1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 369 * server when it runs out of tasks to run. 370 * 371 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 372 * returns NULL. 373 * 374 * dl_server_update() -- called from update_curr_common(), propagates runtime 375 * to the server. 376 * 377 * dl_server_start() 378 * dl_server_stop() -- start/stop the server when it has (no) tasks. 379 * 380 * dl_server_init() -- initializes the server. 381 */ 382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 383 extern void dl_server_start(struct sched_dl_entity *dl_se); 384 extern void dl_server_stop(struct sched_dl_entity *dl_se); 385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 386 dl_server_has_tasks_f has_tasks, 387 dl_server_pick_f pick_task); 388 extern void sched_init_dl_servers(void); 389 390 extern void dl_server_update_idle_time(struct rq *rq, 391 struct task_struct *p); 392 extern void fair_server_init(struct rq *rq); 393 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 394 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 395 u64 runtime, u64 period, bool init); 396 397 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 398 { 399 return dl_se->dl_server_active; 400 } 401 402 #ifdef CONFIG_CGROUP_SCHED 403 404 extern struct list_head task_groups; 405 406 #ifdef CONFIG_CFS_BANDWIDTH 407 extern const u64 max_bw_quota_period_us; 408 409 /* 410 * default period for group bandwidth. 411 * default: 0.1s, units: microseconds 412 */ 413 static inline u64 default_bw_period_us(void) 414 { 415 return 100000ULL; 416 } 417 #endif /* CONFIG_CFS_BANDWIDTH */ 418 419 struct cfs_bandwidth { 420 #ifdef CONFIG_CFS_BANDWIDTH 421 raw_spinlock_t lock; 422 ktime_t period; 423 u64 quota; 424 u64 runtime; 425 u64 burst; 426 u64 runtime_snap; 427 s64 hierarchical_quota; 428 429 u8 idle; 430 u8 period_active; 431 u8 slack_started; 432 struct hrtimer period_timer; 433 struct hrtimer slack_timer; 434 struct list_head throttled_cfs_rq; 435 436 /* Statistics: */ 437 int nr_periods; 438 int nr_throttled; 439 int nr_burst; 440 u64 throttled_time; 441 u64 burst_time; 442 #endif /* CONFIG_CFS_BANDWIDTH */ 443 }; 444 445 /* Task group related information */ 446 struct task_group { 447 struct cgroup_subsys_state css; 448 449 #ifdef CONFIG_GROUP_SCHED_WEIGHT 450 /* A positive value indicates that this is a SCHED_IDLE group. */ 451 int idle; 452 #endif 453 454 #ifdef CONFIG_FAIR_GROUP_SCHED 455 /* schedulable entities of this group on each CPU */ 456 struct sched_entity **se; 457 /* runqueue "owned" by this group on each CPU */ 458 struct cfs_rq **cfs_rq; 459 unsigned long shares; 460 /* 461 * load_avg can be heavily contended at clock tick time, so put 462 * it in its own cache-line separated from the fields above which 463 * will also be accessed at each tick. 464 */ 465 atomic_long_t load_avg ____cacheline_aligned; 466 #endif /* CONFIG_FAIR_GROUP_SCHED */ 467 468 #ifdef CONFIG_RT_GROUP_SCHED 469 struct sched_rt_entity **rt_se; 470 struct rt_rq **rt_rq; 471 472 struct rt_bandwidth rt_bandwidth; 473 #endif 474 475 #ifdef CONFIG_EXT_GROUP_SCHED 476 u32 scx_flags; /* SCX_TG_* */ 477 u32 scx_weight; 478 #endif 479 480 struct rcu_head rcu; 481 struct list_head list; 482 483 struct task_group *parent; 484 struct list_head siblings; 485 struct list_head children; 486 487 #ifdef CONFIG_SCHED_AUTOGROUP 488 struct autogroup *autogroup; 489 #endif 490 491 struct cfs_bandwidth cfs_bandwidth; 492 493 #ifdef CONFIG_UCLAMP_TASK_GROUP 494 /* The two decimal precision [%] value requested from user-space */ 495 unsigned int uclamp_pct[UCLAMP_CNT]; 496 /* Clamp values requested for a task group */ 497 struct uclamp_se uclamp_req[UCLAMP_CNT]; 498 /* Effective clamp values used for a task group */ 499 struct uclamp_se uclamp[UCLAMP_CNT]; 500 #endif 501 502 }; 503 504 #ifdef CONFIG_GROUP_SCHED_WEIGHT 505 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 506 507 /* 508 * A weight of 0 or 1 can cause arithmetics problems. 509 * A weight of a cfs_rq is the sum of weights of which entities 510 * are queued on this cfs_rq, so a weight of a entity should not be 511 * too large, so as the shares value of a task group. 512 * (The default weight is 1024 - so there's no practical 513 * limitation from this.) 514 */ 515 #define MIN_SHARES (1UL << 1) 516 #define MAX_SHARES (1UL << 18) 517 #endif 518 519 typedef int (*tg_visitor)(struct task_group *, void *); 520 521 extern int walk_tg_tree_from(struct task_group *from, 522 tg_visitor down, tg_visitor up, void *data); 523 524 /* 525 * Iterate the full tree, calling @down when first entering a node and @up when 526 * leaving it for the final time. 527 * 528 * Caller must hold rcu_lock or sufficient equivalent. 529 */ 530 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 531 { 532 return walk_tg_tree_from(&root_task_group, down, up, data); 533 } 534 535 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 536 { 537 return css ? container_of(css, struct task_group, css) : NULL; 538 } 539 540 extern int tg_nop(struct task_group *tg, void *data); 541 542 #ifdef CONFIG_FAIR_GROUP_SCHED 543 extern void free_fair_sched_group(struct task_group *tg); 544 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 545 extern void online_fair_sched_group(struct task_group *tg); 546 extern void unregister_fair_sched_group(struct task_group *tg); 547 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 548 static inline void free_fair_sched_group(struct task_group *tg) { } 549 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 550 { 551 return 1; 552 } 553 static inline void online_fair_sched_group(struct task_group *tg) { } 554 static inline void unregister_fair_sched_group(struct task_group *tg) { } 555 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 556 557 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 558 struct sched_entity *se, int cpu, 559 struct sched_entity *parent); 560 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 561 562 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 563 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 564 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 565 extern bool cfs_task_bw_constrained(struct task_struct *p); 566 567 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 568 struct sched_rt_entity *rt_se, int cpu, 569 struct sched_rt_entity *parent); 570 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 571 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 572 extern long sched_group_rt_runtime(struct task_group *tg); 573 extern long sched_group_rt_period(struct task_group *tg); 574 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 575 576 extern struct task_group *sched_create_group(struct task_group *parent); 577 extern void sched_online_group(struct task_group *tg, 578 struct task_group *parent); 579 extern void sched_destroy_group(struct task_group *tg); 580 extern void sched_release_group(struct task_group *tg); 581 582 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 583 584 #ifdef CONFIG_FAIR_GROUP_SCHED 585 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 586 587 extern int sched_group_set_idle(struct task_group *tg, long idle); 588 589 extern void set_task_rq_fair(struct sched_entity *se, 590 struct cfs_rq *prev, struct cfs_rq *next); 591 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 592 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 593 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 594 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 595 596 #else /* !CONFIG_CGROUP_SCHED: */ 597 598 struct cfs_bandwidth { }; 599 600 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 601 602 #endif /* !CONFIG_CGROUP_SCHED */ 603 604 extern void unregister_rt_sched_group(struct task_group *tg); 605 extern void free_rt_sched_group(struct task_group *tg); 606 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 607 608 /* 609 * u64_u32_load/u64_u32_store 610 * 611 * Use a copy of a u64 value to protect against data race. This is only 612 * applicable for 32-bits architectures. 613 */ 614 #ifdef CONFIG_64BIT 615 # define u64_u32_load_copy(var, copy) var 616 # define u64_u32_store_copy(var, copy, val) (var = val) 617 #else 618 # define u64_u32_load_copy(var, copy) \ 619 ({ \ 620 u64 __val, __val_copy; \ 621 do { \ 622 __val_copy = copy; \ 623 /* \ 624 * paired with u64_u32_store_copy(), ordering access \ 625 * to var and copy. \ 626 */ \ 627 smp_rmb(); \ 628 __val = var; \ 629 } while (__val != __val_copy); \ 630 __val; \ 631 }) 632 # define u64_u32_store_copy(var, copy, val) \ 633 do { \ 634 typeof(val) __val = (val); \ 635 var = __val; \ 636 /* \ 637 * paired with u64_u32_load_copy(), ordering access to var and \ 638 * copy. \ 639 */ \ 640 smp_wmb(); \ 641 copy = __val; \ 642 } while (0) 643 #endif 644 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 645 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 646 647 struct balance_callback { 648 struct balance_callback *next; 649 void (*func)(struct rq *rq); 650 }; 651 652 /* CFS-related fields in a runqueue */ 653 struct cfs_rq { 654 struct load_weight load; 655 unsigned int nr_queued; 656 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 657 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 658 unsigned int h_nr_idle; /* SCHED_IDLE */ 659 660 s64 avg_vruntime; 661 u64 avg_load; 662 663 u64 min_vruntime; 664 #ifdef CONFIG_SCHED_CORE 665 unsigned int forceidle_seq; 666 u64 min_vruntime_fi; 667 #endif 668 669 struct rb_root_cached tasks_timeline; 670 671 /* 672 * 'curr' points to currently running entity on this cfs_rq. 673 * It is set to NULL otherwise (i.e when none are currently running). 674 */ 675 struct sched_entity *curr; 676 struct sched_entity *next; 677 678 /* 679 * CFS load tracking 680 */ 681 struct sched_avg avg; 682 #ifndef CONFIG_64BIT 683 u64 last_update_time_copy; 684 #endif 685 struct { 686 raw_spinlock_t lock ____cacheline_aligned; 687 int nr; 688 unsigned long load_avg; 689 unsigned long util_avg; 690 unsigned long runnable_avg; 691 } removed; 692 693 #ifdef CONFIG_FAIR_GROUP_SCHED 694 u64 last_update_tg_load_avg; 695 unsigned long tg_load_avg_contrib; 696 long propagate; 697 long prop_runnable_sum; 698 699 /* 700 * h_load = weight * f(tg) 701 * 702 * Where f(tg) is the recursive weight fraction assigned to 703 * this group. 704 */ 705 unsigned long h_load; 706 u64 last_h_load_update; 707 struct sched_entity *h_load_next; 708 #endif /* CONFIG_FAIR_GROUP_SCHED */ 709 710 #ifdef CONFIG_FAIR_GROUP_SCHED 711 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 712 713 /* 714 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 715 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 716 * (like users, containers etc.) 717 * 718 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 719 * This list is used during load balance. 720 */ 721 int on_list; 722 struct list_head leaf_cfs_rq_list; 723 struct task_group *tg; /* group that "owns" this runqueue */ 724 725 /* Locally cached copy of our task_group's idle value */ 726 int idle; 727 728 #ifdef CONFIG_CFS_BANDWIDTH 729 int runtime_enabled; 730 s64 runtime_remaining; 731 732 u64 throttled_pelt_idle; 733 #ifndef CONFIG_64BIT 734 u64 throttled_pelt_idle_copy; 735 #endif 736 u64 throttled_clock; 737 u64 throttled_clock_pelt; 738 u64 throttled_clock_pelt_time; 739 u64 throttled_clock_self; 740 u64 throttled_clock_self_time; 741 int throttled; 742 int throttle_count; 743 struct list_head throttled_list; 744 struct list_head throttled_csd_list; 745 #endif /* CONFIG_CFS_BANDWIDTH */ 746 #endif /* CONFIG_FAIR_GROUP_SCHED */ 747 }; 748 749 #ifdef CONFIG_SCHED_CLASS_EXT 750 /* scx_rq->flags, protected by the rq lock */ 751 enum scx_rq_flags { 752 /* 753 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 754 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 755 * only while the BPF scheduler considers the CPU to be online. 