xref: /linux/kernel/sched/sched.h (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #include <linux/sched.h>
4 #include <linux/sched/autogroup.h>
5 #include <linux/sched/sysctl.h>
6 #include <linux/sched/topology.h>
7 #include <linux/sched/rt.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/wake_q.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/cpufreq.h>
15 #include <linux/sched/stat.h>
16 #include <linux/sched/nohz.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/hotplug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/sched/init.h>
23 
24 #include <linux/u64_stats_sync.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/binfmts.h>
27 #include <linux/mutex.h>
28 #include <linux/spinlock.h>
29 #include <linux/stop_machine.h>
30 #include <linux/irq_work.h>
31 #include <linux/tick.h>
32 #include <linux/slab.h>
33 
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
37 
38 #include "cpupri.h"
39 #include "cpudeadline.h"
40 #include "cpuacct.h"
41 
42 #ifdef CONFIG_SCHED_DEBUG
43 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
44 #else
45 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
46 #endif
47 
48 struct rq;
49 struct cpuidle_state;
50 
51 /* task_struct::on_rq states: */
52 #define TASK_ON_RQ_QUEUED	1
53 #define TASK_ON_RQ_MIGRATING	2
54 
55 extern __read_mostly int scheduler_running;
56 
57 extern unsigned long calc_load_update;
58 extern atomic_long_t calc_load_tasks;
59 
60 extern void calc_global_load_tick(struct rq *this_rq);
61 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
62 
63 #ifdef CONFIG_SMP
64 extern void cpu_load_update_active(struct rq *this_rq);
65 #else
66 static inline void cpu_load_update_active(struct rq *this_rq) { }
67 #endif
68 
69 /*
70  * Helpers for converting nanosecond timing to jiffy resolution
71  */
72 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
73 
74 /*
75  * Increase resolution of nice-level calculations for 64-bit architectures.
76  * The extra resolution improves shares distribution and load balancing of
77  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
78  * hierarchies, especially on larger systems. This is not a user-visible change
79  * and does not change the user-interface for setting shares/weights.
80  *
81  * We increase resolution only if we have enough bits to allow this increased
82  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
83  * pretty high and the returns do not justify the increased costs.
84  *
85  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
86  * increase coverage and consistency always enable it on 64bit platforms.
87  */
88 #ifdef CONFIG_64BIT
89 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
90 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
91 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
92 #else
93 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
94 # define scale_load(w)		(w)
95 # define scale_load_down(w)	(w)
96 #endif
97 
98 /*
99  * Task weight (visible to users) and its load (invisible to users) have
100  * independent resolution, but they should be well calibrated. We use
101  * scale_load() and scale_load_down(w) to convert between them. The
102  * following must be true:
103  *
104  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
105  *
106  */
107 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
108 
109 /*
110  * Single value that decides SCHED_DEADLINE internal math precision.
111  * 10 -> just above 1us
112  * 9  -> just above 0.5us
113  */
114 #define DL_SCALE (10)
115 
116 /*
117  * These are the 'tuning knobs' of the scheduler:
118  */
119 
120 /*
121  * single value that denotes runtime == period, ie unlimited time.
122  */
123 #define RUNTIME_INF	((u64)~0ULL)
124 
125 static inline int idle_policy(int policy)
126 {
127 	return policy == SCHED_IDLE;
128 }
129 static inline int fair_policy(int policy)
130 {
131 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
132 }
133 
134 static inline int rt_policy(int policy)
135 {
136 	return policy == SCHED_FIFO || policy == SCHED_RR;
137 }
138 
139 static inline int dl_policy(int policy)
140 {
141 	return policy == SCHED_DEADLINE;
142 }
143 static inline bool valid_policy(int policy)
144 {
145 	return idle_policy(policy) || fair_policy(policy) ||
146 		rt_policy(policy) || dl_policy(policy);
147 }
148 
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 	return rt_policy(p->policy);
152 }
153 
154 static inline int task_has_dl_policy(struct task_struct *p)
155 {
156 	return dl_policy(p->policy);
157 }
158 
159 /*
160  * Tells if entity @a should preempt entity @b.
161  */
162 static inline bool
163 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
164 {
165 	return dl_time_before(a->deadline, b->deadline);
166 }
167 
168 /*
169  * This is the priority-queue data structure of the RT scheduling class:
170  */
171 struct rt_prio_array {
172 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
173 	struct list_head queue[MAX_RT_PRIO];
174 };
175 
176 struct rt_bandwidth {
177 	/* nests inside the rq lock: */
178 	raw_spinlock_t		rt_runtime_lock;
179 	ktime_t			rt_period;
180 	u64			rt_runtime;
181 	struct hrtimer		rt_period_timer;
182 	unsigned int		rt_period_active;
183 };
184 
185 void __dl_clear_params(struct task_struct *p);
186 
187 /*
188  * To keep the bandwidth of -deadline tasks and groups under control
189  * we need some place where:
190  *  - store the maximum -deadline bandwidth of the system (the group);
191  *  - cache the fraction of that bandwidth that is currently allocated.
192  *
193  * This is all done in the data structure below. It is similar to the
194  * one used for RT-throttling (rt_bandwidth), with the main difference
195  * that, since here we are only interested in admission control, we
196  * do not decrease any runtime while the group "executes", neither we
197  * need a timer to replenish it.
198  *
199  * With respect to SMP, the bandwidth is given on a per-CPU basis,
200  * meaning that:
201  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
202  *  - dl_total_bw array contains, in the i-eth element, the currently
203  *    allocated bandwidth on the i-eth CPU.
204  * Moreover, groups consume bandwidth on each CPU, while tasks only
205  * consume bandwidth on the CPU they're running on.
206  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
207  * that will be shown the next time the proc or cgroup controls will
208  * be red. It on its turn can be changed by writing on its own
209  * control.
210  */
211 struct dl_bandwidth {
212 	raw_spinlock_t dl_runtime_lock;
213 	u64 dl_runtime;
214 	u64 dl_period;
215 };
216 
217 static inline int dl_bandwidth_enabled(void)
218 {
219 	return sysctl_sched_rt_runtime >= 0;
220 }
221 
222 struct dl_bw {
223 	raw_spinlock_t lock;
224 	u64 bw, total_bw;
225 };
226 
227 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
228 
229 static inline
230 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
231 {
232 	dl_b->total_bw -= tsk_bw;
233 	__dl_update(dl_b, (s32)tsk_bw / cpus);
234 }
235 
236 static inline
237 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
238 {
239 	dl_b->total_bw += tsk_bw;
240 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
241 }
242 
243 static inline
244 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
245 {
246 	return dl_b->bw != -1 &&
247 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
248 }
249 
250 void dl_change_utilization(struct task_struct *p, u64 new_bw);
251 extern void init_dl_bw(struct dl_bw *dl_b);
252 extern int sched_dl_global_validate(void);
253 extern void sched_dl_do_global(void);
254 extern int sched_dl_overflow(struct task_struct *p, int policy,
255 			     const struct sched_attr *attr);
256 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
257 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
258 extern bool __checkparam_dl(const struct sched_attr *attr);
259 extern void __dl_clear_params(struct task_struct *p);
260 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
261 extern int dl_task_can_attach(struct task_struct *p,
262 			      const struct cpumask *cs_cpus_allowed);
263 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
264 					const struct cpumask *trial);
265 extern bool dl_cpu_busy(unsigned int cpu);
266 
267 #ifdef CONFIG_CGROUP_SCHED
268 
269 #include <linux/cgroup.h>
270 
271 struct cfs_rq;
272 struct rt_rq;
273 
274 extern struct list_head task_groups;
275 
276 struct cfs_bandwidth {
277 #ifdef CONFIG_CFS_BANDWIDTH
278 	raw_spinlock_t lock;
279 	ktime_t period;
280 	u64 quota, runtime;
281 	s64 hierarchical_quota;
282 	u64 runtime_expires;
283 
284 	int idle, period_active;
285 	struct hrtimer period_timer, slack_timer;
286 	struct list_head throttled_cfs_rq;
287 
288 	/* statistics */
289 	int nr_periods, nr_throttled;
290 	u64 throttled_time;
291 #endif
292 };
293 
294 /* task group related information */
295 struct task_group {
296 	struct cgroup_subsys_state css;
297 
298 #ifdef CONFIG_FAIR_GROUP_SCHED
299 	/* schedulable entities of this group on each cpu */
300 	struct sched_entity **se;
301 	/* runqueue "owned" by this group on each cpu */
302 	struct cfs_rq **cfs_rq;
303 	unsigned long shares;
304 
305 #ifdef	CONFIG_SMP
306 	/*
307 	 * load_avg can be heavily contended at clock tick time, so put
308 	 * it in its own cacheline separated from the fields above which
309 	 * will also be accessed at each tick.
