1 2 #include <linux/sched.h> 3 #include <linux/mutex.h> 4 #include <linux/spinlock.h> 5 #include <linux/stop_machine.h> 6 7 #include "cpupri.h" 8 9 extern __read_mostly int scheduler_running; 10 11 /* 12 * Convert user-nice values [ -20 ... 0 ... 19 ] 13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 14 * and back. 15 */ 16 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 17 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 18 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 19 20 /* 21 * 'User priority' is the nice value converted to something we 22 * can work with better when scaling various scheduler parameters, 23 * it's a [ 0 ... 39 ] range. 24 */ 25 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 26 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 27 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 28 29 /* 30 * Helpers for converting nanosecond timing to jiffy resolution 31 */ 32 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 33 34 #define NICE_0_LOAD SCHED_LOAD_SCALE 35 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 36 37 /* 38 * These are the 'tuning knobs' of the scheduler: 39 */ 40 41 /* 42 * single value that denotes runtime == period, ie unlimited time. 43 */ 44 #define RUNTIME_INF ((u64)~0ULL) 45 46 static inline int rt_policy(int policy) 47 { 48 if (policy == SCHED_FIFO || policy == SCHED_RR) 49 return 1; 50 return 0; 51 } 52 53 static inline int task_has_rt_policy(struct task_struct *p) 54 { 55 return rt_policy(p->policy); 56 } 57 58 /* 59 * This is the priority-queue data structure of the RT scheduling class: 60 */ 61 struct rt_prio_array { 62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 63 struct list_head queue[MAX_RT_PRIO]; 64 }; 65 66 struct rt_bandwidth { 67 /* nests inside the rq lock: */ 68 raw_spinlock_t rt_runtime_lock; 69 ktime_t rt_period; 70 u64 rt_runtime; 71 struct hrtimer rt_period_timer; 72 }; 73 74 extern struct mutex sched_domains_mutex; 75 76 #ifdef CONFIG_CGROUP_SCHED 77 78 #include <linux/cgroup.h> 79 80 struct cfs_rq; 81 struct rt_rq; 82 83 extern struct list_head task_groups; 84 85 struct cfs_bandwidth { 86 #ifdef CONFIG_CFS_BANDWIDTH 87 raw_spinlock_t lock; 88 ktime_t period; 89 u64 quota, runtime; 90 s64 hierarchal_quota; 91 u64 runtime_expires; 92 93 int idle, timer_active; 94 struct hrtimer period_timer, slack_timer; 95 struct list_head throttled_cfs_rq; 96 97 /* statistics */ 98 int nr_periods, nr_throttled; 99 u64 throttled_time; 100 #endif 101 }; 102 103 /* task group related information */ 104 struct task_group { 105 struct cgroup_subsys_state css; 106 107 #ifdef CONFIG_FAIR_GROUP_SCHED 108 /* schedulable entities of this group on each cpu */ 109 struct sched_entity **se; 110 /* runqueue "owned" by this group on each cpu */ 111 struct cfs_rq **cfs_rq; 112 unsigned long shares; 113 114 atomic_t load_weight; 115 atomic64_t load_avg; 116 atomic_t runnable_avg; 117 #endif 118 119 #ifdef CONFIG_RT_GROUP_SCHED 120 struct sched_rt_entity **rt_se; 121 struct rt_rq **rt_rq; 122 123 struct rt_bandwidth rt_bandwidth; 124 #endif 125 126 struct rcu_head rcu; 127 struct list_head list; 128 129 struct task_group *parent; 130 struct list_head siblings; 131 struct list_head children; 132 133 #ifdef CONFIG_SCHED_AUTOGROUP 134 struct autogroup *autogroup; 135 #endif 136 137 struct cfs_bandwidth cfs_bandwidth; 138 }; 139 140 #ifdef CONFIG_FAIR_GROUP_SCHED 141 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 142 143 /* 144 * A weight of 0 or 1 can cause arithmetics problems. 145 * A weight of a cfs_rq is the sum of weights of which entities 146 * are queued on this cfs_rq, so a weight of a entity should not be 147 * too large, so as the shares value of a task group. 148 * (The default weight is 1024 - so there's no practical 149 * limitation from this.) 150 */ 151 #define MIN_SHARES (1UL << 1) 152 #define MAX_SHARES (1UL << 18) 153 #endif 154 155 /* Default task group. 156 * Every task in system belong to this group at bootup. 157 */ 158 extern struct task_group root_task_group; 159 160 typedef int (*tg_visitor)(struct task_group *, void *); 161 162 extern int walk_tg_tree_from(struct task_group *from, 163 tg_visitor down, tg_visitor up, void *data); 164 165 /* 166 * Iterate the full tree, calling @down when first entering a node and @up when 167 * leaving it for the final time. 168 * 169 * Caller must hold rcu_lock or sufficient equivalent. 