xref: /linux/kernel/sched/sched.h (revision 8e07e0e3964ca4e23ce7b68e2096fe660a888942)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 #ifdef CONFIG_PARAVIRT
78 # include <asm/paravirt.h>
79 # include <asm/paravirt_api_clock.h>
80 #endif
81 
82 #include "cpupri.h"
83 #include "cpudeadline.h"
84 
85 #ifdef CONFIG_SCHED_DEBUG
86 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
87 #else
88 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
89 #endif
90 
91 struct rq;
92 struct cpuidle_state;
93 
94 /* task_struct::on_rq states: */
95 #define TASK_ON_RQ_QUEUED	1
96 #define TASK_ON_RQ_MIGRATING	2
97 
98 extern __read_mostly int scheduler_running;
99 
100 extern unsigned long calc_load_update;
101 extern atomic_long_t calc_load_tasks;
102 
103 extern void calc_global_load_tick(struct rq *this_rq);
104 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
105 
106 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
107 
108 extern int sysctl_sched_rt_period;
109 extern int sysctl_sched_rt_runtime;
110 extern int sched_rr_timeslice;
111 
112 /*
113  * Helpers for converting nanosecond timing to jiffy resolution
114  */
115 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
116 
117 /*
118  * Increase resolution of nice-level calculations for 64-bit architectures.
119  * The extra resolution improves shares distribution and load balancing of
120  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
121  * hierarchies, especially on larger systems. This is not a user-visible change
122  * and does not change the user-interface for setting shares/weights.
123  *
124  * We increase resolution only if we have enough bits to allow this increased
125  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
126  * are pretty high and the returns do not justify the increased costs.
127  *
128  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
129  * increase coverage and consistency always enable it on 64-bit platforms.
130  */
131 #ifdef CONFIG_64BIT
132 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
133 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load_down(w) \
135 ({ \
136 	unsigned long __w = (w); \
137 	if (__w) \
138 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
139 	__w; \
140 })
141 #else
142 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
143 # define scale_load(w)		(w)
144 # define scale_load_down(w)	(w)
145 #endif
146 
147 /*
148  * Task weight (visible to users) and its load (invisible to users) have
149  * independent resolution, but they should be well calibrated. We use
150  * scale_load() and scale_load_down(w) to convert between them. The
151  * following must be true:
152  *
153  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
154  *
155  */
156 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
157 
158 /*
159  * Single value that decides SCHED_DEADLINE internal math precision.
160  * 10 -> just above 1us
161  * 9  -> just above 0.5us
162  */
163 #define DL_SCALE		10
164 
165 /*
166  * Single value that denotes runtime == period, ie unlimited time.
167  */
168 #define RUNTIME_INF		((u64)~0ULL)
169 
170 static inline int idle_policy(int policy)
171 {
172 	return policy == SCHED_IDLE;
173 }
174 static inline int fair_policy(int policy)
175 {
176 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
177 }
178 
179 static inline int rt_policy(int policy)
180 {
181 	return policy == SCHED_FIFO || policy == SCHED_RR;
182 }
183 
184 static inline int dl_policy(int policy)
185 {
186 	return policy == SCHED_DEADLINE;
187 }
188 static inline bool valid_policy(int policy)
189 {
190 	return idle_policy(policy) || fair_policy(policy) ||
191 		rt_policy(policy) || dl_policy(policy);
192 }
193 
194 static inline int task_has_idle_policy(struct task_struct *p)
195 {
196 	return idle_policy(p->policy);
197 }
198 
199 static inline int task_has_rt_policy(struct task_struct *p)
200 {
201 	return rt_policy(p->policy);
202 }
203 
204 static inline int task_has_dl_policy(struct task_struct *p)
205 {
206 	return dl_policy(p->policy);
207 }
208 
209 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
210 
211 static inline void update_avg(u64 *avg, u64 sample)
212 {
213 	s64 diff = sample - *avg;
214 	*avg += diff / 8;
215 }
216 
217 /*
218  * Shifting a value by an exponent greater *or equal* to the size of said value
219  * is UB; cap at size-1.
220  */
221 #define shr_bound(val, shift)							\
222 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
223 
224 /*
225  * !! For sched_setattr_nocheck() (kernel) only !!
226  *
227  * This is actually gross. :(
228  *
229  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
230  * tasks, but still be able to sleep. We need this on platforms that cannot
231  * atomically change clock frequency. Remove once fast switching will be
232  * available on such platforms.
233  *
234  * SUGOV stands for SchedUtil GOVernor.
235  */
236 #define SCHED_FLAG_SUGOV	0x10000000
237 
238 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
239 
240 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
241 {
242 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
243 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
244 #else
245 	return false;
246 #endif
247 }
248 
249 /*
250  * Tells if entity @a should preempt entity @b.
251  */
252 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
253 				     const struct sched_dl_entity *b)
254 {
255 	return dl_entity_is_special(a) ||
256 	       dl_time_before(a->deadline, b->deadline);
257 }
258 
259 /*
260  * This is the priority-queue data structure of the RT scheduling class:
261  */
262 struct rt_prio_array {
263 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
264 	struct list_head queue[MAX_RT_PRIO];
265 };
266 
267 struct rt_bandwidth {
268 	/* nests inside the rq lock: */
269 	raw_spinlock_t		rt_runtime_lock;
270 	ktime_t			rt_period;
271 	u64			rt_runtime;
272 	struct hrtimer		rt_period_timer;
273 	unsigned int		rt_period_active;
274 };
275 
276 void __dl_clear_params(struct task_struct *p);
277 
278 static inline int dl_bandwidth_enabled(void)
279 {
280 	return sysctl_sched_rt_runtime >= 0;
281 }
282 
283 /*
284  * To keep the bandwidth of -deadline tasks under control
285  * we need some place where:
286  *  - store the maximum -deadline bandwidth of each cpu;
287  *  - cache the fraction of bandwidth that is currently allocated in
288  *    each root domain;
289  *
290  * This is all done in the data structure below. It is similar to the
291  * one used for RT-throttling (rt_bandwidth), with the main difference
292  * that, since here we are only interested in admission control, we
293  * do not decrease any runtime while the group "executes", neither we
294  * need a timer to replenish it.
295  *
296  * With respect to SMP, bandwidth is given on a per root domain basis,
297  * meaning that:
298  *  - bw (< 100%) is the deadline bandwidth of each CPU;
299  *  - total_bw is the currently allocated bandwidth in each root domain;
300  */
301 struct dl_bw {
302 	raw_spinlock_t		lock;
303 	u64			bw;
304 	u64			total_bw;
305 };
306 
307 extern void init_dl_bw(struct dl_bw *dl_b);
308 extern int  sched_dl_global_validate(void);
309 extern void sched_dl_do_global(void);
310 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
311 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
312 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
313 extern bool __checkparam_dl(const struct sched_attr *attr);
314 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
315 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
316 extern int  dl_bw_check_overflow(int cpu);
317 
318 #ifdef CONFIG_CGROUP_SCHED
319 
320 struct cfs_rq;
321 struct rt_rq;
322 
323 extern struct list_head task_groups;
324 
325 struct cfs_bandwidth {
326 #ifdef CONFIG_CFS_BANDWIDTH
327 	raw_spinlock_t		lock;
328 	ktime_t			period;
329 	u64			quota;
330 	u64			runtime;
331 	u64			burst;
332 	u64			runtime_snap;
333 	s64			hierarchical_quota;
334 
335 	u8			idle;
336 	u8			period_active;
337 	u8			slack_started;
338 	struct hrtimer		period_timer;
339 	struct hrtimer		slack_timer;
340 	struct list_head	throttled_cfs_rq;
341 
342 	/* Statistics: */
343 	int			nr_periods;
344 	int			nr_throttled;
345 	int			nr_burst;
346 	u64			throttled_time;
347 	u64			burst_time;
348 #endif
349 };
350 
351 /* Task group related information */
352 struct task_group {
353 	struct cgroup_subsys_state css;
354 
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 	/* schedulable entities of this group on each CPU */
357 	struct sched_entity	**se;
358 	/* runqueue "owned" by this group on each CPU */
359 	struct cfs_rq		**cfs_rq;
360 	unsigned long		shares;
361 
362 	/* A positive value indicates that this is a SCHED_IDLE group. */
363 	int			idle;
364 
365 #ifdef	CONFIG_SMP
366 	/*
367 	 * load_avg can be heavily contended at clock tick time, so put
368 	 * it in its own cacheline separated from the fields above which
369 	 * will also be accessed at each tick.
370 	 */
371 	atomic_long_t		load_avg ____cacheline_aligned;
372 #endif
373 #endif
374 
375 #ifdef CONFIG_RT_GROUP_SCHED
376 	struct sched_rt_entity	**rt_se;
377 	struct rt_rq		**rt_rq;
378 
379 	struct rt_bandwidth	rt_bandwidth;
380 #endif
381 
382 	struct rcu_head		rcu;
383 	struct list_head	list;
384 
385 	struct task_group	*parent;
386 	struct list_head	siblings;
387 	struct list_head	children;
388 
389 #ifdef CONFIG_SCHED_AUTOGROUP
390 	struct autogroup	*autogroup;
391 #endif
392 
393 	struct cfs_bandwidth	cfs_bandwidth;
394 
395 #ifdef CONFIG_UCLAMP_TASK_GROUP
396 	/* The two decimal precision [%] value requested from user-space */
397 	unsigned int		uclamp_pct[UCLAMP_CNT];
398 	/* Clamp values requested for a task group */
399 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
400 	/* Effective clamp values used for a task group */
401 	struct uclamp_se	uclamp[UCLAMP_CNT];
402 #endif
403 
404 };
405 
406 #ifdef CONFIG_FAIR_GROUP_SCHED
407 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
408 
409 /*
410  * A weight of 0 or 1 can cause arithmetics problems.
411  * A weight of a cfs_rq is the sum of weights of which entities
412  * are queued on this cfs_rq, so a weight of a entity should not be
413  * too large, so as the shares value of a task group.
414  * (The default weight is 1024 - so there's no practical
415  *  limitation from this.)
416  */
417 #define MIN_SHARES		(1UL <<  1)
418 #define MAX_SHARES		(1UL << 18)
419 #endif
420 
421 typedef int (*tg_visitor)(struct task_group *, void *);
422 
423 extern int walk_tg_tree_from(struct task_group *from,
424 			     tg_visitor down, tg_visitor up, void *data);
425 
426 /*
427  * Iterate the full tree, calling @down when first entering a node and @up when
428  * leaving it for the final time.
429  *
430  * Caller must hold rcu_lock or sufficient equivalent.
431  */
432 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
433 {
434 	return walk_tg_tree_from(&root_task_group, down, up, data);
435 }
436 
437 extern int tg_nop(struct task_group *tg, void *data);
438 
439 extern void free_fair_sched_group(struct task_group *tg);
440 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
441 extern void online_fair_sched_group(struct task_group *tg);
442 extern void unregister_fair_sched_group(struct task_group *tg);
443 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
444 			struct sched_entity *se, int cpu,
445 			struct sched_entity *parent);
446 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
447 
448 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
449 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
450 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
451 extern bool cfs_task_bw_constrained(struct task_struct *p);
452 
453 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
454 		struct sched_rt_entity *rt_se, int cpu,
455 		struct sched_rt_entity *parent);
456 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
457 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
458 extern long sched_group_rt_runtime(struct task_group *tg);
459 extern long sched_group_rt_period(struct task_group *tg);
460 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
461 
462 extern struct task_group *sched_create_group(struct task_group *parent);
463 extern void sched_online_group(struct task_group *tg,
464 			       struct task_group *parent);
465 extern void sched_destroy_group(struct task_group *tg);
466 extern void sched_release_group(struct task_group *tg);
467 
468 extern void sched_move_task(struct task_struct *tsk);
469 
470 #ifdef CONFIG_FAIR_GROUP_SCHED
471 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
472 
473 extern int sched_group_set_idle(struct task_group *tg, long idle);
474 
475 #ifdef CONFIG_SMP
476 extern void set_task_rq_fair(struct sched_entity *se,
477 			     struct cfs_rq *prev, struct cfs_rq *next);
478 #else /* !CONFIG_SMP */
479 static inline void set_task_rq_fair(struct sched_entity *se,
480 			     struct cfs_rq *prev, struct cfs_rq *next) { }
481 #endif /* CONFIG_SMP */
482 #endif /* CONFIG_FAIR_GROUP_SCHED */
483 
484 #else /* CONFIG_CGROUP_SCHED */
485 
486 struct cfs_bandwidth { };
487 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
488 
489 #endif	/* CONFIG_CGROUP_SCHED */
490 
491 extern void unregister_rt_sched_group(struct task_group *tg);
492 extern void free_rt_sched_group(struct task_group *tg);
493 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
494 
495 /*
496  * u64_u32_load/u64_u32_store
497  *
498  * Use a copy of a u64 value to protect against data race. This is only
499  * applicable for 32-bits architectures.
