1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #include <linux/sched.h> 6 7 #include <linux/sched/autogroup.h> 8 #include <linux/sched/clock.h> 9 #include <linux/sched/coredump.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/cputime.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched/debug.h> 14 #include <linux/sched/hotplug.h> 15 #include <linux/sched/idle.h> 16 #include <linux/sched/init.h> 17 #include <linux/sched/isolation.h> 18 #include <linux/sched/jobctl.h> 19 #include <linux/sched/loadavg.h> 20 #include <linux/sched/mm.h> 21 #include <linux/sched/nohz.h> 22 #include <linux/sched/numa_balancing.h> 23 #include <linux/sched/prio.h> 24 #include <linux/sched/rt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/smt.h> 27 #include <linux/sched/stat.h> 28 #include <linux/sched/sysctl.h> 29 #include <linux/sched/task.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/sched/topology.h> 32 #include <linux/sched/user.h> 33 #include <linux/sched/wake_q.h> 34 #include <linux/sched/xacct.h> 35 36 #include <uapi/linux/sched/types.h> 37 38 #include <linux/binfmts.h> 39 #include <linux/blkdev.h> 40 #include <linux/compat.h> 41 #include <linux/context_tracking.h> 42 #include <linux/cpufreq.h> 43 #include <linux/cpuidle.h> 44 #include <linux/cpuset.h> 45 #include <linux/ctype.h> 46 #include <linux/debugfs.h> 47 #include <linux/delayacct.h> 48 #include <linux/energy_model.h> 49 #include <linux/init_task.h> 50 #include <linux/kprobes.h> 51 #include <linux/kthread.h> 52 #include <linux/membarrier.h> 53 #include <linux/migrate.h> 54 #include <linux/mmu_context.h> 55 #include <linux/nmi.h> 56 #include <linux/proc_fs.h> 57 #include <linux/prefetch.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcupdate_wait.h> 61 #include <linux/security.h> 62 #include <linux/stop_machine.h> 63 #include <linux/suspend.h> 64 #include <linux/swait.h> 65 #include <linux/syscalls.h> 66 #include <linux/task_work.h> 67 #include <linux/tsacct_kern.h> 68 69 #include <asm/tlb.h> 70 71 #ifdef CONFIG_PARAVIRT 72 # include <asm/paravirt.h> 73 #endif 74 75 #include "cpupri.h" 76 #include "cpudeadline.h" 77 78 #ifdef CONFIG_SCHED_DEBUG 79 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 80 #else 81 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 82 #endif 83 84 struct rq; 85 struct cpuidle_state; 86 87 /* task_struct::on_rq states: */ 88 #define TASK_ON_RQ_QUEUED 1 89 #define TASK_ON_RQ_MIGRATING 2 90 91 extern __read_mostly int scheduler_running; 92 93 extern unsigned long calc_load_update; 94 extern atomic_long_t calc_load_tasks; 95 96 extern void calc_global_load_tick(struct rq *this_rq); 97 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 98 99 #ifdef CONFIG_SMP 100 extern void cpu_load_update_active(struct rq *this_rq); 101 #else 102 static inline void cpu_load_update_active(struct rq *this_rq) { } 103 #endif 104 105 /* 106 * Helpers for converting nanosecond timing to jiffy resolution 107 */ 108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 109 110 /* 111 * Increase resolution of nice-level calculations for 64-bit architectures. 112 * The extra resolution improves shares distribution and load balancing of 113 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 114 * hierarchies, especially on larger systems. This is not a user-visible change 115 * and does not change the user-interface for setting shares/weights. 116 * 117 * We increase resolution only if we have enough bits to allow this increased 118 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 119 * are pretty high and the returns do not justify the increased costs. 120 * 121 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 122 * increase coverage and consistency always enable it on 64-bit platforms. 123 */ 124 #ifdef CONFIG_64BIT 125 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 126 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 127 # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) 128 #else 129 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 130 # define scale_load(w) (w) 131 # define scale_load_down(w) (w) 132 #endif 133 134 /* 135 * Task weight (visible to users) and its load (invisible to users) have 136 * independent resolution, but they should be well calibrated. We use 137 * scale_load() and scale_load_down(w) to convert between them. The 138 * following must be true: 139 * 140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD 141 * 142 */ 143 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 144 145 /* 146 * Single value that decides SCHED_DEADLINE internal math precision. 147 * 10 -> just above 1us 148 * 9 -> just above 0.5us 149 */ 150 #define DL_SCALE 10 151 152 /* 153 * Single value that denotes runtime == period, ie unlimited time. 154 */ 155 #define RUNTIME_INF ((u64)~0ULL) 156 157 static inline int idle_policy(int policy) 158 { 159 return policy == SCHED_IDLE; 160 } 161 static inline int fair_policy(int policy) 162 { 163 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 164 } 165 166 static inline int rt_policy(int policy) 167 { 168 return policy == SCHED_FIFO || policy == SCHED_RR; 169 } 170 171 static inline int dl_policy(int policy) 172 { 173 return policy == SCHED_DEADLINE; 174 } 175 static inline bool valid_policy(int policy) 176 { 177 return idle_policy(policy) || fair_policy(policy) || 178 rt_policy(policy) || dl_policy(policy); 179 } 180 181 static inline int task_has_idle_policy(struct task_struct *p) 182 { 183 return idle_policy(p->policy); 184 } 185 186 static inline int task_has_rt_policy(struct task_struct *p) 187 { 188 return rt_policy(p->policy); 189 } 190 191 static inline int task_has_dl_policy(struct task_struct *p) 192 { 193 return dl_policy(p->policy); 194 } 195 196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 197 198 /* 199 * !! For sched_setattr_nocheck() (kernel) only !! 200 * 201 * This is actually gross. :( 202 * 203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 204 * tasks, but still be able to sleep. We need this on platforms that cannot 205 * atomically change clock frequency. Remove once fast switching will be 206 * available on such platforms. 207 * 208 * SUGOV stands for SchedUtil GOVernor. 209 */ 210 #define SCHED_FLAG_SUGOV 0x10000000 211 212 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 213 { 214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 215 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 216 #else 217 return false; 218 #endif 219 } 220 221 /* 222 * Tells if entity @a should preempt entity @b. 223 */ 224 static inline bool 225 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 226 { 227 return dl_entity_is_special(a) || 228 dl_time_before(a->deadline, b->deadline); 229 } 230 231 /* 232 * This is the priority-queue data structure of the RT scheduling class: 233 */ 234 struct rt_prio_array { 235 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 236 struct list_head queue[MAX_RT_PRIO]; 237 }; 238 239 struct rt_bandwidth { 240 /* nests inside the rq lock: */ 241 raw_spinlock_t rt_runtime_lock; 242 ktime_t rt_period; 243 u64 rt_runtime; 244 struct hrtimer rt_period_timer; 245 unsigned int rt_period_active; 246 }; 247 248 void __dl_clear_params(struct task_struct *p); 249 250 /* 251 * To keep the bandwidth of -deadline tasks and groups under control 252 * we need some place where: 253 * - store the maximum -deadline bandwidth of the system (the group); 254 * - cache the fraction of that bandwidth that is currently allocated. 255 * 256 * This is all done in the data structure below. It is similar to the 257 * one used for RT-throttling (rt_bandwidth), with the main difference 258 * that, since here we are only interested in admission control, we 259 * do not decrease any runtime while the group "executes", neither we 260 * need a timer to replenish it. 261 * 262 * With respect to SMP, the bandwidth is given on a per-CPU basis, 263 * meaning that: 264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 265 * - dl_total_bw array contains, in the i-eth element, the currently 266 * allocated bandwidth on the i-eth CPU. 267 * Moreover, groups consume bandwidth on each CPU, while tasks only 268 * consume bandwidth on the CPU they're running on. 269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 270 * that will be shown the next time the proc or cgroup controls will 271 * be red. It on its turn can be changed by writing on its own 272 * control. 