1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/mutex.h> 6 #include <linux/spinlock.h> 7 #include <linux/stop_machine.h> 8 #include <linux/tick.h> 9 10 #include "cpupri.h" 11 #include "cpuacct.h" 12 13 struct rq; 14 15 extern __read_mostly int scheduler_running; 16 17 extern unsigned long calc_load_update; 18 extern atomic_long_t calc_load_tasks; 19 20 extern long calc_load_fold_active(struct rq *this_rq); 21 extern void update_cpu_load_active(struct rq *this_rq); 22 23 /* 24 * Convert user-nice values [ -20 ... 0 ... 19 ] 25 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 26 * and back. 27 */ 28 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 29 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 30 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 31 32 /* 33 * 'User priority' is the nice value converted to something we 34 * can work with better when scaling various scheduler parameters, 35 * it's a [ 0 ... 39 ] range. 36 */ 37 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 38 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 39 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 40 41 /* 42 * Helpers for converting nanosecond timing to jiffy resolution 43 */ 44 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 45 46 /* 47 * Increase resolution of nice-level calculations for 64-bit architectures. 48 * The extra resolution improves shares distribution and load balancing of 49 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 50 * hierarchies, especially on larger systems. This is not a user-visible change 51 * and does not change the user-interface for setting shares/weights. 52 * 53 * We increase resolution only if we have enough bits to allow this increased 54 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 55 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 56 * increased costs. 57 */ 58 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 59 # define SCHED_LOAD_RESOLUTION 10 60 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 61 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 62 #else 63 # define SCHED_LOAD_RESOLUTION 0 64 # define scale_load(w) (w) 65 # define scale_load_down(w) (w) 66 #endif 67 68 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 69 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 70 71 #define NICE_0_LOAD SCHED_LOAD_SCALE 72 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 73 74 /* 75 * These are the 'tuning knobs' of the scheduler: 76 */ 77 78 /* 79 * single value that denotes runtime == period, ie unlimited time. 80 */ 81 #define RUNTIME_INF ((u64)~0ULL) 82 83 static inline int rt_policy(int policy) 84 { 85 if (policy == SCHED_FIFO || policy == SCHED_RR) 86 return 1; 87 return 0; 88 } 89 90 static inline int task_has_rt_policy(struct task_struct *p) 91 { 92 return rt_policy(p->policy); 93 } 94 95 /* 96 * This is the priority-queue data structure of the RT scheduling class: 97 */ 98 struct rt_prio_array { 99 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 100 struct list_head queue[MAX_RT_PRIO]; 101 }; 102 103 struct rt_bandwidth { 104 /* nests inside the rq lock: */ 105 raw_spinlock_t rt_runtime_lock; 106 ktime_t rt_period; 107 u64 rt_runtime; 108 struct hrtimer rt_period_timer; 109 }; 110 111 extern struct mutex sched_domains_mutex; 112 113 #ifdef CONFIG_CGROUP_SCHED 114 115 #include <linux/cgroup.h> 116 117 struct cfs_rq; 118 struct rt_rq; 119 120 extern struct list_head task_groups; 121 122 struct cfs_bandwidth { 123 #ifdef CONFIG_CFS_BANDWIDTH 124 raw_spinlock_t lock; 125 ktime_t period; 126 u64 quota, runtime; 127 s64 hierarchal_quota; 128 u64 runtime_expires; 129 130 int idle, timer_active; 131 struct hrtimer period_timer, slack_timer; 132 struct list_head throttled_cfs_rq; 133 134 /* statistics */ 135 int nr_periods, nr_throttled; 136 u64 throttled_time; 137 #endif 138 }; 139 140 /* task group related information */ 141 struct task_group { 142 struct cgroup_subsys_state css; 143 144 #ifdef CONFIG_FAIR_GROUP_SCHED 145 /* schedulable entities of this group on each cpu */ 146 struct sched_entity **se; 147 /* runqueue "owned" by this group on each cpu */ 148 struct cfs_rq **cfs_rq; 149 unsigned long shares; 150 151 #ifdef CONFIG_SMP 152 atomic_long_t load_avg; 153 atomic_t runnable_avg; 154 #endif 155 #endif 156 157 #ifdef CONFIG_RT_GROUP_SCHED 158 struct sched_rt_entity **rt_se; 159 struct rt_rq **rt_rq; 160 161 struct rt_bandwidth rt_bandwidth; 162 #endif 163 164 struct rcu_head rcu; 165 struct list_head list; 166 167 struct task_group *parent; 168 struct list_head siblings; 169 struct list_head children; 170 171 #ifdef CONFIG_SCHED_AUTOGROUP 172 struct autogroup *autogroup; 173 #endif 174 175 struct cfs_bandwidth cfs_bandwidth; 176 }; 177 178 #ifdef CONFIG_FAIR_GROUP_SCHED 179 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 180 181 /* 182 * A weight of 0 or 1 can cause arithmetics problems. 