xref: /linux/kernel/sched/sched.h (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
74 
75 #include "cpupri.h"
76 #include "cpudeadline.h"
77 
78 #include <trace/events/sched.h>
79 
80 #ifdef CONFIG_SCHED_DEBUG
81 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
82 #else
83 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
84 #endif
85 
86 struct rq;
87 struct cpuidle_state;
88 
89 /* task_struct::on_rq states: */
90 #define TASK_ON_RQ_QUEUED	1
91 #define TASK_ON_RQ_MIGRATING	2
92 
93 extern __read_mostly int scheduler_running;
94 
95 extern unsigned long calc_load_update;
96 extern atomic_long_t calc_load_tasks;
97 
98 extern void calc_global_load_tick(struct rq *this_rq);
99 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
100 
101 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
102 /*
103  * Helpers for converting nanosecond timing to jiffy resolution
104  */
105 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 
107 /*
108  * Increase resolution of nice-level calculations for 64-bit architectures.
109  * The extra resolution improves shares distribution and load balancing of
110  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
111  * hierarchies, especially on larger systems. This is not a user-visible change
112  * and does not change the user-interface for setting shares/weights.
113  *
114  * We increase resolution only if we have enough bits to allow this increased
115  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
116  * are pretty high and the returns do not justify the increased costs.
117  *
118  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
119  * increase coverage and consistency always enable it on 64-bit platforms.
120  */
121 #ifdef CONFIG_64BIT
122 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
123 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load_down(w) \
125 ({ \
126 	unsigned long __w = (w); \
127 	if (__w) \
128 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
129 	__w; \
130 })
131 #else
132 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
133 # define scale_load(w)		(w)
134 # define scale_load_down(w)	(w)
135 #endif
136 
137 /*
138  * Task weight (visible to users) and its load (invisible to users) have
139  * independent resolution, but they should be well calibrated. We use
140  * scale_load() and scale_load_down(w) to convert between them. The
141  * following must be true:
142  *
143  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
144  *
145  */
146 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
147 
148 /*
149  * Single value that decides SCHED_DEADLINE internal math precision.
150  * 10 -> just above 1us
151  * 9  -> just above 0.5us
152  */
153 #define DL_SCALE		10
154 
155 /*
156  * Single value that denotes runtime == period, ie unlimited time.
157  */
158 #define RUNTIME_INF		((u64)~0ULL)
159 
160 static inline int idle_policy(int policy)
161 {
162 	return policy == SCHED_IDLE;
163 }
164 static inline int fair_policy(int policy)
165 {
166 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
167 }
168 
169 static inline int rt_policy(int policy)
170 {
171 	return policy == SCHED_FIFO || policy == SCHED_RR;
172 }
173 
174 static inline int dl_policy(int policy)
175 {
176 	return policy == SCHED_DEADLINE;
177 }
178 static inline bool valid_policy(int policy)
179 {
180 	return idle_policy(policy) || fair_policy(policy) ||
181 		rt_policy(policy) || dl_policy(policy);
182 }
183 
184 static inline int task_has_idle_policy(struct task_struct *p)
185 {
186 	return idle_policy(p->policy);
187 }
188 
189 static inline int task_has_rt_policy(struct task_struct *p)
190 {
191 	return rt_policy(p->policy);
192 }
193 
194 static inline int task_has_dl_policy(struct task_struct *p)
195 {
196 	return dl_policy(p->policy);
197 }
198 
199 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
200 
201 static inline void update_avg(u64 *avg, u64 sample)
202 {
203 	s64 diff = sample - *avg;
204 	*avg += diff / 8;
205 }
206 
207 /*
208  * !! For sched_setattr_nocheck() (kernel) only !!
209  *
210  * This is actually gross. :(
211  *
212  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
213  * tasks, but still be able to sleep. We need this on platforms that cannot
214  * atomically change clock frequency. Remove once fast switching will be
215  * available on such platforms.
216  *
217  * SUGOV stands for SchedUtil GOVernor.
218  */
219 #define SCHED_FLAG_SUGOV	0x10000000
220 
221 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
222 {
223 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
224 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
225 #else
226 	return false;
227 #endif
228 }
229 
230 /*
231  * Tells if entity @a should preempt entity @b.
232  */
233 static inline bool
234 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
235 {
236 	return dl_entity_is_special(a) ||
237 	       dl_time_before(a->deadline, b->deadline);
238 }
239 
240 /*
241  * This is the priority-queue data structure of the RT scheduling class:
242  */
243 struct rt_prio_array {
244 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
245 	struct list_head queue[MAX_RT_PRIO];
246 };
247 
248 struct rt_bandwidth {
249 	/* nests inside the rq lock: */
250 	raw_spinlock_t		rt_runtime_lock;
251 	ktime_t			rt_period;
252 	u64			rt_runtime;
253 	struct hrtimer		rt_period_timer;
254 	unsigned int		rt_period_active;
255 };
256 
257 void __dl_clear_params(struct task_struct *p);
258 
259 struct dl_bandwidth {
260 	raw_spinlock_t		dl_runtime_lock;
261 	u64			dl_runtime;
262 	u64			dl_period;
263 };
264 
265 static inline int dl_bandwidth_enabled(void)
266 {
267 	return sysctl_sched_rt_runtime >= 0;
268 }
269 
270 /*
271  * To keep the bandwidth of -deadline tasks under control
272  * we need some place where:
273  *  - store the maximum -deadline bandwidth of each cpu;
274  *  - cache the fraction of bandwidth that is currently allocated in
275  *    each root domain;
276  *
277  * This is all done in the data structure below. It is similar to the
278  * one used for RT-throttling (rt_bandwidth), with the main difference
279  * that, since here we are only interested in admission control, we
280  * do not decrease any runtime while the group "executes", neither we
281  * need a timer to replenish it.
282  *
283  * With respect to SMP, bandwidth is given on a per root domain basis,
284  * meaning that:
285  *  - bw (< 100%) is the deadline bandwidth of each CPU;
286  *  - total_bw is the currently allocated bandwidth in each root domain;
287  */
288 struct dl_bw {
289 	raw_spinlock_t		lock;
290 	u64			bw;
291 	u64			total_bw;
292 };
293 
294 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
295 
296 static inline
297 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
298 {
299 	dl_b->total_bw -= tsk_bw;
300 	__dl_update(dl_b, (s32)tsk_bw / cpus);
301 }
302 
303 static inline
304 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
305 {
306 	dl_b->total_bw += tsk_bw;
307 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
308 }
309 
310 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
311 				 u64 old_bw, u64 new_bw)
312 {
313 	return dl_b->bw != -1 &&
314 	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
315 }
316 
317 /*
318  * Verify the fitness of task @p to run on @cpu taking into account the
319  * CPU original capacity and the runtime/deadline ratio of the task.
320  *
321  * The function will return true if the CPU original capacity of the
322  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
323  * task and false otherwise.
324  */
325 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
326 {
327 	unsigned long cap = arch_scale_cpu_capacity(cpu);
328 
329 	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
330 }
331 
332 extern void init_dl_bw(struct dl_bw *dl_b);
333 extern int  sched_dl_global_validate(void);
334 extern void sched_dl_do_global(void);
335 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
336 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
337 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
338 extern bool __checkparam_dl(const struct sched_attr *attr);
339 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
340 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
341 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
342 extern bool dl_cpu_busy(unsigned int cpu);
343 
344 #ifdef CONFIG_CGROUP_SCHED
345 
346 #include <linux/cgroup.h>
347 #include <linux/psi.h>
348 
349 struct cfs_rq;
350 struct rt_rq;
351 
352 extern struct list_head task_groups;
353 
354 struct cfs_bandwidth {
355 #ifdef CONFIG_CFS_BANDWIDTH
356 	raw_spinlock_t		lock;
357 	ktime_t			period;
358 	u64			quota;
359 	u64			runtime;
360 	s64			hierarchical_quota;
361 
362 	u8			idle;
363 	u8			period_active;
364 	u8			slack_started;
365 	struct hrtimer		period_timer;
366 	struct hrtimer		slack_timer;
367 	struct list_head	throttled_cfs_rq;
368 
369 	/* Statistics: */
370 	int			nr_periods;
371 	int			nr_throttled;
372 	u64			throttled_time;
373 #endif
374 };
375 
376 /* Task group related information */
377 struct task_group {
378 	struct cgroup_subsys_state css;
379 
380 #ifdef CONFIG_FAIR_GROUP_SCHED
381 	/* schedulable entities of this group on each CPU */
382 	struct sched_entity	**se;
383 	/* runqueue "owned" by this group on each CPU */
384 	struct cfs_rq		**cfs_rq;
385 	unsigned long		shares;
386 
387 #ifdef	CONFIG_SMP
388 	/*
389 	 * load_avg can be heavily contended at clock tick time, so put
390 	 * it in its own cacheline separated from the fields above which
391 	 * will also be accessed at each tick.
392 	 */
393 	atomic_long_t		load_avg ____cacheline_aligned;
394 #endif
395 #endif
396 
397 #ifdef CONFIG_RT_GROUP_SCHED
398 	struct sched_rt_entity	**rt_se;
399 	struct rt_rq		**rt_rq;
400 
401 	struct rt_bandwidth	rt_bandwidth;
402 #endif
403 
404 	struct rcu_head		rcu;
405 	struct list_head	list;
406 
407 	struct task_group	*parent;
408 	struct list_head	siblings;
409 	struct list_head	children;
410 
411 #ifdef CONFIG_SCHED_AUTOGROUP
412 	struct autogroup	*autogroup;
413 #endif
414 
415 	struct cfs_bandwidth	cfs_bandwidth;
416 
417 #ifdef CONFIG_UCLAMP_TASK_GROUP
418 	/* The two decimal precision [%] value requested from user-space */
419 	unsigned int		uclamp_pct[UCLAMP_CNT];
420 	/* Clamp values requested for a task group */
421 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
422 	/* Effective clamp values used for a task group */
423 	struct uclamp_se	uclamp[UCLAMP_CNT];
424 #endif
425 
426 };
427 
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
430 
431 /*
432  * A weight of 0 or 1 can cause arithmetics problems.