273 */ 274 struct dl_bandwidth { 275 raw_spinlock_t dl_runtime_lock; 276 u64 dl_runtime; 277 u64 dl_period; 278 }; 279 280 static inline int dl_bandwidth_enabled(void) 281 { 282 return sysctl_sched_rt_runtime >= 0; 283 } 284 285 struct dl_bw { 286 raw_spinlock_t lock; 287 u64 bw; 288 u64 total_bw; 289 }; 290 291 static inline void __dl_update(struct dl_bw *dl_b, s64 bw); 292 293 static inline 294 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 295 { 296 dl_b->total_bw -= tsk_bw; 297 __dl_update(dl_b, (s32)tsk_bw / cpus); 298 } 299 300 static inline 301 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) 302 { 303 dl_b->total_bw += tsk_bw; 304 __dl_update(dl_b, -((s32)tsk_bw / cpus)); 305 } 306 307 static inline 308 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 309 { 310 return dl_b->bw != -1 && 311 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 312 } 313 314 extern void dl_change_utilization(struct task_struct *p, u64 new_bw); 315 extern void init_dl_bw(struct dl_bw *dl_b); 316 extern int sched_dl_global_validate(void); 317 extern void sched_dl_do_global(void); 318 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 319 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 320 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 321 extern bool __checkparam_dl(const struct sched_attr *attr); 322 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 323 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 324 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 325 extern bool dl_cpu_busy(unsigned int cpu); 326 327 #ifdef CONFIG_CGROUP_SCHED 328 329 #include <linux/cgroup.h> 330 #include <linux/psi.h> 331 332 struct cfs_rq; 333 struct rt_rq; 334 335 extern struct list_head task_groups; 336 337 struct cfs_bandwidth { 338 #ifdef CONFIG_CFS_BANDWIDTH 339 raw_spinlock_t lock; 340 ktime_t period; 341 u64 quota; 342 u64 runtime; 343 s64 hierarchical_quota; 344 u64 runtime_expires; 345 int expires_seq; 346 347 short idle; 348 short period_active; 349 struct hrtimer period_timer; 350 struct hrtimer slack_timer; 351 struct list_head throttled_cfs_rq; 352 353 /* Statistics: */ 354 int nr_periods; 355 int nr_throttled; 356 u64 throttled_time; 357 358 bool distribute_running; 359 #endif 360 }; 361 362 /* Task group related information */ 363 struct task_group { 364 struct cgroup_subsys_state css; 365 366 #ifdef CONFIG_FAIR_GROUP_SCHED 367 /* schedulable entities of this group on each CPU */ 368 struct sched_entity **se; 369 /* runqueue "owned" by this group on each CPU */ 370 struct cfs_rq **cfs_rq; 371 unsigned long shares; 372 373 #ifdef CONFIG_SMP 374 /* 375 * load_avg can be heavily contended at clock tick time, so put 376 * it in its own cacheline separated from the fields above which 377 * will also be accessed at each tick. 378 */ 379 atomic_long_t load_avg ____cacheline_aligned; 380 #endif 381 #endif 382 383 #ifdef CONFIG_RT_GROUP_SCHED 384 struct sched_rt_entity **rt_se; 385 struct rt_rq **rt_rq; 386 387 struct rt_bandwidth rt_bandwidth; 388 #endif 389 390 struct rcu_head rcu; 391 struct list_head list; 392 393 struct task_group *parent; 394 struct list_head siblings; 395 struct list_head children; 396 397 #ifdef CONFIG_SCHED_AUTOGROUP 398 struct autogroup *autogroup; 399 #endif 400 401 struct cfs_bandwidth cfs_bandwidth; 402 }; 403 404 #ifdef CONFIG_FAIR_GROUP_SCHED 405 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 406 407 /* 408 * A weight of 0 or 1 can cause arithmetics problems. 409 * A weight of a cfs_rq is the sum of weights of which entities 410 * are queued on this cfs_rq, so a weight of a entity should not be 411 * too large, so as the shares value of a task group. 412 * (The default weight is 1024 - so there's no practical 413 * limitation from this.) 414 */ 415 #define MIN_SHARES (1UL << 1) 416 #define MAX_SHARES (1UL << 18) 417 #endif 418 419 typedef int (*tg_visitor)(struct task_group *, void *); 420 421 extern int walk_tg_tree_from(struct task_group *from, 422 tg_visitor down, tg_visitor up, void *data); 423 424 /* 425 * Iterate the full tree, calling @down when first entering a node and @up when 426 * leaving it for the final time. 427 * 428 * Caller must hold rcu_lock or sufficient equivalent. 429 */ 430 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 431 { 432 return walk_tg_tree_from(&root_task_group, down, up, data); 433 } 434 435 extern int tg_nop(struct task_group *tg, void *data); 436 437 extern void free_fair_sched_group(struct task_group *tg); 438 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 439 extern void online_fair_sched_group(struct task_group *tg); 440 extern void unregister_fair_sched_group(struct task_group *tg); 441 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 442 struct sched_entity *se, int cpu, 443 struct sched_entity *parent); 444 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 445 446 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 447 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 448 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 449 450 extern void free_rt_sched_group(struct task_group *tg); 451 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 452 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 453 struct sched_rt_entity *rt_se, int cpu, 454 struct sched_rt_entity *parent); 455 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 456 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 457 extern long sched_group_rt_runtime(struct task_group *tg); 458 extern long sched_group_rt_period(struct task_group *tg); 459 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 460 461 extern struct task_group *sched_create_group(struct task_group *parent); 462 extern void sched_online_group(struct task_group *tg, 463 struct task_group *parent); 464 extern void sched_destroy_group(struct task_group *tg); 465 extern void sched_offline_group(struct task_group *tg); 466 467 extern void sched_move_task(struct task_struct *tsk); 468 469 #ifdef CONFIG_FAIR_GROUP_SCHED 470 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 471 472 #ifdef CONFIG_SMP 473 extern void set_task_rq_fair(struct sched_entity *se, 474 struct cfs_rq *prev, struct cfs_rq *next); 475 #else /* !CONFIG_SMP */ 476 static inline void set_task_rq_fair(struct sched_entity *se, 477 struct cfs_rq *prev, struct cfs_rq *next) { } 478 #endif /* CONFIG_SMP */ 479 #endif /* CONFIG_FAIR_GROUP_SCHED */ 480 481 #else /* CONFIG_CGROUP_SCHED */ 482 483 struct cfs_bandwidth { }; 484 485 #endif /* CONFIG_CGROUP_SCHED */ 486 487 /* CFS-related fields in a runqueue */ 488 struct cfs_rq { 489 struct load_weight load; 490 unsigned long runnable_weight; 491 unsigned int nr_running; 492 unsigned int h_nr_running; 493 494 u64 exec_clock; 495 u64 min_vruntime; 496 #ifndef CONFIG_64BIT 497 u64 min_vruntime_copy; 498 #endif 499 500 struct rb_root_cached tasks_timeline; 501 502 /* 503 * 'curr' points to currently running entity on this cfs_rq. 504 * It is set to NULL otherwise (i.e when none are currently running). 505 */ 506 struct sched_entity *curr; 507 struct sched_entity *next; 508 struct sched_entity *last; 509 struct sched_entity *skip; 510 511 #ifdef CONFIG_SCHED_DEBUG 512 unsigned int nr_spread_over; 513 #endif 514 515 #ifdef CONFIG_SMP 516 /* 517 * CFS load tracking 518 */ 519 struct sched_avg avg; 520 #ifndef CONFIG_64BIT 521 u64 load_last_update_time_copy; 522 #endif 523 struct { 524 raw_spinlock_t lock ____cacheline_aligned; 525 int nr; 526 unsigned long load_avg; 527 unsigned long util_avg; 528 unsigned long runnable_sum; 529 } removed; 530 531 #ifdef CONFIG_FAIR_GROUP_SCHED 532 unsigned long tg_load_avg_contrib; 533 long propagate; 534 long prop_runnable_sum; 535 536 /* 537 * h_load = weight * f(tg) 538 * 539 * Where f(tg) is the recursive weight fraction assigned to 540 * this group. 541 */ 542 unsigned long h_load; 543 u64 last_h_load_update; 544 struct sched_entity *h_load_next; 545 #endif /* CONFIG_FAIR_GROUP_SCHED */ 546 #endif /* CONFIG_SMP */ 547 548 #ifdef CONFIG_FAIR_GROUP_SCHED 549 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 550 551 /* 552 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 553 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 554 * (like users, containers etc.) 555 * 556 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 557 * This list is used during load balance. 