183 * A weight of a cfs_rq is the sum of weights of which entities 184 * are queued on this cfs_rq, so a weight of a entity should not be 185 * too large, so as the shares value of a task group. 186 * (The default weight is 1024 - so there's no practical 187 * limitation from this.) 188 */ 189 #define MIN_SHARES (1UL << 1) 190 #define MAX_SHARES (1UL << 18) 191 #endif 192 193 typedef int (*tg_visitor)(struct task_group *, void *); 194 195 extern int walk_tg_tree_from(struct task_group *from, 196 tg_visitor down, tg_visitor up, void *data); 197 198 /* 199 * Iterate the full tree, calling @down when first entering a node and @up when 200 * leaving it for the final time. 201 * 202 * Caller must hold rcu_lock or sufficient equivalent. 203 */ 204 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 205 { 206 return walk_tg_tree_from(&root_task_group, down, up, data); 207 } 208 209 extern int tg_nop(struct task_group *tg, void *data); 210 211 extern void free_fair_sched_group(struct task_group *tg); 212 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 213 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 214 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 215 struct sched_entity *se, int cpu, 216 struct sched_entity *parent); 217 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 218 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 219 220 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 221 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 222 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 223 224 extern void free_rt_sched_group(struct task_group *tg); 225 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 226 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 227 struct sched_rt_entity *rt_se, int cpu, 228 struct sched_rt_entity *parent); 229 230 extern struct task_group *sched_create_group(struct task_group *parent); 231 extern void sched_online_group(struct task_group *tg, 232 struct task_group *parent); 233 extern void sched_destroy_group(struct task_group *tg); 234 extern void sched_offline_group(struct task_group *tg); 235 236 extern void sched_move_task(struct task_struct *tsk); 237 238 #ifdef CONFIG_FAIR_GROUP_SCHED 239 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 240 #endif 241 242 #else /* CONFIG_CGROUP_SCHED */ 243 244 struct cfs_bandwidth { }; 245 246 #endif /* CONFIG_CGROUP_SCHED */ 247 248 /* CFS-related fields in a runqueue */ 249 struct cfs_rq { 250 struct load_weight load; 251 unsigned int nr_running, h_nr_running; 252 253 u64 exec_clock; 254 u64 min_vruntime; 255 #ifndef CONFIG_64BIT 256 u64 min_vruntime_copy; 257 #endif 258 259 struct rb_root tasks_timeline; 260 struct rb_node *rb_leftmost; 261 262 /* 263 * 'curr' points to currently running entity on this cfs_rq. 264 * It is set to NULL otherwise (i.e when none are currently running). 265 */ 266 struct sched_entity *curr, *next, *last, *skip; 267 268 #ifdef CONFIG_SCHED_DEBUG 269 unsigned int nr_spread_over; 270 #endif 271 272 #ifdef CONFIG_SMP 273 /* 274 * CFS Load tracking 275 * Under CFS, load is tracked on a per-entity basis and aggregated up. 276 * This allows for the description of both thread and group usage (in 277 * the FAIR_GROUP_SCHED case). 278 */ 279 unsigned long runnable_load_avg, blocked_load_avg; 280 atomic64_t decay_counter; 281 u64 last_decay; 282 atomic_long_t removed_load; 283 284 #ifdef CONFIG_FAIR_GROUP_SCHED 285 /* Required to track per-cpu representation of a task_group */ 286 u32 tg_runnable_contrib; 287 unsigned long tg_load_contrib; 288 #endif /* CONFIG_FAIR_GROUP_SCHED */ 289 290 /* 291 * h_load = weight * f(tg) 292 * 293 * Where f(tg) is the recursive weight fraction assigned to 294 * this group. 295 */ 296 unsigned long h_load; 297 #endif /* CONFIG_SMP */ 298 299 #ifdef CONFIG_FAIR_GROUP_SCHED 300 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 301 302 /* 303 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 304 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 305 * (like users, containers etc.) 306 * 307 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 308 * list is used during load balance. 