756 */ 757 SCX_RQ_ONLINE = 1 << 0, 758 SCX_RQ_CAN_STOP_TICK = 1 << 1, 759 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 760 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 761 SCX_RQ_BYPASSING = 1 << 4, 762 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 763 764 SCX_RQ_IN_WAKEUP = 1 << 16, 765 SCX_RQ_IN_BALANCE = 1 << 17, 766 }; 767 768 struct scx_rq { 769 struct scx_dispatch_q local_dsq; 770 struct list_head runnable_list; /* runnable tasks on this rq */ 771 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 772 unsigned long ops_qseq; 773 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 774 u32 nr_running; 775 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 776 bool cpu_released; 777 u32 flags; 778 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 779 cpumask_var_t cpus_to_kick; 780 cpumask_var_t cpus_to_kick_if_idle; 781 cpumask_var_t cpus_to_preempt; 782 cpumask_var_t cpus_to_wait; 783 unsigned long pnt_seq; 784 struct balance_callback deferred_bal_cb; 785 struct irq_work deferred_irq_work; 786 struct irq_work kick_cpus_irq_work; 787 }; 788 #endif /* CONFIG_SCHED_CLASS_EXT */ 789 790 static inline int rt_bandwidth_enabled(void) 791 { 792 return sysctl_sched_rt_runtime >= 0; 793 } 794 795 /* RT IPI pull logic requires IRQ_WORK */ 796 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 797 # define HAVE_RT_PUSH_IPI 798 #endif 799 800 /* Real-Time classes' related field in a runqueue: */ 801 struct rt_rq { 802 struct rt_prio_array active; 803 unsigned int rt_nr_running; 804 unsigned int rr_nr_running; 805 struct { 806 int curr; /* highest queued rt task prio */ 807 int next; /* next highest */ 808 } highest_prio; 809 bool overloaded; 810 struct plist_head pushable_tasks; 811 812 int rt_queued; 813 814 #ifdef CONFIG_RT_GROUP_SCHED 815 int rt_throttled; 816 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 817 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 818 /* Nests inside the rq lock: */ 819 raw_spinlock_t rt_runtime_lock; 820 821 unsigned int rt_nr_boosted; 822 823 struct rq *rq; /* this is always top-level rq, cache? */ 824 #endif 825 #ifdef CONFIG_CGROUP_SCHED 826 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 827 #endif 828 }; 829 830 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 831 { 832 return rt_rq->rt_queued && rt_rq->rt_nr_running; 833 } 834 835 /* Deadline class' related fields in a runqueue */ 836 struct dl_rq { 837 /* runqueue is an rbtree, ordered by deadline */ 838 struct rb_root_cached root; 839 840 unsigned int dl_nr_running; 841 842 /* 843 * Deadline values of the currently executing and the 844 * earliest ready task on this rq. Caching these facilitates 845 * the decision whether or not a ready but not running task 846 * should migrate somewhere else. 847 */ 848 struct { 849 u64 curr; 850 u64 next; 851 } earliest_dl; 852 853 bool overloaded; 854 855 /* 856 * Tasks on this rq that can be pushed away. They are kept in 857 * an rb-tree, ordered by tasks' deadlines, with caching 858 * of the leftmost (earliest deadline) element. 859 */ 860 struct rb_root_cached pushable_dl_tasks_root; 861 862 /* 863 * "Active utilization" for this runqueue: increased when a 864 * task wakes up (becomes TASK_RUNNING) and decreased when a 865 * task blocks 866 */ 867 u64 running_bw; 868 869 /* 870 * Utilization of the tasks "assigned" to this runqueue (including 871 * the tasks that are in runqueue and the tasks that executed on this 872 * CPU and blocked). Increased when a task moves to this runqueue, and 873 * decreased when the task moves away (migrates, changes scheduling 874 * policy, or terminates). 875 * This is needed to compute the "inactive utilization" for the 876 * runqueue (inactive utilization = this_bw - running_bw). 877 */ 878 u64 this_bw; 879 u64 extra_bw; 880 881 /* 882 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 883 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 884 */ 885 u64 max_bw; 886 887 /* 888 * Inverse of the fraction of CPU utilization that can be reclaimed 889 * by the GRUB algorithm. 890 */ 891 u64 bw_ratio; 892 }; 893 894 #ifdef CONFIG_FAIR_GROUP_SCHED 895 896 /* An entity is a task if it doesn't "own" a runqueue */ 897 #define entity_is_task(se) (!se->my_q) 898 899 static inline void se_update_runnable(struct sched_entity *se) 900 { 901 if (!entity_is_task(se)) 902 se->runnable_weight = se->my_q->h_nr_runnable; 903 } 904 905 static inline long se_runnable(struct sched_entity *se) 906 { 907 if (se->sched_delayed) 908 return false; 909 910 if (entity_is_task(se)) 911 return !!se->on_rq; 912 else 913 return se->runnable_weight; 914 } 915 916 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 917 918 #define entity_is_task(se) 1 919 920 static inline void se_update_runnable(struct sched_entity *se) { } 921 922 static inline long se_runnable(struct sched_entity *se) 923 { 924 if (se->sched_delayed) 925 return false; 926 927 return !!se->on_rq; 928 } 929 930 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 931 932 /* 933 * XXX we want to get rid of these helpers and use the full load resolution. 934 */ 935 static inline long se_weight(struct sched_entity *se) 936 { 937 return scale_load_down(se->load.weight); 938 } 939 940 941 static inline bool sched_asym_prefer(int a, int b) 942 { 943 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 944 } 945 946 struct perf_domain { 947 struct em_perf_domain *em_pd; 948 struct perf_domain *next; 949 struct rcu_head rcu; 950 }; 951 952 /* 953 * We add the notion of a root-domain which will be used to define per-domain 954 * variables. Each exclusive cpuset essentially defines an island domain by 955 * fully partitioning the member CPUs from any other cpuset. Whenever a new 956 * exclusive cpuset is created, we also create and attach a new root-domain 957 * object. 958 * 959 */ 960 struct root_domain { 961 atomic_t refcount; 962 atomic_t rto_count; 963 struct rcu_head rcu; 964 cpumask_var_t span; 965 cpumask_var_t online; 966 967 /* 968 * Indicate pullable load on at least one CPU, e.g: 969 * - More than one runnable task 970 * - Running task is misfit 971 */ 972 bool overloaded; 973 974 /* Indicate one or more CPUs over-utilized (tipping point) */ 975 bool overutilized; 976 977 /* 978 * The bit corresponding to a CPU gets set here if such CPU has more 979 * than one runnable -deadline task (as it is below for RT tasks). 980 */ 981 cpumask_var_t dlo_mask; 982 atomic_t dlo_count; 983 struct dl_bw dl_bw; 984 struct cpudl cpudl; 985 986 /* 987 * Indicate whether a root_domain's dl_bw has been checked or 988 * updated. It's monotonously increasing value. 989 * 990 * Also, some corner cases, like 'wrap around' is dangerous, but given 991 * that u64 is 'big enough'. So that shouldn't be a concern. 992 */ 993 u64 visit_cookie; 994 995 #ifdef HAVE_RT_PUSH_IPI 996 /* 997 * For IPI pull requests, loop across the rto_mask. 998 */ 999 struct irq_work rto_push_work; 1000 raw_spinlock_t rto_lock; 1001 /* These are only updated and read within rto_lock */ 1002 int rto_loop; 1003 int rto_cpu; 1004 /* These atomics are updated outside of a lock */ 1005 atomic_t rto_loop_next; 1006 atomic_t rto_loop_start; 1007 #endif /* HAVE_RT_PUSH_IPI */ 1008 /* 1009 * The "RT overload" flag: it gets set if a CPU has more than 1010 * one runnable RT task. 1011 */ 1012 cpumask_var_t rto_mask; 1013 struct cpupri cpupri; 1014 1015 /* 1016 * NULL-terminated list of performance domains intersecting with the 1017 * CPUs of the rd. Protected by RCU. 1018 */ 1019 struct perf_domain __rcu *pd; 1020 }; 1021 1022 extern void init_defrootdomain(void); 1023 extern int sched_init_domains(const struct cpumask *cpu_map); 1024 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1025 extern void sched_get_rd(struct root_domain *rd); 1026 extern void sched_put_rd(struct root_domain *rd); 1027 1028 static inline int get_rd_overloaded(struct root_domain *rd) 1029 { 1030 return READ_ONCE(rd->overloaded); 1031 } 1032 1033 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1034 { 1035 if (get_rd_overloaded(rd) != status) 1036 WRITE_ONCE(rd->overloaded, status); 1037 } 1038 1039 #ifdef HAVE_RT_PUSH_IPI 1040 extern void rto_push_irq_work_func(struct irq_work *work); 1041 #endif 1042 1043 #ifdef CONFIG_UCLAMP_TASK 1044 /* 1045 * struct uclamp_bucket - Utilization clamp bucket 1046 * @value: utilization clamp value for tasks on this clamp bucket 1047 * @tasks: number of RUNNABLE tasks on this clamp bucket 1048 * 1049 * Keep track of how many tasks are RUNNABLE for a given utilization 1050 * clamp value. 1051 */ 1052 struct uclamp_bucket { 1053 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1054 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1055 }; 1056 1057 /* 1058 * struct uclamp_rq - rq's utilization clamp 1059 * @value: currently active clamp values for a rq 1060 * @bucket: utilization clamp buckets affecting a rq 1061 * 1062 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1063 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1064 * (or actually running) with that value. 1065 * 1066 * There are up to UCLAMP_CNT possible different clamp values, currently there 1067 * are only two: minimum utilization and maximum utilization. 1068 * 1069 * All utilization clamping values are MAX aggregated, since: 1070 * - for util_min: we want to run the CPU at least at the max of the minimum 1071 * utilization required by its currently RUNNABLE tasks. 1072 * - for util_max: we want to allow the CPU to run up to the max of the 1073 * maximum utilization allowed by its currently RUNNABLE tasks. 1074 * 1075 * Since on each system we expect only a limited number of different 1076 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1077 * the metrics required to compute all the per-rq utilization clamp values. 1078 */ 1079 struct uclamp_rq { 1080 unsigned int value; 1081 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1082 }; 1083 1084 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1085 #endif /* CONFIG_UCLAMP_TASK */ 1086 1087 /* 1088 * This is the main, per-CPU runqueue data structure. 1089 * 1090 * Locking rule: those places that want to lock multiple runqueues 1091 * (such as the load balancing or the thread migration code), lock 1092 * acquire operations must be ordered by ascending &runqueue. 1093 */ 1094 struct rq { 1095 /* runqueue lock: */ 1096 raw_spinlock_t __lock; 1097 1098 unsigned int nr_running; 1099 #ifdef CONFIG_NUMA_BALANCING 1100 unsigned int nr_numa_running; 1101 unsigned int nr_preferred_running; 1102 unsigned int numa_migrate_on; 1103 #endif 1104 #ifdef CONFIG_NO_HZ_COMMON 1105 unsigned long last_blocked_load_update_tick; 1106 unsigned int has_blocked_load; 1107 call_single_data_t nohz_csd; 1108 unsigned int nohz_tick_stopped; 1109 atomic_t nohz_flags; 1110 #endif /* CONFIG_NO_HZ_COMMON */ 1111 1112 unsigned int ttwu_pending; 1113 u64 nr_switches; 1114 1115 #ifdef CONFIG_UCLAMP_TASK 1116 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1117 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1118 unsigned int uclamp_flags; 1119 #define UCLAMP_FLAG_IDLE 0x01 1120 #endif 1121 1122 struct cfs_rq cfs; 1123 struct rt_rq rt; 1124 struct dl_rq dl; 1125 #ifdef CONFIG_SCHED_CLASS_EXT 1126 struct scx_rq scx; 1127 #endif 1128 1129 struct sched_dl_entity fair_server; 1130 1131 #ifdef CONFIG_FAIR_GROUP_SCHED 1132 /* list of leaf cfs_rq on this CPU: */ 1133 struct list_head leaf_cfs_rq_list; 1134 struct list_head *tmp_alone_branch; 1135 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1136 1137 /* 1138 * This is part of a global counter where only the total sum 1139 * over all CPUs matters. A task can increase this counter on 1140 * one CPU and if it got migrated afterwards it may decrease 1141 * it on another CPU. Always updated under the runqueue lock: 1142 */ 1143 unsigned long nr_uninterruptible; 1144 1145 union { 1146 struct task_struct __rcu *donor; /* Scheduler context */ 1147 struct task_struct __rcu *curr; /* Execution context */ 1148 }; 1149 struct sched_dl_entity *dl_server; 1150 struct task_struct *idle; 1151 struct task_struct *stop; 1152 unsigned long next_balance; 1153 struct mm_struct *prev_mm; 1154 1155 unsigned int clock_update_flags; 1156 u64 clock; 1157 /* Ensure that all clocks are in the same cache line */ 1158 u64 clock_task ____cacheline_aligned; 1159 u64 clock_pelt; 1160 unsigned long lost_idle_time; 1161 u64 clock_pelt_idle; 1162 u64 clock_idle; 1163 #ifndef CONFIG_64BIT 1164 u64 clock_pelt_idle_copy; 1165 u64 clock_idle_copy; 1166 #endif 1167 1168 atomic_t nr_iowait; 1169 1170 u64 last_seen_need_resched_ns; 1171 int ticks_without_resched; 1172 1173 #ifdef CONFIG_MEMBARRIER 1174 int membarrier_state; 1175 #endif 1176 1177 struct root_domain *rd; 1178 struct sched_domain __rcu *sd; 1179 1180 unsigned long cpu_capacity; 1181 1182 struct balance_callback *balance_callback; 1183 1184 unsigned char nohz_idle_balance; 1185 unsigned char idle_balance; 1186 1187 unsigned long misfit_task_load; 1188 1189 /* For active balancing */ 1190 int active_balance; 1191 int push_cpu; 1192 struct cpu_stop_work active_balance_work; 1193 1194 /* CPU of this runqueue: */ 1195 int cpu; 1196 int online; 1197 1198 struct list_head cfs_tasks; 1199 1200 struct sched_avg avg_rt; 1201 struct sched_avg avg_dl; 1202 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1203 struct sched_avg avg_irq; 1204 #endif 1205 #ifdef CONFIG_SCHED_HW_PRESSURE 1206 struct sched_avg avg_hw; 1207 #endif 1208 u64 idle_stamp; 1209 u64 avg_idle; 1210 1211 /* This is used to determine avg_idle's max value */ 1212 u64 max_idle_balance_cost; 1213 1214 #ifdef CONFIG_HOTPLUG_CPU 1215 struct rcuwait hotplug_wait; 1216 #endif 1217 1218 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1219 u64 prev_irq_time; 1220 u64 psi_irq_time; 1221 #endif 1222 #ifdef CONFIG_PARAVIRT 1223 