(struct sched_entity *se) 1403 { 1404 SCHED_WARN_ON(!entity_is_task(se)); 1405 return container_of(se, struct task_struct, se); 1406 } 1407 1408 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1409 { 1410 return p->se.cfs_rq; 1411 } 1412 1413 /* runqueue on which this entity is (to be) queued */ 1414 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1415 { 1416 return se->cfs_rq; 1417 } 1418 1419 /* runqueue "owned" by this group */ 1420 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1421 { 1422 return grp->my_q; 1423 } 1424 1425 #else 1426 1427 static inline struct task_struct *task_of(struct sched_entity *se) 1428 { 1429 return container_of(se, struct task_struct, se); 1430 } 1431 1432 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1433 { 1434 return &task_rq(p)->cfs; 1435 } 1436 1437 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1438 { 1439 struct task_struct *p = task_of(se); 1440 struct rq *rq = task_rq(p); 1441 1442 return &rq->cfs; 1443 } 1444 1445 /* runqueue "owned" by this group */ 1446 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1447 { 1448 return NULL; 1449 } 1450 #endif 1451 1452 extern void update_rq_clock(struct rq *rq); 1453 1454 /* 1455 * rq::clock_update_flags bits 1456 * 1457 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1458 * call to __schedule(). This is an optimisation to avoid 1459 * neighbouring rq clock updates. 1460 * 1461 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1462 * in effect and calls to update_rq_clock() are being ignored. 1463 * 1464 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1465 * made to update_rq_clock() since the last time rq::lock was pinned. 1466 * 1467 * If inside of __schedule(), clock_update_flags will have been 1468 * shifted left (a left shift is a cheap operation for the fast path 1469 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1470 * 1471 * if (rq-clock_update_flags >= RQCF_UPDATED) 1472 * 1473 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1474 * one position though, because the next rq_unpin_lock() will shift it 1475 * back. 1476 */ 1477 #define RQCF_REQ_SKIP 0x01 1478 #define RQCF_ACT_SKIP 0x02 1479 #define RQCF_UPDATED 0x04 1480 1481 static inline void assert_clock_updated(struct rq *rq) 1482 { 1483 /* 1484 * The only reason for not seeing a clock update since the 1485 * last rq_pin_lock() is if we're currently skipping updates. 1486 */ 1487 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1488 } 1489 1490 static inline u64 rq_clock(struct rq *rq) 1491 { 1492 lockdep_assert_rq_held(rq); 1493 assert_clock_updated(rq); 1494 1495 return rq->clock; 1496 } 1497 1498 static inline u64 rq_clock_task(struct rq *rq) 1499 { 1500 lockdep_assert_rq_held(rq); 1501 assert_clock_updated(rq); 1502 1503 return rq->clock_task; 1504 } 1505 1506 /** 1507 * By default the decay is the default pelt decay period. 1508 * The decay shift can change the decay period in 1509 * multiples of 32. 1510 * Decay shift Decay period(ms) 1511 * 0 32 1512 * 1 64 1513 * 2 128 1514 * 3 256 1515 * 4 512 1516 */ 1517 extern int sched_thermal_decay_shift; 1518 1519 static inline u64 rq_clock_thermal(struct rq *rq) 1520 { 1521 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1522 } 1523 1524 static inline void rq_clock_skip_update(struct rq *rq) 1525 { 1526 lockdep_assert_rq_held(rq); 1527 rq->clock_update_flags |= RQCF_REQ_SKIP; 1528 } 1529 1530 /* 1531 * See rt task throttling, which is the only time a skip 1532 * request is canceled. 1533 */ 1534 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1535 { 1536 lockdep_assert_rq_held(rq); 1537 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1538 } 1539 1540 struct rq_flags { 1541 unsigned long flags; 1542 struct pin_cookie cookie; 1543 #ifdef CONFIG_SCHED_DEBUG 1544 /* 1545 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1546 * current pin context is stashed here in case it needs to be 1547 * restored in rq_repin_lock(). 1548 */ 1549 unsigned int clock_update_flags; 1550 #endif 1551 }; 1552 1553 extern struct balance_callback balance_push_callback; 1554 1555 /* 1556 * Lockdep annotation that avoids accidental unlocks; it's like a 1557 * sticky/continuous lockdep_assert_held(). 1558 * 1559 * This avoids code that has access to 'struct rq *rq' (basically everything in 1560 * the scheduler) from accidentally unlocking the rq if they do not also have a 1561 * copy of the (on-stack) 'struct rq_flags rf'. 1562 * 1563 * Also see Documentation/locking/lockdep-design.rst. 1564 */ 1565 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1566 { 1567 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1568 1569 #ifdef CONFIG_SCHED_DEBUG 1570 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1571 rf->clock_update_flags = 0; 1572 #ifdef CONFIG_SMP 1573 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1574 #endif 1575 #endif 1576 } 1577 1578 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1579 { 1580 #ifdef CONFIG_SCHED_DEBUG 1581 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1582 rf->clock_update_flags = RQCF_UPDATED; 1583 #endif 1584 1585 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1586 } 1587 1588 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1589 { 1590 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1591 1592 #ifdef CONFIG_SCHED_DEBUG 1593 /* 1594 * Restore the value we stashed in @rf for this pin context. 1595 */ 1596 rq->clock_update_flags |= rf->clock_update_flags; 1597 #endif 1598 } 1599 1600 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1601 __acquires(rq->lock); 1602 1603 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1604 __acquires(p->pi_lock) 1605 __acquires(rq->lock); 1606 1607 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1608 __releases(rq->lock) 1609 { 1610 rq_unpin_lock(rq, rf); 1611 raw_spin_rq_unlock(rq); 1612 } 1613 1614 static inline void 1615 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1616 __releases(rq->lock) 1617 __releases(p->pi_lock) 1618 { 1619 rq_unpin_lock(rq, rf); 1620 raw_spin_rq_unlock(rq); 1621 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1622 } 1623 1624 static inline void 1625 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1626 __acquires(rq->lock) 1627 { 1628 raw_spin_rq_lock_irqsave(rq, rf->flags); 1629 rq_pin_lock(rq, rf); 1630 } 1631 1632 static inline void 1633 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1634 __acquires(rq->lock) 1635 { 1636 raw_spin_rq_lock_irq(rq); 1637 rq_pin_lock(rq, rf); 1638 } 1639 1640 static inline void 1641 rq_lock(struct rq *rq, struct rq_flags *rf) 1642 __acquires(rq->lock) 1643 { 1644 raw_spin_rq_lock(rq); 