309 */ 310 int on_list; 311 struct list_head leaf_cfs_rq_list; 312 struct task_group *tg; /* group that "owns" this runqueue */ 313 314 #ifdef CONFIG_CFS_BANDWIDTH 315 int runtime_enabled; 316 u64 runtime_expires; 317 s64 runtime_remaining; 318 319 u64 throttled_clock, throttled_clock_task; 320 u64 throttled_clock_task_time; 321 int throttled, throttle_count; 322 struct list_head throttled_list; 323 #endif /* CONFIG_CFS_BANDWIDTH */ 324 #endif /* CONFIG_FAIR_GROUP_SCHED */ 325 }; 326 327 static inline int rt_bandwidth_enabled(void) 328 { 329 return sysctl_sched_rt_runtime >= 0; 330 } 331 332 /* Real-Time classes' related field in a runqueue: */ 333 struct rt_rq { 334 struct rt_prio_array active; 335 unsigned int rt_nr_running; 336 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 337 struct { 338 int curr; /* highest queued rt task prio */ 339 #ifdef CONFIG_SMP 340 int next; /* next highest */ 341 #endif 342 } highest_prio; 343 #endif 344 #ifdef CONFIG_SMP 345 unsigned long rt_nr_migratory; 346 unsigned long rt_nr_total; 347 int overloaded; 348 struct plist_head pushable_tasks; 349 #endif 350 int rt_throttled; 351 u64 rt_time; 352 u64 rt_runtime; 353 /* Nests inside the rq lock: */ 354 raw_spinlock_t rt_runtime_lock; 355 356 #ifdef CONFIG_RT_GROUP_SCHED 357 unsigned long rt_nr_boosted; 358 359 struct rq *rq; 360 struct task_group *tg; 361 #endif 362 }; 363 364 #ifdef CONFIG_SMP 365 366 /* 367 * We add the notion of a root-domain which will be used to define per-domain 368 * variables. Each exclusive cpuset essentially defines an island domain by 369 * fully partitioning the member cpus from any other cpuset. Whenever a new 370 * exclusive cpuset is created, we also create and attach a new root-domain 371 * object. 372 * 373 */ 374 struct root_domain { 375 atomic_t refcount; 376 atomic_t rto_count; 377 struct rcu_head rcu; 378 cpumask_var_t span; 379 cpumask_var_t online; 380 381 /* 382 * The "RT overload" flag: it gets set if a CPU has more than 383 * one runnable RT task. 384 */ 385 cpumask_var_t rto_mask; 386 struct cpupri cpupri; 387 }; 388 389 extern struct root_domain def_root_domain; 390 391 #endif /* CONFIG_SMP */ 392 393 /* 394 * This is the main, per-CPU runqueue data structure. 395 * 396 * Locking rule: those places that want to lock multiple runqueues 397 * (such as the load balancing or the thread migration code), lock 398 * acquire operations must be ordered by ascending &runqueue. 399 */ 400 struct rq { 401 /* runqueue lock: */ 402 raw_spinlock_t lock; 403 404 /* 405 * nr_running and cpu_load should be in the same cacheline because 406 * remote CPUs use both these fields when doing load calculation. 407 */ 408 unsigned int nr_running; 409 #define CPU_LOAD_IDX_MAX 5 410 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 411 unsigned long last_load_update_tick; 412 #ifdef CONFIG_NO_HZ_COMMON 413 u64 nohz_stamp; 414 unsigned long nohz_flags; 415 #endif 416 #ifdef CONFIG_NO_HZ_FULL 417 unsigned long last_sched_tick; 418 #endif 419 int skip_clock_update; 420 421 /* capture load from *all* tasks on this cpu: */ 422 struct load_weight load; 423 unsigned long nr_load_updates; 424 u64 nr_switches; 425 426 struct cfs_rq cfs; 427 struct rt_rq rt; 428 429 #ifdef CONFIG_FAIR_GROUP_SCHED 430 /* list of leaf cfs_rq on this cpu: */ 431 struct list_head leaf_cfs_rq_list; 432 #ifdef CONFIG_SMP 433 unsigned long h_load_throttle; 434 #endif /* CONFIG_SMP */ 435 #endif /* CONFIG_FAIR_GROUP_SCHED */ 436 437 #ifdef CONFIG_RT_GROUP_SCHED 438 struct list_head leaf_rt_rq_list; 439 #endif 440 441 /* 442 * This is part of a global counter where only the total sum 443 * over all CPUs matters. A task can increase this counter on 444 * one CPU and if it got migrated afterwards it may decrease 445 * it on another CPU. Always updated under the runqueue lock: 446 */ 447 unsigned long nr_uninterruptible; 448 449 struct task_struct *curr, *idle, *stop; 450 unsigned long next_balance; 451 struct mm_struct *prev_mm; 452 453 u64 clock; 454 u64 clock_task; 455 456 atomic_t nr_iowait; 457 458 #ifdef CONFIG_SMP 459 struct root_domain *rd; 460 struct sched_domain *sd; 461 462 unsigned long cpu_power; 463 464 unsigned char idle_balance; 465 /* For active balancing */ 466 int post_schedule; 467 int active_balance; 468 int push_cpu; 469 struct cpu_stop_work active_balance_work; 470 /* cpu of this runqueue: */ 471 int cpu; 472 int online; 473 474 struct list_head cfs_tasks; 475 476 u64 rt_avg; 477 u64 age_stamp; 478 u64 idle_stamp; 479 u64 avg_idle; 480 #endif 481 482 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 483 u64 prev_irq_time; 484 #endif 485 #ifdef CONFIG_PARAVIRT 486 u64 prev_steal_time; 487 #endif 488 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 489 u64 prev_steal_time_rq; 490 #endif 491 492 /* calc_load related fields */ 493 unsigned long calc_load_update; 494 long calc_load_active; 495 496 #ifdef CONFIG_SCHED_HRTICK 497 #ifdef CONFIG_SMP 498 int hrtick_csd_pending; 499 struct call_single_data hrtick_csd; 500 #endif 501 struct hrtimer hrtick_timer; 502 #endif 503 504 #ifdef CONFIG_SCHEDSTATS 505 /* latency stats */ 506 struct sched_info rq_sched_info; 507 unsigned long long rq_cpu_time; 508 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 509 510 /* sys_sched_yield() stats */ 511 unsigned int yld_count; 512 513 /* schedule() stats */ 514 unsigned int