310 	 */
311 	atomic_long_t load_avg ____cacheline_aligned;
312 #endif
313 #endif
314 
315 #ifdef CONFIG_RT_GROUP_SCHED
316 	struct sched_rt_entity **rt_se;
317 	struct rt_rq **rt_rq;
318 
319 	struct rt_bandwidth rt_bandwidth;
320 #endif
321 
322 	struct rcu_head rcu;
323 	struct list_head list;
324 
325 	struct task_group *parent;
326 	struct list_head siblings;
327 	struct list_head children;
328 
329 #ifdef CONFIG_SCHED_AUTOGROUP
330 	struct autogroup *autogroup;
331 #endif
332 
333 	struct cfs_bandwidth cfs_bandwidth;
334 };
335 
336 #ifdef CONFIG_FAIR_GROUP_SCHED
337 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
338 
339 /*
340  * A weight of 0 or 1 can cause arithmetics problems.
341  * A weight of a cfs_rq is the sum of weights of which entities
342  * are queued on this cfs_rq, so a weight of a entity should not be
343  * too large, so as the shares value of a task group.
344  * (The default weight is 1024 - so there's no practical
345  *  limitation from this.)
346  */
347 #define MIN_SHARES	(1UL <<  1)
348 #define MAX_SHARES	(1UL << 18)
349 #endif
350 
351 typedef int (*tg_visitor)(struct task_group *, void *);
352 
353 extern int walk_tg_tree_from(struct task_group *from,
354 			     tg_visitor down, tg_visitor up, void *data);
355 
356 /*
357  * Iterate the full tree, calling @down when first entering a node and @up when
358  * leaving it for the final time.
359  *
360  * Caller must hold rcu_lock or sufficient equivalent.
361  */
362 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
363 {
364 	return walk_tg_tree_from(&root_task_group, down, up, data);
365 }
366 
367 extern int tg_nop(struct task_group *tg, void *data);
368 
369 extern void free_fair_sched_group(struct task_group *tg);
370 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
371 extern void online_fair_sched_group(struct task_group *tg);
372 extern void unregister_fair_sched_group(struct task_group *tg);
373 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
374 			struct sched_entity *se, int cpu,
375 			struct sched_entity *parent);
376 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
377 
378 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
379 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
380 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
381 
382 extern void free_rt_sched_group(struct task_group *tg);
383 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
384 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
385 		struct sched_rt_entity *rt_se, int cpu,
386 		struct sched_rt_entity *parent);
387 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
388 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
389 extern long sched_group_rt_runtime(struct task_group *tg);
390 extern long sched_group_rt_period(struct task_group *tg);
391 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
392 
393 extern struct task_group *sched_create_group(struct task_group *parent);
394 extern void sched_online_group(struct task_group *tg,
395 			       struct task_group *parent);
396 extern void sched_destroy_group(struct task_group *tg);
397 extern void sched_offline_group(struct task_group *tg);
398 
399 extern void sched_move_task(struct task_struct *tsk);
400 
401 #ifdef CONFIG_FAIR_GROUP_SCHED
402 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
403 
404 #ifdef CONFIG_SMP
405 extern void set_task_rq_fair(struct sched_entity *se,
406 			     struct cfs_rq *prev, struct cfs_rq *next);
407 #else /* !CONFIG_SMP */
408 static inline void set_task_rq_fair(struct sched_entity *se,
409 			     struct cfs_rq *prev, struct cfs_rq *next) { }
410 #endif /* CONFIG_SMP */
411 #endif /* CONFIG_FAIR_GROUP_SCHED */
412 
413 #else /* CONFIG_CGROUP_SCHED */
414 
415 struct cfs_bandwidth { };
416 
417 #endif	/* CONFIG_CGROUP_SCHED */
418 
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 	struct load_weight load;
422 	unsigned int nr_running, h_nr_running;
423 
424 	u64 exec_clock;
425 	u64 min_vruntime;
426 #ifndef CONFIG_64BIT
427 	u64 min_vruntime_copy;
428 #endif
429 
430 	struct rb_root_cached tasks_timeline;
431 
432 	/*
433 	 * 'curr' points to currently running entity on this cfs_rq.
434 	 * It is set to NULL otherwise (i.e when none are currently running).
435 	 */
436 	struct sched_entity *curr, *next, *last, *skip;
437 
438 #ifdef	CONFIG_SCHED_DEBUG
439 	unsigned int nr_spread_over;
440 #endif
441 
442 #ifdef CONFIG_SMP
443 	/*
444 	 * CFS load tracking
445 	 */
446 	struct sched_avg avg;
447 	u64 runnable_load_sum;
448 	unsigned long runnable_load_avg;
449 #ifdef CONFIG_FAIR_GROUP_SCHED
450 	unsigned long tg_load_avg_contrib;
451 	unsigned long propagate_avg;
452 #endif
453 	atomic_long_t removed_load_avg, removed_util_avg;
454 #ifndef CONFIG_64BIT
455 	u64 load_last_update_time_copy;
456 #endif
457 
458 #ifdef CONFIG_FAIR_GROUP_SCHED
459 	/*
460 	 *   h_load = weight * f(tg)
461 	 *
462 	 * Where f(tg) is the recursive weight fraction assigned to
463 	 * this group.
464 	 */
465 	unsigned long h_load;
466 	u64 last_h_load_update;
467 	struct sched_entity *h_load_next;
468 #endif /* CONFIG_FAIR_GROUP_SCHED */
469 #endif /* CONFIG_SMP */
470 
471 #ifdef CONFIG_FAIR_GROUP_SCHED
472 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
473 
474 	/*
475 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
476 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
477 	 * (like users, containers etc.)
478 	 *
479 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
480 	 * list is used during load balance.