1645 rq_pin_lock(rq, rf); 1646 } 1647 1648 static inline void 1649 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1650 __releases(rq->lock) 1651 { 1652 rq_unpin_lock(rq, rf); 1653 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1654 } 1655 1656 static inline void 1657 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1658 __releases(rq->lock) 1659 { 1660 rq_unpin_lock(rq, rf); 1661 raw_spin_rq_unlock_irq(rq); 1662 } 1663 1664 static inline void 1665 rq_unlock(struct rq *rq, struct rq_flags *rf) 1666 __releases(rq->lock) 1667 { 1668 rq_unpin_lock(rq, rf); 1669 raw_spin_rq_unlock(rq); 1670 } 1671 1672 static inline struct rq * 1673 this_rq_lock_irq(struct rq_flags *rf) 1674 __acquires(rq->lock) 1675 { 1676 struct rq *rq; 1677 1678 local_irq_disable(); 1679 rq = this_rq(); 1680 rq_lock(rq, rf); 1681 return rq; 1682 } 1683 1684 #ifdef CONFIG_NUMA 1685 enum numa_topology_type { 1686 NUMA_DIRECT, 1687 NUMA_GLUELESS_MESH, 1688 NUMA_BACKPLANE, 1689 }; 1690 extern enum numa_topology_type sched_numa_topology_type; 1691 extern int sched_max_numa_distance; 1692 extern bool find_numa_distance(int distance); 1693 extern void sched_init_numa(int offline_node); 1694 extern void sched_update_numa(int cpu, bool online); 1695 extern void sched_domains_numa_masks_set(unsigned int cpu); 1696 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1697 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1698 #else 1699 static inline void sched_init_numa(int offline_node) { } 1700 static inline void sched_update_numa(int cpu, bool online) { } 1701 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1702 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1703 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1704 { 1705 return nr_cpu_ids; 1706 } 1707 #endif 1708 1709 #ifdef CONFIG_NUMA_BALANCING 1710 /* The regions in numa_faults array from task_struct */ 1711 enum numa_faults_stats { 1712 NUMA_MEM = 0, 1713 NUMA_CPU, 1714 NUMA_MEMBUF, 1715 NUMA_CPUBUF 1716 }; 1717 extern void sched_setnuma(struct task_struct *p, int node); 1718 extern int migrate_task_to(struct task_struct *p, int cpu); 1719 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1720 int cpu, int scpu); 1721 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1722 #else 1723 static inline void 1724 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1725 { 1726 } 1727 #endif /* CONFIG_NUMA_BALANCING */ 1728 1729 #ifdef CONFIG_SMP 1730 1731 static inline void 1732 queue_balance_callback(struct rq *rq, 1733 struct balance_callback *head, 1734 void (*func)(struct rq *rq)) 1735 { 1736 lockdep_assert_rq_held(rq); 1737 1738 /* 1739 * Don't (re)queue an already queued item; nor queue anything when 1740 * balance_push() is active, see the comment with 1741 * balance_push_callback. 1742 */ 1743 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1744 return; 1745 1746 head->func = func; 1747 head->next = rq->balance_callback; 1748 rq->balance_callback = head; 1749 } 1750 1751 #define rcu_dereference_check_sched_domain(p) \ 1752 rcu_dereference_check((p), \ 1753 lockdep_is_held(&sched_domains_mutex)) 1754 1755 /* 1756 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1757 * See destroy_sched_domains: call_rcu for details. 1758 * 1759 * The domain tree of any CPU may only be accessed from within 1760 * preempt-disabled sections. 1761 */ 1762 #define for_each_domain(cpu, __sd) \ 1763 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1764 __sd; __sd = __sd->parent) 1765 1766 /** 1767 * highest_flag_domain - Return highest sched_domain containing flag. 1768 * @cpu: The CPU whose highest level of sched domain is to 1769 * be returned. 1770 * @flag: The flag to check for the highest sched_domain 1771 * for the given CPU. 1772 * 1773 * Returns the highest sched_domain of a CPU which contains the given flag. 1774 */ 1775 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1776 { 1777 struct sched_domain *sd, *hsd = NULL; 1778 1779 for_each_domain(cpu, sd) { 1780 if (!(sd->flags & flag)) 1781 break; 1782 hsd = sd; 1783 } 1784 1785 return hsd; 1786 } 1787 1788 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1789 { 1790 struct sched_domain *sd; 1791 1792 for_each_domain(cpu, sd) { 1793 if (sd->flags & flag) 1794 break; 1795 } 1796 1797 return sd; 1798 } 1799 1800 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1801 DECLARE_PER_CPU(int, sd_llc_size); 1802 DECLARE_PER_CPU(int, sd_llc_id); 1803 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1804 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1805 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1806 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1807 extern struct static_key_false sched_asym_cpucapacity; 1808 1809 static __always_inline bool sched_asym_cpucap_active(void) 1810 { 1811 return static_branch_unlikely(&sched_asym_cpucapacity); 1812 } 1813 1814 struct sched_group_capacity { 1815 atomic_t ref; 1816 /* 1817 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1818 * for a single CPU. 1819 */ 1820 unsigned long capacity; 1821 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1822 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1823 unsigned long next_update; 1824 int imbalance; /* XXX unrelated to capacity but shared group state */ 1825 1826 #ifdef CONFIG_SCHED_DEBUG 1827 int id; 1828 #endif 1829 1830 unsigned long cpumask[]; /* Balance mask */ 1831 }; 1832 1833 struct sched_group { 1834 struct sched_group *next; /* Must be a circular list */ 1835 atomic_t ref; 1836 1837 unsigned int group_weight; 1838 struct sched_group_capacity *sgc; 1839 int asym_prefer_cpu; /* CPU of highest priority in group */ 1840 int flags; 1841 1842 /* 1843 * The CPUs this group covers. 1844 * 1845 * NOTE: this field is variable length. (Allocated dynamically 1846 * by attaching extra space to the end of the structure, 1847 * depending on how many CPUs the kernel has booted up with) 1848 */ 1849 unsigned long cpumask[]; 1850 }; 1851 1852 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1853 { 1854 return to_cpumask(sg->cpumask); 1855 } 1856 1857 /* 1858 * See build_balance_mask(). 