433  * A weight of a cfs_rq is the sum of weights of which entities
434  * are queued on this cfs_rq, so a weight of a entity should not be
435  * too large, so as the shares value of a task group.
436  * (The default weight is 1024 - so there's no practical
437  *  limitation from this.)
438  */
439 #define MIN_SHARES		(1UL <<  1)
440 #define MAX_SHARES		(1UL << 18)
441 #endif
442 
443 typedef int (*tg_visitor)(struct task_group *, void *);
444 
445 extern int walk_tg_tree_from(struct task_group *from,
446 			     tg_visitor down, tg_visitor up, void *data);
447 
448 /*
449  * Iterate the full tree, calling @down when first entering a node and @up when
450  * leaving it for the final time.
451  *
452  * Caller must hold rcu_lock or sufficient equivalent.
453  */
454 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
455 {
456 	return walk_tg_tree_from(&root_task_group, down, up, data);
457 }
458 
459 extern int tg_nop(struct task_group *tg, void *data);
460 
461 extern void free_fair_sched_group(struct task_group *tg);
462 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
463 extern void online_fair_sched_group(struct task_group *tg);
464 extern void unregister_fair_sched_group(struct task_group *tg);
465 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
466 			struct sched_entity *se, int cpu,
467 			struct sched_entity *parent);
468 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
469 
470 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
471 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
472 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
473 
474 extern void free_rt_sched_group(struct task_group *tg);
475 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
476 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
477 		struct sched_rt_entity *rt_se, int cpu,
478 		struct sched_rt_entity *parent);
479 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
480 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
481 extern long sched_group_rt_runtime(struct task_group *tg);
482 extern long sched_group_rt_period(struct task_group *tg);
483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
484 
485 extern struct task_group *sched_create_group(struct task_group *parent);
486 extern void sched_online_group(struct task_group *tg,
487 			       struct task_group *parent);
488 extern void sched_destroy_group(struct task_group *tg);
489 extern void sched_offline_group(struct task_group *tg);
490 
491 extern void sched_move_task(struct task_struct *tsk);
492 
493 #ifdef CONFIG_FAIR_GROUP_SCHED
494 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
495 
496 #ifdef CONFIG_SMP
497 extern void set_task_rq_fair(struct sched_entity *se,
498 			     struct cfs_rq *prev, struct cfs_rq *next);
499 #else /* !CONFIG_SMP */
500 static inline void set_task_rq_fair(struct sched_entity *se,
501 			     struct cfs_rq *prev, struct cfs_rq *next) { }
502 #endif /* CONFIG_SMP */
503 #endif /* CONFIG_FAIR_GROUP_SCHED */
504 
505 #else /* CONFIG_CGROUP_SCHED */
506 
507 struct cfs_bandwidth { };
508 
509 #endif	/* CONFIG_CGROUP_SCHED */
510 
511 /* CFS-related fields in a runqueue */
512 struct cfs_rq {
513 	struct load_weight	load;
514 	unsigned int		nr_running;
515 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
516 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
517 
518 	u64			exec_clock;
519 	u64			min_vruntime;
520 #ifndef CONFIG_64BIT
521 	u64			min_vruntime_copy;
522 #endif
523 
524 	struct rb_root_cached	tasks_timeline;
525 
526 	/*
527 	 * 'curr' points to currently running entity on this cfs_rq.
528 	 * It is set to NULL otherwise (i.e when none are currently running).
529 	 */
530 	struct sched_entity	*curr;
531 	struct sched_entity	*next;
532 	struct sched_entity	*last;
533 	struct sched_entity	*skip;
534 
535 #ifdef	CONFIG_SCHED_DEBUG
536 	unsigned int		nr_spread_over;
537 #endif
538 
539 #ifdef CONFIG_SMP
540 	/*
541 	 * CFS load tracking
542 	 */
543 	struct sched_avg	avg;
544 #ifndef CONFIG_64BIT
545 	u64			load_last_update_time_copy;
546 #endif
547 	struct {
548 		raw_spinlock_t	lock ____cacheline_aligned;
549 		int		nr;
550 		unsigned long	load_avg;
551 		unsigned long	util_avg;
552 		unsigned long	runnable_avg;
553 	} removed;
554 
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 	unsigned long		tg_load_avg_contrib;
557 	long			propagate;
558 	long			prop_runnable_sum;
559 
560 	/*
561 	 *   h_load = weight * f(tg)
562 	 *
563 	 * Where f(tg) is the recursive weight fraction assigned to
564 	 * this group.
565 	 */
566 	unsigned long		h_load;
567 	u64			last_h_load_update;
568 	struct sched_entity	*h_load_next;
569 #endif /* CONFIG_FAIR_GROUP_SCHED */
570 #endif /* CONFIG_SMP */
571 
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
574 
575 	/*
576 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
577 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
578 	 * (like users, containers etc.)
579 	 *
580 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
581 	 * This list is used during load balance.
582 	 */
583 	int			on_list;
584 	struct list_head	leaf_cfs_rq_list;
585 	struct task_group	*tg;	/* group that "owns" this runqueue */
586 
587 #ifdef CONFIG_CFS_BANDWIDTH
588 	int			runtime_enabled;
589 	s64			runtime_remaining;
590 
591 	u64			throttled_clock;
592 	u64			throttled_clock_task;
593 	u64			throttled_clock_task_time;
594 	int			throttled;
595 	int			throttle_count;
596 	struct list_head	throttled_list;
597 #endif /* CONFIG_CFS_BANDWIDTH */
598 #endif /* CONFIG_FAIR_GROUP_SCHED */
599 };
600 
601 static inline int rt_bandwidth_enabled(void)
602 {
603 	return sysctl_sched_rt_runtime >= 0;
604 }
605 
606 /* RT IPI pull logic requires IRQ_WORK */
607 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
608 # define HAVE_RT_PUSH_IPI
609 #endif
610 
611 /* Real-Time classes' related field in a runqueue: */
612 struct rt_rq {
613 	struct rt_prio_array	active;
614 	unsigned int		rt_nr_running;
615 	unsigned int		rr_nr_running;
616 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
617 	struct {
618 		int		curr; /* highest queued rt task prio */
619 #ifdef CONFIG_SMP
620 		int		next; /* next highest */
621 #endif
622 	} highest_prio;
623 #endif
624 #ifdef CONFIG_SMP
625 	unsigned long		rt_nr_migratory;
626 	unsigned long		rt_nr_total;
627 	int			overloaded;
628 	struct plist_head	pushable_tasks;
629 
630 #endif /* CONFIG_SMP */
631 	int			rt_queued;
632 
633 	int			rt_throttled;
634 	u64			rt_time;
635 	u64			rt_runtime;
636 	/* Nests inside the rq lock: */
637 	raw_spinlock_t		rt_runtime_lock;
638 
639 #ifdef CONFIG_RT_GROUP_SCHED
640 	unsigned long		rt_nr_boosted;
641 
642 	struct rq		*rq;
643 	struct task_group	*tg;
644 #endif
645 };
646 
647 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
648 {
649 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
650 }
651 
652 /* Deadline class' related fields in a runqueue */
653 struct dl_rq {
654 	/* runqueue is an rbtree, ordered by deadline */
655 	struct rb_root_cached	root;
656 
657 	unsigned long		dl_nr_running;
658 
659 #ifdef CONFIG_SMP
660 	/*
661 	 * Deadline values of the currently executing and the
662 	 * earliest ready task on this rq. Caching these facilitates
663 	 * the decision whether or not a ready but not running task
664 	 * should migrate somewhere else.
665 	 */
666 	struct {
667 		u64		curr;
668 		u64		next;
669 	} earliest_dl;
670 
671 	unsigned long		dl_nr_migratory;
672 	int			overloaded;
673 
674 	/*
675 	 * Tasks on this rq that can be pushed away. They are kept in
676 	 * an rb-tree, ordered by tasks' deadlines, with caching
677 	 * of the leftmost (earliest deadline) element.
678 	 */
679 	struct rb_root_cached	pushable_dl_tasks_root;
680 #else
681 	struct dl_bw		dl_bw;
682 #endif
683 	/*
684 	 * "Active utilization" for this runqueue: increased when a
685 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
686 	 * task blocks
687 	 */
688 	u64			running_bw;
689 
690 	/*
691 	 * Utilization of the tasks "assigned" to this runqueue (including
692 	 * the tasks that are in runqueue and the tasks that executed on this
693 	 * CPU and blocked). Increased when a task moves to this runqueue, and
694 	 * decreased when the task moves away (migrates, changes scheduling
695 	 * policy, or terminates).
696 	 * This is needed to compute the "inactive utilization" for the
697 	 * runqueue (inactive utilization = this_bw - running_bw).
698 	 */
699 	u64			this_bw;
700 	u64			extra_bw;
701 
702 	/*
703 	 * Inverse of the fraction of CPU utilization that can be reclaimed
704 	 * by the GRUB algorithm.
705 	 */
706 	u64			bw_ratio;
707 };
708 
709 #ifdef CONFIG_FAIR_GROUP_SCHED
710 /* An entity is a task if it doesn't "own" a runqueue */
711 #define entity_is_task(se)	(!se->my_q)
712 
713 static inline void se_update_runnable(struct sched_entity *se)
714 {
715 	if (!entity_is_task(se))
716 		se->runnable_weight = se->my_q->h_nr_running;
717 }
718 
719 static inline long se_runnable(struct sched_entity *se)
720 {
721 	if (entity_is_task(se))
722 		return !!se->on_rq;
723 	else
724 		return se->runnable_weight;
725 }
726 
727 #else
728 #define entity_is_task(se)	1
729 
730 static inline void se_update_runnable(struct sched_entity *se) {}
731 
732 static inline long se_runnable(struct sched_entity *se)
733 {
734 	return !!se->on_rq;
735 }
736 #endif
737 
738 #ifdef CONFIG_SMP
739 /*
740  * XXX we want to get rid of these helpers and use the full load resolution.
