1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 369 * returns NULL. 370 * 371 * dl_server_update() -- called from update_curr_common(), propagates runtime 372 * to the server. 373 * 374 * dl_server_start() -- start the server when it has tasks; it will stop 375 * automatically when there are no more tasks, per 376 * dl_se::server_pick() returning NULL. 377 * 378 * dl_server_stop() -- (force) stop the server; use when updating 379 * parameters. 380 * 381 * dl_server_init() -- initializes the server. 382 * 383 * When started the dl_server will (per dl_defer) schedule a timer for its 384 * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a 385 * server will run at the very end of its period. 386 * 387 * This is done such that any runtime from the target class can be accounted 388 * against the server -- through dl_server_update() above -- such that when it 389 * becomes time to run, it might already be out of runtime and get deferred 390 * until the next period. In this case dl_server_timer() will alternate 391 * between defer and replenish but never actually enqueue the server. 392 * 393 * Only when the target class does not manage to exhaust the server's runtime 394 * (there's actualy starvation in the given period), will the dl_server get on 395 * the runqueue. Once queued it will pick tasks from the target class and run 396 * them until either its runtime is exhaused, at which point its back to 397 * dl_server_timer, or until there are no more tasks to run, at which point 398 * the dl_server stops itself. 399 * 400 * By stopping at this point the dl_server retains bandwidth, which, if a new 401 * task wakes up imminently (starting the server again), can be used -- 402 * subject to CBS wakeup rules -- without having to wait for the next period. 403 * 404 * Additionally, because of the dl_defer behaviour the start/stop behaviour is 405 * naturally thottled to once per period, avoiding high context switch 406 * workloads from spamming the hrtimer program/cancel paths. 407 */ 408 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 409 extern void dl_server_start(struct sched_dl_entity *dl_se); 410 extern void dl_server_stop(struct sched_dl_entity *dl_se); 411 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 412 dl_server_pick_f pick_task); 413 extern void sched_init_dl_servers(void); 414 415 extern void dl_server_update_idle_time(struct rq *rq, 416 struct task_struct *p); 417 extern void fair_server_init(struct rq *rq); 418 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 419 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 420 u64 runtime, u64 period, bool init); 421 422 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 423 { 424 return dl_se->dl_server_active; 425 } 426 427 #ifdef CONFIG_CGROUP_SCHED 428 429 extern struct list_head task_groups; 430 431 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 432 extern const u64 max_bw_quota_period_us; 433 434 /* 435 * default period for group bandwidth. 436 * default: 0.1s, units: microseconds 437 */ 438 static inline u64 default_bw_period_us(void) 439 { 440 return 100000ULL; 441 } 442 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 443 444 struct cfs_bandwidth { 445 #ifdef CONFIG_CFS_BANDWIDTH 446 raw_spinlock_t lock; 447 ktime_t period; 448 u64 quota; 449 u64 runtime; 450 u64 burst; 451 u64 runtime_snap; 452 s64 hierarchical_quota; 453 454 u8 idle; 455 u8 period_active; 456 u8 slack_started; 457 struct hrtimer period_timer; 458 struct hrtimer slack_timer; 459 struct list_head throttled_cfs_rq; 460 461 /* Statistics: */ 462 int nr_periods; 463 int nr_throttled; 464 int nr_burst; 465 u64 throttled_time; 466 u64 burst_time; 467 #endif /* CONFIG_CFS_BANDWIDTH */ 468 }; 469 470 /* Task group related information */ 471 struct task_group { 472 struct cgroup_subsys_state css; 473 474 #ifdef CONFIG_GROUP_SCHED_WEIGHT 475 /* A positive value indicates that this is a SCHED_IDLE group. */ 476 int idle; 477 #endif 478 479 #ifdef CONFIG_FAIR_GROUP_SCHED 480 /* schedulable entities of this group on each CPU */ 481 struct sched_entity **se; 482 /* runqueue "owned" by this group on each CPU */ 483 struct cfs_rq **cfs_rq; 484 unsigned long shares; 485 /* 486 * load_avg can be heavily contended at clock tick time, so put 487 * it in its own cache-line separated from the fields above which 488 * will also be accessed at each tick. 489 */ 490 atomic_long_t load_avg ____cacheline_aligned; 491 #endif /* CONFIG_FAIR_GROUP_SCHED */ 492 493 #ifdef CONFIG_RT_GROUP_SCHED 494 struct sched_rt_entity **rt_se; 495 struct rt_rq **rt_rq; 496 497 struct rt_bandwidth rt_bandwidth; 498 #endif 499 500 struct scx_task_group scx; 501 502 struct rcu_head rcu; 503 struct list_head list; 504 505 struct task_group *parent; 506 struct list_head siblings; 507 struct list_head children; 508 509 #ifdef CONFIG_SCHED_AUTOGROUP 510 struct autogroup *autogroup; 511 #endif 512 513 struct cfs_bandwidth cfs_bandwidth; 514 515 #ifdef CONFIG_UCLAMP_TASK_GROUP 516 /* The two decimal precision [%] value requested from user-space */ 517 unsigned int uclamp_pct[UCLAMP_CNT]; 518 /* Clamp values requested for a task group */ 519 struct uclamp_se uclamp_req[UCLAMP_CNT]; 520 /* Effective clamp values used for a task group */ 521 struct uclamp_se uclamp[UCLAMP_CNT]; 522 #endif 523 524 }; 525 526 #ifdef CONFIG_GROUP_SCHED_WEIGHT 527 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 528 529 /* 530 * A weight of 0 or 1 can cause arithmetics problems. 531 * A weight of a cfs_rq is the sum of weights of which entities 532 * are queued on this cfs_rq, so a weight of a entity should not be 533 * too large, so as the shares value of a task group. 534 * (The default weight is 1024 - so there's no practical 535 * limitation from this.) 536 */ 537 #define MIN_SHARES (1UL << 1) 538 #define MAX_SHARES (1UL << 18) 539 #endif 540 541 typedef int (*tg_visitor)(struct task_group *, void *); 542 543 extern int walk_tg_tree_from(struct task_group *from, 544 tg_visitor down, tg_visitor up, void *data); 545 546 /* 547 * Iterate the full tree, calling @down when first entering a node and @up when 548 * leaving it for the final time. 549 * 550 * Caller must hold rcu_lock or sufficient equivalent. 551 */ 552 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 553 { 554 return walk_tg_tree_from(&root_task_group, down, up, data); 555 } 556 557 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 558 { 559 return css ? container_of(css, struct task_group, css) : NULL; 560 } 561 562 extern int tg_nop(struct task_group *tg, void *data); 563 564 #ifdef CONFIG_FAIR_GROUP_SCHED 565 extern void free_fair_sched_group(struct task_group *tg); 566 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 567 extern void online_fair_sched_group(struct task_group *tg); 568 extern void unregister_fair_sched_group(struct task_group *tg); 569 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 570 static inline void free_fair_sched_group(struct task_group *tg) { } 571 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 572 { 573 return 1; 574 } 575 static inline void online_fair_sched_group(struct task_group *tg) { } 576 static inline void unregister_fair_sched_group(struct task_group *tg) { } 577 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 578 579 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 580 struct sched_entity *se, int cpu, 581 struct sched_entity *parent); 582 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 583 584 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 585 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 586 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 587 extern bool cfs_task_bw_constrained(struct task_struct *p); 588 589 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 590 struct sched_rt_entity *rt_se, int cpu, 591 struct sched_rt_entity *parent); 592 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 593 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 594 extern long sched_group_rt_runtime(struct task_group *tg); 595 extern long sched_group_rt_period(struct task_group *tg); 596 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 597 598 extern struct task_group *sched_create_group(struct task_group *parent); 599 extern void sched_online_group(struct task_group *tg, 600 struct task_group *parent); 601 extern void sched_destroy_group(struct task_group *tg); 602 extern void sched_release_group(struct task_group *tg); 603 604 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 605 606 #ifdef CONFIG_FAIR_GROUP_SCHED 607 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 608 609 extern int sched_group_set_idle(struct task_group *tg, long idle); 610 611 extern void set_task_rq_fair(struct sched_entity *se, 612 struct cfs_rq *prev, struct cfs_rq *next); 613 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 614 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 615 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 616 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 617 618 #else /* !CONFIG_CGROUP_SCHED: */ 619 620 struct cfs_bandwidth { }; 621 622 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 623 624 #endif /* !CONFIG_CGROUP_SCHED */ 625 626 extern void unregister_rt_sched_group(struct task_group *tg); 627 extern void free_rt_sched_group(struct task_group *tg); 628 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 629 630 /* 631 * u64_u32_load/u64_u32_store 632 * 633 * Use a copy of a u64 value to protect against data race. This is only 634 * applicable for 32-bits architectures. 635 */ 636 #ifdef CONFIG_64BIT 637 # define u64_u32_load_copy(var, copy) var 638 # define u64_u32_store_copy(var, copy, val) (var = val) 639 #else 640 # define u64_u32_load_copy(var, copy) \ 641 ({ \ 642 u64 __val, __val_copy; \ 643 do { \ 644 __val_copy = copy; \ 645 /* \ 646 * paired with u64_u32_store_copy(), ordering access \ 647 * to var and copy. \ 648 */ \ 649 smp_rmb(); \ 650 __val = var; \ 651 } while (__val != __val_copy); \ 652 __val; \ 653 }) 654 # define u64_u32_store_copy(var, copy, val) \ 655 do { \ 656 typeof(val) __val = (val); \ 657 var = __val; \ 658 /* \ 659 * paired with u64_u32_load_copy(), ordering access to var and \ 660 * copy. \ 661 */ \ 662 smp_wmb(); \ 663 copy = __val; \ 664 } while (0) 665 #endif 666 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 667 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 668 669 struct balance_callback { 670 struct balance_callback *next; 671 void (*func)(struct rq *rq); 672 }; 673 674 /* CFS-related fields in a runqueue */ 675 struct cfs_rq { 676 struct load_weight load; 677 unsigned int nr_queued; 678 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 679 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 680 unsigned int h_nr_idle; /* SCHED_IDLE */ 681 682 s64 avg_vruntime; 683 u64 avg_load; 684 685 u64 min_vruntime; 686 #ifdef CONFIG_SCHED_CORE 687 unsigned int forceidle_seq; 688 u64 min_vruntime_fi; 689 #endif 690 691 struct rb_root_cached tasks_timeline; 692 693 /* 694 * 'curr' points to currently running entity on this cfs_rq. 695 * It is set to NULL otherwise (i.e when none are currently running). 696 */ 697 struct sched_entity *curr; 698 struct sched_entity *next; 699 700 /* 701 * CFS load tracking 702 */ 703 struct sched_avg avg; 704 #ifndef CONFIG_64BIT 705 u64 last_update_time_copy; 706 #endif 707 struct { 708 raw_spinlock_t lock ____cacheline_aligned; 709 int nr; 710 unsigned long load_avg; 711 unsigned long util_avg; 712 unsigned long runnable_avg; 713 } removed; 714 715 #ifdef CONFIG_FAIR_GROUP_SCHED 716 u64 last_update_tg_load_avg; 717 unsigned long tg_load_avg_contrib; 718 long propagate; 719 long prop_runnable_sum; 720 721 /* 722 * h_load = weight * f(tg) 723 * 724 * Where f(tg) is the recursive weight fraction assigned to 725 * this group. 726 */ 727 unsigned long h_load; 728 u64 last_h_load_update; 729 struct sched_entity *h_load_next; 730 #endif /* CONFIG_FAIR_GROUP_SCHED */ 731 732 #ifdef CONFIG_FAIR_GROUP_SCHED 733 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 734 735 /* 736 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 737 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 738 * (like users, containers etc.) 739 * 740 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 741 * This list is used during load balance. 742 */ 743 int on_list; 744 struct list_head leaf_cfs_rq_list; 745 struct task_group *tg; /* group that "owns" this runqueue */ 746 747 /* Locally cached copy of our task_group's idle value */ 748 int idle; 749 750 #ifdef CONFIG_CFS_BANDWIDTH 751 int runtime_enabled; 752 s64 runtime_remaining; 753 754 u64 throttled_pelt_idle; 755 #ifndef CONFIG_64BIT 756 u64 throttled_pelt_idle_copy; 757 #endif 758 u64 throttled_clock; 759 u64 throttled_clock_pelt; 760 u64 throttled_clock_pelt_time; 761 u64 throttled_clock_self; 762 u64 throttled_clock_self_time; 763 int throttled; 764 int throttle_count; 765 struct list_head throttled_list; 766 struct list_head throttled_csd_list; 767 #endif /* CONFIG_CFS_BANDWIDTH */ 768 #endif /* CONFIG_FAIR_GROUP_SCHED */ 769 }; 770 771 #ifdef CONFIG_SCHED_CLASS_EXT 772 /* scx_rq->flags, protected by the rq lock */ 773 enum scx_rq_flags { 774 /* 775 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 776 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 777 * only while the BPF scheduler considers the CPU to be online. 