1859 */ 1860 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1861 { 1862 return to_cpumask(sg->sgc->cpumask); 1863 } 1864 1865 extern int group_balance_cpu(struct sched_group *sg); 1866 1867 #ifdef CONFIG_SCHED_DEBUG 1868 void update_sched_domain_debugfs(void); 1869 void dirty_sched_domain_sysctl(int cpu); 1870 #else 1871 static inline void update_sched_domain_debugfs(void) 1872 { 1873 } 1874 static inline void dirty_sched_domain_sysctl(int cpu) 1875 { 1876 } 1877 #endif 1878 1879 extern int sched_update_scaling(void); 1880 #endif /* CONFIG_SMP */ 1881 1882 #include "stats.h" 1883 1884 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1885 1886 extern void __sched_core_account_forceidle(struct rq *rq); 1887 1888 static inline void sched_core_account_forceidle(struct rq *rq) 1889 { 1890 if (schedstat_enabled()) 1891 __sched_core_account_forceidle(rq); 1892 } 1893 1894 extern void __sched_core_tick(struct rq *rq); 1895 1896 static inline void sched_core_tick(struct rq *rq) 1897 { 1898 if (sched_core_enabled(rq) && schedstat_enabled()) 1899 __sched_core_tick(rq); 1900 } 1901 1902 #else 1903 1904 static inline void sched_core_account_forceidle(struct rq *rq) {} 1905 1906 static inline void sched_core_tick(struct rq *rq) {} 1907 1908 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1909 1910 #ifdef CONFIG_CGROUP_SCHED 1911 1912 /* 1913 * Return the group to which this tasks belongs. 1914 * 1915 * We cannot use task_css() and friends because the cgroup subsystem 1916 * changes that value before the cgroup_subsys::attach() method is called, 1917 * therefore we cannot pin it and might observe the wrong value. 1918 * 1919 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1920 * core changes this before calling sched_move_task(). 1921 * 1922 * Instead we use a 'copy' which is updated from sched_move_task() while 1923 * holding both task_struct::pi_lock and rq::lock. 1924 */ 1925 static inline struct task_group *task_group(struct task_struct *p) 1926 { 1927 return p->sched_task_group; 1928 } 1929 1930 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1931 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1932 { 1933 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1934 struct task_group *tg = task_group(p); 1935 #endif 1936 1937 #ifdef CONFIG_FAIR_GROUP_SCHED 1938 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1939 p->se.cfs_rq = tg->cfs_rq[cpu]; 1940 p->se.parent = tg->se[cpu]; 1941 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 1942 #endif 1943 1944 #ifdef CONFIG_RT_GROUP_SCHED 1945 p->rt.rt_rq = tg->rt_rq[cpu]; 1946 p->rt.parent = tg->rt_se[cpu]; 1947 #endif 1948 } 1949 1950 #else /* CONFIG_CGROUP_SCHED */ 1951 1952 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1953 static inline struct task_group *task_group(struct task_struct *p) 1954 { 1955 return NULL; 1956 } 1957 1958 #endif /* CONFIG_CGROUP_SCHED */ 1959 1960 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1961 { 1962 set_task_rq(p, cpu); 1963 #ifdef CONFIG_SMP 1964 /* 1965 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1966 * successfully executed on another CPU. We must ensure that updates of 1967 * per-task data have been completed by this moment. 1968 */ 1969 smp_wmb(); 1970 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1971 p->wake_cpu = cpu; 1972 #endif 1973 } 1974 1975 /* 1976 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1977 */ 1978 #ifdef CONFIG_SCHED_DEBUG 1979 # define const_debug __read_mostly 1980 #else 1981 # define const_debug const 1982 #endif 1983 1984 #define SCHED_FEAT(name, enabled) \ 1985 __SCHED_FEAT_##name , 1986 1987 enum { 1988 #include "features.h" 1989 __SCHED_FEAT_NR, 1990 }; 1991 1992 #undef SCHED_FEAT 1993 1994 #ifdef CONFIG_SCHED_DEBUG 1995 1996 /* 1997 * To support run-time toggling of sched features, all the translation units 1998 * (but core.c) reference the sysctl_sched_features defined in core.c. 1999 */ 2000 extern const_debug unsigned int sysctl_sched_features; 2001 2002 #ifdef CONFIG_JUMP_LABEL 2003 #define SCHED_FEAT(name, enabled) \ 2004 static __always_inline bool static_branch_##name(struct static_key *key) \ 2005 { \ 2006 return static_key_##enabled(key); \ 2007 } 2008 2009 #include "features.h" 2010 #undef SCHED_FEAT 2011 2012 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2013 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2014 2015 #else /* !CONFIG_JUMP_LABEL */ 2016 2017 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2018 2019 #endif /* CONFIG_JUMP_LABEL */ 2020 2021 #else /* !SCHED_DEBUG */ 2022 2023 /* 2024 * Each translation unit has its own copy of sysctl_sched_features to allow 2025 * constants propagation at compile time and compiler optimization based on 2026 * features default. 2027 */ 2028 #define SCHED_FEAT(name, enabled) \ 2029 (1UL << __SCHED_FEAT_##name) * enabled | 2030 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2031 #include "features.h" 2032 0; 2033 #undef SCHED_FEAT 2034 2035 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2036 2037 #endif /* SCHED_DEBUG */ 2038 2039 extern struct static_key_false sched_numa_balancing; 2040 extern struct static_key_false sched_schedstats; 2041 2042 static inline u64 global_rt_period(void) 2043 { 2044 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2045 } 2046 2047 static inline u64 global_rt_runtime(void) 2048 { 2049 if (sysctl_sched_rt_runtime < 0) 2050 return RUNTIME_INF; 2051 2052 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2053 } 2054 2055 static inline int task_current(struct rq *rq, struct task_struct *p) 2056 { 2057 return rq->curr == p; 2058 } 2059 2060 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2061 { 2062 #ifdef CONFIG_SMP 2063 return p->on_cpu; 2064 #else 2065 return task_current(rq, p); 2066 #endif 2067 } 2068 2069 static inline int task_on_rq_queued(struct task_struct *p) 2070 { 2071 return p->on_rq == TASK_ON_RQ_QUEUED; 2072 } 2073 2074 static inline int task_on_rq_migrating(struct task_struct *p) 2075 { 2076 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2077 } 2078 2079 /* Wake flags. The first three directly map to some SD flag value */ 2080 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2081 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2082 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2083 2084 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2085 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2086 2087 #ifdef CONFIG_SMP 2088 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2089 static_assert(WF_FORK == SD_BALANCE_FORK); 2090 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2091 #endif 2092 2093 /* 2094 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2095 * of tasks with abnormal "nice" values across CPUs the contribution that 2096 * each task makes to its run queue's load is weighted according to its 2097 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2098 * scaled version of the new time slice allocation that they receive on time 2099 * slice expiry etc. 2100 */ 2101 2102 #define WEIGHT_IDLEPRIO 3 2103 #define WMULT_IDLEPRIO 1431655765 2104 2105 extern const int sched_prio_to_weight[40]; 2106 extern const u32 sched_prio_to_wmult[40]; 2107 2108 /* 2109 * {de,en}queue flags: 2110 * 2111 * DEQUEUE_SLEEP - task is no longer runnable 2112 * ENQUEUE_WAKEUP - task just became runnable 2113 * 2114 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2115 * are in a known state which allows modification. Such pairs 2116 * should preserve as much state as possible. 