xref: /linux/kernel/sched/sched.h (revision 86287543715ac2a6d92d561cc105d79306511457)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6 
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35 
36 #include <uapi/linux/sched/types.h>
37 
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68 
69 #include <asm/tlb.h>
70 
71 #ifdef CONFIG_PARAVIRT
72 # include <asm/paravirt.h>
73 #endif
74 
75 #include "cpupri.h"
76 #include "cpudeadline.h"
77 
78 #ifdef CONFIG_SCHED_DEBUG
79 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
80 #else
81 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
82 #endif
83 
84 struct rq;
85 struct cpuidle_state;
86 
87 /* task_struct::on_rq states: */
88 #define TASK_ON_RQ_QUEUED	1
89 #define TASK_ON_RQ_MIGRATING	2
90 
91 extern __read_mostly int scheduler_running;
92 
93 extern unsigned long calc_load_update;
94 extern atomic_long_t calc_load_tasks;
95 
96 extern void calc_global_load_tick(struct rq *this_rq);
97 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
98 
99 /*
100  * Helpers for converting nanosecond timing to jiffy resolution
101  */
102 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 
104 /*
105  * Increase resolution of nice-level calculations for 64-bit architectures.
106  * The extra resolution improves shares distribution and load balancing of
107  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
108  * hierarchies, especially on larger systems. This is not a user-visible change
109  * and does not change the user-interface for setting shares/weights.
110  *
111  * We increase resolution only if we have enough bits to allow this increased
112  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
113  * are pretty high and the returns do not justify the increased costs.
114  *
115  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
116  * increase coverage and consistency always enable it on 64-bit platforms.
117  */
118 #ifdef CONFIG_64BIT
119 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
120 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
121 # define scale_load_down(w) \
122 ({ \
123 	unsigned long __w = (w); \
124 	if (__w) \
125 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
126 	__w; \
127 })
128 #else
129 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
130 # define scale_load(w)		(w)
131 # define scale_load_down(w)	(w)
132 #endif
133 
134 /*
135  * Task weight (visible to users) and its load (invisible to users) have
136  * independent resolution, but they should be well calibrated. We use
137  * scale_load() and scale_load_down(w) to convert between them. The
138  * following must be true:
139  *
140  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141  *
142  */
143 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
144 
145 /*
146  * Single value that decides SCHED_DEADLINE internal math precision.
147  * 10 -> just above 1us
148  * 9  -> just above 0.5us
149  */
150 #define DL_SCALE		10
151 
152 /*
153  * Single value that denotes runtime == period, ie unlimited time.
154  */
155 #define RUNTIME_INF		((u64)~0ULL)
156 
157 static inline int idle_policy(int policy)
158 {
159 	return policy == SCHED_IDLE;
160 }
161 static inline int fair_policy(int policy)
162 {
163 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
164 }
165 
166 static inline int rt_policy(int policy)
167 {
168 	return policy == SCHED_FIFO || policy == SCHED_RR;
169 }
170 
171 static inline int dl_policy(int policy)
172 {
173 	return policy == SCHED_DEADLINE;
174 }
175 static inline bool valid_policy(int policy)
176 {
177 	return idle_policy(policy) || fair_policy(policy) ||
178 		rt_policy(policy) || dl_policy(policy);
179 }
180 
181 static inline int task_has_idle_policy(struct task_struct *p)
182 {
183 	return idle_policy(p->policy);
184 }
185 
186 static inline int task_has_rt_policy(struct task_struct *p)
187 {
188 	return rt_policy(p->policy);
189 }
190 
191 static inline int task_has_dl_policy(struct task_struct *p)
192 {
193 	return dl_policy(p->policy);
194 }
195 
196 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197 
198 /*
199  * !! For sched_setattr_nocheck() (kernel) only !!
200  *
201  * This is actually gross. :(
202  *
203  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204  * tasks, but still be able to sleep. We need this on platforms that cannot
205  * atomically change clock frequency. Remove once fast switching will be
206  * available on such platforms.
207  *
208  * SUGOV stands for SchedUtil GOVernor.
209  */
210 #define SCHED_FLAG_SUGOV	0x10000000
211 
212 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
213 {
214 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216 #else
217 	return false;
218 #endif
219 }
220 
221 /*
222  * Tells if entity @a should preempt entity @b.
223  */
224 static inline bool
225 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
226 {
227 	return dl_entity_is_special(a) ||
228 	       dl_time_before(a->deadline, b->deadline);
229 }
230 
231 /*
232  * This is the priority-queue data structure of the RT scheduling class:
233  */
234 struct rt_prio_array {
235 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 	struct list_head queue[MAX_RT_PRIO];
237 };
238 
239 struct rt_bandwidth {
240 	/* nests inside the rq lock: */
241 	raw_spinlock_t		rt_runtime_lock;
242 	ktime_t			rt_period;
243 	u64			rt_runtime;
244 	struct hrtimer		rt_period_timer;
245 	unsigned int		rt_period_active;
246 };
247 
248 void __dl_clear_params(struct task_struct *p);
249 
250 /*
251  * To keep the bandwidth of -deadline tasks and groups under control
252  * we need some place where:
253  *  - store the maximum -deadline bandwidth of the system (the group);
254  *  - cache the fraction of that bandwidth that is currently allocated.
255  *
256  * This is all done in the data structure below. It is similar to the
257  * one used for RT-throttling (rt_bandwidth), with the main difference
258  * that, since here we are only interested in admission control, we
259  * do not decrease any runtime while the group "executes", neither we
260  * need a timer to replenish it.
261  *
262  * With respect to SMP, the bandwidth is given on a per-CPU basis,
263  * meaning that:
264  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265  *  - dl_total_bw array contains, in the i-eth element, the currently
266  *    allocated bandwidth on the i-eth CPU.
267  * Moreover, groups consume bandwidth on each CPU, while tasks only
268  * consume bandwidth on the CPU they're running on.
269  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270  * that will be shown the next time the proc or cgroup controls will
271  * be red. It on its turn can be changed by writing on its own
272  * control.
