xref: /linux/kernel/sched/sched.h (revision d195c39052d1da278a00a6744ce59c383b67b191)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
74 
75 #include "cpupri.h"
76 #include "cpudeadline.h"
77 
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
80 #else
81 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
82 #endif
83 
84 struct rq;
85 struct cpuidle_state;
86 
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED	1
89 #define TASK_ON_RQ_MIGRATING	2
90 
91 extern __read_mostly int scheduler_running;
92 
93 extern unsigned long calc_load_update;
94 extern atomic_long_t calc_load_tasks;
95 
96 extern void calc_global_load_tick(struct rq *this_rq);
97 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
98 
99 /*
100  * Helpers for converting nanosecond timing to jiffy resolution
101  */
102 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 
104 /*
105  * Increase resolution of nice-level calculations for 64-bit architectures.
106  * The extra resolution improves shares distribution and load balancing of
107  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108  * hierarchies, especially on larger systems. This is not a user-visible change
109  * and does not change the user-interface for setting shares/weights.
110  *
111  * We increase resolution only if we have enough bits to allow this increased
112  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113  * are pretty high and the returns do not justify the increased costs.
114  *
115  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116  * increase coverage and consistency always enable it on 64-bit platforms.
117  */
118 #ifdef CONFIG_64BIT
119 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
121 # define scale_load_down(w) \
122 ({ \
123 	unsigned long __w = (w); \
124 	if (__w) \
125 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
126 	__w; \
127 })
128 #else
129 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w)		(w)
131 # define scale_load_down(w)	(w)
132 #endif
133 
134 /*
135  * Task weight (visible to users) and its load (invisible to users) have
136  * independent resolution, but they should be well calibrated. We use
137  * scale_load() and scale_load_down(w) to convert between them. The
138  * following must be true:
139  *
140  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141  *
142  */
143 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
144 
145 /*
146  * Single value that decides SCHED_DEADLINE internal math precision.
147  * 10 -> just above 1us
148  * 9  -> just above 0.5us
149  */
150 #define DL_SCALE		10
151 
152 /*
153  * Single value that denotes runtime == period, ie unlimited time.
154  */
155 #define RUNTIME_INF		((u64)~0ULL)
156 
157 static inline int idle_policy(int policy)
158 {
159 	return policy == SCHED_IDLE;
160 }
161 static inline int fair_policy(int policy)
162 {
163 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
164 }
165 
166 static inline int rt_policy(int policy)
167 {
168 	return policy == SCHED_FIFO || policy == SCHED_RR;
169 }
170 
171 static inline int dl_policy(int policy)
172 {
173 	return policy == SCHED_DEADLINE;
174 }
175 static inline bool valid_policy(int policy)
176 {
177 	return idle_policy(policy) || fair_policy(policy) ||
178 		rt_policy(policy) || dl_policy(policy);
179 }
180 
181 static inline int task_has_idle_policy(struct task_struct *p)
182 {
183 	return idle_policy(p->policy);
184 }
185 
186 static inline int task_has_rt_policy(struct task_struct *p)
187 {
188 	return rt_policy(p->policy);
189 }
190 
191 static inline int task_has_dl_policy(struct task_struct *p)
192 {
193 	return dl_policy(p->policy);
194 }
195 
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197 
198 static inline void update_avg(u64 *avg, u64 sample)
199 {
200 	s64 diff = sample - *avg;
201 	*avg += diff / 8;
202 }
203 
204 /*
205  * !! For sched_setattr_nocheck() (kernel) only !!
206  *
207  * This is actually gross. :(
208  *
209  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
210  * tasks, but still be able to sleep. We need this on platforms that cannot
211  * atomically change clock frequency. Remove once fast switching will be
212  * available on such platforms.
213  *
214  * SUGOV stands for SchedUtil GOVernor.
215  */
216 #define SCHED_FLAG_SUGOV	0x10000000
217 
218 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
219 {
220 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
221 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
222 #else
223 	return false;
224 #endif
225 }
226 
227 /*
228  * Tells if entity @a should preempt entity @b.
229  */
230 static inline bool
231 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
232 {
233 	return dl_entity_is_special(a) ||
234 	       dl_time_before(a->deadline, b->deadline);
235 }
236 
237 /*
238  * This is the priority-queue data structure of the RT scheduling class:
239  */
240 struct rt_prio_array {
241 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
242 	struct list_head queue[MAX_RT_PRIO];
243 };
244 
245 struct rt_bandwidth {
246 	/* nests inside the rq lock: */
247 	raw_spinlock_t		rt_runtime_lock;
248 	ktime_t			rt_period;
249 	u64			rt_runtime;
250 	struct hrtimer		rt_period_timer;
251 	unsigned int		rt_period_active;
252 };
253 
254 void __dl_clear_params(struct task_struct *p);
255 
256 /*
257  * To keep the bandwidth of -deadline tasks and groups under control
258  * we need some place where:
259  *  - store the maximum -deadline bandwidth of the system (the group);
260  *  - cache the fraction of that bandwidth that is currently allocated.
261  *
262  * This is all done in the data structure below. It is similar to the
263  * one used for RT-throttling (rt_bandwidth), with the main difference
264  * that, since here we are only interested in admission control, we
265  * do not decrease any runtime while the group "executes", neither we
266  * need a timer to replenish it.
267  *
268  * With respect to SMP, the bandwidth is given on a per-CPU basis,
269  * meaning that:
270  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
271  *  - dl_total_bw array contains, in the i-eth element, the currently
272  *    allocated bandwidth on the i-eth CPU.
273  * Moreover, groups consume bandwidth on each CPU, while tasks only
274  * consume bandwidth on the CPU they're running on.
275  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
276  * that will be shown the next time the proc or cgroup controls will
277  * be red. It on its turn can be changed by writing on its own
278  * control.
279  */
280 struct dl_bandwidth {
281 	raw_spinlock_t		dl_runtime_lock;
282 	u64			dl_runtime;
283 	u64			dl_period;
284 };
285 
286 static inline int dl_bandwidth_enabled(void)
287 {
288 	return sysctl_sched_rt_runtime >= 0;
289 }
290 
291 struct dl_bw {
292 	raw_spinlock_t		lock;
293 	u64			bw;
294 	u64			total_bw;
295 };
296 
297 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
298 
299 static inline
300 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
301 {
302 	dl_b->total_bw -= tsk_bw;
303 	__dl_update(dl_b, (s32)tsk_bw / cpus);
304 }
305 
306 static inline
307 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
308 {
309 	dl_b->total_bw += tsk_bw;
310 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
311 }
312 
313 static inline
314 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
315 {
316 	return dl_b->bw != -1 &&
317 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
318 }
319 
320 extern void init_dl_bw(struct dl_bw *dl_b);
321 extern int  sched_dl_global_validate(void);
322 extern void sched_dl_do_global(void);
323 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
324 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
325 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
326 extern bool __checkparam_dl(const struct sched_attr *attr);
327 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
328 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
329 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
330 extern bool dl_cpu_busy(unsigned int cpu);
331 
332 #ifdef CONFIG_CGROUP_SCHED
333 
334 #include <linux/cgroup.h>
335 #include <linux/psi.h>
336 
337 struct cfs_rq;
338 struct rt_rq;
339 
340 extern struct list_head task_groups;
341 
342 struct cfs_bandwidth {
343 #ifdef CONFIG_CFS_BANDWIDTH
344 	raw_spinlock_t		lock;
345 	ktime_t			period;
346 	u64			quota;
347 	u64			runtime;
348 	s64			hierarchical_quota;
349 
350 	u8			idle;
351 	u8			period_active;
352 	u8			distribute_running;
353 	u8			slack_started;
354 	struct hrtimer		period_timer;
355 	struct hrtimer		slack_timer;
356 	struct list_head	throttled_cfs_rq;
357 
358 	/* Statistics: */
359 	int			nr_periods;
360 	int			nr_throttled;
361 	u64			throttled_time;
362 #endif
363 };
364 
365 /* Task group related information */
366 struct task_group {
367 	struct cgroup_subsys_state css;
368 
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 	/* schedulable entities of this group on each CPU */
371 	struct sched_entity	**se;
372 	/* runqueue "owned" by this group on each CPU */
373 	struct cfs_rq		**cfs_rq;
374 	unsigned long		shares;
375 
376 #ifdef	CONFIG_SMP
377 	/*
378 	 * load_avg can be heavily contended at clock tick time, so put
379 	 * it in its own cacheline separated from the fields above which
380 	 * will also be accessed at each tick.
381 	 */
382 	atomic_long_t		load_avg ____cacheline_aligned;
383 #endif
384 #endif
385 
386 #ifdef CONFIG_RT_GROUP_SCHED
387 	struct sched_rt_entity	**rt_se;
388 	struct rt_rq		**rt_rq;
389 
390 	struct rt_bandwidth	rt_bandwidth;
391 #endif
392 
393 	struct rcu_head		rcu;
394 	struct list_head	list;
395 
396 	struct task_group	*parent;
397 	struct list_head	siblings;
398 	struct list_head	children;
399 
400 #ifdef CONFIG_SCHED_AUTOGROUP
401 	struct autogroup	*autogroup;
402 #endif
403 
404 	struct cfs_bandwidth	cfs_bandwidth;
405 
406 #ifdef CONFIG_UCLAMP_TASK_GROUP
407 	/* The two decimal precision [%] value requested from user-space */
408 	unsigned int		uclamp_pct[UCLAMP_CNT];
409 	/* Clamp values requested for a task group */
410 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
411 	/* Effective clamp values used for a task group */
412 	struct uclamp_se	uclamp[UCLAMP_CNT];
413 #endif
414 
415 };
416 
417 #ifdef CONFIG_FAIR_GROUP_SCHED
418 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
419 
420 /*
421  * A weight of 0 or 1 can cause arithmetics problems.