558 */ 559 int on_list; 560 struct list_head leaf_cfs_rq_list; 561 struct task_group *tg; /* group that "owns" this runqueue */ 562 563 #ifdef CONFIG_CFS_BANDWIDTH 564 int runtime_enabled; 565 int expires_seq; 566 u64 runtime_expires; 567 s64 runtime_remaining; 568 569 u64 throttled_clock; 570 u64 throttled_clock_task; 571 u64 throttled_clock_task_time; 572 int throttled; 573 int throttle_count; 574 struct list_head throttled_list; 575 #endif /* CONFIG_CFS_BANDWIDTH */ 576 #endif /* CONFIG_FAIR_GROUP_SCHED */ 577 }; 578 579 static inline int rt_bandwidth_enabled(void) 580 { 581 return sysctl_sched_rt_runtime >= 0; 582 } 583 584 /* RT IPI pull logic requires IRQ_WORK */ 585 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 586 # define HAVE_RT_PUSH_IPI 587 #endif 588 589 /* Real-Time classes' related field in a runqueue: */ 590 struct rt_rq { 591 struct rt_prio_array active; 592 unsigned int rt_nr_running; 593 unsigned int rr_nr_running; 594 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 595 struct { 596 int curr; /* highest queued rt task prio */ 597 #ifdef CONFIG_SMP 598 int next; /* next highest */ 599 #endif 600 } highest_prio; 601 #endif 602 #ifdef CONFIG_SMP 603 unsigned long rt_nr_migratory; 604 unsigned long rt_nr_total; 605 int overloaded; 606 struct plist_head pushable_tasks; 607 608 #endif /* CONFIG_SMP */ 609 int rt_queued; 610 611 int rt_throttled; 612 u64 rt_time; 613 u64 rt_runtime; 614 /* Nests inside the rq lock: */ 615 raw_spinlock_t rt_runtime_lock; 616 617 #ifdef CONFIG_RT_GROUP_SCHED 618 unsigned long rt_nr_boosted; 619 620 struct rq *rq; 621 struct task_group *tg; 622 #endif 623 }; 624 625 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 626 { 627 return rt_rq->rt_queued && rt_rq->rt_nr_running; 628 } 629 630 /* Deadline class' related fields in a runqueue */ 631 struct dl_rq { 632 /* runqueue is an rbtree, ordered by deadline */ 633 struct rb_root_cached root; 634 635 unsigned long dl_nr_running; 636 637 #ifdef CONFIG_SMP 638 /* 639 * Deadline values of the currently executing and the 640 * earliest ready task on this rq. Caching these facilitates 641 * the decision whether or not a ready but not running task 642 * should migrate somewhere else. 643 */ 644 struct { 645 u64 curr; 646 u64 next; 647 } earliest_dl; 648 649 unsigned long dl_nr_migratory; 650 int overloaded; 651 652 /* 653 * Tasks on this rq that can be pushed away. They are kept in 654 * an rb-tree, ordered by tasks' deadlines, with caching 655 * of the leftmost (earliest deadline) element. 656 */ 657 struct rb_root_cached pushable_dl_tasks_root; 658 #else 659 struct dl_bw dl_bw; 660 #endif 661 /* 662 * "Active utilization" for this runqueue: increased when a 663 * task wakes up (becomes TASK_RUNNING) and decreased when a 664 * task blocks 665 */ 666 u64 running_bw; 667 668 /* 669 * Utilization of the tasks "assigned" to this runqueue (including 670 * the tasks that are in runqueue and the tasks that executed on this 671 * CPU and blocked). Increased when a task moves to this runqueue, and 672 * decreased when the task moves away (migrates, changes scheduling 673 * policy, or terminates). 674 * This is needed to compute the "inactive utilization" for the 675 * runqueue (inactive utilization = this_bw - running_bw). 676 */ 677 u64 this_bw; 678 u64 extra_bw; 679 680 /* 681 * Inverse of the fraction of CPU utilization that can be reclaimed 682 * by the GRUB algorithm. 683 */ 684 u64 bw_ratio; 685 }; 686 687 #ifdef CONFIG_FAIR_GROUP_SCHED 688 /* An entity is a task if it doesn't "own" a runqueue */ 689 #define entity_is_task(se) (!se->my_q) 690 #else 691 #define entity_is_task(se) 1 692 #endif 693 694 #ifdef CONFIG_SMP 695 /* 696 * XXX we want to get rid of these helpers and use the full load resolution. 697 */ 698 static inline long se_weight(struct sched_entity *se) 699 { 700 return scale_load_down(se->load.weight); 701 } 702 703 static inline long se_runnable(struct sched_entity *se) 704 { 705 return scale_load_down(se->runnable_weight); 706 } 707 708 static inline bool sched_asym_prefer(int a, int b) 709 { 710 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 711 } 712 713 struct perf_domain { 714 struct em_perf_domain *em_pd; 715 struct perf_domain *next; 716 struct rcu_head rcu; 717 }; 718 719 /* Scheduling group status flags */ 720 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 721 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 722 723 /* 724 * We add the notion of a root-domain which will be used to define per-domain 725 * variables. Each exclusive cpuset essentially defines an island domain by 726 * fully partitioning the member CPUs from any other cpuset. Whenever a new 727 * exclusive cpuset is created, we also create and attach a new root-domain 728 * object. 729 * 730 */ 731 struct root_domain { 732 atomic_t refcount; 733 atomic_t rto_count; 734 struct rcu_head rcu; 735 cpumask_var_t span; 736 cpumask_var_t online; 737 738 /* 739 * Indicate pullable load on at least one CPU, e.g: 740 * - More than one runnable task 741 * - Running task is misfit 742 */ 743 int overload; 744 745 /* Indicate one or more cpus over-utilized (tipping point) */ 746 int overutilized; 747 748 /* 749 * The bit corresponding to a CPU gets set here if such CPU has more 750 * than one runnable -deadline task (as it is below for RT tasks). 751 */ 752 cpumask_var_t dlo_mask; 753 atomic_t dlo_count; 754 struct dl_bw dl_bw; 755 struct cpudl cpudl; 756 757 #ifdef HAVE_RT_PUSH_IPI 758 /* 759 * For IPI pull requests, loop across the rto_mask. 760 */ 761 struct irq_work rto_push_work; 762 raw_spinlock_t rto_lock; 763 /* These are only updated and read within rto_lock */ 764 int rto_loop; 765 int rto_cpu; 766 /* These atomics are updated outside of a lock */ 767 atomic_t rto_loop_next; 768 atomic_t rto_loop_start; 769 #endif 770 /* 771 * The "RT overload" flag: it gets set if a CPU has more than 772 * one runnable RT task. 773 */ 774 cpumask_var_t rto_mask; 775 struct cpupri cpupri; 776 777 unsigned long max_cpu_capacity; 778 779 /* 780 * NULL-terminated list of performance domains intersecting with the 781 * CPUs of the rd. Protected by RCU. 782 */ 783 struct perf_domain __rcu *pd; 784 }; 785 786 extern struct root_domain def_root_domain; 787 extern struct mutex sched_domains_mutex; 788 789 extern void init_defrootdomain(void); 790 extern int sched_init_domains(const struct cpumask *cpu_map); 791 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 792 extern void sched_get_rd(struct root_domain *rd); 793 extern void sched_put_rd(struct root_domain *rd); 794 795 #ifdef HAVE_RT_PUSH_IPI 796 extern void rto_push_irq_work_func(struct irq_work *work); 797 #endif 798 #endif /* CONFIG_SMP */ 799 800 /* 801 * This is the main, per-CPU runqueue data structure. 802 * 803 * Locking rule: those places that want to lock multiple runqueues 804 * (such as the load balancing or the thread migration code), lock 805 * acquire operations must be ordered by ascending &runqueue. 806 */ 807 struct rq { 808 /* runqueue lock: */ 809 raw_spinlock_t lock; 810 811 /* 812 * nr_running and cpu_load should be in the same cacheline because 813 * remote CPUs use both these fields when doing load calculation. 814 */ 815 unsigned int nr_running; 816 #ifdef CONFIG_NUMA_BALANCING 817 unsigned int nr_numa_running; 818 unsigned int nr_preferred_running; 819 unsigned int numa_migrate_on; 820 #endif 821 #define CPU_LOAD_IDX_MAX 5 822 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 823 #ifdef CONFIG_NO_HZ_COMMON 824 #ifdef CONFIG_SMP 825 unsigned long last_load_update_tick; 826 unsigned long last_blocked_load_update_tick; 827 unsigned int has_blocked_load; 828 #endif /* CONFIG_SMP */ 829 unsigned int nohz_tick_stopped; 830 atomic_t nohz_flags; 831 #endif /* CONFIG_NO_HZ_COMMON */ 832 833 /* capture load from *all* tasks on this CPU: */ 834 struct load_weight load; 835 unsigned long nr_load_updates; 836 u64 nr_switches; 837 838 struct cfs_rq cfs; 839 struct rt_rq rt; 840 struct dl_rq dl; 841 842 #ifdef CONFIG_FAIR_GROUP_SCHED 843 /* list of leaf cfs_rq on this CPU: */ 844 struct list_head leaf_cfs_rq_list; 845 struct list_head *tmp_alone_branch; 846 #endif /* CONFIG_FAIR_GROUP_SCHED */ 847 848 /* 849 * This is part of a global counter where only the total sum 850 * over all CPUs matters. A task can increase this counter on 851 * one CPU and if it got migrated afterwards it may decrease 852 * it on another CPU. Always updated under the runqueue lock: 853 */ 854 unsigned long nr_uninterruptible; 855 856 struct task_struct *curr; 857 struct task_struct *idle; 858 struct task_struct *stop; 859 unsigned long next_balance; 860 