170 */ 171 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 172 { 173 return walk_tg_tree_from(&root_task_group, down, up, data); 174 } 175 176 extern int tg_nop(struct task_group *tg, void *data); 177 178 extern void free_fair_sched_group(struct task_group *tg); 179 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 180 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 181 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 182 struct sched_entity *se, int cpu, 183 struct sched_entity *parent); 184 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 185 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 186 187 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 188 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 189 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 190 191 extern void free_rt_sched_group(struct task_group *tg); 192 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 193 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 194 struct sched_rt_entity *rt_se, int cpu, 195 struct sched_rt_entity *parent); 196 197 #else /* CONFIG_CGROUP_SCHED */ 198 199 struct cfs_bandwidth { }; 200 201 #endif /* CONFIG_CGROUP_SCHED */ 202 203 /* CFS-related fields in a runqueue */ 204 struct cfs_rq { 205 struct load_weight load; 206 unsigned int nr_running, h_nr_running; 207 208 u64 exec_clock; 209 u64 min_vruntime; 210 #ifndef CONFIG_64BIT 211 u64 min_vruntime_copy; 212 #endif 213 214 struct rb_root tasks_timeline; 215 struct rb_node *rb_leftmost; 216 217 /* 218 * 'curr' points to currently running entity on this cfs_rq. 219 * It is set to NULL otherwise (i.e when none are currently running). 220 */ 221 struct sched_entity *curr, *next, *last, *skip; 222 223 #ifdef CONFIG_SCHED_DEBUG 224 unsigned int nr_spread_over; 225 #endif 226 227 #ifdef CONFIG_SMP 228 /* 229 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 230 * removed when useful for applications beyond shares distribution (e.g. 231 * load-balance). 232 */ 233 #ifdef CONFIG_FAIR_GROUP_SCHED 234 /* 235 * CFS Load tracking 236 * Under CFS, load is tracked on a per-entity basis and aggregated up. 237 * This allows for the description of both thread and group usage (in 238 * the FAIR_GROUP_SCHED case). 239 */ 240 u64 runnable_load_avg, blocked_load_avg; 241 atomic64_t decay_counter, removed_load; 242 u64 last_decay; 243 #endif /* CONFIG_FAIR_GROUP_SCHED */ 244 /* These always depend on CONFIG_FAIR_GROUP_SCHED */ 245 #ifdef CONFIG_FAIR_GROUP_SCHED 246 u32 tg_runnable_contrib; 247 u64 tg_load_contrib; 248 #endif /* CONFIG_FAIR_GROUP_SCHED */ 249 250 /* 251 * h_load = weight * f(tg) 252 * 253 * Where f(tg) is the recursive weight fraction assigned to 254 * this group. 255 */ 256 unsigned long h_load; 257 #endif /* CONFIG_SMP */ 258 259 #ifdef CONFIG_FAIR_GROUP_SCHED 260 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 261 262 /* 263 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 264 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 265 * (like users, containers etc.) 266 * 267 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 268 * list is used during load balance. 269 */ 270 int on_list; 271 struct list_head leaf_cfs_rq_list; 272 struct task_group *tg; /* group that "owns" this runqueue */ 273 274 #ifdef CONFIG_CFS_BANDWIDTH 275 int runtime_enabled; 276 u64 runtime_expires; 277 s64 runtime_remaining; 278 279 u64 throttled_clock, throttled_clock_task; 280 u64 throttled_clock_task_time; 281 int throttled, throttle_count; 282 struct list_head throttled_list; 283 #endif /* CONFIG_CFS_BANDWIDTH */ 284 #endif /* CONFIG_FAIR_GROUP_SCHED */ 285 }; 286 287 static inline int rt_bandwidth_enabled(void) 288 { 289 return sysctl_sched_rt_runtime >= 0; 290 } 291 292 /* Real-Time classes' related field in a runqueue: */ 293 struct rt_rq { 294 struct rt_prio_array active; 295 unsigned int rt_nr_running; 296 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 297 struct { 298 int curr; /* highest queued rt task prio */ 299 #ifdef CONFIG_SMP 300 int next; /* next highest */ 301 #endif 302 } highest_prio; 303 #endif 304 #ifdef CONFIG_SMP 305 unsigned long rt_nr_migratory; 306 unsigned long rt_nr_total; 307 int overloaded; 308 struct plist_head pushable_tasks; 309 #endif 310 int rt_throttled; 311 u64 rt_time; 312 u64 rt_runtime; 313 /* Nests inside the rq lock: */ 314 raw_spinlock_t rt_runtime_lock; 315 316 #ifdef CONFIG_RT_GROUP_SCHED 317 unsigned long rt_nr_boosted; 318 319 struct rq *rq; 320 struct list_head leaf_rt_rq_list; 321 struct task_group *tg; 322 #endif 323 }; 324 325 #ifdef CONFIG_SMP 326 327 /* 328 * We add the notion of a root-domain which will be used to define per-domain 329 * variables. Each exclusive cpuset essentially defines an island domain by 330 * fully partitioning the member cpus from any other cpuset. Whenever a new 331 * exclusive cpuset is created, we also create and attach a new root-domain 332 * object. 