xref: /linux/kernel/sched/sched.h (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81 
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85 
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 struct rq;
101 struct cpuidle_state;
102 
103 /* task_struct::on_rq states: */
104 #define TASK_ON_RQ_QUEUED	1
105 #define TASK_ON_RQ_MIGRATING	2
106 
107 extern __read_mostly int scheduler_running;
108 
109 extern unsigned long calc_load_update;
110 extern atomic_long_t calc_load_tasks;
111 
112 extern unsigned int sysctl_sched_child_runs_first;
113 
114 extern void calc_global_load_tick(struct rq *this_rq);
115 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
116 
117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
118 
119 extern unsigned int sysctl_sched_rt_period;
120 extern int sysctl_sched_rt_runtime;
121 extern int sched_rr_timeslice;
122 
123 /*
124  * Helpers for converting nanosecond timing to jiffy resolution
125  */
126 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
127 
128 /*
129  * Increase resolution of nice-level calculations for 64-bit architectures.
130  * The extra resolution improves shares distribution and load balancing of
131  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
132  * hierarchies, especially on larger systems. This is not a user-visible change
133  * and does not change the user-interface for setting shares/weights.
134  *
135  * We increase resolution only if we have enough bits to allow this increased
136  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
137  * are pretty high and the returns do not justify the increased costs.
138  *
139  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
140  * increase coverage and consistency always enable it on 64-bit platforms.
141  */
142 #ifdef CONFIG_64BIT
143 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
144 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
145 # define scale_load_down(w) \
146 ({ \
147 	unsigned long __w = (w); \
148 	if (__w) \
149 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
150 	__w; \
151 })
152 #else
153 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load(w)		(w)
155 # define scale_load_down(w)	(w)
156 #endif
157 
158 /*
159  * Task weight (visible to users) and its load (invisible to users) have
160  * independent resolution, but they should be well calibrated. We use
161  * scale_load() and scale_load_down(w) to convert between them. The
162  * following must be true:
163  *
164  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
165  *
166  */
167 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
168 
169 /*
170  * Single value that decides SCHED_DEADLINE internal math precision.
171  * 10 -> just above 1us
172  * 9  -> just above 0.5us
173  */
174 #define DL_SCALE		10
175 
176 /*
177  * Single value that denotes runtime == period, ie unlimited time.
178  */
179 #define RUNTIME_INF		((u64)~0ULL)
180 
181 static inline int idle_policy(int policy)
182 {
183 	return policy == SCHED_IDLE;
184 }
185 static inline int fair_policy(int policy)
186 {
187 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
188 }
189 
190 static inline int rt_policy(int policy)
191 {
192 	return policy == SCHED_FIFO || policy == SCHED_RR;
193 }
194 
195 static inline int dl_policy(int policy)
196 {
197 	return policy == SCHED_DEADLINE;
198 }
199 static inline bool valid_policy(int policy)
200 {
201 	return idle_policy(policy) || fair_policy(policy) ||
202 		rt_policy(policy) || dl_policy(policy);
203 }
204 
205 static inline int task_has_idle_policy(struct task_struct *p)
206 {
207 	return idle_policy(p->policy);
208 }
209 
210 static inline int task_has_rt_policy(struct task_struct *p)
211 {
212 	return rt_policy(p->policy);
213 }
214 
215 static inline int task_has_dl_policy(struct task_struct *p)
216 {
217 	return dl_policy(p->policy);
218 }
219 
220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
221 
222 static inline void update_avg(u64 *avg, u64 sample)
223 {
224 	s64 diff = sample - *avg;
225 	*avg += diff / 8;
226 }
227 
228 /*
229  * Shifting a value by an exponent greater *or equal* to the size of said value
230  * is UB; cap at size-1.
231  */
232 #define shr_bound(val, shift)							\
233 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
234 
235 /*
236  * !! For sched_setattr_nocheck() (kernel) only !!
237  *
238  * This is actually gross. :(
239  *
240  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
241  * tasks, but still be able to sleep. We need this on platforms that cannot
242  * atomically change clock frequency. Remove once fast switching will be
243  * available on such platforms.
244  *
245  * SUGOV stands for SchedUtil GOVernor.
246  */
247 #define SCHED_FLAG_SUGOV	0x10000000
248 
249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
250 
251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
252 {
253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
254 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
255 #else
256 	return false;
257 #endif
258 }
259 
260 /*
261  * Tells if entity @a should preempt entity @b.
262  */
263 static inline bool
264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
265 {
266 	return dl_entity_is_special(a) ||
267 	       dl_time_before(a->deadline, b->deadline);
268 }
269 
270 /*
271  * This is the priority-queue data structure of the RT scheduling class:
272  */
273 struct rt_prio_array {
274 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
275 	struct list_head queue[MAX_RT_PRIO];
276 };
277 
278 struct rt_bandwidth {
279 	/* nests inside the rq lock: */
280 	raw_spinlock_t		rt_runtime_lock;
281 	ktime_t			rt_period;
282 	u64			rt_runtime;
283 	struct hrtimer		rt_period_timer;
284 	unsigned int		rt_period_active;
285 };
286 
287 void __dl_clear_params(struct task_struct *p);
288 
289 struct dl_bandwidth {
290 	raw_spinlock_t		dl_runtime_lock;
291 	u64			dl_runtime;
292 	u64			dl_period;
293 };
294 
295 static inline int dl_bandwidth_enabled(void)
296 {
297 	return sysctl_sched_rt_runtime >= 0;
298 }
299 
300 /*
301  * To keep the bandwidth of -deadline tasks under control
302  * we need some place where:
303  *  - store the maximum -deadline bandwidth of each cpu;
304  *  - cache the fraction of bandwidth that is currently allocated in
305  *    each root domain;
306  *
307  * This is all done in the data structure below. It is similar to the
308  * one used for RT-throttling (rt_bandwidth), with the main difference
309  * that, since here we are only interested in admission control, we
310  * do not decrease any runtime while the group "executes", neither we
311  * need a timer to replenish it.
312  *
313  * With respect to SMP, bandwidth is given on a per root domain basis,
314  * meaning that:
315  *  - bw (< 100%) is the deadline bandwidth of each CPU;
316  *  - total_bw is the currently allocated bandwidth in each root domain;
317  */
318 struct dl_bw {
319 	raw_spinlock_t		lock;
320 	u64			bw;
321 	u64			total_bw;
322 };
323 
324 extern void init_dl_bw(struct dl_bw *dl_b);
325 extern int  sched_dl_global_validate(void);
326 extern void sched_dl_do_global(void);
327 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
330 extern bool __checkparam_dl(const struct sched_attr *attr);
331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
332 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
333 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
334 
335 #ifdef CONFIG_CGROUP_SCHED
336 
337 struct cfs_rq;
338 struct rt_rq;
339 
340 extern struct list_head task_groups;
341 
342 struct cfs_bandwidth {
343 #ifdef CONFIG_CFS_BANDWIDTH
344 	raw_spinlock_t		lock;
345 	ktime_t			period;
346 	u64			quota;
347 	u64			runtime;
348 	u64			burst;
349 	u64			runtime_snap;
350 	s64			hierarchical_quota;
351 
352 	u8			idle;
353 	u8			period_active;
354 	u8			slack_started;
355 	struct hrtimer		period_timer;
356 	struct hrtimer		slack_timer;
357 	struct list_head	throttled_cfs_rq;
358 
359 	/* Statistics: */
360 	int			nr_periods;
361 	int			nr_throttled;
362 	int			nr_burst;
363 	u64			throttled_time;
364 	u64			burst_time;
365 #endif
366 };
367 
368 /* Task group related information */
369 struct task_group {
370 	struct cgroup_subsys_state css;
371 
372 #ifdef CONFIG_FAIR_GROUP_SCHED
373 	/* schedulable entities of this group on each CPU */
374 	struct sched_entity	**se;
375 	/* runqueue "owned" by this group on each CPU */
376 	struct cfs_rq		**cfs_rq;
377 	unsigned long		shares;
378 
379 	/* A positive value indicates that this is a SCHED_IDLE group. */
380 	int			idle;
381 
382 #ifdef	CONFIG_SMP
383 	/*
384 	 * load_avg can be heavily contended at clock tick time, so put
385 	 * it in its own cacheline separated from the fields above which
386 	 * will also be accessed at each tick.
387 	 */
388 	atomic_long_t		load_avg ____cacheline_aligned;
389 #endif
390 #endif
391 
392 #ifdef CONFIG_RT_GROUP_SCHED
393 	struct sched_rt_entity	**rt_se;
394 	struct rt_rq		**rt_rq;
395 
396 	struct rt_bandwidth	rt_bandwidth;
397 #endif
398 
399 	struct rcu_head		rcu;
400 	struct list_head	list;
401 
402 	struct task_group	*parent;
403 	struct list_head	siblings;
404 	struct list_head	children;
405 
406 #ifdef CONFIG_SCHED_AUTOGROUP
407 	struct autogroup	*autogroup;
408 #endif
409 
410 	struct cfs_bandwidth	cfs_bandwidth;
411 
412 #ifdef CONFIG_UCLAMP_TASK_GROUP
413 	/* The two decimal precision [%] value requested from user-space */
414 	unsigned int		uclamp_pct[UCLAMP_CNT];
415 	/* Clamp values requested for a task group */
416 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
417 	/* Effective clamp values used for a task group */
418 	struct uclamp_se	uclamp[UCLAMP_CNT];
419 #endif
420 
421 };
422 
423 #ifdef CONFIG_FAIR_GROUP_SCHED
424 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
425 
426 /*
427  * A weight of 0 or 1 can cause arithmetics problems.
428  * A weight of a cfs_rq is the sum of weights of which entities
429  * are queued on this cfs_rq, so a weight of a entity should not be
430  * too large, so as the shares value of a task group.
431  * (The default weight is 1024 - so there's no practical
432  *  limitation from this.)
433  */
434 #define MIN_SHARES		(1UL <<  1)
435 #define MAX_SHARES		(1UL << 18)
436 #endif
437 
438 typedef int (*tg_visitor)(struct task_group *, void *);
439 
440 extern int walk_tg_tree_from(struct task_group *from,
441 			     tg_visitor down, tg_visitor up, void *data);
442 
443 /*
444  * Iterate the full tree, calling @down when first entering a node and @up when
445  * leaving it for the final time.
446  *
447  * Caller must hold rcu_lock or sufficient equivalent.
448  */
449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
450 {
451 	return walk_tg_tree_from(&root_task_group, down, up, data);
452 }
453 
454 extern int tg_nop(struct task_group *tg, void *data);
455 
456 extern void free_fair_sched_group(struct task_group *tg);
457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
458 extern void online_fair_sched_group(struct task_group *tg);
459 extern void unregister_fair_sched_group(struct task_group *tg);
460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
461 			struct sched_entity *se, int cpu,
462 			struct sched_entity *parent);
463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
464 
465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
468 
469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
470 		struct sched_rt_entity *rt_se, int cpu,
471 		struct sched_rt_entity *parent);
472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
474 extern long sched_group_rt_runtime(struct task_group *tg);
475 extern long sched_group_rt_period(struct task_group *tg);
476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
477 
478 extern struct task_group *sched_create_group(struct task_group *parent);
479 extern void sched_online_group(struct task_group *tg,
480 			       struct task_group *parent);
481 extern void sched_destroy_group(struct task_group *tg);
482 extern void sched_release_group(struct task_group *tg);
483 
484 extern void sched_move_task(struct task_struct *tsk);
485 
486 #ifdef CONFIG_FAIR_GROUP_SCHED
487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
488 
489 extern int sched_group_set_idle(struct task_group *tg, long idle);
490 
491 #ifdef CONFIG_SMP
492 extern void set_task_rq_fair(struct sched_entity *se,
493 			     struct cfs_rq *prev, struct cfs_rq *next);
494 #else /* !CONFIG_SMP */
495 static inline void set_task_rq_fair(struct sched_entity *se,
496 			     struct cfs_rq *prev, struct cfs_rq *next) { }
497 #endif /* CONFIG_SMP */
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499 
500 #else /* CONFIG_CGROUP_SCHED */
501 
502 struct cfs_bandwidth { };
503 
504 #endif	/* CONFIG_CGROUP_SCHED */
505 
506 extern void unregister_rt_sched_group(struct task_group *tg);
507 extern void free_rt_sched_group(struct task_group *tg);
508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
509 
510 /*
511  * u64_u32_load/u64_u32_store
512  *
513  * Use a copy of a u64 value to protect against data race. This is only
514  * applicable for 32-bits architectures.