struct mm_struct *prev_mm; 861 862 unsigned int clock_update_flags; 863 u64 clock; 864 /* Ensure that all clocks are in the same cache line */ 865 u64 clock_task ____cacheline_aligned; 866 u64 clock_pelt; 867 unsigned long lost_idle_time; 868 869 atomic_t nr_iowait; 870 871 #ifdef CONFIG_SMP 872 struct root_domain *rd; 873 struct sched_domain __rcu *sd; 874 875 unsigned long cpu_capacity; 876 unsigned long cpu_capacity_orig; 877 878 struct callback_head *balance_callback; 879 880 unsigned char idle_balance; 881 882 unsigned long misfit_task_load; 883 884 /* For active balancing */ 885 int active_balance; 886 int push_cpu; 887 struct cpu_stop_work active_balance_work; 888 889 /* CPU of this runqueue: */ 890 int cpu; 891 int online; 892 893 struct list_head cfs_tasks; 894 895 struct sched_avg avg_rt; 896 struct sched_avg avg_dl; 897 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 898 struct sched_avg avg_irq; 899 #endif 900 u64 idle_stamp; 901 u64 avg_idle; 902 903 /* This is used to determine avg_idle's max value */ 904 u64 max_idle_balance_cost; 905 #endif 906 907 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 908 u64 prev_irq_time; 909 #endif 910 #ifdef CONFIG_PARAVIRT 911 u64 prev_steal_time; 912 #endif 913 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 914 u64 prev_steal_time_rq; 915 #endif 916 917 /* calc_load related fields */ 918 unsigned long calc_load_update; 919 long calc_load_active; 920 921 #ifdef CONFIG_SCHED_HRTICK 922 #ifdef CONFIG_SMP 923 int hrtick_csd_pending; 924 call_single_data_t hrtick_csd; 925 #endif 926 struct hrtimer hrtick_timer; 927 #endif 928 929 #ifdef CONFIG_SCHEDSTATS 930 /* latency stats */ 931 struct sched_info rq_sched_info; 932 unsigned long long rq_cpu_time; 933 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 934 935 /* sys_sched_yield() stats */ 936 unsigned int yld_count; 937 938 /* schedule() stats */ 939 unsigned int sched_count; 940 unsigned int sched_goidle; 941 942 /* try_to_wake_up() stats */ 943 unsigned int ttwu_count; 944 unsigned int ttwu_local; 945 #endif 946 947 #ifdef CONFIG_SMP 948 struct llist_head wake_list; 949 #endif 950 951 #ifdef CONFIG_CPU_IDLE 952 /* Must be inspected within a rcu lock section */ 953 struct cpuidle_state *idle_state; 954 #endif 955 }; 956 957 #ifdef CONFIG_FAIR_GROUP_SCHED 958 959 /* CPU runqueue to which this cfs_rq is attached */ 960 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 961 { 962 return cfs_rq->rq; 963 } 964 965 #else 966 967 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 968 { 969 return container_of(cfs_rq, struct rq, cfs); 970 } 971 #endif 972 973 static inline int cpu_of(struct rq *rq) 974 { 975 #ifdef CONFIG_SMP 976 return rq->cpu; 977 #else 978 return 0; 979 #endif 980 } 981 982 983 #ifdef CONFIG_SCHED_SMT 984 extern void __update_idle_core(struct rq *rq); 985 986 static inline void update_idle_core(struct rq *rq) 987 { 988 if (static_branch_unlikely(&sched_smt_present)) 989 __update_idle_core(rq); 990 } 991 992 #else 993 static inline void update_idle_core(struct rq *rq) { } 994 #endif 995 996 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 997 998 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 999 #define this_rq() this_cpu_ptr(&runqueues) 1000 #define task_rq(p) cpu_rq(task_cpu(p)) 1001 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1002 #define raw_rq() raw_cpu_ptr(&runqueues) 1003 1004 extern void update_rq_clock(struct rq *rq); 1005 1006 static inline u64 __rq_clock_broken(struct rq *rq) 1007 { 1008 return READ_ONCE(rq->clock); 1009 } 1010 1011 /* 1012 * rq::clock_update_flags bits 1013 * 1014 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1015 * call to __schedule(). This is an optimisation to avoid 1016 * neighbouring rq clock updates. 1017 * 1018 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1019 * in effect and calls to update_rq_clock() are being ignored. 1020 * 1021 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1022 * made to update_rq_clock() since the last time rq::lock was pinned. 1023 * 1024 * If inside of __schedule(), clock_update_flags will have been 1025 * shifted left (a left shift is a cheap operation for the fast path 1026 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1027 * 1028 * if (rq-clock_update_flags >= RQCF_UPDATED) 1029 * 1030 * to check if %RQCF_UPADTED is set. It'll never be shifted more than 1031 * one position though, because the next rq_unpin_lock() will shift it 1032 * back. 1033 */ 1034 #define RQCF_REQ_SKIP 0x01 1035 #define RQCF_ACT_SKIP 0x02 1036 #define RQCF_UPDATED 0x04 1037 1038 static inline void assert_clock_updated(struct rq *rq) 1039 { 1040 /* 1041 * The only reason for not seeing a clock update since the 1042 * last rq_pin_lock() is if we're currently skipping updates. 1043 */ 1044 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1045 } 1046 1047 static inline u64 rq_clock(struct rq *rq) 1048 { 1049 lockdep_assert_held(&rq->lock); 1050 assert_clock_updated(rq); 1051 1052 return rq->clock; 1053 } 1054 1055 static inline u64 rq_clock_task(struct rq *rq) 1056 { 1057 lockdep_assert_held(&rq->lock); 1058 assert_clock_updated(rq); 1059 1060 return rq->clock_task; 1061 } 1062 1063 static inline void rq_clock_skip_update(struct rq *rq) 1064 { 1065 lockdep_assert_held(&rq->lock); 1066 rq->clock_update_flags |= RQCF_REQ_SKIP; 1067 } 1068 1069 /* 1070 * See rt task throttling, which is the only time a skip 1071 * request is cancelled. 1072 */ 1073 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1074 { 1075 lockdep_assert_held(&rq->lock); 1076 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1077 } 1078 1079 struct rq_flags { 1080 unsigned long flags; 1081 struct pin_cookie cookie; 1082 #ifdef CONFIG_SCHED_DEBUG 1083 /* 1084 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1085 * current pin context is stashed here in case it needs to be 1086 * restored in rq_repin_lock(). 1087 */ 1088 unsigned int clock_update_flags; 1089 #endif 1090 }; 1091 1092 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1093 { 1094 rf->cookie = lockdep_pin_lock(&rq->lock); 1095 1096 #ifdef CONFIG_SCHED_DEBUG 1097 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1098 rf->clock_update_flags = 0; 1099 #endif 1100 } 1101 1102 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1103 { 1104 #ifdef CONFIG_SCHED_DEBUG 1105 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1106 rf->clock_update_flags = RQCF_UPDATED; 1107 #endif 1108 1109 lockdep_unpin_lock(&rq->lock, rf->cookie); 1110 } 1111 1112 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1113 { 1114 lockdep_repin_lock(&rq->lock, rf->cookie); 1115 1116 #ifdef CONFIG_SCHED_DEBUG 1117 /* 1118 * Restore the value we stashed in @rf for this pin context. 1119 */ 1120 rq->clock_update_flags |= rf->clock_update_flags; 1121 #endif 1122 } 1123 1124 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1125 __acquires(rq->lock); 1126 1127 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1128 __acquires(p->pi_lock) 1129 __acquires(rq->lock); 1130 1131 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1132 __releases(rq->lock) 1133 { 1134 rq_unpin_lock(rq, rf); 1135 raw_spin_unlock(&rq->lock); 1136 } 1137 1138 static inline void 1139 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1140 __releases(rq->lock) 1141 __releases(p->pi_lock) 1142 { 1143 rq_unpin_lock(rq, rf); 1144 raw_spin_unlock(&rq->lock); 1145 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1146 } 1147 1148 static inline void 1149 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1150 __acquires(rq->lock) 1151 { 1152 raw_spin_lock_irqsave(&rq->lock, rf->flags); 1153 rq_pin_lock(rq, rf); 1154 } 1155 1156 static inline void 1157 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1158 __acquires(rq->lock) 1159 { 1160 raw_spin_lock_irq(&rq->lock); 1161 rq_pin_lock(rq, rf); 1162 } 1163 1164 static inline void 1165 rq_lock(struct rq *rq, struct rq_flags *rf) 1166 __acquires(rq->lock) 1167 { 1168 raw_spin_lock(&rq->lock); 1169 rq_pin_lock(rq, rf); 1170 } 1171 1172 static inline void 1173 rq_relock(struct rq *rq, struct rq_flags *rf) 1174 __acquires(rq->lock) 1175 { 1176 raw_spin_lock(&rq->lock); 1177 rq_repin_lock(rq, rf); 1178 } 1179 1180 static inline void 1181 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1182 __releases(rq->lock) 1183 { 1184 rq_unpin_lock(rq, rf); 1185 raw_spin_unlock_irqrestore(&rq->lock, rf->flags); 1186 } 1187 1188 static inline void 1189 