2117 * 2118 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2119 * in the runqueue. 2120 * 2121 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2122 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2123 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2124 * 2125 */ 2126 2127 #define DEQUEUE_SLEEP 0x01 2128 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2129 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2130 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2131 2132 #define ENQUEUE_WAKEUP 0x01 2133 #define ENQUEUE_RESTORE 0x02 2134 #define ENQUEUE_MOVE 0x04 2135 #define ENQUEUE_NOCLOCK 0x08 2136 2137 #define ENQUEUE_HEAD 0x10 2138 #define ENQUEUE_REPLENISH 0x20 2139 #ifdef CONFIG_SMP 2140 #define ENQUEUE_MIGRATED 0x40 2141 #else 2142 #define ENQUEUE_MIGRATED 0x00 2143 #endif 2144 2145 #define RETRY_TASK ((void *)-1UL) 2146 2147 struct sched_class { 2148 2149 #ifdef CONFIG_UCLAMP_TASK 2150 int uclamp_enabled; 2151 #endif 2152 2153 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2154 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2155 void (*yield_task) (struct rq *rq); 2156 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2157 2158 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2159 2160 struct task_struct *(*pick_next_task)(struct rq *rq); 2161 2162 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2163 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2164 2165 #ifdef CONFIG_SMP 2166 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2167 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2168 2169 struct task_struct * (*pick_task)(struct rq *rq); 2170 2171 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2172 2173 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2174 2175 void (*set_cpus_allowed)(struct task_struct *p, 2176 const struct cpumask *newmask, 2177 u32 flags); 2178 2179 void (*rq_online)(struct rq *rq); 2180 void (*rq_offline)(struct rq *rq); 2181 2182 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2183 #endif 2184 2185 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2186 void (*task_fork)(struct task_struct *p); 2187 void (*task_dead)(struct task_struct *p); 2188 2189 /* 2190 * The switched_from() call is allowed to drop rq->lock, therefore we 2191 * cannot assume the switched_from/switched_to pair is serialized by 2192 * rq->lock. They are however serialized by p->pi_lock. 2193 */ 2194 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2195 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2196 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2197 int oldprio); 2198 2199 unsigned int (*get_rr_interval)(struct rq *rq, 2200 struct task_struct *task); 2201 2202 void (*update_curr)(struct rq *rq); 2203 2204 #ifdef CONFIG_FAIR_GROUP_SCHED 2205 void (*task_change_group)(struct task_struct *p); 2206 #endif 2207 }; 2208 2209 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2210 { 2211 WARN_ON_ONCE(rq->curr != prev); 2212 prev->sched_class->put_prev_task(rq, prev); 2213 } 2214 2215 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2216 { 2217 next->sched_class->set_next_task(rq, next, false); 2218 } 2219 2220 2221 /* 2222 * Helper to define a sched_class instance; each one is placed in a separate 2223 * section which is ordered by the linker script: 2224 * 2225 * include/asm-generic/vmlinux.lds.h 2226 * 2227 * *CAREFUL* they are laid out in *REVERSE* order!!! 2228 * 2229 * Also enforce alignment on the instance, not the type, to guarantee layout. 2230 */ 2231 #define DEFINE_SCHED_CLASS(name) \ 2232 const struct sched_class name##_sched_class \ 2233 __aligned(__alignof__(struct sched_class)) \ 2234 __section("__" #name "_sched_class") 2235 2236 /* Defined in include/asm-generic/vmlinux.lds.h */ 2237 extern struct sched_class __sched_class_highest[]; 2238 extern struct sched_class __sched_class_lowest[]; 2239 2240 #define for_class_range(class, _from, _to) \ 2241 for (class = (_from); class < (_to); class++) 2242 2243 #define for_each_class(class) \ 2244 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2245 2246 #define sched_class_above(_a, _b) ((_a) < (_b)) 2247 2248 extern const struct sched_class stop_sched_class; 2249 extern const struct sched_class dl_sched_class; 2250 extern const struct sched_class rt_sched_class; 2251 extern const struct sched_class fair_sched_class; 2252 extern const struct sched_class idle_sched_class; 2253 2254 static inline bool sched_stop_runnable(struct rq *rq) 2255 { 2256 return rq->stop && task_on_rq_queued(rq->stop); 2257 } 2258 2259 static inline bool sched_dl_runnable(struct rq *rq) 2260 { 2261 return rq->dl.dl_nr_running > 0; 2262 } 2263 2264 static inline bool sched_rt_runnable(struct rq *rq) 2265 { 2266 return rq->rt.rt_queued > 0; 2267 } 2268 2269 static inline bool sched_fair_runnable(struct rq *rq) 2270 { 2271 return rq->cfs.nr_running > 0; 2272 } 2273 2274 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2275 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2276 2277 #define SCA_CHECK 0x01 2278 #define SCA_MIGRATE_DISABLE 0x02 2279 #define SCA_MIGRATE_ENABLE 0x04 2280 #define SCA_USER 0x08 2281 2282 #ifdef CONFIG_SMP 2283 2284 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2285 2286 extern void trigger_load_balance(struct rq *rq); 2287 2288 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2289 2290 static inline struct task_struct *get_push_task(struct rq *rq) 2291 { 2292 struct task_struct *p = rq->curr; 2293 2294 lockdep_assert_rq_held(rq); 2295 2296 if (rq->push_busy) 2297 return NULL; 2298 2299 if (p->nr_cpus_allowed == 1) 2300 return NULL; 2301 2302 if (p->migration_disabled) 2303 return NULL; 2304 2305 rq->push_busy = true; 2306 return get_task_struct(p); 2307 } 2308 2309 extern int push_cpu_stop(void *arg); 2310 2311 #endif 2312 2313 #ifdef CONFIG_CPU_IDLE 2314 static inline void idle_set_state(struct rq *rq, 2315 struct cpuidle_state *idle_state) 2316 { 2317 rq->idle_state = idle_state; 2318 } 2319 2320 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2321 { 2322 SCHED_WARN_ON(!rcu_read_lock_held()); 2323 2324 return rq->idle_state; 2325 } 2326 #else 2327 static inline void idle_set_state(struct rq *rq, 2328 struct cpuidle_state *idle_state) 