xref: /linux/kernel/sched/sched.h (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/mutex.h>
7 #include <linux/spinlock.h>
8 #include <linux/stop_machine.h>
9 #include <linux/irq_work.h>
10 #include <linux/tick.h>
11 #include <linux/slab.h>
12 
13 #include "cpupri.h"
14 #include "cpudeadline.h"
15 #include "cpuacct.h"
16 
17 struct rq;
18 struct cpuidle_state;
19 
20 /* task_struct::on_rq states: */
21 #define TASK_ON_RQ_QUEUED	1
22 #define TASK_ON_RQ_MIGRATING	2
23 
24 extern __read_mostly int scheduler_running;
25 
26 extern unsigned long calc_load_update;
27 extern atomic_long_t calc_load_tasks;
28 
29 extern void calc_global_load_tick(struct rq *this_rq);
30 extern long calc_load_fold_active(struct rq *this_rq);
31 
32 #ifdef CONFIG_SMP
33 extern void update_cpu_load_active(struct rq *this_rq);
34 #else
35 static inline void update_cpu_load_active(struct rq *this_rq) { }
36 #endif
37 
38 /*
39  * Helpers for converting nanosecond timing to jiffy resolution
40  */
41 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42 
43 /*
44  * Increase resolution of nice-level calculations for 64-bit architectures.
45  * The extra resolution improves shares distribution and load balancing of
46  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47  * hierarchies, especially on larger systems. This is not a user-visible change
48  * and does not change the user-interface for setting shares/weights.
49  *
50  * We increase resolution only if we have enough bits to allow this increased
51  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53  * increased costs.
54  */
55 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
56 # define SCHED_LOAD_RESOLUTION	10
57 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
58 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
59 #else
60 # define SCHED_LOAD_RESOLUTION	0
61 # define scale_load(w)		(w)
62 # define scale_load_down(w)	(w)
63 #endif
64 
65 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
66 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
67 
68 #define NICE_0_LOAD		SCHED_LOAD_SCALE
69 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
70 
71 /*
72  * Single value that decides SCHED_DEADLINE internal math precision.
73  * 10 -> just above 1us
74  * 9  -> just above 0.5us
75  */
76 #define DL_SCALE (10)
77 
78 /*
79  * These are the 'tuning knobs' of the scheduler:
80  */
81 
82 /*
83  * single value that denotes runtime == period, ie unlimited time.
84  */
85 #define RUNTIME_INF	((u64)~0ULL)
86 
87 static inline int fair_policy(int policy)
88 {
89 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
90 }
91 
92 static inline int rt_policy(int policy)
93 {
94 	return policy == SCHED_FIFO || policy == SCHED_RR;
95 }
96 
97 static inline int dl_policy(int policy)
98 {
99 	return policy == SCHED_DEADLINE;
100 }
101 
102 static inline int task_has_rt_policy(struct task_struct *p)
103 {
104 	return rt_policy(p->policy);
105 }
106 
107 static inline int task_has_dl_policy(struct task_struct *p)
108 {
109 	return dl_policy(p->policy);
110 }
111 
112 static inline bool dl_time_before(u64 a, u64 b)
113 {
114 	return (s64)(a - b) < 0;
115 }
116 
117 /*
118  * Tells if entity @a should preempt entity @b.
119  */
120 static inline bool
121 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
122 {
123 	return dl_time_before(a->deadline, b->deadline);
124 }
125 
126 /*
127  * This is the priority-queue data structure of the RT scheduling class:
128  */
129 struct rt_prio_array {
130 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
131 	struct list_head queue[MAX_RT_PRIO];
132 };
133 
134 struct rt_bandwidth {
135 	/* nests inside the rq lock: */
136 	raw_spinlock_t		rt_runtime_lock;
137 	ktime_t			rt_period;
138 	u64			rt_runtime;
139 	struct hrtimer		rt_period_timer;
140 	unsigned int		rt_period_active;
141 };
142 
143 void __dl_clear_params(struct task_struct *p);
144 
145 /*
146  * To keep the bandwidth of -deadline tasks and groups under control
147  * we need some place where:
148  *  - store the maximum -deadline bandwidth of the system (the group);
149  *  - cache the fraction of that bandwidth that is currently allocated.
150  *
151  * This is all done in the data structure below. It is similar to the
152  * one used for RT-throttling (rt_bandwidth), with the main difference
153  * that, since here we are only interested in admission control, we
154  * do not decrease any runtime while the group "executes", neither we
155  * need a timer to replenish it.
156  *
157  * With respect to SMP, the bandwidth is given on a per-CPU basis,
158  * meaning that:
159  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
160  *  - dl_total_bw array contains, in the i-eth element, the currently
161  *    allocated bandwidth on the i-eth CPU.
162  * Moreover, groups consume bandwidth on each CPU, while tasks only
163  * consume bandwidth on the CPU they're running on.
164  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
165  * that will be shown the next time the proc or cgroup controls will
166  * be red. It on its turn can be changed by writing on its own
167  * control.
168  */
169 struct dl_bandwidth {
170 	raw_spinlock_t dl_runtime_lock;
171 	u64 dl_runtime;
172 	u64 dl_period;
173 };
174 
175 static inline int dl_bandwidth_enabled(void)
176 {
177 	return sysctl_sched_rt_runtime >= 0;
178 }
179 
180 extern struct dl_bw *dl_bw_of(int i);
181 
182 struct dl_bw {
183 	raw_spinlock_t lock;
184 	u64 bw, total_bw;
185 };
186 
187 static inline
188 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
189 {
190 	dl_b->total_bw -= tsk_bw;
191 }
192 
193 static inline
194 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
195 {
196 	dl_b->total_bw += tsk_bw;
197 }
198 
199 static inline
200 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
201 {
202 	return dl_b->bw != -1 &&
203 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
204 }
205 
206 extern struct mutex sched_domains_mutex;
207 
208 #ifdef CONFIG_CGROUP_SCHED
209 
210 #include <linux/cgroup.h>
211 
212 struct cfs_rq;
213 struct rt_rq;
214 
215 extern struct list_head task_groups;
216 
217 struct cfs_bandwidth {
218 #ifdef CONFIG_CFS_BANDWIDTH
219 	raw_spinlock_t lock;
220 	ktime_t period;
221 	u64 quota, runtime;
222 	s64 hierarchical_quota;
223 	u64 runtime_expires;
224 
225 	int idle, period_active;
226 	struct hrtimer period_timer, slack_timer;
227 	struct list_head throttled_cfs_rq;
228 
229 	/* statistics */
230 	int nr_periods, nr_throttled;
231 	u64 throttled_time;
232 #endif
233 };
234 
235 /* task group related information */
236 struct task_group {
237 	struct cgroup_subsys_state css;
238 
239 #ifdef CONFIG_FAIR_GROUP_SCHED
240 	/* schedulable entities of this group on each cpu */
241 	struct sched_entity **se;
242 	/* runqueue "owned" by this group on each cpu */
243 	struct cfs_rq **cfs_rq;
244 	unsigned long shares;
245 
246 #ifdef	CONFIG_SMP
247 	atomic_long_t load_avg;
248 #endif
249 #endif
250 
251 #ifdef CONFIG_RT_GROUP_SCHED
252 	struct sched_rt_entity **rt_se;
253 	struct rt_rq **rt_rq;
254 
255 	struct rt_bandwidth rt_bandwidth;
256 #endif
257 
258 	struct rcu_head rcu;
259 	struct list_head list;
260 
261 	struct task_group *parent;
262 	struct list_head siblings;
263 	struct list_head children;
264 
265 #ifdef CONFIG_SCHED_AUTOGROUP
266 	struct autogroup *autogroup;
267 #endif
268 
269 	struct cfs_bandwidth cfs_bandwidth;
270 };
271 
272 #ifdef CONFIG_FAIR_GROUP_SCHED
273 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
274 
275 /*
276  * A weight of 0 or 1 can cause arithmetics problems.