273  */
274 struct dl_bandwidth {
275 	raw_spinlock_t		dl_runtime_lock;
276 	u64			dl_runtime;
277 	u64			dl_period;
278 };
279 
280 static inline int dl_bandwidth_enabled(void)
281 {
282 	return sysctl_sched_rt_runtime >= 0;
283 }
284 
285 struct dl_bw {
286 	raw_spinlock_t		lock;
287 	u64			bw;
288 	u64			total_bw;
289 };
290 
291 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
292 
293 static inline
294 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295 {
296 	dl_b->total_bw -= tsk_bw;
297 	__dl_update(dl_b, (s32)tsk_bw / cpus);
298 }
299 
300 static inline
301 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
302 {
303 	dl_b->total_bw += tsk_bw;
304 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
305 }
306 
307 static inline
308 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
309 {
310 	return dl_b->bw != -1 &&
311 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
312 }
313 
314 extern void init_dl_bw(struct dl_bw *dl_b);
315 extern int  sched_dl_global_validate(void);
316 extern void sched_dl_do_global(void);
317 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
318 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
319 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
320 extern bool __checkparam_dl(const struct sched_attr *attr);
321 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
322 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
323 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
324 extern bool dl_cpu_busy(unsigned int cpu);
325 
326 #ifdef CONFIG_CGROUP_SCHED
327 
328 #include <linux/cgroup.h>
329 #include <linux/psi.h>
330 
331 struct cfs_rq;
332 struct rt_rq;
333 
334 extern struct list_head task_groups;
335 
336 struct cfs_bandwidth {
337 #ifdef CONFIG_CFS_BANDWIDTH
338 	raw_spinlock_t		lock;
339 	ktime_t			period;
340 	u64			quota;
341 	u64			runtime;
342 	s64			hierarchical_quota;
343 
344 	u8			idle;
345 	u8			period_active;
346 	u8			distribute_running;
347 	u8			slack_started;
348 	struct hrtimer		period_timer;
349 	struct hrtimer		slack_timer;
350 	struct list_head	throttled_cfs_rq;
351 
352 	/* Statistics: */
353 	int			nr_periods;
354 	int			nr_throttled;
355 	u64			throttled_time;
356 #endif
357 };
358 
359 /* Task group related information */
360 struct task_group {
361 	struct cgroup_subsys_state css;
362 
363 #ifdef CONFIG_FAIR_GROUP_SCHED
364 	/* schedulable entities of this group on each CPU */
365 	struct sched_entity	**se;
366 	/* runqueue "owned" by this group on each CPU */
367 	struct cfs_rq		**cfs_rq;
368 	unsigned long		shares;
369 
370 #ifdef	CONFIG_SMP
371 	/*
372 	 * load_avg can be heavily contended at clock tick time, so put
373 	 * it in its own cacheline separated from the fields above which
374 	 * will also be accessed at each tick.
375 	 */
376 	atomic_long_t		load_avg ____cacheline_aligned;
377 #endif
378 #endif
379 
380 #ifdef CONFIG_RT_GROUP_SCHED
381 	struct sched_rt_entity	**rt_se;
382 	struct rt_rq		**rt_rq;
383 
384 	struct rt_bandwidth	rt_bandwidth;
385 #endif
386 
387 	struct rcu_head		rcu;
388 	struct list_head	list;
389 
390 	struct task_group	*parent;
391 	struct list_head	siblings;
392 	struct list_head	children;
393 
394 #ifdef CONFIG_SCHED_AUTOGROUP
395 	struct autogroup	*autogroup;
396 #endif
397 
398 	struct cfs_bandwidth	cfs_bandwidth;
399 
400 #ifdef CONFIG_UCLAMP_TASK_GROUP
401 	/* The two decimal precision [%] value requested from user-space */
402 	unsigned int		uclamp_pct[UCLAMP_CNT];
403 	/* Clamp values requested for a task group */
404 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
405 	/* Effective clamp values used for a task group */
406 	struct uclamp_se	uclamp[UCLAMP_CNT];
407 #endif
408 
409 };
410 
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
413 
414 /*
415  * A weight of 0 or 1 can cause arithmetics problems.
416  * A weight of a cfs_rq is the sum of weights of which entities
417  * are queued on this cfs_rq, so a weight of a entity should not be
418  * too large, so as the shares value of a task group.
419  * (The default weight is 1024 - so there's no practical
420  *  limitation from this.)
421  */
422 #define MIN_SHARES		(1UL <<  1)
423 #define MAX_SHARES		(1UL << 18)
424 #endif
425 
426 typedef int (*tg_visitor)(struct task_group *, void *);
427 
428 extern int walk_tg_tree_from(struct task_group *from,
429 			     tg_visitor down, tg_visitor up, void *data);
430 
431 /*
432  * Iterate the full tree, calling @down when first entering a node and @up when
433  * leaving it for the final time.
434  *
435  * Caller must hold rcu_lock or sufficient equivalent.
436  */
437 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
438 {
439 	return walk_tg_tree_from(&root_task_group, down, up, data);
440 }
441 
442 extern int tg_nop(struct task_group *tg, void *data);
443 
444 extern void free_fair_sched_group(struct task_group *tg);
445 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
446 extern void online_fair_sched_group(struct task_group *tg);
447 extern void unregister_fair_sched_group(struct task_group *tg);
448 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
449 			struct sched_entity *se, int cpu,
450 			struct sched_entity *parent);
451 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
452 
453 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
454 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
455 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
456 
457 extern void free_rt_sched_group(struct task_group *tg);
458 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
459 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
460 		struct sched_rt_entity *rt_se, int cpu,
461 		struct sched_rt_entity *parent);
462 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
463 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
464 extern long sched_group_rt_runtime(struct task_group *tg);
465 extern long sched_group_rt_period(struct task_group *tg);
466 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
467 
468 extern struct task_group *sched_create_group(struct task_group *parent);
469 extern void sched_online_group(struct task_group *tg,
470 			       struct task_group *parent);
471 extern void sched_destroy_group(struct task_group *tg);
472 extern void sched_offline_group(struct task_group *tg);
473 
474 extern void sched_move_task(struct task_struct *tsk);
475 
476 #ifdef CONFIG_FAIR_GROUP_SCHED
477 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
478 
479 #ifdef CONFIG_SMP
480 extern void set_task_rq_fair(struct sched_entity *se,
481 			     struct cfs_rq *prev, struct cfs_rq *next);
482 #else /* !CONFIG_SMP */
483 static inline void set_task_rq_fair(struct sched_entity *se,
484 			     struct cfs_rq *prev, struct cfs_rq *next) { }
485 #endif /* CONFIG_SMP */
486 #endif /* CONFIG_FAIR_GROUP_SCHED */
487 
488 #else /* CONFIG_CGROUP_SCHED */
489 
490 struct cfs_bandwidth { };
491 
492 #endif	/* CONFIG_CGROUP_SCHED */
493 
494 /* CFS-related fields in a runqueue */
495 struct cfs_rq {
496 	struct load_weight	load;
497 	unsigned int		nr_running;
498 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
499 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
500 
501 	u64			exec_clock;
502 	u64			min_vruntime;
503 #ifndef CONFIG_64BIT
504 	u64			min_vruntime_copy;
505 #endif
506 
507 	struct rb_root_cached	tasks_timeline;
508 
509 	/*
510 	 * 'curr' points to currently running entity on this cfs_rq.
511 	 * It is set to NULL otherwise (i.e when none are currently running).