741  */
742 static inline long se_weight(struct sched_entity *se)
743 {
744 	return scale_load_down(se->load.weight);
745 }
746 
747 
748 static inline bool sched_asym_prefer(int a, int b)
749 {
750 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
751 }
752 
753 struct perf_domain {
754 	struct em_perf_domain *em_pd;
755 	struct perf_domain *next;
756 	struct rcu_head rcu;
757 };
758 
759 /* Scheduling group status flags */
760 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
761 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
762 
763 /*
764  * We add the notion of a root-domain which will be used to define per-domain
765  * variables. Each exclusive cpuset essentially defines an island domain by
766  * fully partitioning the member CPUs from any other cpuset. Whenever a new
767  * exclusive cpuset is created, we also create and attach a new root-domain
768  * object.
769  *
770  */
771 struct root_domain {
772 	atomic_t		refcount;
773 	atomic_t		rto_count;
774 	struct rcu_head		rcu;
775 	cpumask_var_t		span;
776 	cpumask_var_t		online;
777 
778 	/*
779 	 * Indicate pullable load on at least one CPU, e.g:
780 	 * - More than one runnable task
781 	 * - Running task is misfit
782 	 */
783 	int			overload;
784 
785 	/* Indicate one or more cpus over-utilized (tipping point) */
786 	int			overutilized;
787 
788 	/*
789 	 * The bit corresponding to a CPU gets set here if such CPU has more
790 	 * than one runnable -deadline task (as it is below for RT tasks).
791 	 */
792 	cpumask_var_t		dlo_mask;
793 	atomic_t		dlo_count;
794 	struct dl_bw		dl_bw;
795 	struct cpudl		cpudl;
796 
797 	/*
798 	 * Indicate whether a root_domain's dl_bw has been checked or
799 	 * updated. It's monotonously increasing value.
800 	 *
801 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
802 	 * that u64 is 'big enough'. So that shouldn't be a concern.
803 	 */
804 	u64 visit_gen;
805 
806 #ifdef HAVE_RT_PUSH_IPI
807 	/*
808 	 * For IPI pull requests, loop across the rto_mask.
809 	 */
810 	struct irq_work		rto_push_work;
811 	raw_spinlock_t		rto_lock;
812 	/* These are only updated and read within rto_lock */
813 	int			rto_loop;
814 	int			rto_cpu;
815 	/* These atomics are updated outside of a lock */
816 	atomic_t		rto_loop_next;
817 	atomic_t		rto_loop_start;
818 #endif
819 	/*
820 	 * The "RT overload" flag: it gets set if a CPU has more than
821 	 * one runnable RT task.
822 	 */
823 	cpumask_var_t		rto_mask;
824 	struct cpupri		cpupri;
825 
826 	unsigned long		max_cpu_capacity;
827 
828 	/*
829 	 * NULL-terminated list of performance domains intersecting with the
830 	 * CPUs of the rd. Protected by RCU.
831 	 */
832 	struct perf_domain __rcu *pd;
833 };
834 
835 extern void init_defrootdomain(void);
836 extern int sched_init_domains(const struct cpumask *cpu_map);
837 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
838 extern void sched_get_rd(struct root_domain *rd);
839 extern void sched_put_rd(struct root_domain *rd);
840 
841 #ifdef HAVE_RT_PUSH_IPI
842 extern void rto_push_irq_work_func(struct irq_work *work);
843 #endif
844 #endif /* CONFIG_SMP */
845 
846 #ifdef CONFIG_UCLAMP_TASK
847 /*
848  * struct uclamp_bucket - Utilization clamp bucket
849  * @value: utilization clamp value for tasks on this clamp bucket
850  * @tasks: number of RUNNABLE tasks on this clamp bucket
851  *
852  * Keep track of how many tasks are RUNNABLE for a given utilization
853  * clamp value.
854  */
855 struct uclamp_bucket {
856 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
857 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
858 };
859 
860 /*
861  * struct uclamp_rq - rq's utilization clamp
862  * @value: currently active clamp values for a rq
863  * @bucket: utilization clamp buckets affecting a rq
864  *
865  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
866  * A clamp value is affecting a rq when there is at least one task RUNNABLE
867  * (or actually running) with that value.
868  *
869  * There are up to UCLAMP_CNT possible different clamp values, currently there
870  * are only two: minimum utilization and maximum utilization.
871  *
872  * All utilization clamping values are MAX aggregated, since:
873  * - for util_min: we want to run the CPU at least at the max of the minimum
874  *   utilization required by its currently RUNNABLE tasks.
875  * - for util_max: we want to allow the CPU to run up to the max of the
876  *   maximum utilization allowed by its currently RUNNABLE tasks.
877  *
878  * Since on each system we expect only a limited number of different
879  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
880  * the metrics required to compute all the per-rq utilization clamp values.
881  */
882 struct uclamp_rq {
883 	unsigned int value;
884 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
885 };
886 
887 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
888 #endif /* CONFIG_UCLAMP_TASK */
889 
890 /*
891  * This is the main, per-CPU runqueue data structure.
892  *
893  * Locking rule: those places that want to lock multiple runqueues
894  * (such as the load balancing or the thread migration code), lock
895  * acquire operations must be ordered by ascending &runqueue.
896  */
897 struct rq {
898 	/* runqueue lock: */
899 	raw_spinlock_t		lock;
900 
901 	/*
902 	 * nr_running and cpu_load should be in the same cacheline because
903 	 * remote CPUs use both these fields when doing load calculation.
904 	 */
905 	unsigned int		nr_running;
906 #ifdef CONFIG_NUMA_BALANCING
907 	unsigned int		nr_numa_running;
908 	unsigned int		nr_preferred_running;
909 	unsigned int		numa_migrate_on;
910 #endif
911 #ifdef CONFIG_NO_HZ_COMMON
912 #ifdef CONFIG_SMP
913 	unsigned long		last_blocked_load_update_tick;
914 	unsigned int		has_blocked_load;
915 	call_single_data_t	nohz_csd;
916 #endif /* CONFIG_SMP */
917 	unsigned int		nohz_tick_stopped;
918 	atomic_t		nohz_flags;
919 #endif /* CONFIG_NO_HZ_COMMON */
920 
921 #ifdef CONFIG_SMP
922 	unsigned int		ttwu_pending;
923 #endif
924 	u64			nr_switches;
925 
926 #ifdef CONFIG_UCLAMP_TASK
927 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
928 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
929 	unsigned int		uclamp_flags;
930 #define UCLAMP_FLAG_IDLE 0x01
931 #endif
932 
933 	struct cfs_rq		cfs;
934 	struct rt_rq		rt;
935 	struct dl_rq		dl;
936 
937 #ifdef CONFIG_FAIR_GROUP_SCHED
938 	/* list of leaf cfs_rq on this CPU: */
939 	struct list_head	leaf_cfs_rq_list;
940 	struct list_head	*tmp_alone_branch;
941 #endif /* CONFIG_FAIR_GROUP_SCHED */
942 
943 	/*
944 	 * This is part of a global counter where only the total sum
945 	 * over all CPUs matters. A task can increase this counter on
946 	 * one CPU and if it got migrated afterwards it may decrease
947 	 * it on another CPU. Always updated under the runqueue lock:
948 	 */
949 	unsigned long		nr_uninterruptible;
950 
951 	struct task_struct __rcu	*curr;
952 	struct task_struct	*idle;
953 	struct task_struct	*stop;
954 	unsigned long		next_balance;
955 	struct mm_struct	*prev_mm;
956 
957 	unsigned int		clock_update_flags;
958 	u64			clock;
959 	/* Ensure that all clocks are in the same cache line */
960 	u64			clock_task ____cacheline_aligned;
961 	u64			clock_pelt;
962 	unsigned long		lost_idle_time;
963 
964 	atomic_t		nr_iowait;
965 
966 #ifdef CONFIG_MEMBARRIER
967 	int membarrier_state;
968 #endif
969 
970 #ifdef CONFIG_SMP
971 	struct root_domain		*rd;
972 	struct sched_domain __rcu	*sd;
973 
974 	unsigned long		cpu_capacity;
975 	unsigned long		cpu_capacity_orig;
976 
977 	struct callback_head	*balance_callback;
978 
979 	unsigned char		nohz_idle_balance;
980 	unsigned char		idle_balance;
981 
982 	unsigned long		misfit_task_load;
983 
984 	/* For active balancing */
985 	int			active_balance;
986 	int			push_cpu;
987 	struct cpu_stop_work	active_balance_work;
988 
989 	/* CPU of this runqueue: */
990 	int			cpu;
991 	int			online;
992 
993 	struct list_head cfs_tasks;
994 
995 	struct sched_avg	avg_rt;
996 	struct sched_avg	avg_dl;
997 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
998 	struct sched_avg	avg_irq;
999 #endif
1000 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1001 	struct sched_avg	avg_thermal;
1002 #endif
1003 	u64			idle_stamp;
1004 	u64			avg_idle;
1005 
1006 	/* This is used to determine avg_idle's max value */
1007 	u64			max_idle_balance_cost;
1008 
1009 #ifdef CONFIG_HOTPLUG_CPU
1010 	struct rcuwait		hotplug_wait;
1011 #endif
1012 #endif /* CONFIG_SMP */
1013 
1014 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1015 	u64			prev_irq_time;
1016 #endif
1017 #ifdef CONFIG_PARAVIRT
1018 	u64			prev_steal_time;
1019 #endif
1020 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1021 	u64			prev_steal_time_rq;
1022 #endif
1023 
1024 	/* calc_load related fields */
1025 	unsigned long		calc_load_update;
1026 	long			calc_load_active;
1027 
1028 #ifdef CONFIG_SCHED_HRTICK
1029 #ifdef CONFIG_SMP
1030 	call_single_data_t	hrtick_csd;
1031 #endif
1032 	struct hrtimer		hrtick_timer;
1033 #endif
1034 
1035 #ifdef CONFIG_SCHEDSTATS
1036 	/* latency stats */
1037 	struct sched_info	rq_sched_info;
1038 	unsigned long long	rq_cpu_time;
1039 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1040 
1041 	/* sys_sched_yield() stats */
1042 	unsigned int		yld_count;
1043 
1044 	/* schedule() stats */
1045 	unsigned int		sched_count;
1046 	unsigned int		sched_goidle;
1047 
1048 	/* try_to_wake_up() stats */
1049 	unsigned int		ttwu_count;
1050 	unsigned int		ttwu_local;
1051 #endif
1052 
1053 #ifdef CONFIG_CPU_IDLE
1054 	/* Must be inspected within a rcu lock section */
1055 	struct cpuidle_state	*idle_state;
1056 #endif
1057 
1058 #ifdef CONFIG_SMP
1059 	unsigned int		nr_pinned;
1060 #endif
1061 	unsigned int		push_busy;
1062 	struct cpu_stop_work	push_work;
1063 };
1064 
1065 #ifdef CONFIG_FAIR_GROUP_SCHED
1066 
1067 /* CPU runqueue to which this cfs_rq is attached */
1068 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1069 {
1070 	return cfs_rq->rq;
1071 }
1072 
1073 #else
1074 
1075 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1076 {