481 	 */
482 	int on_list;
483 	struct list_head leaf_cfs_rq_list;
484 	struct task_group *tg;	/* group that "owns" this runqueue */
485 
486 #ifdef CONFIG_CFS_BANDWIDTH
487 	int runtime_enabled;
488 	u64 runtime_expires;
489 	s64 runtime_remaining;
490 
491 	u64 throttled_clock, throttled_clock_task;
492 	u64 throttled_clock_task_time;
493 	int throttled, throttle_count;
494 	struct list_head throttled_list;
495 #endif /* CONFIG_CFS_BANDWIDTH */
496 #endif /* CONFIG_FAIR_GROUP_SCHED */
497 };
498 
499 static inline int rt_bandwidth_enabled(void)
500 {
501 	return sysctl_sched_rt_runtime >= 0;
502 }
503 
504 /* RT IPI pull logic requires IRQ_WORK */
505 #ifdef CONFIG_IRQ_WORK
506 # define HAVE_RT_PUSH_IPI
507 #endif
508 
509 /* Real-Time classes' related field in a runqueue: */
510 struct rt_rq {
511 	struct rt_prio_array active;
512 	unsigned int rt_nr_running;
513 	unsigned int rr_nr_running;
514 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
515 	struct {
516 		int curr; /* highest queued rt task prio */
517 #ifdef CONFIG_SMP
518 		int next; /* next highest */
519 #endif
520 	} highest_prio;
521 #endif
522 #ifdef CONFIG_SMP
523 	unsigned long rt_nr_migratory;
524 	unsigned long rt_nr_total;
525 	int overloaded;
526 	struct plist_head pushable_tasks;
527 #ifdef HAVE_RT_PUSH_IPI
528 	int push_flags;
529 	int push_cpu;
530 	struct irq_work push_work;
531 	raw_spinlock_t push_lock;
532 #endif
533 #endif /* CONFIG_SMP */
534 	int rt_queued;
535 
536 	int rt_throttled;
537 	u64 rt_time;
538 	u64 rt_runtime;
539 	/* Nests inside the rq lock: */
540 	raw_spinlock_t rt_runtime_lock;
541 
542 #ifdef CONFIG_RT_GROUP_SCHED
543 	unsigned long rt_nr_boosted;
544 
545 	struct rq *rq;
546 	struct task_group *tg;
547 #endif
548 };
549 
550 /* Deadline class' related fields in a runqueue */
551 struct dl_rq {
552 	/* runqueue is an rbtree, ordered by deadline */
553 	struct rb_root_cached root;
554 
555 	unsigned long dl_nr_running;
556 
557 #ifdef CONFIG_SMP
558 	/*
559 	 * Deadline values of the currently executing and the
560 	 * earliest ready task on this rq. Caching these facilitates
561 	 * the decision wether or not a ready but not running task
562 	 * should migrate somewhere else.
563 	 */
564 	struct {
565 		u64 curr;
566 		u64 next;
567 	} earliest_dl;
568 
569 	unsigned long dl_nr_migratory;
570 	int overloaded;
571 
572 	/*
573 	 * Tasks on this rq that can be pushed away. They are kept in
574 	 * an rb-tree, ordered by tasks' deadlines, with caching
575 	 * of the leftmost (earliest deadline) element.
576 	 */
577 	struct rb_root_cached pushable_dl_tasks_root;
578 #else
579 	struct dl_bw dl_bw;
580 #endif
581 	/*
582 	 * "Active utilization" for this runqueue: increased when a
583 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
584 	 * task blocks
585 	 */
586 	u64 running_bw;
587 
588 	/*
589 	 * Utilization of the tasks "assigned" to this runqueue (including
590 	 * the tasks that are in runqueue and the tasks that executed on this
591 	 * CPU and blocked). Increased when a task moves to this runqueue, and
592 	 * decreased when the task moves away (migrates, changes scheduling
593 	 * policy, or terminates).
594 	 * This is needed to compute the "inactive utilization" for the
595 	 * runqueue (inactive utilization = this_bw - running_bw).
596 	 */
597 	u64 this_bw;
598 	u64 extra_bw;
599 
600 	/*
601 	 * Inverse of the fraction of CPU utilization that can be reclaimed
602 	 * by the GRUB algorithm.
603 	 */
604 	u64 bw_ratio;
605 };
606 
607 #ifdef CONFIG_SMP
608 
609 static inline bool sched_asym_prefer(int a, int b)
610 {
611 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
612 }
613 
614 /*
615  * We add the notion of a root-domain which will be used to define per-domain
616  * variables. Each exclusive cpuset essentially defines an island domain by
617  * fully partitioning the member cpus from any other cpuset. Whenever a new
618  * exclusive cpuset is created, we also create and attach a new root-domain
619  * object.
620  *
621  */
622 struct root_domain {
623 	atomic_t refcount;
624 	atomic_t rto_count;
625 	struct rcu_head rcu;
626 	cpumask_var_t span;
627 	cpumask_var_t online;
628 
629 	/* Indicate more than one runnable task for any CPU */
630 	bool overload;
631 
632 	/*
633 	 * The bit corresponding to a CPU gets set here if such CPU has more
634 	 * than one runnable -deadline task (as it is below for RT tasks).
635 	 */
636 	cpumask_var_t dlo_mask;
637 	atomic_t dlo_count;
638 	struct dl_bw dl_bw;
639 	struct cpudl cpudl;
640 
641 	/*
642 	 * The "RT overload" flag: it gets set if a CPU has more than
643 	 * one runnable RT task.
644 	 */
645 	cpumask_var_t rto_mask;
646 	struct cpupri cpupri;
647 
648 	unsigned long max_cpu_capacity;
649 };
650 
651 extern struct root_domain def_root_domain;
652 extern struct mutex sched_domains_mutex;
653 
654 extern void init_defrootdomain(void);
655 extern int sched_init_domains(const struct cpumask *cpu_map);
656 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
657 
658 #endif /* CONFIG_SMP */
659 
660 /*
661  * This is the main, per-CPU runqueue data structure.
662  *
663  * Locking rule: those places that want to lock multiple runqueues
664  * (such as the load balancing or the thread migration code), lock
665  * acquire operations must be ordered by ascending &runqueue.
666  */
667 struct rq {
668 	/* runqueue lock: */
669 	raw_spinlock_t lock;
670 
671 	/*
672 	 * nr_running and cpu_load should be in the same cacheline because
673 	 * remote CPUs use both these fields when doing load calculation.
674 	 */
675 	unsigned int nr_running;
676 #ifdef CONFIG_NUMA_BALANCING
677 	unsigned int nr_numa_running;
678 	unsigned int nr_preferred_running;
679 #endif
680 	#define CPU_LOAD_IDX_MAX 5
681 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
682 #ifdef CONFIG_NO_HZ_COMMON
683 #ifdef CONFIG_SMP
684 	unsigned long last_load_update_tick;
685 #endif /* CONFIG_SMP */
686 	unsigned long nohz_flags;
687 #endif /* CONFIG_NO_HZ_COMMON */
688 #ifdef CONFIG_NO_HZ_FULL
689 	unsigned long last_sched_tick;
690 #endif
691 	/* capture load from *all* tasks on this cpu: */
692 	struct load_weight load;
693 	unsigned long nr_load_updates;
694 	u64 nr_switches;
695 
696 	struct cfs_rq cfs;
697 	struct rt_rq rt;
698 	struct dl_rq dl;
699 
700 #ifdef CONFIG_FAIR_GROUP_SCHED
701 	/* list of leaf cfs_rq on this cpu: */
702 	struct list_head leaf_cfs_rq_list;
703 	struct list_head *tmp_alone_branch;
704 #endif /* CONFIG_FAIR_GROUP_SCHED */
705 
706 	/*
707 	 * This is part of a global counter where only the total sum
708 	 * over all CPUs matters. A task can increase this counter on
709 	 * one CPU and if it got migrated afterwards it may decrease
710 	 * it on another CPU. Always updated under the runqueue lock:
711 	 */
712 	unsigned long nr_uninterruptible;
713 
714 	struct task_struct *curr, *idle, *stop;
715 	unsigned long next_balance;
716 	struct mm_struct *prev_mm;
717 
718 	unsigned int clock_update_flags;
719 	u64 clock;
720 	u64 clock_task;
721 
722 	atomic_t nr_iowait;
723 
724 #ifdef CONFIG_SMP
725 	struct root_domain *rd;
726 	struct sched_domain *sd;
727 
728 	unsigned long cpu_capacity;
729 	unsigned long cpu_capacity_orig;
730 
731 	struct callback_head *balance_callback;
732 
733 	unsigned char idle_balance;
734 	/* For active balancing */
735 	int active_balance;
736 	int push_cpu;
737 	struct cpu_stop_work active_balance_work;
738 	/* cpu of this runqueue: */
739 	int cpu;
740 	int online;
741 
742 	struct list_head cfs_tasks;
743 
744 	u64 rt_avg;
745 	u64 age_stamp;
746 	u64 idle_stamp;
747 	u64 avg_idle;
748 