2329 { 2330 } 2331 2332 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2333 { 2334 return NULL; 2335 } 2336 #endif 2337 2338 extern void schedule_idle(void); 2339 2340 extern void sysrq_sched_debug_show(void); 2341 extern void sched_init_granularity(void); 2342 extern void update_max_interval(void); 2343 2344 extern void init_sched_dl_class(void); 2345 extern void init_sched_rt_class(void); 2346 extern void init_sched_fair_class(void); 2347 2348 extern void reweight_task(struct task_struct *p, int prio); 2349 2350 extern void resched_curr(struct rq *rq); 2351 extern void resched_cpu(int cpu); 2352 2353 extern struct rt_bandwidth def_rt_bandwidth; 2354 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2355 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2356 2357 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2358 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2359 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2360 2361 #define BW_SHIFT 20 2362 #define BW_UNIT (1 << BW_SHIFT) 2363 #define RATIO_SHIFT 8 2364 #define MAX_BW_BITS (64 - BW_SHIFT) 2365 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2366 unsigned long to_ratio(u64 period, u64 runtime); 2367 2368 extern void init_entity_runnable_average(struct sched_entity *se); 2369 extern void post_init_entity_util_avg(struct task_struct *p); 2370 2371 #ifdef CONFIG_NO_HZ_FULL 2372 extern bool sched_can_stop_tick(struct rq *rq); 2373 extern int __init sched_tick_offload_init(void); 2374 2375 /* 2376 * Tick may be needed by tasks in the runqueue depending on their policy and 2377 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2378 * nohz mode if necessary. 2379 */ 2380 static inline void sched_update_tick_dependency(struct rq *rq) 2381 { 2382 int cpu = cpu_of(rq); 2383 2384 if (!tick_nohz_full_cpu(cpu)) 2385 return; 2386 2387 if (sched_can_stop_tick(rq)) 2388 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2389 else 2390 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2391 } 2392 #else 2393 static inline int sched_tick_offload_init(void) { return 0; } 2394 static inline void sched_update_tick_dependency(struct rq *rq) { } 2395 #endif 2396 2397 static inline void add_nr_running(struct rq *rq, unsigned count) 2398 { 2399 unsigned prev_nr = rq->nr_running; 2400 2401 rq->nr_running = prev_nr + count; 2402 if (trace_sched_update_nr_running_tp_enabled()) { 2403 call_trace_sched_update_nr_running(rq, count); 2404 } 2405 2406 #ifdef CONFIG_SMP 2407 if (prev_nr < 2 && rq->nr_running >= 2) { 2408 if (!READ_ONCE(rq->rd->overload)) 2409 WRITE_ONCE(rq->rd->overload, 1); 2410 } 2411 #endif 2412 2413 sched_update_tick_dependency(rq); 2414 } 2415 2416 static inline void sub_nr_running(struct rq *rq, unsigned count) 2417 { 2418 rq->nr_running -= count; 2419 if (trace_sched_update_nr_running_tp_enabled()) { 2420 call_trace_sched_update_nr_running(rq, -count); 2421 } 2422 2423 /* Check if we still need preemption */ 2424 sched_update_tick_dependency(rq); 2425 } 2426 2427 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2428 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2429 2430 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2431 2432 #ifdef CONFIG_PREEMPT_RT 2433 #define SCHED_NR_MIGRATE_BREAK 8 2434 #else 2435 #define SCHED_NR_MIGRATE_BREAK 32 2436 #endif 2437 2438 extern const_debug unsigned int sysctl_sched_nr_migrate; 2439 extern const_debug unsigned int sysctl_sched_migration_cost; 2440 2441 #ifdef CONFIG_SCHED_DEBUG 2442 extern unsigned int sysctl_sched_latency; 2443 extern unsigned int sysctl_sched_min_granularity; 2444 extern unsigned int sysctl_sched_idle_min_granularity; 2445 extern unsigned int sysctl_sched_wakeup_granularity; 2446 extern int sysctl_resched_latency_warn_ms; 2447 extern int sysctl_resched_latency_warn_once; 2448 2449 extern unsigned int sysctl_sched_tunable_scaling; 2450 2451 extern unsigned int sysctl_numa_balancing_scan_delay; 2452 extern unsigned int sysctl_numa_balancing_scan_period_min; 2453 extern unsigned int sysctl_numa_balancing_scan_period_max; 2454 extern unsigned int sysctl_numa_balancing_scan_size; 2455 extern unsigned int sysctl_numa_balancing_hot_threshold; 2456 #endif 2457 2458 #ifdef CONFIG_SCHED_HRTICK 2459 2460 /* 2461 * Use hrtick when: 2462 * - enabled by features 2463 * - hrtimer is actually high res 2464 */ 2465 static inline int hrtick_enabled(struct rq *rq) 2466 { 2467 if (!cpu_active(cpu_of(rq))) 2468 return 0; 2469 return hrtimer_is_hres_active(&rq->hrtick_timer); 2470 } 2471 2472 static inline int hrtick_enabled_fair(struct rq *rq) 2473 { 2474 if (!sched_feat(HRTICK)) 2475 return 0; 2476 return hrtick_enabled(rq); 2477 } 2478 2479 static inline int hrtick_enabled_dl(struct rq *rq) 2480 { 2481 if (!sched_feat(HRTICK_DL)) 2482 return 0; 2483 return hrtick_enabled(rq); 2484 } 2485 2486 void hrtick_start(struct rq *rq, u64 delay); 2487 2488 #else 2489 2490 static inline int hrtick_enabled_fair(struct rq *rq) 2491 { 2492 return 0; 2493 } 2494 2495 static inline int hrtick_enabled_dl(struct rq *rq) 2496 { 2497 return 0; 2498 } 2499 2500 static inline int hrtick_enabled(struct rq *rq) 2501 { 2502 return 0; 2503 } 2504 2505 #endif /* CONFIG_SCHED_HRTICK */ 2506 2507 #ifndef arch_scale_freq_tick 2508 static __always_inline 2509 void arch_scale_freq_tick(void) 2510 { 2511 } 2512 #endif 2513 2514 #ifndef arch_scale_freq_capacity 2515 /** 2516 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2517 * @cpu: the CPU in question. 2518 * 2519 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2520 * 2521 * f_curr 2522 * ------ * SCHED_CAPACITY_SCALE 2523 * f_max 2524 */ 2525 static __always_inline 2526 unsigned long arch_scale_freq_capacity(int cpu) 2527 { 2528 return SCHED_CAPACITY_SCALE; 2529 } 2530 #endif 2531 2532 #ifdef CONFIG_SCHED_DEBUG 2533 /* 2534 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2535 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2536 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2537 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2538 */ 2539 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2540 { 2541 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2542 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2543 #ifdef CONFIG_SMP 2544 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2545 #endif 2546 } 2547 #else 2548 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2549 #endif 2550 2551 #ifdef CONFIG_SMP 2552 2553 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2554 { 2555 #ifdef CONFIG_SCHED_CORE 2556 /* 2557 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2558 * order by core-id first and cpu-id second. 