333 * 334 */ 335 struct root_domain { 336 atomic_t refcount; 337 atomic_t rto_count; 338 struct rcu_head rcu; 339 cpumask_var_t span; 340 cpumask_var_t online; 341 342 /* 343 * The "RT overload" flag: it gets set if a CPU has more than 344 * one runnable RT task. 345 */ 346 cpumask_var_t rto_mask; 347 struct cpupri cpupri; 348 }; 349 350 extern struct root_domain def_root_domain; 351 352 #endif /* CONFIG_SMP */ 353 354 /* 355 * This is the main, per-CPU runqueue data structure. 356 * 357 * Locking rule: those places that want to lock multiple runqueues 358 * (such as the load balancing or the thread migration code), lock 359 * acquire operations must be ordered by ascending &runqueue. 360 */ 361 struct rq { 362 /* runqueue lock: */ 363 raw_spinlock_t lock; 364 365 /* 366 * nr_running and cpu_load should be in the same cacheline because 367 * remote CPUs use both these fields when doing load calculation. 368 */ 369 unsigned int nr_running; 370 #define CPU_LOAD_IDX_MAX 5 371 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 372 unsigned long last_load_update_tick; 373 #ifdef CONFIG_NO_HZ 374 u64 nohz_stamp; 375 unsigned long nohz_flags; 376 #endif 377 int skip_clock_update; 378 379 /* capture load from *all* tasks on this cpu: */ 380 struct load_weight load; 381 unsigned long nr_load_updates; 382 u64 nr_switches; 383 384 struct cfs_rq cfs; 385 struct rt_rq rt; 386 387 #ifdef CONFIG_FAIR_GROUP_SCHED 388 /* list of leaf cfs_rq on this cpu: */ 389 struct list_head leaf_cfs_rq_list; 390 #ifdef CONFIG_SMP 391 unsigned long h_load_throttle; 392 #endif /* CONFIG_SMP */ 393 #endif /* CONFIG_FAIR_GROUP_SCHED */ 394 395 #ifdef CONFIG_RT_GROUP_SCHED 396 struct list_head leaf_rt_rq_list; 397 #endif 398 399 /* 400 * This is part of a global counter where only the total sum 401 * over all CPUs matters. A task can increase this counter on 402 * one CPU and if it got migrated afterwards it may decrease 403 * it on another CPU. Always updated under the runqueue lock: 404 */ 405 unsigned long nr_uninterruptible; 406 407 struct task_struct *curr, *idle, *stop; 408 unsigned long next_balance; 409 struct mm_struct *prev_mm; 410 411 u64 clock; 412 u64 clock_task; 413 414 atomic_t nr_iowait; 415 416 #ifdef CONFIG_SMP 417 struct root_domain *rd; 418 struct sched_domain *sd; 419 420 unsigned long cpu_power; 421 422 unsigned char idle_balance; 423 /* For active balancing */ 424 int post_schedule; 425 int active_balance; 426 int push_cpu; 427 struct cpu_stop_work active_balance_work; 428 /* cpu of this runqueue: */ 429 int cpu; 430 int online; 431 432 struct list_head cfs_tasks; 433 434 u64 rt_avg; 435 u64 age_stamp; 436 u64 idle_stamp; 437 u64 avg_idle; 438 #endif 439 440 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 441 u64 prev_irq_time; 442 #endif 443 #ifdef CONFIG_PARAVIRT 444 u64 prev_steal_time; 445 #endif 446 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 447 u64 prev_steal_time_rq; 448 #endif 449 450 /* calc_load related fields */ 451 unsigned long calc_load_update; 452 long calc_load_active; 453 454 #ifdef CONFIG_SCHED_HRTICK 455 #ifdef CONFIG_SMP 456 int hrtick_csd_pending; 457 struct call_single_data hrtick_csd; 458 #endif 459 struct hrtimer hrtick_timer; 460 #endif 461 462 #ifdef CONFIG_SCHEDSTATS 463 /* latency stats */ 464 struct sched_info rq_sched_info; 465 unsigned long long rq_cpu_time; 466 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 467 468 /* sys_sched_yield() stats */ 469 unsigned int yld_count; 470 471 /* schedule() stats */ 472 unsigned int sched_count; 473 unsigned int sched_goidle; 474 475 /* try_to_wake_up() stats */ 476 unsigned int ttwu_count; 477 unsigned int ttwu_local; 478 #endif 479 480 #ifdef CONFIG_SMP 481 struct llist_head wake_list; 482 #endif 