749 	/* This is used to determine avg_idle's max value */
750 	u64 max_idle_balance_cost;
751 #endif
752 
753 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
754 	u64 prev_irq_time;
755 #endif
756 #ifdef CONFIG_PARAVIRT
757 	u64 prev_steal_time;
758 #endif
759 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
760 	u64 prev_steal_time_rq;
761 #endif
762 
763 	/* calc_load related fields */
764 	unsigned long calc_load_update;
765 	long calc_load_active;
766 
767 #ifdef CONFIG_SCHED_HRTICK
768 #ifdef CONFIG_SMP
769 	int hrtick_csd_pending;
770 	call_single_data_t hrtick_csd;
771 #endif
772 	struct hrtimer hrtick_timer;
773 #endif
774 
775 #ifdef CONFIG_SCHEDSTATS
776 	/* latency stats */
777 	struct sched_info rq_sched_info;
778 	unsigned long long rq_cpu_time;
779 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
780 
781 	/* sys_sched_yield() stats */
782 	unsigned int yld_count;
783 
784 	/* schedule() stats */
785 	unsigned int sched_count;
786 	unsigned int sched_goidle;
787 
788 	/* try_to_wake_up() stats */
789 	unsigned int ttwu_count;
790 	unsigned int ttwu_local;
791 #endif
792 
793 #ifdef CONFIG_SMP
794 	struct llist_head wake_list;
795 #endif
796 
797 #ifdef CONFIG_CPU_IDLE
798 	/* Must be inspected within a rcu lock section */
799 	struct cpuidle_state *idle_state;
800 #endif
801 };
802 
803 static inline int cpu_of(struct rq *rq)
804 {
805 #ifdef CONFIG_SMP
806 	return rq->cpu;
807 #else
808 	return 0;
809 #endif
810 }
811 
812 
813 #ifdef CONFIG_SCHED_SMT
814 
815 extern struct static_key_false sched_smt_present;
816 
817 extern void __update_idle_core(struct rq *rq);
818 
819 static inline void update_idle_core(struct rq *rq)
820 {
821 	if (static_branch_unlikely(&sched_smt_present))
822 		__update_idle_core(rq);
823 }
824 
825 #else
826 static inline void update_idle_core(struct rq *rq) { }
827 #endif
828 
829 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
830 
831 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
832 #define this_rq()		this_cpu_ptr(&runqueues)
833 #define task_rq(p)		cpu_rq(task_cpu(p))
834 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
835 #define raw_rq()		raw_cpu_ptr(&runqueues)
836 
837 static inline u64 __rq_clock_broken(struct rq *rq)
838 {
839 	return READ_ONCE(rq->clock);
840 }
841 
842 /*
843  * rq::clock_update_flags bits
844  *
845  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
846  *  call to __schedule(). This is an optimisation to avoid
847  *  neighbouring rq clock updates.
848  *
849  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
850  *  in effect and calls to update_rq_clock() are being ignored.
851  *
852  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
853  *  made to update_rq_clock() since the last time rq::lock was pinned.
854  *
855  * If inside of __schedule(), clock_update_flags will have been
856  * shifted left (a left shift is a cheap operation for the fast path
857  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
858  *
859  *	if (rq-clock_update_flags >= RQCF_UPDATED)
860  *
861  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
862  * one position though, because the next rq_unpin_lock() will shift it
863  * back.
864  */
865 #define RQCF_REQ_SKIP	0x01
866 #define RQCF_ACT_SKIP	0x02
867 #define RQCF_UPDATED	0x04
868 
869 static inline void assert_clock_updated(struct rq *rq)
870 {
871 	/*
872 	 * The only reason for not seeing a clock update since the
873 	 * last rq_pin_lock() is if we're currently skipping updates.
874 	 */
875 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
876 }
877 
878 static inline u64 rq_clock(struct rq *rq)
879 {
880 	lockdep_assert_held(&rq->lock);
881 	assert_clock_updated(rq);
882 
883 	return rq->clock;
884 }
885 
886 static inline u64 rq_clock_task(struct rq *rq)
887 {
888 	lockdep_assert_held(&rq->lock);
889 	assert_clock_updated(rq);
890 
891 	return rq->clock_task;
892 }
893 
894 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
895 {
896 	lockdep_assert_held(&rq->lock);
897 	if (skip)
898 		rq->clock_update_flags |= RQCF_REQ_SKIP;
899 	else
900 		rq->clock_update_flags &= ~RQCF_REQ_SKIP;
901 }
902 
903 struct rq_flags {
904 	unsigned long flags;
905 	struct pin_cookie cookie;
906 #ifdef CONFIG_SCHED_DEBUG
907 	/*
908 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
909 	 * current pin context is stashed here in case it needs to be
910 	 * restored in rq_repin_lock().
911 	 */
912 	unsigned int clock_update_flags;
913 #endif
914 };
915 
916 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
917 {
918 	rf->cookie = lockdep_pin_lock(&rq->lock);
919 
920 #ifdef CONFIG_SCHED_DEBUG
921 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
922 	rf->clock_update_flags = 0;
923 #endif
924 }
925 
926 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
927 {
928 #ifdef CONFIG_SCHED_DEBUG
929 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
930 		rf->clock_update_flags = RQCF_UPDATED;
931 #endif
932 
933 	lockdep_unpin_lock(&rq->lock, rf->cookie);
934 }
935 
936 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
937 {
938 	lockdep_repin_lock(&rq->lock, rf->cookie);
939 
940 #ifdef CONFIG_SCHED_DEBUG
941 	/*
942 	 * Restore the value we stashed in @rf for this pin context.
943 	 */
944 	rq->clock_update_flags |= rf->clock_update_flags;
945 #endif
946 }
947 
948 #ifdef CONFIG_NUMA
949 enum numa_topology_type {
950 	NUMA_DIRECT,
951 	NUMA_GLUELESS_MESH,
952 	NUMA_BACKPLANE,
953 };
954 extern enum numa_topology_type sched_numa_topology_type;
955 extern int sched_max_numa_distance;
956 extern bool find_numa_distance(int distance);
957 #endif
958 
959 #ifdef CONFIG_NUMA
960 extern void sched_init_numa(void);
961 extern void sched_domains_numa_masks_set(unsigned int cpu);
962 extern void sched_domains_numa_masks_clear(unsigned int cpu);
963 #else
964 static inline void sched_init_numa(void) { }
965 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
966 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
967 #endif
968 
969 #ifdef CONFIG_NUMA_BALANCING
970 /* The regions in numa_faults array from task_struct */
971 enum numa_faults_stats {
972 	NUMA_MEM = 0,
973 	NUMA_CPU,
974 	NUMA_MEMBUF,
975 	NUMA_CPUBUF
976 };
977 extern void sched_setnuma(struct task_struct *p, int node);
978 extern int migrate_task_to(struct task_struct *p, int cpu);
979 extern int migrate_swap(struct task_struct *, struct task_struct *);
980 #endif /* CONFIG_NUMA_BALANCING */
981 
982 #ifdef CONFIG_SMP
983 
984 static inline void
985 queue_balance_callback(struct rq *rq,
986 		       struct callback_head *head,
987 		       void (*func)(struct rq *rq))
988 {
989 	lockdep_assert_held(&rq->lock);
990 
991 	if (unlikely(head->next))
992 		return;
993 
994 	head->func = (void (*)(struct callback_head *))func;
995 	head->next = rq->balance_callback;
996 	rq->balance_callback = head;
997 }
998 
999 extern void sched_ttwu_pending(void);
1000 
1001 #define rcu_dereference_check_sched_domain(p) \
1002 	rcu_dereference_check((p), \
1003 			      lockdep_is_held(&sched_domains_mutex))
1004 
1005 /*
1006  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1007  * See detach_destroy_domains: synchronize_sched for details.
1008  *
1009  * The domain tree of any CPU may only be accessed from within
1010  * preempt-disabled sections.
1011  */
1012 #define for_each_domain(cpu, __sd) \
1013 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1014 			__sd; __sd = __sd->parent)
1015 
1016 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1017 
1018 /**
1019  * highest_flag_domain - Return highest sched_domain containing flag.
1020  * @cpu:	The cpu whose highest level of sched domain is to
1021  *		be returned.