512 	 */
513 	struct sched_entity	*curr;
514 	struct sched_entity	*next;
515 	struct sched_entity	*last;
516 	struct sched_entity	*skip;
517 
518 #ifdef	CONFIG_SCHED_DEBUG
519 	unsigned int		nr_spread_over;
520 #endif
521 
522 #ifdef CONFIG_SMP
523 	/*
524 	 * CFS load tracking
525 	 */
526 	struct sched_avg	avg;
527 #ifndef CONFIG_64BIT
528 	u64			load_last_update_time_copy;
529 #endif
530 	struct {
531 		raw_spinlock_t	lock ____cacheline_aligned;
532 		int		nr;
533 		unsigned long	load_avg;
534 		unsigned long	util_avg;
535 		unsigned long	runnable_avg;
536 	} removed;
537 
538 #ifdef CONFIG_FAIR_GROUP_SCHED
539 	unsigned long		tg_load_avg_contrib;
540 	long			propagate;
541 	long			prop_runnable_sum;
542 
543 	/*
544 	 *   h_load = weight * f(tg)
545 	 *
546 	 * Where f(tg) is the recursive weight fraction assigned to
547 	 * this group.
548 	 */
549 	unsigned long		h_load;
550 	u64			last_h_load_update;
551 	struct sched_entity	*h_load_next;
552 #endif /* CONFIG_FAIR_GROUP_SCHED */
553 #endif /* CONFIG_SMP */
554 
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
557 
558 	/*
559 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
560 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
561 	 * (like users, containers etc.)
562 	 *
563 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
564 	 * This list is used during load balance.
565 	 */
566 	int			on_list;
567 	struct list_head	leaf_cfs_rq_list;
568 	struct task_group	*tg;	/* group that "owns" this runqueue */
569 
570 #ifdef CONFIG_CFS_BANDWIDTH
571 	int			runtime_enabled;
572 	s64			runtime_remaining;
573 
574 	u64			throttled_clock;
575 	u64			throttled_clock_task;
576 	u64			throttled_clock_task_time;
577 	int			throttled;
578 	int			throttle_count;
579 	struct list_head	throttled_list;
580 #endif /* CONFIG_CFS_BANDWIDTH */
581 #endif /* CONFIG_FAIR_GROUP_SCHED */
582 };
583 
584 static inline int rt_bandwidth_enabled(void)
585 {
586 	return sysctl_sched_rt_runtime >= 0;
587 }
588 
589 /* RT IPI pull logic requires IRQ_WORK */
590 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
591 # define HAVE_RT_PUSH_IPI
592 #endif
593 
594 /* Real-Time classes' related field in a runqueue: */
595 struct rt_rq {
596 	struct rt_prio_array	active;
597 	unsigned int		rt_nr_running;
598 	unsigned int		rr_nr_running;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 	struct {
601 		int		curr; /* highest queued rt task prio */
602 #ifdef CONFIG_SMP
603 		int		next; /* next highest */
604 #endif
605 	} highest_prio;
606 #endif
607 #ifdef CONFIG_SMP
608 	unsigned long		rt_nr_migratory;
609 	unsigned long		rt_nr_total;
610 	int			overloaded;
611 	struct plist_head	pushable_tasks;
612 
613 #endif /* CONFIG_SMP */
614 	int			rt_queued;
615 
616 	int			rt_throttled;
617 	u64			rt_time;
618 	u64			rt_runtime;
619 	/* Nests inside the rq lock: */
620 	raw_spinlock_t		rt_runtime_lock;
621 
622 #ifdef CONFIG_RT_GROUP_SCHED
623 	unsigned long		rt_nr_boosted;
624 
625 	struct rq		*rq;
626 	struct task_group	*tg;
627 #endif
628 };
629 
630 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
631 {
632 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
633 }
634 
635 /* Deadline class' related fields in a runqueue */
636 struct dl_rq {
637 	/* runqueue is an rbtree, ordered by deadline */
638 	struct rb_root_cached	root;
639 
640 	unsigned long		dl_nr_running;
641 
642 #ifdef CONFIG_SMP
643 	/*
644 	 * Deadline values of the currently executing and the
645 	 * earliest ready task on this rq. Caching these facilitates
646 	 * the decision whether or not a ready but not running task
647 	 * should migrate somewhere else.
648 	 */
649 	struct {
650 		u64		curr;
651 		u64		next;
652 	} earliest_dl;
653 
654 	unsigned long		dl_nr_migratory;
655 	int			overloaded;
656 
657 	/*
658 	 * Tasks on this rq that can be pushed away. They are kept in
659 	 * an rb-tree, ordered by tasks' deadlines, with caching
660 	 * of the leftmost (earliest deadline) element.
661 	 */
662 	struct rb_root_cached	pushable_dl_tasks_root;
663 #else
664 	struct dl_bw		dl_bw;
665 #endif
666 	/*
667 	 * "Active utilization" for this runqueue: increased when a
668 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
669 	 * task blocks
670 	 */
671 	u64			running_bw;
672 
673 	/*
674 	 * Utilization of the tasks "assigned" to this runqueue (including
675 	 * the tasks that are in runqueue and the tasks that executed on this
676 	 * CPU and blocked). Increased when a task moves to this runqueue, and
677 	 * decreased when the task moves away (migrates, changes scheduling
678 	 * policy, or terminates).
679 	 * This is needed to compute the "inactive utilization" for the
680 	 * runqueue (inactive utilization = this_bw - running_bw).
681 	 */
682 	u64			this_bw;
683 	u64			extra_bw;
684 
685 	/*
686 	 * Inverse of the fraction of CPU utilization that can be reclaimed
687 	 * by the GRUB algorithm.
688 	 */
689 	u64			bw_ratio;
690 };
691 
692 #ifdef CONFIG_FAIR_GROUP_SCHED
693 /* An entity is a task if it doesn't "own" a runqueue */
694 #define entity_is_task(se)	(!se->my_q)
695 
696 static inline void se_update_runnable(struct sched_entity *se)
697 {
698 	if (!entity_is_task(se))
699 		se->runnable_weight = se->my_q->h_nr_running;
700 }
701 
702 static inline long se_runnable(struct sched_entity *se)
703 {
704 	if (entity_is_task(se))
705 		return !!se->on_rq;
706 	else
707 		return se->runnable_weight;
708 }
709 
710 #else
711 #define entity_is_task(se)	1
712 
713 static inline void se_update_runnable(struct sched_entity *se) {}
714 
715 static inline long se_runnable(struct sched_entity *se)
716 {
717 	return !!se->on_rq;
718 }
719 #endif
720 
721 #ifdef CONFIG_SMP
722 /*
723  * XXX we want to get rid of these helpers and use the full load resolution.
724  */
725 static inline long se_weight(struct sched_entity *se)
726 {
727 	return scale_load_down(se->load.weight);
728 }
729 
730 
731 static inline bool sched_asym_prefer(int a, int b)
732 {
733 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
734 }
735 
736 struct perf_domain {
737 	struct em_perf_domain *em_pd;
738 	struct perf_domain *next;
739 	struct rcu_head rcu;
740 };
741 
742 /* Scheduling group status flags */
743 #define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
744 #define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
745 
746 /*
747  * We add the notion of a root-domain which will be used to define per-domain
748  * variables. Each exclusive cpuset essentially defines an island domain by
749  * fully partitioning the member CPUs from any other cpuset. Whenever a new
750  * exclusive cpuset is created, we also create and attach a new root-domain
751  * object.