515  */
516 #ifdef CONFIG_64BIT
517 # define u64_u32_load_copy(var, copy)       var
518 # define u64_u32_store_copy(var, copy, val) (var = val)
519 #else
520 # define u64_u32_load_copy(var, copy)					\
521 ({									\
522 	u64 __val, __val_copy;						\
523 	do {								\
524 		__val_copy = copy;					\
525 		/*							\
526 		 * paired with u64_u32_store_copy(), ordering access	\
527 		 * to var and copy.					\
528 		 */							\
529 		smp_rmb();						\
530 		__val = var;						\
531 	} while (__val != __val_copy);					\
532 	__val;								\
533 })
534 # define u64_u32_store_copy(var, copy, val)				\
535 do {									\
536 	typeof(val) __val = (val);					\
537 	var = __val;							\
538 	/*								\
539 	 * paired with u64_u32_load_copy(), ordering access to var and	\
540 	 * copy.							\
541 	 */								\
542 	smp_wmb();							\
543 	copy = __val;							\
544 } while (0)
545 #endif
546 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
548 
549 /* CFS-related fields in a runqueue */
550 struct cfs_rq {
551 	struct load_weight	load;
552 	unsigned int		nr_running;
553 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
554 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
555 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
556 
557 	u64			exec_clock;
558 	u64			min_vruntime;
559 #ifdef CONFIG_SCHED_CORE
560 	unsigned int		forceidle_seq;
561 	u64			min_vruntime_fi;
562 #endif
563 
564 #ifndef CONFIG_64BIT
565 	u64			min_vruntime_copy;
566 #endif
567 
568 	struct rb_root_cached	tasks_timeline;
569 
570 	/*
571 	 * 'curr' points to currently running entity on this cfs_rq.
572 	 * It is set to NULL otherwise (i.e when none are currently running).
573 	 */
574 	struct sched_entity	*curr;
575 	struct sched_entity	*next;
576 	struct sched_entity	*last;
577 	struct sched_entity	*skip;
578 
579 #ifdef	CONFIG_SCHED_DEBUG
580 	unsigned int		nr_spread_over;
581 #endif
582 
583 #ifdef CONFIG_SMP
584 	/*
585 	 * CFS load tracking
586 	 */
587 	struct sched_avg	avg;
588 #ifndef CONFIG_64BIT
589 	u64			last_update_time_copy;
590 #endif
591 	struct {
592 		raw_spinlock_t	lock ____cacheline_aligned;
593 		int		nr;
594 		unsigned long	load_avg;
595 		unsigned long	util_avg;
596 		unsigned long	runnable_avg;
597 	} removed;
598 
599 #ifdef CONFIG_FAIR_GROUP_SCHED
600 	unsigned long		tg_load_avg_contrib;
601 	long			propagate;
602 	long			prop_runnable_sum;
603 
604 	/*
605 	 *   h_load = weight * f(tg)
606 	 *
607 	 * Where f(tg) is the recursive weight fraction assigned to
608 	 * this group.
609 	 */
610 	unsigned long		h_load;
611 	u64			last_h_load_update;
612 	struct sched_entity	*h_load_next;
613 #endif /* CONFIG_FAIR_GROUP_SCHED */
614 #endif /* CONFIG_SMP */
615 
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
618 
619 	/*
620 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
621 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
622 	 * (like users, containers etc.)
623 	 *
624 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
625 	 * This list is used during load balance.
626 	 */
627 	int			on_list;
628 	struct list_head	leaf_cfs_rq_list;
629 	struct task_group	*tg;	/* group that "owns" this runqueue */
630 
631 	/* Locally cached copy of our task_group's idle value */
632 	int			idle;
633 
634 #ifdef CONFIG_CFS_BANDWIDTH
635 	int			runtime_enabled;
636 	s64			runtime_remaining;
637 
638 	u64			throttled_pelt_idle;
639 #ifndef CONFIG_64BIT
640 	u64                     throttled_pelt_idle_copy;
641 #endif
642 	u64			throttled_clock;
643 	u64			throttled_clock_pelt;
644 	u64			throttled_clock_pelt_time;
645 	int			throttled;
646 	int			throttle_count;
647 	struct list_head	throttled_list;
648 #endif /* CONFIG_CFS_BANDWIDTH */
649 #endif /* CONFIG_FAIR_GROUP_SCHED */
650 };
651 
652 static inline int rt_bandwidth_enabled(void)
653 {
654 	return sysctl_sched_rt_runtime >= 0;
655 }
656 
657 /* RT IPI pull logic requires IRQ_WORK */
658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
659 # define HAVE_RT_PUSH_IPI
660 #endif
661 
662 /* Real-Time classes' related field in a runqueue: */
663 struct rt_rq {
664 	struct rt_prio_array	active;
665 	unsigned int		rt_nr_running;
666 	unsigned int		rr_nr_running;
667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
668 	struct {
669 		int		curr; /* highest queued rt task prio */
670 #ifdef CONFIG_SMP
671 		int		next; /* next highest */
672 #endif
673 	} highest_prio;
674 #endif
675 #ifdef CONFIG_SMP
676 	unsigned int		rt_nr_migratory;
677 	unsigned int		rt_nr_total;
678 	int			overloaded;
679 	struct plist_head	pushable_tasks;
680 
681 #endif /* CONFIG_SMP */
682 	int			rt_queued;
683 
684 	int			rt_throttled;
685 	u64			rt_time;
686 	u64			rt_runtime;
687 	/* Nests inside the rq lock: */
688 	raw_spinlock_t		rt_runtime_lock;
689 
690 #ifdef CONFIG_RT_GROUP_SCHED
691 	unsigned int		rt_nr_boosted;
692 
693 	struct rq		*rq;
694 	struct task_group	*tg;
695 #endif
696 };
697 
698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
699 {
700 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
701 }
702 
703 /* Deadline class' related fields in a runqueue */
704 struct dl_rq {
705 	/* runqueue is an rbtree, ordered by deadline */
706 	struct rb_root_cached	root;
707 
708 	unsigned int		dl_nr_running;
709 
710 #ifdef CONFIG_SMP
711 	/*
712 	 * Deadline values of the currently executing and the
713 	 * earliest ready task on this rq. Caching these facilitates
714 	 * the decision whether or not a ready but not running task
715 	 * should migrate somewhere else.
716 	 */
717 	struct {
718 		u64		curr;
719 		u64		next;
720 	} earliest_dl;
721 
722 	unsigned int		dl_nr_migratory;
723 	int			overloaded;
724 
725 	/*
726 	 * Tasks on this rq that can be pushed away. They are kept in
727 	 * an rb-tree, ordered by tasks' deadlines, with caching
728 	 * of the leftmost (earliest deadline) element.
729 	 */
730 	struct rb_root_cached	pushable_dl_tasks_root;
731 #else
732 	struct dl_bw		dl_bw;
733 #endif
734 	/*
735 	 * "Active utilization" for this runqueue: increased when a
736 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
737 	 * task blocks
738 	 */
739 	u64			running_bw;
740 
741 	/*
742 	 * Utilization of the tasks "assigned" to this runqueue (including
743 	 * the tasks that are in runqueue and the tasks that executed on this
744 	 * CPU and blocked). Increased when a task moves to this runqueue, and
745 	 * decreased when the task moves away (migrates, changes scheduling
746 	 * policy, or terminates).
747 	 * This is needed to compute the "inactive utilization" for the
748 	 * runqueue (inactive utilization = this_bw - running_bw).
749 	 */
750 	u64			this_bw;
751 	u64			extra_bw;
752 
753 	/*
754 	 * Inverse of the fraction of CPU utilization that can be reclaimed
755 	 * by the GRUB algorithm.
756 	 */
757 	u64			bw_ratio;
758 };
759 
760 #ifdef CONFIG_FAIR_GROUP_SCHED
761 /* An entity is a task if it doesn't "own" a runqueue */
762 #define entity_is_task(se)	(!se->my_q)
763 
764 static inline void se_update_runnable(struct sched_entity *se)
765 {
766 	if (!entity_is_task(se))
767 		se->runnable_weight = se->my_q->h_nr_running;
768 }
769 
770 static inline long se_runnable(struct sched_entity *se)
771 {
772 	if (entity_is_task(se))
773 		return !!se->on_rq;
774 	else
775 		return se->runnable_weight;
776 }
777 
778 #else
779 #define entity_is_task(se)	1
780 
781 static inline void se_update_runnable(struct sched_entity *se) {}
782 
783 static inline long se_runnable(struct sched_entity *se)
784 {
785 	return !!se->on_rq;
786 }
787 #endif
788 
789 #ifdef CONFIG_SMP
790 /*
791  * XXX we want to get rid of these helpers and use the full load resolution.
792  */
793 static inline long se_weight(struct sched_entity *se)
794 {
795 	return scale_load_down(se->load.weight);
796 }
797 
798 
799 static inline bool sched_asym_prefer(int a, int b)
800 {
801 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
802 }
803 
804 struct perf_domain {
805 	struct em_perf_domain *em_pd;
806 	struct perf_domain *next;
807 	struct rcu_head rcu;
808 };
809 
810 /* Scheduling group status flags */
811 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
812 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
813 
814 /*
815  * We add the notion of a root-domain which will be used to define per-domain
816  * variables. Each exclusive cpuset essentially defines an island domain by
817  * fully partitioning the member CPUs from any other cpuset. Whenever a new
818  * exclusive cpuset is created, we also create and attach a new root-domain
819  * object.
820  *
821  */
822 struct root_domain {
823 	atomic_t		refcount;
824 	atomic_t		rto_count;
825 	struct rcu_head		rcu;
826 	cpumask_var_t		span;
827 	cpumask_var_t		online;
828 
829 	/*
830 	 * Indicate pullable load on at least one CPU, e.g:
831 	 * - More than one runnable task
832 	 * - Running task is misfit
833 	 */
834 	int			overload;
835 
836 	/* Indicate one or more cpus over-utilized (tipping point) */
837 	int			overutilized;
838 
839 	/*
840 	 * The bit corresponding to a CPU gets set here if such CPU has more
841 	 * than one runnable -deadline task (as it is below for RT tasks).
842 	 */
843 	cpumask_var_t		dlo_mask;
844 	atomic_t		dlo_count;
845 	struct dl_bw		dl_bw;
846 	struct cpudl		cpudl;
847 
848 	/*
849 	 * Indicate whether a root_domain's dl_bw has been checked or
850 	 * updated. It's monotonously increasing value.