277  * A weight of a cfs_rq is the sum of weights of which entities
278  * are queued on this cfs_rq, so a weight of a entity should not be
279  * too large, so as the shares value of a task group.
280  * (The default weight is 1024 - so there's no practical
281  *  limitation from this.)
282  */
283 #define MIN_SHARES	(1UL <<  1)
284 #define MAX_SHARES	(1UL << 18)
285 #endif
286 
287 typedef int (*tg_visitor)(struct task_group *, void *);
288 
289 extern int walk_tg_tree_from(struct task_group *from,
290 			     tg_visitor down, tg_visitor up, void *data);
291 
292 /*
293  * Iterate the full tree, calling @down when first entering a node and @up when
294  * leaving it for the final time.
295  *
296  * Caller must hold rcu_lock or sufficient equivalent.
297  */
298 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
299 {
300 	return walk_tg_tree_from(&root_task_group, down, up, data);
301 }
302 
303 extern int tg_nop(struct task_group *tg, void *data);
304 
305 extern void free_fair_sched_group(struct task_group *tg);
306 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
307 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
308 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
309 			struct sched_entity *se, int cpu,
310 			struct sched_entity *parent);
311 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
312 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
313 
314 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
315 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
316 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
317 
318 extern void free_rt_sched_group(struct task_group *tg);
319 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
320 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
321 		struct sched_rt_entity *rt_se, int cpu,
322 		struct sched_rt_entity *parent);
323 
324 extern struct task_group *sched_create_group(struct task_group *parent);
325 extern void sched_online_group(struct task_group *tg,
326 			       struct task_group *parent);
327 extern void sched_destroy_group(struct task_group *tg);
328 extern void sched_offline_group(struct task_group *tg);
329 
330 extern void sched_move_task(struct task_struct *tsk);
331 
332 #ifdef CONFIG_FAIR_GROUP_SCHED
333 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
334 #endif
335 
336 #else /* CONFIG_CGROUP_SCHED */
337 
338 struct cfs_bandwidth { };
339 
340 #endif	/* CONFIG_CGROUP_SCHED */
341 
342 /* CFS-related fields in a runqueue */
343 struct cfs_rq {
344 	struct load_weight load;
345 	unsigned int nr_running, h_nr_running;
346 
347 	u64 exec_clock;
348 	u64 min_vruntime;
349 #ifndef CONFIG_64BIT
350 	u64 min_vruntime_copy;
351 #endif
352 
353 	struct rb_root tasks_timeline;
354 	struct rb_node *rb_leftmost;
355 
356 	/*
357 	 * 'curr' points to currently running entity on this cfs_rq.
358 	 * It is set to NULL otherwise (i.e when none are currently running).
359 	 */
360 	struct sched_entity *curr, *next, *last, *skip;
361 
362 #ifdef	CONFIG_SCHED_DEBUG
363 	unsigned int nr_spread_over;
364 #endif
365 
366 #ifdef CONFIG_SMP
367 	/*
368 	 * CFS load tracking
369 	 */
370 	struct sched_avg avg;
371 	u64 runnable_load_sum;
372 	unsigned long runnable_load_avg;
373 #ifdef CONFIG_FAIR_GROUP_SCHED
374 	unsigned long tg_load_avg_contrib;
375 #endif
376 	atomic_long_t removed_load_avg, removed_util_avg;
377 #ifndef CONFIG_64BIT
378 	u64 load_last_update_time_copy;
379 #endif
380 
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 	/*
383 	 *   h_load = weight * f(tg)
384 	 *
385 	 * Where f(tg) is the recursive weight fraction assigned to
386 	 * this group.
387 	 */
388 	unsigned long h_load;
389 	u64 last_h_load_update;
390 	struct sched_entity *h_load_next;
391 #endif /* CONFIG_FAIR_GROUP_SCHED */
392 #endif /* CONFIG_SMP */
393 
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
396 
397 	/*
398 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
399 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 	 * (like users, containers etc.)
401 	 *
402 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 	 * list is used during load balance.