u64 prev_steal_time; 1224 #endif 1225 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1226 u64 prev_steal_time_rq; 1227 #endif 1228 1229 /* calc_load related fields */ 1230 unsigned long calc_load_update; 1231 long calc_load_active; 1232 1233 #ifdef CONFIG_SCHED_HRTICK 1234 call_single_data_t hrtick_csd; 1235 struct hrtimer hrtick_timer; 1236 ktime_t hrtick_time; 1237 #endif 1238 1239 #ifdef CONFIG_SCHEDSTATS 1240 /* latency stats */ 1241 struct sched_info rq_sched_info; 1242 unsigned long long rq_cpu_time; 1243 1244 /* sys_sched_yield() stats */ 1245 unsigned int yld_count; 1246 1247 /* schedule() stats */ 1248 unsigned int sched_count; 1249 unsigned int sched_goidle; 1250 1251 /* try_to_wake_up() stats */ 1252 unsigned int ttwu_count; 1253 unsigned int ttwu_local; 1254 #endif 1255 1256 #ifdef CONFIG_CPU_IDLE 1257 /* Must be inspected within a RCU lock section */ 1258 struct cpuidle_state *idle_state; 1259 #endif 1260 1261 unsigned int nr_pinned; 1262 unsigned int push_busy; 1263 struct cpu_stop_work push_work; 1264 1265 #ifdef CONFIG_SCHED_CORE 1266 /* per rq */ 1267 struct rq *core; 1268 struct task_struct *core_pick; 1269 struct sched_dl_entity *core_dl_server; 1270 unsigned int core_enabled; 1271 unsigned int core_sched_seq; 1272 struct rb_root core_tree; 1273 1274 /* shared state -- careful with sched_core_cpu_deactivate() */ 1275 unsigned int core_task_seq; 1276 unsigned int core_pick_seq; 1277 unsigned long core_cookie; 1278 unsigned int core_forceidle_count; 1279 unsigned int core_forceidle_seq; 1280 unsigned int core_forceidle_occupation; 1281 u64 core_forceidle_start; 1282 #endif /* CONFIG_SCHED_CORE */ 1283 1284 /* Scratch cpumask to be temporarily used under rq_lock */ 1285 cpumask_var_t scratch_mask; 1286 1287 #ifdef CONFIG_CFS_BANDWIDTH 1288 call_single_data_t cfsb_csd; 1289 struct list_head cfsb_csd_list; 1290 #endif 1291 }; 1292 1293 #ifdef CONFIG_FAIR_GROUP_SCHED 1294 1295 /* CPU runqueue to which this cfs_rq is attached */ 1296 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1297 { 1298 return cfs_rq->rq; 1299 } 1300 1301 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1302 1303 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1304 { 1305 return container_of(cfs_rq, struct rq, cfs); 1306 } 1307 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1308 1309 static inline int cpu_of(struct rq *rq) 1310 { 1311 return rq->cpu; 1312 } 1313 1314 #define MDF_PUSH 0x01 1315 1316 static inline bool is_migration_disabled(struct task_struct *p) 1317 { 1318 return p->migration_disabled; 1319 } 1320 1321 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1322 1323 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1324 #define this_rq() this_cpu_ptr(&runqueues) 1325 #define task_rq(p) cpu_rq(task_cpu(p)) 1326 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1327 #define raw_rq() raw_cpu_ptr(&runqueues) 1328 1329 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1330 { 1331 /* Do nothing */ 1332 } 1333 1334 #ifdef CONFIG_SCHED_CORE 1335 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1336 1337 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1338 1339 static inline bool sched_core_enabled(struct rq *rq) 1340 { 1341 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1342 } 1343 1344 static inline bool sched_core_disabled(void) 1345 { 1346 return !static_branch_unlikely(&__sched_core_enabled); 1347 } 1348 1349 /* 1350 * Be careful with this function; not for general use. The return value isn't 1351 * stable unless you actually hold a relevant rq->__lock. 1352 */ 1353 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1354 { 1355 if (sched_core_enabled(rq)) 1356 return &rq->core->__lock; 1357 1358 return &rq->__lock; 1359 } 1360 1361 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1362 { 1363 if (rq->core_enabled) 1364 return &rq->core->__lock; 1365 1366 return &rq->__lock; 1367 } 1368 1369 extern bool 1370 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1371 1372 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1373 1374 /* 1375 * Helpers to check if the CPU's core cookie matches with the task's cookie 1376 * when core scheduling is enabled. 1377 * A special case is that the task's cookie always matches with CPU's core 1378 * cookie if the CPU is in an idle core. 1379 */ 1380 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1381 { 1382 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1383 if (!sched_core_enabled(rq)) 1384 return true; 1385 1386 return rq->core->core_cookie == p->core_cookie; 1387 } 1388 1389 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1390 { 1391 bool idle_core = true; 1392 int cpu; 1393 1394 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1395 if (!sched_core_enabled(rq)) 1396 return true; 1397 1398 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1399 if (!available_idle_cpu(cpu)) { 1400 idle_core = false; 1401 break; 1402 } 1403 } 1404 1405 /* 1406 * A CPU in an idle core is always the best choice for tasks with 1407 * cookies. 1408 */ 1409 return idle_core || rq->core->core_cookie == p->core_cookie; 1410 } 1411 1412 static inline bool sched_group_cookie_match(struct rq *rq, 1413 struct task_struct *p, 1414 struct sched_group *group) 1415 { 1416 int cpu; 1417 1418 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1419 if (!sched_core_enabled(rq)) 1420 return true; 1421 1422 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1423 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1424 return true; 1425 } 1426 return false; 1427 } 1428 1429 static inline bool sched_core_enqueued(struct task_struct *p) 1430 { 1431 return !RB_EMPTY_NODE(&p->core_node); 1432 } 1433 1434 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1435 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1436 1437 extern void sched_core_get(void); 1438 extern void sched_core_put(void); 1439 1440 #else /* !CONFIG_SCHED_CORE: */ 1441 1442 static inline bool sched_core_enabled(struct rq *rq) 1443 { 1444 return false; 1445 } 1446 1447 static inline bool sched_core_disabled(void) 1448 { 1449 return true; 1450 } 1451 1452 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1453 { 1454 return &rq->__lock; 1455 } 1456 1457 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1458 { 1459 return &rq->__lock; 1460 } 1461 1462 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1463 { 1464 return true; 1465 } 1466 1467 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1468 { 1469 return true; 1470 } 1471 1472 static inline bool sched_group_cookie_match(struct rq *rq, 1473 struct task_struct *p, 1474 struct sched_group *group) 1475 { 1476 return true; 1477 } 1478 1479 #endif /* !CONFIG_SCHED_CORE */ 1480 1481 #ifdef CONFIG_RT_GROUP_SCHED 1482 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1483 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1484 static inline bool rt_group_sched_enabled(void) 1485 { 1486 return static_branch_unlikely(&rt_group_sched); 1487 } 1488 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1489 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1490 static inline bool rt_group_sched_enabled(void) 1491 { 1492 return static_branch_likely(&rt_group_sched); 1493 } 1494 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1495 #else /* !CONFIG_RT_GROUP_SCHED: */ 1496 # define rt_group_sched_enabled() false 1497 #endif /* !CONFIG_RT_GROUP_SCHED */ 1498 1499 static inline void lockdep_assert_rq_held(struct rq *rq) 1500 { 1501 lockdep_assert_held(__rq_lockp(rq)); 1502 } 1503 1504 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1505 extern bool raw_spin_rq_trylock(struct rq *rq); 1506 extern void raw_spin_rq_unlock(struct rq *rq); 1507 1508 static inline void raw_spin_rq_lock(struct rq *rq) 1509 { 1510 raw_spin_rq_lock_nested(rq, 0); 1511 } 1512 1513 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1514 { 1515 local_irq_disable(); 1516 raw_spin_rq_lock(rq); 1517 } 1518 1519 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1520 { 1521 raw_spin_rq_unlock(rq); 1522 local_irq_enable(); 1523 } 1524 1525 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1526 { 1527 unsigned long flags; 1528 1529 local_irq_save(flags); 1530 raw_spin_rq_lock(rq); 1531 1532 return flags; 1533 } 1534 1535 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1536 { 1537 raw_spin_rq_unlock(rq); 1538 local_irq_restore(flags); 1539 } 1540 1541 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1542 do { \ 1543 flags = _raw_spin_rq_lock_irqsave(rq); \ 1544 } while (0) 1545 1546 #ifdef CONFIG_SCHED_SMT 1547 extern void __update_idle_core(struct rq *rq); 1548 1549 static inline void update_idle_core(struct rq *rq) 1550 { 1551 if (static_branch_unlikely(&sched_smt_present)) 1552 __update_idle_core(rq); 1553 } 1554 1555 #else /* !CONFIG_SCHED_SMT: */ 1556 static inline void update_idle_core(struct rq *rq) { } 1557 #endif /* !CONFIG_SCHED_SMT */ 1558 1559 #ifdef CONFIG_FAIR_GROUP_SCHED 1560 1561 static inline struct task_struct *task_of(struct sched_entity *se) 1562 { 1563 WARN_ON_ONCE(!entity_is_task(se)); 1564 return container_of(se, struct task_struct, se); 1565 } 1566 1567 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1568 { 1569 return p->se.cfs_rq; 1570 } 1571 1572 /* runqueue on which this entity is (to be) queued */ 1573 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1574 { 1575 return se->cfs_rq; 1576 } 1577 1578 /* runqueue "owned" by this group */ 1579 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1580 { 1581 return grp->my_q; 1582 } 1583 1584 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1585 1586 #define task_of(_se) container_of(_se, struct task_struct, se) 1587 1588 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1589 { 1590 return &task_rq(p)->cfs; 1591 } 1592 1593 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1594 { 1595 const struct task_struct *p = task_of(se); 1596 struct rq *rq = task_rq(p); 1597 1598 return &rq->cfs; 1599 } 1600 1601 /* runqueue "owned" by this group */ 1602 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1603 { 1604 return NULL; 1605 } 1606 1607 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1608 1609 extern void update_rq_clock(struct rq *rq); 1610 1611 /* 1612 * rq::clock_update_flags bits 1613 * 1614 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1615 * call to __schedule(). This is an optimisation to avoid 1616 * neighbouring rq clock updates. 1617 * 1618 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1619 * in effect and calls to update_rq_clock() are being ignored. 1620 * 1621 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1622 * made to update_rq_clock() since the last time rq::lock was pinned. 1623 * 1624 * If inside of __schedule(), clock_update_flags will have been 1625 * shifted left (a left shift is a cheap operation for the fast path 1626 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1627 * 1628 * if (rq-clock_update_flags >= RQCF_UPDATED) 1629 * 1630 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1631 * one position though, because the next rq_unpin_lock() will shift it 1632 * back. 1633 */ 1634 #define RQCF_REQ_SKIP 0x01 1635 #define RQCF_ACT_SKIP 0x02 1636 #define RQCF_UPDATED 0x04 1637 1638 static inline void assert_clock_updated(struct rq *rq) 1639 { 1640 /* 1641 * The only reason for not seeing a clock update since the 1642 * last rq_pin_lock() is if we're currently skipping updates. 1643 */ 1644 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1645 } 1646 1647 static inline u64 rq_clock(struct rq *rq) 1648 { 1649 lockdep_assert_rq_held(rq); 1650 assert_clock_updated(rq); 1651 1652 return rq->clock; 1653 } 1654 1655 static inline u64 rq_clock_task(struct rq *rq) 1656 { 1657 lockdep_assert_rq_held(rq); 1658 assert_clock_updated(rq); 1659 1660 return rq->clock_task; 1661 } 1662 1663 static inline void rq_clock_skip_update(struct rq *rq) 1664 { 1665 lockdep_assert_rq_held(rq); 1666 rq->clock_update_flags |= RQCF_REQ_SKIP; 1667 } 1668 1669 /* 1670 * See rt task throttling, which is the only time a skip 1671 * request is canceled. 1672 */ 1673 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1674 { 1675 lockdep_assert_rq_held(rq); 1676 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1677 } 1678 1679 /* 1680 * During cpu offlining and rq wide unthrottling, we can trigger 1681 * an update_rq_clock() for several cfs and rt runqueues (Typically 1682 * when using list_for_each_entry_*) 1683 * rq_clock_start_loop_update() can be called after updating the clock 1684 * once and before iterating over the list to prevent multiple update. 