1077 	return container_of(cfs_rq, struct rq, cfs);
1078 }
1079 #endif
1080 
1081 static inline int cpu_of(struct rq *rq)
1082 {
1083 #ifdef CONFIG_SMP
1084 	return rq->cpu;
1085 #else
1086 	return 0;
1087 #endif
1088 }
1089 
1090 #define MDF_PUSH	0x01
1091 
1092 static inline bool is_migration_disabled(struct task_struct *p)
1093 {
1094 #ifdef CONFIG_SMP
1095 	return p->migration_disabled;
1096 #else
1097 	return false;
1098 #endif
1099 }
1100 
1101 #ifdef CONFIG_SCHED_SMT
1102 extern void __update_idle_core(struct rq *rq);
1103 
1104 static inline void update_idle_core(struct rq *rq)
1105 {
1106 	if (static_branch_unlikely(&sched_smt_present))
1107 		__update_idle_core(rq);
1108 }
1109 
1110 #else
1111 static inline void update_idle_core(struct rq *rq) { }
1112 #endif
1113 
1114 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1115 
1116 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1117 #define this_rq()		this_cpu_ptr(&runqueues)
1118 #define task_rq(p)		cpu_rq(task_cpu(p))
1119 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1120 #define raw_rq()		raw_cpu_ptr(&runqueues)
1121 
1122 extern void update_rq_clock(struct rq *rq);
1123 
1124 static inline u64 __rq_clock_broken(struct rq *rq)
1125 {
1126 	return READ_ONCE(rq->clock);
1127 }
1128 
1129 /*
1130  * rq::clock_update_flags bits
1131  *
1132  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1133  *  call to __schedule(). This is an optimisation to avoid
1134  *  neighbouring rq clock updates.
1135  *
1136  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1137  *  in effect and calls to update_rq_clock() are being ignored.
1138  *
1139  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1140  *  made to update_rq_clock() since the last time rq::lock was pinned.
1141  *
1142  * If inside of __schedule(), clock_update_flags will have been
1143  * shifted left (a left shift is a cheap operation for the fast path
1144  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1145  *
1146  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1147  *
1148  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1149  * one position though, because the next rq_unpin_lock() will shift it
1150  * back.
1151  */
1152 #define RQCF_REQ_SKIP		0x01
1153 #define RQCF_ACT_SKIP		0x02
1154 #define RQCF_UPDATED		0x04
1155 
1156 static inline void assert_clock_updated(struct rq *rq)
1157 {
1158 	/*
1159 	 * The only reason for not seeing a clock update since the
1160 	 * last rq_pin_lock() is if we're currently skipping updates.
1161 	 */
1162 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1163 }
1164 
1165 static inline u64 rq_clock(struct rq *rq)
1166 {
1167 	lockdep_assert_held(&rq->lock);
1168 	assert_clock_updated(rq);
1169 
1170 	return rq->clock;
1171 }
1172 
1173 static inline u64 rq_clock_task(struct rq *rq)
1174 {
1175 	lockdep_assert_held(&rq->lock);
1176 	assert_clock_updated(rq);
1177 
1178 	return rq->clock_task;
1179 }
1180 
1181 /**
1182  * By default the decay is the default pelt decay period.
1183  * The decay shift can change the decay period in
1184  * multiples of 32.
1185  *  Decay shift		Decay period(ms)
1186  *	0			32
1187  *	1			64
1188  *	2			128
1189  *	3			256
1190  *	4			512
1191  */
1192 extern int sched_thermal_decay_shift;
1193 
1194 static inline u64 rq_clock_thermal(struct rq *rq)
1195 {
1196 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1197 }
1198 
1199 static inline void rq_clock_skip_update(struct rq *rq)
1200 {
1201 	lockdep_assert_held(&rq->lock);
1202 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1203 }
1204 
1205 /*
1206  * See rt task throttling, which is the only time a skip
1207  * request is cancelled.
1208  */
1209 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1210 {
1211 	lockdep_assert_held(&rq->lock);
1212 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1213 }
1214 
1215 struct rq_flags {
1216 	unsigned long flags;
1217 	struct pin_cookie cookie;
1218 #ifdef CONFIG_SCHED_DEBUG
1219 	/*
1220 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1221 	 * current pin context is stashed here in case it needs to be
1222 	 * restored in rq_repin_lock().
1223 	 */
1224 	unsigned int clock_update_flags;
1225 #endif
1226 };
1227 
1228 extern struct callback_head balance_push_callback;
1229 
1230 /*
1231  * Lockdep annotation that avoids accidental unlocks; it's like a
1232  * sticky/continuous lockdep_assert_held().
1233  *
1234  * This avoids code that has access to 'struct rq *rq' (basically everything in
1235  * the scheduler) from accidentally unlocking the rq if they do not also have a
1236  * copy of the (on-stack) 'struct rq_flags rf'.
1237  *
1238  * Also see Documentation/locking/lockdep-design.rst.
1239  */
1240 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1241 {
1242 	rf->cookie = lockdep_pin_lock(&rq->lock);
1243 
1244 #ifdef CONFIG_SCHED_DEBUG
1245 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1246 	rf->clock_update_flags = 0;
1247 #ifdef CONFIG_SMP
1248 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1249 #endif
1250 #endif
1251 }
1252 
1253 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1254 {
1255 #ifdef CONFIG_SCHED_DEBUG
1256 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1257 		rf->clock_update_flags = RQCF_UPDATED;
1258 #endif
1259 
1260 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1261 }
1262 
1263 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1264 {
1265 	lockdep_repin_lock(&rq->lock, rf->cookie);
1266 
1267 #ifdef CONFIG_SCHED_DEBUG
1268 	/*
1269 	 * Restore the value we stashed in @rf for this pin context.
1270 	 */
1271 	rq->clock_update_flags |= rf->clock_update_flags;
1272 #endif
1273 }
1274 
1275 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1276 	__acquires(rq->lock);
1277 
1278 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1279 	__acquires(p->pi_lock)
1280 	__acquires(rq->lock);
1281 
1282 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1283 	__releases(rq->lock)
1284 {
1285 	rq_unpin_lock(rq, rf);
1286 	raw_spin_unlock(&rq->lock);
1287 }
1288 
1289 static inline void
1290 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1291 	__releases(rq->lock)
1292 	__releases(p->pi_lock)
1293 {
1294 	rq_unpin_lock(rq, rf);
1295 	raw_spin_unlock(&rq->lock);
1296 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1297 }
1298 
1299 static inline void
1300 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1301 	__acquires(rq->lock)
1302 {
1303 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1304 	rq_pin_lock(rq, rf);
1305 }
1306 
1307 static inline void
1308 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1309 	__acquires(rq->lock)
1310 {
1311 	raw_spin_lock_irq(&rq->lock);
1312 	rq_pin_lock(rq, rf);
1313 }
1314 
1315 static inline void
1316 rq_lock(struct rq *rq, struct rq_flags *rf)
1317 	__acquires(rq->lock)
1318 {
1319 	raw_spin_lock(&rq->lock);
1320 	rq_pin_lock(rq, rf);
1321 }
1322 
1323 static inline void
1324 rq_relock(struct rq *rq, struct rq_flags *rf)
1325 	__acquires(rq->lock)
1326 {
1327 	raw_spin_lock(&rq->lock);
1328 	rq_repin_lock(rq, rf);
1329 }
1330 
1331 static inline void
1332 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1333 	__releases(rq->lock)
1334 {
1335 	rq_unpin_lock(rq, rf);
1336 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1337 }
1338 
1339 static inline void
1340 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1341 	__releases(rq->lock)
1342 {
1343 	rq_unpin_lock(rq, rf);
1344 	raw_spin_unlock_irq(&rq->lock);
1345 }
1346 
1347 static inline void
1348 rq_unlock(struct rq *rq, struct rq_flags *rf)
1349 	__releases(rq->lock)
1350 {
1351 	rq_unpin_lock(rq, rf);
1352 	raw_spin_unlock(&rq->lock);
1353 }
1354 
1355 static inline struct rq *
1356 this_rq_lock_irq(struct rq_flags *rf)
1357 	__acquires(rq->lock)
1358 {
1359 	struct rq *rq;
1360 
1361 	local_irq_disable();
1362 	rq = this_rq();
1363 	rq_lock(rq, rf);
1364 	return rq;
1365 }
1366 
1367 #ifdef CONFIG_NUMA
1368 enum numa_topology_type {
1369 	NUMA_DIRECT,
1370 	NUMA_GLUELESS_MESH,
1371 	NUMA_BACKPLANE,
1372 };
1373 extern enum numa_topology_type sched_numa_topology_type;
1374 extern int sched_max_numa_distance;
1375 extern bool find_numa_distance(int distance);
1376 extern void sched_init_numa(void);
1377 extern void sched_domains_numa_masks_set(unsigned int cpu);
1378 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1379 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1380 #else
1381 static inline void sched_init_numa(void) { }
1382 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1383 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1384 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1385 {
1386 	return nr_cpu_ids;
1387 }
1388 #endif
1389 
1390 #ifdef CONFIG_NUMA_BALANCING
1391 /* The regions in numa_faults array from task_struct */
1392 enum numa_faults_stats {
1393 	NUMA_MEM = 0,
1394 	NUMA_CPU,
1395 	NUMA_MEMBUF,
1396 	NUMA_CPUBUF
1397 };
1398 extern void sched_setnuma(struct task_struct *p, int node);
1399 extern int migrate_task_to(struct task_struct *p, int cpu);
1400 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1401 			int cpu, int scpu);
1402 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1403 #else
1404 static inline void
1405 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1406 {
1407 }
1408 #endif /* CONFIG_NUMA_BALANCING */
1409 
1410 #ifdef CONFIG_SMP
1411 
1412 static inline void
1413 queue_balance_callback(struct rq *rq,
1414 		       struct callback_head *head,
1415 		       void (*func)(struct rq *rq))
1416 {
1417 	lockdep_assert_held(&rq->lock);
1418 
1419 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1420 		return;
1421 
1422 	head->func = (void (*)(struct callback_head *))func;
1423 	head->next = rq->balance_callback;
1424 	rq->balance_callback = head;
1425 }
1426 
1427 #define rcu_dereference_check_sched_domain(p) \
1428 	rcu_dereference_check((p), \
1429 			      lockdep_is_held(&sched_domains_mutex))
1430 
1431 /*
1432  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1433  * See destroy_sched_domains: call_rcu for details.