422  * A weight of a cfs_rq is the sum of weights of which entities
423  * are queued on this cfs_rq, so a weight of a entity should not be
424  * too large, so as the shares value of a task group.
425  * (The default weight is 1024 - so there's no practical
426  *  limitation from this.)
427  */
428 #define MIN_SHARES		(1UL <<  1)
429 #define MAX_SHARES		(1UL << 18)
430 #endif
431 
432 typedef int (*tg_visitor)(struct task_group *, void *);
433 
434 extern int walk_tg_tree_from(struct task_group *from,
435 			     tg_visitor down, tg_visitor up, void *data);
436 
437 /*
438  * Iterate the full tree, calling @down when first entering a node and @up when
439  * leaving it for the final time.
440  *
441  * Caller must hold rcu_lock or sufficient equivalent.
442  */
443 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444 {
445 	return walk_tg_tree_from(&root_task_group, down, up, data);
446 }
447 
448 extern int tg_nop(struct task_group *tg, void *data);
449 
450 extern void free_fair_sched_group(struct task_group *tg);
451 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
452 extern void online_fair_sched_group(struct task_group *tg);
453 extern void unregister_fair_sched_group(struct task_group *tg);
454 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
455 			struct sched_entity *se, int cpu,
456 			struct sched_entity *parent);
457 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
458 
459 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
460 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
461 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
462 
463 extern void free_rt_sched_group(struct task_group *tg);
464 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
465 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
466 		struct sched_rt_entity *rt_se, int cpu,
467 		struct sched_rt_entity *parent);
468 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
469 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
470 extern long sched_group_rt_runtime(struct task_group *tg);
471 extern long sched_group_rt_period(struct task_group *tg);
472 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
473 
474 extern struct task_group *sched_create_group(struct task_group *parent);
475 extern void sched_online_group(struct task_group *tg,
476 			       struct task_group *parent);
477 extern void sched_destroy_group(struct task_group *tg);
478 extern void sched_offline_group(struct task_group *tg);
479 
480 extern void sched_move_task(struct task_struct *tsk);
481 
482 #ifdef CONFIG_FAIR_GROUP_SCHED
483 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
484 
485 #ifdef CONFIG_SMP
486 extern void set_task_rq_fair(struct sched_entity *se,
487 			     struct cfs_rq *prev, struct cfs_rq *next);
488 #else /* !CONFIG_SMP */
489 static inline void set_task_rq_fair(struct sched_entity *se,
490 			     struct cfs_rq *prev, struct cfs_rq *next) { }
491 #endif /* CONFIG_SMP */
492 #endif /* CONFIG_FAIR_GROUP_SCHED */
493 
494 #else /* CONFIG_CGROUP_SCHED */
495 
496 struct cfs_bandwidth { };
497 
498 #endif	/* CONFIG_CGROUP_SCHED */
499 
500 /* CFS-related fields in a runqueue */
501 struct cfs_rq {
502 	struct load_weight	load;
503 	unsigned int		nr_running;
504 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
505 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
506 
507 	u64			exec_clock;
508 	u64			min_vruntime;
509 #ifndef CONFIG_64BIT
510 	u64			min_vruntime_copy;
511 #endif
512 
513 	struct rb_root_cached	tasks_timeline;
514 
515 	/*
516 	 * 'curr' points to currently running entity on this cfs_rq.
517 	 * It is set to NULL otherwise (i.e when none are currently running).
518 	 */
519 	struct sched_entity	*curr;
520 	struct sched_entity	*next;
521 	struct sched_entity	*last;
522 	struct sched_entity	*skip;
523 
524 #ifdef	CONFIG_SCHED_DEBUG
525 	unsigned int		nr_spread_over;
526 #endif
527 
528 #ifdef CONFIG_SMP
529 	/*
530 	 * CFS load tracking
531 	 */
532 	struct sched_avg	avg;
533 #ifndef CONFIG_64BIT
534 	u64			load_last_update_time_copy;
535 #endif
536 	struct {
537 		raw_spinlock_t	lock ____cacheline_aligned;
538 		int		nr;
539 		unsigned long	load_avg;
540 		unsigned long	util_avg;
541 		unsigned long	runnable_avg;
542 	} removed;
543 
544 #ifdef CONFIG_FAIR_GROUP_SCHED
545 	unsigned long		tg_load_avg_contrib;
546 	long			propagate;
547 	long			prop_runnable_sum;
548 
549 	/*
550 	 *   h_load = weight * f(tg)
551 	 *
552 	 * Where f(tg) is the recursive weight fraction assigned to
553 	 * this group.
554 	 */
555 	unsigned long		h_load;
556 	u64			last_h_load_update;
557 	struct sched_entity	*h_load_next;
558 #endif /* CONFIG_FAIR_GROUP_SCHED */
559 #endif /* CONFIG_SMP */
560 
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
563 
564 	/*
565 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
566 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
567 	 * (like users, containers etc.)
568 	 *
569 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
570 	 * This list is used during load balance.
571 	 */
572 	int			on_list;
573 	struct list_head	leaf_cfs_rq_list;
574 	struct task_group	*tg;	/* group that "owns" this runqueue */
575 
576 #ifdef CONFIG_CFS_BANDWIDTH
577 	int			runtime_enabled;
578 	s64			runtime_remaining;
579 
580 	u64			throttled_clock;
581 	u64			throttled_clock_task;
582 	u64			throttled_clock_task_time;
583 	int			throttled;
584 	int			throttle_count;
585 	struct list_head	throttled_list;
586 #endif /* CONFIG_CFS_BANDWIDTH */
587 #endif /* CONFIG_FAIR_GROUP_SCHED */
588 };
589 
590 static inline int rt_bandwidth_enabled(void)
591 {
592 	return sysctl_sched_rt_runtime >= 0;
593 }
594 
595 /* RT IPI pull logic requires IRQ_WORK */
596 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
597 # define HAVE_RT_PUSH_IPI
598 #endif
599 
600 /* Real-Time classes' related field in a runqueue: */
601 struct rt_rq {
602 	struct rt_prio_array	active;
603 	unsigned int		rt_nr_running;
604 	unsigned int		rr_nr_running;
605 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
606 	struct {
607 		int		curr; /* highest queued rt task prio */
608 #ifdef CONFIG_SMP
609 		int		next; /* next highest */
610 #endif
611 	} highest_prio;
612 #endif
613 #ifdef CONFIG_SMP
614 	unsigned long		rt_nr_migratory;
615 	unsigned long		rt_nr_total;
616 	int			overloaded;
617 	struct plist_head	pushable_tasks;
618 
619 #endif /* CONFIG_SMP */
620 	int			rt_queued;
621 
622 	int			rt_throttled;
623 	u64			rt_time;
624 	u64			rt_runtime;
625 	/* Nests inside the rq lock: */
626 	raw_spinlock_t		rt_runtime_lock;
627 
628 #ifdef CONFIG_RT_GROUP_SCHED
629 	unsigned long		rt_nr_boosted;
630 
631 	struct rq		*rq;
632 	struct task_group	*tg;
633 #endif
634 };
635 
636 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
637 {
638 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
639 }
640 
641 /* Deadline class' related fields in a runqueue */
642 struct dl_rq {
643 	/* runqueue is an rbtree, ordered by deadline */
644 	struct rb_root_cached	root;
645 
646 	unsigned long		dl_nr_running;
647 
648 #ifdef CONFIG_SMP
649 	/*
650 	 * Deadline values of the currently executing and the
651 	 * earliest ready task on this rq. Caching these facilitates
652 	 * the decision whether or not a ready but not running task
653 	 * should migrate somewhere else.
654 	 */
655 	struct {
656 		u64		curr;
657 		u64		next;
658 	} earliest_dl;
659 
660 	unsigned long		dl_nr_migratory;
661 	int			overloaded;
662 
663 	/*
664 	 * Tasks on this rq that can be pushed away. They are kept in
665 	 * an rb-tree, ordered by tasks' deadlines, with caching
666 	 * of the leftmost (earliest deadline) element.
667 	 */
668 	struct rb_root_cached	pushable_dl_tasks_root;
669 #else
670 	struct dl_bw		dl_bw;
671 #endif
672 	/*
673 	 * "Active utilization" for this runqueue: increased when a
674 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
675 	 * task blocks
676 	 */
677 	u64			running_bw;
678 
679 	/*
680 	 * Utilization of the tasks "assigned" to this runqueue (including
681 	 * the tasks that are in runqueue and the tasks that executed on this
682 	 * CPU and blocked). Increased when a task moves to this runqueue, and
683 	 * decreased when the task moves away (migrates, changes scheduling
684 	 * policy, or terminates).