404 	 */
405 	int on_list;
406 	struct list_head leaf_cfs_rq_list;
407 	struct task_group *tg;	/* group that "owns" this runqueue */
408 
409 #ifdef CONFIG_CFS_BANDWIDTH
410 	int runtime_enabled;
411 	u64 runtime_expires;
412 	s64 runtime_remaining;
413 
414 	u64 throttled_clock, throttled_clock_task;
415 	u64 throttled_clock_task_time;
416 	int throttled, throttle_count;
417 	struct list_head throttled_list;
418 #endif /* CONFIG_CFS_BANDWIDTH */
419 #endif /* CONFIG_FAIR_GROUP_SCHED */
420 };
421 
422 static inline int rt_bandwidth_enabled(void)
423 {
424 	return sysctl_sched_rt_runtime >= 0;
425 }
426 
427 /* RT IPI pull logic requires IRQ_WORK */
428 #ifdef CONFIG_IRQ_WORK
429 # define HAVE_RT_PUSH_IPI
430 #endif
431 
432 /* Real-Time classes' related field in a runqueue: */
433 struct rt_rq {
434 	struct rt_prio_array active;
435 	unsigned int rt_nr_running;
436 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
437 	struct {
438 		int curr; /* highest queued rt task prio */
439 #ifdef CONFIG_SMP
440 		int next; /* next highest */
441 #endif
442 	} highest_prio;
443 #endif
444 #ifdef CONFIG_SMP
445 	unsigned long rt_nr_migratory;
446 	unsigned long rt_nr_total;
447 	int overloaded;
448 	struct plist_head pushable_tasks;
449 #ifdef HAVE_RT_PUSH_IPI
450 	int push_flags;
451 	int push_cpu;
452 	struct irq_work push_work;
453 	raw_spinlock_t push_lock;
454 #endif
455 #endif /* CONFIG_SMP */
456 	int rt_queued;
457 
458 	int rt_throttled;
459 	u64 rt_time;
460 	u64 rt_runtime;
461 	/* Nests inside the rq lock: */
462 	raw_spinlock_t rt_runtime_lock;
463 
464 #ifdef CONFIG_RT_GROUP_SCHED
465 	unsigned long rt_nr_boosted;
466 
467 	struct rq *rq;
468 	struct task_group *tg;
469 #endif
470 };
471 
472 /* Deadline class' related fields in a runqueue */
473 struct dl_rq {
474 	/* runqueue is an rbtree, ordered by deadline */
475 	struct rb_root rb_root;
476 	struct rb_node *rb_leftmost;
477 
478 	unsigned long dl_nr_running;
479 
480 #ifdef CONFIG_SMP
481 	/*
482 	 * Deadline values of the currently executing and the
483 	 * earliest ready task on this rq. Caching these facilitates
484 	 * the decision wether or not a ready but not running task
485 	 * should migrate somewhere else.
486 	 */
487 	struct {
488 		u64 curr;
489 		u64 next;
490 	} earliest_dl;
491 
492 	unsigned long dl_nr_migratory;
493 	int overloaded;
494 
495 	/*
496 	 * Tasks on this rq that can be pushed away. They are kept in
497 	 * an rb-tree, ordered by tasks' deadlines, with caching
498 	 * of the leftmost (earliest deadline) element.
499 	 */
500 	struct rb_root pushable_dl_tasks_root;
501 	struct rb_node *pushable_dl_tasks_leftmost;
502 #else
503 	struct dl_bw dl_bw;
504 #endif
505 };
506 
507 #ifdef CONFIG_SMP
508 
509 /*
510  * We add the notion of a root-domain which will be used to define per-domain
511  * variables. Each exclusive cpuset essentially defines an island domain by
512  * fully partitioning the member cpus from any other cpuset. Whenever a new
513  * exclusive cpuset is created, we also create and attach a new root-domain
514  * object.
515  *
516  */
517 struct root_domain {
518 	atomic_t refcount;
519 	atomic_t rto_count;
520 	struct rcu_head rcu;
521 	cpumask_var_t span;
522 	cpumask_var_t online;
523 
524 	/* Indicate more than one runnable task for any CPU */
525 	bool overload;
526 
527 	/*
528 	 * The bit corresponding to a CPU gets set here if such CPU has more
529 	 * than one runnable -deadline task (as it is below for RT tasks).
530 	 */
531 	cpumask_var_t dlo_mask;
532 	atomic_t dlo_count;
533 	struct dl_bw dl_bw;
534 	struct cpudl cpudl;
535 
536 	/*
537 	 * The "RT overload" flag: it gets set if a CPU has more than
538 	 * one runnable RT task.
539 	 */
540 	cpumask_var_t rto_mask;
541 	struct cpupri cpupri;
542 };
543 
544 extern struct root_domain def_root_domain;
545 
546 #endif /* CONFIG_SMP */
547 
548 /*
549  * This is the main, per-CPU runqueue data structure.
550  *
551  * Locking rule: those places that want to lock multiple runqueues
552  * (such as the load balancing or the thread migration code), lock
553  * acquire operations must be ordered by ascending &runqueue.
554  */
555 struct rq {
556 	/* runqueue lock: */
557 	raw_spinlock_t lock;
558 
559 	/*
560 	 * nr_running and cpu_load should be in the same cacheline because
561 	 * remote CPUs use both these fields when doing load calculation.
562 	 */
563 	unsigned int nr_running;
564 #ifdef CONFIG_NUMA_BALANCING
565 	unsigned int nr_numa_running;
566 	unsigned int nr_preferred_running;
567 #endif
568 	#define CPU_LOAD_IDX_MAX 5
569 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
570 	unsigned long last_load_update_tick;
571 #ifdef CONFIG_NO_HZ_COMMON
572 	u64 nohz_stamp;
573 	unsigned long nohz_flags;
574 #endif
575 #ifdef CONFIG_NO_HZ_FULL
576 	unsigned long last_sched_tick;
577 #endif
578 	/* capture load from *all* tasks on this cpu: */
579 	struct load_weight load;
580 	unsigned long nr_load_updates;
581 	u64 nr_switches;
582 
583 	struct cfs_rq cfs;
584 	struct rt_rq rt;
585 	struct dl_rq dl;
586 
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 	/* list of leaf cfs_rq on this cpu: */
589 	struct list_head leaf_cfs_rq_list;
590 #endif /* CONFIG_FAIR_GROUP_SCHED */
591 
592 	/*
593 	 * This is part of a global counter where only the total sum
594 	 * over all CPUs matters. A task can increase this counter on
595 	 * one CPU and if it got migrated afterwards it may decrease
596 	 * it on another CPU. Always updated under the runqueue lock:
597 	 */
598 	unsigned long nr_uninterruptible;
599 
600 	struct task_struct *curr, *idle, *stop;
601 	unsigned long next_balance;
602 	struct mm_struct *prev_mm;
603 
604 	unsigned int clock_skip_update;
605 	u64 clock;
606 	u64 clock_task;
607 
608 	atomic_t nr_iowait;
609 
610 #ifdef CONFIG_SMP
611 	struct root_domain *rd;
612 	struct sched_domain *sd;
613 
614 	unsigned long cpu_capacity;
615 	unsigned long cpu_capacity_orig;
616 
617 	struct callback_head *balance_callback;
618 
619 	unsigned char idle_balance;
620 	/* For active balancing */
621 	int active_balance;
622 	int push_cpu;
623 	struct cpu_stop_work active_balance_work;
624 	/* cpu of this runqueue: */
625 	int cpu;
626 	int online;
627 
628 	struct list_head cfs_tasks;
629 
630 	u64 rt_avg;
631 	u64 age_stamp;
632 	u64 idle_stamp;
633 	u64 avg_idle;
634 
635 	/* This is used to determine avg_idle's max value */
636 	u64 max_idle_balance_cost;