1434  *
1435  * The domain tree of any CPU may only be accessed from within
1436  * preempt-disabled sections.
1437  */
1438 #define for_each_domain(cpu, __sd) \
1439 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1440 			__sd; __sd = __sd->parent)
1441 
1442 /**
1443  * highest_flag_domain - Return highest sched_domain containing flag.
1444  * @cpu:	The CPU whose highest level of sched domain is to
1445  *		be returned.
1446  * @flag:	The flag to check for the highest sched_domain
1447  *		for the given CPU.
1448  *
1449  * Returns the highest sched_domain of a CPU which contains the given flag.
1450  */
1451 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1452 {
1453 	struct sched_domain *sd, *hsd = NULL;
1454 
1455 	for_each_domain(cpu, sd) {
1456 		if (!(sd->flags & flag))
1457 			break;
1458 		hsd = sd;
1459 	}
1460 
1461 	return hsd;
1462 }
1463 
1464 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1465 {
1466 	struct sched_domain *sd;
1467 
1468 	for_each_domain(cpu, sd) {
1469 		if (sd->flags & flag)
1470 			break;
1471 	}
1472 
1473 	return sd;
1474 }
1475 
1476 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1477 DECLARE_PER_CPU(int, sd_llc_size);
1478 DECLARE_PER_CPU(int, sd_llc_id);
1479 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1480 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1481 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1482 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1483 extern struct static_key_false sched_asym_cpucapacity;
1484 
1485 struct sched_group_capacity {
1486 	atomic_t		ref;
1487 	/*
1488 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1489 	 * for a single CPU.
1490 	 */
1491 	unsigned long		capacity;
1492 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1493 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1494 	unsigned long		next_update;
1495 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1496 
1497 #ifdef CONFIG_SCHED_DEBUG
1498 	int			id;
1499 #endif
1500 
1501 	unsigned long		cpumask[];		/* Balance mask */
1502 };
1503 
1504 struct sched_group {
1505 	struct sched_group	*next;			/* Must be a circular list */
1506 	atomic_t		ref;
1507 
1508 	unsigned int		group_weight;
1509 	struct sched_group_capacity *sgc;
1510 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1511 
1512 	/*
1513 	 * The CPUs this group covers.
1514 	 *
1515 	 * NOTE: this field is variable length. (Allocated dynamically
1516 	 * by attaching extra space to the end of the structure,
1517 	 * depending on how many CPUs the kernel has booted up with)
1518 	 */
1519 	unsigned long		cpumask[];
1520 };
1521 
1522 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1523 {
1524 	return to_cpumask(sg->cpumask);
1525 }
1526 
1527 /*
1528  * See build_balance_mask().
1529  */
1530 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1531 {
1532 	return to_cpumask(sg->sgc->cpumask);
1533 }
1534 
1535 /**
1536  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1537  * @group: The group whose first CPU is to be returned.
1538  */
1539 static inline unsigned int group_first_cpu(struct sched_group *group)
1540 {
1541 	return cpumask_first(sched_group_span(group));
1542 }
1543 
1544 extern int group_balance_cpu(struct sched_group *sg);
1545 
1546 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1547 void register_sched_domain_sysctl(void);
1548 void dirty_sched_domain_sysctl(int cpu);
1549 void unregister_sched_domain_sysctl(void);
1550 #else
1551 static inline void register_sched_domain_sysctl(void)
1552 {
1553 }
1554 static inline void dirty_sched_domain_sysctl(int cpu)
1555 {
1556 }
1557 static inline void unregister_sched_domain_sysctl(void)
1558 {
1559 }
1560 #endif
1561 
1562 extern void flush_smp_call_function_from_idle(void);
1563 
1564 #else /* !CONFIG_SMP: */
1565 static inline void flush_smp_call_function_from_idle(void) { }
1566 #endif
1567 
1568 #include "stats.h"
1569 #include "autogroup.h"
1570 
1571 #ifdef CONFIG_CGROUP_SCHED
1572 
1573 /*
1574  * Return the group to which this tasks belongs.
1575  *
1576  * We cannot use task_css() and friends because the cgroup subsystem
1577  * changes that value before the cgroup_subsys::attach() method is called,
1578  * therefore we cannot pin it and might observe the wrong value.
1579  *
1580  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1581  * core changes this before calling sched_move_task().
1582  *
1583  * Instead we use a 'copy' which is updated from sched_move_task() while
1584  * holding both task_struct::pi_lock and rq::lock.
1585  */
1586 static inline struct task_group *task_group(struct task_struct *p)
1587 {
1588 	return p->sched_task_group;
1589 }
1590 
1591 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1592 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1593 {
1594 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1595 	struct task_group *tg = task_group(p);
1596 #endif
1597 
1598 #ifdef CONFIG_FAIR_GROUP_SCHED
1599 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1600 	p->se.cfs_rq = tg->cfs_rq[cpu];
1601 	p->se.parent = tg->se[cpu];
1602 #endif
1603 
1604 #ifdef CONFIG_RT_GROUP_SCHED
1605 	p->rt.rt_rq  = tg->rt_rq[cpu];
1606 	p->rt.parent = tg->rt_se[cpu];
1607 #endif
1608 }
1609 
1610 #else /* CONFIG_CGROUP_SCHED */
1611 
1612 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1613 static inline struct task_group *task_group(struct task_struct *p)
1614 {
1615 	return NULL;
1616 }
1617 
1618 #endif /* CONFIG_CGROUP_SCHED */
1619 
1620 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1621 {
1622 	set_task_rq(p, cpu);
1623 #ifdef CONFIG_SMP
1624 	/*
1625 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1626 	 * successfully executed on another CPU. We must ensure that updates of
1627 	 * per-task data have been completed by this moment.
1628 	 */
1629 	smp_wmb();
1630 #ifdef CONFIG_THREAD_INFO_IN_TASK
1631 	WRITE_ONCE(p->cpu, cpu);
1632 #else
1633 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1634 #endif
1635 	p->wake_cpu = cpu;
1636 #endif
1637 }
1638 
1639 /*
1640  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1641  */
1642 #ifdef CONFIG_SCHED_DEBUG
1643 # include <linux/static_key.h>
1644 # define const_debug __read_mostly
1645 #else
1646 # define const_debug const
1647 #endif
1648 
1649 #define SCHED_FEAT(name, enabled)	\
1650 	__SCHED_FEAT_##name ,
1651 
1652 enum {
1653 #include "features.h"
1654 	__SCHED_FEAT_NR,
1655 };
1656 
1657 #undef SCHED_FEAT
1658 
1659 #ifdef CONFIG_SCHED_DEBUG
1660 
1661 /*
1662  * To support run-time toggling of sched features, all the translation units
1663  * (but core.c) reference the sysctl_sched_features defined in core.c.
1664  */
1665 extern const_debug unsigned int sysctl_sched_features;
1666 
1667 #ifdef CONFIG_JUMP_LABEL
1668 #define SCHED_FEAT(name, enabled)					\
1669 static __always_inline bool static_branch_##name(struct static_key *key) \
1670 {									\
1671 	return static_key_##enabled(key);				\
1672 }
1673 
1674 #include "features.h"
1675 #undef SCHED_FEAT
1676 
1677 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1678 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1679 
1680 #else /* !CONFIG_JUMP_LABEL */
1681 
1682 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1683 
1684 #endif /* CONFIG_JUMP_LABEL */
1685 
1686 #else /* !SCHED_DEBUG */
1687 
1688 /*
1689  * Each translation unit has its own copy of sysctl_sched_features to allow
1690  * constants propagation at compile time and compiler optimization based on
1691  * features default.