752  *
753  */
754 struct root_domain {
755 	atomic_t		refcount;
756 	atomic_t		rto_count;
757 	struct rcu_head		rcu;
758 	cpumask_var_t		span;
759 	cpumask_var_t		online;
760 
761 	/*
762 	 * Indicate pullable load on at least one CPU, e.g:
763 	 * - More than one runnable task
764 	 * - Running task is misfit
765 	 */
766 	int			overload;
767 
768 	/* Indicate one or more cpus over-utilized (tipping point) */
769 	int			overutilized;
770 
771 	/*
772 	 * The bit corresponding to a CPU gets set here if such CPU has more
773 	 * than one runnable -deadline task (as it is below for RT tasks).
774 	 */
775 	cpumask_var_t		dlo_mask;
776 	atomic_t		dlo_count;
777 	struct dl_bw		dl_bw;
778 	struct cpudl		cpudl;
779 
780 #ifdef HAVE_RT_PUSH_IPI
781 	/*
782 	 * For IPI pull requests, loop across the rto_mask.
783 	 */
784 	struct irq_work		rto_push_work;
785 	raw_spinlock_t		rto_lock;
786 	/* These are only updated and read within rto_lock */
787 	int			rto_loop;
788 	int			rto_cpu;
789 	/* These atomics are updated outside of a lock */
790 	atomic_t		rto_loop_next;
791 	atomic_t		rto_loop_start;
792 #endif
793 	/*
794 	 * The "RT overload" flag: it gets set if a CPU has more than
795 	 * one runnable RT task.
796 	 */
797 	cpumask_var_t		rto_mask;
798 	struct cpupri		cpupri;
799 
800 	unsigned long		max_cpu_capacity;
801 
802 	/*
803 	 * NULL-terminated list of performance domains intersecting with the
804 	 * CPUs of the rd. Protected by RCU.
805 	 */
806 	struct perf_domain __rcu *pd;
807 };
808 
809 extern void init_defrootdomain(void);
810 extern int sched_init_domains(const struct cpumask *cpu_map);
811 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
812 extern void sched_get_rd(struct root_domain *rd);
813 extern void sched_put_rd(struct root_domain *rd);
814 
815 #ifdef HAVE_RT_PUSH_IPI
816 extern void rto_push_irq_work_func(struct irq_work *work);
817 #endif
818 #endif /* CONFIG_SMP */
819 
820 #ifdef CONFIG_UCLAMP_TASK
821 /*
822  * struct uclamp_bucket - Utilization clamp bucket
823  * @value: utilization clamp value for tasks on this clamp bucket
824  * @tasks: number of RUNNABLE tasks on this clamp bucket
825  *
826  * Keep track of how many tasks are RUNNABLE for a given utilization
827  * clamp value.
828  */
829 struct uclamp_bucket {
830 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
831 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
832 };
833 
834 /*
835  * struct uclamp_rq - rq's utilization clamp
836  * @value: currently active clamp values for a rq
837  * @bucket: utilization clamp buckets affecting a rq
838  *
839  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
840  * A clamp value is affecting a rq when there is at least one task RUNNABLE
841  * (or actually running) with that value.
842  *
843  * There are up to UCLAMP_CNT possible different clamp values, currently there
844  * are only two: minimum utilization and maximum utilization.
845  *
846  * All utilization clamping values are MAX aggregated, since:
847  * - for util_min: we want to run the CPU at least at the max of the minimum
848  *   utilization required by its currently RUNNABLE tasks.
849  * - for util_max: we want to allow the CPU to run up to the max of the
850  *   maximum utilization allowed by its currently RUNNABLE tasks.
851  *
852  * Since on each system we expect only a limited number of different
853  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
854  * the metrics required to compute all the per-rq utilization clamp values.
855  */
856 struct uclamp_rq {
857 	unsigned int value;
858 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
859 };
860 #endif /* CONFIG_UCLAMP_TASK */
861 
862 /*
863  * This is the main, per-CPU runqueue data structure.
864  *
865  * Locking rule: those places that want to lock multiple runqueues
866  * (such as the load balancing or the thread migration code), lock
867  * acquire operations must be ordered by ascending &runqueue.
868  */
869 struct rq {
870 	/* runqueue lock: */
871 	raw_spinlock_t		lock;
872 
873 	/*
874 	 * nr_running and cpu_load should be in the same cacheline because
875 	 * remote CPUs use both these fields when doing load calculation.
876 	 */
877 	unsigned int		nr_running;
878 #ifdef CONFIG_NUMA_BALANCING
879 	unsigned int		nr_numa_running;
880 	unsigned int		nr_preferred_running;
881 	unsigned int		numa_migrate_on;
882 #endif
883 #ifdef CONFIG_NO_HZ_COMMON
884 #ifdef CONFIG_SMP
885 	unsigned long		last_load_update_tick;
886 	unsigned long		last_blocked_load_update_tick;
887 	unsigned int		has_blocked_load;
888 #endif /* CONFIG_SMP */
889 	unsigned int		nohz_tick_stopped;
890 	atomic_t nohz_flags;
891 #endif /* CONFIG_NO_HZ_COMMON */
892 
893 	unsigned long		nr_load_updates;
894 	u64			nr_switches;
895 
896 #ifdef CONFIG_UCLAMP_TASK
897 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
898 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
899 	unsigned int		uclamp_flags;
900 #define UCLAMP_FLAG_IDLE 0x01
901 #endif
902 
903 	struct cfs_rq		cfs;
904 	struct rt_rq		rt;
905 	struct dl_rq		dl;
906 
907 #ifdef CONFIG_FAIR_GROUP_SCHED
908 	/* list of leaf cfs_rq on this CPU: */
909 	struct list_head	leaf_cfs_rq_list;
910 	struct list_head	*tmp_alone_branch;
911 #endif /* CONFIG_FAIR_GROUP_SCHED */
912 
913 	/*
914 	 * This is part of a global counter where only the total sum
915 	 * over all CPUs matters. A task can increase this counter on
916 	 * one CPU and if it got migrated afterwards it may decrease
917 	 * it on another CPU. Always updated under the runqueue lock:
918 	 */
919 	unsigned long		nr_uninterruptible;
920 
921 	struct task_struct __rcu	*curr;
922 	struct task_struct	*idle;
923 	struct task_struct	*stop;
924 	unsigned long		next_balance;
925 	struct mm_struct	*prev_mm;
926 
927 	unsigned int		clock_update_flags;
928 	u64			clock;
929 	/* Ensure that all clocks are in the same cache line */
930 	u64			clock_task ____cacheline_aligned;
931 	u64			clock_pelt;
932 	unsigned long		lost_idle_time;
933 
934 	atomic_t		nr_iowait;
935 
936 #ifdef CONFIG_MEMBARRIER
937 	int membarrier_state;
938 #endif
939 
940 #ifdef CONFIG_SMP
941 	struct root_domain		*rd;
942 	struct sched_domain __rcu	*sd;
943 
944 	unsigned long		cpu_capacity;
945 	unsigned long		cpu_capacity_orig;