1685 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1686 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1687 */ 1688 static inline void rq_clock_start_loop_update(struct rq *rq) 1689 { 1690 lockdep_assert_rq_held(rq); 1691 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1692 rq->clock_update_flags |= RQCF_ACT_SKIP; 1693 } 1694 1695 static inline void rq_clock_stop_loop_update(struct rq *rq) 1696 { 1697 lockdep_assert_rq_held(rq); 1698 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1699 } 1700 1701 struct rq_flags { 1702 unsigned long flags; 1703 struct pin_cookie cookie; 1704 /* 1705 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1706 * current pin context is stashed here in case it needs to be 1707 * restored in rq_repin_lock(). 1708 */ 1709 unsigned int clock_update_flags; 1710 }; 1711 1712 extern struct balance_callback balance_push_callback; 1713 1714 #ifdef CONFIG_SCHED_CLASS_EXT 1715 extern const struct sched_class ext_sched_class; 1716 1717 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1718 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1719 1720 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1721 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1722 1723 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1724 { 1725 if (!scx_enabled()) 1726 return; 1727 WRITE_ONCE(rq->scx.clock, clock); 1728 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1729 } 1730 1731 static inline void scx_rq_clock_invalidate(struct rq *rq) 1732 { 1733 if (!scx_enabled()) 1734 return; 1735 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1736 } 1737 1738 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1739 #define scx_enabled() false 1740 #define scx_switched_all() false 1741 1742 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1743 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1744 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1745 1746 /* 1747 * Lockdep annotation that avoids accidental unlocks; it's like a 1748 * sticky/continuous lockdep_assert_held(). 1749 * 1750 * This avoids code that has access to 'struct rq *rq' (basically everything in 1751 * the scheduler) from accidentally unlocking the rq if they do not also have a 1752 * copy of the (on-stack) 'struct rq_flags rf'. 1753 * 1754 * Also see Documentation/locking/lockdep-design.rst. 1755 */ 1756 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1757 { 1758 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1759 1760 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1761 rf->clock_update_flags = 0; 1762 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1763 } 1764 1765 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1766 { 1767 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1768 rf->clock_update_flags = RQCF_UPDATED; 1769 1770 scx_rq_clock_invalidate(rq); 1771 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1772 } 1773 1774 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1775 { 1776 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1777 1778 /* 1779 * Restore the value we stashed in @rf for this pin context. 1780 */ 1781 rq->clock_update_flags |= rf->clock_update_flags; 1782 } 1783 1784 extern 1785 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1786 __acquires(rq->lock); 1787 1788 extern 1789 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1790 __acquires(p->pi_lock) 1791 __acquires(rq->lock); 1792 1793 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1794 __releases(rq->lock) 1795 { 1796 rq_unpin_lock(rq, rf); 1797 raw_spin_rq_unlock(rq); 1798 } 1799 1800 static inline void 1801 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1802 __releases(rq->lock) 1803 __releases(p->pi_lock) 1804 { 1805 rq_unpin_lock(rq, rf); 1806 raw_spin_rq_unlock(rq); 1807 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1808 } 1809 1810 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1811 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1812 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1813 struct rq *rq; struct rq_flags rf) 1814 1815 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1816 __acquires(rq->lock) 1817 { 1818 raw_spin_rq_lock_irqsave(rq, rf->flags); 1819 rq_pin_lock(rq, rf); 1820 } 1821 1822 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1823 __acquires(rq->lock) 1824 { 1825 raw_spin_rq_lock_irq(rq); 1826 rq_pin_lock(rq, rf); 1827 } 1828 1829 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1830 __acquires(rq->lock) 1831 { 1832 raw_spin_rq_lock(rq); 1833 rq_pin_lock(rq, rf); 1834 } 1835 1836 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1837 __releases(rq->lock) 1838 { 1839 rq_unpin_lock(rq, rf); 1840 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1841 } 1842 1843 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1844 __releases(rq->lock) 1845 { 1846 rq_unpin_lock(rq, rf); 1847 raw_spin_rq_unlock_irq(rq); 1848 } 1849 1850 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1851 __releases(rq->lock) 1852 { 1853 rq_unpin_lock(rq, rf); 1854 raw_spin_rq_unlock(rq); 1855 } 1856 1857 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1858 rq_lock(_T->lock, &_T->rf), 1859 rq_unlock(_T->lock, &_T->rf), 1860 struct rq_flags rf) 1861 1862 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1863 rq_lock_irq(_T->lock, &_T->rf), 1864 rq_unlock_irq(_T->lock, &_T->rf), 1865 struct rq_flags rf) 1866 1867 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1868 rq_lock_irqsave(_T->lock, &_T->rf), 1869 rq_unlock_irqrestore(_T->lock, &_T->rf), 1870 struct rq_flags rf) 1871 1872 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1873 __acquires(rq->lock) 1874 { 1875 struct rq *rq; 1876 1877 local_irq_disable(); 1878 rq = this_rq(); 1879 rq_lock(rq, rf); 1880 1881 return rq; 1882 } 1883 1884 #ifdef CONFIG_NUMA 1885 1886 enum numa_topology_type { 1887 NUMA_DIRECT, 1888 NUMA_GLUELESS_MESH, 1889 NUMA_BACKPLANE, 1890 }; 1891 1892 extern enum numa_topology_type sched_numa_topology_type; 1893 extern int sched_max_numa_distance; 1894 extern bool find_numa_distance(int distance); 1895 extern void sched_init_numa(int offline_node); 1896 extern void sched_update_numa(int cpu, bool online); 1897 extern void sched_domains_numa_masks_set(unsigned int cpu); 1898 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1899 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1900 1901 #else /* !CONFIG_NUMA: */ 1902 1903 static inline void sched_init_numa(int offline_node) { } 1904 static inline void sched_update_numa(int cpu, bool online) { } 1905 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1906 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1907 1908 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1909 { 1910 return nr_cpu_ids; 1911 } 1912 1913 #endif /* !CONFIG_NUMA */ 1914 1915 #ifdef CONFIG_NUMA_BALANCING 1916 1917 /* The regions in numa_faults array from task_struct */ 1918 enum numa_faults_stats { 1919 NUMA_MEM = 0, 1920 NUMA_CPU, 1921 NUMA_MEMBUF, 1922 NUMA_CPUBUF 1923 }; 1924 1925 extern void sched_setnuma(struct task_struct *p, int node); 1926 extern int migrate_task_to(struct task_struct *p, int cpu); 1927 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1928 int cpu, int scpu); 1929 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1930 1931 #else /* !CONFIG_NUMA_BALANCING: */ 1932 1933 static inline void 1934 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1935 { 1936 } 1937 1938 #endif /* !CONFIG_NUMA_BALANCING */ 1939 1940 static inline void 1941 queue_balance_callback(struct rq *rq, 1942 struct balance_callback *head, 1943 void (*func)(struct rq *rq)) 1944 { 1945 lockdep_assert_rq_held(rq); 1946 1947 /* 1948 * Don't (re)queue an already queued item; nor queue anything when 1949 * balance_push() is active, see the comment with 1950 * balance_push_callback. 1951 */ 1952 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1953 return; 1954 1955 head->func = func; 1956 head->next = rq->balance_callback; 1957 rq->balance_callback = head; 1958 } 1959 1960 #define rcu_dereference_check_sched_domain(p) \ 1961 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1962 1963 /* 1964 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1965 * See destroy_sched_domains: call_rcu for details. 1966 * 1967 * The domain tree of any CPU may only be accessed from within 1968 * preempt-disabled sections. 1969 */ 1970 #define for_each_domain(cpu, __sd) \ 1971 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1972 __sd; __sd = __sd->parent) 1973 1974 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1975 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1976 static const unsigned int SD_SHARED_CHILD_MASK = 1977 #include <linux/sched/sd_flags.h> 1978 0; 1979 #undef SD_FLAG 1980 1981 /** 1982 * highest_flag_domain - Return highest sched_domain containing flag. 1983 * @cpu: The CPU whose highest level of sched domain is to 1984 * be returned. 1985 * @flag: The flag to check for the highest sched_domain 1986 * for the given CPU. 1987 * 1988 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1989 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1990 */ 1991 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1992 { 1993 struct sched_domain *sd, *hsd = NULL; 1994 1995 for_each_domain(cpu, sd) { 1996 if (sd->flags & flag) { 1997 hsd = sd; 1998 continue; 1999 } 2000 2001 /* 2002 * Stop the search if @flag is known to be shared at lower 2003 * levels. It will not be found further up. 2004 */ 2005 if (flag & SD_SHARED_CHILD_MASK) 2006 break; 2007 } 2008 2009 return hsd; 2010 } 2011 2012 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2013 { 2014 struct sched_domain *sd; 2015 2016 for_each_domain(cpu, sd) { 2017 if (sd->flags & flag) 2018 break; 2019 } 2020 2021 return sd; 2022 } 2023 2024 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2025 DECLARE_PER_CPU(int, sd_llc_size); 2026 DECLARE_PER_CPU(int, sd_llc_id); 2027 DECLARE_PER_CPU(int, sd_share_id); 2028 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2029 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2030 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2031 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2032 2033 extern struct static_key_false sched_asym_cpucapacity; 2034 extern struct static_key_false sched_cluster_active; 2035 2036 static __always_inline bool sched_asym_cpucap_active(void) 2037 { 2038 return static_branch_unlikely(&sched_asym_cpucapacity); 2039 } 2040 2041 struct sched_group_capacity { 2042 atomic_t ref; 2043 /* 2044 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2045 * for a single CPU. 2046 */ 2047 unsigned long capacity; 2048 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2049 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2050 unsigned long next_update; 2051 int imbalance; /* XXX unrelated to capacity but shared group state */ 2052 2053 int id; 2054 2055 unsigned long cpumask[]; /* Balance mask */ 2056 }; 2057 2058 struct sched_group { 2059 struct sched_group *next; /* Must be a circular list */ 2060 atomic_t ref; 2061 2062 unsigned int group_weight; 2063 unsigned int cores; 2064 struct sched_group_capacity *sgc; 2065 int asym_prefer_cpu; /* CPU of highest priority in group */ 2066 int flags; 2067 2068 /* 2069 * The CPUs this group covers. 2070 * 2071 * NOTE: this field is variable length. (Allocated dynamically 2072 * by attaching extra space to the end of the structure, 2073 * depending on how many CPUs the kernel has booted up with) 2074 */ 2075 unsigned long cpumask[]; 2076 }; 2077 2078 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2079 { 2080 return to_cpumask(sg->cpumask); 2081 } 2082 2083 /* 2084 * See build_balance_mask(). 2085 */ 2086 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2087 { 2088 return to_cpumask(sg->sgc->cpumask); 2089 } 2090 2091 extern int group_balance_cpu(struct sched_group *sg); 2092 2093 extern void update_sched_domain_debugfs(void); 2094 extern void dirty_sched_domain_sysctl(int cpu); 2095 2096 extern int sched_update_scaling(void); 2097 2098 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2099 { 2100 if (!p->user_cpus_ptr) 2101 return cpu_possible_mask; /* &init_task.cpus_mask */ 2102 return p->user_cpus_ptr; 2103 } 2104 2105 #ifdef CONFIG_CGROUP_SCHED 2106 2107 /* 2108 * Return the group to which this tasks belongs. 2109 * 2110 * We cannot use task_css() and friends because the cgroup subsystem 2111 * changes that value before the cgroup_subsys::attach() method is called, 2112 * therefore we cannot pin it and might observe the wrong value. 2113 * 2114 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2115 * core changes this before calling sched_move_task(). 