685 	 * This is needed to compute the "inactive utilization" for the
686 	 * runqueue (inactive utilization = this_bw - running_bw).
687 	 */
688 	u64			this_bw;
689 	u64			extra_bw;
690 
691 	/*
692 	 * Inverse of the fraction of CPU utilization that can be reclaimed
693 	 * by the GRUB algorithm.
694 	 */
695 	u64			bw_ratio;
696 };
697 
698 #ifdef CONFIG_FAIR_GROUP_SCHED
699 /* An entity is a task if it doesn't "own" a runqueue */
700 #define entity_is_task(se)	(!se->my_q)
701 
702 static inline void se_update_runnable(struct sched_entity *se)
703 {
704 	if (!entity_is_task(se))
705 		se->runnable_weight = se->my_q->h_nr_running;
706 }
707 
708 static inline long se_runnable(struct sched_entity *se)
709 {
710 	if (entity_is_task(se))
711 		return !!se->on_rq;
712 	else
713 		return se->runnable_weight;
714 }
715 
716 #else
717 #define entity_is_task(se)	1
718 
719 static inline void se_update_runnable(struct sched_entity *se) {}
720 
721 static inline long se_runnable(struct sched_entity *se)
722 {
723 	return !!se->on_rq;
724 }
725 #endif
726 
727 #ifdef CONFIG_SMP
728 /*
729  * XXX we want to get rid of these helpers and use the full load resolution.
730  */
731 static inline long se_weight(struct sched_entity *se)
732 {
733 	return scale_load_down(se->load.weight);
734 }
735 
736 
737 static inline bool sched_asym_prefer(int a, int b)
738 {
739 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
740 }
741 
742 struct perf_domain {
743 	struct em_perf_domain *em_pd;
744 	struct perf_domain *next;
745 	struct rcu_head rcu;
746 };
747 
748 /* Scheduling group status flags */
749 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
750 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
751 
752 /*
753  * We add the notion of a root-domain which will be used to define per-domain
754  * variables. Each exclusive cpuset essentially defines an island domain by
755  * fully partitioning the member CPUs from any other cpuset. Whenever a new
756  * exclusive cpuset is created, we also create and attach a new root-domain
757  * object.
758  *
759  */
760 struct root_domain {
761 	atomic_t		refcount;
762 	atomic_t		rto_count;
763 	struct rcu_head		rcu;
764 	cpumask_var_t		span;
765 	cpumask_var_t		online;
766 
767 	/*
768 	 * Indicate pullable load on at least one CPU, e.g:
769 	 * - More than one runnable task
770 	 * - Running task is misfit
771 	 */
772 	int			overload;
773 
774 	/* Indicate one or more cpus over-utilized (tipping point) */
775 	int			overutilized;
776 
777 	/*
778 	 * The bit corresponding to a CPU gets set here if such CPU has more
779 	 * than one runnable -deadline task (as it is below for RT tasks).
780 	 */
781 	cpumask_var_t		dlo_mask;
782 	atomic_t		dlo_count;
783 	struct dl_bw		dl_bw;
784 	struct cpudl		cpudl;
785 
786 #ifdef HAVE_RT_PUSH_IPI
787 	/*
788 	 * For IPI pull requests, loop across the rto_mask.
789 	 */
790 	struct irq_work		rto_push_work;
791 	raw_spinlock_t		rto_lock;
792 	/* These are only updated and read within rto_lock */
793 	int			rto_loop;
794 	int			rto_cpu;
795 	/* These atomics are updated outside of a lock */
796 	atomic_t		rto_loop_next;
797 	atomic_t		rto_loop_start;
798 #endif
799 	/*
800 	 * The "RT overload" flag: it gets set if a CPU has more than
801 	 * one runnable RT task.
802 	 */
803 	cpumask_var_t		rto_mask;
804 	struct cpupri		cpupri;
805 
806 	unsigned long		max_cpu_capacity;
807 
808 	/*
809 	 * NULL-terminated list of performance domains intersecting with the
810 	 * CPUs of the rd. Protected by RCU.
811 	 */
812 	struct perf_domain __rcu *pd;
813 };
814 
815 extern void init_defrootdomain(void);
816 extern int sched_init_domains(const struct cpumask *cpu_map);
817 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
818 extern void sched_get_rd(struct root_domain *rd);
819 extern void sched_put_rd(struct root_domain *rd);
820 
821 #ifdef HAVE_RT_PUSH_IPI
822 extern void rto_push_irq_work_func(struct irq_work *work);
823 #endif
824 #endif /* CONFIG_SMP */
825 
826 #ifdef CONFIG_UCLAMP_TASK
827 /*
828  * struct uclamp_bucket - Utilization clamp bucket
829  * @value: utilization clamp value for tasks on this clamp bucket
830  * @tasks: number of RUNNABLE tasks on this clamp bucket
831  *
832  * Keep track of how many tasks are RUNNABLE for a given utilization
833  * clamp value.
834  */
835 struct uclamp_bucket {
836 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
837 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
838 };
839 
840 /*
841  * struct uclamp_rq - rq's utilization clamp
842  * @value: currently active clamp values for a rq
843  * @bucket: utilization clamp buckets affecting a rq
844  *
845  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
846  * A clamp value is affecting a rq when there is at least one task RUNNABLE
847  * (or actually running) with that value.
848  *
849  * There are up to UCLAMP_CNT possible different clamp values, currently there
850  * are only two: minimum utilization and maximum utilization.
851  *
852  * All utilization clamping values are MAX aggregated, since:
853  * - for util_min: we want to run the CPU at least at the max of the minimum
854  *   utilization required by its currently RUNNABLE tasks.
855  * - for util_max: we want to allow the CPU to run up to the max of the
856  *   maximum utilization allowed by its currently RUNNABLE tasks.
857  *
858  * Since on each system we expect only a limited number of different
859  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
860  * the metrics required to compute all the per-rq utilization clamp values.
861  */
862 struct uclamp_rq {
863 	unsigned int value;
864 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
865 };
866 #endif /* CONFIG_UCLAMP_TASK */
867 
868 /*
869  * This is the main, per-CPU runqueue data structure.
870  *
871  * Locking rule: those places that want to lock multiple runqueues
872  * (such as the load balancing or the thread migration code), lock
873  * acquire operations must be ordered by ascending &runqueue.
874  */
875 struct rq {
876 	/* runqueue lock: */
877 	raw_spinlock_t		lock;
878 
879 	/*
880 	 * nr_running and cpu_load should be in the same cacheline because
881 	 * remote CPUs use both these fields when doing load calculation.