1692  */
1693 #define SCHED_FEAT(name, enabled)	\
1694 	(1UL << __SCHED_FEAT_##name) * enabled |
1695 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1696 #include "features.h"
1697 	0;
1698 #undef SCHED_FEAT
1699 
1700 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1701 
1702 #endif /* SCHED_DEBUG */
1703 
1704 extern struct static_key_false sched_numa_balancing;
1705 extern struct static_key_false sched_schedstats;
1706 
1707 static inline u64 global_rt_period(void)
1708 {
1709 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1710 }
1711 
1712 static inline u64 global_rt_runtime(void)
1713 {
1714 	if (sysctl_sched_rt_runtime < 0)
1715 		return RUNTIME_INF;
1716 
1717 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1718 }
1719 
1720 static inline int task_current(struct rq *rq, struct task_struct *p)
1721 {
1722 	return rq->curr == p;
1723 }
1724 
1725 static inline int task_running(struct rq *rq, struct task_struct *p)
1726 {
1727 #ifdef CONFIG_SMP
1728 	return p->on_cpu;
1729 #else
1730 	return task_current(rq, p);
1731 #endif
1732 }
1733 
1734 static inline int task_on_rq_queued(struct task_struct *p)
1735 {
1736 	return p->on_rq == TASK_ON_RQ_QUEUED;
1737 }
1738 
1739 static inline int task_on_rq_migrating(struct task_struct *p)
1740 {
1741 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1742 }
1743 
1744 /* Wake flags. The first three directly map to some SD flag value */
1745 #define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
1746 #define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
1747 #define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
1748 
1749 #define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
1750 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
1751 #define WF_ON_CPU   0x40 /* Wakee is on_cpu */
1752 
1753 #ifdef CONFIG_SMP
1754 static_assert(WF_EXEC == SD_BALANCE_EXEC);
1755 static_assert(WF_FORK == SD_BALANCE_FORK);
1756 static_assert(WF_TTWU == SD_BALANCE_WAKE);
1757 #endif
1758 
1759 /*
1760  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1761  * of tasks with abnormal "nice" values across CPUs the contribution that
1762  * each task makes to its run queue's load is weighted according to its
1763  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1764  * scaled version of the new time slice allocation that they receive on time
1765  * slice expiry etc.
1766  */
1767 
1768 #define WEIGHT_IDLEPRIO		3
1769 #define WMULT_IDLEPRIO		1431655765
1770 
1771 extern const int		sched_prio_to_weight[40];
1772 extern const u32		sched_prio_to_wmult[40];
1773 
1774 /*
1775  * {de,en}queue flags:
1776  *
1777  * DEQUEUE_SLEEP  - task is no longer runnable
1778  * ENQUEUE_WAKEUP - task just became runnable
1779  *
1780  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1781  *                are in a known state which allows modification. Such pairs
1782  *                should preserve as much state as possible.
1783  *
1784  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1785  *        in the runqueue.
1786  *
1787  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1788  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1789  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1790  *
1791  */
1792 
1793 #define DEQUEUE_SLEEP		0x01
1794 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1795 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1796 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1797 
1798 #define ENQUEUE_WAKEUP		0x01
1799 #define ENQUEUE_RESTORE		0x02
1800 #define ENQUEUE_MOVE		0x04
1801 #define ENQUEUE_NOCLOCK		0x08
1802 
1803 #define ENQUEUE_HEAD		0x10
1804 #define ENQUEUE_REPLENISH	0x20
1805 #ifdef CONFIG_SMP
1806 #define ENQUEUE_MIGRATED	0x40
1807 #else
1808 #define ENQUEUE_MIGRATED	0x00
1809 #endif
1810 
1811 #define RETRY_TASK		((void *)-1UL)
1812 
1813 struct sched_class {
1814 
1815 #ifdef CONFIG_UCLAMP_TASK
1816 	int uclamp_enabled;
1817 #endif
1818 
1819 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1820 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1821 	void (*yield_task)   (struct rq *rq);
1822 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1823 
1824 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1825 
1826 	struct task_struct *(*pick_next_task)(struct rq *rq);
1827 
1828 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1829 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1830 
1831 #ifdef CONFIG_SMP
1832 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1833 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
1834 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1835 
1836 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1837 
1838 	void (*set_cpus_allowed)(struct task_struct *p,
1839 				 const struct cpumask *newmask,
1840 				 u32 flags);
1841 
1842 	void (*rq_online)(struct rq *rq);
1843 	void (*rq_offline)(struct rq *rq);
1844 
1845 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
1846 #endif
1847 
1848 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1849 	void (*task_fork)(struct task_struct *p);
1850 	void (*task_dead)(struct task_struct *p);
1851 
1852 	/*
1853 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1854 	 * cannot assume the switched_from/switched_to pair is serliazed by
1855 	 * rq->lock. They are however serialized by p->pi_lock.
1856 	 */
1857 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1858 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1859 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1860 			      int oldprio);
1861 
1862 	unsigned int (*get_rr_interval)(struct rq *rq,
1863 					struct task_struct *task);
1864 
1865 	void (*update_curr)(struct rq *rq);
1866 
1867 #define TASK_SET_GROUP		0
1868 #define TASK_MOVE_GROUP		1
1869 
1870 #ifdef CONFIG_FAIR_GROUP_SCHED
1871 	void (*task_change_group)(struct task_struct *p, int type);
1872 #endif
1873 };
1874 
1875 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1876 {
1877 	WARN_ON_ONCE(rq->curr != prev);
1878 	prev->sched_class->put_prev_task(rq, prev);
1879 }
1880 
1881 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1882 {
1883 	WARN_ON_ONCE(rq->curr != next);
1884 	next->sched_class->set_next_task(rq, next, false);
1885 }
1886 
1887 
1888 /*
1889  * Helper to define a sched_class instance; each one is placed in a separate
1890  * section which is ordered by the linker script:
1891  *
1892  *   include/asm-generic/vmlinux.lds.h
1893  *
1894  * Also enforce alignment on the instance, not the type, to guarantee layout.
1895  */
1896 #define DEFINE_SCHED_CLASS(name) \
1897 const struct sched_class name##_sched_class \
1898 	__aligned(__alignof__(struct sched_class)) \
1899 	__section("__" #name "_sched_class")
1900 
1901 /* Defined in include/asm-generic/vmlinux.lds.h */
1902 extern struct sched_class __begin_sched_classes[];
1903 extern struct sched_class __end_sched_classes[];
1904 
1905 #define sched_class_highest (__end_sched_classes - 1)
1906 #define sched_class_lowest  (__begin_sched_classes - 1)
1907 
1908 #define for_class_range(class, _from, _to) \
1909 	for (class = (_from); class != (_to); class--)
1910 
1911 #define for_each_class(class) \
1912 	for_class_range(class, sched_class_highest, sched_class_lowest)
1913 
1914 extern const struct sched_class stop_sched_class;
1915 extern const struct sched_class dl_sched_class;
1916 extern const struct sched_class rt_sched_class;
1917 extern const struct sched_class fair_sched_class;
1918 extern const struct sched_class idle_sched_class;
1919 
1920 static inline bool sched_stop_runnable(struct rq *rq)
1921 {
1922 	return rq->stop && task_on_rq_queued(rq->stop);
1923 }
1924 
1925 static inline bool sched_dl_runnable(struct rq *rq)
1926 {
1927 	return rq->dl.dl_nr_running > 0;
1928 }
1929 
1930 static inline bool sched_rt_runnable(struct rq *rq)
1931 {
1932 	return rq->rt.rt_queued > 0;
1933 }
1934 
1935 static inline bool sched_fair_runnable(struct rq *rq)
1936 {
1937 	return rq->cfs.nr_running > 0;
1938 }
1939 
1940 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1941 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1942 
1943 #define SCA_CHECK		0x01
1944 #define SCA_MIGRATE_DISABLE	0x02
1945 #define SCA_MIGRATE_ENABLE	0x04
1946 
1947 #ifdef CONFIG_SMP
1948 
1949 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1950 
1951 extern void trigger_load_balance(struct rq *rq);
1952 
1953 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1954 
1955 static inline struct task_struct *get_push_task(struct rq *rq)
1956 {
1957 	struct task_struct *p = rq->curr;
1958 
1959 	lockdep_assert_held(&rq->lock);
1960 
1961 	if (rq->push_busy)
1962 		return NULL;
1963 
1964 	if (p->nr_cpus_allowed == 1)
1965 		return NULL;
1966 
1967 	rq->push_busy = true;
1968 	return get_task_struct(p);
1969 }
1970 
1971 extern int push_cpu_stop(void *arg);
1972 
1973 #endif
1974 
1975 #ifdef CONFIG_CPU_IDLE
1976 static inline void idle_set_state(struct rq *rq,
1977 				  struct cpuidle_state *idle_state)
1978 {
1979 	rq->idle_state = idle_state;
1980 }
1981 
1982 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1983 {
1984 	SCHED_WARN_ON(!rcu_read_lock_held());
1985 
1986 	return rq->idle_state;
1987 }
1988 #else
1989 static inline void idle_set_state(struct rq *rq,
1990 				  struct cpuidle_state *idle_state)
1991 {
1992 }
1993 
1994 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1995 {
1996 	return NULL;
1997 }
1998 #endif
1999 
2000 extern void schedule_idle(void);
2001 
2002 extern void sysrq_sched_debug_show(void);
2003 extern void sched_init_granularity(void);
2004 extern void update_max_interval(void);
2005 
2006 extern void init_sched_dl_class(void);
2007 extern void init_sched_rt_class(void);
2008 extern void init_sched_fair_class(void);
2009 
2010 extern void reweight_task(struct task_struct *p, int prio);
2011 
2012 extern void resched_curr(struct rq *rq);
2013 extern void resched_cpu(int cpu);
2014 
2015 extern struct rt_bandwidth def_rt_bandwidth;
2016 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2017 
2018 extern struct dl_bandwidth def_dl_bandwidth;
2019 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2020 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2021 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2022 
2023 #define BW_SHIFT		20
2024 #define BW_UNIT			(1 << BW_SHIFT)
2025 #define RATIO_SHIFT		8
2026 #define MAX_BW_BITS		(64 - BW_SHIFT)
2027 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2028 unsigned long to_ratio(u64 period, u64 runtime);
2029 
2030 extern void init_entity_runnable_average(struct sched_entity *se);
2031 extern void post_init_entity_util_avg(struct task_struct *p);
2032 
2033 #ifdef CONFIG_NO_HZ_FULL
2034 extern bool sched_can_stop_tick(struct rq *rq);
2035 extern int __init sched_tick_offload_init(void);
2036 
2037 /*
2038  * Tick may be needed by tasks in the runqueue depending on their policy and
2039  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2040  * nohz mode if necessary.