2116 * 2117 * Instead we use a 'copy' which is updated from sched_move_task() while 2118 * holding both task_struct::pi_lock and rq::lock. 2119 */ 2120 static inline struct task_group *task_group(struct task_struct *p) 2121 { 2122 return p->sched_task_group; 2123 } 2124 2125 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2126 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2127 { 2128 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2129 struct task_group *tg = task_group(p); 2130 #endif 2131 2132 #ifdef CONFIG_FAIR_GROUP_SCHED 2133 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2134 p->se.cfs_rq = tg->cfs_rq[cpu]; 2135 p->se.parent = tg->se[cpu]; 2136 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2137 #endif 2138 2139 #ifdef CONFIG_RT_GROUP_SCHED 2140 /* 2141 * p->rt.rt_rq is NULL initially and it is easier to assign 2142 * root_task_group's rt_rq than switching in rt_rq_of_se() 2143 * Clobbers tg(!) 2144 */ 2145 if (!rt_group_sched_enabled()) 2146 tg = &root_task_group; 2147 p->rt.rt_rq = tg->rt_rq[cpu]; 2148 p->rt.parent = tg->rt_se[cpu]; 2149 #endif /* CONFIG_RT_GROUP_SCHED */ 2150 } 2151 2152 #else /* !CONFIG_CGROUP_SCHED: */ 2153 2154 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2155 2156 static inline struct task_group *task_group(struct task_struct *p) 2157 { 2158 return NULL; 2159 } 2160 2161 #endif /* !CONFIG_CGROUP_SCHED */ 2162 2163 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2164 { 2165 set_task_rq(p, cpu); 2166 #ifdef CONFIG_SMP 2167 /* 2168 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2169 * successfully executed on another CPU. We must ensure that updates of 2170 * per-task data have been completed by this moment. 2171 */ 2172 smp_wmb(); 2173 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2174 p->wake_cpu = cpu; 2175 #endif /* CONFIG_SMP */ 2176 } 2177 2178 /* 2179 * Tunables: 2180 */ 2181 2182 #define SCHED_FEAT(name, enabled) \ 2183 __SCHED_FEAT_##name , 2184 2185 enum { 2186 #include "features.h" 2187 __SCHED_FEAT_NR, 2188 }; 2189 2190 #undef SCHED_FEAT 2191 2192 /* 2193 * To support run-time toggling of sched features, all the translation units 2194 * (but core.c) reference the sysctl_sched_features defined in core.c. 2195 */ 2196 extern __read_mostly unsigned int sysctl_sched_features; 2197 2198 #ifdef CONFIG_JUMP_LABEL 2199 2200 #define SCHED_FEAT(name, enabled) \ 2201 static __always_inline bool static_branch_##name(struct static_key *key) \ 2202 { \ 2203 return static_key_##enabled(key); \ 2204 } 2205 2206 #include "features.h" 2207 #undef SCHED_FEAT 2208 2209 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2210 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2211 2212 #else /* !CONFIG_JUMP_LABEL: */ 2213 2214 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2215 2216 #endif /* !CONFIG_JUMP_LABEL */ 2217 2218 extern struct static_key_false sched_numa_balancing; 2219 extern struct static_key_false sched_schedstats; 2220 2221 static inline u64 global_rt_period(void) 2222 { 2223 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2224 } 2225 2226 static inline u64 global_rt_runtime(void) 2227 { 2228 if (sysctl_sched_rt_runtime < 0) 2229 return RUNTIME_INF; 2230 2231 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2232 } 2233 2234 /* 2235 * Is p the current execution context? 2236 */ 2237 static inline int task_current(struct rq *rq, struct task_struct *p) 2238 { 2239 return rq->curr == p; 2240 } 2241 2242 /* 2243 * Is p the current scheduling context? 2244 * 2245 * Note that it might be the current execution context at the same time if 2246 * rq->curr == rq->donor == p. 2247 */ 2248 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2249 { 2250 return rq->donor == p; 2251 } 2252 2253 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2254 { 2255 return p->on_cpu; 2256 } 2257 2258 static inline int task_on_rq_queued(struct task_struct *p) 2259 { 2260 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2261 } 2262 2263 static inline int task_on_rq_migrating(struct task_struct *p) 2264 { 2265 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2266 } 2267 2268 /* Wake flags. The first three directly map to some SD flag value */ 2269 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2270 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2271 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2272 2273 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2274 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2275 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2276 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2277 2278 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2279 static_assert(WF_FORK == SD_BALANCE_FORK); 2280 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2281 2282 /* 2283 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2284 * of tasks with abnormal "nice" values across CPUs the contribution that 2285 * each task makes to its run queue's load is weighted according to its 2286 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2287 * scaled version of the new time slice allocation that they receive on time 2288 * slice expiry etc. 2289 */ 2290 2291 #define WEIGHT_IDLEPRIO 3 2292 #define WMULT_IDLEPRIO 1431655765 2293 2294 extern const int sched_prio_to_weight[40]; 2295 extern const u32 sched_prio_to_wmult[40]; 2296 2297 /* 2298 * {de,en}queue flags: 2299 * 2300 * DEQUEUE_SLEEP - task is no longer runnable 2301 * ENQUEUE_WAKEUP - task just became runnable 2302 * 2303 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2304 * are in a known state which allows modification. Such pairs 2305 * should preserve as much state as possible. 2306 * 2307 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2308 * in the runqueue. 2309 * 2310 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2311 * 2312 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2313 * 2314 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2315 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2316 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2317 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2318 * 2319 */ 2320 2321 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2322 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2323 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2324 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2325 #define DEQUEUE_SPECIAL 0x10 2326 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2327 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2328 2329 #define ENQUEUE_WAKEUP 0x01 2330 #define ENQUEUE_RESTORE 0x02 2331 #define ENQUEUE_MOVE 0x04 2332 #define ENQUEUE_NOCLOCK 0x08 2333 2334 #define ENQUEUE_HEAD 0x10 2335 #define ENQUEUE_REPLENISH 0x20 2336 #define ENQUEUE_MIGRATED 0x40 2337 #define ENQUEUE_INITIAL 0x80 2338 #define ENQUEUE_MIGRATING 0x100 2339 #define ENQUEUE_DELAYED 0x200 2340 #define ENQUEUE_RQ_SELECTED 0x400 2341 2342 #define RETRY_TASK ((void *)-1UL) 2343 2344 struct affinity_context { 2345 const struct cpumask *new_mask; 2346 struct cpumask *user_mask; 2347 unsigned int flags; 2348 }; 2349 2350 extern s64 update_curr_common(struct rq *rq); 2351 2352 struct sched_class { 2353 2354 #ifdef CONFIG_UCLAMP_TASK 2355 int uclamp_enabled; 2356 #endif 2357 2358 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2359 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2360 void (*yield_task) (struct rq *rq); 2361 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2362 2363 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2364 2365 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2366 struct task_struct *(*pick_task)(struct rq *rq); 2367 /* 2368 * Optional! When implemented pick_next_task() should be equivalent to: 2369 * 2370 * next = pick_task(); 2371 * if (next) { 2372 * put_prev_task(prev); 2373 * set_next_task_first(next); 2374 * } 2375 */ 2376 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2377 2378 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2379 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2380 2381 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2382 2383 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2384 2385 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2386 2387 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2388 2389 void (*rq_online)(struct rq *rq); 2390 void (*rq_offline)(struct rq *rq); 2391 2392 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2393 2394 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2395 void (*task_fork)(struct task_struct *p); 2396 void (*task_dead)(struct task_struct *p); 2397 2398 /* 2399 * The switched_from() call is allowed to drop rq->lock, therefore we 2400 * cannot assume the switched_from/switched_to pair is serialized by 2401 * rq->lock. They are however serialized by p->pi_lock. 2402 */ 2403 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2404 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2405 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2406 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2407 const struct load_weight *lw); 2408 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2409 int oldprio); 2410 2411 unsigned int (*get_rr_interval)(struct rq *rq, 2412 struct task_struct *task); 2413 2414 void (*update_curr)(struct rq *rq); 2415 2416 #ifdef CONFIG_FAIR_GROUP_SCHED 2417 void (*task_change_group)(struct task_struct *p); 2418 #endif 2419 2420 #ifdef CONFIG_SCHED_CORE 2421 int (*task_is_throttled)(struct task_struct *p, int cpu); 2422 #endif 2423 }; 2424 2425 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2426 { 2427 WARN_ON_ONCE(rq->donor != prev); 2428 prev->sched_class->put_prev_task(rq, prev, NULL); 2429 } 2430 2431 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2432 { 2433 next->sched_class->set_next_task(rq, next, false); 2434 } 2435 2436 static inline void 2437 __put_prev_set_next_dl_server(struct rq *rq, 2438 struct task_struct *prev, 2439 struct task_struct *next) 2440 { 2441 prev->dl_server = NULL; 2442 next->dl_server = rq->dl_server; 2443 rq->dl_server = NULL; 2444 } 2445 2446 static inline void put_prev_set_next_task(struct rq *rq, 2447 struct task_struct *prev, 2448 struct task_struct *next) 2449 { 2450 WARN_ON_ONCE(rq->curr != prev); 2451 2452 __put_prev_set_next_dl_server(rq, prev, next); 2453 2454 if (next == prev) 2455 return; 2456 2457 prev->sched_class->put_prev_task(rq, prev, next); 2458 next->sched_class->set_next_task(rq, next, true); 2459 } 2460 2461 /* 2462 * Helper to define a sched_class instance; each one is placed in a separate 2463 * section which is ordered by the linker script: 2464 * 2465 * include/asm-generic/vmlinux.lds.h 2466 * 2467 * *CAREFUL* they are laid out in *REVERSE* order!!! 2468 * 2469 * Also enforce alignment on the instance, not the type, to guarantee layout. 2470 */ 2471 #define DEFINE_SCHED_CLASS(name) \ 2472 const struct sched_class name##_sched_class \ 2473 __aligned(__alignof__(struct sched_class)) \ 2474 __section("__" #name "_sched_class") 2475 2476 /* Defined in include/asm-generic/vmlinux.lds.h */ 2477 extern struct sched_class __sched_class_highest[]; 2478 extern struct sched_class __sched_class_lowest[]; 2479 2480 extern const struct sched_class stop_sched_class; 2481 extern const struct sched_class dl_sched_class; 2482 extern const struct sched_class rt_sched_class; 2483 extern const struct sched_class fair_sched_class; 2484 extern const struct sched_class idle_sched_class; 2485 2486 /* 2487 * Iterate only active classes. SCX can take over all fair tasks or be 2488 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2489 */ 2490 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2491 { 2492 class++; 2493 #ifdef CONFIG_SCHED_CLASS_EXT 2494 if (scx_switched_all() && class == &fair_sched_class) 2495 class++; 2496 if (!scx_enabled() && class == &ext_sched_class) 2497 class++; 2498 #endif 2499 return class; 2500 } 2501 2502 #define for_class_range(class, _from, _to) \ 2503 for (class = (_from); class < (_to); class++) 2504 2505 #define for_each_class(class) \ 2506 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2507 2508 #define for_active_class_range(class, _from, _to) \ 2509 for (class = (_from); class != (_to); class = next_active_class(class)) 2510 2511 #define for_each_active_class(class) \ 2512 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2513 2514 #define sched_class_above(_a, _b) ((_a) < (_b)) 2515 2516 static inline bool sched_stop_runnable(struct rq *rq) 2517 { 2518 return rq->stop && task_on_rq_queued(rq->stop); 2519 } 2520 2521 static inline bool sched_dl_runnable(struct rq *rq) 2522 { 2523 return rq->dl.dl_nr_running > 0; 2524 } 2525 2526 static inline bool sched_rt_runnable(struct rq *rq) 2527 { 2528 return rq->rt.rt_queued > 0; 2529 } 2530 2531 static inline bool sched_fair_runnable(struct rq *rq) 2532 { 2533 return rq->cfs.nr_queued > 0; 2534 } 2535 2536 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2537 extern struct task_struct *pick_task_idle(struct rq *rq); 2538 2539 #define SCA_CHECK 0x01 2540 #define SCA_MIGRATE_DISABLE 0x02 2541 #define SCA_MIGRATE_ENABLE 0x04 2542 #define SCA_USER 0x08 2543 2544 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2545 2546 extern void sched_balance_trigger(struct rq *rq); 2547 2548 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2549 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2550 2551 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2552 { 2553 /* When not in the task's cpumask, no point in looking further. */ 2554 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2555 return false; 2556 2557 /* Can @cpu run a user thread? */ 2558 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2559 return false; 2560 2561 return true; 2562 } 2563 2564 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2565 { 2566 /* 2567 * See do_set_cpus_allowed() above for the rcu_head usage. 