882 	 */
883 	unsigned int		nr_running;
884 #ifdef CONFIG_NUMA_BALANCING
885 	unsigned int		nr_numa_running;
886 	unsigned int		nr_preferred_running;
887 	unsigned int		numa_migrate_on;
888 #endif
889 #ifdef CONFIG_NO_HZ_COMMON
890 #ifdef CONFIG_SMP
891 	unsigned long		last_blocked_load_update_tick;
892 	unsigned int		has_blocked_load;
893 #endif /* CONFIG_SMP */
894 	unsigned int		nohz_tick_stopped;
895 	atomic_t nohz_flags;
896 #endif /* CONFIG_NO_HZ_COMMON */
897 
898 	unsigned long		nr_load_updates;
899 	u64			nr_switches;
900 
901 #ifdef CONFIG_UCLAMP_TASK
902 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
903 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
904 	unsigned int		uclamp_flags;
905 #define UCLAMP_FLAG_IDLE 0x01
906 #endif
907 
908 	struct cfs_rq		cfs;
909 	struct rt_rq		rt;
910 	struct dl_rq		dl;
911 
912 #ifdef CONFIG_FAIR_GROUP_SCHED
913 	/* list of leaf cfs_rq on this CPU: */
914 	struct list_head	leaf_cfs_rq_list;
915 	struct list_head	*tmp_alone_branch;
916 #endif /* CONFIG_FAIR_GROUP_SCHED */
917 
918 	/*
919 	 * This is part of a global counter where only the total sum
920 	 * over all CPUs matters. A task can increase this counter on
921 	 * one CPU and if it got migrated afterwards it may decrease
922 	 * it on another CPU. Always updated under the runqueue lock:
923 	 */
924 	unsigned long		nr_uninterruptible;
925 
926 	struct task_struct __rcu	*curr;
927 	struct task_struct	*idle;
928 	struct task_struct	*stop;
929 	unsigned long		next_balance;
930 	struct mm_struct	*prev_mm;
931 
932 	unsigned int		clock_update_flags;
933 	u64			clock;
934 	/* Ensure that all clocks are in the same cache line */
935 	u64			clock_task ____cacheline_aligned;
936 	u64			clock_pelt;
937 	unsigned long		lost_idle_time;
938 
939 	atomic_t		nr_iowait;
940 
941 #ifdef CONFIG_MEMBARRIER
942 	int membarrier_state;
943 #endif
944 
945 #ifdef CONFIG_SMP
946 	struct root_domain		*rd;
947 	struct sched_domain __rcu	*sd;
948 
949 	unsigned long		cpu_capacity;
950 	unsigned long		cpu_capacity_orig;
951 
952 	struct callback_head	*balance_callback;
953 
954 	unsigned char		idle_balance;
955 
956 	unsigned long		misfit_task_load;
957 
958 	/* For active balancing */
959 	int			active_balance;
960 	int			push_cpu;
961 	struct cpu_stop_work	active_balance_work;
962 
963 	/* CPU of this runqueue: */
964 	int			cpu;
965 	int			online;
966 
967 	struct list_head cfs_tasks;
968 
969 	struct sched_avg	avg_rt;
970 	struct sched_avg	avg_dl;
971 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
972 	struct sched_avg	avg_irq;
973 #endif
974 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
975 	struct sched_avg	avg_thermal;
976 #endif
977 	u64			idle_stamp;
978 	u64			avg_idle;
979 
980 	/* This is used to determine avg_idle's max value */
981 	u64			max_idle_balance_cost;
982 #endif
983 
984 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
985 	u64			prev_irq_time;
986 #endif
987 #ifdef CONFIG_PARAVIRT
988 	u64			prev_steal_time;
989 #endif
990 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
991 	u64			prev_steal_time_rq;
992 #endif
993 
994 	/* calc_load related fields */
995 	unsigned long		calc_load_update;
996 	long			calc_load_active;
997 
998 #ifdef CONFIG_SCHED_HRTICK
999 #ifdef CONFIG_SMP
1000 	call_single_data_t	hrtick_csd;
1001 #endif
1002 	struct hrtimer		hrtick_timer;
1003 #endif
1004 
1005 #ifdef CONFIG_SCHEDSTATS
1006 	/* latency stats */
1007 	struct sched_info	rq_sched_info;
1008 	unsigned long long	rq_cpu_time;
1009 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1010 
1011 	/* sys_sched_yield() stats */
1012 	unsigned int		yld_count;
1013 
1014 	/* schedule() stats */
1015 	unsigned int		sched_count;
1016 	unsigned int		sched_goidle;
1017 
1018 	/* try_to_wake_up() stats */
1019 	unsigned int		ttwu_count;
1020 	unsigned int		ttwu_local;
1021 #endif
1022 
1023 #ifdef CONFIG_SMP
1024 	struct llist_head	wake_list;
1025 #endif
1026 
1027 #ifdef CONFIG_CPU_IDLE
1028 	/* Must be inspected within a rcu lock section */
1029 	struct cpuidle_state	*idle_state;
1030 #endif
1031 };
1032 
1033 #ifdef CONFIG_FAIR_GROUP_SCHED
1034 
1035 /* CPU runqueue to which this cfs_rq is attached */
1036 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1037 {
1038 	return cfs_rq->rq;
1039 }
1040 
1041 #else
1042 
1043 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1044 {
1045 	return container_of(cfs_rq, struct rq, cfs);
1046 }
1047 #endif
1048 
1049 static inline int cpu_of(struct rq *rq)
1050 {
1051 #ifdef CONFIG_SMP
1052 	return rq->cpu;
1053 #else
1054 	return 0;
1055 #endif
1056 }
1057 
1058 
1059 #ifdef CONFIG_SCHED_SMT
1060 extern void __update_idle_core(struct rq *rq);
1061 
1062 static inline void update_idle_core(struct rq *rq)
1063 {
1064 	if (static_branch_unlikely(&sched_smt_present))
1065 		__update_idle_core(rq);
1066 }
1067 
1068 #else
1069 static inline void update_idle_core(struct rq *rq) { }
1070 #endif
1071 
1072 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1073 
1074 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1075 #define this_rq()		this_cpu_ptr(&runqueues)
1076 #define task_rq(p)		cpu_rq(task_cpu(p))
1077 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1078 #define raw_rq()		raw_cpu_ptr(&runqueues)
1079 
1080 extern void update_rq_clock(struct rq *rq);
1081 
1082 static inline u64 __rq_clock_broken(struct rq *rq)
1083 {
1084 	return READ_ONCE(rq->clock);
1085 }
1086 
1087 /*
1088  * rq::clock_update_flags bits
1089  *
1090  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1091  *  call to __schedule(). This is an optimisation to avoid
1092  *  neighbouring rq clock updates.
1093  *
1094  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1095  *  in effect and calls to update_rq_clock() are being ignored.
1096  *
1097  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1098  *  made to update_rq_clock() since the last time rq::lock was pinned.
1099  *
1100  * If inside of __schedule(), clock_update_flags will have been
1101  * shifted left (a left shift is a cheap operation for the fast path
1102  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1103  *
1104  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1105  *
1106  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1107  * one position though, because the next rq_unpin_lock() will shift it
1108  * back.
1109  */
1110 #define RQCF_REQ_SKIP		0x01
1111 #define RQCF_ACT_SKIP		0x02
1112 #define RQCF_UPDATED		0x04
1113 
1114 static inline void assert_clock_updated(struct rq *rq)
1115 {
1116 	/*
1117 	 * The only reason for not seeing a clock update since the
1118 	 * last rq_pin_lock() is if we're currently skipping updates.
1119 	 */
1120 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1121 }
1122 
1123 static inline u64 rq_clock(struct rq *rq)
1124 {
1125 	lockdep_assert_held(&rq->lock);
1126 	assert_clock_updated(rq);
1127 
1128 	return rq->clock;
1129 }
1130 
1131 static inline u64 rq_clock_task(struct rq *rq)
1132 {
1133 	lockdep_assert_held(&rq->lock);
1134 	assert_clock_updated(rq);
1135 
1136 	return rq->clock_task;
1137 }
1138 
1139 /**
1140  * By default the decay is the default pelt decay period.
1141  * The decay shift can change the decay period in
1142  * multiples of 32.
1143  *  Decay shift		Decay period(ms)
1144  *	0			32
1145  *	1			64
1146  *	2			128
1147  *	3			256
1148  *	4			512
1149  */
1150 extern int sched_thermal_decay_shift;
1151 
1152 static inline u64 rq_clock_thermal(struct rq *rq)
1153 {
1154 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1155 }
1156 
1157 static inline void rq_clock_skip_update(struct rq *rq)
1158 {
1159 	lockdep_assert_held(&rq->lock);
1160 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1161 }
1162 
1163 /*
1164  * See rt task throttling, which is the only time a skip
1165  * request is cancelled.
1166  */
1167 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1168 {
1169 	lockdep_assert_held(&rq->lock);
1170 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1171 }
1172 
1173 struct rq_flags {
1174 	unsigned long flags;
1175 	struct pin_cookie cookie;
1176 #ifdef CONFIG_SCHED_DEBUG
1177 	/*
1178 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1179 	 * current pin context is stashed here in case it needs to be
1180 	 * restored in rq_repin_lock().
1181 	 */
1182 	unsigned int clock_update_flags;
1183 #endif
1184 };
1185 
1186 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1187 {
1188 	rf->cookie = lockdep_pin_lock(&rq->lock);
1189 
1190 #ifdef CONFIG_SCHED_DEBUG
1191 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1192 	rf->clock_update_flags = 0;
1193 #endif
1194 }
1195 
1196 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1197 {
1198 #ifdef CONFIG_SCHED_DEBUG
1199 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1200 		rf->clock_update_flags = RQCF_UPDATED;
1201 #endif
1202 
1203 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1204 }
1205 
1206 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1207 {
1208 	lockdep_repin_lock(&rq->lock, rf->cookie);
1209 
1210 #ifdef CONFIG_SCHED_DEBUG
1211 	/*
1212 	 * Restore the value we stashed in @rf for this pin context.
