1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/cpufreq.h> 31 #include <linux/cpumask_api.h> 32 #include <linux/ctype.h> 33 #include <linux/file.h> 34 #include <linux/fs_api.h> 35 #include <linux/hrtimer_api.h> 36 #include <linux/interrupt.h> 37 #include <linux/irq_work.h> 38 #include <linux/jiffies.h> 39 #include <linux/kref_api.h> 40 #include <linux/kthread.h> 41 #include <linux/ktime_api.h> 42 #include <linux/lockdep_api.h> 43 #include <linux/lockdep.h> 44 #include <linux/minmax.h> 45 #include <linux/mm.h> 46 #include <linux/module.h> 47 #include <linux/mutex_api.h> 48 #include <linux/plist.h> 49 #include <linux/poll.h> 50 #include <linux/proc_fs.h> 51 #include <linux/profile.h> 52 #include <linux/psi.h> 53 #include <linux/rcupdate.h> 54 #include <linux/seq_file.h> 55 #include <linux/seqlock.h> 56 #include <linux/softirq.h> 57 #include <linux/spinlock_api.h> 58 #include <linux/static_key.h> 59 #include <linux/stop_machine.h> 60 #include <linux/syscalls_api.h> 61 #include <linux/syscalls.h> 62 #include <linux/tick.h> 63 #include <linux/topology.h> 64 #include <linux/types.h> 65 #include <linux/u64_stats_sync_api.h> 66 #include <linux/uaccess.h> 67 #include <linux/wait_api.h> 68 #include <linux/wait_bit.h> 69 #include <linux/workqueue_api.h> 70 71 #include <trace/events/power.h> 72 #include <trace/events/sched.h> 73 74 #include "../workqueue_internal.h" 75 76 #ifdef CONFIG_CGROUP_SCHED 77 #include <linux/cgroup.h> 78 #include <linux/psi.h> 79 #endif 80 81 #ifdef CONFIG_SCHED_DEBUG 82 # include <linux/static_key.h> 83 #endif 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include "cpupri.h" 91 #include "cpudeadline.h" 92 93 #ifdef CONFIG_SCHED_DEBUG 94 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 95 #else 96 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 97 #endif 98 99 struct rq; 100 struct cpuidle_state; 101 102 /* task_struct::on_rq states: */ 103 #define TASK_ON_RQ_QUEUED 1 104 #define TASK_ON_RQ_MIGRATING 2 105 106 extern __read_mostly int scheduler_running; 107 108 extern unsigned long calc_load_update; 109 extern atomic_long_t calc_load_tasks; 110 111 extern unsigned int sysctl_sched_child_runs_first; 112 113 extern void calc_global_load_tick(struct rq *this_rq); 114 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 115 116 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 117 118 extern unsigned int sysctl_sched_rt_period; 119 extern int sysctl_sched_rt_runtime; 120 extern int sched_rr_timeslice; 121 122 /* 123 * Helpers for converting nanosecond timing to jiffy resolution 124 */ 125 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 126 127 /* 128 * Increase resolution of nice-level calculations for 64-bit architectures. 129 * The extra resolution improves shares distribution and load balancing of 130 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 131 * hierarchies, especially on larger systems. This is not a user-visible change 132 * and does not change the user-interface for setting shares/weights. 133 * 134 * We increase resolution only if we have enough bits to allow this increased 135 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 136 * are pretty high and the returns do not justify the increased costs. 137 * 138 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 139 * increase coverage and consistency always enable it on 64-bit platforms. 140 */ 141 #ifdef CONFIG_64BIT 142 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 143 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load_down(w) \ 145 ({ \ 146 unsigned long __w = (w); \ 147 if (__w) \ 148 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 149 __w; \ 150 }) 151 #else 152 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 153 # define scale_load(w) (w) 154 # define scale_load_down(w) (w) 155 #endif 156 157 /* 158 * Task weight (visible to users) and its load (invisible to users) have 159 * independent resolution, but they should be well calibrated. We use 160 * scale_load() and scale_load_down(w) to convert between them. The 161 * following must be true: 162 * 163 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 164 * 165 */ 166 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 167 168 /* 169 * Single value that decides SCHED_DEADLINE internal math precision. 170 * 10 -> just above 1us 171 * 9 -> just above 0.5us 172 */ 173 #define DL_SCALE 10 174 175 /* 176 * Single value that denotes runtime == period, ie unlimited time. 177 */ 178 #define RUNTIME_INF ((u64)~0ULL) 179 180 static inline int idle_policy(int policy) 181 { 182 return policy == SCHED_IDLE; 183 } 184 static inline int fair_policy(int policy) 185 { 186 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 187 } 188 189 static inline int rt_policy(int policy) 190 { 191 return policy == SCHED_FIFO || policy == SCHED_RR; 192 } 193 194 static inline int dl_policy(int policy) 195 { 196 return policy == SCHED_DEADLINE; 197 } 198 static inline bool valid_policy(int policy) 199 { 200 return idle_policy(policy) || fair_policy(policy) || 201 rt_policy(policy) || dl_policy(policy); 202 } 203 204 static inline int task_has_idle_policy(struct task_struct *p) 205 { 206 return idle_policy(p->policy); 207 } 208 209 static inline int task_has_rt_policy(struct task_struct *p) 210 { 211 return rt_policy(p->policy); 212 } 213 214 static inline int task_has_dl_policy(struct task_struct *p) 215 { 216 return dl_policy(p->policy); 217 } 218 219 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 220 221 static inline void update_avg(u64 *avg, u64 sample) 222 { 223 s64 diff = sample - *avg; 224 *avg += diff / 8; 225 } 226 227 /* 228 * Shifting a value by an exponent greater *or equal* to the size of said value 229 * is UB; cap at size-1. 230 */ 231 #define shr_bound(val, shift) \ 232 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 233 234 /* 235 * !! For sched_setattr_nocheck() (kernel) only !! 236 * 237 * This is actually gross. :( 238 * 239 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 240 * tasks, but still be able to sleep. We need this on platforms that cannot 241 * atomically change clock frequency. Remove once fast switching will be 242 * available on such platforms. 243 * 244 * SUGOV stands for SchedUtil GOVernor. 245 */ 246 #define SCHED_FLAG_SUGOV 0x10000000 247 248 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 249 250 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 251 { 252 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 253 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 254 #else 255 return false; 256 #endif 257 } 258 259 /* 260 * Tells if entity @a should preempt entity @b. 261 */ 262 static inline bool 263 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 264 { 265 return dl_entity_is_special(a) || 266 dl_time_before(a->deadline, b->deadline); 267 } 268 269 /* 270 * This is the priority-queue data structure of the RT scheduling class: 271 */ 272 struct rt_prio_array { 273 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 274 struct list_head queue[MAX_RT_PRIO]; 275 }; 276 277 struct rt_bandwidth { 278 /* nests inside the rq lock: */ 279 raw_spinlock_t rt_runtime_lock; 280 ktime_t rt_period; 281 u64 rt_runtime; 282 struct hrtimer rt_period_timer; 283 unsigned int rt_period_active; 284 }; 285 286 void __dl_clear_params(struct task_struct *p); 287 288 struct dl_bandwidth { 289 raw_spinlock_t dl_runtime_lock; 290 u64 dl_runtime; 291 u64 dl_period; 292 }; 293 294 static inline int dl_bandwidth_enabled(void) 295 { 296 return sysctl_sched_rt_runtime >= 0; 297 } 298 299 /* 300 * To keep the bandwidth of -deadline tasks under control 301 * we need some place where: 302 * - store the maximum -deadline bandwidth of each cpu; 303 * - cache the fraction of bandwidth that is currently allocated in 304 * each root domain; 305 * 306 * This is all done in the data structure below. It is similar to the 307 * one used for RT-throttling (rt_bandwidth), with the main difference 308 * that, since here we are only interested in admission control, we 309 * do not decrease any runtime while the group "executes", neither we 310 * need a timer to replenish it. 311 * 312 * With respect to SMP, bandwidth is given on a per root domain basis, 313 * meaning that: 314 * - bw (< 100%) is the deadline bandwidth of each CPU; 315 * - total_bw is the currently allocated bandwidth in each root domain; 316 */ 317 struct dl_bw { 318 raw_spinlock_t lock; 319 u64 bw; 320 u64 total_bw; 321 }; 322 323 /* 324 * Verify the fitness of task @p to run on @cpu taking into account the 325 * CPU original capacity and the runtime/deadline ratio of the task. 326 * 327 * The function will return true if the CPU original capacity of the 328 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the 329 * task and false otherwise. 330 */ 331 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 332 { 333 unsigned long cap = arch_scale_cpu_capacity(cpu); 334 335 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime; 336 } 337 338 extern void init_dl_bw(struct dl_bw *dl_b); 339 extern int sched_dl_global_validate(void); 340 extern void sched_dl_do_global(void); 341 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 342 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 343 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 344 extern bool __checkparam_dl(const struct sched_attr *attr); 345 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 346 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 347 extern int dl_cpu_busy(int cpu, struct task_struct *p); 348 349 #ifdef CONFIG_CGROUP_SCHED 350 351 struct cfs_rq; 352 struct rt_rq; 353 354 extern struct list_head task_groups; 355 356 struct cfs_bandwidth { 357 #ifdef CONFIG_CFS_BANDWIDTH 358 raw_spinlock_t lock; 359 ktime_t period; 360 u64 quota; 361 u64 runtime; 362 u64 burst; 363 u64 runtime_snap; 364 s64 hierarchical_quota; 365 366 u8 idle; 367 u8 period_active; 368 u8 slack_started; 369 struct hrtimer period_timer; 370 struct hrtimer slack_timer; 371 struct list_head throttled_cfs_rq; 372 373 /* Statistics: */ 374 int nr_periods; 375 int nr_throttled; 376 int nr_burst; 377 u64 throttled_time; 378 u64 burst_time; 379 #endif 380 }; 381 382 /* Task group related information */ 383 struct task_group { 384 struct cgroup_subsys_state css; 385 386 #ifdef CONFIG_FAIR_GROUP_SCHED 387 /* schedulable entities of this group on each CPU */ 388 struct sched_entity **se; 389 /* runqueue "owned" by this group on each CPU */ 390 struct cfs_rq **cfs_rq; 391 unsigned long shares; 392 393 /* A positive value indicates that this is a SCHED_IDLE group. */ 394 int idle; 395 396 #ifdef CONFIG_SMP 397 /* 398 * load_avg can be heavily contended at clock tick time, so put 399 * it in its own cacheline separated from the fields above which 400 * will also be accessed at each tick. 401 */ 402 atomic_long_t load_avg ____cacheline_aligned; 403 #endif 404 #endif 405 406 #ifdef CONFIG_RT_GROUP_SCHED 407 struct sched_rt_entity **rt_se; 408 struct rt_rq **rt_rq; 409 410 struct rt_bandwidth rt_bandwidth; 411 #endif 412 413 struct rcu_head rcu; 414 struct list_head list; 415 416 struct task_group *parent; 417 struct list_head siblings; 418 struct list_head children; 419 420 #ifdef CONFIG_SCHED_AUTOGROUP 421 struct autogroup *autogroup; 422 #endif 423 424 struct cfs_bandwidth cfs_bandwidth; 425 426 #ifdef CONFIG_UCLAMP_TASK_GROUP 427 /* The two decimal precision [%] value requested from user-space */ 428 unsigned int uclamp_pct[UCLAMP_CNT]; 429 /* Clamp values requested for a task group */ 430 struct uclamp_se uclamp_req[UCLAMP_CNT]; 431 /* Effective clamp values used for a task group */ 432 struct uclamp_se uclamp[UCLAMP_CNT]; 433 #endif 434 435 }; 436 437 #ifdef CONFIG_FAIR_GROUP_SCHED 438 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 439 440 /* 441 * A weight of 0 or 1 can cause arithmetics problems. 