483 484 struct sched_avg avg; 485 }; 486 487 static inline int cpu_of(struct rq *rq) 488 { 489 #ifdef CONFIG_SMP 490 return rq->cpu; 491 #else 492 return 0; 493 #endif 494 } 495 496 DECLARE_PER_CPU(struct rq, runqueues); 497 498 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 499 #define this_rq() (&__get_cpu_var(runqueues)) 500 #define task_rq(p) cpu_rq(task_cpu(p)) 501 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 502 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 503 504 #ifdef CONFIG_SMP 505 506 #define rcu_dereference_check_sched_domain(p) \ 507 rcu_dereference_check((p), \ 508 lockdep_is_held(&sched_domains_mutex)) 509 510 /* 511 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 512 * See detach_destroy_domains: synchronize_sched for details. 513 * 514 * The domain tree of any CPU may only be accessed from within 515 * preempt-disabled sections. 516 */ 517 #define for_each_domain(cpu, __sd) \ 518 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 519 __sd; __sd = __sd->parent) 520 521 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 522 523 /** 524 * highest_flag_domain - Return highest sched_domain containing flag. 525 * @cpu: The cpu whose highest level of sched domain is to 526 * be returned. 527 * @flag: The flag to check for the highest sched_domain 528 * for the given cpu. 529 * 530 * Returns the highest sched_domain of a cpu which contains the given flag. 531 */ 532 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 533 { 534 struct sched_domain *sd, *hsd = NULL; 535 536 for_each_domain(cpu, sd) { 537 if (!(sd->flags & flag)) 538 break; 539 hsd = sd; 540 } 541 542 return hsd; 543 } 544 545 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 546 DECLARE_PER_CPU(int, sd_llc_id); 547 548 extern int group_balance_cpu(struct sched_group *sg); 549 550 #endif /* CONFIG_SMP */ 551 552 #include "stats.h" 553 #include "auto_group.h" 554 555 #ifdef CONFIG_CGROUP_SCHED 556 557 /* 558 * Return the group to which this tasks belongs. 559 * 560 * We cannot use task_subsys_state() and friends because the cgroup 561 * subsystem changes that value before the cgroup_subsys::attach() method 562 * is called, therefore we cannot pin it and might observe the wrong value. 563 * 564 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 565 * core changes this before calling sched_move_task(). 566 * 567 * Instead we use a 'copy' which is updated from sched_move_task() while 568 * holding both task_struct::pi_lock and rq::lock. 569 */ 570 static inline struct task_group *task_group(struct task_struct *p) 571 { 572 return p->sched_task_group; 573 } 574 575 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 576 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 577 { 578 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 579 struct task_group *tg = task_group(p); 580 #endif 581 582 #ifdef CONFIG_FAIR_GROUP_SCHED 583 p->se.cfs_rq = tg->cfs_rq[cpu]; 584 p->se.parent = tg->se[cpu]; 585 #endif 586 587 #ifdef CONFIG_RT_GROUP_SCHED 588 p->rt.rt_rq = tg->rt_rq[cpu]; 589 p->rt.parent = tg->rt_se[cpu]; 590 #endif 591 } 592 593 #else /* CONFIG_CGROUP_SCHED */ 594 595 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 596 static inline struct task_group *task_group(struct task_struct *p) 597 { 598 return NULL; 599 } 600 601 #endif /* CONFIG_CGROUP_SCHED */ 602 603 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 604 { 605 set_task_rq(p, cpu); 606 #ifdef CONFIG_SMP 607 /* 608 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 609 * successfuly executed on another CPU. We must ensure that updates of 610 * per-task data have been completed by this moment. 611 */ 612 smp_wmb(); 613 task_thread_info(p)->cpu = cpu; 614 #endif 615 } 616 617 /* 618 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 619 */ 620 #ifdef CONFIG_SCHED_DEBUG 621 # include <linux/static_key.h> 622 # define const_debug __read_mostly 623 #else 624 # define const_debug const 625 #endif 626 627 extern const_debug unsigned int sysctl_sched_features; 628 629 #define SCHED_FEAT(name, enabled) \ 630 __SCHED_FEAT_##name , 631 632 enum { 633 #include "features.h" 634 __SCHED_FEAT_NR, 635 }; 636 637 #undef SCHED_FEAT 638 639 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 640 static __always_inline bool static_branch__true(struct static_key *key) 641 { 642 return static_key_true(key); /* Not