sched_count; 515 unsigned int sched_goidle; 516 517 /* try_to_wake_up() stats */ 518 unsigned int ttwu_count; 519 unsigned int ttwu_local; 520 #endif 521 522 #ifdef CONFIG_SMP 523 struct llist_head wake_list; 524 #endif 525 526 struct sched_avg avg; 527 }; 528 529 static inline int cpu_of(struct rq *rq) 530 { 531 #ifdef CONFIG_SMP 532 return rq->cpu; 533 #else 534 return 0; 535 #endif 536 } 537 538 DECLARE_PER_CPU(struct rq, runqueues); 539 540 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 541 #define this_rq() (&__get_cpu_var(runqueues)) 542 #define task_rq(p) cpu_rq(task_cpu(p)) 543 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 544 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 545 546 static inline u64 rq_clock(struct rq *rq) 547 { 548 return rq->clock; 549 } 550 551 static inline u64 rq_clock_task(struct rq *rq) 552 { 553 return rq->clock_task; 554 } 555 556 #ifdef CONFIG_SMP 557 558 #define rcu_dereference_check_sched_domain(p) \ 559 rcu_dereference_check((p), \ 560 lockdep_is_held(&sched_domains_mutex)) 561 562 /* 563 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 564 * See detach_destroy_domains: synchronize_sched for details. 565 * 566 * The domain tree of any CPU may only be accessed from within 567 * preempt-disabled sections. 568 */ 569 #define for_each_domain(cpu, __sd) \ 570 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 571 __sd; __sd = __sd->parent) 572 573 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 574 575 /** 576 * highest_flag_domain - Return highest sched_domain containing flag. 577 * @cpu: The cpu whose highest level of sched domain is to 578 * be returned. 579 * @flag: The flag to check for the highest sched_domain 580 * for the given cpu. 581 * 582 * Returns the highest sched_domain of a cpu which contains the given flag. 583 */ 584 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 585 { 586 struct sched_domain *sd, *hsd = NULL; 587 588 for_each_domain(cpu, sd) { 589 if (!(sd->flags & flag)) 590 break; 591 hsd = sd; 592 } 593 594 return hsd; 595 } 596 597 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 598 DECLARE_PER_CPU(int, sd_llc_id); 599 600 struct sched_group_power { 601 atomic_t ref; 602 /* 603 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 604 * single CPU. 605 */ 606 unsigned int power, power_orig; 607 unsigned long next_update; 608 /* 609 * Number of busy cpus in this group. 610 */ 611 atomic_t nr_busy_cpus; 612 613 unsigned long cpumask[0]; /* iteration mask */ 614 }; 615 616 struct sched_group { 617 struct sched_group *next; /* Must be a circular list */ 618 atomic_t ref; 619 620 unsigned int group_weight; 621 struct sched_group_power *sgp; 622 623 /* 624 * The CPUs this group covers. 625 * 626 * NOTE: this field is variable length. (Allocated dynamically 627 * by attaching extra space to the end of the structure, 628 * depending on how many CPUs the kernel has booted up with) 629 */ 630 unsigned long cpumask[0]; 631 }; 632 633 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 634 { 635 return to_cpumask(sg->cpumask); 636 } 637 638 /* 639 * cpumask masking which cpus in the group are allowed to iterate up the domain 640 * tree. 641 */ 642 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 643 { 644 return to_cpumask(sg->sgp->cpumask); 645 } 646 647 /** 648 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 649 * @group: The group whose first cpu is to be returned. 650 */ 651 static inline unsigned int group_first_cpu(struct sched_group *group) 652 { 653 return cpumask_first(sched_group_cpus(group)); 654 } 655 656 extern int group_balance_cpu(struct sched_group *sg); 657 658 #endif /* CONFIG_SMP */ 659 660 #include "stats.h" 661 #include "auto_group.h" 662 663 #ifdef CONFIG_CGROUP_SCHED 664 665 /* 666 * Return the group to which this tasks belongs. 667 * 668 * We cannot use task_subsys_state() and friends because the cgroup 669 * subsystem changes that value before the cgroup_subsys::attach() method 670 * is called, therefore we cannot pin it and might observe the wrong value. 671 * 672 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 673 * core changes this before calling sched_move_task(). 