500  */
501 #ifdef CONFIG_64BIT
502 # define u64_u32_load_copy(var, copy)       var
503 # define u64_u32_store_copy(var, copy, val) (var = val)
504 #else
505 # define u64_u32_load_copy(var, copy)					\
506 ({									\
507 	u64 __val, __val_copy;						\
508 	do {								\
509 		__val_copy = copy;					\
510 		/*							\
511 		 * paired with u64_u32_store_copy(), ordering access	\
512 		 * to var and copy.					\
513 		 */							\
514 		smp_rmb();						\
515 		__val = var;						\
516 	} while (__val != __val_copy);					\
517 	__val;								\
518 })
519 # define u64_u32_store_copy(var, copy, val)				\
520 do {									\
521 	typeof(val) __val = (val);					\
522 	var = __val;							\
523 	/*								\
524 	 * paired with u64_u32_load_copy(), ordering access to var and	\
525 	 * copy.							\
526 	 */								\
527 	smp_wmb();							\
528 	copy = __val;							\
529 } while (0)
530 #endif
531 # define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
532 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
533 
534 /* CFS-related fields in a runqueue */
535 struct cfs_rq {
536 	struct load_weight	load;
537 	unsigned int		nr_running;
538 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
539 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
540 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
541 
542 	s64			avg_vruntime;
543 	u64			avg_load;
544 
545 	u64			exec_clock;
546 	u64			min_vruntime;
547 #ifdef CONFIG_SCHED_CORE
548 	unsigned int		forceidle_seq;
549 	u64			min_vruntime_fi;
550 #endif
551 
552 #ifndef CONFIG_64BIT
553 	u64			min_vruntime_copy;
554 #endif
555 
556 	struct rb_root_cached	tasks_timeline;
557 
558 	/*
559 	 * 'curr' points to currently running entity on this cfs_rq.
560 	 * It is set to NULL otherwise (i.e when none are currently running).
561 	 */
562 	struct sched_entity	*curr;
563 	struct sched_entity	*next;
564 
565 #ifdef	CONFIG_SCHED_DEBUG
566 	unsigned int		nr_spread_over;
567 #endif
568 
569 #ifdef CONFIG_SMP
570 	/*
571 	 * CFS load tracking
572 	 */
573 	struct sched_avg	avg;
574 #ifndef CONFIG_64BIT
575 	u64			last_update_time_copy;
576 #endif
577 	struct {
578 		raw_spinlock_t	lock ____cacheline_aligned;
579 		int		nr;
580 		unsigned long	load_avg;
581 		unsigned long	util_avg;
582 		unsigned long	runnable_avg;
583 	} removed;
584 
585 #ifdef CONFIG_FAIR_GROUP_SCHED
586 	u64			last_update_tg_load_avg;
587 	unsigned long		tg_load_avg_contrib;
588 	long			propagate;
589 	long			prop_runnable_sum;
590 
591 	/*
592 	 *   h_load = weight * f(tg)
593 	 *
594 	 * Where f(tg) is the recursive weight fraction assigned to
595 	 * this group.
596 	 */
597 	unsigned long		h_load;
598 	u64			last_h_load_update;
599 	struct sched_entity	*h_load_next;
600 #endif /* CONFIG_FAIR_GROUP_SCHED */
601 #endif /* CONFIG_SMP */
602 
603 #ifdef CONFIG_FAIR_GROUP_SCHED
604 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
605 
606 	/*
607 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
608 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
609 	 * (like users, containers etc.)
610 	 *
611 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
612 	 * This list is used during load balance.
613 	 */
614 	int			on_list;
615 	struct list_head	leaf_cfs_rq_list;
616 	struct task_group	*tg;	/* group that "owns" this runqueue */
617 
618 	/* Locally cached copy of our task_group's idle value */
619 	int			idle;
620 
621 #ifdef CONFIG_CFS_BANDWIDTH
622 	int			runtime_enabled;
623 	s64			runtime_remaining;
624 
625 	u64			throttled_pelt_idle;
626 #ifndef CONFIG_64BIT
627 	u64                     throttled_pelt_idle_copy;
628 #endif
629 	u64			throttled_clock;
630 	u64			throttled_clock_pelt;
631 	u64			throttled_clock_pelt_time;
632 	u64			throttled_clock_self;
633 	u64			throttled_clock_self_time;
634 	int			throttled;
635 	int			throttle_count;
636 	struct list_head	throttled_list;
637 	struct list_head	throttled_csd_list;
638 #endif /* CONFIG_CFS_BANDWIDTH */
639 #endif /* CONFIG_FAIR_GROUP_SCHED */
640 };
641 
642 static inline int rt_bandwidth_enabled(void)
643 {
644 	return sysctl_sched_rt_runtime >= 0;
645 }
646 
647 /* RT IPI pull logic requires IRQ_WORK */
648 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
649 # define HAVE_RT_PUSH_IPI
650 #endif
651 
652 /* Real-Time classes' related field in a runqueue: */
653 struct rt_rq {
654 	struct rt_prio_array	active;
655 	unsigned int		rt_nr_running;
656 	unsigned int		rr_nr_running;
657 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
658 	struct {
659 		int		curr; /* highest queued rt task prio */
660 #ifdef CONFIG_SMP
661 		int		next; /* next highest */
662 #endif
663 	} highest_prio;
664 #endif
665 #ifdef CONFIG_SMP
666 	int			overloaded;
667 	struct plist_head	pushable_tasks;
668 
669 #endif /* CONFIG_SMP */
670 	int			rt_queued;
671 
672 	int			rt_throttled;
673 	u64			rt_time;
674 	u64			rt_runtime;
675 	/* Nests inside the rq lock: */
676 	raw_spinlock_t		rt_runtime_lock;
677 
678 #ifdef CONFIG_RT_GROUP_SCHED
679 	unsigned int		rt_nr_boosted;
680 
681 	struct rq		*rq;
682 	struct task_group	*tg;
683 #endif
684 };
685 
686 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
687 {
688 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
689 }
690 
691 /* Deadline class' related fields in a runqueue */
692 struct dl_rq {
693 	/* runqueue is an rbtree, ordered by deadline */
694 	struct rb_root_cached	root;
695 
696 	unsigned int		dl_nr_running;
697 
698 #ifdef CONFIG_SMP
699 	/*
700 	 * Deadline values of the currently executing and the
701 	 * earliest ready task on this rq. Caching these facilitates
702 	 * the decision whether or not a ready but not running task
703 	 * should migrate somewhere else.
704 	 */
705 	struct {
706 		u64		curr;
707 		u64		next;
708 	} earliest_dl;
709 
710 	int			overloaded;
711 
712 	/*
713 	 * Tasks on this rq that can be pushed away. They are kept in
714 	 * an rb-tree, ordered by tasks' deadlines, with caching
715 	 * of the leftmost (earliest deadline) element.
716 	 */
717 	struct rb_root_cached	pushable_dl_tasks_root;
718 #else
719 	struct dl_bw		dl_bw;
720 #endif
721 	/*
722 	 * "Active utilization" for this runqueue: increased when a
723 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
724 	 * task blocks
725 	 */
726 	u64			running_bw;
727 
728 	/*
729 	 * Utilization of the tasks "assigned" to this runqueue (including
730 	 * the tasks that are in runqueue and the tasks that executed on this
731 	 * CPU and blocked). Increased when a task moves to this runqueue, and
732 	 * decreased when the task moves away (migrates, changes scheduling
733 	 * policy, or terminates).
734 	 * This is needed to compute the "inactive utilization" for the
735 	 * runqueue (inactive utilization = this_bw - running_bw).
736 	 */
737 	u64			this_bw;
738 	u64			extra_bw;
739 
740 	/*
741 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
742 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
743 	 */
744 	u64			max_bw;
745 
746 	/*
747 	 * Inverse of the fraction of CPU utilization that can be reclaimed
748 	 * by the GRUB algorithm.
749 	 */
750 	u64			bw_ratio;
751 };
752 
753 #ifdef CONFIG_FAIR_GROUP_SCHED
754 /* An entity is a task if it doesn't "own" a runqueue */
755 #define entity_is_task(se)	(!se->my_q)
756 
757 static inline void se_update_runnable(struct sched_entity *se)
758 {
759 	if (!entity_is_task(se))
760 		se->runnable_weight = se->my_q->h_nr_running;
761 }
762 
763 static inline long se_runnable(struct sched_entity *se)
764 {
765 	if (entity_is_task(se))
766 		return !!se->on_rq;
767 	else
768 		return se->runnable_weight;
769 }
770 
771 #else
772 #define entity_is_task(se)	1
773 
774 static inline void se_update_runnable(struct sched_entity *se) {}
775 
776 static inline long se_runnable(struct sched_entity *se)
777 {
778 	return !!se->on_rq;
779 }
780 #endif
781 
782 #ifdef CONFIG_SMP
783 /*
784  * XXX we want to get rid of these helpers and use the full load resolution.
785  */
786 static inline long se_weight(struct sched_entity *se)
787 {
788 	return scale_load_down(se->load.weight);
789 }
790 
791 
792 static inline bool sched_asym_prefer(int a, int b)
793 {
794 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
795 }
796 
797 struct perf_domain {
798 	struct em_perf_domain *em_pd;
799 	struct perf_domain *next;
800 	struct rcu_head rcu;
801 };
802 
803 /* Scheduling group status flags */
804 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
805 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
806 
807 /*
808  * We add the notion of a root-domain which will be used to define per-domain
809  * variables. Each exclusive cpuset essentially defines an island domain by
810  * fully partitioning the member CPUs from any other cpuset. Whenever a new
811  * exclusive cpuset is created, we also create and attach a new root-domain
812  * object.
813  *
814  */
815 struct root_domain {
816 	atomic_t		refcount;
817 	atomic_t		rto_count;
818 	struct rcu_head		rcu;
819 	cpumask_var_t		span;
820 	cpumask_var_t		online;
821 
822 	/*
823 	 * Indicate pullable load on at least one CPU, e.g:
824 	 * - More than one runnable task
825 	 * - Running task is misfit
826 	 */
827 	int			overload;
828 
829 	/* Indicate one or more cpus over-utilized (tipping point) */
830 	int			overutilized;
831 
832 	/*
833 	 * The bit corresponding to a CPU gets set here if such CPU has more
834 	 * than one runnable -deadline task (as it is below for RT tasks).
835 	 */
836 	cpumask_var_t		dlo_mask;
837 	atomic_t		dlo_count;
838 	struct dl_bw		dl_bw;
839 	struct cpudl		cpudl;
840 
841 	/*
842 	 * Indicate whether a root_domain's dl_bw has been checked or
843 	 * updated. It's monotonously increasing value.
844 	 *
845 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
846 	 * that u64 is 'big enough'. So that shouldn't be a concern.
847 	 */
848 	u64 visit_gen;
849 
850 #ifdef HAVE_RT_PUSH_IPI
851 	/*
852 	 * For IPI pull requests, loop across the rto_mask.
853 	 */
854 	struct irq_work		rto_push_work;
855 	raw_spinlock_t		rto_lock;
856 	/* These are only updated and read within rto_lock */
857 	int			rto_loop;
858 	int			rto_cpu;
859 	/* These atomics are updated outside of a lock */
860 	atomic_t		rto_loop_next;
861 	atomic_t		rto_loop_start;
862 #endif
863 	/*
864 	 * The "RT overload" flag: it gets set if a CPU has more than
865 	 * one runnable RT task.
866 	 */
867 	cpumask_var_t		rto_mask;
868 	struct cpupri		cpupri;
869 
870 	unsigned long		max_cpu_capacity;
871 
872 	/*
873 	 * NULL-terminated list of performance domains intersecting with the
874 	 * CPUs of the rd. Protected by RCU.
875 	 */
876 	struct perf_domain __rcu *pd;
877 };
878 
879 extern void init_defrootdomain(void);
880 extern int sched_init_domains(const struct cpumask *cpu_map);
881 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
882 extern void sched_get_rd(struct root_domain *rd);
883 extern void sched_put_rd(struct root_domain *rd);
884 
885 #ifdef HAVE_RT_PUSH_IPI
886 extern void rto_push_irq_work_func(struct irq_work *work);
887 #endif
888 #endif /* CONFIG_SMP */
889 
890 #ifdef CONFIG_UCLAMP_TASK
891 /*
892  * struct uclamp_bucket - Utilization clamp bucket
893  * @value: utilization clamp value for tasks on this clamp bucket
894  * @tasks: number of RUNNABLE tasks on this clamp bucket
895  *
896  * Keep track of how many tasks are RUNNABLE for a given utilization
897  * clamp value.