1022  * @flag:	The flag to check for the highest sched_domain
1023  *		for the given cpu.
1024  *
1025  * Returns the highest sched_domain of a cpu which contains the given flag.
1026  */
1027 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1028 {
1029 	struct sched_domain *sd, *hsd = NULL;
1030 
1031 	for_each_domain(cpu, sd) {
1032 		if (!(sd->flags & flag))
1033 			break;
1034 		hsd = sd;
1035 	}
1036 
1037 	return hsd;
1038 }
1039 
1040 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1041 {
1042 	struct sched_domain *sd;
1043 
1044 	for_each_domain(cpu, sd) {
1045 		if (sd->flags & flag)
1046 			break;
1047 	}
1048 
1049 	return sd;
1050 }
1051 
1052 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1053 DECLARE_PER_CPU(int, sd_llc_size);
1054 DECLARE_PER_CPU(int, sd_llc_id);
1055 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1056 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1057 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1058 
1059 struct sched_group_capacity {
1060 	atomic_t ref;
1061 	/*
1062 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1063 	 * for a single CPU.
1064 	 */
1065 	unsigned long capacity;
1066 	unsigned long min_capacity; /* Min per-CPU capacity in group */
1067 	unsigned long next_update;
1068 	int imbalance; /* XXX unrelated to capacity but shared group state */
1069 
1070 #ifdef CONFIG_SCHED_DEBUG
1071 	int id;
1072 #endif
1073 
1074 	unsigned long cpumask[0]; /* balance mask */
1075 };
1076 
1077 struct sched_group {
1078 	struct sched_group *next;	/* Must be a circular list */
1079 	atomic_t ref;
1080 
1081 	unsigned int group_weight;
1082 	struct sched_group_capacity *sgc;
1083 	int asym_prefer_cpu;		/* cpu of highest priority in group */
1084 
1085 	/*
1086 	 * The CPUs this group covers.
1087 	 *
1088 	 * NOTE: this field is variable length. (Allocated dynamically
1089 	 * by attaching extra space to the end of the structure,
1090 	 * depending on how many CPUs the kernel has booted up with)
1091 	 */
1092 	unsigned long cpumask[0];
1093 };
1094 
1095 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1096 {
1097 	return to_cpumask(sg->cpumask);
1098 }
1099 
1100 /*
1101  * See build_balance_mask().
1102  */
1103 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1104 {
1105 	return to_cpumask(sg->sgc->cpumask);
1106 }
1107 
1108 /**
1109  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1110  * @group: The group whose first cpu is to be returned.
1111  */
1112 static inline unsigned int group_first_cpu(struct sched_group *group)
1113 {
1114 	return cpumask_first(sched_group_span(group));
1115 }
1116 
1117 extern int group_balance_cpu(struct sched_group *sg);
1118 
1119 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1120 void register_sched_domain_sysctl(void);
1121 void dirty_sched_domain_sysctl(int cpu);
1122 void unregister_sched_domain_sysctl(void);
1123 #else
1124 static inline void register_sched_domain_sysctl(void)
1125 {
1126 }
1127 static inline void dirty_sched_domain_sysctl(int cpu)
1128 {
1129 }
1130 static inline void unregister_sched_domain_sysctl(void)
1131 {
1132 }
1133 #endif
1134 
1135 #else
1136 
1137 static inline void sched_ttwu_pending(void) { }
1138 
1139 #endif /* CONFIG_SMP */
1140 
1141 #include "stats.h"
1142 #include "autogroup.h"
1143 
1144 #ifdef CONFIG_CGROUP_SCHED
1145 
1146 /*
1147  * Return the group to which this tasks belongs.
1148  *
1149  * We cannot use task_css() and friends because the cgroup subsystem
1150  * changes that value before the cgroup_subsys::attach() method is called,
1151  * therefore we cannot pin it and might observe the wrong value.
1152  *
1153  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1154  * core changes this before calling sched_move_task().
1155  *
1156  * Instead we use a 'copy' which is updated from sched_move_task() while
1157  * holding both task_struct::pi_lock and rq::lock.
1158  */
1159 static inline struct task_group *task_group(struct task_struct *p)
1160 {
1161 	return p->sched_task_group;
1162 }
1163 
1164 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1165 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1166 {
1167 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1168 	struct task_group *tg = task_group(p);
1169 #endif
1170 
1171 #ifdef CONFIG_FAIR_GROUP_SCHED
1172 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1173 	p->se.cfs_rq = tg->cfs_rq[cpu];
1174 	p->se.parent = tg->se[cpu];
1175 #endif
1176 
1177 #ifdef CONFIG_RT_GROUP_SCHED
1178 	p->rt.rt_rq  = tg->rt_rq[cpu];
1179 	p->rt.parent = tg->rt_se[cpu];
1180 #endif
1181 }
1182 
1183 #else /* CONFIG_CGROUP_SCHED */
1184 
1185 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1186 static inline struct task_group *task_group(struct task_struct *p)
1187 {
1188 	return NULL;
1189 }
1190 
1191 #endif /* CONFIG_CGROUP_SCHED */
1192 
1193 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1194 {
1195 	set_task_rq(p, cpu);
1196 #ifdef CONFIG_SMP
1197 	/*
1198 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1199 	 * successfuly executed on another CPU. We must ensure that updates of
1200 	 * per-task data have been completed by this moment.
1201 	 */
1202 	smp_wmb();
1203 #ifdef CONFIG_THREAD_INFO_IN_TASK
1204 	p->cpu = cpu;
1205 #else
1206 	task_thread_info(p)->cpu = cpu;
1207 #endif
1208 	p->wake_cpu = cpu;
1209 #endif
1210 }
1211 
1212 /*
1213  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1214  */
1215 #ifdef CONFIG_SCHED_DEBUG
1216 # include <linux/static_key.h>
1217 # define const_debug __read_mostly
1218 #else
1219 # define const_debug const
1220 #endif
1221 
1222 extern const_debug unsigned int sysctl_sched_features;
1223 
1224 #define SCHED_FEAT(name, enabled)	\
1225 	__SCHED_FEAT_##name ,
1226 
1227 enum {
1228 #include "features.h"
1229 	__SCHED_FEAT_NR,
1230 };
1231 
1232 #undef SCHED_FEAT
1233 
1234 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1235 #define SCHED_FEAT(name, enabled)					\
1236 static __always_inline bool static_branch_##name(struct static_key *key) \
1237 {									\
1238 	return static_key_##enabled(key);				\
1239 }
1240 
1241 #include "features.h"
1242 
1243 #undef SCHED_FEAT
1244 
1245 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1246 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1247 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1248 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1249 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1250 
1251 extern struct static_key_false sched_numa_balancing;
1252 extern struct static_key_false sched_schedstats;
1253 
1254 static inline u64 global_rt_period(void)
1255 {
1256 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1257 }
1258 
1259 static inline u64 global_rt_runtime(void)
1260 {
1261 	if (sysctl_sched_rt_runtime < 0)
1262 		return RUNTIME_INF;
1263 
1264 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1265 }
1266 
1267 static inline int task_current(struct rq *rq, struct task_struct *p)
1268 {
1269 	return rq->curr == p;
1270 }
1271 
1272 static inline int task_running(struct rq *rq, struct task_struct *p)
1273 {
1274 #ifdef CONFIG_SMP
1275 	return p->on_cpu;
1276 #else
1277 	return task_current(rq, p);
1278 #endif
1279 }
1280 
1281 static inline int task_on_rq_queued(struct task_struct *p)
1282 {
1283 	return p->on_rq == TASK_ON_RQ_QUEUED;
1284 }
1285 
1286 static inline int task_on_rq_migrating(struct task_struct *p)
1287 {
1288 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1289 }
1290 
1291 #ifndef prepare_arch_switch
1292 # define prepare_arch_switch(next)	do { } while (0)
1293 #endif
1294 #ifndef finish_arch_post_lock_switch
1295 # define finish_arch_post_lock_switch()	do { } while (0)
1296 #endif
1297 
1298 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1299 {
1300 #ifdef CONFIG_SMP
1301 	/*
1302 	 * We can optimise this out completely for !SMP, because the
1303 	 * SMP rebalancing from interrupt is the only thing that cares
1304 	 * here.