851 	 *
852 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
853 	 * that u64 is 'big enough'. So that shouldn't be a concern.
854 	 */
855 	u64 visit_gen;
856 
857 #ifdef HAVE_RT_PUSH_IPI
858 	/*
859 	 * For IPI pull requests, loop across the rto_mask.
860 	 */
861 	struct irq_work		rto_push_work;
862 	raw_spinlock_t		rto_lock;
863 	/* These are only updated and read within rto_lock */
864 	int			rto_loop;
865 	int			rto_cpu;
866 	/* These atomics are updated outside of a lock */
867 	atomic_t		rto_loop_next;
868 	atomic_t		rto_loop_start;
869 #endif
870 	/*
871 	 * The "RT overload" flag: it gets set if a CPU has more than
872 	 * one runnable RT task.
873 	 */
874 	cpumask_var_t		rto_mask;
875 	struct cpupri		cpupri;
876 
877 	unsigned long		max_cpu_capacity;
878 
879 	/*
880 	 * NULL-terminated list of performance domains intersecting with the
881 	 * CPUs of the rd. Protected by RCU.
882 	 */
883 	struct perf_domain __rcu *pd;
884 };
885 
886 extern void init_defrootdomain(void);
887 extern int sched_init_domains(const struct cpumask *cpu_map);
888 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
889 extern void sched_get_rd(struct root_domain *rd);
890 extern void sched_put_rd(struct root_domain *rd);
891 
892 #ifdef HAVE_RT_PUSH_IPI
893 extern void rto_push_irq_work_func(struct irq_work *work);
894 #endif
895 #endif /* CONFIG_SMP */
896 
897 #ifdef CONFIG_UCLAMP_TASK
898 /*
899  * struct uclamp_bucket - Utilization clamp bucket
900  * @value: utilization clamp value for tasks on this clamp bucket
901  * @tasks: number of RUNNABLE tasks on this clamp bucket
902  *
903  * Keep track of how many tasks are RUNNABLE for a given utilization
904  * clamp value.
905  */
906 struct uclamp_bucket {
907 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
908 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
909 };
910 
911 /*
912  * struct uclamp_rq - rq's utilization clamp
913  * @value: currently active clamp values for a rq
914  * @bucket: utilization clamp buckets affecting a rq
915  *
916  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
917  * A clamp value is affecting a rq when there is at least one task RUNNABLE
918  * (or actually running) with that value.
919  *
920  * There are up to UCLAMP_CNT possible different clamp values, currently there
921  * are only two: minimum utilization and maximum utilization.
922  *
923  * All utilization clamping values are MAX aggregated, since:
924  * - for util_min: we want to run the CPU at least at the max of the minimum
925  *   utilization required by its currently RUNNABLE tasks.
926  * - for util_max: we want to allow the CPU to run up to the max of the
927  *   maximum utilization allowed by its currently RUNNABLE tasks.
928  *
929  * Since on each system we expect only a limited number of different
930  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
931  * the metrics required to compute all the per-rq utilization clamp values.
932  */
933 struct uclamp_rq {
934 	unsigned int value;
935 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
936 };
937 
938 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
939 #endif /* CONFIG_UCLAMP_TASK */
940 
941 /*
942  * This is the main, per-CPU runqueue data structure.
943  *
944  * Locking rule: those places that want to lock multiple runqueues
945  * (such as the load balancing or the thread migration code), lock
946  * acquire operations must be ordered by ascending &runqueue.
947  */
948 struct rq {
949 	/* runqueue lock: */
950 	raw_spinlock_t		__lock;
951 
952 	/*
953 	 * nr_running and cpu_load should be in the same cacheline because
954 	 * remote CPUs use both these fields when doing load calculation.
955 	 */
956 	unsigned int		nr_running;
957 #ifdef CONFIG_NUMA_BALANCING
958 	unsigned int		nr_numa_running;
959 	unsigned int		nr_preferred_running;
960 	unsigned int		numa_migrate_on;
961 #endif
962 #ifdef CONFIG_NO_HZ_COMMON
963 #ifdef CONFIG_SMP
964 	unsigned long		last_blocked_load_update_tick;
965 	unsigned int		has_blocked_load;
966 	call_single_data_t	nohz_csd;
967 #endif /* CONFIG_SMP */
968 	unsigned int		nohz_tick_stopped;
969 	atomic_t		nohz_flags;
970 #endif /* CONFIG_NO_HZ_COMMON */
971 
972 #ifdef CONFIG_SMP
973 	unsigned int		ttwu_pending;
974 #endif
975 	u64			nr_switches;
976 
977 #ifdef CONFIG_UCLAMP_TASK
978 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
979 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
980 	unsigned int		uclamp_flags;
981 #define UCLAMP_FLAG_IDLE 0x01
982 #endif
983 
984 	struct cfs_rq		cfs;
985 	struct rt_rq		rt;
986 	struct dl_rq		dl;
987 
988 #ifdef CONFIG_FAIR_GROUP_SCHED
989 	/* list of leaf cfs_rq on this CPU: */
990 	struct list_head	leaf_cfs_rq_list;
991 	struct list_head	*tmp_alone_branch;
992 #endif /* CONFIG_FAIR_GROUP_SCHED */
993 
994 	/*
995 	 * This is part of a global counter where only the total sum
996 	 * over all CPUs matters. A task can increase this counter on
997 	 * one CPU and if it got migrated afterwards it may decrease
998 	 * it on another CPU. Always updated under the runqueue lock:
999 	 */
1000 	unsigned int		nr_uninterruptible;
1001 
1002 	struct task_struct __rcu	*curr;
1003 	struct task_struct	*idle;
1004 	struct task_struct	*stop;
1005 	unsigned long		next_balance;
1006 	struct mm_struct	*prev_mm;
1007 
1008 	unsigned int		clock_update_flags;
1009 	u64			clock;
1010 	/* Ensure that all clocks are in the same cache line */
1011 	u64			clock_task ____cacheline_aligned;
1012 	u64			clock_pelt;
1013 	unsigned long		lost_idle_time;
1014 	u64			clock_pelt_idle;
1015 	u64			clock_idle;
1016 #ifndef CONFIG_64BIT
1017 	u64			clock_pelt_idle_copy;
1018 	u64			clock_idle_copy;
1019 #endif
1020 
1021 	atomic_t		nr_iowait;
1022 
1023 #ifdef CONFIG_SCHED_DEBUG
1024 	u64 last_seen_need_resched_ns;
1025 	int ticks_without_resched;
1026 #endif
1027 
1028 #ifdef CONFIG_MEMBARRIER
1029 	int membarrier_state;
1030 #endif
1031 
1032 #ifdef CONFIG_SMP
1033 	struct root_domain		*rd;
1034 	struct sched_domain __rcu	*sd;
1035 
1036 	unsigned long		cpu_capacity;
1037 	unsigned long		cpu_capacity_orig;
1038 
1039 	struct callback_head	*balance_callback;
1040 
1041 	unsigned char		nohz_idle_balance;
1042 	unsigned char		idle_balance;
1043 
1044 	unsigned long		misfit_task_load;
1045 
1046 	/* For active balancing */
1047 	int			active_balance;
1048 	int			push_cpu;
1049 	struct cpu_stop_work	active_balance_work;
1050 
1051 	/* CPU of this runqueue: */
1052 	int			cpu;
1053 	int			online;
1054 
1055 	struct list_head cfs_tasks;
1056 
1057 	struct sched_avg	avg_rt;
1058 	struct sched_avg	avg_dl;
1059 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1060 	struct sched_avg	avg_irq;
1061 #endif
1062 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1063 	struct sched_avg	avg_thermal;
1064 #endif
1065 	u64			idle_stamp;
1066 	u64			avg_idle;
1067 
1068 	unsigned long		wake_stamp;
1069 	u64			wake_avg_idle;
1070 
1071 	/* This is used to determine avg_idle's max value */
1072 	u64			max_idle_balance_cost;
1073 
1074 #ifdef CONFIG_HOTPLUG_CPU
1075 	struct rcuwait		hotplug_wait;
1076 #endif
1077 #endif /* CONFIG_SMP */
1078 
1079 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1080 	u64			prev_irq_time;
1081 #endif
1082 #ifdef CONFIG_PARAVIRT
1083 	u64			prev_steal_time;
1084 #endif
1085 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1086 	u64			prev_steal_time_rq;
1087 #endif
1088 
1089 	/* calc_load related fields */
1090 	unsigned long		calc_load_update;
1091 	long			calc_load_active;
1092 
1093 #ifdef CONFIG_SCHED_HRTICK
1094 #ifdef CONFIG_SMP
1095 	call_single_data_t	hrtick_csd;
1096 #endif
1097 	struct hrtimer		hrtick_timer;
1098 	ktime_t 		hrtick_time;
1099 #endif
1100 
1101 #ifdef CONFIG_SCHEDSTATS
1102 	/* latency stats */
1103 	struct sched_info	rq_sched_info;
1104 	unsigned long long	rq_cpu_time;
1105 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1106 
1107 	/* sys_sched_yield() stats */
1108 	unsigned int		yld_count;
1109 
1110 	/* schedule() stats */
1111 	unsigned int		sched_count;
1112 	unsigned int		sched_goidle;
1113 
1114 	/* try_to_wake_up() stats */
1115 	unsigned int		ttwu_count;
1116 	unsigned int		ttwu_local;
1117 #endif
1118 
1119 #ifdef CONFIG_CPU_IDLE
1120 	/* Must be inspected within a rcu lock section */
1121 	struct cpuidle_state	*idle_state;
1122 #endif
1123 
1124 #ifdef CONFIG_SMP
1125 	unsigned int		nr_pinned;
1126 #endif
1127 	unsigned int		push_busy;
1128 	struct cpu_stop_work	push_work;
1129 
1130 #ifdef CONFIG_SCHED_CORE
1131 	/* per rq */
1132 	struct rq		*core;
1133 	struct task_struct	*core_pick;
1134 	unsigned int		core_enabled;
1135 	unsigned int		core_sched_seq;
1136 	struct rb_root		core_tree;
1137 
1138 	/* shared state -- careful with sched_core_cpu_deactivate() */
1139 	unsigned int		core_task_seq;
1140 	unsigned int		core_pick_seq;
1141 	unsigned long		core_cookie;
1142 	unsigned int		core_forceidle_count;
1143 	unsigned int		core_forceidle_seq;
1144 	unsigned int		core_forceidle_occupation;
1145 	u64			core_forceidle_start;
1146 #endif
1147 };
1148 
1149 #ifdef CONFIG_FAIR_GROUP_SCHED
1150 
1151 /* CPU runqueue to which this cfs_rq is attached */
1152 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1153 {
1154 	return cfs_rq->rq;
1155 }
1156 
1157 #else
1158 
1159 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1160 {
1161 	return container_of(cfs_rq, struct rq, cfs);
1162 }
1163 #endif
1164 
1165 static inline int cpu_of(struct rq *rq)
1166 {
1167 #ifdef CONFIG_SMP
1168 	return rq->cpu;
1169 #else
1170 	return 0;
1171 #endif
1172 }
1173 
1174 #define MDF_PUSH	0x01
1175 
1176 static inline bool is_migration_disabled(struct task_struct *p)
1177 {
1178 #ifdef CONFIG_SMP
1179 	return p->migration_disabled;
1180 #else
1181 	return false;
1182 #endif
1183 }
1184 
1185 struct sched_group;
1186 #ifdef CONFIG_SCHED_CORE
1187 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1188 
1189 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1190 
1191 static inline bool sched_core_enabled(struct rq *rq)
1192 {
1193 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1194 }
1195 
1196 static inline bool sched_core_disabled(void)
1197 {
1198 	return !static_branch_unlikely(&__sched_core_enabled);
1199 }
1200 
1201 /*
1202  * Be careful with this function; not for general use. The return value isn't
1203  * stable unless you actually hold a relevant rq->__lock.