2041  */
2042 static inline void sched_update_tick_dependency(struct rq *rq)
2043 {
2044 	int cpu = cpu_of(rq);
2045 
2046 	if (!tick_nohz_full_cpu(cpu))
2047 		return;
2048 
2049 	if (sched_can_stop_tick(rq))
2050 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2051 	else
2052 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2053 }
2054 #else
2055 static inline int sched_tick_offload_init(void) { return 0; }
2056 static inline void sched_update_tick_dependency(struct rq *rq) { }
2057 #endif
2058 
2059 static inline void add_nr_running(struct rq *rq, unsigned count)
2060 {
2061 	unsigned prev_nr = rq->nr_running;
2062 
2063 	rq->nr_running = prev_nr + count;
2064 	if (trace_sched_update_nr_running_tp_enabled()) {
2065 		call_trace_sched_update_nr_running(rq, count);
2066 	}
2067 
2068 #ifdef CONFIG_SMP
2069 	if (prev_nr < 2 && rq->nr_running >= 2) {
2070 		if (!READ_ONCE(rq->rd->overload))
2071 			WRITE_ONCE(rq->rd->overload, 1);
2072 	}
2073 #endif
2074 
2075 	sched_update_tick_dependency(rq);
2076 }
2077 
2078 static inline void sub_nr_running(struct rq *rq, unsigned count)
2079 {
2080 	rq->nr_running -= count;
2081 	if (trace_sched_update_nr_running_tp_enabled()) {
2082 		call_trace_sched_update_nr_running(rq, -count);
2083 	}
2084 
2085 	/* Check if we still need preemption */
2086 	sched_update_tick_dependency(rq);
2087 }
2088 
2089 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2090 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2091 
2092 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2093 
2094 extern const_debug unsigned int sysctl_sched_nr_migrate;
2095 extern const_debug unsigned int sysctl_sched_migration_cost;
2096 
2097 #ifdef CONFIG_SCHED_HRTICK
2098 
2099 /*
2100  * Use hrtick when:
2101  *  - enabled by features
2102  *  - hrtimer is actually high res
2103  */
2104 static inline int hrtick_enabled(struct rq *rq)
2105 {
2106 	if (!sched_feat(HRTICK))
2107 		return 0;
2108 	if (!cpu_active(cpu_of(rq)))
2109 		return 0;
2110 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2111 }
2112 
2113 void hrtick_start(struct rq *rq, u64 delay);
2114 
2115 #else
2116 
2117 static inline int hrtick_enabled(struct rq *rq)
2118 {
2119 	return 0;
2120 }
2121 
2122 #endif /* CONFIG_SCHED_HRTICK */
2123 
2124 #ifndef arch_scale_freq_tick
2125 static __always_inline
2126 void arch_scale_freq_tick(void)
2127 {
2128 }
2129 #endif
2130 
2131 #ifndef arch_scale_freq_capacity
2132 /**
2133  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2134  * @cpu: the CPU in question.
2135  *
2136  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2137  *
2138  *     f_curr
2139  *     ------ * SCHED_CAPACITY_SCALE
2140  *     f_max
2141  */
2142 static __always_inline
2143 unsigned long arch_scale_freq_capacity(int cpu)
2144 {
2145 	return SCHED_CAPACITY_SCALE;
2146 }
2147 #endif
2148 
2149 #ifdef CONFIG_SMP
2150 #ifdef CONFIG_PREEMPTION
2151 
2152 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2153 
2154 /*
2155  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2156  * way at the expense of forcing extra atomic operations in all
2157  * invocations.  This assures that the double_lock is acquired using the
2158  * same underlying policy as the spinlock_t on this architecture, which
2159  * reduces latency compared to the unfair variant below.  However, it
2160  * also adds more overhead and therefore may reduce throughput.
2161  */
2162 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2163 	__releases(this_rq->lock)
2164 	__acquires(busiest->lock)
2165 	__acquires(this_rq->lock)
2166 {
2167 	raw_spin_unlock(&this_rq->lock);
2168 	double_rq_lock(this_rq, busiest);
2169 
2170 	return 1;
2171 }
2172 
2173 #else
2174 /*
2175  * Unfair double_lock_balance: Optimizes throughput at the expense of
2176  * latency by eliminating extra atomic operations when the locks are
2177  * already in proper order on entry.  This favors lower CPU-ids and will
2178  * grant the double lock to lower CPUs over higher ids under contention,
2179  * regardless of entry order into the function.
2180  */
2181 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2182 	__releases(this_rq->lock)
2183 	__acquires(busiest->lock)
2184 	__acquires(this_rq->lock)
2185 {
2186 	int ret = 0;
2187 
2188 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2189 		if (busiest < this_rq) {
2190 			raw_spin_unlock(&this_rq->lock);
2191 			raw_spin_lock(&busiest->lock);
2192 			raw_spin_lock_nested(&this_rq->lock,
2193 					      SINGLE_DEPTH_NESTING);
2194 			ret = 1;
2195 		} else
2196 			raw_spin_lock_nested(&busiest->lock,
2197 					      SINGLE_DEPTH_NESTING);
2198 	}
2199 	return ret;
2200 }
2201 
2202 #endif /* CONFIG_PREEMPTION */
2203 
2204 /*
2205  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2206  */
2207 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2208 {
2209 	if (unlikely(!irqs_disabled())) {
2210 		/* printk() doesn't work well under rq->lock */
2211 		raw_spin_unlock(&this_rq->lock);
2212 		BUG_ON(1);
2213 	}
2214 
2215 	return _double_lock_balance(this_rq, busiest);
2216 }
2217 
2218 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2219 	__releases(busiest->lock)
2220 {
2221 	raw_spin_unlock(&busiest->lock);
2222 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2223 }
2224 
2225 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2226 {
2227 	if (l1 > l2)
2228 		swap(l1, l2);
2229 
2230 	spin_lock(l1);
2231 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2232 }
2233 
2234 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2235 {
2236 	if (l1 > l2)
2237 		swap(l1, l2);
2238 
2239 	spin_lock_irq(l1);
2240 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2241 }
2242 
2243 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2244 {
2245 	if (l1 > l2)
2246 		swap(l1, l2);
2247 
2248 	raw_spin_lock(l1);
2249 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2250 }
2251 
2252 /*
2253  * double_rq_lock - safely lock two runqueues
2254  *
2255  * Note this does not disable interrupts like task_rq_lock,
2256  * you need to do so manually before calling.
2257  */
2258 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2259 	__acquires(rq1->lock)
2260 	__acquires(rq2->lock)
2261 {
2262 	BUG_ON(!irqs_disabled());
2263 	if (rq1 == rq2) {
2264 		raw_spin_lock(&rq1->lock);
2265 		__acquire(rq2->lock);	/* Fake it out ;) */
2266 	} else {
2267 		if (rq1 < rq2) {
2268 			raw_spin_lock(&rq1->lock);
2269 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2270 		} else {
2271 			raw_spin_lock(&rq2->lock);
2272 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2273 		}
2274 	}
2275 }
2276 
2277 /*
2278  * double_rq_unlock - safely unlock two runqueues
2279  *
2280  * Note this does not restore interrupts like task_rq_unlock,
2281  * you need to do so manually after calling.
2282  */
2283 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2284 	__releases(rq1->lock)
2285 	__releases(rq2->lock)
2286 {
2287 	raw_spin_unlock(&rq1->lock);
2288 	if (rq1 != rq2)
2289 		raw_spin_unlock(&rq2->lock);
2290 	else
2291 		__release(rq2->lock);
2292 }
2293 
2294 extern void set_rq_online (struct rq *rq);
2295 extern void set_rq_offline(struct rq *rq);
2296 extern bool sched_smp_initialized;
2297 
2298 #else /* CONFIG_SMP */
2299 
2300 /*
2301  * double_rq_lock - safely lock two runqueues
2302  *
2303  * Note this does not disable interrupts like task_rq_lock,
2304  * you need to do so manually before calling.
2305  */
2306 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2307 	__acquires(rq1->lock)
2308 	__acquires(rq2->lock)
2309 {
2310 	BUG_ON(!irqs_disabled());
2311 	BUG_ON(rq1 != rq2);
2312 	raw_spin_lock(&rq1->lock);
2313 	__acquire(rq2->lock);	/* Fake it out ;) */
2314 }
2315 
2316 /*
2317  * double_rq_unlock - safely unlock two runqueues
2318  *
2319  * Note this does not restore interrupts like task_rq_unlock,
2320  * you need to do so manually after calling.