946 
947 	struct callback_head	*balance_callback;
948 
949 	unsigned char		idle_balance;
950 
951 	unsigned long		misfit_task_load;
952 
953 	/* For active balancing */
954 	int			active_balance;
955 	int			push_cpu;
956 	struct cpu_stop_work	active_balance_work;
957 
958 	/* CPU of this runqueue: */
959 	int			cpu;
960 	int			online;
961 
962 	struct list_head cfs_tasks;
963 
964 	struct sched_avg	avg_rt;
965 	struct sched_avg	avg_dl;
966 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
967 	struct sched_avg	avg_irq;
968 #endif
969 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
970 	struct sched_avg	avg_thermal;
971 #endif
972 	u64			idle_stamp;
973 	u64			avg_idle;
974 
975 	/* This is used to determine avg_idle's max value */
976 	u64			max_idle_balance_cost;
977 #endif
978 
979 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
980 	u64			prev_irq_time;
981 #endif
982 #ifdef CONFIG_PARAVIRT
983 	u64			prev_steal_time;
984 #endif
985 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
986 	u64			prev_steal_time_rq;
987 #endif
988 
989 	/* calc_load related fields */
990 	unsigned long		calc_load_update;
991 	long			calc_load_active;
992 
993 #ifdef CONFIG_SCHED_HRTICK
994 #ifdef CONFIG_SMP
995 	call_single_data_t	hrtick_csd;
996 #endif
997 	struct hrtimer		hrtick_timer;
998 #endif
999 
1000 #ifdef CONFIG_SCHEDSTATS
1001 	/* latency stats */
1002 	struct sched_info	rq_sched_info;
1003 	unsigned long long	rq_cpu_time;
1004 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1005 
1006 	/* sys_sched_yield() stats */
1007 	unsigned int		yld_count;
1008 
1009 	/* schedule() stats */
1010 	unsigned int		sched_count;
1011 	unsigned int		sched_goidle;
1012 
1013 	/* try_to_wake_up() stats */
1014 	unsigned int		ttwu_count;
1015 	unsigned int		ttwu_local;
1016 #endif
1017 
1018 #ifdef CONFIG_SMP
1019 	struct llist_head	wake_list;
1020 #endif
1021 
1022 #ifdef CONFIG_CPU_IDLE
1023 	/* Must be inspected within a rcu lock section */
1024 	struct cpuidle_state	*idle_state;
1025 #endif
1026 };
1027 
1028 #ifdef CONFIG_FAIR_GROUP_SCHED
1029 
1030 /* CPU runqueue to which this cfs_rq is attached */
1031 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1032 {
1033 	return cfs_rq->rq;
1034 }
1035 
1036 #else
1037 
1038 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1039 {
1040 	return container_of(cfs_rq, struct rq, cfs);
1041 }
1042 #endif
1043 
1044 static inline int cpu_of(struct rq *rq)
1045 {
1046 #ifdef CONFIG_SMP
1047 	return rq->cpu;
1048 #else
1049 	return 0;
1050 #endif
1051 }
1052 
1053 
1054 #ifdef CONFIG_SCHED_SMT
1055 extern void __update_idle_core(struct rq *rq);
1056 
1057 static inline void update_idle_core(struct rq *rq)
1058 {
1059 	if (static_branch_unlikely(&sched_smt_present))
1060 		__update_idle_core(rq);
1061 }
1062 
1063 #else
1064 static inline void update_idle_core(struct rq *rq) { }
1065 #endif
1066 
1067 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1068 
1069 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1070 #define this_rq()		this_cpu_ptr(&runqueues)
1071 #define task_rq(p)		cpu_rq(task_cpu(p))
1072 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1073 #define raw_rq()		raw_cpu_ptr(&runqueues)
1074 
1075 extern void update_rq_clock(struct rq *rq);
1076 
1077 static inline u64 __rq_clock_broken(struct rq *rq)
1078 {
1079 	return READ_ONCE(rq->clock);
1080 }
1081 
1082 /*
1083  * rq::clock_update_flags bits
1084  *
1085  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1086  *  call to __schedule(). This is an optimisation to avoid
1087  *  neighbouring rq clock updates.
1088  *
1089  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1090  *  in effect and calls to update_rq_clock() are being ignored.
1091  *
1092  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1093  *  made to update_rq_clock() since the last time rq::lock was pinned.
1094  *
1095  * If inside of __schedule(), clock_update_flags will have been
1096  * shifted left (a left shift is a cheap operation for the fast path
1097  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1098  *
1099  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1100  *
1101  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1102  * one position though, because the next rq_unpin_lock() will shift it
1103  * back.
1104  */
1105 #define RQCF_REQ_SKIP		0x01
1106 #define RQCF_ACT_SKIP		0x02
1107 #define RQCF_UPDATED		0x04
1108 
1109 static inline void assert_clock_updated(struct rq *rq)
1110 {
1111 	/*
1112 	 * The only reason for not seeing a clock update since the
1113 	 * last rq_pin_lock() is if we're currently skipping updates.
1114 	 */
1115 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1116 }
1117 
1118 static inline u64 rq_clock(struct rq *rq)
1119 {
1120 	lockdep_assert_held(&rq->lock);
1121 	assert_clock_updated(rq);
1122 
1123 	return rq->clock;
1124 }
1125 
1126 static inline u64 rq_clock_task(struct rq *rq)
1127 {
1128 	lockdep_assert_held(&rq->lock);
1129 	assert_clock_updated(rq);
1130 
1131 	return rq->clock_task;
1132 }
1133 
1134 /**
1135  * By default the decay is the default pelt decay period.
1136  * The decay shift can change the decay period in
1137  * multiples of 32.
1138  *  Decay shift		Decay period(ms)
1139  *	0			32
1140  *	1			64
1141  *	2			128
1142  *	3			256
1143  *	4			512
1144  */
1145 extern int sched_thermal_decay_shift;
1146 
1147 static inline u64 rq_clock_thermal(struct rq *rq)
1148 {
1149 	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1150 }
1151 
1152 static inline void rq_clock_skip_update(struct rq *rq)
1153 {
1154 	lockdep_assert_held(&rq->lock);
1155 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1156 }
1157 
1158 /*
1159  * See rt task throttling, which is the only time a skip
1160  * request is cancelled.
1161  */
1162 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1163 {
1164 	lockdep_assert_held(&rq->lock);
1165 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1166 }
1167 
1168 struct rq_flags {
1169 	unsigned long flags;
1170 	struct pin_cookie cookie;
1171 #ifdef CONFIG_SCHED_DEBUG
1172 	/*
1173 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1174 	 * current pin context is stashed here in case it needs to be
1175 	 * restored in rq_repin_lock().