1204  */
1205 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1206 {
1207 	if (sched_core_enabled(rq))
1208 		return &rq->core->__lock;
1209 
1210 	return &rq->__lock;
1211 }
1212 
1213 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1214 {
1215 	if (rq->core_enabled)
1216 		return &rq->core->__lock;
1217 
1218 	return &rq->__lock;
1219 }
1220 
1221 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1222 
1223 /*
1224  * Helpers to check if the CPU's core cookie matches with the task's cookie
1225  * when core scheduling is enabled.
1226  * A special case is that the task's cookie always matches with CPU's core
1227  * cookie if the CPU is in an idle core.
1228  */
1229 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1230 {
1231 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1232 	if (!sched_core_enabled(rq))
1233 		return true;
1234 
1235 	return rq->core->core_cookie == p->core_cookie;
1236 }
1237 
1238 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1239 {
1240 	bool idle_core = true;
1241 	int cpu;
1242 
1243 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1244 	if (!sched_core_enabled(rq))
1245 		return true;
1246 
1247 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1248 		if (!available_idle_cpu(cpu)) {
1249 			idle_core = false;
1250 			break;
1251 		}
1252 	}
1253 
1254 	/*
1255 	 * A CPU in an idle core is always the best choice for tasks with
1256 	 * cookies.
1257 	 */
1258 	return idle_core || rq->core->core_cookie == p->core_cookie;
1259 }
1260 
1261 static inline bool sched_group_cookie_match(struct rq *rq,
1262 					    struct task_struct *p,
1263 					    struct sched_group *group)
1264 {
1265 	int cpu;
1266 
1267 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1268 	if (!sched_core_enabled(rq))
1269 		return true;
1270 
1271 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1272 		if (sched_core_cookie_match(rq, p))
1273 			return true;
1274 	}
1275 	return false;
1276 }
1277 
1278 static inline bool sched_core_enqueued(struct task_struct *p)
1279 {
1280 	return !RB_EMPTY_NODE(&p->core_node);
1281 }
1282 
1283 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1284 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1285 
1286 extern void sched_core_get(void);
1287 extern void sched_core_put(void);
1288 
1289 #else /* !CONFIG_SCHED_CORE */
1290 
1291 static inline bool sched_core_enabled(struct rq *rq)
1292 {
1293 	return false;
1294 }
1295 
1296 static inline bool sched_core_disabled(void)
1297 {
1298 	return true;
1299 }
1300 
1301 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1302 {
1303 	return &rq->__lock;
1304 }
1305 
1306 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1307 {
1308 	return &rq->__lock;
1309 }
1310 
1311 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1312 {
1313 	return true;
1314 }
1315 
1316 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1317 {
1318 	return true;
1319 }
1320 
1321 static inline bool sched_group_cookie_match(struct rq *rq,
1322 					    struct task_struct *p,
1323 					    struct sched_group *group)
1324 {
1325 	return true;
1326 }
1327 #endif /* CONFIG_SCHED_CORE */
1328 
1329 static inline void lockdep_assert_rq_held(struct rq *rq)
1330 {
1331 	lockdep_assert_held(__rq_lockp(rq));
1332 }
1333 
1334 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1335 extern bool raw_spin_rq_trylock(struct rq *rq);
1336 extern void raw_spin_rq_unlock(struct rq *rq);
1337 
1338 static inline void raw_spin_rq_lock(struct rq *rq)
1339 {
1340 	raw_spin_rq_lock_nested(rq, 0);
1341 }
1342 
1343 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1344 {
1345 	local_irq_disable();
1346 	raw_spin_rq_lock(rq);
1347 }
1348 
1349 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1350 {
1351 	raw_spin_rq_unlock(rq);
1352 	local_irq_enable();
1353 }
1354 
1355 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1356 {
1357 	unsigned long flags;
1358 	local_irq_save(flags);
1359 	raw_spin_rq_lock(rq);
1360 	return flags;
1361 }
1362 
1363 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1364 {
1365 	raw_spin_rq_unlock(rq);
1366 	local_irq_restore(flags);
1367 }
1368 
1369 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1370 do {						\
1371 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1372 } while (0)
1373 
1374 #ifdef CONFIG_SCHED_SMT
1375 extern void __update_idle_core(struct rq *rq);
1376 
1377 static inline void update_idle_core(struct rq *rq)
1378 {
1379 	if (static_branch_unlikely(&sched_smt_present))
1380 		__update_idle_core(rq);
1381 }
1382 
1383 #else
1384 static inline void update_idle_core(struct rq *rq) { }
1385 #endif
1386 
1387 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1388 
1389 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1390 #define this_rq()		this_cpu_ptr(&runqueues)
1391 #define task_rq(p)		cpu_rq(task_cpu(p))
1392 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1393 #define raw_rq()		raw_cpu_ptr(&runqueues)
1394 
1395 #ifdef CONFIG_FAIR_GROUP_SCHED
1396 static inline struct task_struct *task_of(struct sched_entity *se)
1397 {
1398 	SCHED_WARN_ON(!entity_is_task(se));
1399 	return container_of(se, struct task_struct, se);
1400 }
1401 
1402 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1403 {
1404 	return p->se.cfs_rq;
1405 }
1406 
1407 /* runqueue on which this entity is (to be) queued */
1408 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1409 {
1410 	return se->cfs_rq;
1411 }
1412 
1413 /* runqueue "owned" by this group */
1414 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1415 {
1416 	return grp->my_q;
1417 }
1418 
1419 #else
1420 
1421 static inline struct task_struct *task_of(struct sched_entity *se)
1422 {
1423 	return container_of(se, struct task_struct, se);
1424 }
1425 
1426 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1427 {
1428 	return &task_rq(p)->cfs;
1429 }
1430 
1431 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1432 {
1433 	struct task_struct *p = task_of(se);
1434 	struct rq *rq = task_rq(p);
1435 
1436 	return &rq->cfs;
1437 }
1438 
1439 /* runqueue "owned" by this group */
1440 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1441 {
1442 	return NULL;
1443 }
1444 #endif
1445 
1446 extern void update_rq_clock(struct rq *rq);
1447 
1448 /*
1449  * rq::clock_update_flags bits
1450  *
1451  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1452  *  call to __schedule(). This is an optimisation to avoid
1453  *  neighbouring rq clock updates.
1454  *
1455  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1456  *  in effect and calls to update_rq_clock() are being ignored.
1457  *
1458  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1459  *  made to update_rq_clock() since the last time rq::lock was pinned.
1460  *
1461  * If inside of __schedule(), clock_update_flags will have been
1462  * shifted left (a left shift is a cheap operation for the fast path
1463  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1464  *
1465  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1466  *
1467  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1468  * one position though, because the next rq_unpin_lock() will shift it
1469  * back.
1470  */
1471 #define RQCF_REQ_SKIP		0x01
1472 #define RQCF_ACT_SKIP		0x02
1473 #define RQCF_UPDATED		0x04
1474 
1475 static inline void assert_clock_updated(struct rq *rq)
1476 {
1477 	/*
1478 	 * The only reason for not seeing a clock update since the
1479 	 * last rq_pin_lock() is if we're currently skipping updates.
1480 	 */
1481 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1482 }
1483 
1484 static inline u64 rq_clock(struct rq *rq)
1485 {
1486 	lockdep_assert_rq_held(rq);
1487 	assert_clock_updated(rq);
1488 
1489 	return rq->clock;
1490 }
1491 
1492 static inline u64 rq_clock_task(struct rq *rq)
1493 {
1494 	lockdep_assert_rq_held(rq);
1495 	assert_clock_updated(rq);
1496 
1497 	return rq->clock_task;
1498 }
1499 
1500 /**
1501  * By default the decay is the default pelt decay period.
1502  * The decay shift can change the decay period in
1503  * multiples of 32.
1504  *  Decay shift		Decay period(ms)
1505  *	0			32
1506  *	1			64
1507  *	2			128
1508  *	3			256
1509  *	4			512
1510  */
1511 extern int sched_thermal_decay_shift;
1512 
1513 static inline u64 rq_clock_thermal(struct rq *rq)
1514 {
1515 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1516 }
1517 
1518 static inline void rq_clock_skip_update(struct rq *rq)
1519 {
1520 	lockdep_assert_rq_held(rq);
1521 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1522 }
1523 
1524 /*
1525  * See rt task throttling, which is the only time a skip
1526  * request is canceled.
1527  */
1528 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1529 {
1530 	lockdep_assert_rq_held(rq);
1531 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1532 }
1533 
1534 struct rq_flags {
1535 	unsigned long flags;
1536 	struct pin_cookie cookie;
1537 #ifdef CONFIG_SCHED_DEBUG
1538 	/*
1539 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1540 	 * current pin context is stashed here in case it needs to be
1541 	 * restored in rq_repin_lock().
1542 	 */
1543 	unsigned int clock_update_flags;
1544 #endif
1545 };
1546 
1547 extern struct callback_head balance_push_callback;
1548 
1549 /*
1550  * Lockdep annotation that avoids accidental unlocks; it's like a
1551  * sticky/continuous lockdep_assert_held().
1552  *
1553  * This avoids code that has access to 'struct rq *rq' (basically everything in
1554  * the scheduler) from accidentally unlocking the rq if they do not also have a
1555  * copy of the (on-stack) 'struct rq_flags rf'.
1556  *
1557  * Also see Documentation/locking/lockdep-design.rst.
1558  */
1559 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1560 {
1561 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1562 
1563 #ifdef CONFIG_SCHED_DEBUG
1564 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1565 	rf->clock_update_flags = 0;
1566 #ifdef CONFIG_SMP
1567 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1568 #endif
1569 #endif
1570 }
1571 
1572 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1573 {
1574 #ifdef CONFIG_SCHED_DEBUG
1575 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1576 		rf->clock_update_flags = RQCF_UPDATED;
1577 #endif
1578 
1579 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1580 }
1581 
1582 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1583 {
1584 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1585 
1586 #ifdef CONFIG_SCHED_DEBUG
1587 	/*
1588 	 * Restore the value we stashed in @rf for this pin context.