out of line branch. */ 643 } 644 645 static __always_inline bool static_branch__false(struct static_key *key) 646 { 647 return static_key_false(key); /* Out of line branch. */ 648 } 649 650 #define SCHED_FEAT(name, enabled) \ 651 static __always_inline bool static_branch_##name(struct static_key *key) \ 652 { \ 653 return static_branch__##enabled(key); \ 654 } 655 656 #include "features.h" 657 658 #undef SCHED_FEAT 659 660 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 661 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 662 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 663 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 664 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 665 666 #ifdef CONFIG_NUMA_BALANCING 667 #define sched_feat_numa(x) sched_feat(x) 668 #ifdef CONFIG_SCHED_DEBUG 669 #define numabalancing_enabled sched_feat_numa(NUMA) 670 #else 671 extern bool numabalancing_enabled; 672 #endif /* CONFIG_SCHED_DEBUG */ 673 #else 674 #define sched_feat_numa(x) (0) 675 #define numabalancing_enabled (0) 676 #endif /* CONFIG_NUMA_BALANCING */ 677 678 static inline u64 global_rt_period(void) 679 { 680 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 681 } 682 683 static inline u64 global_rt_runtime(void) 684 { 685 if (sysctl_sched_rt_runtime < 0) 686 return RUNTIME_INF; 687 688 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 689 } 690 691 692 693 static inline int task_current(struct rq *rq, struct task_struct *p) 694 { 695 return rq->curr == p; 696 } 697 698 static inline int task_running(struct rq *rq, struct task_struct *p) 699 { 700 #ifdef CONFIG_SMP 701 return p->on_cpu; 702 #else 703 return task_current(rq, p); 704 #endif 705 } 706 707 708 #ifndef prepare_arch_switch 709 # define prepare_arch_switch(next) do { } while (0) 710 #endif 711 #ifndef finish_arch_switch 712 # define finish_arch_switch(prev) do { } while (0) 713 #endif 714 #ifndef finish_arch_post_lock_switch 715 # define finish_arch_post_lock_switch() do { } while (0) 716 #endif 717 718 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 719 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 720 { 721 #ifdef CONFIG_SMP 722 /* 723 * We can optimise this out completely for !SMP, because the 724 * SMP rebalancing from interrupt is the only thing that cares 725 * here. 726 */ 727 next->on_cpu = 1; 728 #endif 729 } 730 731 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 732 { 733 #ifdef CONFIG_SMP 734 /* 735 * After ->on_cpu is cleared, the task can be moved to a different CPU. 736 * We must ensure this doesn't happen until the switch is completely 737 * finished. 738 */ 739 smp_wmb(); 740 prev->on_cpu = 0; 741 #endif 742 #ifdef CONFIG_DEBUG_SPINLOCK 743 /* this is a valid case when another task releases the spinlock */ 744 rq->lock.owner = current; 745 #endif 746 /* 747 * If we are tracking spinlock dependencies then we have to 748 * fix up the runqueue lock - which gets 'carried over' from 749 * prev into current: 750 */ 751 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 752 753 raw_spin_unlock_irq(&rq->lock); 754 } 755 756 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 757 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 758 { 759 #ifdef CONFIG_SMP 760 /* 761 * We can optimise this out completely for !SMP, because the 762 * SMP rebalancing from interrupt is the only thing that cares 763 * here. 764 */ 765 next->on_cpu = 1; 766 #endif 767 raw_spin_unlock(&rq->lock); 768 } 769 770 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 771 { 772 #ifdef CONFIG_SMP 773 /* 774 * After ->on_cpu is cleared, the task can be moved to a different CPU. 775 * We must ensure this doesn't happen until the switch is completely 776 * finished. 