778 */ 779 SCX_RQ_ONLINE = 1 << 0, 780 SCX_RQ_CAN_STOP_TICK = 1 << 1, 781 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 782 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 783 SCX_RQ_BYPASSING = 1 << 4, 784 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 785 786 SCX_RQ_IN_WAKEUP = 1 << 16, 787 SCX_RQ_IN_BALANCE = 1 << 17, 788 }; 789 790 struct scx_rq { 791 struct scx_dispatch_q local_dsq; 792 struct list_head runnable_list; /* runnable tasks on this rq */ 793 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 794 unsigned long ops_qseq; 795 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 796 u32 nr_running; 797 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 798 bool cpu_released; 799 u32 flags; 800 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 801 cpumask_var_t cpus_to_kick; 802 cpumask_var_t cpus_to_kick_if_idle; 803 cpumask_var_t cpus_to_preempt; 804 cpumask_var_t cpus_to_wait; 805 unsigned long pnt_seq; 806 struct balance_callback deferred_bal_cb; 807 struct irq_work deferred_irq_work; 808 struct irq_work kick_cpus_irq_work; 809 }; 810 #endif /* CONFIG_SCHED_CLASS_EXT */ 811 812 static inline int rt_bandwidth_enabled(void) 813 { 814 return sysctl_sched_rt_runtime >= 0; 815 } 816 817 /* RT IPI pull logic requires IRQ_WORK */ 818 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 819 # define HAVE_RT_PUSH_IPI 820 #endif 821 822 /* Real-Time classes' related field in a runqueue: */ 823 struct rt_rq { 824 struct rt_prio_array active; 825 unsigned int rt_nr_running; 826 unsigned int rr_nr_running; 827 struct { 828 int curr; /* highest queued rt task prio */ 829 int next; /* next highest */ 830 } highest_prio; 831 bool overloaded; 832 struct plist_head pushable_tasks; 833 834 int rt_queued; 835 836 #ifdef CONFIG_RT_GROUP_SCHED 837 int rt_throttled; 838 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 839 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 840 /* Nests inside the rq lock: */ 841 raw_spinlock_t rt_runtime_lock; 842 843 unsigned int rt_nr_boosted; 844 845 struct rq *rq; /* this is always top-level rq, cache? */ 846 #endif 847 #ifdef CONFIG_CGROUP_SCHED 848 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 849 #endif 850 }; 851 852 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 853 { 854 return rt_rq->rt_queued && rt_rq->rt_nr_running; 855 } 856 857 /* Deadline class' related fields in a runqueue */ 858 struct dl_rq { 859 /* runqueue is an rbtree, ordered by deadline */ 860 struct rb_root_cached root; 861 862 unsigned int dl_nr_running; 863 864 /* 865 * Deadline values of the currently executing and the 866 * earliest ready task on this rq. Caching these facilitates 867 * the decision whether or not a ready but not running task 868 * should migrate somewhere else. 869 */ 870 struct { 871 u64 curr; 872 u64 next; 873 } earliest_dl; 874 875 bool overloaded; 876 877 /* 878 * Tasks on this rq that can be pushed away. They are kept in 879 * an rb-tree, ordered by tasks' deadlines, with caching 880 * of the leftmost (earliest deadline) element. 881 */ 882 struct rb_root_cached pushable_dl_tasks_root; 883 884 /* 885 * "Active utilization" for this runqueue: increased when a 886 * task wakes up (becomes TASK_RUNNING) and decreased when a 887 * task blocks 888 */ 889 u64 running_bw; 890 891 /* 892 * Utilization of the tasks "assigned" to this runqueue (including 893 * the tasks that are in runqueue and the tasks that executed on this 894 * CPU and blocked). Increased when a task moves to this runqueue, and 895 * decreased when the task moves away (migrates, changes scheduling 896 * policy, or terminates). 897 * This is needed to compute the "inactive utilization" for the 898 * runqueue (inactive utilization = this_bw - running_bw). 899 */ 900 u64 this_bw; 901 u64 extra_bw; 902 903 /* 904 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 905 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 906 */ 907 u64 max_bw; 908 909 /* 910 * Inverse of the fraction of CPU utilization that can be reclaimed 911 * by the GRUB algorithm. 912 */ 913 u64 bw_ratio; 914 }; 915 916 #ifdef CONFIG_FAIR_GROUP_SCHED 917 918 /* An entity is a task if it doesn't "own" a runqueue */ 919 #define entity_is_task(se) (!se->my_q) 920 921 static inline void se_update_runnable(struct sched_entity *se) 922 { 923 if (!entity_is_task(se)) 924 se->runnable_weight = se->my_q->h_nr_runnable; 925 } 926 927 static inline long se_runnable(struct sched_entity *se) 928 { 929 if (se->sched_delayed) 930 return false; 931 932 if (entity_is_task(se)) 933 return !!se->on_rq; 934 else 935 return se->runnable_weight; 936 } 937 938 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 939 940 #define entity_is_task(se) 1 941 942 static inline void se_update_runnable(struct sched_entity *se) { } 943 944 static inline long se_runnable(struct sched_entity *se) 945 { 946 if (se->sched_delayed) 947 return false; 948 949 return !!se->on_rq; 950 } 951 952 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 953 954 /* 955 * XXX we want to get rid of these helpers and use the full load resolution. 956 */ 957 static inline long se_weight(struct sched_entity *se) 958 { 959 return scale_load_down(se->load.weight); 960 } 961 962 963 static inline bool sched_asym_prefer(int a, int b) 964 { 965 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 966 } 967 968 struct perf_domain { 969 struct em_perf_domain *em_pd; 970 struct perf_domain *next; 971 struct rcu_head rcu; 972 }; 973 974 /* 975 * We add the notion of a root-domain which will be used to define per-domain 976 * variables. Each exclusive cpuset essentially defines an island domain by 977 * fully partitioning the member CPUs from any other cpuset. Whenever a new 978 * exclusive cpuset is created, we also create and attach a new root-domain 979 * object. 980 * 981 */ 982 struct root_domain { 983 atomic_t refcount; 984 atomic_t rto_count; 985 struct rcu_head rcu; 986 cpumask_var_t span; 987 cpumask_var_t online; 988 989 /* 990 * Indicate pullable load on at least one CPU, e.g: 991 * - More than one runnable task 992 * - Running task is misfit 993 */ 994 bool overloaded; 995 996 /* Indicate one or more CPUs over-utilized (tipping point) */ 997 bool overutilized; 998 999 /* 1000 * The bit corresponding to a CPU gets set here if such CPU has more 1001 * than one runnable -deadline task (as it is below for RT tasks). 1002 */ 1003 cpumask_var_t dlo_mask; 1004 atomic_t dlo_count; 1005 struct dl_bw dl_bw; 1006 struct cpudl cpudl; 1007 1008 /* 1009 * Indicate whether a root_domain's dl_bw has been checked or 1010 * updated. It's monotonously increasing value. 1011 * 1012 * Also, some corner cases, like 'wrap around' is dangerous, but given 1013 * that u64 is 'big enough'. So that shouldn't be a concern. 1014 */ 1015 u64 visit_cookie; 1016 1017 #ifdef HAVE_RT_PUSH_IPI 1018 /* 1019 * For IPI pull requests, loop across the rto_mask. 1020 */ 1021 struct irq_work rto_push_work; 1022 raw_spinlock_t rto_lock; 1023 /* These are only updated and read within rto_lock */ 1024 int rto_loop; 1025 int rto_cpu; 1026 /* These atomics are updated outside of a lock */ 1027 atomic_t rto_loop_next; 1028 atomic_t rto_loop_start; 1029 #endif /* HAVE_RT_PUSH_IPI */ 1030 /* 1031 * The "RT overload" flag: it gets set if a CPU has more than 1032 * one runnable RT task. 1033 */ 1034 cpumask_var_t rto_mask; 1035 struct cpupri cpupri; 1036 1037 /* 1038 * NULL-terminated list of performance domains intersecting with the 1039 * CPUs of the rd. Protected by RCU. 1040 */ 1041 struct perf_domain __rcu *pd; 1042 }; 1043 1044 extern void init_defrootdomain(void); 1045 extern int sched_init_domains(const struct cpumask *cpu_map); 1046 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1047 extern void sched_get_rd(struct root_domain *rd); 1048 extern void sched_put_rd(struct root_domain *rd); 1049 1050 static inline int get_rd_overloaded(struct root_domain *rd) 1051 { 1052 return READ_ONCE(rd->overloaded); 1053 } 1054 1055 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1056 { 1057 if (get_rd_overloaded(rd) != status) 1058 WRITE_ONCE(rd->overloaded, status); 1059 } 1060 1061 #ifdef HAVE_RT_PUSH_IPI 1062 extern void rto_push_irq_work_func(struct irq_work *work); 1063 #endif 1064 1065 #ifdef CONFIG_UCLAMP_TASK 1066 /* 1067 * struct uclamp_bucket - Utilization clamp bucket 1068 * @value: utilization clamp value for tasks on this clamp bucket 1069 * @tasks: number of RUNNABLE tasks on this clamp bucket 1070 * 1071 * Keep track of how many tasks are RUNNABLE for a given utilization 1072 * clamp value. 1073 */ 1074 struct uclamp_bucket { 1075 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1076 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1077 }; 1078 1079 /* 1080 * struct uclamp_rq - rq's utilization clamp 1081 * @value: currently active clamp values for a rq 1082 * @bucket: utilization clamp buckets affecting a rq 1083 * 1084 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1085 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1086 * (or actually running) with that value. 1087 * 1088 * There are up to UCLAMP_CNT possible different clamp values, currently there 1089 * are only two: minimum utilization and maximum utilization. 1090 * 1091 * All utilization clamping values are MAX aggregated, since: 1092 * - for util_min: we want to run the CPU at least at the max of the minimum 1093 * utilization required by its currently RUNNABLE tasks. 1094 * - for util_max: we want to allow the CPU to run up to the max of the 1095 * maximum utilization allowed by its currently RUNNABLE tasks. 1096 * 1097 * Since on each system we expect only a limited number of different 1098 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1099 * the metrics required to compute all the per-rq utilization clamp values. 1100 */ 1101 struct uclamp_rq { 1102 unsigned int value; 1103 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1104 }; 1105 1106 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1107 #endif /* CONFIG_UCLAMP_TASK */ 1108 1109 /* 1110 * This is the main, per-CPU runqueue data structure. 1111 * 1112 * Locking rule: those places that want to lock multiple runqueues 1113 * (such as the load balancing or the thread migration code), lock 1114 * acquire operations must be ordered by ascending &runqueue. 1115 */ 1116 struct rq { 1117 /* runqueue lock: */ 1118 raw_spinlock_t __lock; 1119 1120 unsigned int nr_running; 1121 #ifdef CONFIG_NUMA_BALANCING 1122 unsigned int nr_numa_running; 1123 unsigned int nr_preferred_running; 1124 unsigned int numa_migrate_on; 1125 #endif 1126 #ifdef CONFIG_NO_HZ_COMMON 1127 unsigned long last_blocked_load_update_tick; 1128 unsigned int has_blocked_load; 1129 call_single_data_t nohz_csd; 1130 unsigned int nohz_tick_stopped; 1131 atomic_t nohz_flags; 1132 #endif /* CONFIG_NO_HZ_COMMON */ 1133 1134 unsigned int ttwu_pending; 1135 u64 nr_switches; 1136 1137 #ifdef CONFIG_UCLAMP_TASK 1138 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1139 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1140 unsigned int uclamp_flags; 1141 #define UCLAMP_FLAG_IDLE 0x01 1142 #endif 1143 1144 struct cfs_rq cfs; 1145 struct rt_rq rt; 1146 struct dl_rq dl; 1147 #ifdef CONFIG_SCHED_CLASS_EXT 1148 struct scx_rq scx; 1149 #endif 1150 1151 struct sched_dl_entity fair_server; 1152 1153 #ifdef CONFIG_FAIR_GROUP_SCHED 1154 /* list of leaf cfs_rq on this CPU: */ 1155 struct list_head leaf_cfs_rq_list; 1156 struct list_head *tmp_alone_branch; 1157 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1158 1159 /* 1160 * This is part of a global counter where only the total sum 1161 * over all CPUs matters. A task can increase this counter on 1162 * one CPU and if it got migrated afterwards it may decrease 1163 * it on another CPU. Always updated under the runqueue lock: 1164 */ 1165 unsigned long nr_uninterruptible; 1166 1167 #ifdef CONFIG_SCHED_PROXY_EXEC 1168 struct task_struct __rcu *donor; /* Scheduling context */ 1169 struct task_struct __rcu *curr; /* Execution context */ 1170 #else 1171 union { 1172 struct task_struct __rcu *donor; /* Scheduler context */ 1173 struct task_struct __rcu *curr; /* Execution context */ 1174 }; 1175 #endif 1176 struct sched_dl_entity *dl_server; 1177 struct task_struct *idle; 1178 struct task_struct *stop; 1179 unsigned long next_balance; 1180 struct mm_struct *prev_mm; 1181 1182 unsigned int clock_update_flags; 1183 u64 clock; 1184 /* Ensure that all clocks are in the same cache line */ 1185 u64 clock_task ____cacheline_aligned; 1186 u64 clock_pelt; 1187 unsigned long lost_idle_time; 1188 u64 clock_pelt_idle; 1189 u64 clock_idle; 1190 #ifndef CONFIG_64BIT 1191 u64 clock_pelt_idle_copy; 1192 u64 clock_idle_copy; 1193 #endif 1194 1195 atomic_t nr_iowait; 1196 1197 u64 last_seen_need_resched_ns; 1198 int ticks_without_resched; 1199 1200 #ifdef CONFIG_MEMBARRIER 1201 int membarrier_state; 1202 #endif 1203 1204 struct root_domain *rd; 1205 struct sched_domain __rcu *sd; 1206 1207 unsigned long cpu_capacity; 1208 1209 struct balance_callback *balance_callback; 1210 1211 unsigned char nohz_idle_balance; 1212 unsigned char idle_balance; 1213 1214 unsigned long misfit_task_load; 1215 1216 /* For active balancing */ 1217 int active_balance; 1218 int push_cpu; 1219 struct cpu_stop_work active_balance_work; 1220 1221 /* CPU of this runqueue: */ 1222 int cpu; 1223 int online; 1224 1225 struct list_head cfs_tasks; 1226 1227 struct sched_avg avg_rt; 1228 struct sched_avg avg_dl; 1229 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1230 struct sched_avg avg_irq; 1231 #endif 1232 #ifdef CONFIG_SCHED_HW_PRESSURE 1233 struct sched_avg avg_hw; 1234 #endif 1235 u64 idle_stamp; 1236 u64 avg_idle; 1237 1238 /* This is used to determine avg_idle's max value */ 1239 u64 max_idle_balance_cost; 1240 1241 #ifdef CONFIG_HOTPLUG_CPU 1242 struct rcuwait hotplug_wait; 1243 #endif 1244 1245 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1246 u64 prev_irq_time; 1247 u64 psi_irq_time; 1248 #endif 1249 #ifdef CONFIG_PARAVIRT 1250 u64 prev_steal_time; 1251 #endif 1252 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1253 u64 prev_steal_time_rq; 1254 #endif 1255 1256 /* calc_load related fields */ 1257 unsigned long calc_load_update; 1258 long calc_load_active; 1259 1260 #ifdef CONFIG_SCHED_HRTICK 1261 call_single_data_t hrtick_csd; 1262 struct hrtimer hrtick_timer; 1263 ktime_t hrtick_time; 1264 #endif 1265 1266 #ifdef CONFIG_SCHEDSTATS 1267 /* latency stats */ 1268 struct sched_info rq_sched_info; 1269 unsigned long long rq_cpu_time; 1270 1271 /* sys_sched_yield() stats */ 1272 unsigned int yld_count; 1273 1274 /* schedule() stats */ 1275 unsigned int sched_count; 1276 unsigned int sched_goidle; 1277 1278 /* try_to_wake_up() stats */ 1279 unsigned int ttwu_count; 1280 unsigned int ttwu_local; 1281 #endif 1282 1283 #ifdef CONFIG_CPU_IDLE 1284 /* Must be inspected within a RCU lock section */ 1285 struct cpuidle_state *idle_state; 1286 #endif 1287 1288 unsigned int nr_pinned; 1289 unsigned int push_busy; 1290 struct cpu_stop_work push_work; 1291 1292 #ifdef CONFIG_SCHED_CORE 1293 /* per rq */ 1294 struct rq *core; 1295 struct task_struct *core_pick; 1296 struct sched_dl_entity *core_dl_server; 1297 unsigned int core_enabled; 1298 unsigned int core_sched_seq; 1299 struct rb_root core_tree; 1300 1301 /* shared state -- careful with sched_core_cpu_deactivate() */ 1302 unsigned int core_task_seq; 1303 unsigned int core_pick_seq; 1304 unsigned long core_cookie; 1305 unsigned int core_forceidle_count; 1306 unsigned int core_forceidle_seq; 1307 unsigned int core_forceidle_occupation; 1308 u64 core_forceidle_start; 1309 #endif /* CONFIG_SCHED_CORE */ 1310 1311 /* Scratch cpumask to be temporarily used under rq_lock */ 1312 cpumask_var_t scratch_mask; 1313 1314 #ifdef CONFIG_CFS_BANDWIDTH 1315 call_single_data_t cfsb_csd; 1316 struct list_head cfsb_csd_list; 1317 #endif 1318 }; 1319 1320 #ifdef CONFIG_FAIR_GROUP_SCHED 1321 1322 /* CPU runqueue to which this cfs_rq is attached */ 1323 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1324 { 1325 return cfs_rq->rq; 1326 } 1327 1328 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1329 1330 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1331 { 1332 return container_of(cfs_rq, struct rq, cfs); 1333 } 1334 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1335 1336 static inline int cpu_of(struct rq *rq) 1337 { 1338 return rq->cpu; 1339 } 1340 1341 #define MDF_PUSH 0x01 1342 1343 static inline bool is_migration_disabled(struct task_struct *p) 1344 { 1345 return p->migration_disabled; 1346 } 1347 1348 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1349 1350 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1351 #define this_rq() this_cpu_ptr(&runqueues) 1352 #define task_rq(p) cpu_rq(task_cpu(p)) 1353 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1354 #define raw_rq() raw_cpu_ptr(&runqueues) 1355 1356 #ifdef CONFIG_SCHED_PROXY_EXEC 1357 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1358 { 1359 rcu_assign_pointer(rq->donor, t); 1360 } 1361 #else 1362 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1363 { 1364 /* Do nothing */ 1365 } 1366 #endif 1367 1368 #ifdef CONFIG_SCHED_CORE 1369 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1370 1371 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1372 1373 static inline bool sched_core_enabled(struct rq *rq) 1374 { 1375 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1376 } 1377 1378 static inline bool sched_core_disabled(void) 1379 { 1380 return !static_branch_unlikely(&__sched_core_enabled); 1381 } 1382 1383 /* 1384 * Be careful with this function; not for general use. The return value isn't 1385 * stable unless you actually hold a relevant rq->__lock. 1386 */ 1387 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1388 { 1389 if (sched_core_enabled(rq)) 1390 return &rq->core->__lock; 1391 1392 return &rq->__lock; 1393 } 1394 1395 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1396 { 1397 if (rq->core_enabled) 1398 return &rq->core->__lock; 1399 1400 return &rq->__lock; 1401 } 1402 1403 extern bool 1404 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1405 1406 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1407 1408 /* 1409 * Helpers to check if the CPU's core cookie matches with the task's cookie 1410 * when core scheduling is enabled. 1411 * A special case is that the task's cookie always matches with CPU's core 1412 * cookie if the CPU is in an idle core. 1413 */ 1414 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1415 { 1416 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1417 if (!sched_core_enabled(rq)) 1418 return true; 1419 1420 return rq->core->core_cookie == p->core_cookie; 1421 } 1422 1423 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1424 { 1425 bool idle_core = true; 1426 int cpu; 1427 1428 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1429 if (!sched_core_enabled(rq)) 1430 return true; 1431 1432 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1433 if (!available_idle_cpu(cpu)) { 1434 idle_core = false; 1435 break; 1436 } 1437 } 1438 1439 /* 1440 * A CPU in an idle core is always the best choice for tasks with 1441 * cookies. 1442 */ 1443 return idle_core || rq->core->core_cookie == p->core_cookie; 1444 } 1445 1446 static inline bool sched_group_cookie_match(struct rq *rq, 1447 struct task_struct *p, 1448 struct sched_group *group) 1449 { 1450 int cpu; 1451 1452 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1453 if (!sched_core_enabled(rq)) 1454 return true; 1455 1456 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1457 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1458 return true; 1459 } 1460 return false; 1461 } 1462 1463 static inline bool sched_core_enqueued(struct task_struct *p) 1464 { 1465 return !RB_EMPTY_NODE(&p->core_node); 1466 } 1467 1468 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1469 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1470 1471 extern void sched_core_get(void); 1472 extern void sched_core_put(void); 1473 1474 #else /* !CONFIG_SCHED_CORE: */ 1475 1476 static inline bool sched_core_enabled(struct rq *rq) 1477 { 1478 return false; 1479 } 1480 1481 static inline bool sched_core_disabled(void) 1482 { 1483 return true; 1484 } 1485 1486 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1487 { 1488 return &rq->__lock; 1489 } 1490 1491 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1492 { 1493 return &rq->__lock; 1494 } 1495 1496 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1497 { 1498 return true; 1499 } 1500 1501 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1502 { 1503 return true; 1504 } 1505 1506 static inline bool sched_group_cookie_match(struct rq *rq, 1507 struct task_struct *p, 1508 struct sched_group *group) 1509 { 1510 return true; 1511 } 1512 1513 #endif /* !CONFIG_SCHED_CORE */ 1514 1515 #ifdef CONFIG_RT_GROUP_SCHED 1516 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1517 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1518 static inline bool rt_group_sched_enabled(void) 1519 { 1520 return static_branch_unlikely(&rt_group_sched); 1521 } 1522 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1523 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1524 static inline bool rt_group_sched_enabled(void) 1525 { 1526 return static_branch_likely(&rt_group_sched); 1527 } 1528 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1529 #else /* !CONFIG_RT_GROUP_SCHED: */ 1530 # define rt_group_sched_enabled() false 1531 #endif /* !CONFIG_RT_GROUP_SCHED */ 1532 1533 static inline void lockdep_assert_rq_held(struct rq *rq) 1534 { 1535 lockdep_assert_held(__rq_lockp(rq)); 1536 } 1537 1538 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1539 extern bool raw_spin_rq_trylock(struct rq *rq); 1540 extern void raw_spin_rq_unlock(struct rq *rq); 1541 1542 static inline void raw_spin_rq_lock(struct rq *rq) 1543 { 1544 raw_spin_rq_lock_nested(rq, 0); 1545 } 1546 1547 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1548 { 1549 local_irq_disable(); 1550 raw_spin_rq_lock(rq); 1551 } 1552 1553 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1554 { 1555 raw_spin_rq_unlock(rq); 1556 local_irq_enable(); 1557 } 1558 1559 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1560 { 1561 unsigned long flags; 1562 1563 local_irq_save(flags); 1564 raw_spin_rq_lock(rq); 1565 1566 return flags; 1567 } 1568 1569 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1570 { 1571 raw_spin_rq_unlock(rq); 1572 local_irq_restore(flags); 1573 } 1574 1575 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1576 do { \ 1577 flags = _raw_spin_rq_lock_irqsave(rq); \ 1578 } while (0) 1579 1580 #ifdef CONFIG_SCHED_SMT 1581 extern void __update_idle_core(struct rq *rq); 1582 1583 static inline void update_idle_core(struct rq *rq) 1584 { 1585 if (static_branch_unlikely(&sched_smt_present)) 1586 __update_idle_core(rq); 1587 } 1588 1589 #else /* !CONFIG_SCHED_SMT: */ 1590 static inline void update_idle_core(struct rq *rq) { } 1591 #endif /* !CONFIG_SCHED_SMT */ 1592 1593 #ifdef CONFIG_FAIR_GROUP_SCHED 1594 1595 static inline struct task_struct *task_of(struct sched_entity *se) 1596 { 1597 WARN_ON_ONCE(!entity_is_task(se)); 1598 return container_of(se, struct task_struct, se); 1599 } 1600 1601 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1602 { 1603 return p->se.cfs_rq; 1604 } 1605 1606 /* runqueue on which this entity is (to be) queued */ 1607 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1608 { 1609 return se->cfs_rq; 1610 } 1611 1612 /* runqueue "owned" by this group */ 1613 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1614 { 1615 return grp->my_q; 1616 } 1617 1618 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1619 1620 #define task_of(_se) container_of(_se, struct task_struct, se) 1621 1622 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1623 { 1624 return &task_rq(p)->cfs; 1625 } 1626 1627 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1628 { 1629 const struct task_struct *p = task_of(se); 1630 struct rq *rq = task_rq(p); 1631 1632 return &rq->cfs; 1633 } 1634 1635 /* runqueue "owned" by this group */ 1636 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1637 { 1638 return NULL; 1639 } 1640 1641 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1642 1643 extern void update_rq_clock(struct rq *rq); 1644 1645 /* 1646 * rq::clock_update_flags bits 1647 * 1648 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1649 * call to __schedule(). This is an optimisation to avoid 1650 * neighbouring rq clock updates. 1651 * 1652 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1653 * in effect and calls to update_rq_clock() are being ignored. 1654 * 1655 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1656 * made to update_rq_clock() since the last time rq::lock was pinned. 1657 * 1658 * If inside of __schedule(), clock_update_flags will have been 1659 * shifted left (a left shift is a cheap operation for the fast path 1660 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1661 * 1662 * if (rq-clock_update_flags >= RQCF_UPDATED) 1663 * 1664 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1665 * one position though, because the next rq_unpin_lock() will shift it 1666 * back. 1667 */ 1668 #define RQCF_REQ_SKIP 0x01 1669 #define RQCF_ACT_SKIP 0x02 1670 #define RQCF_UPDATED 0x04 1671 1672 static inline void assert_clock_updated(struct rq *rq) 1673 { 1674 /* 1675 * The only reason for not seeing a clock update since the 1676 * last rq_pin_lock() is if we're currently skipping updates. 1677 */ 1678 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1679 } 1680 1681 static inline u64 rq_clock(struct rq *rq) 1682 { 1683 lockdep_assert_rq_held(rq); 1684 assert_clock_updated(rq); 1685 1686 return rq->clock; 1687 } 1688 1689 static inline u64 rq_clock_task(struct rq *rq) 1690 { 1691 lockdep_assert_rq_held(rq); 1692 assert_clock_updated(rq); 1693 1694 return rq->clock_task; 1695 } 1696 1697 static inline void rq_clock_skip_update(struct rq *rq) 1698 { 1699 lockdep_assert_rq_held(rq); 1700 rq->clock_update_flags |= RQCF_REQ_SKIP; 1701 } 1702 1703 /* 1704 * See rt task throttling, which is the only time a skip 1705 * request is canceled. 