442 * A weight of a cfs_rq is the sum of weights of which entities 443 * are queued on this cfs_rq, so a weight of a entity should not be 444 * too large, so as the shares value of a task group. 445 * (The default weight is 1024 - so there's no practical 446 * limitation from this.) 447 */ 448 #define MIN_SHARES (1UL << 1) 449 #define MAX_SHARES (1UL << 18) 450 #endif 451 452 typedef int (*tg_visitor)(struct task_group *, void *); 453 454 extern int walk_tg_tree_from(struct task_group *from, 455 tg_visitor down, tg_visitor up, void *data); 456 457 /* 458 * Iterate the full tree, calling @down when first entering a node and @up when 459 * leaving it for the final time. 460 * 461 * Caller must hold rcu_lock or sufficient equivalent. 462 */ 463 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 464 { 465 return walk_tg_tree_from(&root_task_group, down, up, data); 466 } 467 468 extern int tg_nop(struct task_group *tg, void *data); 469 470 extern void free_fair_sched_group(struct task_group *tg); 471 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 472 extern void online_fair_sched_group(struct task_group *tg); 473 extern void unregister_fair_sched_group(struct task_group *tg); 474 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 475 struct sched_entity *se, int cpu, 476 struct sched_entity *parent); 477 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 478 479 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 480 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 481 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 482 483 extern void unregister_rt_sched_group(struct task_group *tg); 484 extern void free_rt_sched_group(struct task_group *tg); 485 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 486 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 487 struct sched_rt_entity *rt_se, int cpu, 488 struct sched_rt_entity *parent); 489 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 490 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 491 extern long sched_group_rt_runtime(struct task_group *tg); 492 extern long sched_group_rt_period(struct task_group *tg); 493 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 494 495 extern struct task_group *sched_create_group(struct task_group *parent); 496 extern void sched_online_group(struct task_group *tg, 497 struct task_group *parent); 498 extern void sched_destroy_group(struct task_group *tg); 499 extern void sched_release_group(struct task_group *tg); 500 501 extern void sched_move_task(struct task_struct *tsk); 502 503 #ifdef CONFIG_FAIR_GROUP_SCHED 504 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 505 506 extern int sched_group_set_idle(struct task_group *tg, long idle); 507 508 #ifdef CONFIG_SMP 509 extern void set_task_rq_fair(struct sched_entity *se, 510 struct cfs_rq *prev, struct cfs_rq *next); 511 #else /* !CONFIG_SMP */ 512 static inline void set_task_rq_fair(struct sched_entity *se, 513 struct cfs_rq *prev, struct cfs_rq *next) { } 514 #endif /* CONFIG_SMP */ 515 #endif /* CONFIG_FAIR_GROUP_SCHED */ 516 517 #else /* CONFIG_CGROUP_SCHED */ 518 519 struct cfs_bandwidth { }; 520 521 #endif /* CONFIG_CGROUP_SCHED */ 522 523 /* CFS-related fields in a runqueue */ 524 struct cfs_rq { 525 struct load_weight load; 526 unsigned int nr_running; 527 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 528 unsigned int idle_nr_running; /* SCHED_IDLE */ 529 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 530 531 u64 exec_clock; 532 u64 min_vruntime; 533 #ifdef CONFIG_SCHED_CORE 534 unsigned int forceidle_seq; 535 u64 min_vruntime_fi; 536 #endif 537 538 #ifndef CONFIG_64BIT 539 u64 min_vruntime_copy; 540 #endif 541 542 struct rb_root_cached tasks_timeline; 543 544 /* 545 * 'curr' points to currently running entity on this cfs_rq. 546 * It is set to NULL otherwise (i.e when none are currently running). 547 */ 548 struct sched_entity *curr; 549 struct sched_entity *next; 550 struct sched_entity *last; 551 struct sched_entity *skip; 552 553 #ifdef CONFIG_SCHED_DEBUG 554 unsigned int nr_spread_over; 555 #endif 556 557 #ifdef CONFIG_SMP 558 /* 559 * CFS load tracking 560 */ 561 struct sched_avg avg; 562 #ifndef CONFIG_64BIT 563 u64 load_last_update_time_copy; 564 #endif 565 struct { 566 raw_spinlock_t lock ____cacheline_aligned; 567 int nr; 568 unsigned long load_avg; 569 unsigned long util_avg; 570 unsigned long runnable_avg; 571 } removed; 572 573 #ifdef CONFIG_FAIR_GROUP_SCHED 574 unsigned long tg_load_avg_contrib; 575 long propagate; 576 long prop_runnable_sum; 577 578 /* 579 * h_load = weight * f(tg) 580 * 581 * Where f(tg) is the recursive weight fraction assigned to 582 * this group. 583 */ 584 unsigned long h_load; 585 u64 last_h_load_update; 586 struct sched_entity *h_load_next; 587 #endif /* CONFIG_FAIR_GROUP_SCHED */ 588 #endif /* CONFIG_SMP */ 589 590 #ifdef CONFIG_FAIR_GROUP_SCHED 591 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 592 593 /* 594 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 595 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 596 * (like users, containers etc.) 597 * 598 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 599 * This list is used during load balance. 600 */ 601 int on_list; 602 struct list_head leaf_cfs_rq_list; 603 struct task_group *tg; /* group that "owns" this runqueue */ 604 605 /* Locally cached copy of our task_group's idle value */ 606 int idle; 607 608 #ifdef CONFIG_CFS_BANDWIDTH 609 int runtime_enabled; 610 s64 runtime_remaining; 611 612 u64 throttled_clock; 613 u64 throttled_clock_pelt; 614 u64 throttled_clock_pelt_time; 615 int throttled; 616 int throttle_count; 617 struct list_head throttled_list; 618 #endif /* CONFIG_CFS_BANDWIDTH */ 619 #endif /* CONFIG_FAIR_GROUP_SCHED */ 620 }; 621 622 static inline int rt_bandwidth_enabled(void) 623 { 624 return sysctl_sched_rt_runtime >= 0; 625 } 626 627 /* RT IPI pull logic requires IRQ_WORK */ 628 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 629 # define HAVE_RT_PUSH_IPI 630 #endif 631 632 /* Real-Time classes' related field in a runqueue: */ 633 struct rt_rq { 634 struct rt_prio_array active; 635 unsigned int rt_nr_running; 636 unsigned int rr_nr_running; 637 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 638 struct { 639 int curr; /* highest queued rt task prio */ 640 #ifdef CONFIG_SMP 641 int next; /* next highest */ 642 #endif 643 } highest_prio; 644 #endif 645 #ifdef CONFIG_SMP 646 unsigned int rt_nr_migratory; 647 unsigned int rt_nr_total; 648 int overloaded; 649 struct plist_head pushable_tasks; 650 651 #endif /* CONFIG_SMP */ 652 int rt_queued; 653 654 int rt_throttled; 655 u64 rt_time; 656 u64 rt_runtime; 657 /* Nests inside the rq lock: */ 658 raw_spinlock_t rt_runtime_lock; 659 660 #ifdef CONFIG_RT_GROUP_SCHED 661 unsigned int rt_nr_boosted; 662 663 struct rq *rq; 664 struct task_group *tg; 665 #endif 666 }; 667 668 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 669 { 670 return rt_rq->rt_queued && rt_rq->rt_nr_running; 671 } 672 673 /* Deadline class' related fields in a runqueue */ 674 struct dl_rq { 675 /* runqueue is an rbtree, ordered by deadline */ 676 struct rb_root_cached root; 677 678 unsigned int dl_nr_running; 679 680 #ifdef CONFIG_SMP 681 /* 682 * Deadline values of the currently executing and the 683 * earliest ready task on this rq. Caching these facilitates 684 * the decision whether or not a ready but not running task 685 * should migrate somewhere else. 686 */ 687 struct { 688 u64 curr; 689 u64 next; 690 } earliest_dl; 691 692 unsigned int dl_nr_migratory; 693 int overloaded; 694 695 /* 696 * Tasks on this rq that can be pushed away. They are kept in 697 * an rb-tree, ordered by tasks' deadlines, with caching 698 * of the leftmost (earliest deadline) element. 699 */ 700 struct rb_root_cached pushable_dl_tasks_root; 701 #else 702 struct dl_bw dl_bw; 703 #endif 704 /* 705 * "Active utilization" for this runqueue: increased when a 706 * task wakes up (becomes TASK_RUNNING) and decreased when a 707 * task blocks 708 */ 709 u64 running_bw; 710 711 /* 712 * Utilization of the tasks "assigned" to this runqueue (including 713 * the tasks that are in runqueue and the tasks that executed on this 714 * CPU and blocked). Increased when a task moves to this runqueue, and 715 * decreased when the task moves away (migrates, changes scheduling 716 * policy, or terminates). 717 * This is needed to compute the "inactive utilization" for the 718 * runqueue (inactive utilization = this_bw - running_bw). 719 */ 720 u64 this_bw; 721 u64 extra_bw; 722 723 /* 724 * Inverse of the fraction of CPU utilization that can be reclaimed 725 * by the GRUB algorithm. 726 */ 727 u64 bw_ratio; 728 }; 729 730 #ifdef CONFIG_FAIR_GROUP_SCHED 731 /* An entity is a task if it doesn't "own" a runqueue */ 732 #define entity_is_task(se) (!se->my_q) 733 734 static inline void se_update_runnable(struct sched_entity *se) 735 { 736 if (!entity_is_task(se)) 737 se->runnable_weight = se->my_q->h_nr_running; 738 } 739 740 static inline long se_runnable(struct sched_entity *se) 741 { 742 if (entity_is_task(se)) 743 return !!se->on_rq; 744 else 745 return se->runnable_weight; 746 } 747 748 #else 749 #define entity_is_task(se) 1 750 751 static inline void se_update_runnable(struct sched_entity *se) {} 752 753 static inline long se_runnable(struct sched_entity *se) 754 { 755 return !!se->on_rq; 756 } 757 #endif 758 759 #ifdef CONFIG_SMP 760 /* 761 * XXX we want to get rid of these helpers and use the full load resolution. 762 */ 763 static inline long se_weight(struct sched_entity *se) 764 { 765 return scale_load_down(se->load.weight); 766 } 767 768 769 static inline bool sched_asym_prefer(int a, int b) 770 { 771 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 772 } 773 774 struct perf_domain { 775 struct em_perf_domain *em_pd; 776 struct perf_domain *next; 777 struct rcu_head rcu; 778 }; 779 780 /* Scheduling group status flags */ 781 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 782 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 783 784 /* 785 * We add the notion of a root-domain which will be used to define per-domain 786 * variables. Each exclusive cpuset essentially defines an island domain by 787 * fully partitioning the member CPUs from any other cpuset. Whenever a new 788 * exclusive cpuset is created, we also create and attach a new root-domain 789 * object. 