674 * 675 * Instead we use a 'copy' which is updated from sched_move_task() while 676 * holding both task_struct::pi_lock and rq::lock. 677 */ 678 static inline struct task_group *task_group(struct task_struct *p) 679 { 680 return p->sched_task_group; 681 } 682 683 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 684 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 685 { 686 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 687 struct task_group *tg = task_group(p); 688 #endif 689 690 #ifdef CONFIG_FAIR_GROUP_SCHED 691 p->se.cfs_rq = tg->cfs_rq[cpu]; 692 p->se.parent = tg->se[cpu]; 693 #endif 694 695 #ifdef CONFIG_RT_GROUP_SCHED 696 p->rt.rt_rq = tg->rt_rq[cpu]; 697 p->rt.parent = tg->rt_se[cpu]; 698 #endif 699 } 700 701 #else /* CONFIG_CGROUP_SCHED */ 702 703 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 704 static inline struct task_group *task_group(struct task_struct *p) 705 { 706 return NULL; 707 } 708 709 #endif /* CONFIG_CGROUP_SCHED */ 710 711 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 712 { 713 set_task_rq(p, cpu); 714 #ifdef CONFIG_SMP 715 /* 716 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 717 * successfuly executed on another CPU. We must ensure that updates of 718 * per-task data have been completed by this moment. 719 */ 720 smp_wmb(); 721 task_thread_info(p)->cpu = cpu; 722 #endif 723 } 724 725 /* 726 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 727 */ 728 #ifdef CONFIG_SCHED_DEBUG 729 # include <linux/static_key.h> 730 # define const_debug __read_mostly 731 #else 732 # define const_debug const 733 #endif 734 735 extern const_debug unsigned int sysctl_sched_features; 736 737 #define SCHED_FEAT(name, enabled) \ 738 __SCHED_FEAT_##name , 739 740 enum { 741 #include "features.h" 742 __SCHED_FEAT_NR, 743 }; 744 745 #undef SCHED_FEAT 746 747 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 748 static __always_inline bool static_branch__true(struct static_key *key) 749 { 750 return static_key_true(key); /* Not out of line branch. */ 751 } 752 753 static __always_inline bool static_branch__false(struct static_key *key) 754 { 755 return static_key_false(key); /* Out of line branch. */ 756 } 757 758 #define SCHED_FEAT(name, enabled) \ 759 static __always_inline bool static_branch_##name(struct static_key *key) \ 760 { \ 761 return static_branch__##enabled(key); \ 762 } 763 764 #include "features.h" 765 766 #undef SCHED_FEAT 767 768 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 769 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 770 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 771 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 772 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 773 774 #ifdef CONFIG_NUMA_BALANCING 775 #define sched_feat_numa(x) sched_feat(x) 776 #ifdef CONFIG_SCHED_DEBUG 777 #define numabalancing_enabled sched_feat_numa(NUMA) 778 #else 779 extern bool numabalancing_enabled; 780 #endif /* CONFIG_SCHED_DEBUG */ 781 #else 782 #define sched_feat_numa(x) (0) 783 #define numabalancing_enabled (0) 784 #endif /* CONFIG_NUMA_BALANCING */ 785 786 static inline u64 global_rt_period(void) 787 { 788 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 789 } 790 791 static inline u64 global_rt_runtime(void) 792 { 793 if (sysctl_sched_rt_runtime < 0) 794 return RUNTIME_INF; 795 796 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 797 } 798 799 800 801 static inline int task_current(struct rq *rq, struct task_struct *p) 802 { 803 return rq->curr == p; 804 } 805 806 static inline int task_running(struct rq *rq, struct task_struct *p) 807 { 808 #ifdef CONFIG_SMP 809 return p->on_cpu; 810 #else 811 return task_current(rq, p); 812 #endif 813 } 814 815 816 #ifndef prepare_arch_switch 817 # define prepare_arch_switch(next) do { } while (0) 818 #endif 819 #ifndef finish_arch_switch 820 # define finish_arch_switch(prev) do { } while (0) 821 #endif 822 #ifndef finish_arch_post_lock_switch 823 # define finish_arch_post_lock_switch() do { } while (0) 824 #endif 825 826 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 827 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 828 { 829 #ifdef CONFIG_SMP 830 /* 831 * We can optimise this out completely for !SMP, because the 832 * SMP rebalancing from interrupt is the only thing that cares 833 * here. 834 */ 835 next->on_cpu = 1; 836 #endif 837 } 838 839 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 840 { 841 #ifdef CONFIG_SMP 842 /* 843 * After ->on_cpu is cleared, the task can be moved to a different CPU. 844 * We must ensure this doesn't happen until the switch is completely 845 * finished. 846 */ 847 smp_wmb(); 848 prev->on_cpu = 0; 849 #endif 850 #ifdef CONFIG_DEBUG_SPINLOCK 851 /* this is a valid case when another task releases the spinlock */ 852 rq->lock.owner = current; 853 #endif 854 /* 855 * If we are tracking spinlock dependencies then we have to 856 * fix up the runqueue lock - which gets 'carried over' from 857 * prev into current: 858 */ 859 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 860 861 raw_spin_unlock_irq(&rq->lock); 862 } 863 864 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 865 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 866 { 867 #ifdef CONFIG_SMP 868 /* 869 * We can optimise this out completely for !SMP, because the 870 * SMP rebalancing from interrupt is the only thing that cares 871 * here. 872 */ 873 next->on_cpu = 1; 874 #endif 875 raw_spin_unlock(&rq->lock); 876 } 877 878 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 879 { 880 #ifdef CONFIG_SMP 881 /* 882 * After ->on_cpu is cleared, the task can be moved to a different CPU. 883 * We must ensure this doesn't happen until the switch is completely 884 * finished. 