1305 	 */
1306 	next->on_cpu = 1;
1307 #endif
1308 }
1309 
1310 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1311 {
1312 #ifdef CONFIG_SMP
1313 	/*
1314 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1315 	 * We must ensure this doesn't happen until the switch is completely
1316 	 * finished.
1317 	 *
1318 	 * In particular, the load of prev->state in finish_task_switch() must
1319 	 * happen before this.
1320 	 *
1321 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
1322 	 */
1323 	smp_store_release(&prev->on_cpu, 0);
1324 #endif
1325 #ifdef CONFIG_DEBUG_SPINLOCK
1326 	/* this is a valid case when another task releases the spinlock */
1327 	rq->lock.owner = current;
1328 #endif
1329 	/*
1330 	 * If we are tracking spinlock dependencies then we have to
1331 	 * fix up the runqueue lock - which gets 'carried over' from
1332 	 * prev into current:
1333 	 */
1334 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1335 
1336 	raw_spin_unlock_irq(&rq->lock);
1337 }
1338 
1339 /*
1340  * wake flags
1341  */
1342 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1343 #define WF_FORK		0x02		/* child wakeup after fork */
1344 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1345 
1346 /*
1347  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348  * of tasks with abnormal "nice" values across CPUs the contribution that
1349  * each task makes to its run queue's load is weighted according to its
1350  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351  * scaled version of the new time slice allocation that they receive on time
1352  * slice expiry etc.
1353  */
1354 
1355 #define WEIGHT_IDLEPRIO                3
1356 #define WMULT_IDLEPRIO         1431655765
1357 
1358 extern const int sched_prio_to_weight[40];
1359 extern const u32 sched_prio_to_wmult[40];
1360 
1361 /*
1362  * {de,en}queue flags:
1363  *
1364  * DEQUEUE_SLEEP  - task is no longer runnable
1365  * ENQUEUE_WAKEUP - task just became runnable
1366  *
1367  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1368  *                are in a known state which allows modification. Such pairs
1369  *                should preserve as much state as possible.
1370  *
1371  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1372  *        in the runqueue.
1373  *
1374  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1375  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1376  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1377  *
1378  */
1379 
1380 #define DEQUEUE_SLEEP		0x01
1381 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1382 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1383 #define DEQUEUE_NOCLOCK		0x08 /* matches ENQUEUE_NOCLOCK */
1384 
1385 #define ENQUEUE_WAKEUP		0x01
1386 #define ENQUEUE_RESTORE		0x02
1387 #define ENQUEUE_MOVE		0x04
1388 #define ENQUEUE_NOCLOCK		0x08
1389 
1390 #define ENQUEUE_HEAD		0x10
1391 #define ENQUEUE_REPLENISH	0x20
1392 #ifdef CONFIG_SMP
1393 #define ENQUEUE_MIGRATED	0x40
1394 #else
1395 #define ENQUEUE_MIGRATED	0x00
1396 #endif
1397 
1398 #define RETRY_TASK		((void *)-1UL)
1399 
1400 struct sched_class {
1401 	const struct sched_class *next;
1402 
1403 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1404 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1405 	void (*yield_task) (struct rq *rq);
1406 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1407 
1408 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1409 
1410 	/*
1411 	 * It is the responsibility of the pick_next_task() method that will
1412 	 * return the next task to call put_prev_task() on the @prev task or
1413 	 * something equivalent.
1414 	 *
1415 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1416 	 * tasks.
1417 	 */
1418 	struct task_struct * (*pick_next_task) (struct rq *rq,
1419 						struct task_struct *prev,
1420 						struct rq_flags *rf);
1421 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1422 
1423 #ifdef CONFIG_SMP
1424 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1425 	void (*migrate_task_rq)(struct task_struct *p);
1426 
1427 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1428 
1429 	void (*set_cpus_allowed)(struct task_struct *p,
1430 				 const struct cpumask *newmask);
1431 
1432 	void (*rq_online)(struct rq *rq);
1433 	void (*rq_offline)(struct rq *rq);
1434 #endif
1435 
1436 	void (*set_curr_task) (struct rq *rq);
1437 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1438 	void (*task_fork) (struct task_struct *p);
1439 	void (*task_dead) (struct task_struct *p);
1440 
1441 	/*
1442 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1443 	 * cannot assume the switched_from/switched_to pair is serliazed by
1444 	 * rq->lock. They are however serialized by p->pi_lock.
1445 	 */
1446 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1447 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1448 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1449 			     int oldprio);
1450 
1451 	unsigned int (*get_rr_interval) (struct rq *rq,
1452 					 struct task_struct *task);
1453 
1454 	void (*update_curr) (struct rq *rq);
1455 
1456 #define TASK_SET_GROUP  0
1457 #define TASK_MOVE_GROUP	1
1458 
1459 #ifdef CONFIG_FAIR_GROUP_SCHED
1460 	void (*task_change_group) (struct task_struct *p, int type);
1461 #endif
1462 };
1463 
1464 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1465 {
1466 	prev->sched_class->put_prev_task(rq, prev);
1467 }
1468 
1469 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1470 {
1471 	curr->sched_class->set_curr_task(rq);
1472 }
1473 
1474 #ifdef CONFIG_SMP
1475 #define sched_class_highest (&stop_sched_class)
1476 #else
1477 #define sched_class_highest (&dl_sched_class)
1478 #endif
1479 #define for_each_class(class) \
1480    for (class = sched_class_highest; class; class = class->next)
1481 
1482 extern const struct sched_class stop_sched_class;
1483 extern const struct sched_class dl_sched_class;
1484 extern const struct sched_class rt_sched_class;
1485 extern const struct sched_class fair_sched_class;
1486 extern const struct sched_class idle_sched_class;
1487 
1488 
1489 #ifdef CONFIG_SMP
1490 
1491 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1492 
1493 extern void trigger_load_balance(struct rq *rq);
1494 
1495 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1496 
1497 #endif
1498 
1499 #ifdef CONFIG_CPU_IDLE
1500 static inline void idle_set_state(struct rq *rq,
1501 				  struct cpuidle_state *idle_state)
1502 {
1503 	rq->idle_state = idle_state;
1504 }
1505 
1506 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1507 {
1508 	SCHED_WARN_ON(!rcu_read_lock_held());
1509 	return rq->idle_state;
1510 }
1511 #else
1512 static inline void idle_set_state(struct rq *rq,
1513 				  struct cpuidle_state *idle_state)
1514 {
1515 }
1516 
1517 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1518 {
1519 	return NULL;
1520 }
1521 #endif
1522 
1523 extern void schedule_idle(void);
1524 
1525 extern void sysrq_sched_debug_show(void);
1526 extern void sched_init_granularity(void);
1527 extern void update_max_interval(void);
1528 
1529 extern void init_sched_dl_class(void);
1530 extern void init_sched_rt_class(void);
1531 extern void init_sched_fair_class(void);
1532 
1533 extern void resched_curr(struct rq *rq);
1534 extern void resched_cpu(int cpu);
1535 
1536 extern struct rt_bandwidth def_rt_bandwidth;
1537 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1538 
1539 extern struct dl_bandwidth def_dl_bandwidth;
1540 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1541 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1542 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1543 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1544 
1545 #define BW_SHIFT	20
1546 #define BW_UNIT		(1 << BW_SHIFT)
1547 #define RATIO_SHIFT	8
1548 unsigned long to_ratio(u64 period, u64 runtime);
1549 
1550 extern void init_entity_runnable_average(struct sched_entity *se);
1551 extern void post_init_entity_util_avg(struct sched_entity *se);
1552 
1553 #ifdef CONFIG_NO_HZ_FULL
1554 extern bool sched_can_stop_tick(struct rq *rq);
1555 
1556 /*
1557  * Tick may be needed by tasks in the runqueue depending on their policy and
1558  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1559  * nohz mode if necessary.