1176 	 */
1177 	unsigned int clock_update_flags;
1178 #endif
1179 };
1180 
1181 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1182 {
1183 	rf->cookie = lockdep_pin_lock(&rq->lock);
1184 
1185 #ifdef CONFIG_SCHED_DEBUG
1186 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1187 	rf->clock_update_flags = 0;
1188 #endif
1189 }
1190 
1191 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1192 {
1193 #ifdef CONFIG_SCHED_DEBUG
1194 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1195 		rf->clock_update_flags = RQCF_UPDATED;
1196 #endif
1197 
1198 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1199 }
1200 
1201 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1202 {
1203 	lockdep_repin_lock(&rq->lock, rf->cookie);
1204 
1205 #ifdef CONFIG_SCHED_DEBUG
1206 	/*
1207 	 * Restore the value we stashed in @rf for this pin context.
1208 	 */
1209 	rq->clock_update_flags |= rf->clock_update_flags;
1210 #endif
1211 }
1212 
1213 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1214 	__acquires(rq->lock);
1215 
1216 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1217 	__acquires(p->pi_lock)
1218 	__acquires(rq->lock);
1219 
1220 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1221 	__releases(rq->lock)
1222 {
1223 	rq_unpin_lock(rq, rf);
1224 	raw_spin_unlock(&rq->lock);
1225 }
1226 
1227 static inline void
1228 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1229 	__releases(rq->lock)
1230 	__releases(p->pi_lock)
1231 {
1232 	rq_unpin_lock(rq, rf);
1233 	raw_spin_unlock(&rq->lock);
1234 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1235 }
1236 
1237 static inline void
1238 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1239 	__acquires(rq->lock)
1240 {
1241 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1242 	rq_pin_lock(rq, rf);
1243 }
1244 
1245 static inline void
1246 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1247 	__acquires(rq->lock)
1248 {
1249 	raw_spin_lock_irq(&rq->lock);
1250 	rq_pin_lock(rq, rf);
1251 }
1252 
1253 static inline void
1254 rq_lock(struct rq *rq, struct rq_flags *rf)
1255 	__acquires(rq->lock)
1256 {
1257 	raw_spin_lock(&rq->lock);
1258 	rq_pin_lock(rq, rf);
1259 }
1260 
1261 static inline void
1262 rq_relock(struct rq *rq, struct rq_flags *rf)
1263 	__acquires(rq->lock)
1264 {
1265 	raw_spin_lock(&rq->lock);
1266 	rq_repin_lock(rq, rf);
1267 }
1268 
1269 static inline void
1270 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1271 	__releases(rq->lock)
1272 {
1273 	rq_unpin_lock(rq, rf);
1274 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1275 }
1276 
1277 static inline void
1278 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1279 	__releases(rq->lock)
1280 {
1281 	rq_unpin_lock(rq, rf);
1282 	raw_spin_unlock_irq(&rq->lock);
1283 }
1284 
1285 static inline void
1286 rq_unlock(struct rq *rq, struct rq_flags *rf)
1287 	__releases(rq->lock)
1288 {
1289 	rq_unpin_lock(rq, rf);
1290 	raw_spin_unlock(&rq->lock);
1291 }
1292 
1293 static inline struct rq *
1294 this_rq_lock_irq(struct rq_flags *rf)
1295 	__acquires(rq->lock)
1296 {
1297 	struct rq *rq;
1298 
1299 	local_irq_disable();
1300 	rq = this_rq();
1301 	rq_lock(rq, rf);
1302 	return rq;
1303 }
1304 
1305 #ifdef CONFIG_NUMA
1306 enum numa_topology_type {
1307 	NUMA_DIRECT,
1308 	NUMA_GLUELESS_MESH,
1309 	NUMA_BACKPLANE,
1310 };
1311 extern enum numa_topology_type sched_numa_topology_type;
1312 extern int sched_max_numa_distance;
1313 extern bool find_numa_distance(int distance);
1314 extern void sched_init_numa(void);
1315 extern void sched_domains_numa_masks_set(unsigned int cpu);
1316 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1317 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1318 #else
1319 static inline void sched_init_numa(void) { }
1320 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1321 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1322 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1323 {
1324 	return nr_cpu_ids;
1325 }
1326 #endif
1327 
1328 #ifdef CONFIG_NUMA_BALANCING
1329 /* The regions in numa_faults array from task_struct */
1330 enum numa_faults_stats {
1331 	NUMA_MEM = 0,
1332 	NUMA_CPU,
1333 	NUMA_MEMBUF,
1334 	NUMA_CPUBUF
1335 };
1336 extern void sched_setnuma(struct task_struct *p, int node);
1337 extern int migrate_task_to(struct task_struct *p, int cpu);
1338 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1339 			int cpu, int scpu);
1340 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1341 #else
1342 static inline void
1343 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1344 {
1345 }
1346 #endif /* CONFIG_NUMA_BALANCING */
1347 
1348 #ifdef CONFIG_SMP
1349 
1350 static inline void
1351 queue_balance_callback(struct rq *rq,
1352 		       struct callback_head *head,
1353 		       void (*func)(struct rq *rq))
1354 {
1355 	lockdep_assert_held(&rq->lock);
1356 
1357 	if (unlikely(head->next))
1358 		return;
1359 
1360 	head->func = (void (*)(struct callback_head *))func;
1361 	head->next = rq->balance_callback;
1362 	rq->balance_callback = head;
1363 }
1364 
1365 extern void sched_ttwu_pending(void);
1366 
1367 #define rcu_dereference_check_sched_domain(p) \
1368 	rcu_dereference_check((p), \
1369 			      lockdep_is_held(&sched_domains_mutex))
1370 
1371 /*
1372  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1373  * See destroy_sched_domains: call_rcu for details.
1374  *
1375  * The domain tree of any CPU may only be accessed from within
1376  * preempt-disabled sections.
1377  */
1378 #define for_each_domain(cpu, __sd) \
1379 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1380 			__sd; __sd = __sd->parent)
1381 
1382 /**
1383  * highest_flag_domain - Return highest sched_domain containing flag.
1384  * @cpu:	The CPU whose highest level of sched domain is to
1385  *		be returned.
1386  * @flag:	The flag to check for the highest sched_domain
1387  *		for the given CPU.
1388  *
1389  * Returns the highest sched_domain of a CPU which contains the given flag.
1390  */
1391 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1392 {
1393 	struct sched_domain *sd, *hsd = NULL;
1394 
1395 	for_each_domain(cpu, sd) {
1396 		if (!(sd->flags & flag))
1397 			break;
1398 		hsd = sd;
1399 	}
1400 
1401 	return hsd;
1402 }
1403 
1404 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1405 {
1406 	struct sched_domain *sd;
1407 
1408 	for_each_domain(cpu, sd) {
1409 		if (sd->flags & flag)
1410 			break;
1411 	}
1412 
1413 	return sd;
1414 }
1415 
1416 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1417 DECLARE_PER_CPU(int, sd_llc_size);
1418 DECLARE_PER_CPU(int, sd_llc_id);
1419 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1420 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1421 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1422 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1423 extern struct static_key_false sched_asym_cpucapacity;
1424 
1425 struct sched_group_capacity {
1426 	atomic_t		ref;
1427 	/*
1428 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1429 	 * for a single CPU.