637 #endif
638 
639 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
640 	u64 prev_irq_time;
641 #endif
642 #ifdef CONFIG_PARAVIRT
643 	u64 prev_steal_time;
644 #endif
645 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
646 	u64 prev_steal_time_rq;
647 #endif
648 
649 	/* calc_load related fields */
650 	unsigned long calc_load_update;
651 	long calc_load_active;
652 
653 #ifdef CONFIG_SCHED_HRTICK
654 #ifdef CONFIG_SMP
655 	int hrtick_csd_pending;
656 	struct call_single_data hrtick_csd;
657 #endif
658 	struct hrtimer hrtick_timer;
659 #endif
660 
661 #ifdef CONFIG_SCHEDSTATS
662 	/* latency stats */
663 	struct sched_info rq_sched_info;
664 	unsigned long long rq_cpu_time;
665 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
666 
667 	/* sys_sched_yield() stats */
668 	unsigned int yld_count;
669 
670 	/* schedule() stats */
671 	unsigned int sched_count;
672 	unsigned int sched_goidle;
673 
674 	/* try_to_wake_up() stats */
675 	unsigned int ttwu_count;
676 	unsigned int ttwu_local;
677 #endif
678 
679 #ifdef CONFIG_SMP
680 	struct llist_head wake_list;
681 #endif
682 
683 #ifdef CONFIG_CPU_IDLE
684 	/* Must be inspected within a rcu lock section */
685 	struct cpuidle_state *idle_state;
686 #endif
687 };
688 
689 static inline int cpu_of(struct rq *rq)
690 {
691 #ifdef CONFIG_SMP
692 	return rq->cpu;
693 #else
694 	return 0;
695 #endif
696 }
697 
698 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
699 
700 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
701 #define this_rq()		this_cpu_ptr(&runqueues)
702 #define task_rq(p)		cpu_rq(task_cpu(p))
703 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
704 #define raw_rq()		raw_cpu_ptr(&runqueues)
705 
706 static inline u64 __rq_clock_broken(struct rq *rq)
707 {
708 	return READ_ONCE(rq->clock);
709 }
710 
711 static inline u64 rq_clock(struct rq *rq)
712 {
713 	lockdep_assert_held(&rq->lock);
714 	return rq->clock;
715 }
716 
717 static inline u64 rq_clock_task(struct rq *rq)
718 {
719 	lockdep_assert_held(&rq->lock);
720 	return rq->clock_task;
721 }
722 
723 #define RQCF_REQ_SKIP	0x01
724 #define RQCF_ACT_SKIP	0x02
725 
726 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
727 {
728 	lockdep_assert_held(&rq->lock);
729 	if (skip)
730 		rq->clock_skip_update |= RQCF_REQ_SKIP;
731 	else
732 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
733 }
734 
735 #ifdef CONFIG_NUMA
736 enum numa_topology_type {
737 	NUMA_DIRECT,
738 	NUMA_GLUELESS_MESH,
739 	NUMA_BACKPLANE,
740 };
741 extern enum numa_topology_type sched_numa_topology_type;
742 extern int sched_max_numa_distance;
743 extern bool find_numa_distance(int distance);
744 #endif
745 
746 #ifdef CONFIG_NUMA_BALANCING
747 /* The regions in numa_faults array from task_struct */
748 enum numa_faults_stats {
749 	NUMA_MEM = 0,
750 	NUMA_CPU,
751 	NUMA_MEMBUF,
752 	NUMA_CPUBUF
753 };
754 extern void sched_setnuma(struct task_struct *p, int node);
755 extern int migrate_task_to(struct task_struct *p, int cpu);
756 extern int migrate_swap(struct task_struct *, struct task_struct *);
757 #endif /* CONFIG_NUMA_BALANCING */
758 
759 #ifdef CONFIG_SMP
760 
761 static inline void
762 queue_balance_callback(struct rq *rq,
763 		       struct callback_head *head,
764 		       void (*func)(struct rq *rq))
765 {
766 	lockdep_assert_held(&rq->lock);
767 
768 	if (unlikely(head->next))
769 		return;
770 
771 	head->func = (void (*)(struct callback_head *))func;
772 	head->next = rq->balance_callback;
773 	rq->balance_callback = head;
774 }
775 
776 extern void sched_ttwu_pending(void);
777 
778 #define rcu_dereference_check_sched_domain(p) \
779 	rcu_dereference_check((p), \
780 			      lockdep_is_held(&sched_domains_mutex))
781 
782 /*
783  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
784  * See detach_destroy_domains: synchronize_sched for details.
785  *
786  * The domain tree of any CPU may only be accessed from within
787  * preempt-disabled sections.
788  */
789 #define for_each_domain(cpu, __sd) \
790 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
791 			__sd; __sd = __sd->parent)
792 
793 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
794 
795 /**
796  * highest_flag_domain - Return highest sched_domain containing flag.
797  * @cpu:	The cpu whose highest level of sched domain is to
798  *		be returned.
799  * @flag:	The flag to check for the highest sched_domain
800  *		for the given cpu.
801  *
802  * Returns the highest sched_domain of a cpu which contains the given flag.
803  */
804 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
805 {
806 	struct sched_domain *sd, *hsd = NULL;
807 
808 	for_each_domain(cpu, sd) {
809 		if (!(sd->flags & flag))
810 			break;
811 		hsd = sd;
812 	}
813 
814 	return hsd;
815 }
816 
817 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
818 {
819 	struct sched_domain *sd;
820 
821 	for_each_domain(cpu, sd) {
822 		if (sd->flags & flag)
823 			break;
824 	}
825 
826 	return sd;
827 }
828 
829 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
830 DECLARE_PER_CPU(int, sd_llc_size);
831 DECLARE_PER_CPU(int, sd_llc_id);
832 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
833 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
834 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
835 
836 struct sched_group_capacity {
837 	atomic_t ref;
838 	/*
839 	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
840 	 * for a single CPU.
841 	 */
842 	unsigned int capacity;
843 	unsigned long next_update;
844 	int imbalance; /* XXX unrelated to capacity but shared group state */
845 	/*
846 	 * Number of busy cpus in this group.
847 	 */
848 	atomic_t nr_busy_cpus;
849 
850 	unsigned long cpumask[0]; /* iteration mask */
851 };
852 
853 struct sched_group {
854 	struct sched_group *next;	/* Must be a circular list */
855 	atomic_t ref;
856 
857 	unsigned int group_weight;
858 	struct sched_group_capacity *sgc;
859 
860 	/*
861 	 * The CPUs this group covers.
862 	 *
863 	 * NOTE: this field is variable length. (Allocated dynamically
864 	 * by attaching extra space to the end of the structure,
865 	 * depending on how many CPUs the kernel has booted up with)
866 	 */
867 	unsigned long cpumask[0];
868 };
869 
870 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
871 {
872 	return to_cpumask(sg->cpumask);
873 }
874 
875 /*
876  * cpumask masking which cpus in the group are allowed to iterate up the domain
877  * tree.