1560  */
1561 static inline void sched_update_tick_dependency(struct rq *rq)
1562 {
1563 	int cpu;
1564 
1565 	if (!tick_nohz_full_enabled())
1566 		return;
1567 
1568 	cpu = cpu_of(rq);
1569 
1570 	if (!tick_nohz_full_cpu(cpu))
1571 		return;
1572 
1573 	if (sched_can_stop_tick(rq))
1574 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1575 	else
1576 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1577 }
1578 #else
1579 static inline void sched_update_tick_dependency(struct rq *rq) { }
1580 #endif
1581 
1582 static inline void add_nr_running(struct rq *rq, unsigned count)
1583 {
1584 	unsigned prev_nr = rq->nr_running;
1585 
1586 	rq->nr_running = prev_nr + count;
1587 
1588 	if (prev_nr < 2 && rq->nr_running >= 2) {
1589 #ifdef CONFIG_SMP
1590 		if (!rq->rd->overload)
1591 			rq->rd->overload = true;
1592 #endif
1593 	}
1594 
1595 	sched_update_tick_dependency(rq);
1596 }
1597 
1598 static inline void sub_nr_running(struct rq *rq, unsigned count)
1599 {
1600 	rq->nr_running -= count;
1601 	/* Check if we still need preemption */
1602 	sched_update_tick_dependency(rq);
1603 }
1604 
1605 static inline void rq_last_tick_reset(struct rq *rq)
1606 {
1607 #ifdef CONFIG_NO_HZ_FULL
1608 	rq->last_sched_tick = jiffies;
1609 #endif
1610 }
1611 
1612 extern void update_rq_clock(struct rq *rq);
1613 
1614 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1615 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1616 
1617 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1618 
1619 extern const_debug unsigned int sysctl_sched_time_avg;
1620 extern const_debug unsigned int sysctl_sched_nr_migrate;
1621 extern const_debug unsigned int sysctl_sched_migration_cost;
1622 
1623 static inline u64 sched_avg_period(void)
1624 {
1625 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1626 }
1627 
1628 #ifdef CONFIG_SCHED_HRTICK
1629 
1630 /*
1631  * Use hrtick when:
1632  *  - enabled by features
1633  *  - hrtimer is actually high res
1634  */
1635 static inline int hrtick_enabled(struct rq *rq)
1636 {
1637 	if (!sched_feat(HRTICK))
1638 		return 0;
1639 	if (!cpu_active(cpu_of(rq)))
1640 		return 0;
1641 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1642 }
1643 
1644 void hrtick_start(struct rq *rq, u64 delay);
1645 
1646 #else
1647 
1648 static inline int hrtick_enabled(struct rq *rq)
1649 {
1650 	return 0;
1651 }
1652 
1653 #endif /* CONFIG_SCHED_HRTICK */
1654 
1655 #ifdef CONFIG_SMP
1656 extern void sched_avg_update(struct rq *rq);
1657 
1658 #ifndef arch_scale_freq_capacity
1659 static __always_inline
1660 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1661 {
1662 	return SCHED_CAPACITY_SCALE;
1663 }
1664 #endif
1665 
1666 #ifndef arch_scale_cpu_capacity
1667 static __always_inline
1668 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1669 {
1670 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1671 		return sd->smt_gain / sd->span_weight;
1672 
1673 	return SCHED_CAPACITY_SCALE;
1674 }
1675 #endif
1676 
1677 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1678 {
1679 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1680 	sched_avg_update(rq);
1681 }
1682 #else
1683 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1684 static inline void sched_avg_update(struct rq *rq) { }
1685 #endif
1686 
1687 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1688 	__acquires(rq->lock);
1689 
1690 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1691 	__acquires(p->pi_lock)
1692 	__acquires(rq->lock);
1693 
1694 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1695 	__releases(rq->lock)
1696 {
1697 	rq_unpin_lock(rq, rf);
1698 	raw_spin_unlock(&rq->lock);
1699 }
1700 
1701 static inline void
1702 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1703 	__releases(rq->lock)
1704 	__releases(p->pi_lock)
1705 {
1706 	rq_unpin_lock(rq, rf);
1707 	raw_spin_unlock(&rq->lock);
1708 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1709 }
1710 
1711 static inline void
1712 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1713 	__acquires(rq->lock)
1714 {
1715 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1716 	rq_pin_lock(rq, rf);
1717 }
1718 
1719 static inline void
1720 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1721 	__acquires(rq->lock)
1722 {
1723 	raw_spin_lock_irq(&rq->lock);
1724 	rq_pin_lock(rq, rf);
1725 }
1726 
1727 static inline void
1728 rq_lock(struct rq *rq, struct rq_flags *rf)
1729 	__acquires(rq->lock)
1730 {
1731 	raw_spin_lock(&rq->lock);
1732 	rq_pin_lock(rq, rf);
1733 }
1734 
1735 static inline void
1736 rq_relock(struct rq *rq, struct rq_flags *rf)
1737 	__acquires(rq->lock)
1738 {
1739 	raw_spin_lock(&rq->lock);
1740 	rq_repin_lock(rq, rf);
1741 }
1742 
1743 static inline void
1744 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1745 	__releases(rq->lock)
1746 {
1747 	rq_unpin_lock(rq, rf);
1748 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1749 }
1750 
1751 static inline void
1752 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1753 	__releases(rq->lock)
1754 {
1755 	rq_unpin_lock(rq, rf);
1756 	raw_spin_unlock_irq(&rq->lock);
1757 }
1758 
1759 static inline void
1760 rq_unlock(struct rq *rq, struct rq_flags *rf)
1761 	__releases(rq->lock)
1762 {
1763 	rq_unpin_lock(rq, rf);
1764 	raw_spin_unlock(&rq->lock);
1765 }
1766 
1767 #ifdef CONFIG_SMP
1768 #ifdef CONFIG_PREEMPT
1769 
1770 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1771 
1772 /*
1773  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1774  * way at the expense of forcing extra atomic operations in all
1775  * invocations.  This assures that the double_lock is acquired using the
1776  * same underlying policy as the spinlock_t on this architecture, which
1777  * reduces latency compared to the unfair variant below.  However, it
1778  * also adds more overhead and therefore may reduce throughput.
1779  */
1780 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1781 	__releases(this_rq->lock)
1782 	__acquires(busiest->lock)
1783 	__acquires(this_rq->lock)
1784 {
1785 	raw_spin_unlock(&this_rq->lock);
1786 	double_rq_lock(this_rq, busiest);
1787 
1788 	return 1;
1789 }
1790 
1791 #else
1792 /*
1793  * Unfair double_lock_balance: Optimizes throughput at the expense of
1794  * latency by eliminating extra atomic operations when the locks are
1795  * already in proper order on entry.  This favors lower cpu-ids and will
1796  * grant the double lock to lower cpus over higher ids under contention,
1797  * regardless of entry order into the function.