2568 */ 2569 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2570 2571 return kmalloc_node(size, GFP_KERNEL, node); 2572 } 2573 2574 static inline struct task_struct *get_push_task(struct rq *rq) 2575 { 2576 struct task_struct *p = rq->donor; 2577 2578 lockdep_assert_rq_held(rq); 2579 2580 if (rq->push_busy) 2581 return NULL; 2582 2583 if (p->nr_cpus_allowed == 1) 2584 return NULL; 2585 2586 if (p->migration_disabled) 2587 return NULL; 2588 2589 rq->push_busy = true; 2590 return get_task_struct(p); 2591 } 2592 2593 extern int push_cpu_stop(void *arg); 2594 2595 #ifdef CONFIG_CPU_IDLE 2596 2597 static inline void idle_set_state(struct rq *rq, 2598 struct cpuidle_state *idle_state) 2599 { 2600 rq->idle_state = idle_state; 2601 } 2602 2603 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2604 { 2605 WARN_ON_ONCE(!rcu_read_lock_held()); 2606 2607 return rq->idle_state; 2608 } 2609 2610 #else /* !CONFIG_CPU_IDLE: */ 2611 2612 static inline void idle_set_state(struct rq *rq, 2613 struct cpuidle_state *idle_state) 2614 { 2615 } 2616 2617 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2618 { 2619 return NULL; 2620 } 2621 2622 #endif /* !CONFIG_CPU_IDLE */ 2623 2624 extern void schedule_idle(void); 2625 asmlinkage void schedule_user(void); 2626 2627 extern void sysrq_sched_debug_show(void); 2628 extern void sched_init_granularity(void); 2629 extern void update_max_interval(void); 2630 2631 extern void init_sched_dl_class(void); 2632 extern void init_sched_rt_class(void); 2633 extern void init_sched_fair_class(void); 2634 2635 extern void resched_curr(struct rq *rq); 2636 extern void resched_curr_lazy(struct rq *rq); 2637 extern void resched_cpu(int cpu); 2638 2639 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2640 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2641 2642 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2643 2644 #define BW_SHIFT 20 2645 #define BW_UNIT (1 << BW_SHIFT) 2646 #define RATIO_SHIFT 8 2647 #define MAX_BW_BITS (64 - BW_SHIFT) 2648 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2649 2650 extern unsigned long to_ratio(u64 period, u64 runtime); 2651 2652 extern void init_entity_runnable_average(struct sched_entity *se); 2653 extern void post_init_entity_util_avg(struct task_struct *p); 2654 2655 #ifdef CONFIG_NO_HZ_FULL 2656 extern bool sched_can_stop_tick(struct rq *rq); 2657 extern int __init sched_tick_offload_init(void); 2658 2659 /* 2660 * Tick may be needed by tasks in the runqueue depending on their policy and 2661 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2662 * nohz mode if necessary. 2663 */ 2664 static inline void sched_update_tick_dependency(struct rq *rq) 2665 { 2666 int cpu = cpu_of(rq); 2667 2668 if (!tick_nohz_full_cpu(cpu)) 2669 return; 2670 2671 if (sched_can_stop_tick(rq)) 2672 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2673 else 2674 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2675 } 2676 #else /* !CONFIG_NO_HZ_FULL: */ 2677 static inline int sched_tick_offload_init(void) { return 0; } 2678 static inline void sched_update_tick_dependency(struct rq *rq) { } 2679 #endif /* !CONFIG_NO_HZ_FULL */ 2680 2681 static inline void add_nr_running(struct rq *rq, unsigned count) 2682 { 2683 unsigned prev_nr = rq->nr_running; 2684 2685 rq->nr_running = prev_nr + count; 2686 if (trace_sched_update_nr_running_tp_enabled()) { 2687 call_trace_sched_update_nr_running(rq, count); 2688 } 2689 2690 if (prev_nr < 2 && rq->nr_running >= 2) 2691 set_rd_overloaded(rq->rd, 1); 2692 2693 sched_update_tick_dependency(rq); 2694 } 2695 2696 static inline void sub_nr_running(struct rq *rq, unsigned count) 2697 { 2698 rq->nr_running -= count; 2699 if (trace_sched_update_nr_running_tp_enabled()) { 2700 call_trace_sched_update_nr_running(rq, -count); 2701 } 2702 2703 /* Check if we still need preemption */ 2704 sched_update_tick_dependency(rq); 2705 } 2706 2707 static inline void __block_task(struct rq *rq, struct task_struct *p) 2708 { 2709 if (p->sched_contributes_to_load) 2710 rq->nr_uninterruptible++; 2711 2712 if (p->in_iowait) { 2713 atomic_inc(&rq->nr_iowait); 2714 delayacct_blkio_start(); 2715 } 2716 2717 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2718 2719 /* 2720 * The moment this write goes through, ttwu() can swoop in and migrate 2721 * this task, rendering our rq->__lock ineffective. 2722 * 2723 * __schedule() try_to_wake_up() 2724 * LOCK rq->__lock LOCK p->pi_lock 2725 * pick_next_task() 2726 * pick_next_task_fair() 2727 * pick_next_entity() 2728 * dequeue_entities() 2729 * __block_task() 2730 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2731 * break; 2732 * 2733 * ACQUIRE (after ctrl-dep) 2734 * 2735 * cpu = select_task_rq(); 2736 * set_task_cpu(p, cpu); 2737 * ttwu_queue() 2738 * ttwu_do_activate() 2739 * LOCK rq->__lock 2740 * activate_task() 2741 * STORE p->on_rq = 1 2742 * UNLOCK rq->__lock 2743 * 2744 * Callers must ensure to not reference @p after this -- we no longer 2745 * own it. 2746 */ 2747 smp_store_release(&p->on_rq, 0); 2748 } 2749 2750 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2751 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2752 2753 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2754 2755 #ifdef CONFIG_PREEMPT_RT 2756 # define SCHED_NR_MIGRATE_BREAK 8 2757 #else 2758 # define SCHED_NR_MIGRATE_BREAK 32 2759 #endif 2760 2761 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2762 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2763 2764 extern unsigned int sysctl_sched_base_slice; 2765 2766 extern int sysctl_resched_latency_warn_ms; 2767 extern int sysctl_resched_latency_warn_once; 2768 2769 extern unsigned int sysctl_sched_tunable_scaling; 2770 2771 extern unsigned int sysctl_numa_balancing_scan_delay; 2772 extern unsigned int sysctl_numa_balancing_scan_period_min; 2773 extern unsigned int sysctl_numa_balancing_scan_period_max; 2774 extern unsigned int sysctl_numa_balancing_scan_size; 2775 extern unsigned int sysctl_numa_balancing_hot_threshold; 2776 2777 #ifdef CONFIG_SCHED_HRTICK 2778 2779 /* 2780 * Use hrtick when: 2781 * - enabled by features 2782 * - hrtimer is actually high res 2783 */ 2784 static inline int hrtick_enabled(struct rq *rq) 2785 { 2786 if (!cpu_active(cpu_of(rq))) 2787 return 0; 2788 return hrtimer_is_hres_active(&rq->hrtick_timer); 2789 } 2790 2791 static inline int hrtick_enabled_fair(struct rq *rq) 2792 { 2793 if (!sched_feat(HRTICK)) 2794 return 0; 2795 return hrtick_enabled(rq); 2796 } 2797 2798 static inline int hrtick_enabled_dl(struct rq *rq) 2799 { 2800 if (!sched_feat(HRTICK_DL)) 2801 return 0; 2802 return hrtick_enabled(rq); 2803 } 2804 2805 extern void hrtick_start(struct rq *rq, u64 delay); 2806 2807 #else /* !CONFIG_SCHED_HRTICK: */ 2808 2809 static inline int hrtick_enabled_fair(struct rq *rq) 2810 { 2811 return 0; 2812 } 2813 2814 static inline int hrtick_enabled_dl(struct rq *rq) 2815 { 2816 return 0; 2817 } 2818 2819 static inline int hrtick_enabled(struct rq *rq) 2820 { 2821 return 0; 2822 } 2823 2824 #endif /* !CONFIG_SCHED_HRTICK */ 2825 2826 #ifndef arch_scale_freq_tick 2827 static __always_inline void arch_scale_freq_tick(void) { } 2828 #endif 2829 2830 #ifndef arch_scale_freq_capacity 2831 /** 2832 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2833 * @cpu: the CPU in question. 2834 * 2835 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2836 * 2837 * f_curr 2838 * ------ * SCHED_CAPACITY_SCALE 2839 * f_max 2840 */ 2841 static __always_inline 2842 unsigned long arch_scale_freq_capacity(int cpu) 2843 { 2844 return SCHED_CAPACITY_SCALE; 2845 } 2846 #endif 2847 2848 /* 2849 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2850 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2851 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2852 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2853 */ 2854 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2855 { 2856 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2857 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2858 } 2859 2860 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2861 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2862 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2863 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2864 _lock; return _t; } 2865 2866 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2867 { 2868 #ifdef CONFIG_SCHED_CORE 2869 /* 2870 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2871 * order by core-id first and cpu-id second. 2872 * 2873 * Notably: 2874 * 2875 * double_rq_lock(0,3); will take core-0, core-1 lock 2876 * double_rq_lock(1,2); will take core-1, core-0 lock 2877 * 2878 * when only cpu-id is considered. 2879 */ 2880 if (rq1->core->cpu < rq2->core->cpu) 2881 return true; 2882 if (rq1->core->cpu > rq2->core->cpu) 2883 return false; 2884 2885 /* 2886 * __sched_core_flip() relies on SMT having cpu-id lock order. 2887 */ 2888 #endif /* CONFIG_SCHED_CORE */ 2889 return rq1->cpu < rq2->cpu; 2890 } 2891 2892 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2893 2894 #ifdef CONFIG_PREEMPTION 2895 2896 /* 2897 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2898 * way at the expense of forcing extra atomic operations in all 2899 * invocations. This assures that the double_lock is acquired using the 2900 * same underlying policy as the spinlock_t on this architecture, which 2901 * reduces latency compared to the unfair variant below. However, it 2902 * also adds more overhead and therefore may reduce throughput. 2903 */ 2904 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2905 __releases(this_rq->lock) 2906 __acquires(busiest->lock) 2907 __acquires(this_rq->lock) 2908 { 2909 raw_spin_rq_unlock(this_rq); 2910 double_rq_lock(this_rq, busiest); 2911 2912 return 1; 2913 } 2914 2915 #else /* !CONFIG_PREEMPTION: */ 2916 /* 2917 * Unfair double_lock_balance: Optimizes throughput at the expense of 2918 * latency by eliminating extra atomic operations when the locks are 2919 * already in proper order on entry. This favors lower CPU-ids and will 2920 * grant the double lock to lower CPUs over higher ids under contention, 2921 * regardless of entry order into the function. 2922 */ 2923 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2924 __releases(this_rq->lock) 2925 __acquires(busiest->lock) 2926 __acquires(this_rq->lock) 2927 { 2928 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2929 likely(raw_spin_rq_trylock(busiest))) { 2930 double_rq_clock_clear_update(this_rq, busiest); 2931 return 0; 2932 } 2933 2934 if (rq_order_less(this_rq, busiest)) { 2935 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2936 double_rq_clock_clear_update(this_rq, busiest); 2937 return 0; 2938 } 2939 2940 raw_spin_rq_unlock(this_rq); 2941 double_rq_lock(this_rq, busiest); 2942 2943 return 1; 2944 } 2945 2946 #endif /* !CONFIG_PREEMPTION */ 2947 2948 /* 2949 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2950 */ 2951 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2952 { 2953 lockdep_assert_irqs_disabled(); 2954 2955 return _double_lock_balance(this_rq, busiest); 2956 } 2957 2958 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2959 __releases(busiest->lock) 2960 { 2961 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2962 raw_spin_rq_unlock(busiest); 2963 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2964 } 2965 2966 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2967 { 2968 if (l1 > l2) 2969 swap(l1, l2); 2970 2971 spin_lock(l1); 2972 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2973 } 2974 2975 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2976 { 2977 if (l1 > l2) 2978 swap(l1, l2); 2979 2980 spin_lock_irq(l1); 2981 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2982 } 2983 2984 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2985 { 2986 if (l1 > l2) 2987 swap(l1, l2); 2988 2989 raw_spin_lock(l1); 2990 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2991 } 2992 2993 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2994 { 2995 raw_spin_unlock(l1); 2996 raw_spin_unlock(l2); 2997 } 2998 2999 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3000 double_raw_lock(_T->lock, _T->lock2), 3001 double_raw_unlock(_T->lock, _T->lock2)) 3002 3003 /* 3004 * double_rq_unlock - safely unlock two runqueues 3005 * 3006 * Note this does not restore interrupts like task_rq_unlock, 3007 * you need to do so manually after calling. 