777 */ 778 smp_wmb(); 779 prev->on_cpu = 0; 780 #endif 781 local_irq_enable(); 782 } 783 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 784 785 786 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 787 { 788 lw->weight += inc; 789 lw->inv_weight = 0; 790 } 791 792 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 793 { 794 lw->weight -= dec; 795 lw->inv_weight = 0; 796 } 797 798 static inline void update_load_set(struct load_weight *lw, unsigned long w) 799 { 800 lw->weight = w; 801 lw->inv_weight = 0; 802 } 803 804 /* 805 * To aid in avoiding the subversion of "niceness" due to uneven distribution 806 * of tasks with abnormal "nice" values across CPUs the contribution that 807 * each task makes to its run queue's load is weighted according to its 808 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 809 * scaled version of the new time slice allocation that they receive on time 810 * slice expiry etc. 811 */ 812 813 #define WEIGHT_IDLEPRIO 3 814 #define WMULT_IDLEPRIO 1431655765 815 816 /* 817 * Nice levels are multiplicative, with a gentle 10% change for every 818 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 819 * nice 1, it will get ~10% less CPU time than another CPU-bound task 820 * that remained on nice 0. 821 * 822 * The "10% effect" is relative and cumulative: from _any_ nice level, 823 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 824 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 825 * If a task goes up by ~10% and another task goes down by ~10% then 826 * the relative distance between them is ~25%.) 827 */ 828 static const int prio_to_weight[40] = { 829 /* -20 */ 88761, 71755, 56483, 46273, 36291, 830 /* -15 */ 29154, 23254, 18705, 14949, 11916, 831 /* -10 */ 9548, 7620, 6100, 4904, 3906, 832 /* -5 */ 3121, 2501, 1991, 1586, 1277, 833 /* 0 */ 1024, 820, 655, 526, 423, 834 /* 5 */ 335, 272, 215, 172, 137, 835 /* 10 */ 110, 87, 70, 56, 45, 836 /* 15 */ 36, 29, 23, 18, 15, 837 }; 838 839 /* 840 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 841 * 842 * In cases where the weight does not change often, we can use the 843 * precalculated inverse to speed up arithmetics by turning divisions 844 * into multiplications: 845 */ 846 static const u32 prio_to_wmult[40] = { 847 /* -20 */ 48388, 59856, 76040, 92818, 118348, 848 /* -15 */ 147320, 184698, 229616, 287308, 360437, 849 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 850 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 851 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 852 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 853 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 854 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 855 }; 856 857 /* Time spent by the tasks of the cpu accounting group executing in ... */ 858 enum cpuacct_stat_index { 859 CPUACCT_STAT_USER, /* ... user mode */ 860 CPUACCT_STAT_SYSTEM, /* ... kernel mode */ 861 862 CPUACCT_STAT_NSTATS, 863 }; 864 865 866 #define sched_class_highest (&stop_sched_class) 867 #define for_each_class(class) \ 868 for (class = sched_class_highest; class; class = class->next) 869 870 extern const struct sched_class stop_sched_class; 871 extern const struct sched_class rt_sched_class; 872 extern const struct sched_class fair_sched_class; 873 extern const struct sched_class idle_sched_class; 874 875 876 #ifdef CONFIG_SMP 877 878 extern void trigger_load_balance(struct rq *rq, int cpu); 879 extern void idle_balance(int this_cpu, struct rq *this_rq); 880 881 #else /* CONFIG_SMP */ 882 883 static inline void idle_balance(int cpu, struct rq *rq) 884 { 885 } 886 887 #endif 888 889 extern void sysrq_sched_debug_show(void); 890 extern void sched_init_granularity(void); 891 extern void update_max_interval(void); 892 extern void update_group_power(struct sched_domain *sd, int cpu); 893 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); 894 extern void init_sched_rt_class(void); 895 extern void init_sched_fair_class(void); 896 897 extern void resched_task(struct task_struct *p); 898 extern void resched_cpu(int cpu); 899 900 extern struct rt_bandwidth def_rt_bandwidth; 901 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 902 903 extern void update_idle_cpu_load(struct rq *this_rq); 904 905 #ifdef CONFIG_CGROUP_CPUACCT 906 #include <linux/cgroup.h> 907 /* track cpu usage of a group of tasks and its child groups */ 908 struct cpuacct { 909 struct cgroup_subsys_state css; 910 /* cpuusage holds pointer to a u64-type object on every cpu */ 911 u64 __percpu *cpuusage; 912 struct kernel_cpustat __percpu *cpustat; 913 }; 914 915 extern struct cgroup_subsys cpuacct_subsys; 916 extern struct cpuacct root_cpuacct; 917 918 /* return cpu accounting group corresponding to this container */ 919 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) 920 { 921 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), 922 struct cpuacct, css); 923 } 924 925 /* return cpu accounting group to which this task belongs */ 926 