1798  */
1799 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1800 	__releases(this_rq->lock)
1801 	__acquires(busiest->lock)
1802 	__acquires(this_rq->lock)
1803 {
1804 	int ret = 0;
1805 
1806 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1807 		if (busiest < this_rq) {
1808 			raw_spin_unlock(&this_rq->lock);
1809 			raw_spin_lock(&busiest->lock);
1810 			raw_spin_lock_nested(&this_rq->lock,
1811 					      SINGLE_DEPTH_NESTING);
1812 			ret = 1;
1813 		} else
1814 			raw_spin_lock_nested(&busiest->lock,
1815 					      SINGLE_DEPTH_NESTING);
1816 	}
1817 	return ret;
1818 }
1819 
1820 #endif /* CONFIG_PREEMPT */
1821 
1822 /*
1823  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1824  */
1825 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1826 {
1827 	if (unlikely(!irqs_disabled())) {
1828 		/* printk() doesn't work good under rq->lock */
1829 		raw_spin_unlock(&this_rq->lock);
1830 		BUG_ON(1);
1831 	}
1832 
1833 	return _double_lock_balance(this_rq, busiest);
1834 }
1835 
1836 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1837 	__releases(busiest->lock)
1838 {
1839 	raw_spin_unlock(&busiest->lock);
1840 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1841 }
1842 
1843 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1844 {
1845 	if (l1 > l2)
1846 		swap(l1, l2);
1847 
1848 	spin_lock(l1);
1849 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1850 }
1851 
1852 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1853 {
1854 	if (l1 > l2)
1855 		swap(l1, l2);
1856 
1857 	spin_lock_irq(l1);
1858 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1859 }
1860 
1861 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1862 {
1863 	if (l1 > l2)
1864 		swap(l1, l2);
1865 
1866 	raw_spin_lock(l1);
1867 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1868 }
1869 
1870 /*
1871  * double_rq_lock - safely lock two runqueues
1872  *
1873  * Note this does not disable interrupts like task_rq_lock,
1874  * you need to do so manually before calling.
1875  */
1876 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1877 	__acquires(rq1->lock)
1878 	__acquires(rq2->lock)
1879 {
1880 	BUG_ON(!irqs_disabled());
1881 	if (rq1 == rq2) {
1882 		raw_spin_lock(&rq1->lock);
1883 		__acquire(rq2->lock);	/* Fake it out ;) */
1884 	} else {
1885 		if (rq1 < rq2) {
1886 			raw_spin_lock(&rq1->lock);
1887 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1888 		} else {
1889 			raw_spin_lock(&rq2->lock);
1890 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1891 		}
1892 	}
1893 }
1894 
1895 /*
1896  * double_rq_unlock - safely unlock two runqueues
1897  *
1898  * Note this does not restore interrupts like task_rq_unlock,
1899  * you need to do so manually after calling.
1900  */
1901 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1902 	__releases(rq1->lock)
1903 	__releases(rq2->lock)
1904 {
1905 	raw_spin_unlock(&rq1->lock);
1906 	if (rq1 != rq2)
1907 		raw_spin_unlock(&rq2->lock);
1908 	else
1909 		__release(rq2->lock);
1910 }
1911 
1912 extern void set_rq_online (struct rq *rq);
1913 extern void set_rq_offline(struct rq *rq);
1914 extern bool sched_smp_initialized;
1915 
1916 #else /* CONFIG_SMP */
1917 
1918 /*
1919  * double_rq_lock - safely lock two runqueues
1920  *
1921  * Note this does not disable interrupts like task_rq_lock,
1922  * you need to do so manually before calling.
1923  */
1924 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1925 	__acquires(rq1->lock)
1926 	__acquires(rq2->lock)
1927 {
1928 	BUG_ON(!irqs_disabled());
1929 	BUG_ON(rq1 != rq2);
1930 	raw_spin_lock(&rq1->lock);
1931 	__acquire(rq2->lock);	/* Fake it out ;) */
1932 }
1933 
1934 /*
1935  * double_rq_unlock - safely unlock two runqueues
1936  *
1937  * Note this does not restore interrupts like task_rq_unlock,
1938  * you need to do so manually after calling.
1939  */
1940 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1941 	__releases(rq1->lock)
1942 	__releases(rq2->lock)
1943 {
1944 	BUG_ON(rq1 != rq2);
1945 	raw_spin_unlock(&rq1->lock);
1946 	__release(rq2->lock);
1947 }
1948 
1949 #endif
1950 
1951 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1952 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1953 
1954 #ifdef	CONFIG_SCHED_DEBUG
1955 extern bool sched_debug_enabled;
1956 
1957 extern void print_cfs_stats(struct seq_file *m, int cpu);
1958 extern void print_rt_stats(struct seq_file *m, int cpu);
1959 extern void print_dl_stats(struct seq_file *m, int cpu);
1960 extern void
1961 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1962 #ifdef CONFIG_NUMA_BALANCING
1963 extern void
1964 show_numa_stats(struct task_struct *p, struct seq_file *m);
1965 extern void
1966 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1967 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1968 #endif /* CONFIG_NUMA_BALANCING */
1969 #endif /* CONFIG_SCHED_DEBUG */
1970 
1971 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1972 extern void init_rt_rq(struct rt_rq *rt_rq);
1973 extern void init_dl_rq(struct dl_rq *dl_rq);
1974 
1975 extern void cfs_bandwidth_usage_inc(void);
1976 extern void cfs_bandwidth_usage_dec(void);
1977 
1978 #ifdef CONFIG_NO_HZ_COMMON
1979 enum rq_nohz_flag_bits {
1980 	NOHZ_TICK_STOPPED,
1981 	NOHZ_BALANCE_KICK,
1982 };
1983 
1984 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1985 
1986 extern void nohz_balance_exit_idle(unsigned int cpu);
1987 #else
1988 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1989 #endif
1990 
1991 
1992 #ifdef CONFIG_SMP
1993 static inline
1994 void __dl_update(struct dl_bw *dl_b, s64 bw)
1995 {
1996 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
1997 	int i;
1998 
1999 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2000 			 "sched RCU must be held");
2001 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2002 		struct rq *rq = cpu_rq(i);
2003 
2004 		rq->dl.extra_bw += bw;
2005 	}
2006 }
2007 #else
2008 static inline
2009 void __dl_update(struct dl_bw *dl_b, s64 bw)
2010 {
2011 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2012 
2013 	dl->extra_bw += bw;
2014 }
2015 #endif
2016 
2017 
2018 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2019 struct irqtime {
2020 	u64			total;
2021 	u64			tick_delta;
2022 	u64			irq_start_time;
2023 	struct u64_stats_sync	sync;
2024 };
2025 
2026 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2027 
2028 /*
2029  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2030  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2031  * and never move forward.
2032  */
2033 static inline u64 irq_time_read(int cpu)
2034 {
2035 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2036 	unsigned int seq;
2037 	u64 total;
2038 
2039 	do {
2040 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2041 		total = irqtime->total;
2042 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2043 
2044 	return total;
2045 }
2046 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2047 
2048 #ifdef CONFIG_CPU_FREQ
2049 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2050 
2051 /**
2052  * cpufreq_update_util - Take a note about CPU utilization changes.
2053  * @rq: Runqueue to carry out the update for.
2054  * @flags: Update reason flags.
2055  *
2056  * This function is called by the scheduler on the CPU whose utilization is
2057  * being updated.
2058  *
2059  * It can only be called from RCU-sched read-side critical sections.
2060  *
2061  * The way cpufreq is currently arranged requires it to evaluate the CPU
2062  * performance state (frequency/voltage) on a regular basis to prevent it from
2063  * being stuck in a completely inadequate performance level for too long.
2064  * That is not guaranteed to happen if the updates are only triggered from CFS,
2065  * though, because they may not be coming in if RT or deadline tasks are active
2066  * all the time (or there are RT and DL tasks only).
2067  *
2068  * As a workaround for that issue, this function is called by the RT and DL
2069  * sched classes to trigger extra cpufreq updates to prevent it from stalling,
2070  * but that really is a band-aid.  Going forward it should be replaced with
2071  * solutions targeted more specifically at RT and DL tasks.
2072  */
2073 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2074 {
2075 	struct update_util_data *data;
2076 
2077 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2078 						  cpu_of(rq)));
2079 	if (data)
2080 		data->func(data, rq_clock(rq), flags);
2081 }
2082 #else
2083 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2084 #endif /* CONFIG_CPU_FREQ */
2085 
2086 #ifdef arch_scale_freq_capacity
2087 #ifndef arch_scale_freq_invariant
2088 #define arch_scale_freq_invariant()	(true)
2089 #endif
2090 #else /* arch_scale_freq_capacity */
2091 #define arch_scale_freq_invariant()	(false)
2092 #endif
2093