1706 */ 1707 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1708 { 1709 lockdep_assert_rq_held(rq); 1710 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1711 } 1712 1713 /* 1714 * During cpu offlining and rq wide unthrottling, we can trigger 1715 * an update_rq_clock() for several cfs and rt runqueues (Typically 1716 * when using list_for_each_entry_*) 1717 * rq_clock_start_loop_update() can be called after updating the clock 1718 * once and before iterating over the list to prevent multiple update. 1719 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1720 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1721 */ 1722 static inline void rq_clock_start_loop_update(struct rq *rq) 1723 { 1724 lockdep_assert_rq_held(rq); 1725 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1726 rq->clock_update_flags |= RQCF_ACT_SKIP; 1727 } 1728 1729 static inline void rq_clock_stop_loop_update(struct rq *rq) 1730 { 1731 lockdep_assert_rq_held(rq); 1732 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1733 } 1734 1735 struct rq_flags { 1736 unsigned long flags; 1737 struct pin_cookie cookie; 1738 /* 1739 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1740 * current pin context is stashed here in case it needs to be 1741 * restored in rq_repin_lock(). 1742 */ 1743 unsigned int clock_update_flags; 1744 }; 1745 1746 extern struct balance_callback balance_push_callback; 1747 1748 #ifdef CONFIG_SCHED_CLASS_EXT 1749 extern const struct sched_class ext_sched_class; 1750 1751 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1752 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1753 1754 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1755 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1756 1757 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1758 { 1759 if (!scx_enabled()) 1760 return; 1761 WRITE_ONCE(rq->scx.clock, clock); 1762 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1763 } 1764 1765 static inline void scx_rq_clock_invalidate(struct rq *rq) 1766 { 1767 if (!scx_enabled()) 1768 return; 1769 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1770 } 1771 1772 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1773 #define scx_enabled() false 1774 #define scx_switched_all() false 1775 1776 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1777 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1778 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1779 1780 /* 1781 * Lockdep annotation that avoids accidental unlocks; it's like a 1782 * sticky/continuous lockdep_assert_held(). 1783 * 1784 * This avoids code that has access to 'struct rq *rq' (basically everything in 1785 * the scheduler) from accidentally unlocking the rq if they do not also have a 1786 * copy of the (on-stack) 'struct rq_flags rf'. 1787 * 1788 * Also see Documentation/locking/lockdep-design.rst. 1789 */ 1790 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1791 { 1792 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1793 1794 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1795 rf->clock_update_flags = 0; 1796 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1797 } 1798 1799 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1800 { 1801 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1802 rf->clock_update_flags = RQCF_UPDATED; 1803 1804 scx_rq_clock_invalidate(rq); 1805 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1806 } 1807 1808 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1809 { 1810 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1811 1812 /* 1813 * Restore the value we stashed in @rf for this pin context. 1814 */ 1815 rq->clock_update_flags |= rf->clock_update_flags; 1816 } 1817 1818 extern 1819 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1820 __acquires(rq->lock); 1821 1822 extern 1823 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1824 __acquires(p->pi_lock) 1825 __acquires(rq->lock); 1826 1827 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1828 __releases(rq->lock) 1829 { 1830 rq_unpin_lock(rq, rf); 1831 raw_spin_rq_unlock(rq); 1832 } 1833 1834 static inline void 1835 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1836 __releases(rq->lock) 1837 __releases(p->pi_lock) 1838 { 1839 rq_unpin_lock(rq, rf); 1840 raw_spin_rq_unlock(rq); 1841 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1842 } 1843 1844 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1845 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1846 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1847 struct rq *rq; struct rq_flags rf) 1848 1849 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1850 __acquires(rq->lock) 1851 { 1852 raw_spin_rq_lock_irqsave(rq, rf->flags); 1853 rq_pin_lock(rq, rf); 1854 } 1855 1856 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1857 __acquires(rq->lock) 1858 { 1859 raw_spin_rq_lock_irq(rq); 1860 rq_pin_lock(rq, rf); 1861 } 1862 1863 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1864 __acquires(rq->lock) 1865 { 1866 raw_spin_rq_lock(rq); 1867 rq_pin_lock(rq, rf); 1868 } 1869 1870 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1871 __releases(rq->lock) 1872 { 1873 rq_unpin_lock(rq, rf); 1874 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1875 } 1876 1877 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1878 __releases(rq->lock) 1879 { 1880 rq_unpin_lock(rq, rf); 1881 raw_spin_rq_unlock_irq(rq); 1882 } 1883 1884 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1885 __releases(rq->lock) 1886 { 1887 rq_unpin_lock(rq, rf); 1888 raw_spin_rq_unlock(rq); 1889 } 1890 1891 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1892 rq_lock(_T->lock, &_T->rf), 1893 rq_unlock(_T->lock, &_T->rf), 1894 struct rq_flags rf) 1895 1896 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1897 rq_lock_irq(_T->lock, &_T->rf), 1898 rq_unlock_irq(_T->lock, &_T->rf), 1899 struct rq_flags rf) 1900 1901 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1902 rq_lock_irqsave(_T->lock, &_T->rf), 1903 rq_unlock_irqrestore(_T->lock, &_T->rf), 1904 struct rq_flags rf) 1905 1906 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1907 __acquires(rq->lock) 1908 { 1909 struct rq *rq; 1910 1911 local_irq_disable(); 1912 rq = this_rq(); 1913 rq_lock(rq, rf); 1914 1915 return rq; 1916 } 1917 1918 #ifdef CONFIG_NUMA 1919 1920 enum numa_topology_type { 1921 NUMA_DIRECT, 1922 NUMA_GLUELESS_MESH, 1923 NUMA_BACKPLANE, 1924 }; 1925 1926 extern enum numa_topology_type sched_numa_topology_type; 1927 extern int sched_max_numa_distance; 1928 extern bool find_numa_distance(int distance); 1929 extern void sched_init_numa(int offline_node); 1930 extern void sched_update_numa(int cpu, bool online); 1931 extern void sched_domains_numa_masks_set(unsigned int cpu); 1932 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1933 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1934 1935 #else /* !CONFIG_NUMA: */ 1936 1937 static inline void sched_init_numa(int offline_node) { } 1938 static inline void sched_update_numa(int cpu, bool online) { } 1939 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1940 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1941 1942 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1943 { 1944 return nr_cpu_ids; 1945 } 1946 1947 #endif /* !CONFIG_NUMA */ 1948 1949 #ifdef CONFIG_NUMA_BALANCING 1950 1951 /* The regions in numa_faults array from task_struct */ 1952 enum numa_faults_stats { 1953 NUMA_MEM = 0, 1954 NUMA_CPU, 1955 NUMA_MEMBUF, 1956 NUMA_CPUBUF 1957 }; 1958 1959 extern void sched_setnuma(struct task_struct *p, int node); 1960 extern int migrate_task_to(struct task_struct *p, int cpu); 1961 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1962 int cpu, int scpu); 1963 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1964 1965 #else /* !CONFIG_NUMA_BALANCING: */ 1966 1967 static inline void 1968 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1969 { 1970 } 1971 1972 #endif /* !CONFIG_NUMA_BALANCING */ 1973 1974 static inline void 1975 queue_balance_callback(struct rq *rq, 1976 struct balance_callback *head, 1977 void (*func)(struct rq *rq)) 1978 { 1979 lockdep_assert_rq_held(rq); 1980 1981 /* 1982 * Don't (re)queue an already queued item; nor queue anything when 1983 * balance_push() is active, see the comment with 1984 * balance_push_callback. 1985 */ 1986 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1987 return; 1988 1989 head->func = func; 1990 head->next = rq->balance_callback; 1991 rq->balance_callback = head; 1992 } 1993 1994 #define rcu_dereference_check_sched_domain(p) \ 1995 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1996 1997 /* 1998 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1999 * See destroy_sched_domains: call_rcu for details. 2000 * 2001 * The domain tree of any CPU may only be accessed from within 2002 * preempt-disabled sections. 2003 */ 2004 #define for_each_domain(cpu, __sd) \ 2005 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 2006 __sd; __sd = __sd->parent) 2007 2008 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 2009 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 2010 static const unsigned int SD_SHARED_CHILD_MASK = 2011 #include <linux/sched/sd_flags.h> 2012 0; 2013 #undef SD_FLAG 2014 2015 /** 2016 * highest_flag_domain - Return highest sched_domain containing flag. 2017 * @cpu: The CPU whose highest level of sched domain is to 2018 * be returned. 2019 * @flag: The flag to check for the highest sched_domain 2020 * for the given CPU. 2021 * 2022 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 2023 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 2024 */ 2025 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2026 { 2027 struct sched_domain *sd, *hsd = NULL; 2028 2029 for_each_domain(cpu, sd) { 2030 if (sd->flags & flag) { 2031 hsd = sd; 2032 continue; 2033 } 2034 2035 /* 2036 * Stop the search if @flag is known to be shared at lower 2037 * levels. It will not be found further up. 2038 */ 2039 if (flag & SD_SHARED_CHILD_MASK) 2040 break; 2041 } 2042 2043 return hsd; 2044 } 2045 2046 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2047 { 2048 struct sched_domain *sd; 2049 2050 for_each_domain(cpu, sd) { 2051 if (sd->flags & flag) 2052 break; 2053 } 2054 2055 return sd; 2056 } 2057 2058 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2059 DECLARE_PER_CPU(int, sd_llc_size); 2060 DECLARE_PER_CPU(int, sd_llc_id); 2061 DECLARE_PER_CPU(int, sd_share_id); 2062 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2063 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2064 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2065 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2066 2067 extern struct static_key_false sched_asym_cpucapacity; 2068 extern struct static_key_false sched_cluster_active; 2069 2070 static __always_inline bool sched_asym_cpucap_active(void) 2071 { 2072 return static_branch_unlikely(&sched_asym_cpucapacity); 2073 } 2074 2075 struct sched_group_capacity { 2076 atomic_t ref; 2077 /* 2078 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2079 * for a single CPU. 2080 */ 2081 unsigned long capacity; 2082 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2083 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2084 unsigned long next_update; 2085 int imbalance; /* XXX unrelated to capacity but shared group state */ 2086 2087 int id; 2088 2089 unsigned long cpumask[]; /* Balance mask */ 2090 }; 2091 2092 struct sched_group { 2093 struct sched_group *next; /* Must be a circular list */ 2094 atomic_t ref; 2095 2096 unsigned int group_weight; 2097 unsigned int cores; 2098 struct sched_group_capacity *sgc; 2099 int asym_prefer_cpu; /* CPU of highest priority in group */ 2100 int flags; 2101 2102 /* 2103 * The CPUs this group covers. 2104 * 2105 * NOTE: this field is variable length. (Allocated dynamically 2106 * by attaching extra space to the end of the structure, 2107 * depending on how many CPUs the kernel has booted up with) 2108 */ 2109 unsigned long cpumask[]; 2110 }; 2111 2112 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2113 { 2114 return to_cpumask(sg->cpumask); 2115 } 2116 2117 /* 2118 * See build_balance_mask(). 2119 */ 2120 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2121 { 2122 return to_cpumask(sg->sgc->cpumask); 2123 } 2124 2125 extern int group_balance_cpu(struct sched_group *sg); 2126 2127 extern void update_sched_domain_debugfs(void); 2128 extern void dirty_sched_domain_sysctl(int cpu); 2129 2130 extern int sched_update_scaling(void); 2131 2132 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2133 { 2134 if (!p->user_cpus_ptr) 2135 return cpu_possible_mask; /* &init_task.cpus_mask */ 2136 return p->user_cpus_ptr; 2137 } 2138 2139 #ifdef CONFIG_CGROUP_SCHED 2140 2141 /* 2142 * Return the group to which this tasks belongs. 