1589 	 */
1590 	rq->clock_update_flags |= rf->clock_update_flags;
1591 #endif
1592 }
1593 
1594 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1595 	__acquires(rq->lock);
1596 
1597 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1598 	__acquires(p->pi_lock)
1599 	__acquires(rq->lock);
1600 
1601 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1602 	__releases(rq->lock)
1603 {
1604 	rq_unpin_lock(rq, rf);
1605 	raw_spin_rq_unlock(rq);
1606 }
1607 
1608 static inline void
1609 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1610 	__releases(rq->lock)
1611 	__releases(p->pi_lock)
1612 {
1613 	rq_unpin_lock(rq, rf);
1614 	raw_spin_rq_unlock(rq);
1615 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1616 }
1617 
1618 static inline void
1619 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1620 	__acquires(rq->lock)
1621 {
1622 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1623 	rq_pin_lock(rq, rf);
1624 }
1625 
1626 static inline void
1627 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1628 	__acquires(rq->lock)
1629 {
1630 	raw_spin_rq_lock_irq(rq);
1631 	rq_pin_lock(rq, rf);
1632 }
1633 
1634 static inline void
1635 rq_lock(struct rq *rq, struct rq_flags *rf)
1636 	__acquires(rq->lock)
1637 {
1638 	raw_spin_rq_lock(rq);
1639 	rq_pin_lock(rq, rf);
1640 }
1641 
1642 static inline void
1643 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1644 	__releases(rq->lock)
1645 {
1646 	rq_unpin_lock(rq, rf);
1647 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1648 }
1649 
1650 static inline void
1651 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1652 	__releases(rq->lock)
1653 {
1654 	rq_unpin_lock(rq, rf);
1655 	raw_spin_rq_unlock_irq(rq);
1656 }
1657 
1658 static inline void
1659 rq_unlock(struct rq *rq, struct rq_flags *rf)
1660 	__releases(rq->lock)
1661 {
1662 	rq_unpin_lock(rq, rf);
1663 	raw_spin_rq_unlock(rq);
1664 }
1665 
1666 static inline struct rq *
1667 this_rq_lock_irq(struct rq_flags *rf)
1668 	__acquires(rq->lock)
1669 {
1670 	struct rq *rq;
1671 
1672 	local_irq_disable();
1673 	rq = this_rq();
1674 	rq_lock(rq, rf);
1675 	return rq;
1676 }
1677 
1678 #ifdef CONFIG_NUMA
1679 enum numa_topology_type {
1680 	NUMA_DIRECT,
1681 	NUMA_GLUELESS_MESH,
1682 	NUMA_BACKPLANE,
1683 };
1684 extern enum numa_topology_type sched_numa_topology_type;
1685 extern int sched_max_numa_distance;
1686 extern bool find_numa_distance(int distance);
1687 extern void sched_init_numa(int offline_node);
1688 extern void sched_update_numa(int cpu, bool online);
1689 extern void sched_domains_numa_masks_set(unsigned int cpu);
1690 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1691 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1692 #else
1693 static inline void sched_init_numa(int offline_node) { }
1694 static inline void sched_update_numa(int cpu, bool online) { }
1695 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1696 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1697 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1698 {
1699 	return nr_cpu_ids;
1700 }
1701 #endif
1702 
1703 #ifdef CONFIG_NUMA_BALANCING
1704 /* The regions in numa_faults array from task_struct */
1705 enum numa_faults_stats {
1706 	NUMA_MEM = 0,
1707 	NUMA_CPU,
1708 	NUMA_MEMBUF,
1709 	NUMA_CPUBUF
1710 };
1711 extern void sched_setnuma(struct task_struct *p, int node);
1712 extern int migrate_task_to(struct task_struct *p, int cpu);
1713 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1714 			int cpu, int scpu);
1715 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1716 #else
1717 static inline void
1718 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1719 {
1720 }
1721 #endif /* CONFIG_NUMA_BALANCING */
1722 
1723 #ifdef CONFIG_SMP
1724 
1725 static inline void
1726 queue_balance_callback(struct rq *rq,
1727 		       struct callback_head *head,
1728 		       void (*func)(struct rq *rq))
1729 {
1730 	lockdep_assert_rq_held(rq);
1731 
1732 	/*
1733 	 * Don't (re)queue an already queued item; nor queue anything when
1734 	 * balance_push() is active, see the comment with
1735 	 * balance_push_callback.
1736 	 */
1737 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1738 		return;
1739 
1740 	head->func = (void (*)(struct callback_head *))func;
1741 	head->next = rq->balance_callback;
1742 	rq->balance_callback = head;
1743 }
1744 
1745 #define rcu_dereference_check_sched_domain(p) \
1746 	rcu_dereference_check((p), \
1747 			      lockdep_is_held(&sched_domains_mutex))
1748 
1749 /*
1750  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1751  * See destroy_sched_domains: call_rcu for details.
1752  *
1753  * The domain tree of any CPU may only be accessed from within
1754  * preempt-disabled sections.
1755  */
1756 #define for_each_domain(cpu, __sd) \
1757 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1758 			__sd; __sd = __sd->parent)
1759 
1760 /**
1761  * highest_flag_domain - Return highest sched_domain containing flag.
1762  * @cpu:	The CPU whose highest level of sched domain is to
1763  *		be returned.
1764  * @flag:	The flag to check for the highest sched_domain
1765  *		for the given CPU.
1766  *
1767  * Returns the highest sched_domain of a CPU which contains the given flag.
1768  */
1769 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1770 {
1771 	struct sched_domain *sd, *hsd = NULL;
1772 
1773 	for_each_domain(cpu, sd) {
1774 		if (!(sd->flags & flag))
1775 			break;
1776 		hsd = sd;
1777 	}
1778 
1779 	return hsd;
1780 }
1781 
1782 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1783 {
1784 	struct sched_domain *sd;
1785 
1786 	for_each_domain(cpu, sd) {
1787 		if (sd->flags & flag)
1788 			break;
1789 	}
1790 
1791 	return sd;
1792 }
1793 
1794 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1795 DECLARE_PER_CPU(int, sd_llc_size);
1796 DECLARE_PER_CPU(int, sd_llc_id);
1797 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1798 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1799 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1800 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1801 extern struct static_key_false sched_asym_cpucapacity;
1802 
1803 static __always_inline bool sched_asym_cpucap_active(void)
1804 {
1805 	return static_branch_unlikely(&sched_asym_cpucapacity);
1806 }
1807 
1808 struct sched_group_capacity {
1809 	atomic_t		ref;
1810 	/*
1811 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1812 	 * for a single CPU.
1813 	 */
1814 	unsigned long		capacity;
1815 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1816 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1817 	unsigned long		next_update;
1818 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1819 
1820 #ifdef CONFIG_SCHED_DEBUG
1821 	int			id;
1822 #endif
1823 
1824 	unsigned long		cpumask[];		/* Balance mask */
1825 };
1826 
1827 struct sched_group {
1828 	struct sched_group	*next;			/* Must be a circular list */
1829 	atomic_t		ref;
1830 
1831 	unsigned int		group_weight;
1832 	struct sched_group_capacity *sgc;
1833 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1834 	int			flags;
1835 
1836 	/*
1837 	 * The CPUs this group covers.
1838 	 *
1839 	 * NOTE: this field is variable length. (Allocated dynamically
1840 	 * by attaching extra space to the end of the structure,
1841 	 * depending on how many CPUs the kernel has booted up with)
1842 	 */
1843 	unsigned long		cpumask[];
1844 };
1845 
1846 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1847 {
1848 	return to_cpumask(sg->cpumask);
1849 }
1850 
1851 /*
1852  * See build_balance_mask().
1853  */
1854 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1855 {
1856 	return to_cpumask(sg->sgc->cpumask);
1857 }
1858 
1859 extern int group_balance_cpu(struct sched_group *sg);
1860 
1861 #ifdef CONFIG_SCHED_DEBUG
1862 void update_sched_domain_debugfs(void);
1863 void dirty_sched_domain_sysctl(int cpu);
1864 #else
1865 static inline void update_sched_domain_debugfs(void)
1866 {
1867 }
1868 static inline void dirty_sched_domain_sysctl(int cpu)
1869 {
1870 }
1871 #endif
1872 
1873 extern int sched_update_scaling(void);
1874 #endif /* CONFIG_SMP */
1875 
1876 #include "stats.h"
1877 
1878 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1879 
1880 extern void __sched_core_account_forceidle(struct rq *rq);
1881 
1882 static inline void sched_core_account_forceidle(struct rq *rq)
1883 {
1884 	if (schedstat_enabled())
1885 		__sched_core_account_forceidle(rq);
1886 }
1887 
1888 extern void __sched_core_tick(struct rq *rq);
1889 
1890 static inline void sched_core_tick(struct rq *rq)
1891 {
1892 	if (sched_core_enabled(rq) && schedstat_enabled())
1893 		__sched_core_tick(rq);
1894 }
1895 
1896 #else
1897 
1898 static inline void sched_core_account_forceidle(struct rq *rq) {}
1899 
1900 static inline void sched_core_tick(struct rq *rq) {}
1901 
1902 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1903 
1904 #ifdef CONFIG_CGROUP_SCHED
1905 
1906 /*
1907  * Return the group to which this tasks belongs.
1908  *
1909  * We cannot use task_css() and friends because the cgroup subsystem
1910  * changes that value before the cgroup_subsys::attach() method is called,
1911  * therefore we cannot pin it and might observe the wrong value.
1912  *
1913  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1914  * core changes this before calling sched_move_task().
1915  *
1916  * Instead we use a 'copy' which is updated from sched_move_task() while
1917  * holding both task_struct::pi_lock and rq::lock.
1918  */
1919 static inline struct task_group *task_group(struct task_struct *p)
1920 {
1921 	return p->sched_task_group;
1922 }
1923 
1924 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1925 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1926 {
1927 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1928 	struct task_group *tg = task_group(p);
1929 #endif
1930 
1931 #ifdef CONFIG_FAIR_GROUP_SCHED
1932 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1933 	p->se.cfs_rq = tg->cfs_rq[cpu];
1934 	p->se.parent = tg->se[cpu];
1935 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1936 #endif
1937 
1938 #ifdef CONFIG_RT_GROUP_SCHED
1939 	p->rt.rt_rq  = tg->rt_rq[cpu];
1940 	p->rt.parent = tg->rt_se[cpu];
1941 #endif
1942 }
1943 
1944 #else /* CONFIG_CGROUP_SCHED */
1945 
1946 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1947 static inline struct task_group *task_group(struct task_struct *p)
1948 {
1949 	return NULL;
1950 }
1951 
1952 #endif /* CONFIG_CGROUP_SCHED */
1953 
1954 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1955 {
1956 	set_task_rq(p, cpu);
1957 #ifdef CONFIG_SMP
1958 	/*
1959 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1960 	 * successfully executed on another CPU. We must ensure that updates of
1961 	 * per-task data have been completed by this moment.
1962 	 */
1963 	smp_wmb();
1964 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1965 	p->wake_cpu = cpu;
1966 #endif
1967 }
1968 
1969 /*
1970  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1971  */
1972 #ifdef CONFIG_SCHED_DEBUG
1973 # define const_debug __read_mostly
1974 #else
1975 # define const_debug const
1976 #endif
1977 
1978 #define SCHED_FEAT(name, enabled)	\
1979 	__SCHED_FEAT_##name ,
1980 
1981 enum {
1982 #include "features.h"
1983 	__SCHED_FEAT_NR,
1984 };
1985 
1986 #undef SCHED_FEAT
1987 
1988 #ifdef CONFIG_SCHED_DEBUG
1989 
1990 /*
1991  * To support run-time toggling of sched features, all the translation units
1992  * (but core.c) reference the sysctl_sched_features defined in core.c.
1993  */
1994 extern const_debug unsigned int sysctl_sched_features;
1995 
1996 #ifdef CONFIG_JUMP_LABEL
1997 #define SCHED_FEAT(name, enabled)					\
1998 static __always_inline bool static_branch_##name(struct static_key *key) \
1999 {									\
2000 	return static_key_##enabled(key);				\
2001 }
2002 
2003 #include "features.h"
2004 #undef SCHED_FEAT
2005 
2006 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2007 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2008 
2009 #else /* !CONFIG_JUMP_LABEL */
2010 
2011 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2012 
2013 #endif /* CONFIG_JUMP_LABEL */
2014 
2015 #else /* !SCHED_DEBUG */
2016 
2017 /*
2018  * Each translation unit has its own copy of sysctl_sched_features to allow
2019  * constants propagation at compile time and compiler optimization based on
2020  * features default.