1430 	 */
1431 	unsigned long		capacity;
1432 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1433 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1434 	unsigned long		next_update;
1435 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1436 
1437 #ifdef CONFIG_SCHED_DEBUG
1438 	int			id;
1439 #endif
1440 
1441 	unsigned long		cpumask[0];		/* Balance mask */
1442 };
1443 
1444 struct sched_group {
1445 	struct sched_group	*next;			/* Must be a circular list */
1446 	atomic_t		ref;
1447 
1448 	unsigned int		group_weight;
1449 	struct sched_group_capacity *sgc;
1450 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1451 
1452 	/*
1453 	 * The CPUs this group covers.
1454 	 *
1455 	 * NOTE: this field is variable length. (Allocated dynamically
1456 	 * by attaching extra space to the end of the structure,
1457 	 * depending on how many CPUs the kernel has booted up with)
1458 	 */
1459 	unsigned long		cpumask[0];
1460 };
1461 
1462 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1463 {
1464 	return to_cpumask(sg->cpumask);
1465 }
1466 
1467 /*
1468  * See build_balance_mask().
1469  */
1470 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1471 {
1472 	return to_cpumask(sg->sgc->cpumask);
1473 }
1474 
1475 /**
1476  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1477  * @group: The group whose first CPU is to be returned.
1478  */
1479 static inline unsigned int group_first_cpu(struct sched_group *group)
1480 {
1481 	return cpumask_first(sched_group_span(group));
1482 }
1483 
1484 extern int group_balance_cpu(struct sched_group *sg);
1485 
1486 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1487 void register_sched_domain_sysctl(void);
1488 void dirty_sched_domain_sysctl(int cpu);
1489 void unregister_sched_domain_sysctl(void);
1490 #else
1491 static inline void register_sched_domain_sysctl(void)
1492 {
1493 }
1494 static inline void dirty_sched_domain_sysctl(int cpu)
1495 {
1496 }
1497 static inline void unregister_sched_domain_sysctl(void)
1498 {
1499 }
1500 #endif
1501 
1502 extern int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
1503 
1504 #else
1505 
1506 static inline void sched_ttwu_pending(void) { }
1507 
1508 static inline int newidle_balance(struct rq *this_rq, struct rq_flags *rf) { return 0; }
1509 
1510 #endif /* CONFIG_SMP */
1511 
1512 #include "stats.h"
1513 #include "autogroup.h"
1514 
1515 #ifdef CONFIG_CGROUP_SCHED
1516 
1517 /*
1518  * Return the group to which this tasks belongs.
1519  *
1520  * We cannot use task_css() and friends because the cgroup subsystem
1521  * changes that value before the cgroup_subsys::attach() method is called,
1522  * therefore we cannot pin it and might observe the wrong value.
1523  *
1524  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1525  * core changes this before calling sched_move_task().
1526  *
1527  * Instead we use a 'copy' which is updated from sched_move_task() while
1528  * holding both task_struct::pi_lock and rq::lock.
1529  */
1530 static inline struct task_group *task_group(struct task_struct *p)
1531 {
1532 	return p->sched_task_group;
1533 }
1534 
1535 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1536 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1537 {
1538 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1539 	struct task_group *tg = task_group(p);
1540 #endif
1541 
1542 #ifdef CONFIG_FAIR_GROUP_SCHED
1543 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1544 	p->se.cfs_rq = tg->cfs_rq[cpu];
1545 	p->se.parent = tg->se[cpu];
1546 #endif
1547 
1548 #ifdef CONFIG_RT_GROUP_SCHED
1549 	p->rt.rt_rq  = tg->rt_rq[cpu];
1550 	p->rt.parent = tg->rt_se[cpu];
1551 #endif
1552 }
1553 
1554 #else /* CONFIG_CGROUP_SCHED */
1555 
1556 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1557 static inline struct task_group *task_group(struct task_struct *p)
1558 {
1559 	return NULL;
1560 }
1561 
1562 #endif /* CONFIG_CGROUP_SCHED */
1563 
1564 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1565 {
1566 	set_task_rq(p, cpu);
1567 #ifdef CONFIG_SMP
1568 	/*
1569 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1570 	 * successfully executed on another CPU. We must ensure that updates of
1571 	 * per-task data have been completed by this moment.
1572 	 */
1573 	smp_wmb();
1574 #ifdef CONFIG_THREAD_INFO_IN_TASK
1575 	WRITE_ONCE(p->cpu, cpu);
1576 #else
1577 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1578 #endif
1579 	p->wake_cpu = cpu;
1580 #endif
1581 }
1582 
1583 /*
1584  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1585  */
1586 #ifdef CONFIG_SCHED_DEBUG
1587 # include <linux/static_key.h>
1588 # define const_debug __read_mostly
1589 #else
1590 # define const_debug const
1591 #endif
1592 
1593 #define SCHED_FEAT(name, enabled)	\
1594 	__SCHED_FEAT_##name ,
1595 
1596 enum {
1597 #include "features.h"
1598 	__SCHED_FEAT_NR,
1599 };
1600 
1601 #undef SCHED_FEAT
1602 
1603 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1604 
1605 /*
1606  * To support run-time toggling of sched features, all the translation units
1607  * (but core.c) reference the sysctl_sched_features defined in core.c.
1608  */
1609 extern const_debug unsigned int sysctl_sched_features;
1610 
1611 #define SCHED_FEAT(name, enabled)					\
1612 static __always_inline bool static_branch_##name(struct static_key *key) \
1613 {									\
1614 	return static_key_##enabled(key);				\
1615 }
1616 
1617 #include "features.h"
1618 #undef SCHED_FEAT
1619 
1620 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1621 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1622 
1623 #else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1624 
1625 /*
1626  * Each translation unit has its own copy of sysctl_sched_features to allow
1627  * constants propagation at compile time and compiler optimization based on
1628  * features default.
1629  */
1630 #define SCHED_FEAT(name, enabled)	\
1631 	(1UL << __SCHED_FEAT_##name) * enabled |
1632 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1633 #include "features.h"
1634 	0;
1635 #undef SCHED_FEAT
1636 
1637 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1638 
1639 #endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1640 
1641 extern struct static_key_false sched_numa_balancing;
1642 extern struct static_key_false sched_schedstats;
1643 
1644 static inline u64 global_rt_period(void)
1645 {
1646 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1647 }
1648 
1649 static inline u64 global_rt_runtime(void)
1650 {
1651 	if (sysctl_sched_rt_runtime < 0)
1652 		return RUNTIME_INF;
1653 
1654 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1655 }
1656 
1657 static inline int task_current(struct rq *rq, struct task_struct *p)
1658 {
1659 	return rq->curr == p;
1660 }
1661 
1662 static inline int task_running(struct rq *rq, struct task_struct *p)
1663 {
1664 #ifdef CONFIG_SMP
1665 	return p->on_cpu;
1666 #else
1667 	return task_current(rq, p);
1668 #endif
1669 }
1670 
1671 static inline int task_on_rq_queued(struct task_struct *p)
1672 {
1673 	return p->on_rq == TASK_ON_RQ_QUEUED;
1674 }
1675 
1676 static inline int task_on_rq_migrating(struct task_struct *p)
1677 {
1678 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1679 }
1680 
1681 /*
1682  * wake flags
1683  */
1684 #define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1685 #define WF_FORK			0x02		/* Child wakeup after fork */
1686 #define WF_MIGRATED		0x4		/* Internal use, task got migrated */
1687 
1688 /*
1689  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1690  * of tasks with abnormal "nice" values across CPUs the contribution that
1691  * each task makes to its run queue's load is weighted according to its
1692  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1693  * scaled version of the new time slice allocation that they receive on time
1694  * slice expiry etc.