2143 * 2144 * We cannot use task_css() and friends because the cgroup subsystem 2145 * changes that value before the cgroup_subsys::attach() method is called, 2146 * therefore we cannot pin it and might observe the wrong value. 2147 * 2148 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2149 * core changes this before calling sched_move_task(). 2150 * 2151 * Instead we use a 'copy' which is updated from sched_move_task() while 2152 * holding both task_struct::pi_lock and rq::lock. 2153 */ 2154 static inline struct task_group *task_group(struct task_struct *p) 2155 { 2156 return p->sched_task_group; 2157 } 2158 2159 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2160 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2161 { 2162 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2163 struct task_group *tg = task_group(p); 2164 #endif 2165 2166 #ifdef CONFIG_FAIR_GROUP_SCHED 2167 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2168 p->se.cfs_rq = tg->cfs_rq[cpu]; 2169 p->se.parent = tg->se[cpu]; 2170 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2171 #endif 2172 2173 #ifdef CONFIG_RT_GROUP_SCHED 2174 /* 2175 * p->rt.rt_rq is NULL initially and it is easier to assign 2176 * root_task_group's rt_rq than switching in rt_rq_of_se() 2177 * Clobbers tg(!) 2178 */ 2179 if (!rt_group_sched_enabled()) 2180 tg = &root_task_group; 2181 p->rt.rt_rq = tg->rt_rq[cpu]; 2182 p->rt.parent = tg->rt_se[cpu]; 2183 #endif /* CONFIG_RT_GROUP_SCHED */ 2184 } 2185 2186 #else /* !CONFIG_CGROUP_SCHED: */ 2187 2188 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2189 2190 static inline struct task_group *task_group(struct task_struct *p) 2191 { 2192 return NULL; 2193 } 2194 2195 #endif /* !CONFIG_CGROUP_SCHED */ 2196 2197 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2198 { 2199 set_task_rq(p, cpu); 2200 #ifdef CONFIG_SMP 2201 /* 2202 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2203 * successfully executed on another CPU. We must ensure that updates of 2204 * per-task data have been completed by this moment. 2205 */ 2206 smp_wmb(); 2207 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2208 p->wake_cpu = cpu; 2209 #endif /* CONFIG_SMP */ 2210 } 2211 2212 /* 2213 * Tunables: 2214 */ 2215 2216 #define SCHED_FEAT(name, enabled) \ 2217 __SCHED_FEAT_##name , 2218 2219 enum { 2220 #include "features.h" 2221 __SCHED_FEAT_NR, 2222 }; 2223 2224 #undef SCHED_FEAT 2225 2226 /* 2227 * To support run-time toggling of sched features, all the translation units 2228 * (but core.c) reference the sysctl_sched_features defined in core.c. 2229 */ 2230 extern __read_mostly unsigned int sysctl_sched_features; 2231 2232 #ifdef CONFIG_JUMP_LABEL 2233 2234 #define SCHED_FEAT(name, enabled) \ 2235 static __always_inline bool static_branch_##name(struct static_key *key) \ 2236 { \ 2237 return static_key_##enabled(key); \ 2238 } 2239 2240 #include "features.h" 2241 #undef SCHED_FEAT 2242 2243 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2244 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2245 2246 #else /* !CONFIG_JUMP_LABEL: */ 2247 2248 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2249 2250 #endif /* !CONFIG_JUMP_LABEL */ 2251 2252 extern struct static_key_false sched_numa_balancing; 2253 extern struct static_key_false sched_schedstats; 2254 2255 static inline u64 global_rt_period(void) 2256 { 2257 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2258 } 2259 2260 static inline u64 global_rt_runtime(void) 2261 { 2262 if (sysctl_sched_rt_runtime < 0) 2263 return RUNTIME_INF; 2264 2265 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2266 } 2267 2268 /* 2269 * Is p the current execution context? 2270 */ 2271 static inline int task_current(struct rq *rq, struct task_struct *p) 2272 { 2273 return rq->curr == p; 2274 } 2275 2276 /* 2277 * Is p the current scheduling context? 2278 * 2279 * Note that it might be the current execution context at the same time if 2280 * rq->curr == rq->donor == p. 2281 */ 2282 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2283 { 2284 return rq->donor == p; 2285 } 2286 2287 static inline bool task_is_blocked(struct task_struct *p) 2288 { 2289 if (!sched_proxy_exec()) 2290 return false; 2291 2292 return !!p->blocked_on; 2293 } 2294 2295 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2296 { 2297 return p->on_cpu; 2298 } 2299 2300 static inline int task_on_rq_queued(struct task_struct *p) 2301 { 2302 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2303 } 2304 2305 static inline int task_on_rq_migrating(struct task_struct *p) 2306 { 2307 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2308 } 2309 2310 /* Wake flags. The first three directly map to some SD flag value */ 2311 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2312 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2313 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2314 2315 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2316 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2317 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2318 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2319 2320 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2321 static_assert(WF_FORK == SD_BALANCE_FORK); 2322 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2323 2324 /* 2325 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2326 * of tasks with abnormal "nice" values across CPUs the contribution that 2327 * each task makes to its run queue's load is weighted according to its 2328 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2329 * scaled version of the new time slice allocation that they receive on time 2330 * slice expiry etc. 2331 */ 2332 2333 #define WEIGHT_IDLEPRIO 3 2334 #define WMULT_IDLEPRIO 1431655765 2335 2336 extern const int sched_prio_to_weight[40]; 2337 extern const u32 sched_prio_to_wmult[40]; 2338 2339 /* 2340 * {de,en}queue flags: 2341 * 2342 * DEQUEUE_SLEEP - task is no longer runnable 2343 * ENQUEUE_WAKEUP - task just became runnable 2344 * 2345 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2346 * are in a known state which allows modification. Such pairs 2347 * should preserve as much state as possible. 2348 * 2349 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2350 * in the runqueue. 2351 * 2352 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2353 * 2354 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2355 * 2356 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2357 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2358 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2359 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2360 * 2361 */ 2362 2363 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2364 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2365 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2366 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2367 #define DEQUEUE_SPECIAL 0x10 2368 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2369 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2370 2371 #define ENQUEUE_WAKEUP 0x01 2372 #define ENQUEUE_RESTORE 0x02 2373 #define ENQUEUE_MOVE 0x04 2374 #define ENQUEUE_NOCLOCK 0x08 2375 2376 #define ENQUEUE_HEAD 0x10 2377 #define ENQUEUE_REPLENISH 0x20 2378 #define ENQUEUE_MIGRATED 0x40 2379 #define ENQUEUE_INITIAL 0x80 2380 #define ENQUEUE_MIGRATING 0x100 2381 #define ENQUEUE_DELAYED 0x200 2382 #define ENQUEUE_RQ_SELECTED 0x400 2383 2384 #define RETRY_TASK ((void *)-1UL) 2385 2386 struct affinity_context { 2387 const struct cpumask *new_mask; 2388 struct cpumask *user_mask; 2389 unsigned int flags; 2390 }; 2391 2392 extern s64 update_curr_common(struct rq *rq); 2393 2394 struct sched_class { 2395 2396 #ifdef CONFIG_UCLAMP_TASK 2397 int uclamp_enabled; 2398 #endif 2399 2400 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2401 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2402 void (*yield_task) (struct rq *rq); 2403 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2404 2405 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2406 2407 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2408 struct task_struct *(*pick_task)(struct rq *rq); 2409 /* 2410 * Optional! When implemented pick_next_task() should be equivalent to: 2411 * 2412 * next = pick_task(); 2413 * if (next) { 2414 * put_prev_task(prev); 2415 * set_next_task_first(next); 2416 * } 2417 */ 2418 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2419 2420 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2421 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2422 2423 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2424 2425 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2426 2427 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2428 2429 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2430 2431 void (*rq_online)(struct rq *rq); 2432 void (*rq_offline)(struct rq *rq); 2433 2434 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2435 2436 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2437 void (*task_fork)(struct task_struct *p); 2438 void (*task_dead)(struct task_struct *p); 2439 2440 /* 2441 * The switched_from() call is allowed to drop rq->lock, therefore we 2442 * cannot assume the switched_from/switched_to pair is serialized by 2443 * rq->lock. They are however serialized by p->pi_lock. 2444 */ 2445 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2446 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2447 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2448 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2449 const struct load_weight *lw); 2450 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2451 int oldprio); 2452 2453 unsigned int (*get_rr_interval)(struct rq *rq, 2454 struct task_struct *task); 2455 2456 void (*update_curr)(struct rq *rq); 2457 2458 #ifdef CONFIG_FAIR_GROUP_SCHED 2459 void (*task_change_group)(struct task_struct *p); 2460 #endif 2461 2462 #ifdef CONFIG_SCHED_CORE 2463 int (*task_is_throttled)(struct task_struct *p, int cpu); 2464 #endif 2465 }; 2466 2467 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2468 { 2469 WARN_ON_ONCE(rq->donor != prev); 2470 prev->sched_class->put_prev_task(rq, prev, NULL); 2471 } 2472 2473 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2474 { 2475 next->sched_class->set_next_task(rq, next, false); 2476 } 2477 2478 static inline void 2479 __put_prev_set_next_dl_server(struct rq *rq, 2480 struct task_struct *prev, 2481 struct task_struct *next) 2482 { 2483 prev->dl_server = NULL; 2484 next->dl_server = rq->dl_server; 2485 rq->dl_server = NULL; 2486 } 2487 2488 static inline void put_prev_set_next_task(struct rq *rq, 2489 struct task_struct *prev, 2490 struct task_struct *next) 2491 { 2492 WARN_ON_ONCE(rq->donor != prev); 2493 2494 __put_prev_set_next_dl_server(rq, prev, next); 2495 2496 if (next == prev) 2497 return; 2498 2499 prev->sched_class->put_prev_task(rq, prev, next); 2500 next->sched_class->set_next_task(rq, next, true); 2501 } 2502 2503 /* 2504 * Helper to define a sched_class instance; each one is placed in a separate 2505 * section which is ordered by the linker script: 2506 * 2507 * include/asm-generic/vmlinux.lds.h 2508 * 2509 * *CAREFUL* they are laid out in *REVERSE* order!!! 2510 * 2511 * Also enforce alignment on the instance, not the type, to guarantee layout. 2512 */ 2513 #define DEFINE_SCHED_CLASS(name) \ 2514 const struct sched_class name##_sched_class \ 2515 __aligned(__alignof__(struct sched_class)) \ 2516 __section("__" #name "_sched_class") 2517 2518 /* Defined in include/asm-generic/vmlinux.lds.h */ 2519 extern struct sched_class __sched_class_highest[]; 2520 extern struct sched_class __sched_class_lowest[]; 2521 2522 extern const struct sched_class stop_sched_class; 2523 extern const struct sched_class dl_sched_class; 2524 extern const struct sched_class rt_sched_class; 2525 extern const struct sched_class fair_sched_class; 2526 extern const struct sched_class idle_sched_class; 2527 2528 /* 2529 * Iterate only active classes. SCX can take over all fair tasks or be 2530 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2531 */ 2532 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2533 { 2534 class++; 2535 #ifdef CONFIG_SCHED_CLASS_EXT 2536 if (scx_switched_all() && class == &fair_sched_class) 2537 class++; 2538 if (!scx_enabled() && class == &ext_sched_class) 2539 class++; 2540 #endif 2541 return class; 2542 } 2543 2544 #define for_class_range(class, _from, _to) \ 2545 for (class = (_from); class < (_to); class++) 2546 2547 #define for_each_class(class) \ 2548 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2549 2550 #define for_active_class_range(class, _from, _to) \ 2551 for (class = (_from); class != (_to); class = next_active_class(class)) 2552 2553 #define for_each_active_class(class) \ 2554 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2555 2556 #define sched_class_above(_a, _b) ((_a) < (_b)) 2557 2558 static inline bool sched_stop_runnable(struct rq *rq) 2559 { 2560 return rq->stop && task_on_rq_queued(rq->stop); 2561 } 2562 2563 static inline bool sched_dl_runnable(struct rq *rq) 2564 { 2565 return rq->dl.dl_nr_running > 0; 2566 } 2567 2568 static inline bool sched_rt_runnable(struct rq *rq) 2569 { 2570 return rq->rt.rt_queued > 0; 2571 } 2572 2573 static inline bool sched_fair_runnable(struct rq *rq) 2574 { 2575 return rq->cfs.nr_queued > 0; 2576 } 2577 2578 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2579 extern struct task_struct *pick_task_idle(struct rq *rq); 2580 2581 #define SCA_CHECK 0x01 2582 #define SCA_MIGRATE_DISABLE 0x02 2583 #define SCA_MIGRATE_ENABLE 0x04 2584 #define SCA_USER 0x08 2585 2586 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2587 2588 extern void sched_balance_trigger(struct rq *rq); 2589 2590 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2591 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2592 2593 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2594 { 2595 /* When not in the task's cpumask, no point in looking further. */ 2596 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2597 return false; 2598 2599 /* Can @cpu run a user thread? */ 2600 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2601 return false; 2602 2603 return true; 2604 } 2605 2606 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2607 { 2608 /* 2609 * See do_set_cpus_allowed() above for the rcu_head usage. 