1213 	 */
1214 	rq->clock_update_flags |= rf->clock_update_flags;
1215 #endif
1216 }
1217 
1218 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1219 	__acquires(rq->lock);
1220 
1221 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1222 	__acquires(p->pi_lock)
1223 	__acquires(rq->lock);
1224 
1225 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1226 	__releases(rq->lock)
1227 {
1228 	rq_unpin_lock(rq, rf);
1229 	raw_spin_unlock(&rq->lock);
1230 }
1231 
1232 static inline void
1233 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1234 	__releases(rq->lock)
1235 	__releases(p->pi_lock)
1236 {
1237 	rq_unpin_lock(rq, rf);
1238 	raw_spin_unlock(&rq->lock);
1239 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1240 }
1241 
1242 static inline void
1243 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1244 	__acquires(rq->lock)
1245 {
1246 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1247 	rq_pin_lock(rq, rf);
1248 }
1249 
1250 static inline void
1251 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1252 	__acquires(rq->lock)
1253 {
1254 	raw_spin_lock_irq(&rq->lock);
1255 	rq_pin_lock(rq, rf);
1256 }
1257 
1258 static inline void
1259 rq_lock(struct rq *rq, struct rq_flags *rf)
1260 	__acquires(rq->lock)
1261 {
1262 	raw_spin_lock(&rq->lock);
1263 	rq_pin_lock(rq, rf);
1264 }
1265 
1266 static inline void
1267 rq_relock(struct rq *rq, struct rq_flags *rf)
1268 	__acquires(rq->lock)
1269 {
1270 	raw_spin_lock(&rq->lock);
1271 	rq_repin_lock(rq, rf);
1272 }
1273 
1274 static inline void
1275 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1276 	__releases(rq->lock)
1277 {
1278 	rq_unpin_lock(rq, rf);
1279 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1280 }
1281 
1282 static inline void
1283 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1284 	__releases(rq->lock)
1285 {
1286 	rq_unpin_lock(rq, rf);
1287 	raw_spin_unlock_irq(&rq->lock);
1288 }
1289 
1290 static inline void
1291 rq_unlock(struct rq *rq, struct rq_flags *rf)
1292 	__releases(rq->lock)
1293 {
1294 	rq_unpin_lock(rq, rf);
1295 	raw_spin_unlock(&rq->lock);
1296 }
1297 
1298 static inline struct rq *
1299 this_rq_lock_irq(struct rq_flags *rf)
1300 	__acquires(rq->lock)
1301 {
1302 	struct rq *rq;
1303 
1304 	local_irq_disable();
1305 	rq = this_rq();
1306 	rq_lock(rq, rf);
1307 	return rq;
1308 }
1309 
1310 #ifdef CONFIG_NUMA
1311 enum numa_topology_type {
1312 	NUMA_DIRECT,
1313 	NUMA_GLUELESS_MESH,
1314 	NUMA_BACKPLANE,
1315 };
1316 extern enum numa_topology_type sched_numa_topology_type;
1317 extern int sched_max_numa_distance;
1318 extern bool find_numa_distance(int distance);
1319 extern void sched_init_numa(void);
1320 extern void sched_domains_numa_masks_set(unsigned int cpu);
1321 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1322 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1323 #else
1324 static inline void sched_init_numa(void) { }
1325 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1326 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1327 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1328 {
1329 	return nr_cpu_ids;
1330 }
1331 #endif
1332 
1333 #ifdef CONFIG_NUMA_BALANCING
1334 /* The regions in numa_faults array from task_struct */
1335 enum numa_faults_stats {
1336 	NUMA_MEM = 0,
1337 	NUMA_CPU,
1338 	NUMA_MEMBUF,
1339 	NUMA_CPUBUF
1340 };
1341 extern void sched_setnuma(struct task_struct *p, int node);
1342 extern int migrate_task_to(struct task_struct *p, int cpu);
1343 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1344 			int cpu, int scpu);
1345 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1346 #else
1347 static inline void
1348 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1349 {
1350 }
1351 #endif /* CONFIG_NUMA_BALANCING */
1352 
1353 #ifdef CONFIG_SMP
1354 
1355 static inline void
1356 queue_balance_callback(struct rq *rq,
1357 		       struct callback_head *head,
1358 		       void (*func)(struct rq *rq))
1359 {
1360 	lockdep_assert_held(&rq->lock);
1361 
1362 	if (unlikely(head->next))
1363 		return;
1364 
1365 	head->func = (void (*)(struct callback_head *))func;
1366 	head->next = rq->balance_callback;
1367 	rq->balance_callback = head;
1368 }
1369 
1370 extern void sched_ttwu_pending(void);
1371 
1372 #define rcu_dereference_check_sched_domain(p) \
1373 	rcu_dereference_check((p), \
1374 			      lockdep_is_held(&sched_domains_mutex))
1375 
1376 /*
1377  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1378  * See destroy_sched_domains: call_rcu for details.
1379  *
1380  * The domain tree of any CPU may only be accessed from within
1381  * preempt-disabled sections.
1382  */
1383 #define for_each_domain(cpu, __sd) \
1384 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1385 			__sd; __sd = __sd->parent)
1386 
1387 /**
1388  * highest_flag_domain - Return highest sched_domain containing flag.
1389  * @cpu:	The CPU whose highest level of sched domain is to
1390  *		be returned.
1391  * @flag:	The flag to check for the highest sched_domain
1392  *		for the given CPU.
1393  *
1394  * Returns the highest sched_domain of a CPU which contains the given flag.
1395  */
1396 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1397 {
1398 	struct sched_domain *sd, *hsd = NULL;
1399 
1400 	for_each_domain(cpu, sd) {
1401 		if (!(sd->flags & flag))
1402 			break;
1403 		hsd = sd;
1404 	}
1405 
1406 	return hsd;
1407 }
1408 
1409 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1410 {
1411 	struct sched_domain *sd;
1412 
1413 	for_each_domain(cpu, sd) {
1414 		if (sd->flags & flag)
1415 			break;
1416 	}
1417 
1418 	return sd;
1419 }
1420 
1421 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1422 DECLARE_PER_CPU(int, sd_llc_size);
1423 DECLARE_PER_CPU(int, sd_llc_id);
1424 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1425 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1426 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1427 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1428 extern struct static_key_false sched_asym_cpucapacity;
1429 
1430 struct sched_group_capacity {
1431 	atomic_t		ref;
1432 	/*
1433 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1434 	 * for a single CPU.
1435 	 */
1436 	unsigned long		capacity;
1437 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1438 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1439 	unsigned long		next_update;
1440 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1441 
1442 #ifdef CONFIG_SCHED_DEBUG
1443 	int			id;
1444 #endif
1445 
1446 	unsigned long		cpumask[0];		/* Balance mask */
1447 };
1448 
1449 struct sched_group {
1450 	struct sched_group	*next;			/* Must be a circular list */
1451 	atomic_t		ref;
1452 
1453 	unsigned int		group_weight;
1454 	struct sched_group_capacity *sgc;
1455 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1456 
1457 	/*
1458 	 * The CPUs this group covers.
1459 	 *
1460 	 * NOTE: this field is variable length. (Allocated dynamically
1461 	 * by attaching extra space to the end of the structure,
1462 	 * depending on how many CPUs the kernel has booted up with)
1463 	 */
1464 	unsigned long		cpumask[0];
1465 };
1466 
1467 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1468 {
1469 	return to_cpumask(sg->cpumask);
1470 }
1471 
1472 /*
1473  * See build_balance_mask().
1474  */
1475 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1476 {
1477 	return to_cpumask(sg->sgc->cpumask);
1478 }
1479 
1480 /**
1481  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1482  * @group: The group whose first CPU is to be returned.
1483  */
1484 static inline unsigned int group_first_cpu(struct sched_group *group)
1485 {
1486 	return cpumask_first(sched_group_span(group));
1487 }
1488 
1489 extern int group_balance_cpu(struct sched_group *sg);
1490 
1491 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1492 void register_sched_domain_sysctl(void);
1493 void dirty_sched_domain_sysctl(int cpu);
1494 void unregister_sched_domain_sysctl(void);
1495 #else
1496 static inline void register_sched_domain_sysctl(void)
1497 {
1498 }
1499 static inline void dirty_sched_domain_sysctl(int cpu)
1500 {
1501 }
1502 static inline void unregister_sched_domain_sysctl(void)
1503 {
1504 }
1505 #endif
1506 
1507 extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1508 
1509 #else
1510 
1511 static inline void sched_ttwu_pending(void) { }
1512 
1513 static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1514 
1515 #endif /* CONFIG_SMP */
1516 
1517 #include "stats.h"
1518 #include "autogroup.h"
1519 
1520 #ifdef CONFIG_CGROUP_SCHED
1521 
1522 /*
1523  * Return the group to which this tasks belongs.
1524  *
1525  * We cannot use task_css() and friends because the cgroup subsystem
1526  * changes that value before the cgroup_subsys::attach() method is called,
1527  * therefore we cannot pin it and might observe the wrong value.
1528  *
1529  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1530  * core changes this before calling sched_move_task().
1531  *
1532  * Instead we use a 'copy' which is updated from sched_move_task() while
1533  * holding both task_struct::pi_lock and rq::lock.
1534  */
1535 static inline struct task_group *task_group(struct task_struct *p)
1536 {
1537 	return p->sched_task_group;
1538 }
1539 
1540 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1541 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1542 {
1543 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1544 	struct task_group *tg = task_group(p);
1545 #endif
1546 
1547 #ifdef CONFIG_FAIR_GROUP_SCHED
1548 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1549 	p->se.cfs_rq = tg->cfs_rq[cpu];
1550 	p->se.parent = tg->se[cpu];
1551 #endif
1552 
1553 #ifdef CONFIG_RT_GROUP_SCHED
1554 	p->rt.rt_rq  = tg->rt_rq[cpu];
1555 	p->rt.parent = tg->rt_se[cpu];
1556 #endif
1557 }
1558 
1559 #else /* CONFIG_CGROUP_SCHED */
1560 
1561 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1562 static inline struct task_group *task_group(struct task_struct *p)
1563 {
1564 	return NULL;
1565 }
1566 
1567 #endif /* CONFIG_CGROUP_SCHED */
1568 
1569 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1570 {
1571 	set_task_rq(p, cpu);
1572 #ifdef CONFIG_SMP
1573 	/*
1574 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1575 	 * successfully executed on another CPU. We must ensure that updates of
1576 	 * per-task data have been completed by this moment.