885 */ 886 smp_wmb(); 887 prev->on_cpu = 0; 888 #endif 889 local_irq_enable(); 890 } 891 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 892 893 /* 894 * wake flags 895 */ 896 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 897 #define WF_FORK 0x02 /* child wakeup after fork */ 898 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 899 900 /* 901 * To aid in avoiding the subversion of "niceness" due to uneven distribution 902 * of tasks with abnormal "nice" values across CPUs the contribution that 903 * each task makes to its run queue's load is weighted according to its 904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 905 * scaled version of the new time slice allocation that they receive on time 906 * slice expiry etc. 907 */ 908 909 #define WEIGHT_IDLEPRIO 3 910 #define WMULT_IDLEPRIO 1431655765 911 912 /* 913 * Nice levels are multiplicative, with a gentle 10% change for every 914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 915 * nice 1, it will get ~10% less CPU time than another CPU-bound task 916 * that remained on nice 0. 917 * 918 * The "10% effect" is relative and cumulative: from _any_ nice level, 919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 921 * If a task goes up by ~10% and another task goes down by ~10% then 922 * the relative distance between them is ~25%.) 923 */ 924 static const int prio_to_weight[40] = { 925 /* -20 */ 88761, 71755, 56483, 46273, 36291, 926 /* -15 */ 29154, 23254, 18705, 14949, 11916, 927 /* -10 */ 9548, 7620, 6100, 4904, 3906, 928 /* -5 */ 3121, 2501, 1991, 1586, 1277, 929 /* 0 */ 1024, 820, 655, 526, 423, 930 /* 5 */ 335, 272, 215, 172, 137, 931 /* 10 */ 110, 87, 70, 56, 45, 932 /* 15 */ 36, 29, 23, 18, 15, 933 }; 934 935 /* 936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 937 * 938 * In cases where the weight does not change often, we can use the 939 * precalculated inverse to speed up arithmetics by turning divisions 940 * into multiplications: 941 */ 942 static const u32 prio_to_wmult[40] = { 943 /* -20 */ 48388, 59856, 76040, 92818, 118348, 944 /* -15 */ 147320, 184698, 229616, 287308, 360437, 945 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 951 }; 952 953 #define ENQUEUE_WAKEUP 1 954 #define ENQUEUE_HEAD 2 955 #ifdef CONFIG_SMP 956 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 957 #else 958 #define ENQUEUE_WAKING 0 959 #endif 960 961 #define DEQUEUE_SLEEP 1 962 963 struct sched_class { 964 const struct sched_class *next; 965 966 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 967 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 968 void (*yield_task) (struct rq *rq); 969 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 970 971 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 972 973 struct task_struct * (*pick_next_task) (struct rq *rq); 974 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 975 976 #ifdef CONFIG_SMP 977 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 978 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 979 980 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 981 void (*post_schedule) (struct rq *this_rq); 982 void (*task_waking) (struct task_struct *task); 983 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 984 985 void (*set_cpus_allowed)(struct task_struct *p, 986 const struct cpumask *newmask); 987 988 void (*rq_online)(struct rq *rq); 989 void (*rq_offline)(struct rq *rq); 990 #endif 991 992 void (*set_curr_task) (struct rq *rq); 993 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 994 void (*task_fork) (struct task_struct *p); 995 996 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 997 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 998 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 999 int oldprio); 1000 1001 unsigned int (*get_rr_interval) (struct rq *rq, 1002 struct task_struct *task); 1003 1004 #ifdef CONFIG_FAIR_GROUP_SCHED 1005 void (*task_move_group) (struct task_struct *p, int on_rq); 1006 #endif 1007 }; 1008 1009 #define sched_class_highest (&stop_sched_class) 1010 #define for_each_class(class) \ 1011 for (class = sched_class_highest; class; class = class->next) 1012 1013 extern const struct sched_class stop_sched_class; 1014 extern const struct sched_class rt_sched_class; 1015 extern const struct sched_class fair_sched_class; 1016 extern const struct sched_class idle_sched_class; 1017 1018 1019 #ifdef CONFIG_SMP 1020 1021 extern void update_group_power(struct sched_domain *sd, int cpu); 1022 1023 