2559 * 2560 * Notably: 2561 * 2562 * double_rq_lock(0,3); will take core-0, core-1 lock 2563 * double_rq_lock(1,2); will take core-1, core-0 lock 2564 * 2565 * when only cpu-id is considered. 2566 */ 2567 if (rq1->core->cpu < rq2->core->cpu) 2568 return true; 2569 if (rq1->core->cpu > rq2->core->cpu) 2570 return false; 2571 2572 /* 2573 * __sched_core_flip() relies on SMT having cpu-id lock order. 2574 */ 2575 #endif 2576 return rq1->cpu < rq2->cpu; 2577 } 2578 2579 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2580 2581 #ifdef CONFIG_PREEMPTION 2582 2583 /* 2584 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2585 * way at the expense of forcing extra atomic operations in all 2586 * invocations. This assures that the double_lock is acquired using the 2587 * same underlying policy as the spinlock_t on this architecture, which 2588 * reduces latency compared to the unfair variant below. However, it 2589 * also adds more overhead and therefore may reduce throughput. 2590 */ 2591 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2592 __releases(this_rq->lock) 2593 __acquires(busiest->lock) 2594 __acquires(this_rq->lock) 2595 { 2596 raw_spin_rq_unlock(this_rq); 2597 double_rq_lock(this_rq, busiest); 2598 2599 return 1; 2600 } 2601 2602 #else 2603 /* 2604 * Unfair double_lock_balance: Optimizes throughput at the expense of 2605 * latency by eliminating extra atomic operations when the locks are 2606 * already in proper order on entry. This favors lower CPU-ids and will 2607 * grant the double lock to lower CPUs over higher ids under contention, 2608 * regardless of entry order into the function. 2609 */ 2610 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2611 __releases(this_rq->lock) 2612 __acquires(busiest->lock) 2613 __acquires(this_rq->lock) 2614 { 2615 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2616 likely(raw_spin_rq_trylock(busiest))) { 2617 double_rq_clock_clear_update(this_rq, busiest); 2618 return 0; 2619 } 2620 2621 if (rq_order_less(this_rq, busiest)) { 2622 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2623 double_rq_clock_clear_update(this_rq, busiest); 2624 return 0; 2625 } 2626 2627 raw_spin_rq_unlock(this_rq); 2628 double_rq_lock(this_rq, busiest); 2629 2630 return 1; 2631 } 2632 2633 #endif /* CONFIG_PREEMPTION */ 2634 2635 /* 2636 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2637 */ 2638 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2639 { 2640 lockdep_assert_irqs_disabled(); 2641 2642 return _double_lock_balance(this_rq, busiest); 2643 } 2644 2645 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2646 __releases(busiest->lock) 2647 { 2648 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2649 raw_spin_rq_unlock(busiest); 2650 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2651 } 2652 2653 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2654 { 2655 if (l1 > l2) 2656 swap(l1, l2); 2657 2658 spin_lock(l1); 2659 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2660 } 2661 2662 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2663 { 2664 if (l1 > l2) 2665 swap(l1, l2); 2666 2667 spin_lock_irq(l1); 2668 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2669 } 2670 2671 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2672 { 2673 if (l1 > l2) 2674 swap(l1, l2); 2675 2676 raw_spin_lock(l1); 2677 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2678 } 2679 2680 /* 2681 * double_rq_unlock - safely unlock two runqueues 2682 * 2683 * Note this does not restore interrupts like task_rq_unlock, 2684 * you need to do so manually after calling. 2685 */ 2686 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2687 __releases(rq1->lock) 2688 __releases(rq2->lock) 2689 { 2690 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2691 raw_spin_rq_unlock(rq2); 2692 else 2693 __release(rq2->lock); 2694 raw_spin_rq_unlock(rq1); 2695 } 2696 2697 extern void set_rq_online (struct rq *rq); 2698 extern void set_rq_offline(struct rq *rq); 2699 extern bool sched_smp_initialized; 2700 2701 #else /* CONFIG_SMP */ 2702 2703 /* 2704 * double_rq_lock - safely lock two runqueues 2705 * 2706 * Note this does not disable interrupts like task_rq_lock, 2707 * you need to do so manually before calling. 2708 */ 2709 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2710 __acquires(rq1->lock) 2711 __acquires(rq2->lock) 2712 { 2713 WARN_ON_ONCE(!irqs_disabled()); 2714 WARN_ON_ONCE(rq1 != rq2); 2715 raw_spin_rq_lock(rq1); 2716 __acquire(rq2->lock); /* Fake it out ;) */ 2717 double_rq_clock_clear_update(rq1, rq2); 2718 } 2719 2720 /* 2721 * double_rq_unlock - safely unlock two runqueues 2722 * 2723 * Note this does not restore interrupts like task_rq_unlock, 2724 * you need to do so manually after calling. 2725 */ 2726 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2727 __releases(rq1->lock) 2728 __releases(rq2->lock) 2729 { 2730 WARN_ON_ONCE(rq1 != rq2); 2731 raw_spin_rq_unlock(rq1); 2732 __release(rq2->lock); 2733 } 2734 2735 #endif 2736 2737 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2738 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2739 2740 #ifdef CONFIG_SCHED_DEBUG 2741 extern bool sched_debug_verbose; 2742 2743 extern void print_cfs_stats(struct seq_file *m, int cpu); 2744 extern void print_rt_stats(struct seq_file *m, int cpu); 2745 extern void print_dl_stats(struct seq_file *m, int cpu); 2746 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2747 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2748 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2749 2750 extern void resched_latency_warn(int cpu, u64 latency); 2751 #ifdef CONFIG_NUMA_BALANCING 2752 extern void 2753 show_numa_stats(struct task_struct *p, struct seq_file *m); 2754 extern void 2755 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2756 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2757 #endif /* CONFIG_NUMA_BALANCING */ 2758 #else 2759 static inline void resched_latency_warn(int cpu, u64 latency) {} 2760 #endif /* CONFIG_SCHED_DEBUG */ 2761 2762 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2763 extern void init_rt_rq(struct rt_rq *rt_rq); 2764 extern void init_dl_rq(struct dl_rq *dl_rq); 2765 2766 extern void cfs_bandwidth_usage_inc(void); 2767 extern void cfs_bandwidth_usage_dec(void); 2768 2769 #ifdef CONFIG_NO_HZ_COMMON 2770 #define NOHZ_BALANCE_KICK_BIT 0 2771 #define NOHZ_STATS_KICK_BIT 1 2772 #define NOHZ_NEWILB_KICK_BIT 2 2773 #define NOHZ_NEXT_KICK_BIT 3 2774 2775 /* Run rebalance_domains() */ 2776 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2777 /* Update blocked load */ 2778 