790 * 791 */ 792 struct root_domain { 793 atomic_t refcount; 794 atomic_t rto_count; 795 struct rcu_head rcu; 796 cpumask_var_t span; 797 cpumask_var_t online; 798 799 /* 800 * Indicate pullable load on at least one CPU, e.g: 801 * - More than one runnable task 802 * - Running task is misfit 803 */ 804 int overload; 805 806 /* Indicate one or more cpus over-utilized (tipping point) */ 807 int overutilized; 808 809 /* 810 * The bit corresponding to a CPU gets set here if such CPU has more 811 * than one runnable -deadline task (as it is below for RT tasks). 812 */ 813 cpumask_var_t dlo_mask; 814 atomic_t dlo_count; 815 struct dl_bw dl_bw; 816 struct cpudl cpudl; 817 818 /* 819 * Indicate whether a root_domain's dl_bw has been checked or 820 * updated. It's monotonously increasing value. 821 * 822 * Also, some corner cases, like 'wrap around' is dangerous, but given 823 * that u64 is 'big enough'. So that shouldn't be a concern. 824 */ 825 u64 visit_gen; 826 827 #ifdef HAVE_RT_PUSH_IPI 828 /* 829 * For IPI pull requests, loop across the rto_mask. 830 */ 831 struct irq_work rto_push_work; 832 raw_spinlock_t rto_lock; 833 /* These are only updated and read within rto_lock */ 834 int rto_loop; 835 int rto_cpu; 836 /* These atomics are updated outside of a lock */ 837 atomic_t rto_loop_next; 838 atomic_t rto_loop_start; 839 #endif 840 /* 841 * The "RT overload" flag: it gets set if a CPU has more than 842 * one runnable RT task. 843 */ 844 cpumask_var_t rto_mask; 845 struct cpupri cpupri; 846 847 unsigned long max_cpu_capacity; 848 849 /* 850 * NULL-terminated list of performance domains intersecting with the 851 * CPUs of the rd. Protected by RCU. 852 */ 853 struct perf_domain __rcu *pd; 854 }; 855 856 extern void init_defrootdomain(void); 857 extern int sched_init_domains(const struct cpumask *cpu_map); 858 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 859 extern void sched_get_rd(struct root_domain *rd); 860 extern void sched_put_rd(struct root_domain *rd); 861 862 #ifdef HAVE_RT_PUSH_IPI 863 extern void rto_push_irq_work_func(struct irq_work *work); 864 #endif 865 #endif /* CONFIG_SMP */ 866 867 #ifdef CONFIG_UCLAMP_TASK 868 /* 869 * struct uclamp_bucket - Utilization clamp bucket 870 * @value: utilization clamp value for tasks on this clamp bucket 871 * @tasks: number of RUNNABLE tasks on this clamp bucket 872 * 873 * Keep track of how many tasks are RUNNABLE for a given utilization 874 * clamp value. 875 */ 876 struct uclamp_bucket { 877 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 878 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 879 }; 880 881 /* 882 * struct uclamp_rq - rq's utilization clamp 883 * @value: currently active clamp values for a rq 884 * @bucket: utilization clamp buckets affecting a rq 885 * 886 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 887 * A clamp value is affecting a rq when there is at least one task RUNNABLE 888 * (or actually running) with that value. 889 * 890 * There are up to UCLAMP_CNT possible different clamp values, currently there 891 * are only two: minimum utilization and maximum utilization. 892 * 893 * All utilization clamping values are MAX aggregated, since: 894 * - for util_min: we want to run the CPU at least at the max of the minimum 895 * utilization required by its currently RUNNABLE tasks. 896 * - for util_max: we want to allow the CPU to run up to the max of the 897 * maximum utilization allowed by its currently RUNNABLE tasks. 898 * 899 * Since on each system we expect only a limited number of different 900 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 901 * the metrics required to compute all the per-rq utilization clamp values. 902 */ 903 struct uclamp_rq { 904 unsigned int value; 905 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 906 }; 907 908 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 909 #endif /* CONFIG_UCLAMP_TASK */ 910 911 /* 912 * This is the main, per-CPU runqueue data structure. 913 * 914 * Locking rule: those places that want to lock multiple runqueues 915 * (such as the load balancing or the thread migration code), lock 916 * acquire operations must be ordered by ascending &runqueue. 917 */ 918 struct rq { 919 /* runqueue lock: */ 920 raw_spinlock_t __lock; 921 922 /* 923 * nr_running and cpu_load should be in the same cacheline because 924 * remote CPUs use both these fields when doing load calculation. 925 */ 926 unsigned int nr_running; 927 #ifdef CONFIG_NUMA_BALANCING 928 unsigned int nr_numa_running; 929 unsigned int nr_preferred_running; 930 unsigned int numa_migrate_on; 931 #endif 932 #ifdef CONFIG_NO_HZ_COMMON 933 #ifdef CONFIG_SMP 934 unsigned long last_blocked_load_update_tick; 935 unsigned int has_blocked_load; 936 call_single_data_t nohz_csd; 937 #endif /* CONFIG_SMP */ 938 unsigned int nohz_tick_stopped; 939 atomic_t nohz_flags; 940 #endif /* CONFIG_NO_HZ_COMMON */ 941 942 #ifdef CONFIG_SMP 943 unsigned int ttwu_pending; 944 #endif 945 u64 nr_switches; 946 947 #ifdef CONFIG_UCLAMP_TASK 948 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 949 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 950 unsigned int uclamp_flags; 951 #define UCLAMP_FLAG_IDLE 0x01 952 #endif 953 954 struct cfs_rq cfs; 955 struct rt_rq rt; 956 struct dl_rq dl; 957 958 #ifdef CONFIG_FAIR_GROUP_SCHED 959 /* list of leaf cfs_rq on this CPU: */ 960 struct list_head leaf_cfs_rq_list; 961 struct list_head *tmp_alone_branch; 962 #endif /* CONFIG_FAIR_GROUP_SCHED */ 963 964 /* 965 * This is part of a global counter where only the total sum 966 * over all CPUs matters. A task can increase this counter on 967 * one CPU and if it got migrated afterwards it may decrease 968 * it on another CPU. Always updated under the runqueue lock: 969 */ 970 unsigned int nr_uninterruptible; 971 972 struct task_struct __rcu *curr; 973 struct task_struct *idle; 974 struct task_struct *stop; 975 unsigned long next_balance; 976 struct mm_struct *prev_mm; 977 978 unsigned int clock_update_flags; 979 u64 clock; 980 /* Ensure that all clocks are in the same cache line */ 981 u64 clock_task ____cacheline_aligned; 982 u64 clock_pelt; 983 unsigned long lost_idle_time; 984 985 atomic_t nr_iowait; 986 987 #ifdef CONFIG_SCHED_DEBUG 988 u64 last_seen_need_resched_ns; 989 int ticks_without_resched; 990 #endif 991 992 #ifdef CONFIG_MEMBARRIER 993 int membarrier_state; 994 #endif 995 996 #ifdef CONFIG_SMP 997 struct root_domain *rd; 998 struct sched_domain __rcu *sd; 999 1000 unsigned long cpu_capacity; 1001 unsigned long cpu_capacity_orig; 1002 1003 struct callback_head *balance_callback; 1004 1005 unsigned char nohz_idle_balance; 1006 unsigned char idle_balance; 1007 1008 unsigned long misfit_task_load; 1009 1010 /* For active balancing */ 1011 int active_balance; 1012 int push_cpu; 1013 struct cpu_stop_work active_balance_work; 1014 1015 /* CPU of this runqueue: */ 1016 int cpu; 1017 int online; 1018 1019 struct list_head cfs_tasks; 1020 1021 struct sched_avg avg_rt; 1022 struct sched_avg avg_dl; 1023 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1024 struct sched_avg avg_irq; 1025 #endif 1026 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1027 struct sched_avg avg_thermal; 1028 #endif 1029 u64 idle_stamp; 1030 u64 avg_idle; 1031 1032 unsigned long wake_stamp; 1033 u64 wake_avg_idle; 1034 1035 /* This is used to determine avg_idle's max value */ 1036 u64 max_idle_balance_cost; 1037 1038 #ifdef CONFIG_HOTPLUG_CPU 1039 struct rcuwait hotplug_wait; 1040 #endif 1041 #endif /* CONFIG_SMP */ 1042 1043 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1044 u64 prev_irq_time; 1045 #endif 1046 #ifdef CONFIG_PARAVIRT 1047 u64 prev_steal_time; 1048 #endif 1049 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1050 u64 prev_steal_time_rq; 1051 #endif 1052 1053 /* calc_load related fields */ 1054 unsigned long calc_load_update; 1055 long calc_load_active; 1056 1057 #ifdef CONFIG_SCHED_HRTICK 1058 #ifdef CONFIG_SMP 1059 call_single_data_t hrtick_csd; 1060 #endif 1061 struct hrtimer hrtick_timer; 1062 ktime_t hrtick_time; 1063 #endif 1064 1065 #ifdef CONFIG_SCHEDSTATS 1066 /* latency stats */ 1067 struct sched_info rq_sched_info; 1068 unsigned long long rq_cpu_time; 1069 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1070 1071 /* sys_sched_yield() stats */ 1072 unsigned int yld_count; 1073 1074 /* schedule() stats */ 1075 unsigned int sched_count; 1076 unsigned int sched_goidle; 1077 1078 /* try_to_wake_up() stats */ 1079 unsigned int ttwu_count; 1080 unsigned int ttwu_local; 1081 #endif 1082 1083 #ifdef CONFIG_CPU_IDLE 1084 /* Must be inspected within a rcu lock section */ 1085 struct cpuidle_state *idle_state; 1086 #endif 1087 1088 #ifdef CONFIG_SMP 1089 unsigned int nr_pinned; 1090 #endif 1091 unsigned int push_busy; 1092 struct cpu_stop_work push_work; 1093 1094 #ifdef CONFIG_SCHED_CORE 1095 /* per rq */ 1096 struct rq *core; 1097 struct task_struct *core_pick; 1098 unsigned int core_enabled; 1099 unsigned int core_sched_seq; 1100 struct rb_root core_tree; 1101 1102 /* shared state -- careful with sched_core_cpu_deactivate() */ 1103 unsigned int core_task_seq; 1104 unsigned int core_pick_seq; 1105 unsigned long core_cookie; 1106 unsigned int core_forceidle_count; 1107 unsigned int core_forceidle_seq; 1108 unsigned int core_forceidle_occupation; 1109 u64 core_forceidle_start; 1110 #endif 1111 }; 1112 1113 #ifdef CONFIG_FAIR_GROUP_SCHED 1114 1115 /* CPU runqueue to which this cfs_rq is attached */ 1116 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1117 { 1118 return cfs_rq->rq; 1119 } 1120 1121 #else 1122 1123 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1124 { 1125 return container_of(cfs_rq, struct rq, cfs); 1126 } 1127 #endif 1128 1129 static inline int cpu_of(struct rq *rq) 1130 { 1131 #ifdef CONFIG_SMP 1132 return rq->cpu; 1133 #else 1134 return 0; 1135 #endif 1136 } 1137 1138 #define MDF_PUSH 0x01 1139 1140 static inline bool is_migration_disabled(struct task_struct *p) 1141 { 1142 #ifdef CONFIG_SMP 1143 return p->migration_disabled; 1144 #else 1145 return false; 1146 #endif 1147 } 1148 1149 struct sched_group; 1150 #ifdef CONFIG_SCHED_CORE 1151 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1152 1153 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1154 1155 static inline bool sched_core_enabled(struct rq *rq) 1156 { 1157 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1158 } 1159 1160 static inline bool sched_core_disabled(void) 1161 { 1162 return !static_branch_unlikely(&__sched_core_enabled); 1163 } 1164 1165 /* 1166 * Be careful with this function; not for general use. The return value isn't 1167 * stable unless you actually hold a relevant rq->__lock. 1168 */ 1169 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1170 { 1171 if (sched_core_enabled(rq)) 1172 return &rq->core->__lock; 1173 1174 return &rq->__lock; 1175 } 1176 1177 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1178 { 1179 if (rq->core_enabled) 1180 return &rq->core->__lock; 1181 1182 return &rq->__lock; 1183 } 1184 1185 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1186 1187 /* 1188 * Helpers to check if the CPU's core cookie matches with the task's cookie 1189 * when core scheduling is enabled. 