898  */
899 struct uclamp_bucket {
900 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
901 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
902 };
903 
904 /*
905  * struct uclamp_rq - rq's utilization clamp
906  * @value: currently active clamp values for a rq
907  * @bucket: utilization clamp buckets affecting a rq
908  *
909  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
910  * A clamp value is affecting a rq when there is at least one task RUNNABLE
911  * (or actually running) with that value.
912  *
913  * There are up to UCLAMP_CNT possible different clamp values, currently there
914  * are only two: minimum utilization and maximum utilization.
915  *
916  * All utilization clamping values are MAX aggregated, since:
917  * - for util_min: we want to run the CPU at least at the max of the minimum
918  *   utilization required by its currently RUNNABLE tasks.
919  * - for util_max: we want to allow the CPU to run up to the max of the
920  *   maximum utilization allowed by its currently RUNNABLE tasks.
921  *
922  * Since on each system we expect only a limited number of different
923  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
924  * the metrics required to compute all the per-rq utilization clamp values.
925  */
926 struct uclamp_rq {
927 	unsigned int value;
928 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
929 };
930 
931 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
932 #endif /* CONFIG_UCLAMP_TASK */
933 
934 struct rq;
935 struct balance_callback {
936 	struct balance_callback *next;
937 	void (*func)(struct rq *rq);
938 };
939 
940 /*
941  * This is the main, per-CPU runqueue data structure.
942  *
943  * Locking rule: those places that want to lock multiple runqueues
944  * (such as the load balancing or the thread migration code), lock
945  * acquire operations must be ordered by ascending &runqueue.
946  */
947 struct rq {
948 	/* runqueue lock: */
949 	raw_spinlock_t		__lock;
950 
951 	unsigned int		nr_running;
952 #ifdef CONFIG_NUMA_BALANCING
953 	unsigned int		nr_numa_running;
954 	unsigned int		nr_preferred_running;
955 	unsigned int		numa_migrate_on;
956 #endif
957 #ifdef CONFIG_NO_HZ_COMMON
958 #ifdef CONFIG_SMP
959 	unsigned long		last_blocked_load_update_tick;
960 	unsigned int		has_blocked_load;
961 	call_single_data_t	nohz_csd;
962 #endif /* CONFIG_SMP */
963 	unsigned int		nohz_tick_stopped;
964 	atomic_t		nohz_flags;
965 #endif /* CONFIG_NO_HZ_COMMON */
966 
967 #ifdef CONFIG_SMP
968 	unsigned int		ttwu_pending;
969 #endif
970 	u64			nr_switches;
971 
972 #ifdef CONFIG_UCLAMP_TASK
973 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
974 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
975 	unsigned int		uclamp_flags;
976 #define UCLAMP_FLAG_IDLE 0x01
977 #endif
978 
979 	struct cfs_rq		cfs;
980 	struct rt_rq		rt;
981 	struct dl_rq		dl;
982 
983 #ifdef CONFIG_FAIR_GROUP_SCHED
984 	/* list of leaf cfs_rq on this CPU: */
985 	struct list_head	leaf_cfs_rq_list;
986 	struct list_head	*tmp_alone_branch;
987 #endif /* CONFIG_FAIR_GROUP_SCHED */
988 
989 	/*
990 	 * This is part of a global counter where only the total sum
991 	 * over all CPUs matters. A task can increase this counter on
992 	 * one CPU and if it got migrated afterwards it may decrease
993 	 * it on another CPU. Always updated under the runqueue lock:
994 	 */
995 	unsigned int		nr_uninterruptible;
996 
997 	struct task_struct __rcu	*curr;
998 	struct task_struct	*idle;
999 	struct task_struct	*stop;
1000 	unsigned long		next_balance;
1001 	struct mm_struct	*prev_mm;
1002 
1003 	unsigned int		clock_update_flags;
1004 	u64			clock;
1005 	/* Ensure that all clocks are in the same cache line */
1006 	u64			clock_task ____cacheline_aligned;
1007 	u64			clock_pelt;
1008 	unsigned long		lost_idle_time;
1009 	u64			clock_pelt_idle;
1010 	u64			clock_idle;
1011 #ifndef CONFIG_64BIT
1012 	u64			clock_pelt_idle_copy;
1013 	u64			clock_idle_copy;
1014 #endif
1015 
1016 	atomic_t		nr_iowait;
1017 
1018 #ifdef CONFIG_SCHED_DEBUG
1019 	u64 last_seen_need_resched_ns;
1020 	int ticks_without_resched;
1021 #endif
1022 
1023 #ifdef CONFIG_MEMBARRIER
1024 	int membarrier_state;
1025 #endif
1026 
1027 #ifdef CONFIG_SMP
1028 	struct root_domain		*rd;
1029 	struct sched_domain __rcu	*sd;
1030 
1031 	unsigned long		cpu_capacity;
1032 
1033 	struct balance_callback *balance_callback;
1034 
1035 	unsigned char		nohz_idle_balance;
1036 	unsigned char		idle_balance;
1037 
1038 	unsigned long		misfit_task_load;
1039 
1040 	/* For active balancing */
1041 	int			active_balance;
1042 	int			push_cpu;
1043 	struct cpu_stop_work	active_balance_work;
1044 
1045 	/* CPU of this runqueue: */
1046 	int			cpu;
1047 	int			online;
1048 
1049 	struct list_head cfs_tasks;
1050 
1051 	struct sched_avg	avg_rt;
1052 	struct sched_avg	avg_dl;
1053 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1054 	struct sched_avg	avg_irq;
1055 #endif
1056 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1057 	struct sched_avg	avg_thermal;
1058 #endif
1059 	u64			idle_stamp;
1060 	u64			avg_idle;
1061 
1062 	/* This is used to determine avg_idle's max value */
1063 	u64			max_idle_balance_cost;
1064 
1065 #ifdef CONFIG_HOTPLUG_CPU
1066 	struct rcuwait		hotplug_wait;
1067 #endif
1068 #endif /* CONFIG_SMP */
1069 
1070 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1071 	u64			prev_irq_time;
1072 #endif
1073 #ifdef CONFIG_PARAVIRT
1074 	u64			prev_steal_time;
1075 #endif
1076 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1077 	u64			prev_steal_time_rq;
1078 #endif
1079 
1080 	/* calc_load related fields */
1081 	unsigned long		calc_load_update;
1082 	long			calc_load_active;
1083 
1084 #ifdef CONFIG_SCHED_HRTICK
1085 #ifdef CONFIG_SMP
1086 	call_single_data_t	hrtick_csd;
1087 #endif
1088 	struct hrtimer		hrtick_timer;
1089 	ktime_t 		hrtick_time;
1090 #endif
1091 
1092 #ifdef CONFIG_SCHEDSTATS
1093 	/* latency stats */
1094 	struct sched_info	rq_sched_info;
1095 	unsigned long long	rq_cpu_time;
1096 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1097 
1098 	/* sys_sched_yield() stats */
1099 	unsigned int		yld_count;
1100 
1101 	/* schedule() stats */
1102 	unsigned int		sched_count;
1103 	unsigned int		sched_goidle;
1104 
1105 	/* try_to_wake_up() stats */
1106 	unsigned int		ttwu_count;
1107 	unsigned int		ttwu_local;
1108 #endif
1109 
1110 #ifdef CONFIG_CPU_IDLE
1111 	/* Must be inspected within a rcu lock section */
1112 	struct cpuidle_state	*idle_state;
1113 #endif
1114 
1115 #ifdef CONFIG_SMP
1116 	unsigned int		nr_pinned;
1117 #endif
1118 	unsigned int		push_busy;
1119 	struct cpu_stop_work	push_work;
1120 
1121 #ifdef CONFIG_SCHED_CORE
1122 	/* per rq */
1123 	struct rq		*core;
1124 	struct task_struct	*core_pick;
1125 	unsigned int		core_enabled;
1126 	unsigned int		core_sched_seq;
1127 	struct rb_root		core_tree;
1128 
1129 	/* shared state -- careful with sched_core_cpu_deactivate() */
1130 	unsigned int		core_task_seq;
1131 	unsigned int		core_pick_seq;
1132 	unsigned long		core_cookie;
1133 	unsigned int		core_forceidle_count;
1134 	unsigned int		core_forceidle_seq;
1135 	unsigned int		core_forceidle_occupation;
1136 	u64			core_forceidle_start;
1137 #endif
1138 
1139 	/* Scratch cpumask to be temporarily used under rq_lock */
1140 	cpumask_var_t		scratch_mask;
1141 
1142 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1143 	call_single_data_t	cfsb_csd;
1144 	struct list_head	cfsb_csd_list;
1145 #endif
1146 };
1147 
1148 #ifdef CONFIG_FAIR_GROUP_SCHED
1149 
1150 /* CPU runqueue to which this cfs_rq is attached */
1151 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1152 {
1153 	return cfs_rq->rq;
1154 }
1155 
1156 #else
1157 
1158 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1159 {
1160 	return container_of(cfs_rq, struct rq, cfs);
1161 }
1162 #endif
1163 
1164 static inline int cpu_of(struct rq *rq)
1165 {
1166 #ifdef CONFIG_SMP
1167 	return rq->cpu;
1168 #else
1169 	return 0;
1170 #endif
1171 }
1172 
1173 #define MDF_PUSH	0x01
1174 
1175 static inline bool is_migration_disabled(struct task_struct *p)
1176 {
1177 #ifdef CONFIG_SMP
1178 	return p->migration_disabled;
1179 #else
1180 	return false;
1181 #endif
1182 }
1183 
1184 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1185 
1186 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1187 #define this_rq()		this_cpu_ptr(&runqueues)
1188 #define task_rq(p)		cpu_rq(task_cpu(p))
1189 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1190 #define raw_rq()		raw_cpu_ptr(&runqueues)
1191 
1192 struct sched_group;
1193 #ifdef CONFIG_SCHED_CORE
1194 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1195 
1196 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1197 
1198 static inline bool sched_core_enabled(struct rq *rq)
1199 {
1200 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1201 }
1202 
1203 static inline bool sched_core_disabled(void)
1204 {
1205 	return !static_branch_unlikely(&__sched_core_enabled);
1206 }
1207 
1208 /*
1209  * Be careful with this function; not for general use. The return value isn't
1210  * stable unless you actually hold a relevant rq->__lock.
1211  */
1212 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1213 {
1214 	if (sched_core_enabled(rq))
1215 		return &rq->core->__lock;
1216 
1217 	return &rq->__lock;
1218 }
1219 
1220 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1221 {
1222 	if (rq->core_enabled)
1223 		return &rq->core->__lock;
1224 
1225 	return &rq->__lock;
1226 }
1227 
1228 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1229 			bool fi);
1230 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1231 
1232 /*
1233  * Helpers to check if the CPU's core cookie matches with the task's cookie
1234  * when core scheduling is enabled.
1235  * A special case is that the task's cookie always matches with CPU's core
1236  * cookie if the CPU is in an idle core.
1237  */
1238 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1239 {
1240 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1241 	if (!sched_core_enabled(rq))
1242 		return true;
1243 
1244 	return rq->core->core_cookie == p->core_cookie;
1245 }
1246 
1247 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1248 {
1249 	bool idle_core = true;
1250 	int cpu;
1251 
1252 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1253 	if (!sched_core_enabled(rq))
1254 		return true;
1255 
1256 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1257 		if (!available_idle_cpu(cpu)) {
1258 			idle_core = false;
1259 			break;
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * A CPU in an idle core is always the best choice for tasks with
1265 	 * cookies.