2021  */
2022 #define SCHED_FEAT(name, enabled)	\
2023 	(1UL << __SCHED_FEAT_##name) * enabled |
2024 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2025 #include "features.h"
2026 	0;
2027 #undef SCHED_FEAT
2028 
2029 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2030 
2031 #endif /* SCHED_DEBUG */
2032 
2033 extern struct static_key_false sched_numa_balancing;
2034 extern struct static_key_false sched_schedstats;
2035 
2036 static inline u64 global_rt_period(void)
2037 {
2038 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2039 }
2040 
2041 static inline u64 global_rt_runtime(void)
2042 {
2043 	if (sysctl_sched_rt_runtime < 0)
2044 		return RUNTIME_INF;
2045 
2046 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2047 }
2048 
2049 static inline int task_current(struct rq *rq, struct task_struct *p)
2050 {
2051 	return rq->curr == p;
2052 }
2053 
2054 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2055 {
2056 #ifdef CONFIG_SMP
2057 	return p->on_cpu;
2058 #else
2059 	return task_current(rq, p);
2060 #endif
2061 }
2062 
2063 static inline int task_on_rq_queued(struct task_struct *p)
2064 {
2065 	return p->on_rq == TASK_ON_RQ_QUEUED;
2066 }
2067 
2068 static inline int task_on_rq_migrating(struct task_struct *p)
2069 {
2070 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2071 }
2072 
2073 /* Wake flags. The first three directly map to some SD flag value */
2074 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2075 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2076 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2077 
2078 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2079 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2080 
2081 #ifdef CONFIG_SMP
2082 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2083 static_assert(WF_FORK == SD_BALANCE_FORK);
2084 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2085 #endif
2086 
2087 /*
2088  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2089  * of tasks with abnormal "nice" values across CPUs the contribution that
2090  * each task makes to its run queue's load is weighted according to its
2091  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2092  * scaled version of the new time slice allocation that they receive on time
2093  * slice expiry etc.
2094  */
2095 
2096 #define WEIGHT_IDLEPRIO		3
2097 #define WMULT_IDLEPRIO		1431655765
2098 
2099 extern const int		sched_prio_to_weight[40];
2100 extern const u32		sched_prio_to_wmult[40];
2101 
2102 /*
2103  * {de,en}queue flags:
2104  *
2105  * DEQUEUE_SLEEP  - task is no longer runnable
2106  * ENQUEUE_WAKEUP - task just became runnable
2107  *
2108  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2109  *                are in a known state which allows modification. Such pairs
2110  *                should preserve as much state as possible.
2111  *
2112  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2113  *        in the runqueue.
2114  *
2115  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2116  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2117  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2118  *
2119  */
2120 
2121 #define DEQUEUE_SLEEP		0x01
2122 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2123 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2124 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2125 
2126 #define ENQUEUE_WAKEUP		0x01
2127 #define ENQUEUE_RESTORE		0x02
2128 #define ENQUEUE_MOVE		0x04
2129 #define ENQUEUE_NOCLOCK		0x08
2130 
2131 #define ENQUEUE_HEAD		0x10
2132 #define ENQUEUE_REPLENISH	0x20
2133 #ifdef CONFIG_SMP
2134 #define ENQUEUE_MIGRATED	0x40
2135 #else
2136 #define ENQUEUE_MIGRATED	0x00
2137 #endif
2138 
2139 #define RETRY_TASK		((void *)-1UL)
2140 
2141 struct sched_class {
2142 
2143 #ifdef CONFIG_UCLAMP_TASK
2144 	int uclamp_enabled;
2145 #endif
2146 
2147 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2148 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2149 	void (*yield_task)   (struct rq *rq);
2150 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2151 
2152 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2153 
2154 	struct task_struct *(*pick_next_task)(struct rq *rq);
2155 
2156 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2157 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2158 
2159 #ifdef CONFIG_SMP
2160 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2161 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2162 
2163 	struct task_struct * (*pick_task)(struct rq *rq);
2164 
2165 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2166 
2167 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2168 
2169 	void (*set_cpus_allowed)(struct task_struct *p,
2170 				 const struct cpumask *newmask,
2171 				 u32 flags);
2172 
2173 	void (*rq_online)(struct rq *rq);
2174 	void (*rq_offline)(struct rq *rq);
2175 
2176 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2177 #endif
2178 
2179 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2180 	void (*task_fork)(struct task_struct *p);
2181 	void (*task_dead)(struct task_struct *p);
2182 
2183 	/*
2184 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2185 	 * cannot assume the switched_from/switched_to pair is serialized by
2186 	 * rq->lock. They are however serialized by p->pi_lock.
2187 	 */
2188 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2189 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2190 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2191 			      int oldprio);
2192 
2193 	unsigned int (*get_rr_interval)(struct rq *rq,
2194 					struct task_struct *task);
2195 
2196 	void (*update_curr)(struct rq *rq);
2197 
2198 #ifdef CONFIG_FAIR_GROUP_SCHED
2199 	void (*task_change_group)(struct task_struct *p);
2200 #endif
2201 };
2202 
2203 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2204 {
2205 	WARN_ON_ONCE(rq->curr != prev);
2206 	prev->sched_class->put_prev_task(rq, prev);
2207 }
2208 
2209 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2210 {
2211 	next->sched_class->set_next_task(rq, next, false);
2212 }
2213 
2214 
2215 /*
2216  * Helper to define a sched_class instance; each one is placed in a separate
2217  * section which is ordered by the linker script:
2218  *
2219  *   include/asm-generic/vmlinux.lds.h
2220  *
2221  * *CAREFUL* they are laid out in *REVERSE* order!!!
2222  *
2223  * Also enforce alignment on the instance, not the type, to guarantee layout.
2224  */
2225 #define DEFINE_SCHED_CLASS(name) \
2226 const struct sched_class name##_sched_class \
2227 	__aligned(__alignof__(struct sched_class)) \
2228 	__section("__" #name "_sched_class")
2229 
2230 /* Defined in include/asm-generic/vmlinux.lds.h */
2231 extern struct sched_class __sched_class_highest[];
2232 extern struct sched_class __sched_class_lowest[];
2233 
2234 #define for_class_range(class, _from, _to) \
2235 	for (class = (_from); class < (_to); class++)
2236 
2237 #define for_each_class(class) \
2238 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2239 
2240 #define sched_class_above(_a, _b)	((_a) < (_b))
2241 
2242 extern const struct sched_class stop_sched_class;
2243 extern const struct sched_class dl_sched_class;
2244 extern const struct sched_class rt_sched_class;
2245 extern const struct sched_class fair_sched_class;
2246 extern const struct sched_class idle_sched_class;
2247 
2248 static inline bool sched_stop_runnable(struct rq *rq)
2249 {
2250 	return rq->stop && task_on_rq_queued(rq->stop);
2251 }
2252 
2253 static inline bool sched_dl_runnable(struct rq *rq)
2254 {
2255 	return rq->dl.dl_nr_running > 0;
2256 }
2257 
2258 static inline bool sched_rt_runnable(struct rq *rq)
2259 {
2260 	return rq->rt.rt_queued > 0;
2261 }
2262 
2263 static inline bool sched_fair_runnable(struct rq *rq)
2264 {
2265 	return rq->cfs.nr_running > 0;
2266 }
2267 
2268 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2269 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2270 
2271 #define SCA_CHECK		0x01
2272 #define SCA_MIGRATE_DISABLE	0x02
2273 #define SCA_MIGRATE_ENABLE	0x04
2274 #define SCA_USER		0x08
2275 
2276 #ifdef CONFIG_SMP
2277 
2278 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2279 
2280 extern void trigger_load_balance(struct rq *rq);
2281 
2282 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2283 
2284 static inline struct task_struct *get_push_task(struct rq *rq)
2285 {
2286 	struct task_struct *p = rq->curr;
2287 
2288 	lockdep_assert_rq_held(rq);
2289 
2290 	if (rq->push_busy)
2291 		return NULL;
2292 
2293 	if (p->nr_cpus_allowed == 1)
2294 		return NULL;
2295 
2296 	if (p->migration_disabled)
2297 		return NULL;
2298 
2299 	rq->push_busy = true;
2300 	return get_task_struct(p);
2301 }
2302 
2303 extern int push_cpu_stop(void *arg);
2304 
2305 #endif
2306 
2307 #ifdef CONFIG_CPU_IDLE
2308 static inline void idle_set_state(struct rq *rq,
2309 				  struct cpuidle_state *idle_state)
2310 {
2311 	rq->idle_state = idle_state;
2312 }
2313 
2314 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2315 {
2316 	SCHED_WARN_ON(!rcu_read_lock_held());
2317 
2318 	return rq->idle_state;
2319 }
2320 #else
2321 static inline void idle_set_state(struct rq *rq,
2322 				  struct cpuidle_state *idle_state)
2323 {
2324 }
2325 
2326 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2327 {
2328 	return NULL;
2329 }
2330 #endif
2331 
2332 extern void schedule_idle(void);
2333 
2334 extern void sysrq_sched_debug_show(void);
2335 extern void sched_init_granularity(void);
2336 extern void update_max_interval(void);
2337 
2338 extern void init_sched_dl_class(void);
2339 extern void init_sched_rt_class(void);
2340 extern void init_sched_fair_class(void);
2341 
2342 extern void reweight_task(struct task_struct *p, int prio);
2343 
2344 extern void resched_curr(struct rq *rq);
2345 extern void resched_cpu(int cpu);
2346 
2347 extern struct rt_bandwidth def_rt_bandwidth;
2348 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2349 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2350 
2351 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2352 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2353 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2354 
2355 #define BW_SHIFT		20
2356 #define BW_UNIT			(1 << BW_SHIFT)
2357 #define RATIO_SHIFT		8
2358 #define MAX_BW_BITS		(64 - BW_SHIFT)
2359 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2360 unsigned long to_ratio(u64 period, u64 runtime);
2361 
2362 extern void init_entity_runnable_average(struct sched_entity *se);
2363 extern void post_init_entity_util_avg(struct task_struct *p);
2364 
2365 #ifdef CONFIG_NO_HZ_FULL
2366 extern bool sched_can_stop_tick(struct rq *rq);
2367 extern int __init sched_tick_offload_init(void);
2368 
2369 /*
2370  * Tick may be needed by tasks in the runqueue depending on their policy and
2371  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2372  * nohz mode if necessary.