2610 */ 2611 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2612 2613 return kmalloc_node(size, GFP_KERNEL, node); 2614 } 2615 2616 static inline struct task_struct *get_push_task(struct rq *rq) 2617 { 2618 struct task_struct *p = rq->donor; 2619 2620 lockdep_assert_rq_held(rq); 2621 2622 if (rq->push_busy) 2623 return NULL; 2624 2625 if (p->nr_cpus_allowed == 1) 2626 return NULL; 2627 2628 if (p->migration_disabled) 2629 return NULL; 2630 2631 rq->push_busy = true; 2632 return get_task_struct(p); 2633 } 2634 2635 extern int push_cpu_stop(void *arg); 2636 2637 #ifdef CONFIG_CPU_IDLE 2638 2639 static inline void idle_set_state(struct rq *rq, 2640 struct cpuidle_state *idle_state) 2641 { 2642 rq->idle_state = idle_state; 2643 } 2644 2645 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2646 { 2647 WARN_ON_ONCE(!rcu_read_lock_held()); 2648 2649 return rq->idle_state; 2650 } 2651 2652 #else /* !CONFIG_CPU_IDLE: */ 2653 2654 static inline void idle_set_state(struct rq *rq, 2655 struct cpuidle_state *idle_state) 2656 { 2657 } 2658 2659 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2660 { 2661 return NULL; 2662 } 2663 2664 #endif /* !CONFIG_CPU_IDLE */ 2665 2666 extern void schedule_idle(void); 2667 asmlinkage void schedule_user(void); 2668 2669 extern void sysrq_sched_debug_show(void); 2670 extern void sched_init_granularity(void); 2671 extern void update_max_interval(void); 2672 2673 extern void init_sched_dl_class(void); 2674 extern void init_sched_rt_class(void); 2675 extern void init_sched_fair_class(void); 2676 2677 extern void resched_curr(struct rq *rq); 2678 extern void resched_curr_lazy(struct rq *rq); 2679 extern void resched_cpu(int cpu); 2680 2681 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2682 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2683 2684 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2685 2686 #define BW_SHIFT 20 2687 #define BW_UNIT (1 << BW_SHIFT) 2688 #define RATIO_SHIFT 8 2689 #define MAX_BW_BITS (64 - BW_SHIFT) 2690 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2691 2692 extern unsigned long to_ratio(u64 period, u64 runtime); 2693 2694 extern void init_entity_runnable_average(struct sched_entity *se); 2695 extern void post_init_entity_util_avg(struct task_struct *p); 2696 2697 #ifdef CONFIG_NO_HZ_FULL 2698 extern bool sched_can_stop_tick(struct rq *rq); 2699 extern int __init sched_tick_offload_init(void); 2700 2701 /* 2702 * Tick may be needed by tasks in the runqueue depending on their policy and 2703 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2704 * nohz mode if necessary. 2705 */ 2706 static inline void sched_update_tick_dependency(struct rq *rq) 2707 { 2708 int cpu = cpu_of(rq); 2709 2710 if (!tick_nohz_full_cpu(cpu)) 2711 return; 2712 2713 if (sched_can_stop_tick(rq)) 2714 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2715 else 2716 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2717 } 2718 #else /* !CONFIG_NO_HZ_FULL: */ 2719 static inline int sched_tick_offload_init(void) { return 0; } 2720 static inline void sched_update_tick_dependency(struct rq *rq) { } 2721 #endif /* !CONFIG_NO_HZ_FULL */ 2722 2723 static inline void add_nr_running(struct rq *rq, unsigned count) 2724 { 2725 unsigned prev_nr = rq->nr_running; 2726 2727 rq->nr_running = prev_nr + count; 2728 if (trace_sched_update_nr_running_tp_enabled()) { 2729 call_trace_sched_update_nr_running(rq, count); 2730 } 2731 2732 if (prev_nr < 2 && rq->nr_running >= 2) 2733 set_rd_overloaded(rq->rd, 1); 2734 2735 sched_update_tick_dependency(rq); 2736 } 2737 2738 static inline void sub_nr_running(struct rq *rq, unsigned count) 2739 { 2740 rq->nr_running -= count; 2741 if (trace_sched_update_nr_running_tp_enabled()) { 2742 call_trace_sched_update_nr_running(rq, -count); 2743 } 2744 2745 /* Check if we still need preemption */ 2746 sched_update_tick_dependency(rq); 2747 } 2748 2749 static inline void __block_task(struct rq *rq, struct task_struct *p) 2750 { 2751 if (p->sched_contributes_to_load) 2752 rq->nr_uninterruptible++; 2753 2754 if (p->in_iowait) { 2755 atomic_inc(&rq->nr_iowait); 2756 delayacct_blkio_start(); 2757 } 2758 2759 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2760 2761 /* 2762 * The moment this write goes through, ttwu() can swoop in and migrate 2763 * this task, rendering our rq->__lock ineffective. 2764 * 2765 * __schedule() try_to_wake_up() 2766 * LOCK rq->__lock LOCK p->pi_lock 2767 * pick_next_task() 2768 * pick_next_task_fair() 2769 * pick_next_entity() 2770 * dequeue_entities() 2771 * __block_task() 2772 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2773 * break; 2774 * 2775 * ACQUIRE (after ctrl-dep) 2776 * 2777 * cpu = select_task_rq(); 2778 * set_task_cpu(p, cpu); 2779 * ttwu_queue() 2780 * ttwu_do_activate() 2781 * LOCK rq->__lock 2782 * activate_task() 2783 * STORE p->on_rq = 1 2784 * UNLOCK rq->__lock 2785 * 2786 * Callers must ensure to not reference @p after this -- we no longer 2787 * own it. 2788 */ 2789 smp_store_release(&p->on_rq, 0); 2790 } 2791 2792 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2793 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2794 2795 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2796 2797 #ifdef CONFIG_PREEMPT_RT 2798 # define SCHED_NR_MIGRATE_BREAK 8 2799 #else 2800 # define SCHED_NR_MIGRATE_BREAK 32 2801 #endif 2802 2803 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2804 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2805 2806 extern unsigned int sysctl_sched_base_slice; 2807 2808 extern int sysctl_resched_latency_warn_ms; 2809 extern int sysctl_resched_latency_warn_once; 2810 2811 extern unsigned int sysctl_sched_tunable_scaling; 2812 2813 extern unsigned int sysctl_numa_balancing_scan_delay; 2814 extern unsigned int sysctl_numa_balancing_scan_period_min; 2815 extern unsigned int sysctl_numa_balancing_scan_period_max; 2816 extern unsigned int sysctl_numa_balancing_scan_size; 2817 extern unsigned int sysctl_numa_balancing_hot_threshold; 2818 2819 #ifdef CONFIG_SCHED_HRTICK 2820 2821 /* 2822 * Use hrtick when: 2823 * - enabled by features 2824 * - hrtimer is actually high res 2825 */ 2826 static inline int hrtick_enabled(struct rq *rq) 2827 { 2828 if (!cpu_active(cpu_of(rq))) 2829 return 0; 2830 return hrtimer_is_hres_active(&rq->hrtick_timer); 2831 } 2832 2833 static inline int hrtick_enabled_fair(struct rq *rq) 2834 { 2835 if (!sched_feat(HRTICK)) 2836 return 0; 2837 return hrtick_enabled(rq); 2838 } 2839 2840 static inline int hrtick_enabled_dl(struct rq *rq) 2841 { 2842 if (!sched_feat(HRTICK_DL)) 2843 return 0; 2844 return hrtick_enabled(rq); 2845 } 2846 2847 extern void hrtick_start(struct rq *rq, u64 delay); 2848 2849 #else /* !CONFIG_SCHED_HRTICK: */ 2850 2851 static inline int hrtick_enabled_fair(struct rq *rq) 2852 { 2853 return 0; 2854 } 2855 2856 static inline int hrtick_enabled_dl(struct rq *rq) 2857 { 2858 return 0; 2859 } 2860 2861 static inline int hrtick_enabled(struct rq *rq) 2862 { 2863 return 0; 2864 } 2865 2866 #endif /* !CONFIG_SCHED_HRTICK */ 2867 2868 #ifndef arch_scale_freq_tick 2869 static __always_inline void arch_scale_freq_tick(void) { } 2870 #endif 2871 2872 #ifndef arch_scale_freq_capacity 2873 /** 2874 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2875 * @cpu: the CPU in question. 2876 * 2877 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2878 * 2879 * f_curr 2880 * ------ * SCHED_CAPACITY_SCALE 2881 * f_max 2882 */ 2883 static __always_inline 2884 unsigned long arch_scale_freq_capacity(int cpu) 2885 { 2886 return SCHED_CAPACITY_SCALE; 2887 } 2888 #endif 2889 2890 /* 2891 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2892 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2893 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2894 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2895 */ 2896 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2897 { 2898 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2899 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2900 } 2901 2902 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2903 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2904 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2905 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2906 _lock; return _t; } 2907 2908 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2909 { 2910 #ifdef CONFIG_SCHED_CORE 2911 /* 2912 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2913 * order by core-id first and cpu-id second. 2914 * 2915 * Notably: 2916 * 2917 * double_rq_lock(0,3); will take core-0, core-1 lock 2918 * double_rq_lock(1,2); will take core-1, core-0 lock 2919 * 2920 * when only cpu-id is considered. 2921 */ 2922 if (rq1->core->cpu < rq2->core->cpu) 2923 return true; 2924 if (rq1->core->cpu > rq2->core->cpu) 2925 return false; 2926 2927 /* 2928 * __sched_core_flip() relies on SMT having cpu-id lock order. 2929 */ 2930 #endif /* CONFIG_SCHED_CORE */ 2931 return rq1->cpu < rq2->cpu; 2932 } 2933 2934 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2935 2936 #ifdef CONFIG_PREEMPTION 2937 2938 /* 2939 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2940 * way at the expense of forcing extra atomic operations in all 2941 * invocations. This assures that the double_lock is acquired using the 2942 * same underlying policy as the spinlock_t on this architecture, which 2943 * reduces latency compared to the unfair variant below. However, it 2944 * also adds more overhead and therefore may reduce throughput. 2945 */ 2946 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2947 __releases(this_rq->lock) 2948 __acquires(busiest->lock) 2949 __acquires(this_rq->lock) 2950 { 2951 raw_spin_rq_unlock(this_rq); 2952 double_rq_lock(this_rq, busiest); 2953 2954 return 1; 2955 } 2956 2957 #else /* !CONFIG_PREEMPTION: */ 2958 /* 2959 * Unfair double_lock_balance: Optimizes throughput at the expense of 2960 * latency by eliminating extra atomic operations when the locks are 2961 * already in proper order on entry. This favors lower CPU-ids and will 2962 * grant the double lock to lower CPUs over higher ids under contention, 2963 * regardless of entry order into the function. 2964 */ 2965 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2966 __releases(this_rq->lock) 2967 __acquires(busiest->lock) 2968 __acquires(this_rq->lock) 2969 { 2970 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2971 likely(raw_spin_rq_trylock(busiest))) { 2972 double_rq_clock_clear_update(this_rq, busiest); 2973 return 0; 2974 } 2975 2976 if (rq_order_less(this_rq, busiest)) { 2977 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2978 double_rq_clock_clear_update(this_rq, busiest); 2979 return 0; 2980 } 2981 2982 raw_spin_rq_unlock(this_rq); 2983 double_rq_lock(this_rq, busiest); 2984 2985 return 1; 2986 } 2987 2988 #endif /* !CONFIG_PREEMPTION */ 2989 2990 /* 2991 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2992 */ 2993 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2994 { 2995 lockdep_assert_irqs_disabled(); 2996 2997 return _double_lock_balance(this_rq, busiest); 2998 } 2999 3000 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3001 __releases(busiest->lock) 3002 { 3003 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3004 raw_spin_rq_unlock(busiest); 3005 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3006 } 3007 3008 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3009 { 3010 if (l1 > l2) 3011 swap(l1, l2); 3012 3013 spin_lock(l1); 3014 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3015 } 3016 3017 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3018 { 3019 if (l1 > l2) 3020 swap(l1, l2); 3021 3022 spin_lock_irq(l1); 3023 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3024 } 3025 3026 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3027 { 3028 if (l1 > l2) 3029 swap(l1, l2); 3030 3031 raw_spin_lock(l1); 3032 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3033 } 3034 3035 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3036 { 3037 raw_spin_unlock(l1); 3038 raw_spin_unlock(l2); 3039 } 3040 3041 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3042 double_raw_lock(_T->lock, _T->lock2), 3043 double_raw_unlock(_T->lock, _T->lock2)) 3044 3045 /* 3046 * double_rq_unlock - safely unlock two runqueues 3047 * 3048 * Note this does not restore interrupts like task_rq_unlock, 3049 * you need to do so manually after calling. 