3008 */ 3009 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3010 __releases(rq1->lock) 3011 __releases(rq2->lock) 3012 { 3013 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3014 raw_spin_rq_unlock(rq2); 3015 else 3016 __release(rq2->lock); 3017 raw_spin_rq_unlock(rq1); 3018 } 3019 3020 extern void set_rq_online (struct rq *rq); 3021 extern void set_rq_offline(struct rq *rq); 3022 3023 extern bool sched_smp_initialized; 3024 3025 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3026 double_rq_lock(_T->lock, _T->lock2), 3027 double_rq_unlock(_T->lock, _T->lock2)) 3028 3029 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3030 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3031 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3032 3033 extern bool sched_debug_verbose; 3034 3035 extern void print_cfs_stats(struct seq_file *m, int cpu); 3036 extern void print_rt_stats(struct seq_file *m, int cpu); 3037 extern void print_dl_stats(struct seq_file *m, int cpu); 3038 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3039 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3040 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3041 3042 extern void resched_latency_warn(int cpu, u64 latency); 3043 3044 #ifdef CONFIG_NUMA_BALANCING 3045 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3046 extern void 3047 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3048 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3049 #endif /* CONFIG_NUMA_BALANCING */ 3050 3051 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3052 extern void init_rt_rq(struct rt_rq *rt_rq); 3053 extern void init_dl_rq(struct dl_rq *dl_rq); 3054 3055 extern void cfs_bandwidth_usage_inc(void); 3056 extern void cfs_bandwidth_usage_dec(void); 3057 3058 #ifdef CONFIG_NO_HZ_COMMON 3059 3060 #define NOHZ_BALANCE_KICK_BIT 0 3061 #define NOHZ_STATS_KICK_BIT 1 3062 #define NOHZ_NEWILB_KICK_BIT 2 3063 #define NOHZ_NEXT_KICK_BIT 3 3064 3065 /* Run sched_balance_domains() */ 3066 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3067 /* Update blocked load */ 3068 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3069 /* Update blocked load when entering idle */ 3070 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3071 /* Update nohz.next_balance */ 3072 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3073 3074 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3075 3076 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3077 3078 extern void nohz_balance_exit_idle(struct rq *rq); 3079 #else /* !CONFIG_NO_HZ_COMMON: */ 3080 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3081 #endif /* !CONFIG_NO_HZ_COMMON */ 3082 3083 #ifdef CONFIG_NO_HZ_COMMON 3084 extern void nohz_run_idle_balance(int cpu); 3085 #else 3086 static inline void nohz_run_idle_balance(int cpu) { } 3087 #endif 3088 3089 #include "stats.h" 3090 3091 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3092 3093 extern void __sched_core_account_forceidle(struct rq *rq); 3094 3095 static inline void sched_core_account_forceidle(struct rq *rq) 3096 { 3097 if (schedstat_enabled()) 3098 __sched_core_account_forceidle(rq); 3099 } 3100 3101 extern void __sched_core_tick(struct rq *rq); 3102 3103 static inline void sched_core_tick(struct rq *rq) 3104 { 3105 if (sched_core_enabled(rq) && schedstat_enabled()) 3106 __sched_core_tick(rq); 3107 } 3108 3109 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3110 3111 static inline void sched_core_account_forceidle(struct rq *rq) { } 3112 3113 static inline void sched_core_tick(struct rq *rq) { } 3114 3115 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3116 3117 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3118 3119 struct irqtime { 3120 u64 total; 3121 u64 tick_delta; 3122 u64 irq_start_time; 3123 struct u64_stats_sync sync; 3124 }; 3125 3126 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3127 extern int sched_clock_irqtime; 3128 3129 static inline int irqtime_enabled(void) 3130 { 3131 return sched_clock_irqtime; 3132 } 3133 3134 /* 3135 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3136 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3137 * and never move forward. 3138 */ 3139 static inline u64 irq_time_read(int cpu) 3140 { 3141 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3142 unsigned int seq; 3143 u64 total; 3144 3145 do { 3146 seq = __u64_stats_fetch_begin(&irqtime->sync); 3147 total = irqtime->total; 3148 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3149 3150 return total; 3151 } 3152 3153 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3154 3155 static inline int irqtime_enabled(void) 3156 { 3157 return 0; 3158 } 3159 3160 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3161 3162 #ifdef CONFIG_CPU_FREQ 3163 3164 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3165 3166 /** 3167 * cpufreq_update_util - Take a note about CPU utilization changes. 3168 * @rq: Runqueue to carry out the update for. 3169 * @flags: Update reason flags. 3170 * 3171 * This function is called by the scheduler on the CPU whose utilization is 3172 * being updated. 3173 * 3174 * It can only be called from RCU-sched read-side critical sections. 3175 * 3176 * The way cpufreq is currently arranged requires it to evaluate the CPU 3177 * performance state (frequency/voltage) on a regular basis to prevent it from 3178 * being stuck in a completely inadequate performance level for too long. 3179 * That is not guaranteed to happen if the updates are only triggered from CFS 3180 * and DL, though, because they may not be coming in if only RT tasks are 3181 * active all the time (or there are RT tasks only). 3182 * 3183 * As a workaround for that issue, this function is called periodically by the 3184 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3185 * but that really is a band-aid. Going forward it should be replaced with 3186 * solutions targeted more specifically at RT tasks. 3187 */ 3188 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3189 { 3190 struct update_util_data *data; 3191 3192 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3193 cpu_of(rq))); 3194 if (data) 3195 data->func(data, rq_clock(rq), flags); 3196 } 3197 #else /* !CONFIG_CPU_FREQ: */ 3198 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3199 #endif /* !CONFIG_CPU_FREQ */ 3200 3201 #ifdef arch_scale_freq_capacity 3202 # ifndef arch_scale_freq_invariant 3203 # define arch_scale_freq_invariant() true 3204 # endif 3205 #else 3206 # define arch_scale_freq_invariant() false 3207 #endif 3208 3209 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3210 unsigned long *min, 3211 unsigned long *max); 3212 3213 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3214 unsigned long min, 3215 unsigned long max); 3216 3217 3218 /* 3219 * Verify the fitness of task @p to run on @cpu taking into account the 3220 * CPU original capacity and the runtime/deadline ratio of the task. 3221 * 3222 * The function will return true if the original capacity of @cpu is 3223 * greater than or equal to task's deadline density right shifted by 3224 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3225 */ 3226 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3227 { 3228 unsigned long cap = arch_scale_cpu_capacity(cpu); 3229 3230 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3231 } 3232 3233 static inline unsigned long cpu_bw_dl(struct rq *rq) 3234 { 3235 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3236 } 3237 3238 static inline unsigned long cpu_util_dl(struct rq *rq) 3239 { 3240 return READ_ONCE(rq->avg_dl.util_avg); 3241 } 3242 3243 3244 extern unsigned long cpu_util_cfs(int cpu); 3245 extern unsigned long cpu_util_cfs_boost(int cpu); 3246 3247 static inline unsigned long cpu_util_rt(struct rq *rq) 3248 { 3249 return READ_ONCE(rq->avg_rt.util_avg); 3250 } 3251 3252 #ifdef CONFIG_UCLAMP_TASK 3253 3254 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3255 3256 /* 3257 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3258 * by default in the fast path and only gets turned on once userspace performs 3259 * an operation that requires it. 3260 * 3261 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3262 * hence is active. 3263 */ 3264 static inline bool uclamp_is_used(void) 3265 { 3266 return static_branch_likely(&sched_uclamp_used); 3267 } 3268 3269 /* 3270 * Enabling static branches would get the cpus_read_lock(), 3271 * check whether uclamp_is_used before enable it to avoid always 3272 * calling cpus_read_lock(). Because we never disable this 3273 * static key once enable it. 3274 */ 3275 static inline void sched_uclamp_enable(void) 3276 { 3277 if (!uclamp_is_used()) 3278 static_branch_enable(&sched_uclamp_used); 3279 } 3280 3281 static inline unsigned long uclamp_rq_get(struct rq *rq, 3282 enum uclamp_id clamp_id) 3283 { 3284 return READ_ONCE(rq->uclamp[clamp_id].value); 3285 } 3286 3287 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3288 unsigned int value) 3289 { 3290 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3291 } 3292 3293 static inline bool uclamp_rq_is_idle(struct rq *rq) 3294 { 3295 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3296 } 3297 3298 /* Is the rq being capped/throttled by uclamp_max? */ 3299 static inline bool uclamp_rq_is_capped(struct rq *rq) 3300 { 3301 unsigned long rq_util; 3302 unsigned long max_util; 3303 3304 if (!uclamp_is_used()) 3305 return false; 3306 3307 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3308 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3309 3310 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3311 } 3312 3313 #define for_each_clamp_id(clamp_id) \ 3314 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3315 3316 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3317 3318 3319 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3320 { 3321 if (clamp_id == UCLAMP_MIN) 3322 return 0; 3323 return SCHED_CAPACITY_SCALE; 3324 } 3325 3326 /* Integer rounded range for each bucket */ 3327 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3328 3329 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3330 { 3331 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3332 } 3333 3334 static inline void 3335 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3336 { 3337 uc_se->value = value; 3338 uc_se->bucket_id = uclamp_bucket_id(value); 3339 uc_se->user_defined = user_defined; 3340 } 3341 3342 #else /* !CONFIG_UCLAMP_TASK: */ 3343 3344 static inline unsigned long 3345 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3346 { 3347 if (clamp_id == UCLAMP_MIN) 3348 return 0; 3349 3350 return SCHED_CAPACITY_SCALE; 3351 } 3352 3353 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3354 3355 static inline bool uclamp_is_used(void) 3356 { 3357 return false; 3358 } 3359 3360 static inline void sched_uclamp_enable(void) {} 3361 3362 static inline unsigned long 3363 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3364 { 3365 if (clamp_id == UCLAMP_MIN) 3366 return 0; 3367 3368 return SCHED_CAPACITY_SCALE; 3369 } 3370 3371 static inline void 3372 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3373 { 3374 } 3375 3376 static inline bool uclamp_rq_is_idle(struct rq *rq) 3377 { 3378 return false; 3379 } 3380 3381 #endif /* !CONFIG_UCLAMP_TASK */ 3382 3383 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3384 3385 static inline unsigned long cpu_util_irq(struct rq *rq) 3386 { 3387 return READ_ONCE(rq->avg_irq.util_avg); 3388 } 3389 3390 static inline 3391 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3392 { 3393 util *= (max - irq); 3394 util /= max; 3395 3396 return util; 3397 3398 } 3399 3400 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3401 3402 static inline unsigned long cpu_util_irq(struct rq *rq) 3403 { 3404 return 0; 3405 } 3406 3407 static inline 3408 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3409 { 3410 return util; 3411 } 3412 3413 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3414 3415 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3416 3417 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3418 3419 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3420 3421 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3422 3423 static inline bool sched_energy_enabled(void) 3424 { 3425 return static_branch_unlikely(&sched_energy_present); 3426 } 3427 3428 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3429 3430 #define perf_domain_span(pd) NULL 3431 3432 static inline bool sched_energy_enabled(void) { return false; } 3433 3434 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3435 3436 #ifdef CONFIG_MEMBARRIER 3437 3438 /* 3439 * The scheduler provides memory barriers required by membarrier between: 3440 * - prior user-space memory accesses and store to rq->membarrier_state, 3441 * - store to rq->membarrier_state and following user-space memory accesses. 