1266 	 */
1267 	return idle_core || rq->core->core_cookie == p->core_cookie;
1268 }
1269 
1270 static inline bool sched_group_cookie_match(struct rq *rq,
1271 					    struct task_struct *p,
1272 					    struct sched_group *group)
1273 {
1274 	int cpu;
1275 
1276 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277 	if (!sched_core_enabled(rq))
1278 		return true;
1279 
1280 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1281 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1282 			return true;
1283 	}
1284 	return false;
1285 }
1286 
1287 static inline bool sched_core_enqueued(struct task_struct *p)
1288 {
1289 	return !RB_EMPTY_NODE(&p->core_node);
1290 }
1291 
1292 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1293 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1294 
1295 extern void sched_core_get(void);
1296 extern void sched_core_put(void);
1297 
1298 #else /* !CONFIG_SCHED_CORE */
1299 
1300 static inline bool sched_core_enabled(struct rq *rq)
1301 {
1302 	return false;
1303 }
1304 
1305 static inline bool sched_core_disabled(void)
1306 {
1307 	return true;
1308 }
1309 
1310 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1311 {
1312 	return &rq->__lock;
1313 }
1314 
1315 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1316 {
1317 	return &rq->__lock;
1318 }
1319 
1320 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1321 {
1322 	return true;
1323 }
1324 
1325 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1326 {
1327 	return true;
1328 }
1329 
1330 static inline bool sched_group_cookie_match(struct rq *rq,
1331 					    struct task_struct *p,
1332 					    struct sched_group *group)
1333 {
1334 	return true;
1335 }
1336 #endif /* CONFIG_SCHED_CORE */
1337 
1338 static inline void lockdep_assert_rq_held(struct rq *rq)
1339 {
1340 	lockdep_assert_held(__rq_lockp(rq));
1341 }
1342 
1343 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1344 extern bool raw_spin_rq_trylock(struct rq *rq);
1345 extern void raw_spin_rq_unlock(struct rq *rq);
1346 
1347 static inline void raw_spin_rq_lock(struct rq *rq)
1348 {
1349 	raw_spin_rq_lock_nested(rq, 0);
1350 }
1351 
1352 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1353 {
1354 	local_irq_disable();
1355 	raw_spin_rq_lock(rq);
1356 }
1357 
1358 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1359 {
1360 	raw_spin_rq_unlock(rq);
1361 	local_irq_enable();
1362 }
1363 
1364 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1365 {
1366 	unsigned long flags;
1367 	local_irq_save(flags);
1368 	raw_spin_rq_lock(rq);
1369 	return flags;
1370 }
1371 
1372 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1373 {
1374 	raw_spin_rq_unlock(rq);
1375 	local_irq_restore(flags);
1376 }
1377 
1378 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1379 do {						\
1380 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1381 } while (0)
1382 
1383 #ifdef CONFIG_SCHED_SMT
1384 extern void __update_idle_core(struct rq *rq);
1385 
1386 static inline void update_idle_core(struct rq *rq)
1387 {
1388 	if (static_branch_unlikely(&sched_smt_present))
1389 		__update_idle_core(rq);
1390 }
1391 
1392 #else
1393 static inline void update_idle_core(struct rq *rq) { }
1394 #endif
1395 
1396 #ifdef CONFIG_FAIR_GROUP_SCHED
1397 static inline struct task_struct *task_of(struct sched_entity *se)
1398 {
1399 	SCHED_WARN_ON(!entity_is_task(se));
1400 	return container_of(se, struct task_struct, se);
1401 }
1402 
1403 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1404 {
1405 	return p->se.cfs_rq;
1406 }
1407 
1408 /* runqueue on which this entity is (to be) queued */
1409 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1410 {
1411 	return se->cfs_rq;
1412 }
1413 
1414 /* runqueue "owned" by this group */
1415 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1416 {
1417 	return grp->my_q;
1418 }
1419 
1420 #else
1421 
1422 #define task_of(_se)	container_of(_se, struct task_struct, se)
1423 
1424 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1425 {
1426 	return &task_rq(p)->cfs;
1427 }
1428 
1429 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1430 {
1431 	const struct task_struct *p = task_of(se);
1432 	struct rq *rq = task_rq(p);
1433 
1434 	return &rq->cfs;
1435 }
1436 
1437 /* runqueue "owned" by this group */
1438 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1439 {
1440 	return NULL;
1441 }
1442 #endif
1443 
1444 extern void update_rq_clock(struct rq *rq);
1445 
1446 /*
1447  * rq::clock_update_flags bits
1448  *
1449  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1450  *  call to __schedule(). This is an optimisation to avoid
1451  *  neighbouring rq clock updates.
1452  *
1453  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1454  *  in effect and calls to update_rq_clock() are being ignored.
1455  *
1456  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1457  *  made to update_rq_clock() since the last time rq::lock was pinned.
1458  *
1459  * If inside of __schedule(), clock_update_flags will have been
1460  * shifted left (a left shift is a cheap operation for the fast path
1461  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1462  *
1463  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1464  *
1465  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1466  * one position though, because the next rq_unpin_lock() will shift it
1467  * back.
1468  */
1469 #define RQCF_REQ_SKIP		0x01
1470 #define RQCF_ACT_SKIP		0x02
1471 #define RQCF_UPDATED		0x04
1472 
1473 static inline void assert_clock_updated(struct rq *rq)
1474 {
1475 	/*
1476 	 * The only reason for not seeing a clock update since the
1477 	 * last rq_pin_lock() is if we're currently skipping updates.
1478 	 */
1479 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1480 }
1481 
1482 static inline u64 rq_clock(struct rq *rq)
1483 {
1484 	lockdep_assert_rq_held(rq);
1485 	assert_clock_updated(rq);
1486 
1487 	return rq->clock;
1488 }
1489 
1490 static inline u64 rq_clock_task(struct rq *rq)
1491 {
1492 	lockdep_assert_rq_held(rq);
1493 	assert_clock_updated(rq);
1494 
1495 	return rq->clock_task;
1496 }
1497 
1498 /**
1499  * By default the decay is the default pelt decay period.
1500  * The decay shift can change the decay period in
1501  * multiples of 32.
1502  *  Decay shift		Decay period(ms)
1503  *	0			32
1504  *	1			64
1505  *	2			128
1506  *	3			256
1507  *	4			512
1508  */
1509 extern int sched_thermal_decay_shift;
1510 
1511 static inline u64 rq_clock_thermal(struct rq *rq)
1512 {
1513 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1514 }
1515 
1516 static inline void rq_clock_skip_update(struct rq *rq)
1517 {
1518 	lockdep_assert_rq_held(rq);
1519 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1520 }
1521 
1522 /*
1523  * See rt task throttling, which is the only time a skip
1524  * request is canceled.
1525  */
1526 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1527 {
1528 	lockdep_assert_rq_held(rq);
1529 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1530 }
1531 
1532 /*
1533  * During cpu offlining and rq wide unthrottling, we can trigger
1534  * an update_rq_clock() for several cfs and rt runqueues (Typically
1535  * when using list_for_each_entry_*)
1536  * rq_clock_start_loop_update() can be called after updating the clock
1537  * once and before iterating over the list to prevent multiple update.
1538  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1539  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1540  */
1541 static inline void rq_clock_start_loop_update(struct rq *rq)
1542 {
1543 	lockdep_assert_rq_held(rq);
1544 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1545 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1546 }
1547 
1548 static inline void rq_clock_stop_loop_update(struct rq *rq)
1549 {
1550 	lockdep_assert_rq_held(rq);
1551 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1552 }
1553 
1554 struct rq_flags {
1555 	unsigned long flags;
1556 	struct pin_cookie cookie;
1557 #ifdef CONFIG_SCHED_DEBUG
1558 	/*
1559 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1560 	 * current pin context is stashed here in case it needs to be
1561 	 * restored in rq_repin_lock().
1562 	 */
1563 	unsigned int clock_update_flags;
1564 #endif
1565 };
1566 
1567 extern struct balance_callback balance_push_callback;
1568 
1569 /*
1570  * Lockdep annotation that avoids accidental unlocks; it's like a
1571  * sticky/continuous lockdep_assert_held().
1572  *
1573  * This avoids code that has access to 'struct rq *rq' (basically everything in
1574  * the scheduler) from accidentally unlocking the rq if they do not also have a
1575  * copy of the (on-stack) 'struct rq_flags rf'.
1576  *
1577  * Also see Documentation/locking/lockdep-design.rst.
1578  */
1579 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1580 {
1581 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1582 
1583 #ifdef CONFIG_SCHED_DEBUG
1584 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1585 	rf->clock_update_flags = 0;
1586 #ifdef CONFIG_SMP
1587 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1588 #endif
1589 #endif
1590 }
1591 
1592 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1593 {
1594 #ifdef CONFIG_SCHED_DEBUG
1595 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1596 		rf->clock_update_flags = RQCF_UPDATED;
1597 #endif
1598 
1599 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1600 }
1601 
1602 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1603 {
1604 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1605 
1606 #ifdef CONFIG_SCHED_DEBUG
1607 	/*
1608 	 * Restore the value we stashed in @rf for this pin context.
1609 	 */
1610 	rq->clock_update_flags |= rf->clock_update_flags;
1611 #endif
1612 }
1613 
1614 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1615 	__acquires(rq->lock);
1616 
1617 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1618 	__acquires(p->pi_lock)
1619 	__acquires(rq->lock);
1620 
1621 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1622 	__releases(rq->lock)
1623 {
1624 	rq_unpin_lock(rq, rf);
1625 	raw_spin_rq_unlock(rq);
1626 }
1627 
1628 static inline void
1629 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1630 	__releases(rq->lock)
1631 	__releases(p->pi_lock)
1632 {
1633 	rq_unpin_lock(rq, rf);
1634 	raw_spin_rq_unlock(rq);
1635 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1636 }
1637 
1638 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1639 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1640 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1641 		    struct rq *rq; struct rq_flags rf)
1642 
1643 static inline void
1644 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1645 	__acquires(rq->lock)
1646 {
1647 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1648 	rq_pin_lock(rq, rf);
1649 }
1650 
1651 static inline void
1652 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1653 	__acquires(rq->lock)
1654 {
1655 	raw_spin_rq_lock_irq(rq);
1656 	rq_pin_lock(rq, rf);
1657 }
1658 
1659 static inline void
1660 rq_lock(struct rq *rq, struct rq_flags *rf)
1661 	__acquires(rq->lock)
1662 {
1663 	raw_spin_rq_lock(rq);
1664 	rq_pin_lock(rq, rf);
1665 }
1666 
1667 static inline void
1668 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1669 	__releases(rq->lock)
1670 {
1671 	rq_unpin_lock(rq, rf);
1672 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1673 }
1674 
1675 static inline void
1676 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1677 	__releases(rq->lock)
1678 {
1679 	rq_unpin_lock(rq, rf);
1680 	raw_spin_rq_unlock_irq(rq);
1681 }
1682 
1683 static inline void
1684 rq_unlock(struct rq *rq, struct rq_flags *rf)
1685 	__releases(rq->lock)
1686 {
1687 	rq_unpin_lock(rq, rf);
1688 	raw_spin_rq_unlock(rq);
1689 }
1690 
1691 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1692 		    rq_lock(_T->lock, &_T->rf),
1693 		    rq_unlock(_T->lock, &_T->rf),
1694 		    struct rq_flags rf)
1695 
1696 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1697 		    rq_lock_irq(_T->lock, &_T->rf),
1698 		    rq_unlock_irq(_T->lock, &_T->rf),
1699 		    struct rq_flags rf)
1700 
1701 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1702 		    rq_lock_irqsave(_T->lock, &_T->rf),
1703 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1704 		    struct rq_flags rf)
1705 
1706 static inline struct rq *
1707 this_rq_lock_irq(struct rq_flags *rf)
1708 	__acquires(rq->lock)
1709 {
1710 	struct rq *rq;
1711 
1712 	local_irq_disable();
1713 	rq = this_rq();
1714 	rq_lock(rq, rf);
1715 	return rq;
1716 }
1717 
1718 #ifdef CONFIG_NUMA
1719 enum numa_topology_type {
1720 	NUMA_DIRECT,
1721 	NUMA_GLUELESS_MESH,
1722 	NUMA_BACKPLANE,
1723 };
1724 extern enum numa_topology_type sched_numa_topology_type;
1725 extern int sched_max_numa_distance;
1726 extern bool find_numa_distance(int distance);
1727 extern void sched_init_numa(int offline_node);
1728 extern void sched_update_numa(int cpu, bool online);
1729 extern void sched_domains_numa_masks_set(unsigned int cpu);
1730 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1731 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1732 #else
1733 static inline void sched_init_numa(int offline_node) { }
1734 static inline void sched_update_numa(int cpu, bool online) { }
1735 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1736 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1737 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1738 {
1739 	return nr_cpu_ids;
1740 }
1741 #endif
1742 
1743 #ifdef CONFIG_NUMA_BALANCING
1744 /* The regions in numa_faults array from task_struct */
1745 enum numa_faults_stats {
1746 	NUMA_MEM = 0,
1747 	NUMA_CPU,
1748 	NUMA_MEMBUF,
1749 	NUMA_CPUBUF
1750 };
1751 extern void sched_setnuma(struct task_struct *p, int node);
1752 extern int migrate_task_to(struct task_struct *p, int cpu);
1753 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1754 			int cpu, int scpu);
1755 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1756 #else
1757 static inline void
1758 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1759 {
1760 }
1761 #endif /* CONFIG_NUMA_BALANCING */
1762 
1763 #ifdef CONFIG_SMP
1764 
1765 static inline void
1766 queue_balance_callback(struct rq *rq,
1767 		       struct balance_callback *head,
1768 		       void (*func)(struct rq *rq))
1769 {
1770 	lockdep_assert_rq_held(rq);
1771 
1772 	/*
1773 	 * Don't (re)queue an already queued item; nor queue anything when
1774 	 * balance_push() is active, see the comment with
1775 	 * balance_push_callback.