1577 	 */
1578 	smp_wmb();
1579 #ifdef CONFIG_THREAD_INFO_IN_TASK
1580 	WRITE_ONCE(p->cpu, cpu);
1581 #else
1582 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1583 #endif
1584 	p->wake_cpu = cpu;
1585 #endif
1586 }
1587 
1588 /*
1589  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1590  */
1591 #ifdef CONFIG_SCHED_DEBUG
1592 # include <linux/static_key.h>
1593 # define const_debug __read_mostly
1594 #else
1595 # define const_debug const
1596 #endif
1597 
1598 #define SCHED_FEAT(name, enabled)	\
1599 	__SCHED_FEAT_##name ,
1600 
1601 enum {
1602 #include "features.h"
1603 	__SCHED_FEAT_NR,
1604 };
1605 
1606 #undef SCHED_FEAT
1607 
1608 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1609 
1610 /*
1611  * To support run-time toggling of sched features, all the translation units
1612  * (but core.c) reference the sysctl_sched_features defined in core.c.
1613  */
1614 extern const_debug unsigned int sysctl_sched_features;
1615 
1616 #define SCHED_FEAT(name, enabled)					\
1617 static __always_inline bool static_branch_##name(struct static_key *key) \
1618 {									\
1619 	return static_key_##enabled(key);				\
1620 }
1621 
1622 #include "features.h"
1623 #undef SCHED_FEAT
1624 
1625 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1626 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1627 
1628 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1629 
1630 /*
1631  * Each translation unit has its own copy of sysctl_sched_features to allow
1632  * constants propagation at compile time and compiler optimization based on
1633  * features default.
1634  */
1635 #define SCHED_FEAT(name, enabled)	\
1636 	(1UL << __SCHED_FEAT_##name) * enabled |
1637 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1638 #include "features.h"
1639 	0;
1640 #undef SCHED_FEAT
1641 
1642 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1643 
1644 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1645 
1646 extern struct static_key_false sched_numa_balancing;
1647 extern struct static_key_false sched_schedstats;
1648 
1649 static inline u64 global_rt_period(void)
1650 {
1651 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1652 }
1653 
1654 static inline u64 global_rt_runtime(void)
1655 {
1656 	if (sysctl_sched_rt_runtime < 0)
1657 		return RUNTIME_INF;
1658 
1659 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1660 }
1661 
1662 static inline int task_current(struct rq *rq, struct task_struct *p)
1663 {
1664 	return rq->curr == p;
1665 }
1666 
1667 static inline int task_running(struct rq *rq, struct task_struct *p)
1668 {
1669 #ifdef CONFIG_SMP
1670 	return p->on_cpu;
1671 #else
1672 	return task_current(rq, p);
1673 #endif
1674 }
1675 
1676 static inline int task_on_rq_queued(struct task_struct *p)
1677 {
1678 	return p->on_rq == TASK_ON_RQ_QUEUED;
1679 }
1680 
1681 static inline int task_on_rq_migrating(struct task_struct *p)
1682 {
1683 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1684 }
1685 
1686 /*
1687  * wake flags
1688  */
1689 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1690 #define WF_FORK			0x02		/* Child wakeup after fork */
1691 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1692 
1693 /*
1694  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1695  * of tasks with abnormal "nice" values across CPUs the contribution that
1696  * each task makes to its run queue's load is weighted according to its
1697  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1698  * scaled version of the new time slice allocation that they receive on time
1699  * slice expiry etc.
1700  */
1701 
1702 #define WEIGHT_IDLEPRIO		3
1703 #define WMULT_IDLEPRIO		1431655765
1704 
1705 extern const int		sched_prio_to_weight[40];
1706 extern const u32		sched_prio_to_wmult[40];
1707 
1708 /*
1709  * {de,en}queue flags:
1710  *
1711  * DEQUEUE_SLEEP  - task is no longer runnable
1712  * ENQUEUE_WAKEUP - task just became runnable
1713  *
1714  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1715  *                are in a known state which allows modification. Such pairs
1716  *                should preserve as much state as possible.
1717  *
1718  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1719  *        in the runqueue.
1720  *
1721  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1722  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1723  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1724  *
1725  */
1726 
1727 #define DEQUEUE_SLEEP		0x01
1728 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1729 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1730 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1731 
1732 #define ENQUEUE_WAKEUP		0x01
1733 #define ENQUEUE_RESTORE		0x02
1734 #define ENQUEUE_MOVE		0x04
1735 #define ENQUEUE_NOCLOCK		0x08
1736 
1737 #define ENQUEUE_HEAD		0x10
1738 #define ENQUEUE_REPLENISH	0x20
1739 #ifdef CONFIG_SMP
1740 #define ENQUEUE_MIGRATED	0x40
1741 #else
1742 #define ENQUEUE_MIGRATED	0x00
1743 #endif
1744 
1745 #define RETRY_TASK		((void *)-1UL)
1746 
1747 struct sched_class {
1748 	const struct sched_class *next;
1749 
1750 #ifdef CONFIG_UCLAMP_TASK
1751 	int uclamp_enabled;
1752 #endif
1753 
1754 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1755 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1756 	void (*yield_task)   (struct rq *rq);
1757 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1758 
1759 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1760 
1761 	struct task_struct *(*pick_next_task)(struct rq *rq);
1762 
1763 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1764 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1765 
1766 #ifdef CONFIG_SMP
1767 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1768 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1769 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1770 
1771 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1772 
1773 	void (*set_cpus_allowed)(struct task_struct *p,
1774 				 const struct cpumask *newmask);
1775 
1776 	void (*rq_online)(struct rq *rq);
1777 	void (*rq_offline)(struct rq *rq);
1778 #endif
1779 
1780 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1781 	void (*task_fork)(struct task_struct *p);
1782 	void (*task_dead)(struct task_struct *p);
1783 
1784 	/*
1785 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1786 	 * cannot assume the switched_from/switched_to pair is serliazed by
1787 	 * rq->lock. They are however serialized by p->pi_lock.
1788 	 */
1789 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1790 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1791 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1792 			      int oldprio);
1793 
1794 	unsigned int (*get_rr_interval)(struct rq *rq,
1795 					struct task_struct *task);
1796 
1797 	void (*update_curr)(struct rq *rq);
1798 
1799 #define TASK_SET_GROUP		0
1800 #define TASK_MOVE_GROUP		1
1801 
1802 #ifdef CONFIG_FAIR_GROUP_SCHED
1803 	void (*task_change_group)(struct task_struct *p, int type);
1804 #endif
1805 };
1806 
1807 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1808 {
1809 	WARN_ON_ONCE(rq->curr != prev);
1810 	prev->sched_class->put_prev_task(rq, prev);
1811 }
1812 
1813 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1814 {
1815 	WARN_ON_ONCE(rq->curr != next);
1816 	next->sched_class->set_next_task(rq, next, false);
1817 }
1818 
1819 #ifdef CONFIG_SMP
1820 #define sched_class_highest (&stop_sched_class)
1821 #else
1822 #define sched_class_highest (&dl_sched_class)
1823 #endif
1824 
1825 #define for_class_range(class, _from, _to) \
1826 	for (class = (_from); class != (_to); class = class->next)
1827 
1828 #define for_each_class(class) \
1829 	for_class_range(class, sched_class_highest, NULL)
1830 
1831 extern const struct sched_class stop_sched_class;
1832 extern const struct sched_class dl_sched_class;
1833 extern const struct sched_class rt_sched_class;
1834 extern const struct sched_class fair_sched_class;
1835 extern const struct sched_class idle_sched_class;
1836 
1837 static inline bool sched_stop_runnable(struct rq *rq)
1838 {
1839 	return rq->stop && task_on_rq_queued(rq->stop);
1840 }
1841 
1842 static inline bool sched_dl_runnable(struct rq *rq)
1843 {
1844 	return rq->dl.dl_nr_running > 0;
1845 }
1846 
1847 static inline bool sched_rt_runnable(struct rq *rq)
1848 {
1849 	return rq->rt.rt_queued > 0;
1850 }
1851 
1852 static inline bool sched_fair_runnable(struct rq *rq)
1853 {
1854 	return rq->cfs.nr_running > 0;
1855 }
1856 
1857 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1858 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1859 
1860 #ifdef CONFIG_SMP
1861 
1862 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1863 
1864 extern void trigger_load_balance(struct rq *rq);
1865 
1866 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1867 
1868 #endif
1869 
1870 #ifdef CONFIG_CPU_IDLE
1871 static inline void idle_set_state(struct rq *rq,
1872 				  struct cpuidle_state *idle_state)
1873 {
1874 	rq->idle_state = idle_state;
1875 }
1876 
1877 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1878 {
1879 	SCHED_WARN_ON(!rcu_read_lock_held());
1880 
1881 	return rq->idle_state;
1882 }
1883 #else
1884 static inline void idle_set_state(struct rq *rq,
1885 				  struct cpuidle_state *idle_state)
1886 {
1887 }
1888 
1889 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1890 {
1891 	return NULL;
1892 }
1893 #endif
1894 
1895 extern void schedule_idle(void);
1896 
1897 extern void sysrq_sched_debug_show(void);
1898 extern void sched_init_granularity(void);
1899 extern void update_max_interval(void);
1900 
1901 extern void init_sched_dl_class(void);
1902 extern void init_sched_rt_class(void);
1903 extern void init_sched_fair_class(void);
1904 
1905 extern void reweight_task(struct task_struct *p, int prio);
1906 
1907 extern void resched_curr(struct rq *rq);
1908 extern void resched_cpu(int cpu);
1909 
1910 extern struct rt_bandwidth def_rt_bandwidth;
1911 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1912 
1913 extern struct dl_bandwidth def_dl_bandwidth;
1914 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1915 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1916 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1917 
1918 #define BW_SHIFT		20
1919 #define BW_UNIT			(1 << BW_SHIFT)
1920 #define RATIO_SHIFT		8
1921 unsigned long to_ratio(u64 period, u64 runtime);
1922 
1923 extern void init_entity_runnable_average(struct sched_entity *se);
1924 extern void post_init_entity_util_avg(struct task_struct *p);
1925 
1926 #ifdef CONFIG_NO_HZ_FULL
1927 extern bool sched_can_stop_tick(struct rq *rq);
1928 extern int __init sched_tick_offload_init(void);
1929 
1930 /*
1931  * Tick may be needed by tasks in the runqueue depending on their policy and
1932  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1933  * nohz mode if necessary.