static inline struct cpuacct *task_ca(struct task_struct *tsk) 927 { 928 return container_of(task_subsys_state(tsk, cpuacct_subsys_id), 929 struct cpuacct, css); 930 } 931 932 static inline struct cpuacct *parent_ca(struct cpuacct *ca) 933 { 934 if (!ca || !ca->css.cgroup->parent) 935 return NULL; 936 return cgroup_ca(ca->css.cgroup->parent); 937 } 938 939 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); 940 #else 941 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} 942 #endif 943 944 #ifdef CONFIG_PARAVIRT 945 static inline u64 steal_ticks(u64 steal) 946 { 947 if (unlikely(steal > NSEC_PER_SEC)) 948 return div_u64(steal, TICK_NSEC); 949 950 return __iter_div_u64_rem(steal, TICK_NSEC, &steal); 951 } 952 #endif 953 954 static inline void inc_nr_running(struct rq *rq) 955 { 956 rq->nr_running++; 957 } 958 959 static inline void dec_nr_running(struct rq *rq) 960 { 961 rq->nr_running--; 962 } 963 964 extern void update_rq_clock(struct rq *rq); 965 966 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 967 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 968 969 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 970 971 extern const_debug unsigned int sysctl_sched_time_avg; 972 extern const_debug unsigned int sysctl_sched_nr_migrate; 973 extern const_debug unsigned int sysctl_sched_migration_cost; 974 975 static inline u64 sched_avg_period(void) 976 { 977 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 978 } 979 980 #ifdef CONFIG_SCHED_HRTICK 981 982 /* 983 * Use hrtick when: 984 * - enabled by features 985 * - hrtimer is actually high res 986 */ 987 static inline int hrtick_enabled(struct rq *rq) 988 { 989 if (!sched_feat(HRTICK)) 990 return 0; 991 if (!cpu_active(cpu_of(rq))) 992 return 0; 993 return hrtimer_is_hres_active(&rq->hrtick_timer); 994 } 995 996 void hrtick_start(struct rq *rq, u64 delay); 997 998 #else 999 1000 static inline int hrtick_enabled(struct rq *rq) 1001 { 1002 return 0; 1003 } 1004 1005 #endif /* CONFIG_SCHED_HRTICK */ 1006 1007 #ifdef CONFIG_SMP 1008 extern void sched_avg_update(struct rq *rq); 1009 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1010 { 1011 rq->rt_avg += rt_delta; 1012 sched_avg_update(rq); 1013 } 1014 #else 1015 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1016 static inline void sched_avg_update(struct rq *rq) { } 1017 #endif 1018 1019 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1020 1021 #ifdef CONFIG_SMP 1022 #ifdef CONFIG_PREEMPT 1023 1024 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1025 1026 /* 1027 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1028 * way at the expense of forcing extra atomic operations in all 1029 * invocations. This assures that the double_lock is acquired using the 1030 * same underlying policy as the spinlock_t on this architecture, which 1031 * reduces latency compared to the unfair variant below. However, it 1032 * also adds more overhead and therefore may reduce throughput. 1033 */ 1034 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1035 __releases(this_rq->lock) 1036 __acquires(busiest->lock) 1037 __acquires(this_rq->lock) 1038 { 1039 raw_spin_unlock(&this_rq->lock); 1040 double_rq_lock(this_rq, busiest); 1041 1042 return 1; 1043 } 1044 1045 #else 1046 /* 1047 * Unfair double_lock_balance: Optimizes throughput at the expense of 1048 * latency by eliminating extra atomic operations when the locks are 1049 * already in proper order on entry. This favors lower cpu-ids and will 1050 * grant the double lock to lower cpus over higher ids under contention, 1051 * regardless of entry order into the function. 1052 */ 1053 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1054 __releases(this_rq->lock) 1055 __acquires(busiest->lock) 1056 __acquires(this_rq->lock) 1057 { 1058 int ret = 0; 1059 1060 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1061 if (busiest < this_rq) { 1062 raw_spin_unlock(&this_rq->lock); 1063 raw_spin_lock(&busiest->lock); 1064 raw_spin_lock_nested(&this_rq->lock, 1065 SINGLE_DEPTH_NESTING); 1066 ret = 1; 1067 } else 1068 raw_spin_lock_nested(&busiest->lock, 1069 SINGLE_DEPTH_NESTING); 1070 } 1071 return ret; 1072 } 1073 1074 #endif /* CONFIG_PREEMPT */ 1075 1076 /* 1077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1078 */ 1079 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1080 { 1081 if (unlikely(!irqs_disabled())) { 1082 /* printk() doesn't work good under rq->lock */ 1083 raw_spin_unlock(&this_rq->lock); 1084 BUG_ON(1); 1085 } 1086 1087 return _double_lock_balance(this_rq, busiest); 1088 } 1089 1090 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1091 __releases(busiest->lock) 1092 { 1093 raw_spin_unlock(&busiest->lock); 1094 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1095 } 1096 1097 /* 1098 * double_rq_lock - safely lock two runqueues 1099 * 1100 * Note this does not disable interrupts like task_rq_lock, 1101 * you need to do so manually before calling. 