1190 * A special case is that the task's cookie always matches with CPU's core 1191 * cookie if the CPU is in an idle core. 1192 */ 1193 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1194 { 1195 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1196 if (!sched_core_enabled(rq)) 1197 return true; 1198 1199 return rq->core->core_cookie == p->core_cookie; 1200 } 1201 1202 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1203 { 1204 bool idle_core = true; 1205 int cpu; 1206 1207 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1208 if (!sched_core_enabled(rq)) 1209 return true; 1210 1211 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1212 if (!available_idle_cpu(cpu)) { 1213 idle_core = false; 1214 break; 1215 } 1216 } 1217 1218 /* 1219 * A CPU in an idle core is always the best choice for tasks with 1220 * cookies. 1221 */ 1222 return idle_core || rq->core->core_cookie == p->core_cookie; 1223 } 1224 1225 static inline bool sched_group_cookie_match(struct rq *rq, 1226 struct task_struct *p, 1227 struct sched_group *group) 1228 { 1229 int cpu; 1230 1231 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1232 if (!sched_core_enabled(rq)) 1233 return true; 1234 1235 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1236 if (sched_core_cookie_match(rq, p)) 1237 return true; 1238 } 1239 return false; 1240 } 1241 1242 static inline bool sched_core_enqueued(struct task_struct *p) 1243 { 1244 return !RB_EMPTY_NODE(&p->core_node); 1245 } 1246 1247 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1248 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1249 1250 extern void sched_core_get(void); 1251 extern void sched_core_put(void); 1252 1253 #else /* !CONFIG_SCHED_CORE */ 1254 1255 static inline bool sched_core_enabled(struct rq *rq) 1256 { 1257 return false; 1258 } 1259 1260 static inline bool sched_core_disabled(void) 1261 { 1262 return true; 1263 } 1264 1265 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1266 { 1267 return &rq->__lock; 1268 } 1269 1270 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1271 { 1272 return &rq->__lock; 1273 } 1274 1275 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1276 { 1277 return true; 1278 } 1279 1280 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1281 { 1282 return true; 1283 } 1284 1285 static inline bool sched_group_cookie_match(struct rq *rq, 1286 struct task_struct *p, 1287 struct sched_group *group) 1288 { 1289 return true; 1290 } 1291 #endif /* CONFIG_SCHED_CORE */ 1292 1293 static inline void lockdep_assert_rq_held(struct rq *rq) 1294 { 1295 lockdep_assert_held(__rq_lockp(rq)); 1296 } 1297 1298 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1299 extern bool raw_spin_rq_trylock(struct rq *rq); 1300 extern void raw_spin_rq_unlock(struct rq *rq); 1301 1302 static inline void raw_spin_rq_lock(struct rq *rq) 1303 { 1304 raw_spin_rq_lock_nested(rq, 0); 1305 } 1306 1307 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1308 { 1309 local_irq_disable(); 1310 raw_spin_rq_lock(rq); 1311 } 1312 1313 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1314 { 1315 raw_spin_rq_unlock(rq); 1316 local_irq_enable(); 1317 } 1318 1319 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1320 { 1321 unsigned long flags; 1322 local_irq_save(flags); 1323 raw_spin_rq_lock(rq); 1324 return flags; 1325 } 1326 1327 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1328 { 1329 raw_spin_rq_unlock(rq); 1330 local_irq_restore(flags); 1331 } 1332 1333 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1334 do { \ 1335 flags = _raw_spin_rq_lock_irqsave(rq); \ 1336 } while (0) 1337 1338 #ifdef CONFIG_SCHED_SMT 1339 extern void __update_idle_core(struct rq *rq); 1340 1341 static inline void update_idle_core(struct rq *rq) 1342 { 1343 if (static_branch_unlikely(&sched_smt_present)) 1344 __update_idle_core(rq); 1345 } 1346 1347 #else 1348 static inline void update_idle_core(struct rq *rq) { } 1349 #endif 1350 1351 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1352 1353 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1354 #define this_rq() this_cpu_ptr(&runqueues) 1355 #define task_rq(p) cpu_rq(task_cpu(p)) 1356 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1357 #define raw_rq() raw_cpu_ptr(&runqueues) 1358 1359 #ifdef CONFIG_FAIR_GROUP_SCHED 1360 static inline struct task_struct *task_of(struct sched_entity *se) 1361 { 1362 SCHED_WARN_ON(!entity_is_task(se)); 1363 return container_of(se, struct task_struct, se); 1364 } 1365 1366 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1367 { 1368 return p->se.cfs_rq; 1369 } 1370 1371 /* runqueue on which this entity is (to be) queued */ 1372 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1373 { 1374 return se->cfs_rq; 1375 } 1376 1377 /* runqueue "owned" by this group */ 1378 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1379 { 1380 return grp->my_q; 1381 } 1382 1383 #else 1384 1385 static inline struct task_struct *task_of(struct sched_entity *se) 1386 { 1387 return container_of(se, struct task_struct, se); 1388 } 1389 1390 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1391 { 1392 return &task_rq(p)->cfs; 1393 } 1394 1395 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1396 { 1397 struct task_struct *p = task_of(se); 1398 struct rq *rq = task_rq(p); 1399 1400 return &rq->cfs; 1401 } 1402 1403 /* runqueue "owned" by this group */ 1404 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1405 { 1406 return NULL; 1407 } 1408 #endif 1409 1410 extern void update_rq_clock(struct rq *rq); 1411 1412 /* 1413 * rq::clock_update_flags bits 1414 * 1415 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1416 * call to __schedule(). This is an optimisation to avoid 1417 * neighbouring rq clock updates. 1418 * 1419 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1420 * in effect and calls to update_rq_clock() are being ignored. 1421 * 1422 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1423 * made to update_rq_clock() since the last time rq::lock was pinned. 1424 * 1425 * If inside of __schedule(), clock_update_flags will have been 1426 * shifted left (a left shift is a cheap operation for the fast path 1427 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1428 * 1429 * if (rq-clock_update_flags >= RQCF_UPDATED) 1430 * 1431 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1432 * one position though, because the next rq_unpin_lock() will shift it 1433 * back. 1434 */ 1435 #define RQCF_REQ_SKIP 0x01 1436 #define RQCF_ACT_SKIP 0x02 1437 #define RQCF_UPDATED 0x04 1438 1439 static inline void assert_clock_updated(struct rq *rq) 1440 { 1441 /* 1442 * The only reason for not seeing a clock update since the 1443 * last rq_pin_lock() is if we're currently skipping updates. 1444 */ 1445 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1446 } 1447 1448 static inline u64 rq_clock(struct rq *rq) 1449 { 1450 lockdep_assert_rq_held(rq); 1451 assert_clock_updated(rq); 1452 1453 return rq->clock; 1454 } 1455 1456 static inline u64 rq_clock_task(struct rq *rq) 1457 { 1458 lockdep_assert_rq_held(rq); 1459 assert_clock_updated(rq); 1460 1461 return rq->clock_task; 1462 } 1463 1464 /** 1465 * By default the decay is the default pelt decay period. 1466 * The decay shift can change the decay period in 1467 * multiples of 32. 1468 * Decay shift Decay period(ms) 1469 * 0 32 1470 * 1 64 1471 * 2 128 1472 * 3 256 1473 * 4 512 1474 */ 1475 extern int sched_thermal_decay_shift; 1476 1477 static inline u64 rq_clock_thermal(struct rq *rq) 1478 { 1479 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1480 } 1481 1482 static inline void rq_clock_skip_update(struct rq *rq) 1483 { 1484 lockdep_assert_rq_held(rq); 1485 rq->clock_update_flags |= RQCF_REQ_SKIP; 1486 } 1487 1488 /* 1489 * See rt task throttling, which is the only time a skip 1490 * request is canceled. 1491 */ 1492 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1493 { 1494 lockdep_assert_rq_held(rq); 1495 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1496 } 1497 1498 struct rq_flags { 1499 unsigned long flags; 1500 struct pin_cookie cookie; 1501 #ifdef CONFIG_SCHED_DEBUG 1502 /* 1503 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1504 * current pin context is stashed here in case it needs to be 1505 * restored in rq_repin_lock(). 1506 */ 1507 unsigned int clock_update_flags; 1508 #endif 1509 }; 1510 1511 extern struct callback_head balance_push_callback; 1512 1513 /* 1514 * Lockdep annotation that avoids accidental unlocks; it's like a 1515 * sticky/continuous lockdep_assert_held(). 1516 * 1517 * This avoids code that has access to 'struct rq *rq' (basically everything in 1518 * the scheduler) from accidentally unlocking the rq if they do not also have a 1519 * copy of the (on-stack) 'struct rq_flags rf'. 1520 * 1521 * Also see Documentation/locking/lockdep-design.rst. 1522 */ 1523 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1524 { 1525 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1526 1527 #ifdef CONFIG_SCHED_DEBUG 1528 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1529 rf->clock_update_flags = 0; 1530 #ifdef CONFIG_SMP 1531 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1532 #endif 1533 #endif 1534 } 1535 1536 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1537 { 1538 #ifdef CONFIG_SCHED_DEBUG 1539 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1540 rf->clock_update_flags = RQCF_UPDATED; 1541 #endif 1542 1543 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1544 } 1545 1546 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1547 { 1548 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1549 1550 #ifdef CONFIG_SCHED_DEBUG 1551 /* 1552 * Restore the value we stashed in @rf for this pin context. 1553 */ 1554 rq->clock_update_flags |= rf->clock_update_flags; 1555 #endif 1556 } 1557 1558 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1559 __acquires(rq->lock); 1560 1561 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1562 __acquires(p->pi_lock) 1563 __acquires(rq->lock); 1564 1565 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1566 __releases(rq->lock) 1567 { 1568 rq_unpin_lock(rq, rf); 1569 raw_spin_rq_unlock(rq); 1570 } 1571 1572 static inline void 1573 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1574 __releases(rq->lock) 1575 __releases(p->pi_lock) 1576 { 1577 rq_unpin_lock(rq, rf); 1578 raw_spin_rq_unlock(rq); 1579 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1580 } 1581 1582 static inline void 1583 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1584 __acquires(rq->lock) 1585 { 1586 raw_spin_rq_lock_irqsave(rq, rf->flags); 1587 rq_pin_lock(rq, rf); 1588 } 1589 1590 static inline void 1591 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1592 __acquires(rq->lock) 1593 { 1594 raw_spin_rq_lock_irq(rq); 1595 rq_pin_lock(rq, rf); 1596 } 1597 1598 static inline void 1599 rq_lock(struct rq *rq, struct rq_flags *rf) 1600 __acquires(rq->lock) 1601 { 1602 raw_spin_rq_lock(rq); 1603 rq_pin_lock(rq, rf); 1604 } 1605 1606 static inline void 1607 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1608 __releases(rq->lock) 1609 { 1610 rq_unpin_lock(rq, rf); 1611 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1612 } 1613 1614 static inline void 1615 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1616 __releases(rq->lock) 1617 { 1618 rq_unpin_lock(rq, rf); 1619 raw_spin_rq_unlock_irq(rq); 1620 } 1621 1622 static inline void 1623 rq_unlock(struct rq *rq, struct rq_flags *rf) 1624 __releases(rq->lock) 1625 { 1626 rq_unpin_lock(rq, rf); 1627 