2373  */
2374 static inline void sched_update_tick_dependency(struct rq *rq)
2375 {
2376 	int cpu = cpu_of(rq);
2377 
2378 	if (!tick_nohz_full_cpu(cpu))
2379 		return;
2380 
2381 	if (sched_can_stop_tick(rq))
2382 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2383 	else
2384 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2385 }
2386 #else
2387 static inline int sched_tick_offload_init(void) { return 0; }
2388 static inline void sched_update_tick_dependency(struct rq *rq) { }
2389 #endif
2390 
2391 static inline void add_nr_running(struct rq *rq, unsigned count)
2392 {
2393 	unsigned prev_nr = rq->nr_running;
2394 
2395 	rq->nr_running = prev_nr + count;
2396 	if (trace_sched_update_nr_running_tp_enabled()) {
2397 		call_trace_sched_update_nr_running(rq, count);
2398 	}
2399 
2400 #ifdef CONFIG_SMP
2401 	if (prev_nr < 2 && rq->nr_running >= 2) {
2402 		if (!READ_ONCE(rq->rd->overload))
2403 			WRITE_ONCE(rq->rd->overload, 1);
2404 	}
2405 #endif
2406 
2407 	sched_update_tick_dependency(rq);
2408 }
2409 
2410 static inline void sub_nr_running(struct rq *rq, unsigned count)
2411 {
2412 	rq->nr_running -= count;
2413 	if (trace_sched_update_nr_running_tp_enabled()) {
2414 		call_trace_sched_update_nr_running(rq, -count);
2415 	}
2416 
2417 	/* Check if we still need preemption */
2418 	sched_update_tick_dependency(rq);
2419 }
2420 
2421 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2422 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2423 
2424 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2425 
2426 #ifdef CONFIG_PREEMPT_RT
2427 #define SCHED_NR_MIGRATE_BREAK 8
2428 #else
2429 #define SCHED_NR_MIGRATE_BREAK 32
2430 #endif
2431 
2432 extern const_debug unsigned int sysctl_sched_nr_migrate;
2433 extern const_debug unsigned int sysctl_sched_migration_cost;
2434 
2435 #ifdef CONFIG_SCHED_DEBUG
2436 extern unsigned int sysctl_sched_latency;
2437 extern unsigned int sysctl_sched_min_granularity;
2438 extern unsigned int sysctl_sched_idle_min_granularity;
2439 extern unsigned int sysctl_sched_wakeup_granularity;
2440 extern int sysctl_resched_latency_warn_ms;
2441 extern int sysctl_resched_latency_warn_once;
2442 
2443 extern unsigned int sysctl_sched_tunable_scaling;
2444 
2445 extern unsigned int sysctl_numa_balancing_scan_delay;
2446 extern unsigned int sysctl_numa_balancing_scan_period_min;
2447 extern unsigned int sysctl_numa_balancing_scan_period_max;
2448 extern unsigned int sysctl_numa_balancing_scan_size;
2449 extern unsigned int sysctl_numa_balancing_hot_threshold;
2450 #endif
2451 
2452 #ifdef CONFIG_SCHED_HRTICK
2453 
2454 /*
2455  * Use hrtick when:
2456  *  - enabled by features
2457  *  - hrtimer is actually high res
2458  */
2459 static inline int hrtick_enabled(struct rq *rq)
2460 {
2461 	if (!cpu_active(cpu_of(rq)))
2462 		return 0;
2463 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2464 }
2465 
2466 static inline int hrtick_enabled_fair(struct rq *rq)
2467 {
2468 	if (!sched_feat(HRTICK))
2469 		return 0;
2470 	return hrtick_enabled(rq);
2471 }
2472 
2473 static inline int hrtick_enabled_dl(struct rq *rq)
2474 {
2475 	if (!sched_feat(HRTICK_DL))
2476 		return 0;
2477 	return hrtick_enabled(rq);
2478 }
2479 
2480 void hrtick_start(struct rq *rq, u64 delay);
2481 
2482 #else
2483 
2484 static inline int hrtick_enabled_fair(struct rq *rq)
2485 {
2486 	return 0;
2487 }
2488 
2489 static inline int hrtick_enabled_dl(struct rq *rq)
2490 {
2491 	return 0;
2492 }
2493 
2494 static inline int hrtick_enabled(struct rq *rq)
2495 {
2496 	return 0;
2497 }
2498 
2499 #endif /* CONFIG_SCHED_HRTICK */
2500 
2501 #ifndef arch_scale_freq_tick
2502 static __always_inline
2503 void arch_scale_freq_tick(void)
2504 {
2505 }
2506 #endif
2507 
2508 #ifndef arch_scale_freq_capacity
2509 /**
2510  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2511  * @cpu: the CPU in question.
2512  *
2513  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2514  *
2515  *     f_curr
2516  *     ------ * SCHED_CAPACITY_SCALE
2517  *     f_max
2518  */
2519 static __always_inline
2520 unsigned long arch_scale_freq_capacity(int cpu)
2521 {
2522 	return SCHED_CAPACITY_SCALE;
2523 }
2524 #endif
2525 
2526 #ifdef CONFIG_SCHED_DEBUG
2527 /*
2528  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2529  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2530  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2531  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2532  */
2533 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2534 {
2535 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2536 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2537 #ifdef CONFIG_SMP
2538 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2539 #endif
2540 }
2541 #else
2542 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2543 #endif
2544 
2545 #ifdef CONFIG_SMP
2546 
2547 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2548 {
2549 #ifdef CONFIG_SCHED_CORE
2550 	/*
2551 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2552 	 * order by core-id first and cpu-id second.
2553 	 *
2554 	 * Notably:
2555 	 *
2556 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2557 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2558 	 *
2559 	 * when only cpu-id is considered.
2560 	 */
2561 	if (rq1->core->cpu < rq2->core->cpu)
2562 		return true;
2563 	if (rq1->core->cpu > rq2->core->cpu)
2564 		return false;
2565 
2566 	/*
2567 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2568 	 */
2569 #endif
2570 	return rq1->cpu < rq2->cpu;
2571 }
2572 
2573 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2574 
2575 #ifdef CONFIG_PREEMPTION
2576 
2577 /*
2578  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2579  * way at the expense of forcing extra atomic operations in all
2580  * invocations.  This assures that the double_lock is acquired using the
2581  * same underlying policy as the spinlock_t on this architecture, which
2582  * reduces latency compared to the unfair variant below.  However, it
2583  * also adds more overhead and therefore may reduce throughput.
2584  */
2585 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2586 	__releases(this_rq->lock)
2587 	__acquires(busiest->lock)
2588 	__acquires(this_rq->lock)
2589 {
2590 	raw_spin_rq_unlock(this_rq);
2591 	double_rq_lock(this_rq, busiest);
2592 
2593 	return 1;
2594 }
2595 
2596 #else
2597 /*
2598  * Unfair double_lock_balance: Optimizes throughput at the expense of
2599  * latency by eliminating extra atomic operations when the locks are
2600  * already in proper order on entry.  This favors lower CPU-ids and will
2601  * grant the double lock to lower CPUs over higher ids under contention,
2602  * regardless of entry order into the function.
2603  */
2604 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2605 	__releases(this_rq->lock)
2606 	__acquires(busiest->lock)
2607 	__acquires(this_rq->lock)
2608 {
2609 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2610 	    likely(raw_spin_rq_trylock(busiest))) {
2611 		double_rq_clock_clear_update(this_rq, busiest);
2612 		return 0;
2613 	}
2614 
2615 	if (rq_order_less(this_rq, busiest)) {
2616 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2617 		double_rq_clock_clear_update(this_rq, busiest);
2618 		return 0;
2619 	}
2620 
2621 	raw_spin_rq_unlock(this_rq);
2622 	double_rq_lock(this_rq, busiest);
2623 
2624 	return 1;
2625 }
2626 
2627 #endif /* CONFIG_PREEMPTION */
2628 
2629 /*
2630  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2631  */
2632 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2633 {
2634 	lockdep_assert_irqs_disabled();
2635 
2636 	return _double_lock_balance(this_rq, busiest);
2637 }
2638 
2639 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2640 	__releases(busiest->lock)
2641 {
2642 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2643 		raw_spin_rq_unlock(busiest);
2644 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2645 }
2646 
2647 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2648 {
2649 	if (l1 > l2)
2650 		swap(l1, l2);
2651 
2652 	spin_lock(l1);
2653 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2654 }
2655 
2656 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2657 {
2658 	if (l1 > l2)
2659 		swap(l1, l2);
2660 
2661 	spin_lock_irq(l1);
2662 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2663 }
2664 
2665 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2666 {
2667 	if (l1 > l2)
2668 		swap(l1, l2);
2669 
2670 	raw_spin_lock(l1);
2671 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2672 }
2673 
2674 /*
2675  * double_rq_unlock - safely unlock two runqueues
2676  *
2677  * Note this does not restore interrupts like task_rq_unlock,
2678  * you need to do so manually after calling.
2679  */
2680 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2681 	__releases(rq1->lock)
2682 	__releases(rq2->lock)
2683 {
2684 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2685 		raw_spin_rq_unlock(rq2);
2686 	else
2687 		__release(rq2->lock);
2688 	raw_spin_rq_unlock(rq1);
2689 }
2690 
2691 extern void set_rq_online (struct rq *rq);
2692 extern void set_rq_offline(struct rq *rq);
2693 extern bool sched_smp_initialized;
2694 
2695 #else /* CONFIG_SMP */
2696 
2697 /*
2698  * double_rq_lock - safely lock two runqueues
2699  *
2700  * Note this does not disable interrupts like task_rq_lock,
2701  * you need to do so manually before calling.
2702  */
2703 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2704 	__acquires(rq1->lock)
2705 	__acquires(rq2->lock)
2706 {
2707 	WARN_ON_ONCE(!irqs_disabled());
2708 	WARN_ON_ONCE(rq1 != rq2);
2709 	raw_spin_rq_lock(rq1);
2710 	__acquire(rq2->lock);	/* Fake it out ;) */
2711 	double_rq_clock_clear_update(rq1, rq2);
2712 }
2713 
2714 /*
2715  * double_rq_unlock - safely unlock two runqueues
2716  *
2717  * Note this does not restore interrupts like task_rq_unlock,
2718  * you need to do so manually after calling.
2719  */
2720 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2721 	__releases(rq1->lock)
2722 	__releases(rq2->lock)
2723 {
2724 	WARN_ON_ONCE(rq1 != rq2);
2725 	raw_spin_rq_unlock(rq1);
2726 	__release(rq2->lock);
2727 }
2728 
2729 #endif
2730 
2731 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2732 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2733 
2734 #ifdef	CONFIG_SCHED_DEBUG
2735 extern bool sched_debug_verbose;
2736 
2737 extern void print_cfs_stats(struct seq_file *m, int cpu);
2738 extern void print_rt_stats(struct seq_file *m, int cpu);
2739 extern void print_dl_stats(struct seq_file *m, int cpu);
2740 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2741 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2742 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2743 
2744 extern void resched_latency_warn(int cpu, u64 latency);
2745 #ifdef CONFIG_NUMA_BALANCING
2746 extern void
2747 show_numa_stats(struct task_struct *p, struct seq_file *m);
2748 extern void
2749 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2750 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2751 #endif /* CONFIG_NUMA_BALANCING */
2752 #else
2753 static inline void resched_latency_warn(int cpu, u64 latency) {}
2754 #endif /* CONFIG_SCHED_DEBUG */
2755 
2756 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2757 extern void init_rt_rq(struct rt_rq *rt_rq);
2758 extern void init_dl_rq(struct dl_rq *dl_rq);
2759 
2760 extern void cfs_bandwidth_usage_inc(void);
2761 extern void cfs_bandwidth_usage_dec(void);
2762 
2763 #ifdef CONFIG_NO_HZ_COMMON
2764 #define NOHZ_BALANCE_KICK_BIT	0
2765 #define NOHZ_STATS_KICK_BIT	1
2766 #define NOHZ_NEWILB_KICK_BIT	2
2767 #define NOHZ_NEXT_KICK_BIT	3
2768 
2769 /* Run rebalance_domains() */
2770 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2771 /* Update blocked load */
2772 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2773 /* Update blocked load when entering idle */
2774 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2775 /* Update nohz.next_balance */
2776 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2777 
2778 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2779 
2780 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2781 
2782 extern void nohz_balance_exit_idle(struct rq *rq);
2783 #else
2784 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2785 #endif
2786 
2787 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2788 extern void nohz_run_idle_balance(int cpu);
2789 #else
2790 static inline void nohz_run_idle_balance(int cpu) { }
2791 #endif
2792 
2793 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2794 struct irqtime {
2795 	u64			total;
2796 	u64			tick_delta;
2797 	u64			irq_start_time;
2798 	struct u64_stats_sync	sync;
2799 };
2800 
2801 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2802 
2803 /*
2804  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2805  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2806  * and never move forward.