1102 */ 1103 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1104 __acquires(rq1->lock) 1105 __acquires(rq2->lock) 1106 { 1107 BUG_ON(!irqs_disabled()); 1108 if (rq1 == rq2) { 1109 raw_spin_lock(&rq1->lock); 1110 __acquire(rq2->lock); /* Fake it out ;) */ 1111 } else { 1112 if (rq1 < rq2) { 1113 raw_spin_lock(&rq1->lock); 1114 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1115 } else { 1116 raw_spin_lock(&rq2->lock); 1117 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1118 } 1119 } 1120 } 1121 1122 /* 1123 * double_rq_unlock - safely unlock two runqueues 1124 * 1125 * Note this does not restore interrupts like task_rq_unlock, 1126 * you need to do so manually after calling. 1127 */ 1128 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1129 __releases(rq1->lock) 1130 __releases(rq2->lock) 1131 { 1132 raw_spin_unlock(&rq1->lock); 1133 if (rq1 != rq2) 1134 raw_spin_unlock(&rq2->lock); 1135 else 1136 __release(rq2->lock); 1137 } 1138 1139 #else /* CONFIG_SMP */ 1140 1141 /* 1142 * double_rq_lock - safely lock two runqueues 1143 * 1144 * Note this does not disable interrupts like task_rq_lock, 1145 * you need to do so manually before calling. 1146 */ 1147 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1148 __acquires(rq1->lock) 1149 __acquires(rq2->lock) 1150 { 1151 BUG_ON(!irqs_disabled()); 1152 BUG_ON(rq1 != rq2); 1153 raw_spin_lock(&rq1->lock); 1154 __acquire(rq2->lock); /* Fake it out ;) */ 1155 } 1156 1157 /* 1158 * double_rq_unlock - safely unlock two runqueues 1159 * 1160 * Note this does not restore interrupts like task_rq_unlock, 1161 * you need to do so manually after calling. 1162 */ 1163 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1164 __releases(rq1->lock) 1165 __releases(rq2->lock) 1166 { 1167 BUG_ON(rq1 != rq2); 1168 raw_spin_unlock(&rq1->lock); 1169 __release(rq2->lock); 1170 } 1171 1172 #endif 1173 1174 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1175 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1176 extern void print_cfs_stats(struct seq_file *m, int cpu); 1177 extern void print_rt_stats(struct seq_file *m, int cpu); 1178 1179 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1180 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1181 1182 extern void account_cfs_bandwidth_used(int enabled, int was_enabled); 1183 1184 #ifdef CONFIG_NO_HZ 1185 enum rq_nohz_flag_bits { 1186 NOHZ_TICK_STOPPED, 1187 NOHZ_BALANCE_KICK, 1188 NOHZ_IDLE, 1189 }; 1190 1191 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1192 #endif 1193 1194 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1195 1196 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1197 DECLARE_PER_CPU(u64, cpu_softirq_time); 1198 1199 #ifndef CONFIG_64BIT 1200 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1201 1202 static inline void irq_time_write_begin(void) 1203 { 1204 __this_cpu_inc(irq_time_seq.sequence); 1205 smp_wmb(); 1206 } 1207 1208 static inline void irq_time_write_end(void) 1209 { 1210 smp_wmb(); 1211 __this_cpu_inc(irq_time_seq.sequence); 1212 } 1213 1214 static inline u64 irq_time_read(int cpu) 1215 { 1216 u64 irq_time; 1217 unsigned seq; 1218 1219 do { 1220 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1221 irq_time = per_cpu(cpu_softirq_time, cpu) + 1222 per_cpu(cpu_hardirq_time, cpu); 1223 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1224 1225 return irq_time; 1226 } 1227 #else /* CONFIG_64BIT */ 1228 static inline void irq_time_write_begin(void) 1229 { 1230 } 1231 1232 static inline void irq_time_write_end(void) 1233 { 1234 } 1235 1236 static inline u64 irq_time_read(int cpu) 1237 { 1238 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1239 } 1240 #endif /* CONFIG_64BIT */ 1241 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1242