878  */
879 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
880 {
881 	return to_cpumask(sg->sgc->cpumask);
882 }
883 
884 /**
885  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
886  * @group: The group whose first cpu is to be returned.
887  */
888 static inline unsigned int group_first_cpu(struct sched_group *group)
889 {
890 	return cpumask_first(sched_group_cpus(group));
891 }
892 
893 extern int group_balance_cpu(struct sched_group *sg);
894 
895 #else
896 
897 static inline void sched_ttwu_pending(void) { }
898 
899 #endif /* CONFIG_SMP */
900 
901 #include "stats.h"
902 #include "auto_group.h"
903 
904 #ifdef CONFIG_CGROUP_SCHED
905 
906 /*
907  * Return the group to which this tasks belongs.
908  *
909  * We cannot use task_css() and friends because the cgroup subsystem
910  * changes that value before the cgroup_subsys::attach() method is called,
911  * therefore we cannot pin it and might observe the wrong value.
912  *
913  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
914  * core changes this before calling sched_move_task().
915  *
916  * Instead we use a 'copy' which is updated from sched_move_task() while
917  * holding both task_struct::pi_lock and rq::lock.
918  */
919 static inline struct task_group *task_group(struct task_struct *p)
920 {
921 	return p->sched_task_group;
922 }
923 
924 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
925 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
926 {
927 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
928 	struct task_group *tg = task_group(p);
929 #endif
930 
931 #ifdef CONFIG_FAIR_GROUP_SCHED
932 	p->se.cfs_rq = tg->cfs_rq[cpu];
933 	p->se.parent = tg->se[cpu];
934 #endif
935 
936 #ifdef CONFIG_RT_GROUP_SCHED
937 	p->rt.rt_rq  = tg->rt_rq[cpu];
938 	p->rt.parent = tg->rt_se[cpu];
939 #endif
940 }
941 
942 #else /* CONFIG_CGROUP_SCHED */
943 
944 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
945 static inline struct task_group *task_group(struct task_struct *p)
946 {
947 	return NULL;
948 }
949 
950 #endif /* CONFIG_CGROUP_SCHED */
951 
952 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
953 {
954 	set_task_rq(p, cpu);
955 #ifdef CONFIG_SMP
956 	/*
957 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
958 	 * successfuly executed on another CPU. We must ensure that updates of
959 	 * per-task data have been completed by this moment.
960 	 */
961 	smp_wmb();
962 	task_thread_info(p)->cpu = cpu;
963 	p->wake_cpu = cpu;
964 #endif
965 }
966 
967 /*
968  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
969  */
970 #ifdef CONFIG_SCHED_DEBUG
971 # include <linux/static_key.h>
972 # define const_debug __read_mostly
973 #else
974 # define const_debug const
975 #endif
976 
977 extern const_debug unsigned int sysctl_sched_features;
978 
979 #define SCHED_FEAT(name, enabled)	\
980 	__SCHED_FEAT_##name ,
981 
982 enum {
983 #include "features.h"
984 	__SCHED_FEAT_NR,
985 };
986 
987 #undef SCHED_FEAT
988 
989 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
990 #define SCHED_FEAT(name, enabled)					\
991 static __always_inline bool static_branch_##name(struct static_key *key) \
992 {									\
993 	return static_key_##enabled(key);				\
994 }
995 
996 #include "features.h"
997 
998 #undef SCHED_FEAT
999 
1000 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1001 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1002 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1003 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1004 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1005 
1006 #ifdef CONFIG_NUMA_BALANCING
1007 #define sched_feat_numa(x) sched_feat(x)
1008 #ifdef CONFIG_SCHED_DEBUG
1009 #define numabalancing_enabled sched_feat_numa(NUMA)
1010 #else
1011 extern bool numabalancing_enabled;
1012 #endif /* CONFIG_SCHED_DEBUG */
1013 #else
1014 #define sched_feat_numa(x) (0)
1015 #define numabalancing_enabled (0)
1016 #endif /* CONFIG_NUMA_BALANCING */
1017 
1018 static inline u64 global_rt_period(void)
1019 {
1020 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1021 }
1022 
1023 static inline u64 global_rt_runtime(void)
1024 {
1025 	if (sysctl_sched_rt_runtime < 0)
1026 		return RUNTIME_INF;
1027 
1028 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1029 }
1030 
1031 static inline int task_current(struct rq *rq, struct task_struct *p)
1032 {
1033 	return rq->curr == p;
1034 }
1035 
1036 static inline int task_running(struct rq *rq, struct task_struct *p)
1037 {
1038 #ifdef CONFIG_SMP
1039 	return p->on_cpu;
1040 #else
1041 	return task_current(rq, p);
1042 #endif
1043 }
1044 
1045 static inline int task_on_rq_queued(struct task_struct *p)
1046 {
1047 	return p->on_rq == TASK_ON_RQ_QUEUED;
1048 }
1049 
1050 static inline int task_on_rq_migrating(struct task_struct *p)
1051 {
1052 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1053 }
1054 
1055 #ifndef prepare_arch_switch
1056 # define prepare_arch_switch(next)	do { } while (0)
1057 #endif
1058 #ifndef finish_arch_post_lock_switch
1059 # define finish_arch_post_lock_switch()	do { } while (0)
1060 #endif
1061 
1062 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1063 {
1064 #ifdef CONFIG_SMP
1065 	/*
1066 	 * We can optimise this out completely for !SMP, because the
1067 	 * SMP rebalancing from interrupt is the only thing that cares
1068 	 * here.
1069 	 */
1070 	next->on_cpu = 1;
1071 #endif
1072 }
1073 
1074 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1075 {
1076 #ifdef CONFIG_SMP
1077 	/*
1078 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1079 	 * We must ensure this doesn't happen until the switch is completely
1080 	 * finished.
1081 	 */
1082 	smp_wmb();
1083 	prev->on_cpu = 0;
1084 #endif
1085 #ifdef CONFIG_DEBUG_SPINLOCK
1086 	/* this is a valid case when another task releases the spinlock */
1087 	rq->lock.owner = current;
1088 #endif
1089 	/*
1090 	 * If we are tracking spinlock dependencies then we have to
1091 	 * fix up the runqueue lock - which gets 'carried over' from
1092 	 * prev into current:
1093 	 */
1094 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1095 
1096 	raw_spin_unlock_irq(&rq->lock);
1097 }
1098 
1099 /*
1100  * wake flags
1101  */
1102 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1103 #define WF_FORK		0x02		/* child wakeup after fork */
1104 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1105 
1106 /*
1107  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1108  * of tasks with abnormal "nice" values across CPUs the contribution that
1109  * each task makes to its run queue's load is weighted according to its
1110  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1111  * scaled version of the new time slice allocation that they receive on time
1112  * slice expiry etc.