2807  */
2808 static inline u64 irq_time_read(int cpu)
2809 {
2810 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2811 	unsigned int seq;
2812 	u64 total;
2813 
2814 	do {
2815 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2816 		total = irqtime->total;
2817 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2818 
2819 	return total;
2820 }
2821 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2822 
2823 #ifdef CONFIG_CPU_FREQ
2824 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2825 
2826 /**
2827  * cpufreq_update_util - Take a note about CPU utilization changes.
2828  * @rq: Runqueue to carry out the update for.
2829  * @flags: Update reason flags.
2830  *
2831  * This function is called by the scheduler on the CPU whose utilization is
2832  * being updated.
2833  *
2834  * It can only be called from RCU-sched read-side critical sections.
2835  *
2836  * The way cpufreq is currently arranged requires it to evaluate the CPU
2837  * performance state (frequency/voltage) on a regular basis to prevent it from
2838  * being stuck in a completely inadequate performance level for too long.
2839  * That is not guaranteed to happen if the updates are only triggered from CFS
2840  * and DL, though, because they may not be coming in if only RT tasks are
2841  * active all the time (or there are RT tasks only).
2842  *
2843  * As a workaround for that issue, this function is called periodically by the
2844  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2845  * but that really is a band-aid.  Going forward it should be replaced with
2846  * solutions targeted more specifically at RT tasks.
2847  */
2848 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2849 {
2850 	struct update_util_data *data;
2851 
2852 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2853 						  cpu_of(rq)));
2854 	if (data)
2855 		data->func(data, rq_clock(rq), flags);
2856 }
2857 #else
2858 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2859 #endif /* CONFIG_CPU_FREQ */
2860 
2861 #ifdef arch_scale_freq_capacity
2862 # ifndef arch_scale_freq_invariant
2863 #  define arch_scale_freq_invariant()	true
2864 # endif
2865 #else
2866 # define arch_scale_freq_invariant()	false
2867 #endif
2868 
2869 #ifdef CONFIG_SMP
2870 static inline unsigned long capacity_orig_of(int cpu)
2871 {
2872 	return cpu_rq(cpu)->cpu_capacity_orig;
2873 }
2874 
2875 /**
2876  * enum cpu_util_type - CPU utilization type
2877  * @FREQUENCY_UTIL:	Utilization used to select frequency
2878  * @ENERGY_UTIL:	Utilization used during energy calculation
2879  *
2880  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2881  * need to be aggregated differently depending on the usage made of them. This
2882  * enum is used within effective_cpu_util() to differentiate the types of
2883  * utilization expected by the callers, and adjust the aggregation accordingly.
2884  */
2885 enum cpu_util_type {
2886 	FREQUENCY_UTIL,
2887 	ENERGY_UTIL,
2888 };
2889 
2890 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2891 				 enum cpu_util_type type,
2892 				 struct task_struct *p);
2893 
2894 /*
2895  * Verify the fitness of task @p to run on @cpu taking into account the
2896  * CPU original capacity and the runtime/deadline ratio of the task.
2897  *
2898  * The function will return true if the original capacity of @cpu is
2899  * greater than or equal to task's deadline density right shifted by
2900  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2901  */
2902 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2903 {
2904 	unsigned long cap = arch_scale_cpu_capacity(cpu);
2905 
2906 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2907 }
2908 
2909 static inline unsigned long cpu_bw_dl(struct rq *rq)
2910 {
2911 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2912 }
2913 
2914 static inline unsigned long cpu_util_dl(struct rq *rq)
2915 {
2916 	return READ_ONCE(rq->avg_dl.util_avg);
2917 }
2918 
2919 /**
2920  * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2921  * @cpu: the CPU to get the utilization for.
2922  *
2923  * The unit of the return value must be the same as the one of CPU capacity
2924  * so that CPU utilization can be compared with CPU capacity.
2925  *
2926  * CPU utilization is the sum of running time of runnable tasks plus the
2927  * recent utilization of currently non-runnable tasks on that CPU.
2928  * It represents the amount of CPU capacity currently used by CFS tasks in
2929  * the range [0..max CPU capacity] with max CPU capacity being the CPU
2930  * capacity at f_max.
2931  *
2932  * The estimated CPU utilization is defined as the maximum between CPU
2933  * utilization and sum of the estimated utilization of the currently
2934  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2935  * previously-executed tasks, which helps better deduce how busy a CPU will
2936  * be when a long-sleeping task wakes up. The contribution to CPU utilization
2937  * of such a task would be significantly decayed at this point of time.
2938  *
2939  * CPU utilization can be higher than the current CPU capacity
2940  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2941  * of rounding errors as well as task migrations or wakeups of new tasks.
2942  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2943  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2944  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2945  * capacity. CPU utilization is allowed to overshoot current CPU capacity
2946  * though since this is useful for predicting the CPU capacity required
2947  * after task migrations (scheduler-driven DVFS).
2948  *
2949  * Return: (Estimated) utilization for the specified CPU.
2950  */
2951 static inline unsigned long cpu_util_cfs(int cpu)
2952 {
2953 	struct cfs_rq *cfs_rq;
2954 	unsigned long util;
2955 
2956 	cfs_rq = &cpu_rq(cpu)->cfs;
2957 	util = READ_ONCE(cfs_rq->avg.util_avg);
2958 
2959 	if (sched_feat(UTIL_EST)) {
2960 		util = max_t(unsigned long, util,
2961 			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
2962 	}
2963 
2964 	return min(util, capacity_orig_of(cpu));
2965 }
2966 
2967 static inline unsigned long cpu_util_rt(struct rq *rq)
2968 {
2969 	return READ_ONCE(rq->avg_rt.util_avg);
2970 }
2971 #endif
2972 
2973 #ifdef CONFIG_UCLAMP_TASK
2974 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2975 
2976 /**
2977  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2978  * @rq:		The rq to clamp against. Must not be NULL.
2979  * @util:	The util value to clamp.
2980  * @p:		The task to clamp against. Can be NULL if you want to clamp
2981  *		against @rq only.
2982  *
2983  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2984  *
2985  * If sched_uclamp_used static key is disabled, then just return the util
2986  * without any clamping since uclamp aggregation at the rq level in the fast
2987  * path is disabled, rendering this operation a NOP.
2988  *
2989  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2990  * will return the correct effective uclamp value of the task even if the
2991  * static key is disabled.
2992  */
2993 static __always_inline
2994 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2995 				  struct task_struct *p)
2996 {
2997 	unsigned long min_util = 0;
2998 	unsigned long max_util = 0;
2999 
3000 	if (!static_branch_likely(&sched_uclamp_used))
3001 		return util;
3002 
3003 	if (p) {
3004 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3005 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3006 
3007 		/*
3008 		 * Ignore last runnable task's max clamp, as this task will
3009 		 * reset it. Similarly, no need to read the rq's min clamp.
3010 		 */
3011 		if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
3012 			goto out;
3013 	}
3014 
3015 	min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
3016 	max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
3017 out:
3018 	/*
3019 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3020 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3021 	 * inversion. Fix it now when the clamps are applied.
3022 	 */
3023 	if (unlikely(min_util >= max_util))
3024 		return min_util;
3025 
3026 	return clamp(util, min_util, max_util);
3027 }
3028 
3029 /* Is the rq being capped/throttled by uclamp_max? */
3030 static inline bool uclamp_rq_is_capped(struct rq *rq)
3031 {
3032 	unsigned long rq_util;
3033 	unsigned long max_util;
3034 
3035 	if (!static_branch_likely(&sched_uclamp_used))
3036 		return false;
3037 
3038 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3039 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3040 
3041 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3042 }
3043 
3044 /*
3045  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3046  * by default in the fast path and only gets turned on once userspace performs
3047  * an operation that requires it.
3048  *
3049  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3050  * hence is active.
3051  */
3052 static inline bool uclamp_is_used(void)
3053 {
3054 	return static_branch_likely(&sched_uclamp_used);
3055 }
3056 #else /* CONFIG_UCLAMP_TASK */
3057 static inline
3058 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3059 				  struct task_struct *p)
3060 {
3061 	return util;
3062 }
3063 
3064 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3065 
3066 static inline bool uclamp_is_used(void)
3067 {
3068 	return false;
3069 }
3070 #endif /* CONFIG_UCLAMP_TASK */
3071 
3072 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3073 static inline unsigned long cpu_util_irq(struct rq *rq)
3074 {
3075 	return rq->avg_irq.util_avg;
3076 }
3077 
3078 static inline
3079 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3080 {
3081 	util *= (max - irq);
3082 	util /= max;
3083 
3084 	return util;
3085 
3086 }
3087 #else
3088 static inline unsigned long cpu_util_irq(struct rq *rq)
3089 {
3090 	return 0;
3091 }
3092 
3093 static inline
3094 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3095 {
3096 	return util;
3097 }
3098 #endif
3099 
3100 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3101 
3102 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3103 
3104 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3105 
3106 static inline bool sched_energy_enabled(void)
3107 {
3108 	return static_branch_unlikely(&sched_energy_present);
3109 }
3110 
3111 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3112 
3113 #define perf_domain_span(pd) NULL
3114 static inline bool sched_energy_enabled(void) { return false; }
3115 
3116 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3117 
3118 #ifdef CONFIG_MEMBARRIER
3119 /*
3120  * The scheduler provides memory barriers required by membarrier between:
3121  * - prior user-space memory accesses and store to rq->membarrier_state,
3122  * - store to rq->membarrier_state and following user-space memory accesses.
3123  * In the same way it provides those guarantees around store to rq->curr.
3124  */
3125 static inline void membarrier_switch_mm(struct rq *rq,
3126 					struct mm_struct *prev_mm,
3127 					struct mm_struct *next_mm)
3128 {
3129 	int membarrier_state;
3130 
3131 	if (prev_mm == next_mm)
3132 		return;
3133 
3134 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3135 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3136 		return;
3137 
3138 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3139 }
3140 #else
3141 static inline void membarrier_switch_mm(struct rq *rq,
3142 					struct mm_struct *prev_mm,
3143 					struct mm_struct *next_mm)
3144 {
3145 }
3146 #endif
3147 
3148 #ifdef CONFIG_SMP
3149 static inline bool is_per_cpu_kthread(struct task_struct *p)
3150 {
3151 	if (!(p->flags & PF_KTHREAD))
3152 		return false;
3153 
3154 	if (p->nr_cpus_allowed != 1)
3155 		return false;
3156 
3157 	return true;
3158 }
3159 #endif
3160 
3161 extern void swake_up_all_locked(struct swait_queue_head *q);
3162 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3163 
3164 #ifdef CONFIG_PREEMPT_DYNAMIC
3165 extern int preempt_dynamic_mode;
3166 extern int sched_dynamic_mode(const char *str);
3167 extern void sched_dynamic_update(int mode);
3168 #endif
3169 
3170 static inline void update_current_exec_runtime(struct task_struct *curr,
3171 						u64 now, u64 delta_exec)
3172 {
3173 	curr->se.sum_exec_runtime += delta_exec;
3174 	account_group_exec_runtime(curr, delta_exec);
3175 
3176 	curr->se.exec_start = now;
3177 	cgroup_account_cputime(curr, delta_exec);
3178 }
3179 
3180 #endif /* _KERNEL_SCHED_SCHED_H */
3181