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2779 /* Update blocked load when entering idle */ 2780 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2781 /* Update nohz.next_balance */ 2782 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2783 2784 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2785 2786 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2787 2788 extern void nohz_balance_exit_idle(struct rq *rq); 2789 #else 2790 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2791 #endif 2792 2793 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2794 extern void nohz_run_idle_balance(int cpu); 2795 #else 2796 static inline void nohz_run_idle_balance(int cpu) { } 2797 #endif 2798 2799 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2800 struct irqtime { 2801 u64 total; 2802 u64 tick_delta; 2803 u64 irq_start_time; 2804 struct u64_stats_sync sync; 2805 }; 2806 2807 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2808 2809 /* 2810 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2811 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2812 * and never move forward. 2813 */ 2814 static inline u64 irq_time_read(int cpu) 2815 { 2816 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2817 unsigned int seq; 2818 u64 total; 2819 2820 do { 2821 seq = __u64_stats_fetch_begin(&irqtime->sync); 2822 total = irqtime->total; 2823 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2824 2825 return total; 2826 } 2827 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2828 2829 #ifdef CONFIG_CPU_FREQ 2830 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2831 2832 /** 2833 * cpufreq_update_util - Take a note about CPU utilization changes. 2834 * @rq: Runqueue to carry out the update for. 2835 * @flags: Update reason flags. 2836 * 2837 * This function is called by the scheduler on the CPU whose utilization is 2838 * being updated. 2839 * 2840 * It can only be called from RCU-sched read-side critical sections. 2841 * 2842 * The way cpufreq is currently arranged requires it to evaluate the CPU 2843 * performance state (frequency/voltage) on a regular basis to prevent it from 2844 * being stuck in a completely inadequate performance level for too long. 2845 * That is not guaranteed to happen if the updates are only triggered from CFS 2846 * and DL, though, because they may not be coming in if only RT tasks are 2847 * active all the time (or there are RT tasks only). 2848 * 2849 * As a workaround for that issue, this function is called periodically by the 2850 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2851 * but that really is a band-aid. Going forward it should be replaced with 2852 * solutions targeted more specifically at RT tasks. 2853 */ 2854 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2855 { 2856 struct update_util_data *data; 2857 2858 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2859 cpu_of(rq))); 2860 if (data) 2861 data->func(data, rq_clock(rq), flags); 2862 } 2863 #else 2864 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2865 #endif /* CONFIG_CPU_FREQ */ 2866 2867 #ifdef arch_scale_freq_capacity 2868 # ifndef arch_scale_freq_invariant 2869 # define arch_scale_freq_invariant() true 2870 # endif 2871 #else 2872 # define arch_scale_freq_invariant() false 2873 #endif 2874 2875 #ifdef CONFIG_SMP 2876 static inline unsigned long capacity_orig_of(int cpu) 2877 { 2878 return cpu_rq(cpu)->cpu_capacity_orig; 2879 } 2880 2881 /** 2882 * enum cpu_util_type - CPU utilization type 2883 * @FREQUENCY_UTIL: Utilization used to select frequency 2884 * @ENERGY_UTIL: Utilization used during energy calculation 2885 * 2886 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2887 * need to be aggregated differently depending on the usage made of them. This 2888 * enum is used within effective_cpu_util() to differentiate the types of 2889 * utilization expected by the callers, and adjust the aggregation accordingly. 2890 */ 2891 enum cpu_util_type { 2892 FREQUENCY_UTIL, 2893 ENERGY_UTIL, 2894 }; 2895 2896 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2897 enum cpu_util_type type, 2898 struct task_struct *p); 2899 2900 /* 2901 * Verify the fitness of task @p to run on @cpu taking into account the 2902 * CPU original capacity and the runtime/deadline ratio of the task. 2903 * 2904 * The function will return true if the original capacity of @cpu is 2905 * greater than or equal to task's deadline density right shifted by 2906 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 2907 */ 2908 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 2909 { 2910 unsigned long cap = arch_scale_cpu_capacity(cpu); 2911 2912 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 2913 } 2914 2915 static inline unsigned long cpu_bw_dl(struct rq *rq) 2916 { 2917 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2918 } 2919 2920 static inline unsigned long cpu_util_dl(struct rq *rq) 2921 { 2922 return READ_ONCE(rq->avg_dl.util_avg); 2923 } 2924 2925 /** 2926 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2927 * @cpu: the CPU to get the utilization for. 2928 * 2929 * The unit of the return value must be the same as the one of CPU capacity 2930 * so that CPU utilization can be compared with CPU capacity. 2931 * 2932 * CPU utilization is the sum of running time of runnable tasks plus the 2933 * recent utilization of currently non-runnable tasks on that CPU. 2934 * It represents the amount of CPU capacity currently used by CFS tasks in 2935 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2936 * capacity at f_max. 2937 * 2938 * The estimated CPU utilization is defined as the maximum between CPU 2939 * utilization and sum of the estimated utilization of the currently 2940 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2941 * previously-executed tasks, which helps better deduce how busy a CPU will 2942 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2943 * of such a task would be significantly decayed at this point of time. 2944 * 2945 * CPU utilization can be higher than the current CPU capacity 2946 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2947 * of rounding errors as well as task migrations or wakeups of new tasks. 2948 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2949 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2950 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2951 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2952 * though since this is useful for predicting the CPU capacity required 2953 * after task migrations (scheduler-driven DVFS). 