1776 	 */
1777 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1778 		return;
1779 
1780 	head->func = func;
1781 	head->next = rq->balance_callback;
1782 	rq->balance_callback = head;
1783 }
1784 
1785 #define rcu_dereference_check_sched_domain(p) \
1786 	rcu_dereference_check((p), \
1787 			      lockdep_is_held(&sched_domains_mutex))
1788 
1789 /*
1790  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1791  * See destroy_sched_domains: call_rcu for details.
1792  *
1793  * The domain tree of any CPU may only be accessed from within
1794  * preempt-disabled sections.
1795  */
1796 #define for_each_domain(cpu, __sd) \
1797 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1798 			__sd; __sd = __sd->parent)
1799 
1800 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1801 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1802 static const unsigned int SD_SHARED_CHILD_MASK =
1803 #include <linux/sched/sd_flags.h>
1804 0;
1805 #undef SD_FLAG
1806 
1807 /**
1808  * highest_flag_domain - Return highest sched_domain containing flag.
1809  * @cpu:	The CPU whose highest level of sched domain is to
1810  *		be returned.
1811  * @flag:	The flag to check for the highest sched_domain
1812  *		for the given CPU.
1813  *
1814  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1815  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1816  */
1817 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1818 {
1819 	struct sched_domain *sd, *hsd = NULL;
1820 
1821 	for_each_domain(cpu, sd) {
1822 		if (sd->flags & flag) {
1823 			hsd = sd;
1824 			continue;
1825 		}
1826 
1827 		/*
1828 		 * Stop the search if @flag is known to be shared at lower
1829 		 * levels. It will not be found further up.
1830 		 */
1831 		if (flag & SD_SHARED_CHILD_MASK)
1832 			break;
1833 	}
1834 
1835 	return hsd;
1836 }
1837 
1838 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1839 {
1840 	struct sched_domain *sd;
1841 
1842 	for_each_domain(cpu, sd) {
1843 		if (sd->flags & flag)
1844 			break;
1845 	}
1846 
1847 	return sd;
1848 }
1849 
1850 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1851 DECLARE_PER_CPU(int, sd_llc_size);
1852 DECLARE_PER_CPU(int, sd_llc_id);
1853 DECLARE_PER_CPU(int, sd_share_id);
1854 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1855 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1856 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1857 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1858 extern struct static_key_false sched_asym_cpucapacity;
1859 extern struct static_key_false sched_cluster_active;
1860 
1861 static __always_inline bool sched_asym_cpucap_active(void)
1862 {
1863 	return static_branch_unlikely(&sched_asym_cpucapacity);
1864 }
1865 
1866 struct sched_group_capacity {
1867 	atomic_t		ref;
1868 	/*
1869 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1870 	 * for a single CPU.
1871 	 */
1872 	unsigned long		capacity;
1873 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1874 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1875 	unsigned long		next_update;
1876 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1877 
1878 #ifdef CONFIG_SCHED_DEBUG
1879 	int			id;
1880 #endif
1881 
1882 	unsigned long		cpumask[];		/* Balance mask */
1883 };
1884 
1885 struct sched_group {
1886 	struct sched_group	*next;			/* Must be a circular list */
1887 	atomic_t		ref;
1888 
1889 	unsigned int		group_weight;
1890 	unsigned int		cores;
1891 	struct sched_group_capacity *sgc;
1892 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1893 	int			flags;
1894 
1895 	/*
1896 	 * The CPUs this group covers.
1897 	 *
1898 	 * NOTE: this field is variable length. (Allocated dynamically
1899 	 * by attaching extra space to the end of the structure,
1900 	 * depending on how many CPUs the kernel has booted up with)
1901 	 */
1902 	unsigned long		cpumask[];
1903 };
1904 
1905 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1906 {
1907 	return to_cpumask(sg->cpumask);
1908 }
1909 
1910 /*
1911  * See build_balance_mask().
1912  */
1913 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1914 {
1915 	return to_cpumask(sg->sgc->cpumask);
1916 }
1917 
1918 extern int group_balance_cpu(struct sched_group *sg);
1919 
1920 #ifdef CONFIG_SCHED_DEBUG
1921 void update_sched_domain_debugfs(void);
1922 void dirty_sched_domain_sysctl(int cpu);
1923 #else
1924 static inline void update_sched_domain_debugfs(void)
1925 {
1926 }
1927 static inline void dirty_sched_domain_sysctl(int cpu)
1928 {
1929 }
1930 #endif
1931 
1932 extern int sched_update_scaling(void);
1933 
1934 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1935 {
1936 	if (!p->user_cpus_ptr)
1937 		return cpu_possible_mask; /* &init_task.cpus_mask */
1938 	return p->user_cpus_ptr;
1939 }
1940 #endif /* CONFIG_SMP */
1941 
1942 #include "stats.h"
1943 
1944 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1945 
1946 extern void __sched_core_account_forceidle(struct rq *rq);
1947 
1948 static inline void sched_core_account_forceidle(struct rq *rq)
1949 {
1950 	if (schedstat_enabled())
1951 		__sched_core_account_forceidle(rq);
1952 }
1953 
1954 extern void __sched_core_tick(struct rq *rq);
1955 
1956 static inline void sched_core_tick(struct rq *rq)
1957 {
1958 	if (sched_core_enabled(rq) && schedstat_enabled())
1959 		__sched_core_tick(rq);
1960 }
1961 
1962 #else
1963 
1964 static inline void sched_core_account_forceidle(struct rq *rq) {}
1965 
1966 static inline void sched_core_tick(struct rq *rq) {}
1967 
1968 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1969 
1970 #ifdef CONFIG_CGROUP_SCHED
1971 
1972 /*
1973  * Return the group to which this tasks belongs.
1974  *
1975  * We cannot use task_css() and friends because the cgroup subsystem
1976  * changes that value before the cgroup_subsys::attach() method is called,
1977  * therefore we cannot pin it and might observe the wrong value.
1978  *
1979  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1980  * core changes this before calling sched_move_task().
1981  *
1982  * Instead we use a 'copy' which is updated from sched_move_task() while
1983  * holding both task_struct::pi_lock and rq::lock.
1984  */
1985 static inline struct task_group *task_group(struct task_struct *p)
1986 {
1987 	return p->sched_task_group;
1988 }
1989 
1990 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1991 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1992 {
1993 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1994 	struct task_group *tg = task_group(p);
1995 #endif
1996 
1997 #ifdef CONFIG_FAIR_GROUP_SCHED
1998 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1999 	p->se.cfs_rq = tg->cfs_rq[cpu];
2000 	p->se.parent = tg->se[cpu];
2001 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2002 #endif
2003 
2004 #ifdef CONFIG_RT_GROUP_SCHED
2005 	p->rt.rt_rq  = tg->rt_rq[cpu];
2006 	p->rt.parent = tg->rt_se[cpu];
2007 #endif
2008 }
2009 
2010 #else /* CONFIG_CGROUP_SCHED */
2011 
2012 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2013 static inline struct task_group *task_group(struct task_struct *p)
2014 {
2015 	return NULL;
2016 }
2017 
2018 #endif /* CONFIG_CGROUP_SCHED */
2019 
2020 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2021 {
2022 	set_task_rq(p, cpu);
2023 #ifdef CONFIG_SMP
2024 	/*
2025 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2026 	 * successfully executed on another CPU. We must ensure that updates of
2027 	 * per-task data have been completed by this moment.
2028 	 */
2029 	smp_wmb();
2030 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2031 	p->wake_cpu = cpu;
2032 #endif
2033 }
2034 
2035 /*
2036  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2037  */
2038 #ifdef CONFIG_SCHED_DEBUG
2039 # define const_debug __read_mostly
2040 #else
2041 # define const_debug const
2042 #endif
2043 
2044 #define SCHED_FEAT(name, enabled)	\
2045 	__SCHED_FEAT_##name ,
2046 
2047 enum {
2048 #include "features.h"
2049 	__SCHED_FEAT_NR,
2050 };
2051 
2052 #undef SCHED_FEAT
2053 
2054 #ifdef CONFIG_SCHED_DEBUG
2055 
2056 /*
2057  * To support run-time toggling of sched features, all the translation units
2058  * (but core.c) reference the sysctl_sched_features defined in core.c.
2059  */
2060 extern const_debug unsigned int sysctl_sched_features;
2061 
2062 #ifdef CONFIG_JUMP_LABEL
2063 #define SCHED_FEAT(name, enabled)					\
2064 static __always_inline bool static_branch_##name(struct static_key *key) \
2065 {									\
2066 	return static_key_##enabled(key);				\
2067 }
2068 
2069 #include "features.h"
2070 #undef SCHED_FEAT
2071 
2072 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2073 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2074 
2075 #else /* !CONFIG_JUMP_LABEL */
2076 
2077 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2078 
2079 #endif /* CONFIG_JUMP_LABEL */
2080 
2081 #else /* !SCHED_DEBUG */
2082 
2083 /*
2084  * Each translation unit has its own copy of sysctl_sched_features to allow
2085  * constants propagation at compile time and compiler optimization based on
2086  * features default.
2087  */
2088 #define SCHED_FEAT(name, enabled)	\
2089 	(1UL << __SCHED_FEAT_##name) * enabled |
2090 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2091 #include "features.h"
2092 	0;
2093 #undef SCHED_FEAT
2094 
2095 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2096 
2097 #endif /* SCHED_DEBUG */
2098 
2099 extern struct static_key_false sched_numa_balancing;
2100 extern struct static_key_false sched_schedstats;
2101 
2102 static inline u64 global_rt_period(void)
2103 {
2104 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2105 }
2106 
2107 static inline u64 global_rt_runtime(void)
2108 {
2109 	if (sysctl_sched_rt_runtime < 0)
2110 		return RUNTIME_INF;
2111 
2112 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2113 }
2114 
2115 static inline int task_current(struct rq *rq, struct task_struct *p)
2116 {
2117 	return rq->curr == p;
2118 }
2119 
2120 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2121 {
2122 #ifdef CONFIG_SMP
2123 	return p->on_cpu;
2124 #else
2125 	return task_current(rq, p);
2126 #endif
2127 }
2128 
2129 static inline int task_on_rq_queued(struct task_struct *p)
2130 {
2131 	return p->on_rq == TASK_ON_RQ_QUEUED;
2132 }
2133 
2134 static inline int task_on_rq_migrating(struct task_struct *p)
2135 {
2136 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2137 }
2138 
2139 /* Wake flags. The first three directly map to some SD flag value */
2140 #define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2141 #define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2142 #define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2143 
2144 #define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2145 #define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2146 #define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
2147 
2148 #ifdef CONFIG_SMP
2149 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2150 static_assert(WF_FORK == SD_BALANCE_FORK);
2151 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2152 #endif
2153 
2154 /*
2155  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2156  * of tasks with abnormal "nice" values across CPUs the contribution that
2157  * each task makes to its run queue's load is weighted according to its
2158  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2159  * scaled version of the new time slice allocation that they receive on time
2160  * slice expiry etc.
2161  */
2162 
2163 #define WEIGHT_IDLEPRIO		3
2164 #define WMULT_IDLEPRIO		1431655765
2165 
2166 extern const int		sched_prio_to_weight[40];
2167 extern const u32		sched_prio_to_wmult[40];
2168 
2169 /*
2170  * {de,en}queue flags:
2171  *
2172  * DEQUEUE_SLEEP  - task is no longer runnable
2173  * ENQUEUE_WAKEUP - task just became runnable
2174  *
2175  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2176  *                are in a known state which allows modification. Such pairs
2177  *                should preserve as much state as possible.
2178  *
2179  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2180  *        in the runqueue.