extern void trigger_load_balance(struct rq *rq, int cpu); 1024 extern void idle_balance(int this_cpu, struct rq *this_rq); 1025 1026 extern void idle_enter_fair(struct rq *this_rq); 1027 extern void idle_exit_fair(struct rq *this_rq); 1028 1029 #else /* CONFIG_SMP */ 1030 1031 static inline void idle_balance(int cpu, struct rq *rq) 1032 { 1033 } 1034 1035 #endif 1036 1037 extern void sysrq_sched_debug_show(void); 1038 extern void sched_init_granularity(void); 1039 extern void update_max_interval(void); 1040 extern void init_sched_rt_class(void); 1041 extern void init_sched_fair_class(void); 1042 1043 extern void resched_task(struct task_struct *p); 1044 extern void resched_cpu(int cpu); 1045 1046 extern struct rt_bandwidth def_rt_bandwidth; 1047 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1048 1049 extern void update_idle_cpu_load(struct rq *this_rq); 1050 1051 extern void init_task_runnable_average(struct task_struct *p); 1052 1053 #ifdef CONFIG_PARAVIRT 1054 static inline u64 steal_ticks(u64 steal) 1055 { 1056 if (unlikely(steal > NSEC_PER_SEC)) 1057 return div_u64(steal, TICK_NSEC); 1058 1059 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 1060 } 1061 #endif 1062 1063 static inline void inc_nr_running(struct rq *rq) 1064 { 1065 rq->nr_running++; 1066 1067 #ifdef CONFIG_NO_HZ_FULL 1068 if (rq->nr_running == 2) { 1069 if (tick_nohz_full_cpu(rq->cpu)) { 1070 /* Order rq->nr_running write against the IPI */ 1071 smp_wmb(); 1072 smp_send_reschedule(rq->cpu); 1073 } 1074 } 1075 #endif 1076 } 1077 1078 static inline void dec_nr_running(struct rq *rq) 1079 { 1080 rq->nr_running--; 1081 } 1082 1083 static inline void rq_last_tick_reset(struct rq *rq) 1084 { 1085 #ifdef CONFIG_NO_HZ_FULL 1086 rq->last_sched_tick = jiffies; 1087 #endif 1088 } 1089 1090 extern void update_rq_clock(struct rq *rq); 1091 1092 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1093 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1094 1095 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1096 1097 extern const_debug unsigned int sysctl_sched_time_avg; 1098 extern const_debug unsigned int sysctl_sched_nr_migrate; 1099 extern const_debug unsigned int sysctl_sched_migration_cost; 1100 1101 static inline u64 sched_avg_period(void) 1102 { 1103 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1104 } 1105 1106 #ifdef CONFIG_SCHED_HRTICK 1107 1108 /* 1109 * Use hrtick when: 1110 * - enabled by features 1111 * - hrtimer is actually high res 1112 */ 1113 static inline int hrtick_enabled(struct rq *rq) 1114 { 1115 if (!sched_feat(HRTICK)) 1116 return 0; 1117 if (!cpu_active(cpu_of(rq))) 1118 return 0; 1119 return hrtimer_is_hres_active(&rq->hrtick_timer); 1120 } 1121 1122 void hrtick_start(struct rq *rq, u64 delay); 1123 1124 #else 1125 1126 static inline int hrtick_enabled(struct rq *rq) 1127 { 1128 return 0; 1129 } 1130 1131 #endif /* CONFIG_SCHED_HRTICK */ 1132 1133 #ifdef CONFIG_SMP 1134 extern void sched_avg_update(struct rq *rq); 1135 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1136 { 1137 rq->rt_avg += rt_delta; 1138 sched_avg_update(rq); 1139 } 1140 #else 1141 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1142 static inline void sched_avg_update(struct rq *rq) { } 1143 #endif 1144 1145 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1146 1147 #ifdef CONFIG_SMP 1148 #ifdef CONFIG_PREEMPT 1149 1150 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1151 1152 /* 1153 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1154 * way at the expense of forcing extra atomic operations in all 1155 * invocations. This assures that the double_lock is acquired using the 1156 * same underlying policy as the spinlock_t on this architecture, which 1157 * reduces latency compared to the unfair variant below. However, it 1158 * also adds more overhead and therefore may reduce throughput. 1159 */ 1160 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1161 __releases(this_rq->lock) 1162 __acquires(busiest->lock) 1163 __acquires(this_rq->lock) 1164 { 1165 raw_spin_unlock(&this_rq->lock); 1166 double_rq_lock(this_rq, busiest); 1167 1168 return 1; 1169 } 1170 1171 #else 1172 /* 1173 * Unfair double_lock_balance: Optimizes throughput at the expense of 1174 * latency by eliminating extra atomic operations when the locks are 1175 * already in proper order on entry. This favors lower cpu-ids and will 1176 * grant the double lock to lower cpus over higher ids under contention, 1177 * regardless of entry order into the function. 