raw_spin_rq_unlock(rq); 1628 } 1629 1630 static inline struct rq * 1631 this_rq_lock_irq(struct rq_flags *rf) 1632 __acquires(rq->lock) 1633 { 1634 struct rq *rq; 1635 1636 local_irq_disable(); 1637 rq = this_rq(); 1638 rq_lock(rq, rf); 1639 return rq; 1640 } 1641 1642 #ifdef CONFIG_NUMA 1643 enum numa_topology_type { 1644 NUMA_DIRECT, 1645 NUMA_GLUELESS_MESH, 1646 NUMA_BACKPLANE, 1647 }; 1648 extern enum numa_topology_type sched_numa_topology_type; 1649 extern int sched_max_numa_distance; 1650 extern bool find_numa_distance(int distance); 1651 extern void sched_init_numa(int offline_node); 1652 extern void sched_update_numa(int cpu, bool online); 1653 extern void sched_domains_numa_masks_set(unsigned int cpu); 1654 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1655 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1656 #else 1657 static inline void sched_init_numa(int offline_node) { } 1658 static inline void sched_update_numa(int cpu, bool online) { } 1659 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1660 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1661 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1662 { 1663 return nr_cpu_ids; 1664 } 1665 #endif 1666 1667 #ifdef CONFIG_NUMA_BALANCING 1668 /* The regions in numa_faults array from task_struct */ 1669 enum numa_faults_stats { 1670 NUMA_MEM = 0, 1671 NUMA_CPU, 1672 NUMA_MEMBUF, 1673 NUMA_CPUBUF 1674 }; 1675 extern void sched_setnuma(struct task_struct *p, int node); 1676 extern int migrate_task_to(struct task_struct *p, int cpu); 1677 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1678 int cpu, int scpu); 1679 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1680 #else 1681 static inline void 1682 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1683 { 1684 } 1685 #endif /* CONFIG_NUMA_BALANCING */ 1686 1687 #ifdef CONFIG_SMP 1688 1689 static inline void 1690 queue_balance_callback(struct rq *rq, 1691 struct callback_head *head, 1692 void (*func)(struct rq *rq)) 1693 { 1694 lockdep_assert_rq_held(rq); 1695 1696 /* 1697 * Don't (re)queue an already queued item; nor queue anything when 1698 * balance_push() is active, see the comment with 1699 * balance_push_callback. 1700 */ 1701 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1702 return; 1703 1704 head->func = (void (*)(struct callback_head *))func; 1705 head->next = rq->balance_callback; 1706 rq->balance_callback = head; 1707 } 1708 1709 #define rcu_dereference_check_sched_domain(p) \ 1710 rcu_dereference_check((p), \ 1711 lockdep_is_held(&sched_domains_mutex)) 1712 1713 /* 1714 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1715 * See destroy_sched_domains: call_rcu for details. 1716 * 1717 * The domain tree of any CPU may only be accessed from within 1718 * preempt-disabled sections. 1719 */ 1720 #define for_each_domain(cpu, __sd) \ 1721 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1722 __sd; __sd = __sd->parent) 1723 1724 /** 1725 * highest_flag_domain - Return highest sched_domain containing flag. 1726 * @cpu: The CPU whose highest level of sched domain is to 1727 * be returned. 1728 * @flag: The flag to check for the highest sched_domain 1729 * for the given CPU. 1730 * 1731 * Returns the highest sched_domain of a CPU which contains the given flag. 1732 */ 1733 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1734 { 1735 struct sched_domain *sd, *hsd = NULL; 1736 1737 for_each_domain(cpu, sd) { 1738 if (!(sd->flags & flag)) 1739 break; 1740 hsd = sd; 1741 } 1742 1743 return hsd; 1744 } 1745 1746 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1747 { 1748 struct sched_domain *sd; 1749 1750 for_each_domain(cpu, sd) { 1751 if (sd->flags & flag) 1752 break; 1753 } 1754 1755 return sd; 1756 } 1757 1758 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1759 DECLARE_PER_CPU(int, sd_llc_size); 1760 DECLARE_PER_CPU(int, sd_llc_id); 1761 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1762 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1763 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1764 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1765 extern struct static_key_false sched_asym_cpucapacity; 1766 1767 struct sched_group_capacity { 1768 atomic_t ref; 1769 /* 1770 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1771 * for a single CPU. 1772 */ 1773 unsigned long capacity; 1774 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1775 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1776 unsigned long next_update; 1777 int imbalance; /* XXX unrelated to capacity but shared group state */ 1778 1779 #ifdef CONFIG_SCHED_DEBUG 1780 int id; 1781 #endif 1782 1783 unsigned long cpumask[]; /* Balance mask */ 1784 }; 1785 1786 struct sched_group { 1787 struct sched_group *next; /* Must be a circular list */ 1788 atomic_t ref; 1789 1790 unsigned int group_weight; 1791 struct sched_group_capacity *sgc; 1792 int asym_prefer_cpu; /* CPU of highest priority in group */ 1793 int flags; 1794 1795 /* 1796 * The CPUs this group covers. 1797 * 1798 * NOTE: this field is variable length. (Allocated dynamically 1799 * by attaching extra space to the end of the structure, 1800 * depending on how many CPUs the kernel has booted up with) 1801 */ 1802 unsigned long cpumask[]; 1803 }; 1804 1805 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1806 { 1807 return to_cpumask(sg->cpumask); 1808 } 1809 1810 /* 1811 * See build_balance_mask(). 1812 */ 1813 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1814 { 1815 return to_cpumask(sg->sgc->cpumask); 1816 } 1817 1818 /** 1819 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1820 * @group: The group whose first CPU is to be returned. 1821 */ 1822 static inline unsigned int group_first_cpu(struct sched_group *group) 1823 { 1824 return cpumask_first(sched_group_span(group)); 1825 } 1826 1827 extern int group_balance_cpu(struct sched_group *sg); 1828 1829 #ifdef CONFIG_SCHED_DEBUG 1830 void update_sched_domain_debugfs(void); 1831 void dirty_sched_domain_sysctl(int cpu); 1832 #else 1833 static inline void update_sched_domain_debugfs(void) 1834 { 1835 } 1836 static inline void dirty_sched_domain_sysctl(int cpu) 1837 { 1838 } 1839 #endif 1840 1841 extern int sched_update_scaling(void); 1842 #endif /* CONFIG_SMP */ 1843 1844 #include "stats.h" 1845 1846 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1847 1848 extern void __sched_core_account_forceidle(struct rq *rq); 1849 1850 static inline void sched_core_account_forceidle(struct rq *rq) 1851 { 1852 if (schedstat_enabled()) 1853 __sched_core_account_forceidle(rq); 1854 } 1855 1856 extern void __sched_core_tick(struct rq *rq); 1857 1858 static inline void sched_core_tick(struct rq *rq) 1859 { 1860 if (sched_core_enabled(rq) && schedstat_enabled()) 1861 __sched_core_tick(rq); 1862 } 1863 1864 #else 1865 1866 static inline void sched_core_account_forceidle(struct rq *rq) {} 1867 1868 static inline void sched_core_tick(struct rq *rq) {} 1869 1870 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1871 1872 #ifdef CONFIG_CGROUP_SCHED 1873 1874 /* 1875 * Return the group to which this tasks belongs. 1876 * 1877 * We cannot use task_css() and friends because the cgroup subsystem 1878 * changes that value before the cgroup_subsys::attach() method is called, 1879 * therefore we cannot pin it and might observe the wrong value. 1880 * 1881 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1882 * core changes this before calling sched_move_task(). 1883 * 1884 * Instead we use a 'copy' which is updated from sched_move_task() while 1885 * holding both task_struct::pi_lock and rq::lock. 1886 */ 1887 static inline struct task_group *task_group(struct task_struct *p) 1888 { 1889 return p->sched_task_group; 1890 } 1891 1892 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1893 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1894 { 1895 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1896 struct task_group *tg = task_group(p); 1897 #endif 1898 1899 #ifdef CONFIG_FAIR_GROUP_SCHED 1900 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1901 p->se.cfs_rq = tg->cfs_rq[cpu]; 1902 p->se.parent = tg->se[cpu]; 1903 #endif 1904 1905 #ifdef CONFIG_RT_GROUP_SCHED 1906 p->rt.rt_rq = tg->rt_rq[cpu]; 1907 p->rt.parent = tg->rt_se[cpu]; 1908 #endif 1909 } 1910 1911 #else /* CONFIG_CGROUP_SCHED */ 1912 1913 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1914 static inline struct task_group *task_group(struct task_struct *p) 1915 { 1916 return NULL; 1917 } 1918 1919 #endif /* CONFIG_CGROUP_SCHED */ 1920 1921 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1922 { 1923 set_task_rq(p, cpu); 1924 #ifdef CONFIG_SMP 1925 /* 1926 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1927 * successfully executed on another CPU. We must ensure that updates of 1928 * per-task data have been completed by this moment. 1929 */ 1930 smp_wmb(); 1931 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1932 p->wake_cpu = cpu; 1933 #endif 1934 } 1935 1936 /* 1937 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1938 */ 1939 #ifdef CONFIG_SCHED_DEBUG 1940 # define const_debug __read_mostly 1941 #else 1942 # define const_debug const 1943 #endif 1944 1945 #define SCHED_FEAT(name, enabled) \ 1946 __SCHED_FEAT_##name , 1947 1948 enum { 1949 #include "features.h" 1950 __SCHED_FEAT_NR, 1951 }; 1952 1953 #undef SCHED_FEAT 1954 1955 #ifdef CONFIG_SCHED_DEBUG 1956 1957 /* 1958 * To support run-time toggling of sched features, all the translation units 1959 * (but core.c) reference the sysctl_sched_features defined in core.c. 1960 */ 1961 extern const_debug unsigned int sysctl_sched_features; 1962 1963 #ifdef CONFIG_JUMP_LABEL 1964 #define SCHED_FEAT(name, enabled) \ 1965 static __always_inline bool static_branch_##name(struct static_key *key) \ 1966 { \ 1967 return static_key_##enabled(key); \ 1968 } 1969 1970 #include "features.h" 1971 #undef SCHED_FEAT 1972 1973 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1974 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1975 1976 #else /* !CONFIG_JUMP_LABEL */ 1977 1978 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1979 1980 #endif /* CONFIG_JUMP_LABEL */ 1981 1982 #else /* !SCHED_DEBUG */ 1983 1984 /* 1985 * Each translation unit has its own copy of sysctl_sched_features to allow 1986 * constants propagation at compile time and compiler optimization based on 1987 * features default. 