2954 * 2955 * Return: (Estimated) utilization for the specified CPU. 2956 */ 2957 static inline unsigned long cpu_util_cfs(int cpu) 2958 { 2959 struct cfs_rq *cfs_rq; 2960 unsigned long util; 2961 2962 cfs_rq = &cpu_rq(cpu)->cfs; 2963 util = READ_ONCE(cfs_rq->avg.util_avg); 2964 2965 if (sched_feat(UTIL_EST)) { 2966 util = max_t(unsigned long, util, 2967 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 2968 } 2969 2970 return min(util, capacity_orig_of(cpu)); 2971 } 2972 2973 static inline unsigned long cpu_util_rt(struct rq *rq) 2974 { 2975 return READ_ONCE(rq->avg_rt.util_avg); 2976 } 2977 #endif 2978 2979 #ifdef CONFIG_UCLAMP_TASK 2980 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2981 2982 /** 2983 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2984 * @rq: The rq to clamp against. Must not be NULL. 2985 * @util: The util value to clamp. 2986 * @p: The task to clamp against. Can be NULL if you want to clamp 2987 * against @rq only. 2988 * 2989 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2990 * 2991 * If sched_uclamp_used static key is disabled, then just return the util 2992 * without any clamping since uclamp aggregation at the rq level in the fast 2993 * path is disabled, rendering this operation a NOP. 2994 * 2995 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2996 * will return the correct effective uclamp value of the task even if the 2997 * static key is disabled. 2998 */ 2999 static __always_inline 3000 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3001 struct task_struct *p) 3002 { 3003 unsigned long min_util = 0; 3004 unsigned long max_util = 0; 3005 3006 if (!static_branch_likely(&sched_uclamp_used)) 3007 return util; 3008 3009 if (p) { 3010 min_util = uclamp_eff_value(p, UCLAMP_MIN); 3011 max_util = uclamp_eff_value(p, UCLAMP_MAX); 3012 3013 /* 3014 * Ignore last runnable task's max clamp, as this task will 3015 * reset it. Similarly, no need to read the rq's min clamp. 3016 */ 3017 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 3018 goto out; 3019 } 3020 3021 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 3022 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 3023 out: 3024 /* 3025 * Since CPU's {min,max}_util clamps are MAX aggregated considering 3026 * RUNNABLE tasks with _different_ clamps, we can end up with an 3027 * inversion. Fix it now when the clamps are applied. 3028 */ 3029 if (unlikely(min_util >= max_util)) 3030 return min_util; 3031 3032 return clamp(util, min_util, max_util); 3033 } 3034 3035 /* Is the rq being capped/throttled by uclamp_max? */ 3036 static inline bool uclamp_rq_is_capped(struct rq *rq) 3037 { 3038 unsigned long rq_util; 3039 unsigned long max_util; 3040 3041 if (!static_branch_likely(&sched_uclamp_used)) 3042 return false; 3043 3044 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3045 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3046 3047 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3048 } 3049 3050 /* 3051 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3052 * by default in the fast path and only gets turned on once userspace performs 3053 * an operation that requires it. 3054 * 3055 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3056 * hence is active. 3057 */ 3058 static inline bool uclamp_is_used(void) 3059 { 3060 return static_branch_likely(&sched_uclamp_used); 3061 } 3062 #else /* CONFIG_UCLAMP_TASK */ 3063 static inline 3064 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3065 struct task_struct *p) 3066 { 3067 return util; 3068 } 3069 3070 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3071 3072 static inline bool uclamp_is_used(void) 3073 { 3074 return false; 3075 } 3076 #endif /* CONFIG_UCLAMP_TASK */ 3077 3078 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3079 static inline unsigned long cpu_util_irq(struct rq *rq) 3080 { 3081 return rq->avg_irq.util_avg; 3082 } 3083 3084 static inline 3085 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3086 { 3087 util *= (max - irq); 3088 util /= max; 3089 3090 return util; 3091 3092 } 3093 #else 3094 static inline unsigned long cpu_util_irq(struct rq *rq) 3095 { 3096 return 0; 3097 } 3098 3099 static inline 3100 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3101 { 3102 return util; 3103 } 3104 #endif 3105 3106 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3107 3108 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3109 3110 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3111 3112 static inline bool sched_energy_enabled(void) 3113 { 3114 return static_branch_unlikely(&sched_energy_present); 3115 } 3116 3117 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3118 3119 #define perf_domain_span(pd) NULL 3120 static inline bool sched_energy_enabled(void) { return false; } 3121 3122 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3123 3124 #ifdef CONFIG_MEMBARRIER 3125 /* 3126 * The scheduler provides memory barriers required by membarrier between: 3127 * - prior user-space memory accesses and store to rq->membarrier_state, 3128 * - store to rq->membarrier_state and following user-space memory accesses. 3129 * In the same way it provides those guarantees around store to rq->curr. 3130 */ 3131 static inline void membarrier_switch_mm(struct rq *rq, 3132 struct mm_struct *prev_mm, 3133 struct mm_struct *next_mm) 3134 { 3135 int membarrier_state; 3136 3137 if (prev_mm == next_mm) 3138 return; 3139 3140 membarrier_state = atomic_read(&next_mm->membarrier_state); 3141 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3142 return; 3143 3144 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3145 } 3146 #else 3147 static inline void membarrier_switch_mm(struct rq *rq, 3148 struct mm_struct *prev_mm, 3149 struct mm_struct *next_mm) 3150 { 3151 } 3152 #endif 3153 3154 #ifdef CONFIG_SMP 3155 static inline bool is_per_cpu_kthread(struct task_struct *p) 3156 { 3157 if (!(p->flags & PF_KTHREAD)) 3158 return false; 3159 3160 if (p->nr_cpus_allowed != 1) 3161 return false; 3162 3163 return true; 3164 } 3165 #endif 3166 3167 extern void swake_up_all_locked(struct swait_queue_head *q); 3168 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3169 3170 #ifdef CONFIG_PREEMPT_DYNAMIC 3171 extern int preempt_dynamic_mode; 3172 extern int sched_dynamic_mode(const char *str); 3173 extern void sched_dynamic_update(int mode); 3174 #endif 3175 3176 static inline void update_current_exec_runtime(struct task_struct *curr, 3177 u64 now, u64 delta_exec) 3178 { 3179 curr->se.sum_exec_runtime += delta_exec; 3180 account_group_exec_runtime(curr, delta_exec); 3181 3182 curr->se.exec_start = now; 3183 cgroup_account_cputime(curr, delta_exec); 3184 } 3185 3186 #endif /* _KERNEL_SCHED_SCHED_H */ 3187