1178 */ 1179 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1180 __releases(this_rq->lock) 1181 __acquires(busiest->lock) 1182 __acquires(this_rq->lock) 1183 { 1184 int ret = 0; 1185 1186 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1187 if (busiest < this_rq) { 1188 raw_spin_unlock(&this_rq->lock); 1189 raw_spin_lock(&busiest->lock); 1190 raw_spin_lock_nested(&this_rq->lock, 1191 SINGLE_DEPTH_NESTING); 1192 ret = 1; 1193 } else 1194 raw_spin_lock_nested(&busiest->lock, 1195 SINGLE_DEPTH_NESTING); 1196 } 1197 return ret; 1198 } 1199 1200 #endif /* CONFIG_PREEMPT */ 1201 1202 /* 1203 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1204 */ 1205 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1206 { 1207 if (unlikely(!irqs_disabled())) { 1208 /* printk() doesn't work good under rq->lock */ 1209 raw_spin_unlock(&this_rq->lock); 1210 BUG_ON(1); 1211 } 1212 1213 return _double_lock_balance(this_rq, busiest); 1214 } 1215 1216 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1217 __releases(busiest->lock) 1218 { 1219 raw_spin_unlock(&busiest->lock); 1220 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1221 } 1222 1223 /* 1224 * double_rq_lock - safely lock two runqueues 1225 * 1226 * Note this does not disable interrupts like task_rq_lock, 1227 * you need to do so manually before calling. 1228 */ 1229 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1230 __acquires(rq1->lock) 1231 __acquires(rq2->lock) 1232 { 1233 BUG_ON(!irqs_disabled()); 1234 if (rq1 == rq2) { 1235 raw_spin_lock(&rq1->lock); 1236 __acquire(rq2->lock); /* Fake it out ;) */ 1237 } else { 1238 if (rq1 < rq2) { 1239 raw_spin_lock(&rq1->lock); 1240 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1241 } else { 1242 raw_spin_lock(&rq2->lock); 1243 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1244 } 1245 } 1246 } 1247 1248 /* 1249 * double_rq_unlock - safely unlock two runqueues 1250 * 1251 * Note this does not restore interrupts like task_rq_unlock, 1252 * you need to do so manually after calling. 1253 */ 1254 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1255 __releases(rq1->lock) 1256 __releases(rq2->lock) 1257 { 1258 raw_spin_unlock(&rq1->lock); 1259 if (rq1 != rq2) 1260 raw_spin_unlock(&rq2->lock); 1261 else 1262 __release(rq2->lock); 1263 } 1264 1265 #else /* CONFIG_SMP */ 1266 1267 /* 1268 * double_rq_lock - safely lock two runqueues 1269 * 1270 * Note this does not disable interrupts like task_rq_lock, 1271 * you need to do so manually before calling. 1272 */ 1273 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1274 __acquires(rq1->lock) 1275 __acquires(rq2->lock) 1276 { 1277 BUG_ON(!irqs_disabled()); 1278 BUG_ON(rq1 != rq2); 1279 raw_spin_lock(&rq1->lock); 1280 __acquire(rq2->lock); /* Fake it out ;) */ 1281 } 1282 1283 /* 1284 * double_rq_unlock - safely unlock two runqueues 1285 * 1286 * Note this does not restore interrupts like task_rq_unlock, 1287 * you need to do so manually after calling. 1288 */ 1289 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1290 __releases(rq1->lock) 1291 __releases(rq2->lock) 1292 { 1293 BUG_ON(rq1 != rq2); 1294 raw_spin_unlock(&rq1->lock); 1295 __release(rq2->lock); 1296 } 1297 1298 #endif 1299 1300 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1301 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1302 extern void print_cfs_stats(struct seq_file *m, int cpu); 1303 extern void print_rt_stats(struct seq_file *m, int cpu); 1304 1305 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1306 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1307 1308 extern void account_cfs_bandwidth_used(int enabled, int was_enabled); 1309 1310 #ifdef CONFIG_NO_HZ_COMMON 1311 enum rq_nohz_flag_bits { 1312 NOHZ_TICK_STOPPED, 1313 NOHZ_BALANCE_KICK, 1314 }; 1315 1316 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1317 #endif 1318 1319 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1320 1321 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1322 DECLARE_PER_CPU(u64, cpu_softirq_time); 1323 1324 #ifndef CONFIG_64BIT 1325 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1326 1327 static inline void irq_time_write_begin(void) 1328 { 1329 __this_cpu_inc(irq_time_seq.sequence); 1330 smp_wmb(); 1331 } 1332 1333 static inline void irq_time_write_end(void) 1334 { 1335 smp_wmb(); 1336 __this_cpu_inc(irq_time_seq.sequence); 1337 } 1338 1339 static inline u64 irq_time_read(int cpu) 1340 { 1341 u64 irq_time; 1342 unsigned seq; 1343 1344 do { 1345 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1346 irq_time = per_cpu(cpu_softirq_time, cpu) + 1347 per_cpu(cpu_hardirq_time, cpu); 1348 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1349 1350 return irq_time; 1351 } 1352 #else /* CONFIG_64BIT */ 1353 static inline void irq_time_write_begin(void) 1354 { 1355 } 1356 1357 static inline void irq_time_write_end(void) 1358 { 1359 } 1360 1361 static inline u64 irq_time_read(int cpu) 1362 { 1363 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1364 } 1365 #endif /* CONFIG_64BIT */ 1366 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1367