2181  *
2182  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2183  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2184  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2185  *
2186  */
2187 
2188 #define DEQUEUE_SLEEP		0x01
2189 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2190 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2191 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2192 
2193 #define ENQUEUE_WAKEUP		0x01
2194 #define ENQUEUE_RESTORE		0x02
2195 #define ENQUEUE_MOVE		0x04
2196 #define ENQUEUE_NOCLOCK		0x08
2197 
2198 #define ENQUEUE_HEAD		0x10
2199 #define ENQUEUE_REPLENISH	0x20
2200 #ifdef CONFIG_SMP
2201 #define ENQUEUE_MIGRATED	0x40
2202 #else
2203 #define ENQUEUE_MIGRATED	0x00
2204 #endif
2205 #define ENQUEUE_INITIAL		0x80
2206 
2207 #define RETRY_TASK		((void *)-1UL)
2208 
2209 struct affinity_context {
2210 	const struct cpumask *new_mask;
2211 	struct cpumask *user_mask;
2212 	unsigned int flags;
2213 };
2214 
2215 struct sched_class {
2216 
2217 #ifdef CONFIG_UCLAMP_TASK
2218 	int uclamp_enabled;
2219 #endif
2220 
2221 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2222 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2223 	void (*yield_task)   (struct rq *rq);
2224 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2225 
2226 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2227 
2228 	struct task_struct *(*pick_next_task)(struct rq *rq);
2229 
2230 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2231 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2232 
2233 #ifdef CONFIG_SMP
2234 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2235 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2236 
2237 	struct task_struct * (*pick_task)(struct rq *rq);
2238 
2239 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2240 
2241 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2242 
2243 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2244 
2245 	void (*rq_online)(struct rq *rq);
2246 	void (*rq_offline)(struct rq *rq);
2247 
2248 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2249 #endif
2250 
2251 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2252 	void (*task_fork)(struct task_struct *p);
2253 	void (*task_dead)(struct task_struct *p);
2254 
2255 	/*
2256 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2257 	 * cannot assume the switched_from/switched_to pair is serialized by
2258 	 * rq->lock. They are however serialized by p->pi_lock.
2259 	 */
2260 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2261 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2262 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2263 			      int oldprio);
2264 
2265 	unsigned int (*get_rr_interval)(struct rq *rq,
2266 					struct task_struct *task);
2267 
2268 	void (*update_curr)(struct rq *rq);
2269 
2270 #ifdef CONFIG_FAIR_GROUP_SCHED
2271 	void (*task_change_group)(struct task_struct *p);
2272 #endif
2273 
2274 #ifdef CONFIG_SCHED_CORE
2275 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2276 #endif
2277 };
2278 
2279 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2280 {
2281 	WARN_ON_ONCE(rq->curr != prev);
2282 	prev->sched_class->put_prev_task(rq, prev);
2283 }
2284 
2285 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2286 {
2287 	next->sched_class->set_next_task(rq, next, false);
2288 }
2289 
2290 
2291 /*
2292  * Helper to define a sched_class instance; each one is placed in a separate
2293  * section which is ordered by the linker script:
2294  *
2295  *   include/asm-generic/vmlinux.lds.h
2296  *
2297  * *CAREFUL* they are laid out in *REVERSE* order!!!
2298  *
2299  * Also enforce alignment on the instance, not the type, to guarantee layout.
2300  */
2301 #define DEFINE_SCHED_CLASS(name) \
2302 const struct sched_class name##_sched_class \
2303 	__aligned(__alignof__(struct sched_class)) \
2304 	__section("__" #name "_sched_class")
2305 
2306 /* Defined in include/asm-generic/vmlinux.lds.h */
2307 extern struct sched_class __sched_class_highest[];
2308 extern struct sched_class __sched_class_lowest[];
2309 
2310 #define for_class_range(class, _from, _to) \
2311 	for (class = (_from); class < (_to); class++)
2312 
2313 #define for_each_class(class) \
2314 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2315 
2316 #define sched_class_above(_a, _b)	((_a) < (_b))
2317 
2318 extern const struct sched_class stop_sched_class;
2319 extern const struct sched_class dl_sched_class;
2320 extern const struct sched_class rt_sched_class;
2321 extern const struct sched_class fair_sched_class;
2322 extern const struct sched_class idle_sched_class;
2323 
2324 static inline bool sched_stop_runnable(struct rq *rq)
2325 {
2326 	return rq->stop && task_on_rq_queued(rq->stop);
2327 }
2328 
2329 static inline bool sched_dl_runnable(struct rq *rq)
2330 {
2331 	return rq->dl.dl_nr_running > 0;
2332 }
2333 
2334 static inline bool sched_rt_runnable(struct rq *rq)
2335 {
2336 	return rq->rt.rt_queued > 0;
2337 }
2338 
2339 static inline bool sched_fair_runnable(struct rq *rq)
2340 {
2341 	return rq->cfs.nr_running > 0;
2342 }
2343 
2344 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2345 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2346 
2347 #define SCA_CHECK		0x01
2348 #define SCA_MIGRATE_DISABLE	0x02
2349 #define SCA_MIGRATE_ENABLE	0x04
2350 #define SCA_USER		0x08
2351 
2352 #ifdef CONFIG_SMP
2353 
2354 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2355 
2356 extern void trigger_load_balance(struct rq *rq);
2357 
2358 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2359 
2360 static inline struct task_struct *get_push_task(struct rq *rq)
2361 {
2362 	struct task_struct *p = rq->curr;
2363 
2364 	lockdep_assert_rq_held(rq);
2365 
2366 	if (rq->push_busy)
2367 		return NULL;
2368 
2369 	if (p->nr_cpus_allowed == 1)
2370 		return NULL;
2371 
2372 	if (p->migration_disabled)
2373 		return NULL;
2374 
2375 	rq->push_busy = true;
2376 	return get_task_struct(p);
2377 }
2378 
2379 extern int push_cpu_stop(void *arg);
2380 
2381 #endif
2382 
2383 #ifdef CONFIG_CPU_IDLE
2384 static inline void idle_set_state(struct rq *rq,
2385 				  struct cpuidle_state *idle_state)
2386 {
2387 	rq->idle_state = idle_state;
2388 }
2389 
2390 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2391 {
2392 	SCHED_WARN_ON(!rcu_read_lock_held());
2393 
2394 	return rq->idle_state;
2395 }
2396 #else
2397 static inline void idle_set_state(struct rq *rq,
2398 				  struct cpuidle_state *idle_state)
2399 {
2400 }
2401 
2402 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2403 {
2404 	return NULL;
2405 }
2406 #endif
2407 
2408 extern void schedule_idle(void);
2409 asmlinkage void schedule_user(void);
2410 
2411 extern void sysrq_sched_debug_show(void);
2412 extern void sched_init_granularity(void);
2413 extern void update_max_interval(void);
2414 
2415 extern void init_sched_dl_class(void);
2416 extern void init_sched_rt_class(void);
2417 extern void init_sched_fair_class(void);
2418 
2419 extern void reweight_task(struct task_struct *p, int prio);
2420 
2421 extern void resched_curr(struct rq *rq);
2422 extern void resched_cpu(int cpu);
2423 
2424 extern struct rt_bandwidth def_rt_bandwidth;
2425 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2426 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2427 
2428 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2429 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2430 
2431 #define BW_SHIFT		20
2432 #define BW_UNIT			(1 << BW_SHIFT)
2433 #define RATIO_SHIFT		8
2434 #define MAX_BW_BITS		(64 - BW_SHIFT)
2435 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2436 unsigned long to_ratio(u64 period, u64 runtime);
2437 
2438 extern void init_entity_runnable_average(struct sched_entity *se);
2439 extern void post_init_entity_util_avg(struct task_struct *p);
2440 
2441 #ifdef CONFIG_NO_HZ_FULL
2442 extern bool sched_can_stop_tick(struct rq *rq);
2443 extern int __init sched_tick_offload_init(void);
2444 
2445 /*
2446  * Tick may be needed by tasks in the runqueue depending on their policy and
2447  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2448  * nohz mode if necessary.
2449  */
2450 static inline void sched_update_tick_dependency(struct rq *rq)
2451 {
2452 	int cpu = cpu_of(rq);
2453 
2454 	if (!tick_nohz_full_cpu(cpu))
2455 		return;
2456 
2457 	if (sched_can_stop_tick(rq))
2458 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2459 	else
2460 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2461 }
2462 #else
2463 static inline int sched_tick_offload_init(void) { return 0; }
2464 static inline void sched_update_tick_dependency(struct rq *rq) { }
2465 #endif
2466 
2467 static inline void add_nr_running(struct rq *rq, unsigned count)
2468 {
2469 	unsigned prev_nr = rq->nr_running;
2470 
2471 	rq->nr_running = prev_nr + count;
2472 	if (trace_sched_update_nr_running_tp_enabled()) {
2473 		call_trace_sched_update_nr_running(rq, count);
2474 	}
2475 
2476 #ifdef CONFIG_SMP
2477 	if (prev_nr < 2 && rq->nr_running >= 2) {
2478 		if (!READ_ONCE(rq->rd->overload))
2479 			WRITE_ONCE(rq->rd->overload, 1);
2480 	}
2481 #endif
2482 
2483 	sched_update_tick_dependency(rq);
2484 }
2485 
2486 static inline void sub_nr_running(struct rq *rq, unsigned count)
2487 {
2488 	rq->nr_running -= count;
2489 	if (trace_sched_update_nr_running_tp_enabled()) {
2490 		call_trace_sched_update_nr_running(rq, -count);
2491 	}
2492 
2493 	/* Check if we still need preemption */
2494 	sched_update_tick_dependency(rq);
2495 }
2496 
2497 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2498 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2499 
2500 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2501 
2502 #ifdef CONFIG_PREEMPT_RT
2503 #define SCHED_NR_MIGRATE_BREAK 8
2504 #else
2505 #define SCHED_NR_MIGRATE_BREAK 32
2506 #endif
2507 
2508 extern const_debug unsigned int sysctl_sched_nr_migrate;
2509 extern const_debug unsigned int sysctl_sched_migration_cost;
2510 
2511 extern unsigned int sysctl_sched_base_slice;
2512 
2513 #ifdef CONFIG_SCHED_DEBUG
2514 extern int sysctl_resched_latency_warn_ms;
2515 extern int sysctl_resched_latency_warn_once;
2516 
2517 extern unsigned int sysctl_sched_tunable_scaling;
2518 
2519 extern unsigned int sysctl_numa_balancing_scan_delay;
2520 extern unsigned int sysctl_numa_balancing_scan_period_min;
2521 extern unsigned int sysctl_numa_balancing_scan_period_max;
2522 extern unsigned int sysctl_numa_balancing_scan_size;
2523 extern unsigned int sysctl_numa_balancing_hot_threshold;
2524 #endif
2525 
2526 #ifdef CONFIG_SCHED_HRTICK
2527 
2528 /*
2529  * Use hrtick when:
2530  *  - enabled by features
2531  *  - hrtimer is actually high res
2532  */
2533 static inline int hrtick_enabled(struct rq *rq)
2534 {
2535 	if (!cpu_active(cpu_of(rq)))
2536 		return 0;
2537 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2538 }
2539 
2540 static inline int hrtick_enabled_fair(struct rq *rq)
2541 {
2542 	if (!sched_feat(HRTICK))
2543 		return 0;
2544 	return hrtick_enabled(rq);
2545 }
2546 
2547 static inline int hrtick_enabled_dl(struct rq *rq)
2548 {
2549 	if (!sched_feat(HRTICK_DL))
2550 		return 0;
2551 	return hrtick_enabled(rq);
2552 }
2553 
2554 void hrtick_start(struct rq *rq, u64 delay);
2555 
2556 #else
2557 
2558 static inline int hrtick_enabled_fair(struct rq *rq)
2559 {
2560 	return 0;
2561 }
2562 
2563 static inline int hrtick_enabled_dl(struct rq *rq)
2564 {
2565 	return 0;
2566 }
2567 
2568 static inline int hrtick_enabled(struct rq *rq)
2569 {
2570 	return 0;
2571 }
2572 
2573 #endif /* CONFIG_SCHED_HRTICK */
2574 
2575 #ifndef arch_scale_freq_tick
2576 static __always_inline
2577 void arch_scale_freq_tick(void)
2578 {
2579 }
2580 #endif
2581 
2582 #ifndef arch_scale_freq_capacity
2583 /**
2584  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2585  * @cpu: the CPU in question.
2586  *
2587  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2588  *
2589  *     f_curr
2590  *     ------ * SCHED_CAPACITY_SCALE
2591  *     f_max
2592  */
2593 static __always_inline
2594 unsigned long arch_scale_freq_capacity(int cpu)
2595 {
2596 	return SCHED_CAPACITY_SCALE;
2597 }
2598 #endif
2599 
2600 #ifdef CONFIG_SCHED_DEBUG
2601 /*
2602  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2603  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2604  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2605  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2606  */
2607 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2608 {
2609 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2610 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2611 #ifdef CONFIG_SMP
2612 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2613 #endif
2614 }
2615 #else
2616 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2617 #endif
2618 
2619 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2620 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2621 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2622 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2623   _lock; return _t; }
2624 
2625 #ifdef CONFIG_SMP
2626 
2627 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2628 {
2629 #ifdef CONFIG_SCHED_CORE
2630 	/*
2631 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2632 	 * order by core-id first and cpu-id second.
2633 	 *
2634 	 * Notably:
2635 	 *
2636 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2637 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2638 	 *
2639 	 * when only cpu-id is considered.