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1190 __releases(rq->lock) 1191 { 1192 rq_unpin_lock(rq, rf); 1193 raw_spin_unlock_irq(&rq->lock); 1194 } 1195 1196 static inline void 1197 rq_unlock(struct rq *rq, struct rq_flags *rf) 1198 __releases(rq->lock) 1199 { 1200 rq_unpin_lock(rq, rf); 1201 raw_spin_unlock(&rq->lock); 1202 } 1203 1204 static inline struct rq * 1205 this_rq_lock_irq(struct rq_flags *rf) 1206 __acquires(rq->lock) 1207 { 1208 struct rq *rq; 1209 1210 local_irq_disable(); 1211 rq = this_rq(); 1212 rq_lock(rq, rf); 1213 return rq; 1214 } 1215 1216 #ifdef CONFIG_NUMA 1217 enum numa_topology_type { 1218 NUMA_DIRECT, 1219 NUMA_GLUELESS_MESH, 1220 NUMA_BACKPLANE, 1221 }; 1222 extern enum numa_topology_type sched_numa_topology_type; 1223 extern int sched_max_numa_distance; 1224 extern bool find_numa_distance(int distance); 1225 #endif 1226 1227 #ifdef CONFIG_NUMA 1228 extern void sched_init_numa(void); 1229 extern void sched_domains_numa_masks_set(unsigned int cpu); 1230 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1231 #else 1232 static inline void sched_init_numa(void) { } 1233 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1234 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1235 #endif 1236 1237 #ifdef CONFIG_NUMA_BALANCING 1238 /* The regions in numa_faults array from task_struct */ 1239 enum numa_faults_stats { 1240 NUMA_MEM = 0, 1241 NUMA_CPU, 1242 NUMA_MEMBUF, 1243 NUMA_CPUBUF 1244 }; 1245 extern void sched_setnuma(struct task_struct *p, int node); 1246 extern int migrate_task_to(struct task_struct *p, int cpu); 1247 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1248 int cpu, int scpu); 1249 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1250 #else 1251 static inline void 1252 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1253 { 1254 } 1255 #endif /* CONFIG_NUMA_BALANCING */ 1256 1257 #ifdef CONFIG_SMP 1258 1259 static inline void 1260 queue_balance_callback(struct rq *rq, 1261 struct callback_head *head, 1262 void (*func)(struct rq *rq)) 1263 { 1264 lockdep_assert_held(&rq->lock); 1265 1266 if (unlikely(head->next)) 1267 return; 1268 1269 head->func = (void (*)(struct callback_head *))func; 1270 head->next = rq->balance_callback; 1271 rq->balance_callback = head; 1272 } 1273 1274 extern void sched_ttwu_pending(void); 1275 1276 #define rcu_dereference_check_sched_domain(p) \ 1277 rcu_dereference_check((p), \ 1278 lockdep_is_held(&sched_domains_mutex)) 1279 1280 /* 1281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1282 * See destroy_sched_domains: call_rcu for details. 1283 * 1284 * The domain tree of any CPU may only be accessed from within 1285 * preempt-disabled sections. 1286 */ 1287 #define for_each_domain(cpu, __sd) \ 1288 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1289 __sd; __sd = __sd->parent) 1290 1291 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 1292 1293 /** 1294 * highest_flag_domain - Return highest sched_domain containing flag. 1295 * @cpu: The CPU whose highest level of sched domain is to 1296 * be returned. 1297 * @flag: The flag to check for the highest sched_domain 1298 * for the given CPU. 1299 * 1300 * Returns the highest sched_domain of a CPU which contains the given flag. 1301 */ 1302 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1303 { 1304 struct sched_domain *sd, *hsd = NULL; 1305 1306 for_each_domain(cpu, sd) { 1307 if (!(sd->flags & flag)) 1308 break; 1309 hsd = sd; 1310 } 1311 1312 return hsd; 1313 } 1314 1315 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1316 { 1317 struct sched_domain *sd; 1318 1319 for_each_domain(cpu, sd) { 1320 if (sd->flags & flag) 1321 break; 1322 } 1323 1324 return sd; 1325 } 1326 1327 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1328 DECLARE_PER_CPU(int, sd_llc_size); 1329 DECLARE_PER_CPU(int, sd_llc_id); 1330 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1331 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1332 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1333 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1334 extern struct static_key_false sched_asym_cpucapacity; 1335 1336 struct sched_group_capacity { 1337 atomic_t ref; 1338 /* 1339 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1340 * for a single CPU. 1341 */ 1342 unsigned long capacity; 1343 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1344 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1345 unsigned long next_update; 1346 int imbalance; /* XXX unrelated to capacity but shared group state */ 1347 1348 #ifdef CONFIG_SCHED_DEBUG 1349 int id; 1350 #endif 1351 1352 unsigned long cpumask[0]; /* Balance mask */ 1353 }; 1354 1355 struct sched_group { 1356 struct sched_group *next; /* Must be a circular list */ 1357 atomic_t ref; 1358 1359 unsigned int group_weight; 1360 struct sched_group_capacity *sgc; 1361 int asym_prefer_cpu; /* CPU of highest priority in group */ 1362 1363 /* 1364 * The CPUs this group covers. 1365 * 1366 * NOTE: this field is variable length. (Allocated dynamically 1367 * by attaching extra space to the end of the structure, 1368 * depending on how many CPUs the kernel has booted up with) 1369 */ 1370 unsigned long cpumask[0]; 1371 }; 1372 1373 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1374 { 1375 return to_cpumask(sg->cpumask); 1376 } 1377 1378 /* 1379 * See build_balance_mask(). 1380 */ 1381 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1382 { 1383 return to_cpumask(sg->sgc->cpumask); 1384 } 1385 1386 /** 1387 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. 1388 * @group: The group whose first CPU is to be returned. 1389 */ 1390 static inline unsigned int group_first_cpu(struct sched_group *group) 1391 { 1392 return cpumask_first(sched_group_span(group)); 1393 } 1394 1395 extern int group_balance_cpu(struct sched_group *sg); 1396 1397 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 1398 void register_sched_domain_sysctl(void); 1399 void dirty_sched_domain_sysctl(int cpu); 1400 void unregister_sched_domain_sysctl(void); 1401 #else 1402 static inline void register_sched_domain_sysctl(void) 1403 { 1404 } 1405 static inline void dirty_sched_domain_sysctl(int cpu) 1406 { 1407 } 1408 static inline void unregister_sched_domain_sysctl(void) 1409 { 1410 } 1411 #endif 1412 1413 #else 1414 1415 static inline void sched_ttwu_pending(void) { } 1416 1417 #endif /* CONFIG_SMP */ 1418 1419 #include "stats.h" 1420 #include "autogroup.h" 1421 1422 #ifdef CONFIG_CGROUP_SCHED 1423 1424 /* 1425 * Return the group to which this tasks belongs. 1426 * 1427 * We cannot use task_css() and friends because the cgroup subsystem 1428 * changes that value before the cgroup_subsys::attach() method is called, 1429 * therefore we cannot pin it and might observe the wrong value. 1430 * 1431 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1432 * core changes this before calling sched_move_task(). 1433 * 1434 * Instead we use a 'copy' which is updated from sched_move_task() while 1435 * holding both task_struct::pi_lock and rq::lock. 1436 */ 1437 static inline struct task_group *task_group(struct task_struct *p) 1438 { 1439 return p->sched_task_group; 1440 } 1441 1442 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1443 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1444 { 1445 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1446 struct task_group *tg = task_group(p); 1447 #endif 1448 1449 #ifdef CONFIG_FAIR_GROUP_SCHED 1450 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1451 p->se.cfs_rq = tg->cfs_rq[cpu]; 1452 p->se.parent = tg->se[cpu]; 1453 #endif 1454 1455 #ifdef CONFIG_RT_GROUP_SCHED 1456 p->rt.rt_rq = tg->rt_rq[cpu]; 1457 p->rt.parent = tg->rt_se[cpu]; 1458 #endif 1459 } 1460 1461 #else /* CONFIG_CGROUP_SCHED */ 1462 1463 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1464 static inline struct task_group *task_group(struct task_struct *p) 1465 { 1466 return NULL; 1467 } 1468 1469 #endif /* CONFIG_CGROUP_SCHED */ 1470 1471 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1472 { 1473 set_task_rq(p, cpu); 1474 #ifdef CONFIG_SMP 1475 /* 1476 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1477 * successfully executed on another CPU. We must ensure that updates of 1478 * per-task data have been completed by this moment. 