3050 */ 3051 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3052 __releases(rq1->lock) 3053 __releases(rq2->lock) 3054 { 3055 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3056 raw_spin_rq_unlock(rq2); 3057 else 3058 __release(rq2->lock); 3059 raw_spin_rq_unlock(rq1); 3060 } 3061 3062 extern void set_rq_online (struct rq *rq); 3063 extern void set_rq_offline(struct rq *rq); 3064 3065 extern bool sched_smp_initialized; 3066 3067 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3068 double_rq_lock(_T->lock, _T->lock2), 3069 double_rq_unlock(_T->lock, _T->lock2)) 3070 3071 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3072 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3073 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3074 3075 extern bool sched_debug_verbose; 3076 3077 extern void print_cfs_stats(struct seq_file *m, int cpu); 3078 extern void print_rt_stats(struct seq_file *m, int cpu); 3079 extern void print_dl_stats(struct seq_file *m, int cpu); 3080 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3081 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3082 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3083 3084 extern void resched_latency_warn(int cpu, u64 latency); 3085 3086 #ifdef CONFIG_NUMA_BALANCING 3087 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3088 extern void 3089 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3090 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3091 #endif /* CONFIG_NUMA_BALANCING */ 3092 3093 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3094 extern void init_rt_rq(struct rt_rq *rt_rq); 3095 extern void init_dl_rq(struct dl_rq *dl_rq); 3096 3097 extern void cfs_bandwidth_usage_inc(void); 3098 extern void cfs_bandwidth_usage_dec(void); 3099 3100 #ifdef CONFIG_NO_HZ_COMMON 3101 3102 #define NOHZ_BALANCE_KICK_BIT 0 3103 #define NOHZ_STATS_KICK_BIT 1 3104 #define NOHZ_NEWILB_KICK_BIT 2 3105 #define NOHZ_NEXT_KICK_BIT 3 3106 3107 /* Run sched_balance_domains() */ 3108 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3109 /* Update blocked load */ 3110 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3111 /* Update blocked load when entering idle */ 3112 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3113 /* Update nohz.next_balance */ 3114 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3115 3116 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3117 3118 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3119 3120 extern void nohz_balance_exit_idle(struct rq *rq); 3121 #else /* !CONFIG_NO_HZ_COMMON: */ 3122 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3123 #endif /* !CONFIG_NO_HZ_COMMON */ 3124 3125 #ifdef CONFIG_NO_HZ_COMMON 3126 extern void nohz_run_idle_balance(int cpu); 3127 #else 3128 static inline void nohz_run_idle_balance(int cpu) { } 3129 #endif 3130 3131 #include "stats.h" 3132 3133 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3134 3135 extern void __sched_core_account_forceidle(struct rq *rq); 3136 3137 static inline void sched_core_account_forceidle(struct rq *rq) 3138 { 3139 if (schedstat_enabled()) 3140 __sched_core_account_forceidle(rq); 3141 } 3142 3143 extern void __sched_core_tick(struct rq *rq); 3144 3145 static inline void sched_core_tick(struct rq *rq) 3146 { 3147 if (sched_core_enabled(rq) && schedstat_enabled()) 3148 __sched_core_tick(rq); 3149 } 3150 3151 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3152 3153 static inline void sched_core_account_forceidle(struct rq *rq) { } 3154 3155 static inline void sched_core_tick(struct rq *rq) { } 3156 3157 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3158 3159 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3160 3161 struct irqtime { 3162 u64 total; 3163 u64 tick_delta; 3164 u64 irq_start_time; 3165 struct u64_stats_sync sync; 3166 }; 3167 3168 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3169 extern int sched_clock_irqtime; 3170 3171 static inline int irqtime_enabled(void) 3172 { 3173 return sched_clock_irqtime; 3174 } 3175 3176 /* 3177 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3178 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3179 * and never move forward. 3180 */ 3181 static inline u64 irq_time_read(int cpu) 3182 { 3183 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3184 unsigned int seq; 3185 u64 total; 3186 3187 do { 3188 seq = __u64_stats_fetch_begin(&irqtime->sync); 3189 total = irqtime->total; 3190 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3191 3192 return total; 3193 } 3194 3195 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3196 3197 static inline int irqtime_enabled(void) 3198 { 3199 return 0; 3200 } 3201 3202 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3203 3204 #ifdef CONFIG_CPU_FREQ 3205 3206 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3207 3208 /** 3209 * cpufreq_update_util - Take a note about CPU utilization changes. 3210 * @rq: Runqueue to carry out the update for. 3211 * @flags: Update reason flags. 3212 * 3213 * This function is called by the scheduler on the CPU whose utilization is 3214 * being updated. 3215 * 3216 * It can only be called from RCU-sched read-side critical sections. 3217 * 3218 * The way cpufreq is currently arranged requires it to evaluate the CPU 3219 * performance state (frequency/voltage) on a regular basis to prevent it from 3220 * being stuck in a completely inadequate performance level for too long. 3221 * That is not guaranteed to happen if the updates are only triggered from CFS 3222 * and DL, though, because they may not be coming in if only RT tasks are 3223 * active all the time (or there are RT tasks only). 3224 * 3225 * As a workaround for that issue, this function is called periodically by the 3226 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3227 * but that really is a band-aid. Going forward it should be replaced with 3228 * solutions targeted more specifically at RT tasks. 3229 */ 3230 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3231 { 3232 struct update_util_data *data; 3233 3234 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3235 cpu_of(rq))); 3236 if (data) 3237 data->func(data, rq_clock(rq), flags); 3238 } 3239 #else /* !CONFIG_CPU_FREQ: */ 3240 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3241 #endif /* !CONFIG_CPU_FREQ */ 3242 3243 #ifdef arch_scale_freq_capacity 3244 # ifndef arch_scale_freq_invariant 3245 # define arch_scale_freq_invariant() true 3246 # endif 3247 #else 3248 # define arch_scale_freq_invariant() false 3249 #endif 3250 3251 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3252 unsigned long *min, 3253 unsigned long *max); 3254 3255 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3256 unsigned long min, 3257 unsigned long max); 3258 3259 3260 /* 3261 * Verify the fitness of task @p to run on @cpu taking into account the 3262 * CPU original capacity and the runtime/deadline ratio of the task. 3263 * 3264 * The function will return true if the original capacity of @cpu is 3265 * greater than or equal to task's deadline density right shifted by 3266 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3267 */ 3268 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3269 { 3270 unsigned long cap = arch_scale_cpu_capacity(cpu); 3271 3272 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3273 } 3274 3275 static inline unsigned long cpu_bw_dl(struct rq *rq) 3276 { 3277 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3278 } 3279 3280 static inline unsigned long cpu_util_dl(struct rq *rq) 3281 { 3282 return READ_ONCE(rq->avg_dl.util_avg); 3283 } 3284 3285 3286 extern unsigned long cpu_util_cfs(int cpu); 3287 extern unsigned long cpu_util_cfs_boost(int cpu); 3288 3289 static inline unsigned long cpu_util_rt(struct rq *rq) 3290 { 3291 return READ_ONCE(rq->avg_rt.util_avg); 3292 } 3293 3294 #ifdef CONFIG_UCLAMP_TASK 3295 3296 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3297 3298 /* 3299 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3300 * by default in the fast path and only gets turned on once userspace performs 3301 * an operation that requires it. 3302 * 3303 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3304 * hence is active. 3305 */ 3306 static inline bool uclamp_is_used(void) 3307 { 3308 return static_branch_likely(&sched_uclamp_used); 3309 } 3310 3311 /* 3312 * Enabling static branches would get the cpus_read_lock(), 3313 * check whether uclamp_is_used before enable it to avoid always 3314 * calling cpus_read_lock(). Because we never disable this 3315 * static key once enable it. 3316 */ 3317 static inline void sched_uclamp_enable(void) 3318 { 3319 if (!uclamp_is_used()) 3320 static_branch_enable(&sched_uclamp_used); 3321 } 3322 3323 static inline unsigned long uclamp_rq_get(struct rq *rq, 3324 enum uclamp_id clamp_id) 3325 { 3326 return READ_ONCE(rq->uclamp[clamp_id].value); 3327 } 3328 3329 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3330 unsigned int value) 3331 { 3332 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3333 } 3334 3335 static inline bool uclamp_rq_is_idle(struct rq *rq) 3336 { 3337 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3338 } 3339 3340 /* Is the rq being capped/throttled by uclamp_max? */ 3341 static inline bool uclamp_rq_is_capped(struct rq *rq) 3342 { 3343 unsigned long rq_util; 3344 unsigned long max_util; 3345 3346 if (!uclamp_is_used()) 3347 return false; 3348 3349 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3350 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3351 3352 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3353 } 3354 3355 #define for_each_clamp_id(clamp_id) \ 3356 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3357 3358 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3359 3360 3361 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3362 { 3363 if (clamp_id == UCLAMP_MIN) 3364 return 0; 3365 return SCHED_CAPACITY_SCALE; 3366 } 3367 3368 /* Integer rounded range for each bucket */ 3369 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3370 3371 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3372 { 3373 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3374 } 3375 3376 static inline void 3377 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3378 { 3379 uc_se->value = value; 3380 uc_se->bucket_id = uclamp_bucket_id(value); 3381 uc_se->user_defined = user_defined; 3382 } 3383 3384 #else /* !CONFIG_UCLAMP_TASK: */ 3385 3386 static inline unsigned long 3387 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3388 { 3389 if (clamp_id == UCLAMP_MIN) 3390 return 0; 3391 3392 return SCHED_CAPACITY_SCALE; 3393 } 3394 3395 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3396 3397 static inline bool uclamp_is_used(void) 3398 { 3399 return false; 3400 } 3401 3402 static inline void sched_uclamp_enable(void) {} 3403 3404 static inline unsigned long 3405 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3406 { 3407 if (clamp_id == UCLAMP_MIN) 3408 return 0; 3409 3410 return SCHED_CAPACITY_SCALE; 3411 } 3412 3413 static inline void 3414 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3415 { 3416 } 3417 3418 static inline bool uclamp_rq_is_idle(struct rq *rq) 3419 { 3420 return false; 3421 } 3422 3423 #endif /* !CONFIG_UCLAMP_TASK */ 3424 3425 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3426 3427 static inline unsigned long cpu_util_irq(struct rq *rq) 3428 { 3429 return READ_ONCE(rq->avg_irq.util_avg); 3430 } 3431 3432 static inline 3433 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3434 { 3435 util *= (max - irq); 3436 util /= max; 3437 3438 return util; 3439 3440 } 3441 3442 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3443 3444 static inline unsigned long cpu_util_irq(struct rq *rq) 3445 { 3446 return 0; 3447 } 3448 3449 static inline 3450 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3451 { 3452 return util; 3453 } 3454 3455 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3456 3457 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3458 3459 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3460 3461 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3462 3463 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3464 3465 static inline bool sched_energy_enabled(void) 3466 { 3467 return static_branch_unlikely(&sched_energy_present); 3468 } 3469 3470 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3471 3472 #define perf_domain_span(pd) NULL 3473 3474 static inline bool sched_energy_enabled(void) { return false; } 3475 3476 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3477 3478 #ifdef CONFIG_MEMBARRIER 3479 3480 /* 3481 * The scheduler provides memory barriers required by membarrier between: 3482 * - prior user-space memory accesses and store to rq->membarrier_state, 3483 * - store to rq->membarrier_state and following user-space memory accesses. 