1988 */ 1989 #define SCHED_FEAT(name, enabled) \ 1990 (1UL << __SCHED_FEAT_##name) * enabled | 1991 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1992 #include "features.h" 1993 0; 1994 #undef SCHED_FEAT 1995 1996 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1997 1998 #endif /* SCHED_DEBUG */ 1999 2000 extern struct static_key_false sched_numa_balancing; 2001 extern struct static_key_false sched_schedstats; 2002 2003 static inline u64 global_rt_period(void) 2004 { 2005 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2006 } 2007 2008 static inline u64 global_rt_runtime(void) 2009 { 2010 if (sysctl_sched_rt_runtime < 0) 2011 return RUNTIME_INF; 2012 2013 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2014 } 2015 2016 static inline int task_current(struct rq *rq, struct task_struct *p) 2017 { 2018 return rq->curr == p; 2019 } 2020 2021 static inline int task_running(struct rq *rq, struct task_struct *p) 2022 { 2023 #ifdef CONFIG_SMP 2024 return p->on_cpu; 2025 #else 2026 return task_current(rq, p); 2027 #endif 2028 } 2029 2030 static inline int task_on_rq_queued(struct task_struct *p) 2031 { 2032 return p->on_rq == TASK_ON_RQ_QUEUED; 2033 } 2034 2035 static inline int task_on_rq_migrating(struct task_struct *p) 2036 { 2037 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2038 } 2039 2040 /* Wake flags. The first three directly map to some SD flag value */ 2041 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2042 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2043 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2044 2045 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2046 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2047 #define WF_ON_CPU 0x40 /* Wakee is on_cpu */ 2048 2049 #ifdef CONFIG_SMP 2050 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2051 static_assert(WF_FORK == SD_BALANCE_FORK); 2052 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2053 #endif 2054 2055 /* 2056 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2057 * of tasks with abnormal "nice" values across CPUs the contribution that 2058 * each task makes to its run queue's load is weighted according to its 2059 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2060 * scaled version of the new time slice allocation that they receive on time 2061 * slice expiry etc. 2062 */ 2063 2064 #define WEIGHT_IDLEPRIO 3 2065 #define WMULT_IDLEPRIO 1431655765 2066 2067 extern const int sched_prio_to_weight[40]; 2068 extern const u32 sched_prio_to_wmult[40]; 2069 2070 /* 2071 * {de,en}queue flags: 2072 * 2073 * DEQUEUE_SLEEP - task is no longer runnable 2074 * ENQUEUE_WAKEUP - task just became runnable 2075 * 2076 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2077 * are in a known state which allows modification. Such pairs 2078 * should preserve as much state as possible. 2079 * 2080 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2081 * in the runqueue. 2082 * 2083 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2084 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2085 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2086 * 2087 */ 2088 2089 #define DEQUEUE_SLEEP 0x01 2090 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2091 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2092 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2093 2094 #define ENQUEUE_WAKEUP 0x01 2095 #define ENQUEUE_RESTORE 0x02 2096 #define ENQUEUE_MOVE 0x04 2097 #define ENQUEUE_NOCLOCK 0x08 2098 2099 #define ENQUEUE_HEAD 0x10 2100 #define ENQUEUE_REPLENISH 0x20 2101 #ifdef CONFIG_SMP 2102 #define ENQUEUE_MIGRATED 0x40 2103 #else 2104 #define ENQUEUE_MIGRATED 0x00 2105 #endif 2106 2107 #define RETRY_TASK ((void *)-1UL) 2108 2109 struct sched_class { 2110 2111 #ifdef CONFIG_UCLAMP_TASK 2112 int uclamp_enabled; 2113 #endif 2114 2115 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2116 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2117 void (*yield_task) (struct rq *rq); 2118 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2119 2120 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2121 2122 struct task_struct *(*pick_next_task)(struct rq *rq); 2123 2124 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2125 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2126 2127 #ifdef CONFIG_SMP 2128 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2129 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2130 2131 struct task_struct * (*pick_task)(struct rq *rq); 2132 2133 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2134 2135 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2136 2137 void (*set_cpus_allowed)(struct task_struct *p, 2138 const struct cpumask *newmask, 2139 u32 flags); 2140 2141 void (*rq_online)(struct rq *rq); 2142 void (*rq_offline)(struct rq *rq); 2143 2144 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2145 #endif 2146 2147 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2148 void (*task_fork)(struct task_struct *p); 2149 void (*task_dead)(struct task_struct *p); 2150 2151 /* 2152 * The switched_from() call is allowed to drop rq->lock, therefore we 2153 * cannot assume the switched_from/switched_to pair is serialized by 2154 * rq->lock. They are however serialized by p->pi_lock. 2155 */ 2156 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2157 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2158 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2159 int oldprio); 2160 2161 unsigned int (*get_rr_interval)(struct rq *rq, 2162 struct task_struct *task); 2163 2164 void (*update_curr)(struct rq *rq); 2165 2166 #define TASK_SET_GROUP 0 2167 #define TASK_MOVE_GROUP 1 2168 2169 #ifdef CONFIG_FAIR_GROUP_SCHED 2170 void (*task_change_group)(struct task_struct *p, int type); 2171 #endif 2172 }; 2173 2174 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2175 { 2176 WARN_ON_ONCE(rq->curr != prev); 2177 prev->sched_class->put_prev_task(rq, prev); 2178 } 2179 2180 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2181 { 2182 next->sched_class->set_next_task(rq, next, false); 2183 } 2184 2185 2186 /* 2187 * Helper to define a sched_class instance; each one is placed in a separate 2188 * section which is ordered by the linker script: 2189 * 2190 * include/asm-generic/vmlinux.lds.h 2191 * 2192 * *CAREFUL* they are laid out in *REVERSE* order!!! 2193 * 2194 * Also enforce alignment on the instance, not the type, to guarantee layout. 2195 */ 2196 #define DEFINE_SCHED_CLASS(name) \ 2197 const struct sched_class name##_sched_class \ 2198 __aligned(__alignof__(struct sched_class)) \ 2199 __section("__" #name "_sched_class") 2200 2201 /* Defined in include/asm-generic/vmlinux.lds.h */ 2202 extern struct sched_class __sched_class_highest[]; 2203 extern struct sched_class __sched_class_lowest[]; 2204 2205 #define for_class_range(class, _from, _to) \ 2206 for (class = (_from); class < (_to); class++) 2207 2208 #define for_each_class(class) \ 2209 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2210 2211 #define sched_class_above(_a, _b) ((_a) < (_b)) 2212 2213 extern const struct sched_class stop_sched_class; 2214 extern const struct sched_class dl_sched_class; 2215 extern const struct sched_class rt_sched_class; 2216 extern const struct sched_class fair_sched_class; 2217 extern const struct sched_class idle_sched_class; 2218 2219 static inline bool sched_stop_runnable(struct rq *rq) 2220 { 2221 return rq->stop && task_on_rq_queued(rq->stop); 2222 } 2223 2224 static inline bool sched_dl_runnable(struct rq *rq) 2225 { 2226 return rq->dl.dl_nr_running > 0; 2227 } 2228 2229 static inline bool sched_rt_runnable(struct rq *rq) 2230 { 2231 return rq->rt.rt_queued > 0; 2232 } 2233 2234 static inline bool sched_fair_runnable(struct rq *rq) 2235 { 2236 return rq->cfs.nr_running > 0; 2237 } 2238 2239 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2240 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2241 2242 #define SCA_CHECK 0x01 2243 #define SCA_MIGRATE_DISABLE 0x02 2244 #define SCA_MIGRATE_ENABLE 0x04 2245 #define SCA_USER 0x08 2246 2247 #ifdef CONFIG_SMP 2248 2249 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2250 2251 extern void trigger_load_balance(struct rq *rq); 2252 2253 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2254 2255 static inline struct task_struct *get_push_task(struct rq *rq) 2256 { 2257 struct task_struct *p = rq->curr; 2258 2259 lockdep_assert_rq_held(rq); 2260 2261 if (rq->push_busy) 2262 return NULL; 2263 2264 if (p->nr_cpus_allowed == 1) 2265 return NULL; 2266 2267 if (p->migration_disabled) 2268 return NULL; 2269 2270 rq->push_busy = true; 2271 return get_task_struct(p); 2272 } 2273 2274 extern int push_cpu_stop(void *arg); 2275 2276 #endif 2277 2278 #ifdef CONFIG_CPU_IDLE 2279 static inline void idle_set_state(struct rq *rq, 2280 struct cpuidle_state *idle_state) 2281 { 2282 rq->idle_state = idle_state; 2283 } 2284 2285 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2286 { 2287 SCHED_WARN_ON(!rcu_read_lock_held()); 2288 2289 return rq->idle_state; 2290 } 2291 #else 2292 static inline void idle_set_state(struct rq *rq, 2293 struct cpuidle_state *idle_state) 2294 { 2295 } 2296 2297 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2298 { 2299 return NULL; 2300 } 2301 #endif 2302 2303 extern void schedule_idle(void); 2304 2305 extern void sysrq_sched_debug_show(void); 2306 extern void sched_init_granularity(void); 2307 extern void update_max_interval(void); 2308 2309 extern void init_sched_dl_class(void); 2310 extern void init_sched_rt_class(void); 2311 extern void init_sched_fair_class(void); 2312 2313 extern void reweight_task(struct task_struct *p, int prio); 2314 2315 extern void resched_curr(struct rq *rq); 2316 extern void resched_cpu(int cpu); 2317 2318 extern struct rt_bandwidth def_rt_bandwidth; 2319 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2320 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2321 2322 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2323 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2324 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2325 2326 #define BW_SHIFT 20 2327 #define BW_UNIT (1 << BW_SHIFT) 2328 #define RATIO_SHIFT 8 2329 #define MAX_BW_BITS (64 - BW_SHIFT) 2330 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2331 unsigned long to_ratio(u64 period, u64 runtime); 2332 2333 extern void init_entity_runnable_average(struct sched_entity *se); 2334 extern void post_init_entity_util_avg(struct task_struct *p); 2335 2336 #ifdef CONFIG_NO_HZ_FULL 2337 extern bool sched_can_stop_tick(struct rq *rq); 2338 extern int __init sched_tick_offload_init(void); 2339 2340 /* 2341 * Tick may be needed by tasks in the runqueue depending on their policy and 2342 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2343 * nohz mode if necessary. 