1934  */
1935 static inline void sched_update_tick_dependency(struct rq *rq)
1936 {
1937 	int cpu;
1938 
1939 	if (!tick_nohz_full_enabled())
1940 		return;
1941 
1942 	cpu = cpu_of(rq);
1943 
1944 	if (!tick_nohz_full_cpu(cpu))
1945 		return;
1946 
1947 	if (sched_can_stop_tick(rq))
1948 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1949 	else
1950 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1951 }
1952 #else
1953 static inline int sched_tick_offload_init(void) { return 0; }
1954 static inline void sched_update_tick_dependency(struct rq *rq) { }
1955 #endif
1956 
1957 static inline void add_nr_running(struct rq *rq, unsigned count)
1958 {
1959 	unsigned prev_nr = rq->nr_running;
1960 
1961 	rq->nr_running = prev_nr + count;
1962 
1963 #ifdef CONFIG_SMP
1964 	if (prev_nr < 2 && rq->nr_running >= 2) {
1965 		if (!READ_ONCE(rq->rd->overload))
1966 			WRITE_ONCE(rq->rd->overload, 1);
1967 	}
1968 #endif
1969 
1970 	sched_update_tick_dependency(rq);
1971 }
1972 
1973 static inline void sub_nr_running(struct rq *rq, unsigned count)
1974 {
1975 	rq->nr_running -= count;
1976 	/* Check if we still need preemption */
1977 	sched_update_tick_dependency(rq);
1978 }
1979 
1980 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1981 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1982 
1983 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1984 
1985 extern const_debug unsigned int sysctl_sched_nr_migrate;
1986 extern const_debug unsigned int sysctl_sched_migration_cost;
1987 
1988 #ifdef CONFIG_SCHED_HRTICK
1989 
1990 /*
1991  * Use hrtick when:
1992  *  - enabled by features
1993  *  - hrtimer is actually high res
1994  */
1995 static inline int hrtick_enabled(struct rq *rq)
1996 {
1997 	if (!sched_feat(HRTICK))
1998 		return 0;
1999 	if (!cpu_active(cpu_of(rq)))
2000 		return 0;
2001 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2002 }
2003 
2004 void hrtick_start(struct rq *rq, u64 delay);
2005 
2006 #else
2007 
2008 static inline int hrtick_enabled(struct rq *rq)
2009 {
2010 	return 0;
2011 }
2012 
2013 #endif /* CONFIG_SCHED_HRTICK */
2014 
2015 #ifndef arch_scale_freq_tick
2016 static __always_inline
2017 void arch_scale_freq_tick(void)
2018 {
2019 }
2020 #endif
2021 
2022 #ifndef arch_scale_freq_capacity
2023 static __always_inline
2024 unsigned long arch_scale_freq_capacity(int cpu)
2025 {
2026 	return SCHED_CAPACITY_SCALE;
2027 }
2028 #endif
2029 
2030 #ifdef CONFIG_SMP
2031 #ifdef CONFIG_PREEMPTION
2032 
2033 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2034 
2035 /*
2036  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2037  * way at the expense of forcing extra atomic operations in all
2038  * invocations.  This assures that the double_lock is acquired using the
2039  * same underlying policy as the spinlock_t on this architecture, which
2040  * reduces latency compared to the unfair variant below.  However, it
2041  * also adds more overhead and therefore may reduce throughput.
2042  */
2043 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2044 	__releases(this_rq->lock)
2045 	__acquires(busiest->lock)
2046 	__acquires(this_rq->lock)
2047 {
2048 	raw_spin_unlock(&this_rq->lock);
2049 	double_rq_lock(this_rq, busiest);
2050 
2051 	return 1;
2052 }
2053 
2054 #else
2055 /*
2056  * Unfair double_lock_balance: Optimizes throughput at the expense of
2057  * latency by eliminating extra atomic operations when the locks are
2058  * already in proper order on entry.  This favors lower CPU-ids and will
2059  * grant the double lock to lower CPUs over higher ids under contention,
2060  * regardless of entry order into the function.
2061  */
2062 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2063 	__releases(this_rq->lock)
2064 	__acquires(busiest->lock)
2065 	__acquires(this_rq->lock)
2066 {
2067 	int ret = 0;
2068 
2069 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2070 		if (busiest < this_rq) {
2071 			raw_spin_unlock(&this_rq->lock);
2072 			raw_spin_lock(&busiest->lock);
2073 			raw_spin_lock_nested(&this_rq->lock,
2074 					      SINGLE_DEPTH_NESTING);
2075 			ret = 1;
2076 		} else
2077 			raw_spin_lock_nested(&busiest->lock,
2078 					      SINGLE_DEPTH_NESTING);
2079 	}
2080 	return ret;
2081 }
2082 
2083 #endif /* CONFIG_PREEMPTION */
2084 
2085 /*
2086  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2087  */
2088 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2089 {
2090 	if (unlikely(!irqs_disabled())) {
2091 		/* printk() doesn't work well under rq->lock */
2092 		raw_spin_unlock(&this_rq->lock);
2093 		BUG_ON(1);
2094 	}
2095 
2096 	return _double_lock_balance(this_rq, busiest);
2097 }
2098 
2099 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2100 	__releases(busiest->lock)
2101 {
2102 	raw_spin_unlock(&busiest->lock);
2103 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2104 }
2105 
2106 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2107 {
2108 	if (l1 > l2)
2109 		swap(l1, l2);
2110 
2111 	spin_lock(l1);
2112 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2113 }
2114 
2115 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2116 {
2117 	if (l1 > l2)
2118 		swap(l1, l2);
2119 
2120 	spin_lock_irq(l1);
2121 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2122 }
2123 
2124 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2125 {
2126 	if (l1 > l2)
2127 		swap(l1, l2);
2128 
2129 	raw_spin_lock(l1);
2130 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2131 }
2132 
2133 /*
2134  * double_rq_lock - safely lock two runqueues
2135  *
2136  * Note this does not disable interrupts like task_rq_lock,
2137  * you need to do so manually before calling.
2138  */
2139 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2140 	__acquires(rq1->lock)
2141 	__acquires(rq2->lock)
2142 {
2143 	BUG_ON(!irqs_disabled());
2144 	if (rq1 == rq2) {
2145 		raw_spin_lock(&rq1->lock);
2146 		__acquire(rq2->lock);	/* Fake it out ;) */
2147 	} else {
2148 		if (rq1 < rq2) {
2149 			raw_spin_lock(&rq1->lock);
2150 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2151 		} else {
2152 			raw_spin_lock(&rq2->lock);
2153 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2154 		}
2155 	}
2156 }
2157 
2158 /*
2159  * double_rq_unlock - safely unlock two runqueues
2160  *
2161  * Note this does not restore interrupts like task_rq_unlock,
2162  * you need to do so manually after calling.
2163  */
2164 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2165 	__releases(rq1->lock)
2166 	__releases(rq2->lock)
2167 {
2168 	raw_spin_unlock(&rq1->lock);
2169 	if (rq1 != rq2)
2170 		raw_spin_unlock(&rq2->lock);
2171 	else
2172 		__release(rq2->lock);
2173 }
2174 
2175 extern void set_rq_online (struct rq *rq);
2176 extern void set_rq_offline(struct rq *rq);
2177 extern bool sched_smp_initialized;
2178 
2179 #else /* CONFIG_SMP */
2180 
2181 /*
2182  * double_rq_lock - safely lock two runqueues
2183  *
2184  * Note this does not disable interrupts like task_rq_lock,
2185  * you need to do so manually before calling.
2186  */
2187 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2188 	__acquires(rq1->lock)
2189 	__acquires(rq2->lock)
2190 {
2191 	BUG_ON(!irqs_disabled());
2192 	BUG_ON(rq1 != rq2);
2193 	raw_spin_lock(&rq1->lock);
2194 	__acquire(rq2->lock);	/* Fake it out ;) */
2195 }
2196 
2197 /*
2198  * double_rq_unlock - safely unlock two runqueues
2199  *
2200  * Note this does not restore interrupts like task_rq_unlock,
2201  * you need to do so manually after calling.