3484 * In the same way it provides those guarantees around store to rq->curr. 3485 */ 3486 static inline void membarrier_switch_mm(struct rq *rq, 3487 struct mm_struct *prev_mm, 3488 struct mm_struct *next_mm) 3489 { 3490 int membarrier_state; 3491 3492 if (prev_mm == next_mm) 3493 return; 3494 3495 membarrier_state = atomic_read(&next_mm->membarrier_state); 3496 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3497 return; 3498 3499 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3500 } 3501 3502 #else /* !CONFIG_MEMBARRIER: */ 3503 3504 static inline void membarrier_switch_mm(struct rq *rq, 3505 struct mm_struct *prev_mm, 3506 struct mm_struct *next_mm) 3507 { 3508 } 3509 3510 #endif /* !CONFIG_MEMBARRIER */ 3511 3512 static inline bool is_per_cpu_kthread(struct task_struct *p) 3513 { 3514 if (!(p->flags & PF_KTHREAD)) 3515 return false; 3516 3517 if (p->nr_cpus_allowed != 1) 3518 return false; 3519 3520 return true; 3521 } 3522 3523 extern void swake_up_all_locked(struct swait_queue_head *q); 3524 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3525 3526 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3527 3528 #ifdef CONFIG_PREEMPT_DYNAMIC 3529 extern int preempt_dynamic_mode; 3530 extern int sched_dynamic_mode(const char *str); 3531 extern void sched_dynamic_update(int mode); 3532 #endif 3533 extern const char *preempt_modes[]; 3534 3535 #ifdef CONFIG_SCHED_MM_CID 3536 3537 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3538 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3539 3540 extern raw_spinlock_t cid_lock; 3541 extern int use_cid_lock; 3542 3543 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3544 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3545 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3546 extern void init_sched_mm_cid(struct task_struct *t); 3547 3548 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3549 { 3550 if (cid < 0) 3551 return; 3552 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3553 } 3554 3555 /* 3556 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3557 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3558 * be held to transition to other states. 3559 * 3560 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3561 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3562 */ 3563 static inline void mm_cid_put_lazy(struct task_struct *t) 3564 { 3565 struct mm_struct *mm = t->mm; 3566 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3567 int cid; 3568 3569 lockdep_assert_irqs_disabled(); 3570 cid = __this_cpu_read(pcpu_cid->cid); 3571 if (!mm_cid_is_lazy_put(cid) || 3572 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3573 return; 3574 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3575 } 3576 3577 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3578 { 3579 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3580 int cid, res; 3581 3582 lockdep_assert_irqs_disabled(); 3583 cid = __this_cpu_read(pcpu_cid->cid); 3584 for (;;) { 3585 if (mm_cid_is_unset(cid)) 3586 return MM_CID_UNSET; 3587 /* 3588 * Attempt transition from valid or lazy-put to unset. 3589 */ 3590 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3591 if (res == cid) 3592 break; 3593 cid = res; 3594 } 3595 return cid; 3596 } 3597 3598 static inline void mm_cid_put(struct mm_struct *mm) 3599 { 3600 int cid; 3601 3602 lockdep_assert_irqs_disabled(); 3603 cid = mm_cid_pcpu_unset(mm); 3604 if (cid == MM_CID_UNSET) 3605 return; 3606 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3607 } 3608 3609 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3610 { 3611 struct cpumask *cidmask = mm_cidmask(mm); 3612 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3613 int cid, max_nr_cid, allowed_max_nr_cid; 3614 3615 /* 3616 * After shrinking the number of threads or reducing the number 3617 * of allowed cpus, reduce the value of max_nr_cid so expansion 3618 * of cid allocation will preserve cache locality if the number 3619 * of threads or allowed cpus increase again. 3620 */ 3621 max_nr_cid = atomic_read(&mm->max_nr_cid); 3622 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3623 atomic_read(&mm->mm_users))), 3624 max_nr_cid > allowed_max_nr_cid) { 3625 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3626 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3627 max_nr_cid = allowed_max_nr_cid; 3628 break; 3629 } 3630 } 3631 /* Try to re-use recent cid. This improves cache locality. */ 3632 cid = __this_cpu_read(pcpu_cid->recent_cid); 3633 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3634 !cpumask_test_and_set_cpu(cid, cidmask)) 3635 return cid; 3636 /* 3637 * Expand cid allocation if the maximum number of concurrency 3638 * IDs allocated (max_nr_cid) is below the number cpus allowed 3639 * and number of threads. Expanding cid allocation as much as 3640 * possible improves cache locality. 3641 */ 3642 cid = max_nr_cid; 3643 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3644 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3645 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3646 continue; 3647 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3648 return cid; 3649 } 3650 /* 3651 * Find the first available concurrency id. 3652 * Retry finding first zero bit if the mask is temporarily 3653 * filled. This only happens during concurrent remote-clear 3654 * which owns a cid without holding a rq lock. 3655 */ 3656 for (;;) { 3657 cid = cpumask_first_zero(cidmask); 3658 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3659 break; 3660 cpu_relax(); 3661 } 3662 if (cpumask_test_and_set_cpu(cid, cidmask)) 3663 return -1; 3664 3665 return cid; 3666 } 3667 3668 /* 3669 * Save a snapshot of the current runqueue time of this cpu 3670 * with the per-cpu cid value, allowing to estimate how recently it was used. 3671 */ 3672 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3673 { 3674 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3675 3676 lockdep_assert_rq_held(rq); 3677 WRITE_ONCE(pcpu_cid->time, rq->clock); 3678 } 3679 3680 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3681 struct mm_struct *mm) 3682 { 3683 int cid; 3684 3685 /* 3686 * All allocations (even those using the cid_lock) are lock-free. If 3687 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3688 * guarantee forward progress. 3689 */ 3690 if (!READ_ONCE(use_cid_lock)) { 3691 cid = __mm_cid_try_get(t, mm); 3692 if (cid >= 0) 3693 goto end; 3694 raw_spin_lock(&cid_lock); 3695 } else { 3696 raw_spin_lock(&cid_lock); 3697 cid = __mm_cid_try_get(t, mm); 3698 if (cid >= 0) 3699 goto unlock; 3700 } 3701 3702 /* 3703 * cid concurrently allocated. Retry while forcing following 3704 * allocations to use the cid_lock to ensure forward progress. 3705 */ 3706 WRITE_ONCE(use_cid_lock, 1); 3707 /* 3708 * Set use_cid_lock before allocation. Only care about program order 3709 * because this is only required for forward progress. 3710 */ 3711 barrier(); 3712 /* 3713 * Retry until it succeeds. It is guaranteed to eventually succeed once 3714 * all newcoming allocations observe the use_cid_lock flag set. 3715 */ 3716 do { 3717 cid = __mm_cid_try_get(t, mm); 3718 cpu_relax(); 3719 } while (cid < 0); 3720 /* 3721 * Allocate before clearing use_cid_lock. Only care about 3722 * program order because this is for forward progress. 3723 */ 3724 barrier(); 3725 WRITE_ONCE(use_cid_lock, 0); 3726 unlock: 3727 raw_spin_unlock(&cid_lock); 3728 end: 3729 mm_cid_snapshot_time(rq, mm); 3730 3731 return cid; 3732 } 3733 3734 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3735 struct mm_struct *mm) 3736 { 3737 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3738 struct cpumask *cpumask; 3739 int cid; 3740 3741 lockdep_assert_rq_held(rq); 3742 cpumask = mm_cidmask(mm); 3743 cid = __this_cpu_read(pcpu_cid->cid); 3744 if (mm_cid_is_valid(cid)) { 3745 mm_cid_snapshot_time(rq, mm); 3746 return cid; 3747 } 3748 if (mm_cid_is_lazy_put(cid)) { 3749 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3750 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3751 } 3752 cid = __mm_cid_get(rq, t, mm); 3753 __this_cpu_write(pcpu_cid->cid, cid); 3754 __this_cpu_write(pcpu_cid->recent_cid, cid); 3755 3756 return cid; 3757 } 3758 3759 static inline void switch_mm_cid(struct rq *rq, 3760 struct task_struct *prev, 3761 struct task_struct *next) 3762 { 3763 /* 3764 * Provide a memory barrier between rq->curr store and load of 3765 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3766 * 3767 * Should be adapted if context_switch() is modified. 3768 */ 3769 if (!next->mm) { // to kernel 3770 /* 3771 * user -> kernel transition does not guarantee a barrier, but 3772 * we can use the fact that it performs an atomic operation in 3773 * mmgrab(). 3774 */ 3775 if (prev->mm) // from user 3776 smp_mb__after_mmgrab(); 3777 /* 3778 * kernel -> kernel transition does not change rq->curr->mm 3779 * state. It stays NULL. 3780 */ 3781 } else { // to user 3782 /* 3783 * kernel -> user transition does not provide a barrier 3784 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3785 * Provide it here. 3786 */ 3787 if (!prev->mm) { // from kernel 3788 smp_mb(); 3789 } else { // from user 3790 /* 3791 * user->user transition relies on an implicit 3792 * memory barrier in switch_mm() when 3793 * current->mm changes. If the architecture 3794 * switch_mm() does not have an implicit memory 3795 * barrier, it is emitted here. If current->mm 3796 * is unchanged, no barrier is needed. 3797 */ 3798 smp_mb__after_switch_mm(); 3799 } 3800 } 3801 if (prev->mm_cid_active) { 3802 mm_cid_snapshot_time(rq, prev->mm); 3803 mm_cid_put_lazy(prev); 3804 prev->mm_cid = -1; 3805 } 3806 if (next->mm_cid_active) 3807 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3808 } 3809 3810 #else /* !CONFIG_SCHED_MM_CID: */ 3811 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3812 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3813 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3814 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3815 static inline void init_sched_mm_cid(struct task_struct *t) { } 3816 #endif /* !CONFIG_SCHED_MM_CID */ 3817 3818 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3819 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3820 static inline 3821 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3822 { 3823 lockdep_assert_rq_held(src_rq); 3824 lockdep_assert_rq_held(dst_rq); 3825 3826 deactivate_task(src_rq, task, 0); 3827 set_task_cpu(task, dst_rq->cpu); 3828 activate_task(dst_rq, task, 0); 3829 } 3830 3831 static inline 3832 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3833 { 3834 if (!task_on_cpu(rq, p) && 3835 cpumask_test_cpu(cpu, &p->cpus_mask)) 3836 return true; 3837 3838 return false; 3839 } 3840 3841 #ifdef CONFIG_RT_MUTEXES 3842 3843 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3844 { 3845 if (pi_task) 3846 prio = min(prio, pi_task->prio); 3847 3848 return prio; 3849 } 3850 3851 static inline int rt_effective_prio(struct task_struct *p, int prio) 3852 { 3853 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3854 3855 return __rt_effective_prio(pi_task, prio); 3856 } 3857 3858 #else /* !CONFIG_RT_MUTEXES: */ 3859 3860 static inline int rt_effective_prio(struct task_struct *p, int prio) 3861 { 3862 return prio; 3863 } 3864 3865 #endif /* !CONFIG_RT_MUTEXES */ 3866 3867 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3868 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3869 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3870 extern void set_load_weight(struct task_struct *p, bool update_load); 3871 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3872 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3873 3874 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3875 const struct sched_class *prev_class); 3876 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3877 const struct sched_class *prev_class, 3878 int oldprio); 3879 3880 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3881 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3882 3883 #ifdef CONFIG_SCHED_CLASS_EXT 3884 /* 3885 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3886 * and establish invariants. 3887 */ 3888 struct sched_enq_and_set_ctx { 3889 struct task_struct *p; 3890 int queue_flags; 3891 bool queued; 3892 bool running; 3893 }; 3894 3895 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3896 struct sched_enq_and_set_ctx *ctx); 3897 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3898 3899 #endif /* CONFIG_SCHED_CLASS_EXT */ 3900 3901 #include "ext.h" 3902 3903 #endif /* _KERNEL_SCHED_SCHED_H */ 3904