1479 */ 1480 smp_wmb(); 1481 #ifdef CONFIG_THREAD_INFO_IN_TASK 1482 WRITE_ONCE(p->cpu, cpu); 1483 #else 1484 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1485 #endif 1486 p->wake_cpu = cpu; 1487 #endif 1488 } 1489 1490 /* 1491 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1492 */ 1493 #ifdef CONFIG_SCHED_DEBUG 1494 # include <linux/static_key.h> 1495 # define const_debug __read_mostly 1496 #else 1497 # define const_debug const 1498 #endif 1499 1500 #define SCHED_FEAT(name, enabled) \ 1501 __SCHED_FEAT_##name , 1502 1503 enum { 1504 #include "features.h" 1505 __SCHED_FEAT_NR, 1506 }; 1507 1508 #undef SCHED_FEAT 1509 1510 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL) 1511 1512 /* 1513 * To support run-time toggling of sched features, all the translation units 1514 * (but core.c) reference the sysctl_sched_features defined in core.c. 1515 */ 1516 extern const_debug unsigned int sysctl_sched_features; 1517 1518 #define SCHED_FEAT(name, enabled) \ 1519 static __always_inline bool static_branch_##name(struct static_key *key) \ 1520 { \ 1521 return static_key_##enabled(key); \ 1522 } 1523 1524 #include "features.h" 1525 #undef SCHED_FEAT 1526 1527 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1528 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1529 1530 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */ 1531 1532 /* 1533 * Each translation unit has its own copy of sysctl_sched_features to allow 1534 * constants propagation at compile time and compiler optimization based on 1535 * features default. 1536 */ 1537 #define SCHED_FEAT(name, enabled) \ 1538 (1UL << __SCHED_FEAT_##name) * enabled | 1539 static const_debug __maybe_unused unsigned int sysctl_sched_features = 1540 #include "features.h" 1541 0; 1542 #undef SCHED_FEAT 1543 1544 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1545 1546 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */ 1547 1548 extern struct static_key_false sched_numa_balancing; 1549 extern struct static_key_false sched_schedstats; 1550 1551 static inline u64 global_rt_period(void) 1552 { 1553 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1554 } 1555 1556 static inline u64 global_rt_runtime(void) 1557 { 1558 if (sysctl_sched_rt_runtime < 0) 1559 return RUNTIME_INF; 1560 1561 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1562 } 1563 1564 static inline int task_current(struct rq *rq, struct task_struct *p) 1565 { 1566 return rq->curr == p; 1567 } 1568 1569 static inline int task_running(struct rq *rq, struct task_struct *p) 1570 { 1571 #ifdef CONFIG_SMP 1572 return p->on_cpu; 1573 #else 1574 return task_current(rq, p); 1575 #endif 1576 } 1577 1578 static inline int task_on_rq_queued(struct task_struct *p) 1579 { 1580 return p->on_rq == TASK_ON_RQ_QUEUED; 1581 } 1582 1583 static inline int task_on_rq_migrating(struct task_struct *p) 1584 { 1585 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 1586 } 1587 1588 /* 1589 * wake flags 1590 */ 1591 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */ 1592 #define WF_FORK 0x02 /* Child wakeup after fork */ 1593 #define WF_MIGRATED 0x4 /* Internal use, task got migrated */ 1594 1595 /* 1596 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1597 * of tasks with abnormal "nice" values across CPUs the contribution that 1598 * each task makes to its run queue's load is weighted according to its 1599 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1600 * scaled version of the new time slice allocation that they receive on time 1601 * slice expiry etc. 1602 */ 1603 1604 #define WEIGHT_IDLEPRIO 3 1605 #define WMULT_IDLEPRIO 1431655765 1606 1607 extern const int sched_prio_to_weight[40]; 1608 extern const u32 sched_prio_to_wmult[40]; 1609 1610 /* 1611 * {de,en}queue flags: 1612 * 1613 * DEQUEUE_SLEEP - task is no longer runnable 1614 * ENQUEUE_WAKEUP - task just became runnable 1615 * 1616 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 1617 * are in a known state which allows modification. Such pairs 1618 * should preserve as much state as possible. 1619 * 1620 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 1621 * in the runqueue. 1622 * 1623 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 1624 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 1625 * ENQUEUE_MIGRATED - the task was migrated during wakeup 1626 * 1627 */ 1628 1629 #define DEQUEUE_SLEEP 0x01 1630 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 1631 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 1632 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 1633 1634 #define ENQUEUE_WAKEUP 0x01 1635 #define ENQUEUE_RESTORE 0x02 1636 #define ENQUEUE_MOVE 0x04 1637 #define ENQUEUE_NOCLOCK 0x08 1638 1639 #define ENQUEUE_HEAD 0x10 1640 #define ENQUEUE_REPLENISH 0x20 1641 #ifdef CONFIG_SMP 1642 #define ENQUEUE_MIGRATED 0x40 1643 #else 1644 #define ENQUEUE_MIGRATED 0x00 1645 #endif 1646 1647 #define RETRY_TASK ((void *)-1UL) 1648 1649 struct sched_class { 1650 const struct sched_class *next; 1651 1652 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1653 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1654 void (*yield_task) (struct rq *rq); 1655 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); 1656 1657 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 1658 1659 /* 1660 * It is the responsibility of the pick_next_task() method that will 1661 * return the next task to call put_prev_task() on the @prev task or 1662 * something equivalent. 1663 * 1664 * May return RETRY_TASK when it finds a higher prio class has runnable 1665 * tasks. 1666 */ 1667 struct task_struct * (*pick_next_task)(struct rq *rq, 1668 struct task_struct *prev, 1669 struct rq_flags *rf); 1670 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 1671 1672 #ifdef CONFIG_SMP 1673 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1674 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 1675 1676 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 1677 1678 void (*set_cpus_allowed)(struct task_struct *p, 1679 const struct cpumask *newmask); 1680 1681 void (*rq_online)(struct rq *rq); 1682 void (*rq_offline)(struct rq *rq); 1683 #endif 1684 1685 void (*set_curr_task)(struct rq *rq); 1686 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 1687 void (*task_fork)(struct task_struct *p); 1688 void (*task_dead)(struct task_struct *p); 1689 1690 /* 1691 * The switched_from() call is allowed to drop rq->lock, therefore we 1692 * cannot assume the switched_from/switched_to pair is serliazed by 1693 * rq->lock. They are however serialized by p->pi_lock. 1694 */ 1695 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 1696 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1697 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1698 int oldprio); 1699 1700 unsigned int (*get_rr_interval)(struct rq *rq, 1701 struct task_struct *task); 1702 1703 void (*update_curr)(struct rq *rq); 1704 1705 #define TASK_SET_GROUP 0 1706 #define TASK_MOVE_GROUP 1 1707 1708 #ifdef CONFIG_FAIR_GROUP_SCHED 1709 void (*task_change_group)(struct task_struct *p, int type); 1710 #endif 1711 }; 1712 1713 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1714 { 1715 prev->sched_class->put_prev_task(rq, prev); 1716 } 1717 1718 static inline void set_curr_task(struct rq *rq, struct task_struct *curr) 1719 { 1720 curr->sched_class->set_curr_task(rq); 1721 } 1722 1723 #ifdef CONFIG_SMP 1724 #define sched_class_highest (&stop_sched_class) 1725 #else 1726 #define sched_class_highest (&dl_sched_class) 1727 #endif 1728 #define for_each_class(class) \ 1729 for (class = sched_class_highest; class; class = class->next) 1730 1731 extern const struct sched_class stop_sched_class; 1732 extern const struct sched_class dl_sched_class; 1733 extern const struct sched_class rt_sched_class; 1734 extern const struct sched_class fair_sched_class; 1735 extern const struct sched_class idle_sched_class; 1736 1737 1738 #ifdef CONFIG_SMP 1739 1740 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1741 1742 extern void trigger_load_balance(struct rq *rq); 1743 1744 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); 1745 1746 #endif 1747 1748 #ifdef CONFIG_CPU_IDLE 1749 static inline void idle_set_state(struct rq *rq, 1750 struct cpuidle_state *idle_state) 1751 { 1752 rq->idle_state = idle_state; 1753 } 1754 1755 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1756 { 1757 SCHED_WARN_ON(!rcu_read_lock_held()); 1758 1759 return rq->idle_state; 1760 } 1761 #else 1762 static inline void idle_set_state(struct rq *rq, 1763 struct cpuidle_state *idle_state) 1764 { 1765 } 1766 1767 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1768 { 1769 return NULL; 1770 } 1771 #endif 1772 1773 extern void schedule_idle(void); 1774 1775 extern void sysrq_sched_debug_show(void); 1776 extern void sched_init_granularity(void); 1777 extern void update_max_interval(void); 1778 1779 extern void init_sched_dl_class(void); 1780 extern void init_sched_rt_class(void); 1781 extern void init_sched_fair_class(void); 1782 1783 extern void reweight_task(struct task_struct *p, int prio); 1784 1785 extern void resched_curr(struct rq *rq); 1786 extern void resched_cpu(int cpu); 1787 1788 extern struct rt_bandwidth def_rt_bandwidth; 1789 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1790 1791 extern struct dl_bandwidth def_dl_bandwidth; 1792 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1793 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1794 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 1795 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); 1796 1797 #define BW_SHIFT 20 1798 #define BW_UNIT (1 << BW_SHIFT) 1799 #define RATIO_SHIFT 8 1800 unsigned long to_ratio(u64 period, u64 runtime); 1801 1802 extern void init_entity_runnable_average(struct sched_entity *se); 1803 extern void post_init_entity_util_avg(struct task_struct *p); 1804 1805 #ifdef CONFIG_NO_HZ_FULL 1806 extern bool sched_can_stop_tick(struct rq *rq); 1807 extern int __init sched_tick_offload_init(void); 1808 1809 /* 1810 * Tick may be needed by tasks in the runqueue depending on their policy and 1811 * requirements. If tick is needed, lets send the target an IPI to kick it out of 1812 * nohz mode if necessary. 1813 */ 1814 static inline void sched_update_tick_dependency(struct rq *rq) 1815 { 1816 int cpu; 1817 1818 if (!tick_nohz_full_enabled()) 1819 return; 1820 1821 cpu = cpu_of(rq); 1822 1823 if (!tick_nohz_full_cpu(cpu)) 1824 return; 1825 1826 if (sched_can_stop_tick(rq)) 1827 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 1828 else 1829 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 1830 } 1831 #else 1832 static inline int sched_tick_offload_init(void) { return 0; } 1833 static inline void sched_update_tick_dependency(struct rq *rq) { } 1834 #endif 1835 1836 static inline void add_nr_running(struct rq *rq, unsigned count) 1837 { 1838 unsigned prev_nr = rq->nr_running; 1839 1840 rq->nr_running = prev_nr + count; 1841 1842 #ifdef CONFIG_SMP 1843 if (prev_nr < 2 && rq->nr_running >= 2) { 1844 if (!READ_ONCE(rq->rd->overload)) 1845 WRITE_ONCE(rq->rd->overload, 1); 1846 } 1847 #endif 1848 1849 sched_update_tick_dependency(rq); 1850 } 1851 1852 static inline void sub_nr_running(struct rq *rq, unsigned count) 1853 { 1854 rq->nr_running -= count; 1855 /* Check if we still need preemption */ 1856 sched_update_tick_dependency(rq); 1857 } 1858 1859 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1860 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1861 1862 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1863 1864 extern const_debug unsigned int sysctl_sched_nr_migrate; 1865 extern const_debug unsigned int sysctl_sched_migration_cost; 1866 1867 #ifdef CONFIG_SCHED_HRTICK 1868 1869 /* 1870 * Use hrtick when: 1871 * - enabled by features 1872 * - hrtimer is actually high res 1873 */ 1874 static inline int hrtick_enabled(struct rq *rq) 1875 { 1876 if (!sched_feat(HRTICK)) 1877 return 0; 1878 if (!cpu_active(cpu_of(rq))) 1879 return 0; 1880 return hrtimer_is_hres_active(&rq->hrtick_timer); 1881 } 1882 1883 void hrtick_start(struct rq *rq, u64 delay); 1884 1885 #else 1886 1887 static inline int hrtick_enabled(struct rq *rq) 1888 { 1889 return 0; 1890 } 1891 1892 #endif /* CONFIG_SCHED_HRTICK */ 1893 1894 #ifndef arch_scale_freq_capacity 1895 static __always_inline 1896 unsigned long arch_scale_freq_capacity(int cpu) 1897 { 1898 return SCHED_CAPACITY_SCALE; 1899 } 1900 #endif 1901 1902 #ifdef CONFIG_SMP 1903 #ifdef CONFIG_PREEMPT 1904 1905 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1906 1907 /* 1908 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1909 * way at the expense of forcing extra atomic operations in all 1910 * invocations. This assures that the double_lock is acquired using the 1911 * same underlying policy as the spinlock_t on this architecture, which 1912 * reduces latency compared to the unfair variant below. However, it 1913 * also adds more overhead and therefore may reduce throughput. 1914 */ 1915 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1916 __releases(this_rq->lock) 1917 __acquires(busiest->lock) 1918 __acquires(this_rq->lock) 1919 { 1920 raw_spin_unlock(&this_rq->lock); 1921 double_rq_lock(this_rq, busiest); 1922 1923 return 1; 1924 } 1925 1926 #else 1927 /* 1928 * Unfair double_lock_balance: Optimizes throughput at the expense of 1929 * latency by eliminating extra atomic operations when the locks are 1930 * already in proper order on entry. This favors lower CPU-ids and will 1931 * grant the double lock to lower CPUs over higher ids under contention, 1932 * regardless of entry order into the function. 1933 */ 1934 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1935 __releases(this_rq->lock) 1936 __acquires(busiest->lock) 1937 __acquires(this_rq->lock) 1938 { 1939 int ret = 0; 1940 1941 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1942 if (busiest < this_rq) { 1943 raw_spin_unlock(&this_rq->lock); 1944 raw_spin_lock(&busiest->lock); 1945 raw_spin_lock_nested(&this_rq->lock, 1946 SINGLE_DEPTH_NESTING); 1947 ret = 1; 1948 } else 1949 raw_spin_lock_nested(&busiest->lock, 1950 SINGLE_DEPTH_NESTING); 1951 } 1952 return ret; 1953 } 1954 1955 #endif /* CONFIG_PREEMPT */ 1956 1957 /* 1958 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1959 */ 1960 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1961 { 1962 if (unlikely(!irqs_disabled())) { 1963 /* printk() doesn't work well under rq->lock */ 1964 raw_spin_unlock(&this_rq->lock); 1965 BUG_ON(1); 1966 } 1967 1968 return _double_lock_balance(this_rq, busiest); 1969 } 1970 1971 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1972 __releases(busiest->lock) 1973 { 1974 raw_spin_unlock(&busiest->lock); 1975 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1976 } 1977 1978 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1979 { 1980 if (l1 > l2) 1981 swap(l1, l2); 1982 1983 spin_lock(l1); 1984 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1985 } 1986 1987 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1988 { 1989 if (l1 > l2) 1990 swap(l1, l2); 1991 1992 spin_lock_irq(l1); 1993 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1994 } 1995 1996 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1997 { 1998 if (l1 > l2) 1999 swap(l1, l2); 2000 2001 raw_spin_lock(l1); 2002 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2003 } 2004 2005 /* 2006 * double_rq_lock - safely lock two runqueues 2007 * 2008 * Note this does not disable interrupts like task_rq_lock, 2009 * you need to do so manually before calling. 2010 */ 2011 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2012 __acquires(rq1->lock) 2013 __acquires(rq2->lock) 2014 { 2015 BUG_ON(!irqs_disabled()); 2016 if (rq1 == rq2) { 2017 raw_spin_lock(&rq1->lock); 2018 __acquire(rq2->lock); /* Fake it out ;) */ 2019 } else { 2020 if (rq1 < rq2) { 2021 raw_spin_lock(&rq1->lock); 2022 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 2023 } else { 2024 raw_spin_lock(&rq2->lock); 2025 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 2026 } 2027 } 2028 } 2029 2030 /* 2031 * double_rq_unlock - safely unlock two runqueues 2032 * 2033 * Note this does not restore interrupts like task_rq_unlock, 2034 * you need to do so manually after calling. 2035 */ 2036 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2037 __releases(rq1->lock) 2038 __releases(rq2->lock) 2039 { 2040 raw_spin_unlock(&rq1->lock); 2041 if (rq1 != rq2) 2042 raw_spin_unlock(&rq2->lock); 2043 else 2044 __release(rq2->lock); 2045 } 2046 2047 extern void set_rq_online (struct rq *rq); 2048 extern void set_rq_offline(struct rq *rq); 2049 extern bool sched_smp_initialized; 2050 2051 #else /* CONFIG_SMP */ 2052 2053 /* 2054 * double_rq_lock - safely lock two runqueues 2055 * 2056 * Note this does not disable interrupts like task_rq_lock, 2057 * you need to do so manually before calling. 