1113  */
1114 
1115 #define WEIGHT_IDLEPRIO                3
1116 #define WMULT_IDLEPRIO         1431655765
1117 
1118 /*
1119  * Nice levels are multiplicative, with a gentle 10% change for every
1120  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1121  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1122  * that remained on nice 0.
1123  *
1124  * The "10% effect" is relative and cumulative: from _any_ nice level,
1125  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1126  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1127  * If a task goes up by ~10% and another task goes down by ~10% then
1128  * the relative distance between them is ~25%.)
1129  */
1130 static const int prio_to_weight[40] = {
1131  /* -20 */     88761,     71755,     56483,     46273,     36291,
1132  /* -15 */     29154,     23254,     18705,     14949,     11916,
1133  /* -10 */      9548,      7620,      6100,      4904,      3906,
1134  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1135  /*   0 */      1024,       820,       655,       526,       423,
1136  /*   5 */       335,       272,       215,       172,       137,
1137  /*  10 */       110,        87,        70,        56,        45,
1138  /*  15 */        36,        29,        23,        18,        15,
1139 };
1140 
1141 /*
1142  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1143  *
1144  * In cases where the weight does not change often, we can use the
1145  * precalculated inverse to speed up arithmetics by turning divisions
1146  * into multiplications:
1147  */
1148 static const u32 prio_to_wmult[40] = {
1149  /* -20 */     48388,     59856,     76040,     92818,    118348,
1150  /* -15 */    147320,    184698,    229616,    287308,    360437,
1151  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1152  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1153  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1154  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1155  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1156  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1157 };
1158 
1159 #define ENQUEUE_WAKEUP		1
1160 #define ENQUEUE_HEAD		2
1161 #ifdef CONFIG_SMP
1162 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1163 #else
1164 #define ENQUEUE_WAKING		0
1165 #endif
1166 #define ENQUEUE_REPLENISH	8
1167 
1168 #define DEQUEUE_SLEEP		1
1169 
1170 #define RETRY_TASK		((void *)-1UL)
1171 
1172 struct sched_class {
1173 	const struct sched_class *next;
1174 
1175 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1176 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1177 	void (*yield_task) (struct rq *rq);
1178 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1179 
1180 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1181 
1182 	/*
1183 	 * It is the responsibility of the pick_next_task() method that will
1184 	 * return the next task to call put_prev_task() on the @prev task or
1185 	 * something equivalent.
1186 	 *
1187 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1188 	 * tasks.
1189 	 */
1190 	struct task_struct * (*pick_next_task) (struct rq *rq,
1191 						struct task_struct *prev);
1192 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1193 
1194 #ifdef CONFIG_SMP
1195 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1196 	void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1197 
1198 	void (*task_waking) (struct task_struct *task);
1199 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1200 
1201 	void (*set_cpus_allowed)(struct task_struct *p,
1202 				 const struct cpumask *newmask);
1203 
1204 	void (*rq_online)(struct rq *rq);
1205 	void (*rq_offline)(struct rq *rq);
1206 #endif
1207 
1208 	void (*set_curr_task) (struct rq *rq);
1209 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1210 	void (*task_fork) (struct task_struct *p);
1211 	void (*task_dead) (struct task_struct *p);
1212 
1213 	/*
1214 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1215 	 * cannot assume the switched_from/switched_to pair is serliazed by
1216 	 * rq->lock. They are however serialized by p->pi_lock.
1217 	 */
1218 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1219 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1220 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1221 			     int oldprio);
1222 
1223 	unsigned int (*get_rr_interval) (struct rq *rq,
1224 					 struct task_struct *task);
1225 
1226 	void (*update_curr) (struct rq *rq);
1227 
1228 #ifdef CONFIG_FAIR_GROUP_SCHED
1229 	void (*task_move_group) (struct task_struct *p, int on_rq);
1230 #endif
1231 };
1232 
1233 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1234 {
1235 	prev->sched_class->put_prev_task(rq, prev);
1236 }
1237 
1238 #define sched_class_highest (&stop_sched_class)
1239 #define for_each_class(class) \
1240    for (class = sched_class_highest; class; class = class->next)
1241 
1242 extern const struct sched_class stop_sched_class;
1243 extern const struct sched_class dl_sched_class;
1244 extern const struct sched_class rt_sched_class;
1245 extern const struct sched_class fair_sched_class;
1246 extern const struct sched_class idle_sched_class;
1247 
1248 
1249 #ifdef CONFIG_SMP
1250 
1251 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1252 
1253 extern void trigger_load_balance(struct rq *rq);
1254 
1255 extern void idle_enter_fair(struct rq *this_rq);
1256 extern void idle_exit_fair(struct rq *this_rq);
1257 
1258 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1259 
1260 #else
1261 
1262 static inline void idle_enter_fair(struct rq *rq) { }
1263 static inline void idle_exit_fair(struct rq *rq) { }
1264 
1265 #endif
1266 
1267 #ifdef CONFIG_CPU_IDLE
1268 static inline void idle_set_state(struct rq *rq,
1269 				  struct cpuidle_state *idle_state)
1270 {
1271 	rq->idle_state = idle_state;
1272 }
1273 
1274 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1275 {
1276 	WARN_ON(!rcu_read_lock_held());
1277 	return rq->idle_state;
1278 }
1279 #else
1280 static inline void idle_set_state(struct rq *rq,
1281 				  struct cpuidle_state *idle_state)
1282 {
1283 }
1284 
1285 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1286 {
1287 	return NULL;
1288 }
1289 #endif
1290 
1291 extern void sysrq_sched_debug_show(void);
1292 extern void sched_init_granularity(void);
1293 extern void update_max_interval(void);
1294 
1295 extern void init_sched_dl_class(void);
1296 extern void init_sched_rt_class(void);
1297 extern void init_sched_fair_class(void);
1298 
1299 extern void resched_curr(struct rq *rq);
1300 extern void resched_cpu(int cpu);
1301 
1302 extern struct rt_bandwidth def_rt_bandwidth;
1303 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1304 
1305 extern struct dl_bandwidth def_dl_bandwidth;
1306 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1307 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1308 
1309 unsigned long to_ratio(u64 period, u64 runtime);
1310 
1311 extern void init_entity_runnable_average(struct sched_entity *se);
1312 
1313 static inline void add_nr_running(struct rq *rq, unsigned count)
1314 {
1315 	unsigned prev_nr = rq->nr_running;
1316 
1317 	rq->nr_running = prev_nr + count;
1318 
1319 	if (prev_nr < 2 && rq->nr_running >= 2) {
1320 #ifdef CONFIG_SMP
1321 		if (!rq->rd->overload)
1322 			rq->rd->overload = true;
1323 #endif
1324 
1325 #ifdef CONFIG_NO_HZ_FULL
1326 		if (tick_nohz_full_cpu(rq->cpu)) {
1327 			/*
1328 			 * Tick is needed if more than one task runs on a CPU.