2640 	 */
2641 	if (rq1->core->cpu < rq2->core->cpu)
2642 		return true;
2643 	if (rq1->core->cpu > rq2->core->cpu)
2644 		return false;
2645 
2646 	/*
2647 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2648 	 */
2649 #endif
2650 	return rq1->cpu < rq2->cpu;
2651 }
2652 
2653 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2654 
2655 #ifdef CONFIG_PREEMPTION
2656 
2657 /*
2658  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2659  * way at the expense of forcing extra atomic operations in all
2660  * invocations.  This assures that the double_lock is acquired using the
2661  * same underlying policy as the spinlock_t on this architecture, which
2662  * reduces latency compared to the unfair variant below.  However, it
2663  * also adds more overhead and therefore may reduce throughput.
2664  */
2665 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2666 	__releases(this_rq->lock)
2667 	__acquires(busiest->lock)
2668 	__acquires(this_rq->lock)
2669 {
2670 	raw_spin_rq_unlock(this_rq);
2671 	double_rq_lock(this_rq, busiest);
2672 
2673 	return 1;
2674 }
2675 
2676 #else
2677 /*
2678  * Unfair double_lock_balance: Optimizes throughput at the expense of
2679  * latency by eliminating extra atomic operations when the locks are
2680  * already in proper order on entry.  This favors lower CPU-ids and will
2681  * grant the double lock to lower CPUs over higher ids under contention,
2682  * regardless of entry order into the function.
2683  */
2684 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2685 	__releases(this_rq->lock)
2686 	__acquires(busiest->lock)
2687 	__acquires(this_rq->lock)
2688 {
2689 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2690 	    likely(raw_spin_rq_trylock(busiest))) {
2691 		double_rq_clock_clear_update(this_rq, busiest);
2692 		return 0;
2693 	}
2694 
2695 	if (rq_order_less(this_rq, busiest)) {
2696 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2697 		double_rq_clock_clear_update(this_rq, busiest);
2698 		return 0;
2699 	}
2700 
2701 	raw_spin_rq_unlock(this_rq);
2702 	double_rq_lock(this_rq, busiest);
2703 
2704 	return 1;
2705 }
2706 
2707 #endif /* CONFIG_PREEMPTION */
2708 
2709 /*
2710  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2711  */
2712 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2713 {
2714 	lockdep_assert_irqs_disabled();
2715 
2716 	return _double_lock_balance(this_rq, busiest);
2717 }
2718 
2719 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2720 	__releases(busiest->lock)
2721 {
2722 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2723 		raw_spin_rq_unlock(busiest);
2724 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2725 }
2726 
2727 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2728 {
2729 	if (l1 > l2)
2730 		swap(l1, l2);
2731 
2732 	spin_lock(l1);
2733 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2734 }
2735 
2736 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2737 {
2738 	if (l1 > l2)
2739 		swap(l1, l2);
2740 
2741 	spin_lock_irq(l1);
2742 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2743 }
2744 
2745 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2746 {
2747 	if (l1 > l2)
2748 		swap(l1, l2);
2749 
2750 	raw_spin_lock(l1);
2751 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2752 }
2753 
2754 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2755 {
2756 	raw_spin_unlock(l1);
2757 	raw_spin_unlock(l2);
2758 }
2759 
2760 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2761 		    double_raw_lock(_T->lock, _T->lock2),
2762 		    double_raw_unlock(_T->lock, _T->lock2))
2763 
2764 /*
2765  * double_rq_unlock - safely unlock two runqueues
2766  *
2767  * Note this does not restore interrupts like task_rq_unlock,
2768  * you need to do so manually after calling.
2769  */
2770 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2771 	__releases(rq1->lock)
2772 	__releases(rq2->lock)
2773 {
2774 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2775 		raw_spin_rq_unlock(rq2);
2776 	else
2777 		__release(rq2->lock);
2778 	raw_spin_rq_unlock(rq1);
2779 }
2780 
2781 extern void set_rq_online (struct rq *rq);
2782 extern void set_rq_offline(struct rq *rq);
2783 extern bool sched_smp_initialized;
2784 
2785 #else /* CONFIG_SMP */
2786 
2787 /*
2788  * double_rq_lock - safely lock two runqueues
2789  *
2790  * Note this does not disable interrupts like task_rq_lock,
2791  * you need to do so manually before calling.
2792  */
2793 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2794 	__acquires(rq1->lock)
2795 	__acquires(rq2->lock)
2796 {
2797 	WARN_ON_ONCE(!irqs_disabled());
2798 	WARN_ON_ONCE(rq1 != rq2);
2799 	raw_spin_rq_lock(rq1);
2800 	__acquire(rq2->lock);	/* Fake it out ;) */
2801 	double_rq_clock_clear_update(rq1, rq2);
2802 }
2803 
2804 /*
2805  * double_rq_unlock - safely unlock two runqueues
2806  *
2807  * Note this does not restore interrupts like task_rq_unlock,
2808  * you need to do so manually after calling.
2809  */
2810 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2811 	__releases(rq1->lock)
2812 	__releases(rq2->lock)
2813 {
2814 	WARN_ON_ONCE(rq1 != rq2);
2815 	raw_spin_rq_unlock(rq1);
2816 	__release(rq2->lock);
2817 }
2818 
2819 #endif
2820 
2821 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2822 		    double_rq_lock(_T->lock, _T->lock2),
2823 		    double_rq_unlock(_T->lock, _T->lock2))
2824 
2825 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2826 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2827 
2828 #ifdef	CONFIG_SCHED_DEBUG
2829 extern bool sched_debug_verbose;
2830 
2831 extern void print_cfs_stats(struct seq_file *m, int cpu);
2832 extern void print_rt_stats(struct seq_file *m, int cpu);
2833 extern void print_dl_stats(struct seq_file *m, int cpu);
2834 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2835 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2836 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2837 
2838 extern void resched_latency_warn(int cpu, u64 latency);
2839 #ifdef CONFIG_NUMA_BALANCING
2840 extern void
2841 show_numa_stats(struct task_struct *p, struct seq_file *m);
2842 extern void
2843 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2844 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2845 #endif /* CONFIG_NUMA_BALANCING */
2846 #else
2847 static inline void resched_latency_warn(int cpu, u64 latency) {}
2848 #endif /* CONFIG_SCHED_DEBUG */
2849 
2850 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2851 extern void init_rt_rq(struct rt_rq *rt_rq);
2852 extern void init_dl_rq(struct dl_rq *dl_rq);
2853 
2854 extern void cfs_bandwidth_usage_inc(void);
2855 extern void cfs_bandwidth_usage_dec(void);
2856 
2857 #ifdef CONFIG_NO_HZ_COMMON
2858 #define NOHZ_BALANCE_KICK_BIT	0
2859 #define NOHZ_STATS_KICK_BIT	1
2860 #define NOHZ_NEWILB_KICK_BIT	2
2861 #define NOHZ_NEXT_KICK_BIT	3
2862 
2863 /* Run rebalance_domains() */
2864 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2865 /* Update blocked load */
2866 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2867 /* Update blocked load when entering idle */
2868 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2869 /* Update nohz.next_balance */
2870 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2871 
2872 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2873 
2874 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2875 
2876 extern void nohz_balance_exit_idle(struct rq *rq);
2877 #else
2878 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2879 #endif
2880 
2881 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2882 extern void nohz_run_idle_balance(int cpu);
2883 #else
2884 static inline void nohz_run_idle_balance(int cpu) { }
2885 #endif
2886 
2887 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2888 struct irqtime {
2889 	u64			total;
2890 	u64			tick_delta;
2891 	u64			irq_start_time;
2892 	struct u64_stats_sync	sync;
2893 };
2894 
2895 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2896 
2897 /*
2898  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2899  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2900  * and never move forward.
2901  */
2902 static inline u64 irq_time_read(int cpu)
2903 {
2904 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2905 	unsigned int seq;
2906 	u64 total;
2907 
2908 	do {
2909 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2910 		total = irqtime->total;
2911 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2912 
2913 	return total;
2914 }
2915 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2916 
2917 #ifdef CONFIG_CPU_FREQ
2918 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2919 
2920 /**
2921  * cpufreq_update_util - Take a note about CPU utilization changes.
2922  * @rq: Runqueue to carry out the update for.
2923  * @flags: Update reason flags.
2924  *
2925  * This function is called by the scheduler on the CPU whose utilization is
2926  * being updated.
2927  *
2928  * It can only be called from RCU-sched read-side critical sections.
2929  *
2930  * The way cpufreq is currently arranged requires it to evaluate the CPU
2931  * performance state (frequency/voltage) on a regular basis to prevent it from
2932  * being stuck in a completely inadequate performance level for too long.
2933  * That is not guaranteed to happen if the updates are only triggered from CFS
2934  * and DL, though, because they may not be coming in if only RT tasks are
2935  * active all the time (or there are RT tasks only).
2936  *
2937  * As a workaround for that issue, this function is called periodically by the
2938  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2939  * but that really is a band-aid.  Going forward it should be replaced with
2940  * solutions targeted more specifically at RT tasks.
2941  */
2942 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2943 {
2944 	struct update_util_data *data;
2945 
2946 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2947 						  cpu_of(rq)));
2948 	if (data)
2949 		data->func(data, rq_clock(rq), flags);
2950 }
2951 #else
2952 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2953 #endif /* CONFIG_CPU_FREQ */
2954 
2955 #ifdef arch_scale_freq_capacity
2956 # ifndef arch_scale_freq_invariant
2957 #  define arch_scale_freq_invariant()	true
2958 # endif
2959 #else
2960 # define arch_scale_freq_invariant()	false
2961 #endif
2962 
2963 #ifdef CONFIG_SMP
2964 /**
2965  * enum cpu_util_type - CPU utilization type
2966  * @FREQUENCY_UTIL:	Utilization used to select frequency
2967  * @ENERGY_UTIL:	Utilization used during energy calculation
2968  *
2969  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2970  * need to be aggregated differently depending on the usage made of them. This
2971  * enum is used within effective_cpu_util() to differentiate the types of
2972  * utilization expected by the callers, and adjust the aggregation accordingly.
2973  */
2974 enum cpu_util_type {
2975 	FREQUENCY_UTIL,
2976 	ENERGY_UTIL,
2977 };
2978 
2979 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2980 				 enum cpu_util_type type,
2981 				 struct task_struct *p);
2982 
2983 /*
2984  * Verify the fitness of task @p to run on @cpu taking into account the
2985  * CPU original capacity and the runtime/deadline ratio of the task.
2986  *
2987  * The function will return true if the original capacity of @cpu is
2988  * greater than or equal to task's deadline density right shifted by
2989  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2990  */
2991 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2992 {
2993 	unsigned long cap = arch_scale_cpu_capacity(cpu);
2994 
2995 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2996 }
2997 
2998 static inline unsigned long cpu_bw_dl(struct rq *rq)
2999 {
3000 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3001 }
3002 
3003 static inline unsigned long cpu_util_dl(struct rq *rq)
3004 {
3005 	return READ_ONCE(rq->avg_dl.util_avg);
3006 }
3007 
3008 
3009 extern unsigned long cpu_util_cfs(int cpu);
3010 extern unsigned long cpu_util_cfs_boost(int cpu);
3011 
3012 static inline unsigned long cpu_util_rt(struct rq *rq)
3013 {
3014 	return READ_ONCE(rq->avg_rt.util_avg);
3015 }
3016 #endif
3017 
3018 #ifdef CONFIG_UCLAMP_TASK
3019 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3020 
3021 static inline unsigned long uclamp_rq_get(struct rq *rq,
3022 					  enum uclamp_id clamp_id)
3023 {
3024 	return READ_ONCE(rq->uclamp[clamp_id].value);
3025 }
3026 
3027 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3028 				 unsigned int value)
3029 {
3030 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3031 }
3032 
3033 static inline bool uclamp_rq_is_idle(struct rq *rq)
3034 {
3035 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3036 }
3037 
3038 /**
3039  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3040  * @rq:		The rq to clamp against. Must not be NULL.
3041  * @util:	The util value to clamp.
3042  * @p:		The task to clamp against. Can be NULL if you want to clamp
3043  *		against @rq only.
3044  *
3045  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3046  *
3047  * If sched_uclamp_used static key is disabled, then just return the util
3048  * without any clamping since uclamp aggregation at the rq level in the fast
3049  * path is disabled, rendering this operation a NOP.
3050  *
3051  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3052  * will return the correct effective uclamp value of the task even if the
3053  * static key is disabled.