2321  */
2322 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2323 	__releases(rq1->lock)
2324 	__releases(rq2->lock)
2325 {
2326 	BUG_ON(rq1 != rq2);
2327 	raw_spin_unlock(&rq1->lock);
2328 	__release(rq2->lock);
2329 }
2330 
2331 #endif
2332 
2333 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2334 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2335 
2336 #ifdef	CONFIG_SCHED_DEBUG
2337 extern bool sched_debug_enabled;
2338 
2339 extern void print_cfs_stats(struct seq_file *m, int cpu);
2340 extern void print_rt_stats(struct seq_file *m, int cpu);
2341 extern void print_dl_stats(struct seq_file *m, int cpu);
2342 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2343 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2344 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2345 #ifdef CONFIG_NUMA_BALANCING
2346 extern void
2347 show_numa_stats(struct task_struct *p, struct seq_file *m);
2348 extern void
2349 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2350 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2351 #endif /* CONFIG_NUMA_BALANCING */
2352 #endif /* CONFIG_SCHED_DEBUG */
2353 
2354 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2355 extern void init_rt_rq(struct rt_rq *rt_rq);
2356 extern void init_dl_rq(struct dl_rq *dl_rq);
2357 
2358 extern void cfs_bandwidth_usage_inc(void);
2359 extern void cfs_bandwidth_usage_dec(void);
2360 
2361 #ifdef CONFIG_NO_HZ_COMMON
2362 #define NOHZ_BALANCE_KICK_BIT	0
2363 #define NOHZ_STATS_KICK_BIT	1
2364 
2365 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2366 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2367 
2368 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2369 
2370 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2371 
2372 extern void nohz_balance_exit_idle(struct rq *rq);
2373 #else
2374 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2375 #endif
2376 
2377 
2378 #ifdef CONFIG_SMP
2379 static inline
2380 void __dl_update(struct dl_bw *dl_b, s64 bw)
2381 {
2382 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2383 	int i;
2384 
2385 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2386 			 "sched RCU must be held");
2387 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2388 		struct rq *rq = cpu_rq(i);
2389 
2390 		rq->dl.extra_bw += bw;
2391 	}
2392 }
2393 #else
2394 static inline
2395 void __dl_update(struct dl_bw *dl_b, s64 bw)
2396 {
2397 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2398 
2399 	dl->extra_bw += bw;
2400 }
2401 #endif
2402 
2403 
2404 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2405 struct irqtime {
2406 	u64			total;
2407 	u64			tick_delta;
2408 	u64			irq_start_time;
2409 	struct u64_stats_sync	sync;
2410 };
2411 
2412 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2413 
2414 /*
2415  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2416  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2417  * and never move forward.
2418  */
2419 static inline u64 irq_time_read(int cpu)
2420 {
2421 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2422 	unsigned int seq;
2423 	u64 total;
2424 
2425 	do {
2426 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2427 		total = irqtime->total;
2428 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2429 
2430 	return total;
2431 }
2432 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2433 
2434 #ifdef CONFIG_CPU_FREQ
2435 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2436 
2437 /**
2438  * cpufreq_update_util - Take a note about CPU utilization changes.
2439  * @rq: Runqueue to carry out the update for.
2440  * @flags: Update reason flags.
2441  *
2442  * This function is called by the scheduler on the CPU whose utilization is
2443  * being updated.
2444  *
2445  * It can only be called from RCU-sched read-side critical sections.
2446  *
2447  * The way cpufreq is currently arranged requires it to evaluate the CPU
2448  * performance state (frequency/voltage) on a regular basis to prevent it from
2449  * being stuck in a completely inadequate performance level for too long.
2450  * That is not guaranteed to happen if the updates are only triggered from CFS
2451  * and DL, though, because they may not be coming in if only RT tasks are
2452  * active all the time (or there are RT tasks only).
2453  *
2454  * As a workaround for that issue, this function is called periodically by the
2455  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2456  * but that really is a band-aid.  Going forward it should be replaced with
2457  * solutions targeted more specifically at RT tasks.
2458  */
2459 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2460 {
2461 	struct update_util_data *data;
2462 
2463 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2464 						  cpu_of(rq)));
2465 	if (data)
2466 		data->func(data, rq_clock(rq), flags);
2467 }
2468 #else
2469 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2470 #endif /* CONFIG_CPU_FREQ */
2471 
2472 #ifdef CONFIG_UCLAMP_TASK
2473 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2474 
2475 /**
2476  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2477  * @rq:		The rq to clamp against. Must not be NULL.
2478  * @util:	The util value to clamp.
2479  * @p:		The task to clamp against. Can be NULL if you want to clamp
2480  *		against @rq only.
2481  *
2482  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2483  *
2484  * If sched_uclamp_used static key is disabled, then just return the util
2485  * without any clamping since uclamp aggregation at the rq level in the fast
2486  * path is disabled, rendering this operation a NOP.
2487  *
2488  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2489  * will return the correct effective uclamp value of the task even if the
2490  * static key is disabled.
2491  */
2492 static __always_inline
2493 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2494 				  struct task_struct *p)
2495 {
2496 	unsigned long min_util;
2497 	unsigned long max_util;
2498 
2499 	if (!static_branch_likely(&sched_uclamp_used))
2500 		return util;
2501 
2502 	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2503 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2504 
2505 	if (p) {
2506 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2507 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2508 	}
2509 
2510 	/*
2511 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2512 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2513 	 * inversion. Fix it now when the clamps are applied.
2514 	 */
2515 	if (unlikely(min_util >= max_util))
2516 		return min_util;
2517 
2518 	return clamp(util, min_util, max_util);
2519 }
2520 
2521 /*
2522  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2523  * by default in the fast path and only gets turned on once userspace performs
2524  * an operation that requires it.
2525  *
2526  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2527  * hence is active.
2528  */
2529 static inline bool uclamp_is_used(void)
2530 {
2531 	return static_branch_likely(&sched_uclamp_used);
2532 }
2533 #else /* CONFIG_UCLAMP_TASK */
2534 static inline
2535 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2536 				  struct task_struct *p)
2537 {
2538 	return util;
2539 }
2540 
2541 static inline bool uclamp_is_used(void)
2542 {
2543 	return false;
2544 }
2545 #endif /* CONFIG_UCLAMP_TASK */
2546 
2547 #ifdef arch_scale_freq_capacity
2548 # ifndef arch_scale_freq_invariant
2549 #  define arch_scale_freq_invariant()	true
2550 # endif
2551 #else
2552 # define arch_scale_freq_invariant()	false
2553 #endif
2554 
2555 #ifdef CONFIG_SMP
2556 static inline unsigned long capacity_orig_of(int cpu)
2557 {
2558 	return cpu_rq(cpu)->cpu_capacity_orig;
2559 }
2560 #endif
2561 
2562 /**
2563  * enum schedutil_type - CPU utilization type
2564  * @FREQUENCY_UTIL:	Utilization used to select frequency
2565  * @ENERGY_UTIL:	Utilization used during energy calculation
2566  *
2567  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2568  * need to be aggregated differently depending on the usage made of them. This
2569  * enum is used within schedutil_freq_util() to differentiate the types of
2570  * utilization expected by the callers, and adjust the aggregation accordingly.
2571  */
2572 enum schedutil_type {
2573 	FREQUENCY_UTIL,
2574 	ENERGY_UTIL,
2575 };
2576 
2577 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2578 
2579 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2580 				 unsigned long max, enum schedutil_type type,
2581 				 struct task_struct *p);
2582 
2583 static inline unsigned long cpu_bw_dl(struct rq *rq)
2584 {
2585 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2586 }
2587 
2588 static inline unsigned long cpu_util_dl(struct rq *rq)
2589 {
2590 	return READ_ONCE(rq->avg_dl.util_avg);
2591 }
2592 
2593 static inline unsigned long cpu_util_cfs(struct rq *rq)
2594 {
2595 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2596 
2597 	if (sched_feat(UTIL_EST)) {
2598 		util = max_t(unsigned long, util,
2599 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2600 	}
2601 
2602 	return util;
2603 }
2604 
2605 static inline unsigned long cpu_util_rt(struct rq *rq)
2606 {
2607 	return READ_ONCE(rq->avg_rt.util_avg);
2608 }
2609 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2610 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2611 				 unsigned long max, enum schedutil_type type,
2612 				 struct task_struct *p)
2613 {
2614 	return 0;
2615 }
2616 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2617 
2618 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2619 static inline unsigned long cpu_util_irq(struct rq *rq)
2620 {
2621 	return rq->avg_irq.util_avg;
2622 }
2623 
2624 static inline
2625 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2626 {
2627 	util *= (max - irq);
2628 	util /= max;
2629 
2630 	return util;
2631 
2632 }
2633 #else
2634 static inline unsigned long cpu_util_irq(struct rq *rq)
2635 {
2636 	return 0;
2637 }
2638 
2639 static inline
2640 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2641 {
2642 	return util;
2643 }
2644 #endif
2645 
2646 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2647 
2648 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2649 
2650 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2651 
2652 static inline bool sched_energy_enabled(void)
2653 {
2654 	return static_branch_unlikely(&sched_energy_present);
2655 }
2656 
2657 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2658 
2659 #define perf_domain_span(pd) NULL
2660 static inline bool sched_energy_enabled(void) { return false; }
2661 
2662 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2663 
2664 #ifdef CONFIG_MEMBARRIER
2665 /*
2666  * The scheduler provides memory barriers required by membarrier between:
2667  * - prior user-space memory accesses and store to rq->membarrier_state,
2668  * - store to rq->membarrier_state and following user-space memory accesses.
2669  * In the same way it provides those guarantees around store to rq->curr.
2670  */
2671 static inline void membarrier_switch_mm(struct rq *rq,
2672 					struct mm_struct *prev_mm,
2673 					struct mm_struct *next_mm)
2674 {
2675 	int membarrier_state;
2676 
2677 	if (prev_mm == next_mm)
2678 		return;
2679 
2680 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2681 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2682 		return;
2683 
2684 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2685 }
2686 #else
2687 static inline void membarrier_switch_mm(struct rq *rq,
2688 					struct mm_struct *prev_mm,
2689 					struct mm_struct *next_mm)
2690 {
2691 }
2692 #endif
2693 
2694 #ifdef CONFIG_SMP
2695 static inline bool is_per_cpu_kthread(struct task_struct *p)
2696 {
2697 	if (!(p->flags & PF_KTHREAD))
2698 		return false;
2699 
2700 	if (p->nr_cpus_allowed != 1)
2701 		return false;
2702 
2703 	return true;
2704 }
2705 #endif
2706 
2707 void swake_up_all_locked(struct swait_queue_head *q);
2708 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2709