2344 */ 2345 static inline void sched_update_tick_dependency(struct rq *rq) 2346 { 2347 int cpu = cpu_of(rq); 2348 2349 if (!tick_nohz_full_cpu(cpu)) 2350 return; 2351 2352 if (sched_can_stop_tick(rq)) 2353 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2354 else 2355 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2356 } 2357 #else 2358 static inline int sched_tick_offload_init(void) { return 0; } 2359 static inline void sched_update_tick_dependency(struct rq *rq) { } 2360 #endif 2361 2362 static inline void add_nr_running(struct rq *rq, unsigned count) 2363 { 2364 unsigned prev_nr = rq->nr_running; 2365 2366 rq->nr_running = prev_nr + count; 2367 if (trace_sched_update_nr_running_tp_enabled()) { 2368 call_trace_sched_update_nr_running(rq, count); 2369 } 2370 2371 #ifdef CONFIG_SMP 2372 if (prev_nr < 2 && rq->nr_running >= 2) { 2373 if (!READ_ONCE(rq->rd->overload)) 2374 WRITE_ONCE(rq->rd->overload, 1); 2375 } 2376 #endif 2377 2378 sched_update_tick_dependency(rq); 2379 } 2380 2381 static inline void sub_nr_running(struct rq *rq, unsigned count) 2382 { 2383 rq->nr_running -= count; 2384 if (trace_sched_update_nr_running_tp_enabled()) { 2385 call_trace_sched_update_nr_running(rq, -count); 2386 } 2387 2388 /* Check if we still need preemption */ 2389 sched_update_tick_dependency(rq); 2390 } 2391 2392 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2393 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2394 2395 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2396 2397 extern const_debug unsigned int sysctl_sched_nr_migrate; 2398 extern const_debug unsigned int sysctl_sched_migration_cost; 2399 2400 #ifdef CONFIG_SCHED_DEBUG 2401 extern unsigned int sysctl_sched_latency; 2402 extern unsigned int sysctl_sched_min_granularity; 2403 extern unsigned int sysctl_sched_idle_min_granularity; 2404 extern unsigned int sysctl_sched_wakeup_granularity; 2405 extern int sysctl_resched_latency_warn_ms; 2406 extern int sysctl_resched_latency_warn_once; 2407 2408 extern unsigned int sysctl_sched_tunable_scaling; 2409 2410 extern unsigned int sysctl_numa_balancing_scan_delay; 2411 extern unsigned int sysctl_numa_balancing_scan_period_min; 2412 extern unsigned int sysctl_numa_balancing_scan_period_max; 2413 extern unsigned int sysctl_numa_balancing_scan_size; 2414 #endif 2415 2416 #ifdef CONFIG_SCHED_HRTICK 2417 2418 /* 2419 * Use hrtick when: 2420 * - enabled by features 2421 * - hrtimer is actually high res 2422 */ 2423 static inline int hrtick_enabled(struct rq *rq) 2424 { 2425 if (!cpu_active(cpu_of(rq))) 2426 return 0; 2427 return hrtimer_is_hres_active(&rq->hrtick_timer); 2428 } 2429 2430 static inline int hrtick_enabled_fair(struct rq *rq) 2431 { 2432 if (!sched_feat(HRTICK)) 2433 return 0; 2434 return hrtick_enabled(rq); 2435 } 2436 2437 static inline int hrtick_enabled_dl(struct rq *rq) 2438 { 2439 if (!sched_feat(HRTICK_DL)) 2440 return 0; 2441 return hrtick_enabled(rq); 2442 } 2443 2444 void hrtick_start(struct rq *rq, u64 delay); 2445 2446 #else 2447 2448 static inline int hrtick_enabled_fair(struct rq *rq) 2449 { 2450 return 0; 2451 } 2452 2453 static inline int hrtick_enabled_dl(struct rq *rq) 2454 { 2455 return 0; 2456 } 2457 2458 static inline int hrtick_enabled(struct rq *rq) 2459 { 2460 return 0; 2461 } 2462 2463 #endif /* CONFIG_SCHED_HRTICK */ 2464 2465 #ifndef arch_scale_freq_tick 2466 static __always_inline 2467 void arch_scale_freq_tick(void) 2468 { 2469 } 2470 #endif 2471 2472 #ifndef arch_scale_freq_capacity 2473 /** 2474 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2475 * @cpu: the CPU in question. 2476 * 2477 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2478 * 2479 * f_curr 2480 * ------ * SCHED_CAPACITY_SCALE 2481 * f_max 2482 */ 2483 static __always_inline 2484 unsigned long arch_scale_freq_capacity(int cpu) 2485 { 2486 return SCHED_CAPACITY_SCALE; 2487 } 2488 #endif 2489 2490 #ifdef CONFIG_SCHED_DEBUG 2491 /* 2492 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2493 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2494 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2495 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2496 */ 2497 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2498 { 2499 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2500 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2501 #ifdef CONFIG_SMP 2502 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2503 #endif 2504 } 2505 #else 2506 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2507 #endif 2508 2509 #ifdef CONFIG_SMP 2510 2511 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2512 { 2513 #ifdef CONFIG_SCHED_CORE 2514 /* 2515 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2516 * order by core-id first and cpu-id second. 2517 * 2518 * Notably: 2519 * 2520 * double_rq_lock(0,3); will take core-0, core-1 lock 2521 * double_rq_lock(1,2); will take core-1, core-0 lock 2522 * 2523 * when only cpu-id is considered. 2524 */ 2525 if (rq1->core->cpu < rq2->core->cpu) 2526 return true; 2527 if (rq1->core->cpu > rq2->core->cpu) 2528 return false; 2529 2530 /* 2531 * __sched_core_flip() relies on SMT having cpu-id lock order. 2532 */ 2533 #endif 2534 return rq1->cpu < rq2->cpu; 2535 } 2536 2537 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2538 2539 #ifdef CONFIG_PREEMPTION 2540 2541 /* 2542 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2543 * way at the expense of forcing extra atomic operations in all 2544 * invocations. This assures that the double_lock is acquired using the 2545 * same underlying policy as the spinlock_t on this architecture, which 2546 * reduces latency compared to the unfair variant below. However, it 2547 * also adds more overhead and therefore may reduce throughput. 2548 */ 2549 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2550 __releases(this_rq->lock) 2551 __acquires(busiest->lock) 2552 __acquires(this_rq->lock) 2553 { 2554 raw_spin_rq_unlock(this_rq); 2555 double_rq_lock(this_rq, busiest); 2556 2557 return 1; 2558 } 2559 2560 #else 2561 /* 2562 * Unfair double_lock_balance: Optimizes throughput at the expense of 2563 * latency by eliminating extra atomic operations when the locks are 2564 * already in proper order on entry. This favors lower CPU-ids and will 2565 * grant the double lock to lower CPUs over higher ids under contention, 2566 * regardless of entry order into the function. 2567 */ 2568 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2569 __releases(this_rq->lock) 2570 __acquires(busiest->lock) 2571 __acquires(this_rq->lock) 2572 { 2573 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2574 likely(raw_spin_rq_trylock(busiest))) { 2575 double_rq_clock_clear_update(this_rq, busiest); 2576 return 0; 2577 } 2578 2579 if (rq_order_less(this_rq, busiest)) { 2580 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2581 double_rq_clock_clear_update(this_rq, busiest); 2582 return 0; 2583 } 2584 2585 raw_spin_rq_unlock(this_rq); 2586 double_rq_lock(this_rq, busiest); 2587 2588 return 1; 2589 } 2590 2591 #endif /* CONFIG_PREEMPTION */ 2592 2593 /* 2594 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2595 */ 2596 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2597 { 2598 lockdep_assert_irqs_disabled(); 2599 2600 return _double_lock_balance(this_rq, busiest); 2601 } 2602 2603 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2604 __releases(busiest->lock) 2605 { 2606 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2607 raw_spin_rq_unlock(busiest); 2608 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2609 } 2610 2611 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2612 { 2613 if (l1 > l2) 2614 swap(l1, l2); 2615 2616 spin_lock(l1); 2617 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2618 } 2619 2620 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2621 { 2622 if (l1 > l2) 2623 swap(l1, l2); 2624 2625 spin_lock_irq(l1); 2626 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2627 } 2628 2629 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2630 { 2631 if (l1 > l2) 2632 swap(l1, l2); 2633 2634 raw_spin_lock(l1); 2635 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2636 } 2637 2638 /* 2639 * double_rq_unlock - safely unlock two runqueues 2640 * 2641 * Note this does not restore interrupts like task_rq_unlock, 2642 * you need to do so manually after calling. 2643 */ 2644 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2645 __releases(rq1->lock) 2646 __releases(rq2->lock) 2647 { 2648 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2649 raw_spin_rq_unlock(rq2); 2650 else 2651 __release(rq2->lock); 2652 raw_spin_rq_unlock(rq1); 2653 } 2654 2655 extern void set_rq_online (struct rq *rq); 2656 extern void set_rq_offline(struct rq *rq); 2657 extern bool sched_smp_initialized; 2658 2659 #else /* CONFIG_SMP */ 2660 2661 /* 2662 * double_rq_lock - safely lock two runqueues 2663 * 2664 * Note this does not disable interrupts like task_rq_lock, 2665 * you need to do so manually before calling. 2666 */ 2667 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2668 __acquires(rq1->lock) 2669 __acquires(rq2->lock) 2670 { 2671 BUG_ON(!irqs_disabled()); 2672 BUG_ON(rq1 != rq2); 2673 raw_spin_rq_lock(rq1); 2674 __acquire(rq2->lock); /* Fake it out ;) */ 2675 double_rq_clock_clear_update(rq1, rq2); 2676 } 2677 2678 /* 2679 * double_rq_unlock - safely unlock two runqueues 2680 * 2681 * Note this does not restore interrupts like task_rq_unlock, 2682 * you need to do so manually after calling. 2683 */ 2684 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2685 __releases(rq1->lock) 2686 __releases(rq2->lock) 2687 { 2688 BUG_ON(rq1 != rq2); 2689 raw_spin_rq_unlock(rq1); 2690 __release(rq2->lock); 2691 } 2692 2693 #endif 2694 2695 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2696 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2697 2698 #ifdef CONFIG_SCHED_DEBUG 2699 extern bool sched_debug_verbose; 2700 2701 extern void print_cfs_stats(struct seq_file *m, int cpu); 2702 extern void print_rt_stats(struct seq_file *m, int cpu); 2703 extern void print_dl_stats(struct seq_file *m, int cpu); 2704 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2705 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2706 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2707 2708 extern void resched_latency_warn(int cpu, u64 latency); 2709 #ifdef CONFIG_NUMA_BALANCING 2710 extern void 2711 show_numa_stats(struct task_struct *p, struct seq_file *m); 2712 extern void 2713 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2714 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2715 #endif /* CONFIG_NUMA_BALANCING */ 2716 #else 2717 static inline void resched_latency_warn(int cpu, u64 latency) {} 2718 #endif /* CONFIG_SCHED_DEBUG */ 2719 2720 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2721 extern void init_rt_rq(struct rt_rq *rt_rq); 2722 extern void init_dl_rq(struct dl_rq *dl_rq); 2723 2724 extern void cfs_bandwidth_usage_inc(void); 2725 extern void cfs_bandwidth_usage_dec(void); 2726 2727 #ifdef CONFIG_NO_HZ_COMMON 2728 #define NOHZ_BALANCE_KICK_BIT 0 2729 #define NOHZ_STATS_KICK_BIT 1 2730 #define NOHZ_NEWILB_KICK_BIT 2 2731 #define NOHZ_NEXT_KICK_BIT 3 2732 2733 /* Run rebalance_domains() */ 2734 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2735 /* Update blocked load */ 2736 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2737 /* Update blocked load when entering idle */ 2738 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2739 /* Update nohz.next_balance */ 2740 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2741 2742 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2743 2744 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2745 2746 extern void nohz_balance_exit_idle(struct rq *rq); 2747 #else 2748 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2749 #endif 2750 2751 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2752 extern void nohz_run_idle_balance(int cpu); 2753 #else 2754 static inline void nohz_run_idle_balance(int cpu) { } 2755 #endif 2756 2757 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2758 struct irqtime { 2759 u64 total; 2760 u64 tick_delta; 2761 u64 irq_start_time; 2762 struct u64_stats_sync sync; 2763 }; 2764 2765 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2766 2767 /* 2768 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2769 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2770 * and never move forward. 