3054  */
3055 static __always_inline
3056 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3057 				  struct task_struct *p)
3058 {
3059 	unsigned long min_util = 0;
3060 	unsigned long max_util = 0;
3061 
3062 	if (!static_branch_likely(&sched_uclamp_used))
3063 		return util;
3064 
3065 	if (p) {
3066 		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3067 		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3068 
3069 		/*
3070 		 * Ignore last runnable task's max clamp, as this task will
3071 		 * reset it. Similarly, no need to read the rq's min clamp.
3072 		 */
3073 		if (uclamp_rq_is_idle(rq))
3074 			goto out;
3075 	}
3076 
3077 	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3078 	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3079 out:
3080 	/*
3081 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3082 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3083 	 * inversion. Fix it now when the clamps are applied.
3084 	 */
3085 	if (unlikely(min_util >= max_util))
3086 		return min_util;
3087 
3088 	return clamp(util, min_util, max_util);
3089 }
3090 
3091 /* Is the rq being capped/throttled by uclamp_max? */
3092 static inline bool uclamp_rq_is_capped(struct rq *rq)
3093 {
3094 	unsigned long rq_util;
3095 	unsigned long max_util;
3096 
3097 	if (!static_branch_likely(&sched_uclamp_used))
3098 		return false;
3099 
3100 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3101 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3102 
3103 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3104 }
3105 
3106 /*
3107  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3108  * by default in the fast path and only gets turned on once userspace performs
3109  * an operation that requires it.
3110  *
3111  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3112  * hence is active.
3113  */
3114 static inline bool uclamp_is_used(void)
3115 {
3116 	return static_branch_likely(&sched_uclamp_used);
3117 }
3118 #else /* CONFIG_UCLAMP_TASK */
3119 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3120 					     enum uclamp_id clamp_id)
3121 {
3122 	if (clamp_id == UCLAMP_MIN)
3123 		return 0;
3124 
3125 	return SCHED_CAPACITY_SCALE;
3126 }
3127 
3128 static inline
3129 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3130 				  struct task_struct *p)
3131 {
3132 	return util;
3133 }
3134 
3135 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3136 
3137 static inline bool uclamp_is_used(void)
3138 {
3139 	return false;
3140 }
3141 
3142 static inline unsigned long uclamp_rq_get(struct rq *rq,
3143 					  enum uclamp_id clamp_id)
3144 {
3145 	if (clamp_id == UCLAMP_MIN)
3146 		return 0;
3147 
3148 	return SCHED_CAPACITY_SCALE;
3149 }
3150 
3151 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3152 				 unsigned int value)
3153 {
3154 }
3155 
3156 static inline bool uclamp_rq_is_idle(struct rq *rq)
3157 {
3158 	return false;
3159 }
3160 #endif /* CONFIG_UCLAMP_TASK */
3161 
3162 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3163 static inline unsigned long cpu_util_irq(struct rq *rq)
3164 {
3165 	return rq->avg_irq.util_avg;
3166 }
3167 
3168 static inline
3169 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3170 {
3171 	util *= (max - irq);
3172 	util /= max;
3173 
3174 	return util;
3175 
3176 }
3177 #else
3178 static inline unsigned long cpu_util_irq(struct rq *rq)
3179 {
3180 	return 0;
3181 }
3182 
3183 static inline
3184 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3185 {
3186 	return util;
3187 }
3188 #endif
3189 
3190 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3191 
3192 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3193 
3194 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3195 
3196 static inline bool sched_energy_enabled(void)
3197 {
3198 	return static_branch_unlikely(&sched_energy_present);
3199 }
3200 
3201 extern struct cpufreq_governor schedutil_gov;
3202 
3203 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3204 
3205 #define perf_domain_span(pd) NULL
3206 static inline bool sched_energy_enabled(void) { return false; }
3207 
3208 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3209 
3210 #ifdef CONFIG_MEMBARRIER
3211 /*
3212  * The scheduler provides memory barriers required by membarrier between:
3213  * - prior user-space memory accesses and store to rq->membarrier_state,
3214  * - store to rq->membarrier_state and following user-space memory accesses.
3215  * In the same way it provides those guarantees around store to rq->curr.
3216  */
3217 static inline void membarrier_switch_mm(struct rq *rq,
3218 					struct mm_struct *prev_mm,
3219 					struct mm_struct *next_mm)
3220 {
3221 	int membarrier_state;
3222 
3223 	if (prev_mm == next_mm)
3224 		return;
3225 
3226 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3227 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3228 		return;
3229 
3230 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3231 }
3232 #else
3233 static inline void membarrier_switch_mm(struct rq *rq,
3234 					struct mm_struct *prev_mm,
3235 					struct mm_struct *next_mm)
3236 {
3237 }
3238 #endif
3239 
3240 #ifdef CONFIG_SMP
3241 static inline bool is_per_cpu_kthread(struct task_struct *p)
3242 {
3243 	if (!(p->flags & PF_KTHREAD))
3244 		return false;
3245 
3246 	if (p->nr_cpus_allowed != 1)
3247 		return false;
3248 
3249 	return true;
3250 }
3251 #endif
3252 
3253 extern void swake_up_all_locked(struct swait_queue_head *q);
3254 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3255 
3256 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3257 
3258 #ifdef CONFIG_PREEMPT_DYNAMIC
3259 extern int preempt_dynamic_mode;
3260 extern int sched_dynamic_mode(const char *str);
3261 extern void sched_dynamic_update(int mode);
3262 #endif
3263 
3264 static inline void update_current_exec_runtime(struct task_struct *curr,
3265 						u64 now, u64 delta_exec)
3266 {
3267 	curr->se.sum_exec_runtime += delta_exec;
3268 	account_group_exec_runtime(curr, delta_exec);
3269 
3270 	curr->se.exec_start = now;
3271 	cgroup_account_cputime(curr, delta_exec);
3272 }
3273 
3274 #ifdef CONFIG_SCHED_MM_CID
3275 
3276 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3277 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3278 
3279 extern raw_spinlock_t cid_lock;
3280 extern int use_cid_lock;
3281 
3282 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3283 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3284 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3285 extern void init_sched_mm_cid(struct task_struct *t);
3286 
3287 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3288 {
3289 	if (cid < 0)
3290 		return;
3291 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3292 }
3293 
3294 /*
3295  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3296  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3297  * be held to transition to other states.
3298  *
3299  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3300  * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3301  */
3302 static inline void mm_cid_put_lazy(struct task_struct *t)
3303 {
3304 	struct mm_struct *mm = t->mm;
3305 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3306 	int cid;
3307 
3308 	lockdep_assert_irqs_disabled();
3309 	cid = __this_cpu_read(pcpu_cid->cid);
3310 	if (!mm_cid_is_lazy_put(cid) ||
3311 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3312 		return;
3313 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3314 }
3315 
3316 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3317 {
3318 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3319 	int cid, res;
3320 
3321 	lockdep_assert_irqs_disabled();
3322 	cid = __this_cpu_read(pcpu_cid->cid);
3323 	for (;;) {
3324 		if (mm_cid_is_unset(cid))
3325 			return MM_CID_UNSET;
3326 		/*
3327 		 * Attempt transition from valid or lazy-put to unset.
3328 		 */
3329 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3330 		if (res == cid)
3331 			break;
3332 		cid = res;
3333 	}
3334 	return cid;
3335 }
3336 
3337 static inline void mm_cid_put(struct mm_struct *mm)
3338 {
3339 	int cid;
3340 
3341 	lockdep_assert_irqs_disabled();
3342 	cid = mm_cid_pcpu_unset(mm);
3343 	if (cid == MM_CID_UNSET)
3344 		return;
3345 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3346 }
3347 
3348 static inline int __mm_cid_try_get(struct mm_struct *mm)
3349 {
3350 	struct cpumask *cpumask;
3351 	int cid;
3352 
3353 	cpumask = mm_cidmask(mm);
3354 	/*
3355 	 * Retry finding first zero bit if the mask is temporarily
3356 	 * filled. This only happens during concurrent remote-clear
3357 	 * which owns a cid without holding a rq lock.
3358 	 */
3359 	for (;;) {
3360 		cid = cpumask_first_zero(cpumask);
3361 		if (cid < nr_cpu_ids)
3362 			break;
3363 		cpu_relax();
3364 	}
3365 	if (cpumask_test_and_set_cpu(cid, cpumask))
3366 		return -1;
3367 	return cid;
3368 }
3369 
3370 /*
3371  * Save a snapshot of the current runqueue time of this cpu
3372  * with the per-cpu cid value, allowing to estimate how recently it was used.
3373  */
3374 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3375 {
3376 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3377 
3378 	lockdep_assert_rq_held(rq);
3379 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3380 }
3381 
3382 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3383 {
3384 	int cid;
3385 
3386 	/*
3387 	 * All allocations (even those using the cid_lock) are lock-free. If
3388 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3389 	 * guarantee forward progress.
3390 	 */
3391 	if (!READ_ONCE(use_cid_lock)) {
3392 		cid = __mm_cid_try_get(mm);
3393 		if (cid >= 0)
3394 			goto end;
3395 		raw_spin_lock(&cid_lock);
3396 	} else {
3397 		raw_spin_lock(&cid_lock);
3398 		cid = __mm_cid_try_get(mm);
3399 		if (cid >= 0)
3400 			goto unlock;
3401 	}
3402 
3403 	/*
3404 	 * cid concurrently allocated. Retry while forcing following
3405 	 * allocations to use the cid_lock to ensure forward progress.
3406 	 */
3407 	WRITE_ONCE(use_cid_lock, 1);
3408 	/*
3409 	 * Set use_cid_lock before allocation. Only care about program order
3410 	 * because this is only required for forward progress.
3411 	 */
3412 	barrier();
3413 	/*
3414 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3415 	 * all newcoming allocations observe the use_cid_lock flag set.
3416 	 */
3417 	do {
3418 		cid = __mm_cid_try_get(mm);
3419 		cpu_relax();
3420 	} while (cid < 0);
3421 	/*
3422 	 * Allocate before clearing use_cid_lock. Only care about
3423 	 * program order because this is for forward progress.
3424 	 */
3425 	barrier();
3426 	WRITE_ONCE(use_cid_lock, 0);
3427 unlock:
3428 	raw_spin_unlock(&cid_lock);
3429 end:
3430 	mm_cid_snapshot_time(rq, mm);
3431 	return cid;
3432 }
3433 
3434 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3435 {
3436 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3437 	struct cpumask *cpumask;
3438 	int cid;
3439 
3440 	lockdep_assert_rq_held(rq);
3441 	cpumask = mm_cidmask(mm);
3442 	cid = __this_cpu_read(pcpu_cid->cid);
3443 	if (mm_cid_is_valid(cid)) {
3444 		mm_cid_snapshot_time(rq, mm);
3445 		return cid;
3446 	}
3447 	if (mm_cid_is_lazy_put(cid)) {
3448 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3449 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3450 	}
3451 	cid = __mm_cid_get(rq, mm);
3452 	__this_cpu_write(pcpu_cid->cid, cid);
3453 	return cid;
3454 }
3455 
3456 static inline void switch_mm_cid(struct rq *rq,
3457 				 struct task_struct *prev,
3458 				 struct task_struct *next)
3459 {
3460 	/*
3461 	 * Provide a memory barrier between rq->curr store and load of
3462 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3463 	 *
3464 	 * Should be adapted if context_switch() is modified.
3465 	 */
3466 	if (!next->mm) {                                // to kernel
3467 		/*
3468 		 * user -> kernel transition does not guarantee a barrier, but
3469 		 * we can use the fact that it performs an atomic operation in
3470 		 * mmgrab().
3471 		 */
3472 		if (prev->mm)                           // from user
3473 			smp_mb__after_mmgrab();
3474 		/*
3475 		 * kernel -> kernel transition does not change rq->curr->mm
3476 		 * state. It stays NULL.
3477 		 */
3478 	} else {                                        // to user
3479 		/*
3480 		 * kernel -> user transition does not provide a barrier
3481 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3482 		 * Provide it here.
3483 		 */
3484 		if (!prev->mm)                          // from kernel
3485 			smp_mb();
3486 		/*
3487 		 * user -> user transition guarantees a memory barrier through
3488 		 * switch_mm() when current->mm changes. If current->mm is
3489 		 * unchanged, no barrier is needed.
3490 		 */
3491 	}
3492 	if (prev->mm_cid_active) {
3493 		mm_cid_snapshot_time(rq, prev->mm);
3494 		mm_cid_put_lazy(prev);
3495 		prev->mm_cid = -1;
3496 	}
3497 	if (next->mm_cid_active)
3498 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3499 }
3500 
3501 #else
3502 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3503 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3504 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3505 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3506 static inline void init_sched_mm_cid(struct task_struct *t) { }
3507 #endif
3508 
3509 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3510 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3511 
3512 #endif /* _KERNEL_SCHED_SCHED_H */
3513