1329 			 * Send the target an IPI to kick it out of nohz mode.
1330 			 *
1331 			 * We assume that IPI implies full memory barrier and the
1332 			 * new value of rq->nr_running is visible on reception
1333 			 * from the target.
1334 			 */
1335 			tick_nohz_full_kick_cpu(rq->cpu);
1336 		}
1337 #endif
1338 	}
1339 }
1340 
1341 static inline void sub_nr_running(struct rq *rq, unsigned count)
1342 {
1343 	rq->nr_running -= count;
1344 }
1345 
1346 static inline void rq_last_tick_reset(struct rq *rq)
1347 {
1348 #ifdef CONFIG_NO_HZ_FULL
1349 	rq->last_sched_tick = jiffies;
1350 #endif
1351 }
1352 
1353 extern void update_rq_clock(struct rq *rq);
1354 
1355 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1356 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1357 
1358 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1359 
1360 extern const_debug unsigned int sysctl_sched_time_avg;
1361 extern const_debug unsigned int sysctl_sched_nr_migrate;
1362 extern const_debug unsigned int sysctl_sched_migration_cost;
1363 
1364 static inline u64 sched_avg_period(void)
1365 {
1366 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1367 }
1368 
1369 #ifdef CONFIG_SCHED_HRTICK
1370 
1371 /*
1372  * Use hrtick when:
1373  *  - enabled by features
1374  *  - hrtimer is actually high res
1375  */
1376 static inline int hrtick_enabled(struct rq *rq)
1377 {
1378 	if (!sched_feat(HRTICK))
1379 		return 0;
1380 	if (!cpu_active(cpu_of(rq)))
1381 		return 0;
1382 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1383 }
1384 
1385 void hrtick_start(struct rq *rq, u64 delay);
1386 
1387 #else
1388 
1389 static inline int hrtick_enabled(struct rq *rq)
1390 {
1391 	return 0;
1392 }
1393 
1394 #endif /* CONFIG_SCHED_HRTICK */
1395 
1396 #ifdef CONFIG_SMP
1397 extern void sched_avg_update(struct rq *rq);
1398 
1399 #ifndef arch_scale_freq_capacity
1400 static __always_inline
1401 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1402 {
1403 	return SCHED_CAPACITY_SCALE;
1404 }
1405 #endif
1406 
1407 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1408 {
1409 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1410 	sched_avg_update(rq);
1411 }
1412 #else
1413 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1414 static inline void sched_avg_update(struct rq *rq) { }
1415 #endif
1416 
1417 /*
1418  * __task_rq_lock - lock the rq @p resides on.
1419  */
1420 static inline struct rq *__task_rq_lock(struct task_struct *p)
1421 	__acquires(rq->lock)
1422 {
1423 	struct rq *rq;
1424 
1425 	lockdep_assert_held(&p->pi_lock);
1426 
1427 	for (;;) {
1428 		rq = task_rq(p);
1429 		raw_spin_lock(&rq->lock);
1430 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1431 			lockdep_pin_lock(&rq->lock);
1432 			return rq;
1433 		}
1434 		raw_spin_unlock(&rq->lock);
1435 
1436 		while (unlikely(task_on_rq_migrating(p)))
1437 			cpu_relax();
1438 	}
1439 }
1440 
1441 /*
1442  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1443  */
1444 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1445 	__acquires(p->pi_lock)
1446 	__acquires(rq->lock)
1447 {
1448 	struct rq *rq;
1449 
1450 	for (;;) {
1451 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1452 		rq = task_rq(p);
1453 		raw_spin_lock(&rq->lock);
1454 		/*
1455 		 *	move_queued_task()		task_rq_lock()
1456 		 *
1457 		 *	ACQUIRE (rq->lock)
1458 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
1459 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
1460 		 *	[S] ->cpu = new_cpu		[L] task_rq()
1461 		 *					[L] ->on_rq
1462 		 *	RELEASE (rq->lock)
1463 		 *
1464 		 * If we observe the old cpu in task_rq_lock, the acquire of
1465 		 * the old rq->lock will fully serialize against the stores.
1466 		 *
1467 		 * If we observe the new cpu in task_rq_lock, the acquire will
1468 		 * pair with the WMB to ensure we must then also see migrating.
1469 		 */
1470 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1471 			lockdep_pin_lock(&rq->lock);
1472 			return rq;
1473 		}
1474 		raw_spin_unlock(&rq->lock);
1475 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1476 
1477 		while (unlikely(task_on_rq_migrating(p)))
1478 			cpu_relax();
1479 	}
1480 }
1481 
1482 static inline void __task_rq_unlock(struct rq *rq)
1483 	__releases(rq->lock)
1484 {
1485 	lockdep_unpin_lock(&rq->lock);
1486 	raw_spin_unlock(&rq->lock);
1487 }
1488 
1489 static inline void
1490 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1491 	__releases(rq->lock)
1492 	__releases(p->pi_lock)
1493 {
1494 	lockdep_unpin_lock(&rq->lock);
1495 	raw_spin_unlock(&rq->lock);
1496 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1497 }
1498 
1499 #ifdef CONFIG_SMP
1500 #ifdef CONFIG_PREEMPT
1501 
1502 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1503 
1504 /*
1505  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1506  * way at the expense of forcing extra atomic operations in all
1507  * invocations.  This assures that the double_lock is acquired using the
1508  * same underlying policy as the spinlock_t on this architecture, which
1509  * reduces latency compared to the unfair variant below.  However, it
1510  * also adds more overhead and therefore may reduce throughput.
1511  */
1512 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1513 	__releases(this_rq->lock)
1514 	__acquires(busiest->lock)
1515 	__acquires(this_rq->lock)
1516 {
1517 	raw_spin_unlock(&this_rq->lock);
1518 	double_rq_lock(this_rq, busiest);
1519 
1520 	return 1;
1521 }
1522 
1523 #else
1524 /*
1525  * Unfair double_lock_balance: Optimizes throughput at the expense of
1526  * latency by eliminating extra atomic operations when the locks are
1527  * already in proper order on entry.  This favors lower cpu-ids and will
1528  * grant the double lock to lower cpus over higher ids under contention,
1529  * regardless of entry order into the function.