2202  */
2203 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2204 	__releases(rq1->lock)
2205 	__releases(rq2->lock)
2206 {
2207 	BUG_ON(rq1 != rq2);
2208 	raw_spin_unlock(&rq1->lock);
2209 	__release(rq2->lock);
2210 }
2211 
2212 #endif
2213 
2214 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2215 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2216 
2217 #ifdef	CONFIG_SCHED_DEBUG
2218 extern bool sched_debug_enabled;
2219 
2220 extern void print_cfs_stats(struct seq_file *m, int cpu);
2221 extern void print_rt_stats(struct seq_file *m, int cpu);
2222 extern void print_dl_stats(struct seq_file *m, int cpu);
2223 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2224 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2225 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2226 #ifdef CONFIG_NUMA_BALANCING
2227 extern void
2228 show_numa_stats(struct task_struct *p, struct seq_file *m);
2229 extern void
2230 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2231 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2232 #endif /* CONFIG_NUMA_BALANCING */
2233 #endif /* CONFIG_SCHED_DEBUG */
2234 
2235 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2236 extern void init_rt_rq(struct rt_rq *rt_rq);
2237 extern void init_dl_rq(struct dl_rq *dl_rq);
2238 
2239 extern void cfs_bandwidth_usage_inc(void);
2240 extern void cfs_bandwidth_usage_dec(void);
2241 
2242 #ifdef CONFIG_NO_HZ_COMMON
2243 #define NOHZ_BALANCE_KICK_BIT	0
2244 #define NOHZ_STATS_KICK_BIT	1
2245 
2246 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2247 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2248 
2249 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2250 
2251 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2252 
2253 extern void nohz_balance_exit_idle(struct rq *rq);
2254 #else
2255 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2256 #endif
2257 
2258 
2259 #ifdef CONFIG_SMP
2260 static inline
2261 void __dl_update(struct dl_bw *dl_b, s64 bw)
2262 {
2263 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2264 	int i;
2265 
2266 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2267 			 "sched RCU must be held");
2268 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2269 		struct rq *rq = cpu_rq(i);
2270 
2271 		rq->dl.extra_bw += bw;
2272 	}
2273 }
2274 #else
2275 static inline
2276 void __dl_update(struct dl_bw *dl_b, s64 bw)
2277 {
2278 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2279 
2280 	dl->extra_bw += bw;
2281 }
2282 #endif
2283 
2284 
2285 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2286 struct irqtime {
2287 	u64			total;
2288 	u64			tick_delta;
2289 	u64			irq_start_time;
2290 	struct u64_stats_sync	sync;
2291 };
2292 
2293 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2294 
2295 /*
2296  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2297  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2298  * and never move forward.
2299  */
2300 static inline u64 irq_time_read(int cpu)
2301 {
2302 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2303 	unsigned int seq;
2304 	u64 total;
2305 
2306 	do {
2307 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2308 		total = irqtime->total;
2309 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2310 
2311 	return total;
2312 }
2313 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2314 
2315 #ifdef CONFIG_CPU_FREQ
2316 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2317 
2318 /**
2319  * cpufreq_update_util - Take a note about CPU utilization changes.
2320  * @rq: Runqueue to carry out the update for.
2321  * @flags: Update reason flags.
2322  *
2323  * This function is called by the scheduler on the CPU whose utilization is
2324  * being updated.
2325  *
2326  * It can only be called from RCU-sched read-side critical sections.
2327  *
2328  * The way cpufreq is currently arranged requires it to evaluate the CPU
2329  * performance state (frequency/voltage) on a regular basis to prevent it from
2330  * being stuck in a completely inadequate performance level for too long.
2331  * That is not guaranteed to happen if the updates are only triggered from CFS
2332  * and DL, though, because they may not be coming in if only RT tasks are
2333  * active all the time (or there are RT tasks only).
2334  *
2335  * As a workaround for that issue, this function is called periodically by the
2336  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2337  * but that really is a band-aid.  Going forward it should be replaced with
2338  * solutions targeted more specifically at RT tasks.
2339  */
2340 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2341 {
2342 	struct update_util_data *data;
2343 
2344 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2345 						  cpu_of(rq)));
2346 	if (data)
2347 		data->func(data, rq_clock(rq), flags);
2348 }
2349 #else
2350 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2351 #endif /* CONFIG_CPU_FREQ */
2352 
2353 #ifdef CONFIG_UCLAMP_TASK
2354 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2355 
2356 static __always_inline
2357 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2358 				  struct task_struct *p)
2359 {
2360 	unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2361 	unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2362 
2363 	if (p) {
2364 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2365 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2366 	}
2367 
2368 	/*
2369 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2370 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2371 	 * inversion. Fix it now when the clamps are applied.
2372 	 */
2373 	if (unlikely(min_util >= max_util))
2374 		return min_util;
2375 
2376 	return clamp(util, min_util, max_util);
2377 }
2378 #else /* CONFIG_UCLAMP_TASK */
2379 static inline
2380 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2381 				  struct task_struct *p)
2382 {
2383 	return util;
2384 }
2385 #endif /* CONFIG_UCLAMP_TASK */
2386 
2387 #ifdef arch_scale_freq_capacity
2388 # ifndef arch_scale_freq_invariant
2389 #  define arch_scale_freq_invariant()	true
2390 # endif
2391 #else
2392 # define arch_scale_freq_invariant()	false
2393 #endif
2394 
2395 #ifdef CONFIG_SMP
2396 static inline unsigned long capacity_orig_of(int cpu)
2397 {
2398 	return cpu_rq(cpu)->cpu_capacity_orig;
2399 }
2400 #endif
2401 
2402 /**
2403  * enum schedutil_type - CPU utilization type
2404  * @FREQUENCY_UTIL:	Utilization used to select frequency
2405  * @ENERGY_UTIL:	Utilization used during energy calculation
2406  *
2407  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2408  * need to be aggregated differently depending on the usage made of them. This
2409  * enum is used within schedutil_freq_util() to differentiate the types of
2410  * utilization expected by the callers, and adjust the aggregation accordingly.
2411  */
2412 enum schedutil_type {
2413 	FREQUENCY_UTIL,
2414 	ENERGY_UTIL,
2415 };
2416 
2417 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2418 
2419 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2420 				 unsigned long max, enum schedutil_type type,
2421 				 struct task_struct *p);
2422 
2423 static inline unsigned long cpu_bw_dl(struct rq *rq)
2424 {
2425 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2426 }
2427 
2428 static inline unsigned long cpu_util_dl(struct rq *rq)
2429 {
2430 	return READ_ONCE(rq->avg_dl.util_avg);
2431 }
2432 
2433 static inline unsigned long cpu_util_cfs(struct rq *rq)
2434 {
2435 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2436 
2437 	if (sched_feat(UTIL_EST)) {
2438 		util = max_t(unsigned long, util,
2439 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2440 	}
2441 
2442 	return util;
2443 }
2444 
2445 static inline unsigned long cpu_util_rt(struct rq *rq)
2446 {
2447 	return READ_ONCE(rq->avg_rt.util_avg);
2448 }
2449 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2450 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2451 				 unsigned long max, enum schedutil_type type,
2452 				 struct task_struct *p)
2453 {
2454 	return 0;
2455 }
2456 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2457 
2458 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2459 static inline unsigned long cpu_util_irq(struct rq *rq)
2460 {
2461 	return rq->avg_irq.util_avg;
2462 }
2463 
2464 static inline
2465 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2466 {
2467 	util *= (max - irq);
2468 	util /= max;
2469 
2470 	return util;
2471 
2472 }
2473 #else
2474 static inline unsigned long cpu_util_irq(struct rq *rq)
2475 {
2476 	return 0;
2477 }
2478 
2479 static inline
2480 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2481 {
2482 	return util;
2483 }
2484 #endif
2485 
2486 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2487 
2488 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2489 
2490 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2491 
2492 static inline bool sched_energy_enabled(void)
2493 {
2494 	return static_branch_unlikely(&sched_energy_present);
2495 }
2496 
2497 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2498 
2499 #define perf_domain_span(pd) NULL
2500 static inline bool sched_energy_enabled(void) { return false; }
2501 
2502 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2503 
2504 #ifdef CONFIG_MEMBARRIER
2505 /*
2506  * The scheduler provides memory barriers required by membarrier between:
2507  * - prior user-space memory accesses and store to rq->membarrier_state,
2508  * - store to rq->membarrier_state and following user-space memory accesses.
2509  * In the same way it provides those guarantees around store to rq->curr.
2510  */
2511 static inline void membarrier_switch_mm(struct rq *rq,
2512 					struct mm_struct *prev_mm,
2513 					struct mm_struct *next_mm)
2514 {
2515 	int membarrier_state;
2516 
2517 	if (prev_mm == next_mm)
2518 		return;
2519 
2520 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2521 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2522 		return;
2523 
2524 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2525 }
2526 #else
2527 static inline void membarrier_switch_mm(struct rq *rq,
2528 					struct mm_struct *prev_mm,
2529 					struct mm_struct *next_mm)
2530 {
2531 }
2532 #endif
2533 
2534 #ifdef CONFIG_SMP
2535 static inline bool is_per_cpu_kthread(struct task_struct *p)
2536 {
2537 	if (!(p->flags & PF_KTHREAD))
2538 		return false;
2539 
2540 	if (p->nr_cpus_allowed != 1)
2541 		return false;
2542 
2543 	return true;
2544 }
2545 #endif
2546 
2547 void swake_up_all_locked(struct swait_queue_head *q);
2548 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2549