2058 */ 2059 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2060 __acquires(rq1->lock) 2061 __acquires(rq2->lock) 2062 { 2063 BUG_ON(!irqs_disabled()); 2064 BUG_ON(rq1 != rq2); 2065 raw_spin_lock(&rq1->lock); 2066 __acquire(rq2->lock); /* Fake it out ;) */ 2067 } 2068 2069 /* 2070 * double_rq_unlock - safely unlock two runqueues 2071 * 2072 * Note this does not restore interrupts like task_rq_unlock, 2073 * you need to do so manually after calling. 2074 */ 2075 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2076 __releases(rq1->lock) 2077 __releases(rq2->lock) 2078 { 2079 BUG_ON(rq1 != rq2); 2080 raw_spin_unlock(&rq1->lock); 2081 __release(rq2->lock); 2082 } 2083 2084 #endif 2085 2086 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2087 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2088 2089 #ifdef CONFIG_SCHED_DEBUG 2090 extern bool sched_debug_enabled; 2091 2092 extern void print_cfs_stats(struct seq_file *m, int cpu); 2093 extern void print_rt_stats(struct seq_file *m, int cpu); 2094 extern void print_dl_stats(struct seq_file *m, int cpu); 2095 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2096 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2097 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2098 #ifdef CONFIG_NUMA_BALANCING 2099 extern void 2100 show_numa_stats(struct task_struct *p, struct seq_file *m); 2101 extern void 2102 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2103 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2104 #endif /* CONFIG_NUMA_BALANCING */ 2105 #endif /* CONFIG_SCHED_DEBUG */ 2106 2107 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2108 extern void init_rt_rq(struct rt_rq *rt_rq); 2109 extern void init_dl_rq(struct dl_rq *dl_rq); 2110 2111 extern void cfs_bandwidth_usage_inc(void); 2112 extern void cfs_bandwidth_usage_dec(void); 2113 2114 #ifdef CONFIG_NO_HZ_COMMON 2115 #define NOHZ_BALANCE_KICK_BIT 0 2116 #define NOHZ_STATS_KICK_BIT 1 2117 2118 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2119 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2120 2121 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) 2122 2123 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2124 2125 extern void nohz_balance_exit_idle(struct rq *rq); 2126 #else 2127 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2128 #endif 2129 2130 2131 #ifdef CONFIG_SMP 2132 static inline 2133 void __dl_update(struct dl_bw *dl_b, s64 bw) 2134 { 2135 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); 2136 int i; 2137 2138 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), 2139 "sched RCU must be held"); 2140 for_each_cpu_and(i, rd->span, cpu_active_mask) { 2141 struct rq *rq = cpu_rq(i); 2142 2143 rq->dl.extra_bw += bw; 2144 } 2145 } 2146 #else 2147 static inline 2148 void __dl_update(struct dl_bw *dl_b, s64 bw) 2149 { 2150 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); 2151 2152 dl->extra_bw += bw; 2153 } 2154 #endif 2155 2156 2157 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2158 struct irqtime { 2159 u64 total; 2160 u64 tick_delta; 2161 u64 irq_start_time; 2162 struct u64_stats_sync sync; 2163 }; 2164 2165 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2166 2167 /* 2168 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2169 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime 2170 * and never move forward. 2171 */ 2172 static inline u64 irq_time_read(int cpu) 2173 { 2174 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2175 unsigned int seq; 2176 u64 total; 2177 2178 do { 2179 seq = __u64_stats_fetch_begin(&irqtime->sync); 2180 total = irqtime->total; 2181 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2182 2183 return total; 2184 } 2185 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2186 2187 #ifdef CONFIG_CPU_FREQ 2188 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2189 2190 /** 2191 * cpufreq_update_util - Take a note about CPU utilization changes. 2192 * @rq: Runqueue to carry out the update for. 2193 * @flags: Update reason flags. 2194 * 2195 * This function is called by the scheduler on the CPU whose utilization is 2196 * being updated. 2197 * 2198 * It can only be called from RCU-sched read-side critical sections. 2199 * 2200 * The way cpufreq is currently arranged requires it to evaluate the CPU 2201 * performance state (frequency/voltage) on a regular basis to prevent it from 2202 * being stuck in a completely inadequate performance level for too long. 2203 * That is not guaranteed to happen if the updates are only triggered from CFS 2204 * and DL, though, because they may not be coming in if only RT tasks are 2205 * active all the time (or there are RT tasks only). 2206 * 2207 * As a workaround for that issue, this function is called periodically by the 2208 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2209 * but that really is a band-aid. Going forward it should be replaced with 2210 * solutions targeted more specifically at RT tasks. 2211 */ 2212 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2213 { 2214 struct update_util_data *data; 2215 2216 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2217 cpu_of(rq))); 2218 if (data) 2219 data->func(data, rq_clock(rq), flags); 2220 } 2221 #else 2222 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2223 #endif /* CONFIG_CPU_FREQ */ 2224 2225 #ifdef arch_scale_freq_capacity 2226 # ifndef arch_scale_freq_invariant 2227 # define arch_scale_freq_invariant() true 2228 # endif 2229 #else 2230 # define arch_scale_freq_invariant() false 2231 #endif 2232 2233 #ifdef CONFIG_SMP 2234 static inline unsigned long capacity_orig_of(int cpu) 2235 { 2236 return cpu_rq(cpu)->cpu_capacity_orig; 2237 } 2238 #endif 2239 2240 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 2241 /** 2242 * enum schedutil_type - CPU utilization type 2243 * @FREQUENCY_UTIL: Utilization used to select frequency 2244 * @ENERGY_UTIL: Utilization used during energy calculation 2245 * 2246 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2247 * need to be aggregated differently depending on the usage made of them. This 2248 * enum is used within schedutil_freq_util() to differentiate the types of 2249 * utilization expected by the callers, and adjust the aggregation accordingly. 2250 */ 2251 enum schedutil_type { 2252 FREQUENCY_UTIL, 2253 ENERGY_UTIL, 2254 }; 2255 2256 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs, 2257 unsigned long max, enum schedutil_type type); 2258 2259 static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs) 2260 { 2261 unsigned long max = arch_scale_cpu_capacity(NULL, cpu); 2262 2263 return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL); 2264 } 2265 2266 static inline unsigned long cpu_bw_dl(struct rq *rq) 2267 { 2268 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2269 } 2270 2271 static inline unsigned long cpu_util_dl(struct rq *rq) 2272 { 2273 return READ_ONCE(rq->avg_dl.util_avg); 2274 } 2275 2276 static inline unsigned long cpu_util_cfs(struct rq *rq) 2277 { 2278 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); 2279 2280 if (sched_feat(UTIL_EST)) { 2281 util = max_t(unsigned long, util, 2282 READ_ONCE(rq->cfs.avg.util_est.enqueued)); 2283 } 2284 2285 return util; 2286 } 2287 2288 static inline unsigned long cpu_util_rt(struct rq *rq) 2289 { 2290 return READ_ONCE(rq->avg_rt.util_avg); 2291 } 2292 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2293 static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs) 2294 { 2295 return cfs; 2296 } 2297 #endif 2298 2299 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 2300 static inline unsigned long cpu_util_irq(struct rq *rq) 2301 { 2302 return rq->avg_irq.util_avg; 2303 } 2304 2305 static inline 2306 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2307 { 2308 util *= (max - irq); 2309 util /= max; 2310 2311 return util; 2312 2313 } 2314 #else 2315 static inline unsigned long cpu_util_irq(struct rq *rq) 2316 { 2317 return 0; 2318 } 2319 2320 static inline 2321 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 2322 { 2323 return util; 2324 } 2325 #endif 2326 2327 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2328 2329 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 2330 2331 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 2332 2333 static inline bool sched_energy_enabled(void) 2334 { 2335 return static_branch_unlikely(&sched_energy_present); 2336 } 2337 2338 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 2339 2340 #define perf_domain_span(pd) NULL 2341 static inline bool sched_energy_enabled(void) { return false; } 2342 2343 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 2344