3442 * In the same way it provides those guarantees around store to rq->curr. 3443 */ 3444 static inline void membarrier_switch_mm(struct rq *rq, 3445 struct mm_struct *prev_mm, 3446 struct mm_struct *next_mm) 3447 { 3448 int membarrier_state; 3449 3450 if (prev_mm == next_mm) 3451 return; 3452 3453 membarrier_state = atomic_read(&next_mm->membarrier_state); 3454 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3455 return; 3456 3457 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3458 } 3459 3460 #else /* !CONFIG_MEMBARRIER: */ 3461 3462 static inline void membarrier_switch_mm(struct rq *rq, 3463 struct mm_struct *prev_mm, 3464 struct mm_struct *next_mm) 3465 { 3466 } 3467 3468 #endif /* !CONFIG_MEMBARRIER */ 3469 3470 static inline bool is_per_cpu_kthread(struct task_struct *p) 3471 { 3472 if (!(p->flags & PF_KTHREAD)) 3473 return false; 3474 3475 if (p->nr_cpus_allowed != 1) 3476 return false; 3477 3478 return true; 3479 } 3480 3481 extern void swake_up_all_locked(struct swait_queue_head *q); 3482 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3483 3484 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3485 3486 #ifdef CONFIG_PREEMPT_DYNAMIC 3487 extern int preempt_dynamic_mode; 3488 extern int sched_dynamic_mode(const char *str); 3489 extern void sched_dynamic_update(int mode); 3490 #endif 3491 extern const char *preempt_modes[]; 3492 3493 #ifdef CONFIG_SCHED_MM_CID 3494 3495 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3496 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3497 3498 extern raw_spinlock_t cid_lock; 3499 extern int use_cid_lock; 3500 3501 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3502 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3503 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3504 extern void init_sched_mm_cid(struct task_struct *t); 3505 3506 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3507 { 3508 if (cid < 0) 3509 return; 3510 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3511 } 3512 3513 /* 3514 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3515 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3516 * be held to transition to other states. 3517 * 3518 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3519 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3520 */ 3521 static inline void mm_cid_put_lazy(struct task_struct *t) 3522 { 3523 struct mm_struct *mm = t->mm; 3524 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3525 int cid; 3526 3527 lockdep_assert_irqs_disabled(); 3528 cid = __this_cpu_read(pcpu_cid->cid); 3529 if (!mm_cid_is_lazy_put(cid) || 3530 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3531 return; 3532 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3533 } 3534 3535 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3536 { 3537 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3538 int cid, res; 3539 3540 lockdep_assert_irqs_disabled(); 3541 cid = __this_cpu_read(pcpu_cid->cid); 3542 for (;;) { 3543 if (mm_cid_is_unset(cid)) 3544 return MM_CID_UNSET; 3545 /* 3546 * Attempt transition from valid or lazy-put to unset. 3547 */ 3548 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3549 if (res == cid) 3550 break; 3551 cid = res; 3552 } 3553 return cid; 3554 } 3555 3556 static inline void mm_cid_put(struct mm_struct *mm) 3557 { 3558 int cid; 3559 3560 lockdep_assert_irqs_disabled(); 3561 cid = mm_cid_pcpu_unset(mm); 3562 if (cid == MM_CID_UNSET) 3563 return; 3564 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3565 } 3566 3567 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3568 { 3569 struct cpumask *cidmask = mm_cidmask(mm); 3570 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3571 int cid, max_nr_cid, allowed_max_nr_cid; 3572 3573 /* 3574 * After shrinking the number of threads or reducing the number 3575 * of allowed cpus, reduce the value of max_nr_cid so expansion 3576 * of cid allocation will preserve cache locality if the number 3577 * of threads or allowed cpus increase again. 3578 */ 3579 max_nr_cid = atomic_read(&mm->max_nr_cid); 3580 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3581 atomic_read(&mm->mm_users))), 3582 max_nr_cid > allowed_max_nr_cid) { 3583 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3584 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3585 max_nr_cid = allowed_max_nr_cid; 3586 break; 3587 } 3588 } 3589 /* Try to re-use recent cid. This improves cache locality. */ 3590 cid = __this_cpu_read(pcpu_cid->recent_cid); 3591 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3592 !cpumask_test_and_set_cpu(cid, cidmask)) 3593 return cid; 3594 /* 3595 * Expand cid allocation if the maximum number of concurrency 3596 * IDs allocated (max_nr_cid) is below the number cpus allowed 3597 * and number of threads. Expanding cid allocation as much as 3598 * possible improves cache locality. 3599 */ 3600 cid = max_nr_cid; 3601 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3602 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3603 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3604 continue; 3605 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3606 return cid; 3607 } 3608 /* 3609 * Find the first available concurrency id. 3610 * Retry finding first zero bit if the mask is temporarily 3611 * filled. This only happens during concurrent remote-clear 3612 * which owns a cid without holding a rq lock. 3613 */ 3614 for (;;) { 3615 cid = cpumask_first_zero(cidmask); 3616 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3617 break; 3618 cpu_relax(); 3619 } 3620 if (cpumask_test_and_set_cpu(cid, cidmask)) 3621 return -1; 3622 3623 return cid; 3624 } 3625 3626 /* 3627 * Save a snapshot of the current runqueue time of this cpu 3628 * with the per-cpu cid value, allowing to estimate how recently it was used. 3629 */ 3630 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3631 { 3632 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3633 3634 lockdep_assert_rq_held(rq); 3635 WRITE_ONCE(pcpu_cid->time, rq->clock); 3636 } 3637 3638 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3639 struct mm_struct *mm) 3640 { 3641 int cid; 3642 3643 /* 3644 * All allocations (even those using the cid_lock) are lock-free. If 3645 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3646 * guarantee forward progress. 3647 */ 3648 if (!READ_ONCE(use_cid_lock)) { 3649 cid = __mm_cid_try_get(t, mm); 3650 if (cid >= 0) 3651 goto end; 3652 raw_spin_lock(&cid_lock); 3653 } else { 3654 raw_spin_lock(&cid_lock); 3655 cid = __mm_cid_try_get(t, mm); 3656 if (cid >= 0) 3657 goto unlock; 3658 } 3659 3660 /* 3661 * cid concurrently allocated. Retry while forcing following 3662 * allocations to use the cid_lock to ensure forward progress. 3663 */ 3664 WRITE_ONCE(use_cid_lock, 1); 3665 /* 3666 * Set use_cid_lock before allocation. Only care about program order 3667 * because this is only required for forward progress. 3668 */ 3669 barrier(); 3670 /* 3671 * Retry until it succeeds. It is guaranteed to eventually succeed once 3672 * all newcoming allocations observe the use_cid_lock flag set. 3673 */ 3674 do { 3675 cid = __mm_cid_try_get(t, mm); 3676 cpu_relax(); 3677 } while (cid < 0); 3678 /* 3679 * Allocate before clearing use_cid_lock. Only care about 3680 * program order because this is for forward progress. 3681 */ 3682 barrier(); 3683 WRITE_ONCE(use_cid_lock, 0); 3684 unlock: 3685 raw_spin_unlock(&cid_lock); 3686 end: 3687 mm_cid_snapshot_time(rq, mm); 3688 3689 return cid; 3690 } 3691 3692 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3693 struct mm_struct *mm) 3694 { 3695 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3696 struct cpumask *cpumask; 3697 int cid; 3698 3699 lockdep_assert_rq_held(rq); 3700 cpumask = mm_cidmask(mm); 3701 cid = __this_cpu_read(pcpu_cid->cid); 3702 if (mm_cid_is_valid(cid)) { 3703 mm_cid_snapshot_time(rq, mm); 3704 return cid; 3705 } 3706 if (mm_cid_is_lazy_put(cid)) { 3707 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3708 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3709 } 3710 cid = __mm_cid_get(rq, t, mm); 3711 __this_cpu_write(pcpu_cid->cid, cid); 3712 __this_cpu_write(pcpu_cid->recent_cid, cid); 3713 3714 return cid; 3715 } 3716 3717 static inline void switch_mm_cid(struct rq *rq, 3718 struct task_struct *prev, 3719 struct task_struct *next) 3720 { 3721 /* 3722 * Provide a memory barrier between rq->curr store and load of 3723 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3724 * 3725 * Should be adapted if context_switch() is modified. 3726 */ 3727 if (!next->mm) { // to kernel 3728 /* 3729 * user -> kernel transition does not guarantee a barrier, but 3730 * we can use the fact that it performs an atomic operation in 3731 * mmgrab(). 3732 */ 3733 if (prev->mm) // from user 3734 smp_mb__after_mmgrab(); 3735 /* 3736 * kernel -> kernel transition does not change rq->curr->mm 3737 * state. It stays NULL. 3738 */ 3739 } else { // to user 3740 /* 3741 * kernel -> user transition does not provide a barrier 3742 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3743 * Provide it here. 3744 */ 3745 if (!prev->mm) { // from kernel 3746 smp_mb(); 3747 } else { // from user 3748 /* 3749 * user->user transition relies on an implicit 3750 * memory barrier in switch_mm() when 3751 * current->mm changes. If the architecture 3752 * switch_mm() does not have an implicit memory 3753 * barrier, it is emitted here. If current->mm 3754 * is unchanged, no barrier is needed. 3755 */ 3756 smp_mb__after_switch_mm(); 3757 } 3758 } 3759 if (prev->mm_cid_active) { 3760 mm_cid_snapshot_time(rq, prev->mm); 3761 mm_cid_put_lazy(prev); 3762 prev->mm_cid = -1; 3763 } 3764 if (next->mm_cid_active) 3765 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3766 } 3767 3768 #else /* !CONFIG_SCHED_MM_CID: */ 3769 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3770 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3771 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3772 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3773 static inline void init_sched_mm_cid(struct task_struct *t) { } 3774 #endif /* !CONFIG_SCHED_MM_CID */ 3775 3776 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3777 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3778 static inline 3779 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3780 { 3781 lockdep_assert_rq_held(src_rq); 3782 lockdep_assert_rq_held(dst_rq); 3783 3784 deactivate_task(src_rq, task, 0); 3785 set_task_cpu(task, dst_rq->cpu); 3786 activate_task(dst_rq, task, 0); 3787 } 3788 3789 static inline 3790 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3791 { 3792 if (!task_on_cpu(rq, p) && 3793 cpumask_test_cpu(cpu, &p->cpus_mask)) 3794 return true; 3795 3796 return false; 3797 } 3798 3799 #ifdef CONFIG_RT_MUTEXES 3800 3801 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3802 { 3803 if (pi_task) 3804 prio = min(prio, pi_task->prio); 3805 3806 return prio; 3807 } 3808 3809 static inline int rt_effective_prio(struct task_struct *p, int prio) 3810 { 3811 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3812 3813 return __rt_effective_prio(pi_task, prio); 3814 } 3815 3816 #else /* !CONFIG_RT_MUTEXES: */ 3817 3818 static inline int rt_effective_prio(struct task_struct *p, int prio) 3819 { 3820 return prio; 3821 } 3822 3823 #endif /* !CONFIG_RT_MUTEXES */ 3824 3825 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3826 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3827 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3828 extern void set_load_weight(struct task_struct *p, bool update_load); 3829 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3830 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3831 3832 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3833 const struct sched_class *prev_class); 3834 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3835 const struct sched_class *prev_class, 3836 int oldprio); 3837 3838 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3839 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3840 3841 #ifdef CONFIG_SCHED_CLASS_EXT 3842 /* 3843 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3844 * and establish invariants. 3845 */ 3846 struct sched_enq_and_set_ctx { 3847 struct task_struct *p; 3848 int queue_flags; 3849 bool queued; 3850 bool running; 3851 }; 3852 3853 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3854 struct sched_enq_and_set_ctx *ctx); 3855 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3856 3857 #endif /* CONFIG_SCHED_CLASS_EXT */ 3858 3859 #include "ext.h" 3860 3861 #endif /* _KERNEL_SCHED_SCHED_H */ 3862