1530  */
1531 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1532 	__releases(this_rq->lock)
1533 	__acquires(busiest->lock)
1534 	__acquires(this_rq->lock)
1535 {
1536 	int ret = 0;
1537 
1538 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1539 		if (busiest < this_rq) {
1540 			raw_spin_unlock(&this_rq->lock);
1541 			raw_spin_lock(&busiest->lock);
1542 			raw_spin_lock_nested(&this_rq->lock,
1543 					      SINGLE_DEPTH_NESTING);
1544 			ret = 1;
1545 		} else
1546 			raw_spin_lock_nested(&busiest->lock,
1547 					      SINGLE_DEPTH_NESTING);
1548 	}
1549 	return ret;
1550 }
1551 
1552 #endif /* CONFIG_PREEMPT */
1553 
1554 /*
1555  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1556  */
1557 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1558 {
1559 	if (unlikely(!irqs_disabled())) {
1560 		/* printk() doesn't work good under rq->lock */
1561 		raw_spin_unlock(&this_rq->lock);
1562 		BUG_ON(1);
1563 	}
1564 
1565 	return _double_lock_balance(this_rq, busiest);
1566 }
1567 
1568 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1569 	__releases(busiest->lock)
1570 {
1571 	raw_spin_unlock(&busiest->lock);
1572 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1573 }
1574 
1575 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1576 {
1577 	if (l1 > l2)
1578 		swap(l1, l2);
1579 
1580 	spin_lock(l1);
1581 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1582 }
1583 
1584 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1585 {
1586 	if (l1 > l2)
1587 		swap(l1, l2);
1588 
1589 	spin_lock_irq(l1);
1590 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1591 }
1592 
1593 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1594 {
1595 	if (l1 > l2)
1596 		swap(l1, l2);
1597 
1598 	raw_spin_lock(l1);
1599 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1600 }
1601 
1602 /*
1603  * double_rq_lock - safely lock two runqueues
1604  *
1605  * Note this does not disable interrupts like task_rq_lock,
1606  * you need to do so manually before calling.
1607  */
1608 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1609 	__acquires(rq1->lock)
1610 	__acquires(rq2->lock)
1611 {
1612 	BUG_ON(!irqs_disabled());
1613 	if (rq1 == rq2) {
1614 		raw_spin_lock(&rq1->lock);
1615 		__acquire(rq2->lock);	/* Fake it out ;) */
1616 	} else {
1617 		if (rq1 < rq2) {
1618 			raw_spin_lock(&rq1->lock);
1619 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1620 		} else {
1621 			raw_spin_lock(&rq2->lock);
1622 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1623 		}
1624 	}
1625 }
1626 
1627 /*
1628  * double_rq_unlock - safely unlock two runqueues
1629  *
1630  * Note this does not restore interrupts like task_rq_unlock,
1631  * you need to do so manually after calling.
1632  */
1633 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1634 	__releases(rq1->lock)
1635 	__releases(rq2->lock)
1636 {
1637 	raw_spin_unlock(&rq1->lock);
1638 	if (rq1 != rq2)
1639 		raw_spin_unlock(&rq2->lock);
1640 	else
1641 		__release(rq2->lock);
1642 }
1643 
1644 #else /* CONFIG_SMP */
1645 
1646 /*
1647  * double_rq_lock - safely lock two runqueues
1648  *
1649  * Note this does not disable interrupts like task_rq_lock,
1650  * you need to do so manually before calling.
1651  */
1652 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1653 	__acquires(rq1->lock)
1654 	__acquires(rq2->lock)
1655 {
1656 	BUG_ON(!irqs_disabled());
1657 	BUG_ON(rq1 != rq2);
1658 	raw_spin_lock(&rq1->lock);
1659 	__acquire(rq2->lock);	/* Fake it out ;) */
1660 }
1661 
1662 /*
1663  * double_rq_unlock - safely unlock two runqueues
1664  *
1665  * Note this does not restore interrupts like task_rq_unlock,
1666  * you need to do so manually after calling.
1667  */
1668 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1669 	__releases(rq1->lock)
1670 	__releases(rq2->lock)
1671 {
1672 	BUG_ON(rq1 != rq2);
1673 	raw_spin_unlock(&rq1->lock);
1674 	__release(rq2->lock);
1675 }
1676 
1677 #endif
1678 
1679 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1680 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1681 
1682 #ifdef	CONFIG_SCHED_DEBUG
1683 extern void print_cfs_stats(struct seq_file *m, int cpu);
1684 extern void print_rt_stats(struct seq_file *m, int cpu);
1685 extern void print_dl_stats(struct seq_file *m, int cpu);
1686 extern void
1687 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1688 
1689 #ifdef CONFIG_NUMA_BALANCING
1690 extern void
1691 show_numa_stats(struct task_struct *p, struct seq_file *m);
1692 extern void
1693 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1694 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1695 #endif /* CONFIG_NUMA_BALANCING */
1696 #endif /* CONFIG_SCHED_DEBUG */
1697 
1698 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1699 extern void init_rt_rq(struct rt_rq *rt_rq);
1700 extern void init_dl_rq(struct dl_rq *dl_rq);
1701 
1702 extern void cfs_bandwidth_usage_inc(void);
1703 extern void cfs_bandwidth_usage_dec(void);
1704 
1705 #ifdef CONFIG_NO_HZ_COMMON
1706 enum rq_nohz_flag_bits {
1707 	NOHZ_TICK_STOPPED,
1708 	NOHZ_BALANCE_KICK,
1709 };
1710 
1711 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1712 #endif
1713 
1714 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1715 
1716 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1717 DECLARE_PER_CPU(u64, cpu_softirq_time);
1718 
1719 #ifndef CONFIG_64BIT
1720 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1721 
1722 static inline void irq_time_write_begin(void)
1723 {
1724 	__this_cpu_inc(irq_time_seq.sequence);
1725 	smp_wmb();
1726 }
1727 
1728 static inline void irq_time_write_end(void)
1729 {
1730 	smp_wmb();
1731 	__this_cpu_inc(irq_time_seq.sequence);
1732 }
1733 
1734 static inline u64 irq_time_read(int cpu)
1735 {
1736 	u64 irq_time;
1737 	unsigned seq;
1738 
1739 	do {
1740 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1741 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1742 			   per_cpu(cpu_hardirq_time, cpu);
1743 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1744 
1745 	return irq_time;
1746 }
1747 #else /* CONFIG_64BIT */
1748 static inline void irq_time_write_begin(void)
1749 {
1750 }
1751 
1752 static inline void irq_time_write_end(void)
1753 {
1754 }
1755 
1756 static inline u64 irq_time_read(int cpu)
1757 {
1758 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1759 }
1760 #endif /* CONFIG_64BIT */
1761 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1762