2771 */ 2772 static inline u64 irq_time_read(int cpu) 2773 { 2774 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2775 unsigned int seq; 2776 u64 total; 2777 2778 do { 2779 seq = __u64_stats_fetch_begin(&irqtime->sync); 2780 total = irqtime->total; 2781 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2782 2783 return total; 2784 } 2785 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2786 2787 #ifdef CONFIG_CPU_FREQ 2788 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2789 2790 /** 2791 * cpufreq_update_util - Take a note about CPU utilization changes. 2792 * @rq: Runqueue to carry out the update for. 2793 * @flags: Update reason flags. 2794 * 2795 * This function is called by the scheduler on the CPU whose utilization is 2796 * being updated. 2797 * 2798 * It can only be called from RCU-sched read-side critical sections. 2799 * 2800 * The way cpufreq is currently arranged requires it to evaluate the CPU 2801 * performance state (frequency/voltage) on a regular basis to prevent it from 2802 * being stuck in a completely inadequate performance level for too long. 2803 * That is not guaranteed to happen if the updates are only triggered from CFS 2804 * and DL, though, because they may not be coming in if only RT tasks are 2805 * active all the time (or there are RT tasks only). 2806 * 2807 * As a workaround for that issue, this function is called periodically by the 2808 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2809 * but that really is a band-aid. Going forward it should be replaced with 2810 * solutions targeted more specifically at RT tasks. 2811 */ 2812 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2813 { 2814 struct update_util_data *data; 2815 2816 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2817 cpu_of(rq))); 2818 if (data) 2819 data->func(data, rq_clock(rq), flags); 2820 } 2821 #else 2822 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2823 #endif /* CONFIG_CPU_FREQ */ 2824 2825 #ifdef arch_scale_freq_capacity 2826 # ifndef arch_scale_freq_invariant 2827 # define arch_scale_freq_invariant() true 2828 # endif 2829 #else 2830 # define arch_scale_freq_invariant() false 2831 #endif 2832 2833 #ifdef CONFIG_SMP 2834 static inline unsigned long capacity_orig_of(int cpu) 2835 { 2836 return cpu_rq(cpu)->cpu_capacity_orig; 2837 } 2838 2839 /** 2840 * enum cpu_util_type - CPU utilization type 2841 * @FREQUENCY_UTIL: Utilization used to select frequency 2842 * @ENERGY_UTIL: Utilization used during energy calculation 2843 * 2844 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2845 * need to be aggregated differently depending on the usage made of them. This 2846 * enum is used within effective_cpu_util() to differentiate the types of 2847 * utilization expected by the callers, and adjust the aggregation accordingly. 2848 */ 2849 enum cpu_util_type { 2850 FREQUENCY_UTIL, 2851 ENERGY_UTIL, 2852 }; 2853 2854 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2855 unsigned long max, enum cpu_util_type type, 2856 struct task_struct *p); 2857 2858 static inline unsigned long cpu_bw_dl(struct rq *rq) 2859 { 2860 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2861 } 2862 2863 static inline unsigned long cpu_util_dl(struct rq *rq) 2864 { 2865 return READ_ONCE(rq->avg_dl.util_avg); 2866 } 2867 2868 /** 2869 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2870 * @cpu: the CPU to get the utilization for. 2871 * 2872 * The unit of the return value must be the same as the one of CPU capacity 2873 * so that CPU utilization can be compared with CPU capacity. 2874 * 2875 * CPU utilization is the sum of running time of runnable tasks plus the 2876 * recent utilization of currently non-runnable tasks on that CPU. 2877 * It represents the amount of CPU capacity currently used by CFS tasks in 2878 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2879 * capacity at f_max. 2880 * 2881 * The estimated CPU utilization is defined as the maximum between CPU 2882 * utilization and sum of the estimated utilization of the currently 2883 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2884 * previously-executed tasks, which helps better deduce how busy a CPU will 2885 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2886 * of such a task would be significantly decayed at this point of time. 2887 * 2888 * CPU utilization can be higher than the current CPU capacity 2889 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2890 * of rounding errors as well as task migrations or wakeups of new tasks. 2891 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2892 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2893 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2894 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2895 * though since this is useful for predicting the CPU capacity required 2896 * after task migrations (scheduler-driven DVFS). 2897 * 2898 * Return: (Estimated) utilization for the specified CPU. 2899 */ 2900 static inline unsigned long cpu_util_cfs(int cpu) 2901 { 2902 struct cfs_rq *cfs_rq; 2903 unsigned long util; 2904 2905 cfs_rq = &cpu_rq(cpu)->cfs; 2906 util = READ_ONCE(cfs_rq->avg.util_avg); 2907 2908 if (sched_feat(UTIL_EST)) { 2909 util = max_t(unsigned long, util, 2910 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 2911 } 2912 2913 return min(util, capacity_orig_of(cpu)); 2914 } 2915 2916 static inline unsigned long cpu_util_rt(struct rq *rq) 2917 { 2918 return READ_ONCE(rq->avg_rt.util_avg); 2919 } 2920 #endif 2921 2922 #ifdef CONFIG_UCLAMP_TASK 2923 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2924 2925 /** 2926 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2927 * @rq: The rq to clamp against. Must not be NULL. 2928 * @util: The util value to clamp. 2929 * @p: The task to clamp against. Can be NULL if you want to clamp 2930 * against @rq only. 2931 * 2932 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2933 * 2934 * If sched_uclamp_used static key is disabled, then just return the util 2935 * without any clamping since uclamp aggregation at the rq level in the fast 2936 * path is disabled, rendering this operation a NOP. 2937 * 2938 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2939 * will return the correct effective uclamp value of the task even if the 2940 * static key is disabled. 2941 */ 2942 static __always_inline 2943 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2944 struct task_struct *p) 2945 { 2946 unsigned long min_util = 0; 2947 unsigned long max_util = 0; 2948 2949 if (!static_branch_likely(&sched_uclamp_used)) 2950 return util; 2951 2952 if (p) { 2953 min_util = uclamp_eff_value(p, UCLAMP_MIN); 2954 max_util = uclamp_eff_value(p, UCLAMP_MAX); 2955 2956 /* 2957 * Ignore last runnable task's max clamp, as this task will 2958 * reset it. Similarly, no need to read the rq's min clamp. 2959 */ 2960 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 2961 goto out; 2962 } 2963 2964 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 2965 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 2966 out: 2967 /* 2968 * Since CPU's {min,max}_util clamps are MAX aggregated considering 2969 * RUNNABLE tasks with _different_ clamps, we can end up with an 2970 * inversion. Fix it now when the clamps are applied. 2971 */ 2972 if (unlikely(min_util >= max_util)) 2973 return min_util; 2974 2975 return clamp(util, min_util, max_util); 2976 } 2977 2978 /* Is the rq being capped/throttled by uclamp_max? */ 2979 static inline bool uclamp_rq_is_capped(struct rq *rq) 2980 { 2981 unsigned long rq_util; 2982 unsigned long max_util; 2983 2984 if (!static_branch_likely(&sched_uclamp_used)) 2985 return false; 2986 2987 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 2988 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 2989 2990 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 2991 } 2992 2993 /* 2994 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 2995 * by default in the fast path and only gets turned on once userspace performs 2996 * an operation that requires it. 2997 * 2998 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 2999 * hence is active. 3000 */ 3001 static inline bool uclamp_is_used(void) 3002 { 3003 return static_branch_likely(&sched_uclamp_used); 3004 } 3005 #else /* CONFIG_UCLAMP_TASK */ 3006 static inline 3007 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3008 struct task_struct *p) 3009 { 3010 return util; 3011 } 3012 3013 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3014 3015 static inline bool uclamp_is_used(void) 3016 { 3017 return false; 3018 } 3019 #endif /* CONFIG_UCLAMP_TASK */ 3020 3021 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3022 static inline unsigned long cpu_util_irq(struct rq *rq) 3023 { 3024 return rq->avg_irq.util_avg; 3025 } 3026 3027 static inline 3028 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3029 { 3030 util *= (max - irq); 3031 util /= max; 3032 3033 return util; 3034 3035 } 3036 #else 3037 static inline unsigned long cpu_util_irq(struct rq *rq) 3038 { 3039 return 0; 3040 } 3041 3042 static inline 3043 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3044 { 3045 return util; 3046 } 3047 #endif 3048 3049 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3050 3051 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3052 3053 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3054 3055 static inline bool sched_energy_enabled(void) 3056 { 3057 return static_branch_unlikely(&sched_energy_present); 3058 } 3059 3060 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3061 3062 #define perf_domain_span(pd) NULL 3063 static inline bool sched_energy_enabled(void) { return false; } 3064 3065 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3066 3067 #ifdef CONFIG_MEMBARRIER 3068 /* 3069 * The scheduler provides memory barriers required by membarrier between: 3070 * - prior user-space memory accesses and store to rq->membarrier_state, 3071 * - store to rq->membarrier_state and following user-space memory accesses. 3072 * In the same way it provides those guarantees around store to rq->curr. 3073 */ 3074 static inline void membarrier_switch_mm(struct rq *rq, 3075 struct mm_struct *prev_mm, 3076 struct mm_struct *next_mm) 3077 { 3078 int membarrier_state; 3079 3080 if (prev_mm == next_mm) 3081 return; 3082 3083 membarrier_state = atomic_read(&next_mm->membarrier_state); 3084 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3085 return; 3086 3087 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3088 } 3089 #else 3090 static inline void membarrier_switch_mm(struct rq *rq, 3091 struct mm_struct *prev_mm, 3092 struct mm_struct *next_mm) 3093 { 3094 } 3095 #endif 3096 3097 #ifdef CONFIG_SMP 3098 static inline bool is_per_cpu_kthread(struct task_struct *p) 3099 { 3100 if (!(p->flags & PF_KTHREAD)) 3101 return false; 3102 3103 if (p->nr_cpus_allowed != 1) 3104 return false; 3105 3106 return true; 3107 } 3108 #endif 3109 3110 extern void swake_up_all_locked(struct swait_queue_head *q); 3111 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3112 3113 #ifdef CONFIG_PREEMPT_DYNAMIC 3114 extern int preempt_dynamic_mode; 3115 extern int sched_dynamic_mode(const char *str); 3116 extern void sched_dynamic_update(int mode); 3117 #endif 3118 3119 #endif /* _KERNEL_SCHED_SCHED_H */ 3120