1695  */
1696 
1697 #define WEIGHT_IDLEPRIO		3
1698 #define WMULT_IDLEPRIO		1431655765
1699 
1700 extern const int		sched_prio_to_weight[40];
1701 extern const u32		sched_prio_to_wmult[40];
1702 
1703 /*
1704  * {de,en}queue flags:
1705  *
1706  * DEQUEUE_SLEEP  - task is no longer runnable
1707  * ENQUEUE_WAKEUP - task just became runnable
1708  *
1709  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1710  *                are in a known state which allows modification. Such pairs
1711  *                should preserve as much state as possible.
1712  *
1713  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1714  *        in the runqueue.
1715  *
1716  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1717  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1718  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1719  *
1720  */
1721 
1722 #define DEQUEUE_SLEEP		0x01
1723 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1724 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1725 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1726 
1727 #define ENQUEUE_WAKEUP		0x01
1728 #define ENQUEUE_RESTORE		0x02
1729 #define ENQUEUE_MOVE		0x04
1730 #define ENQUEUE_NOCLOCK		0x08
1731 
1732 #define ENQUEUE_HEAD		0x10
1733 #define ENQUEUE_REPLENISH	0x20
1734 #ifdef CONFIG_SMP
1735 #define ENQUEUE_MIGRATED	0x40
1736 #else
1737 #define ENQUEUE_MIGRATED	0x00
1738 #endif
1739 
1740 #define RETRY_TASK		((void *)-1UL)
1741 
1742 struct sched_class {
1743 	const struct sched_class *next;
1744 
1745 #ifdef CONFIG_UCLAMP_TASK
1746 	int uclamp_enabled;
1747 #endif
1748 
1749 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1750 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1751 	void (*yield_task)   (struct rq *rq);
1752 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1753 
1754 	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1755 
1756 	struct task_struct *(*pick_next_task)(struct rq *rq);
1757 
1758 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1759 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1760 
1761 #ifdef CONFIG_SMP
1762 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1763 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1764 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1765 
1766 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1767 
1768 	void (*set_cpus_allowed)(struct task_struct *p,
1769 				 const struct cpumask *newmask);
1770 
1771 	void (*rq_online)(struct rq *rq);
1772 	void (*rq_offline)(struct rq *rq);
1773 #endif
1774 
1775 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1776 	void (*task_fork)(struct task_struct *p);
1777 	void (*task_dead)(struct task_struct *p);
1778 
1779 	/*
1780 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1781 	 * cannot assume the switched_from/switched_to pair is serliazed by
1782 	 * rq->lock. They are however serialized by p->pi_lock.
1783 	 */
1784 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1785 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1786 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1787 			      int oldprio);
1788 
1789 	unsigned int (*get_rr_interval)(struct rq *rq,
1790 					struct task_struct *task);
1791 
1792 	void (*update_curr)(struct rq *rq);
1793 
1794 #define TASK_SET_GROUP		0
1795 #define TASK_MOVE_GROUP		1
1796 
1797 #ifdef CONFIG_FAIR_GROUP_SCHED
1798 	void (*task_change_group)(struct task_struct *p, int type);
1799 #endif
1800 };
1801 
1802 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1803 {
1804 	WARN_ON_ONCE(rq->curr != prev);
1805 	prev->sched_class->put_prev_task(rq, prev);
1806 }
1807 
1808 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1809 {
1810 	WARN_ON_ONCE(rq->curr != next);
1811 	next->sched_class->set_next_task(rq, next, false);
1812 }
1813 
1814 #ifdef CONFIG_SMP
1815 #define sched_class_highest (&stop_sched_class)
1816 #else
1817 #define sched_class_highest (&dl_sched_class)
1818 #endif
1819 
1820 #define for_class_range(class, _from, _to) \
1821 	for (class = (_from); class != (_to); class = class->next)
1822 
1823 #define for_each_class(class) \
1824 	for_class_range(class, sched_class_highest, NULL)
1825 
1826 extern const struct sched_class stop_sched_class;
1827 extern const struct sched_class dl_sched_class;
1828 extern const struct sched_class rt_sched_class;
1829 extern const struct sched_class fair_sched_class;
1830 extern const struct sched_class idle_sched_class;
1831 
1832 static inline bool sched_stop_runnable(struct rq *rq)
1833 {
1834 	return rq->stop && task_on_rq_queued(rq->stop);
1835 }
1836 
1837 static inline bool sched_dl_runnable(struct rq *rq)
1838 {
1839 	return rq->dl.dl_nr_running > 0;
1840 }
1841 
1842 static inline bool sched_rt_runnable(struct rq *rq)
1843 {
1844 	return rq->rt.rt_queued > 0;
1845 }
1846 
1847 static inline bool sched_fair_runnable(struct rq *rq)
1848 {
1849 	return rq->cfs.nr_running > 0;
1850 }
1851 
1852 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1853 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1854 
1855 #ifdef CONFIG_SMP
1856 
1857 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1858 
1859 extern void trigger_load_balance(struct rq *rq);
1860 
1861 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1862 
1863 #endif
1864 
1865 #ifdef CONFIG_CPU_IDLE
1866 static inline void idle_set_state(struct rq *rq,
1867 				  struct cpuidle_state *idle_state)
1868 {
1869 	rq->idle_state = idle_state;
1870 }
1871 
1872 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1873 {
1874 	SCHED_WARN_ON(!rcu_read_lock_held());
1875 
1876 	return rq->idle_state;
1877 }
1878 #else
1879 static inline void idle_set_state(struct rq *rq,
1880 				  struct cpuidle_state *idle_state)
1881 {
1882 }
1883 
1884 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1885 {
1886 	return NULL;
1887 }
1888 #endif
1889 
1890 extern void schedule_idle(void);
1891 
1892 extern void sysrq_sched_debug_show(void);
1893 extern void sched_init_granularity(void);
1894 extern void update_max_interval(void);
1895 
1896 extern void init_sched_dl_class(void);
1897 extern void init_sched_rt_class(void);
1898 extern void init_sched_fair_class(void);
1899 
1900 extern void reweight_task(struct task_struct *p, int prio);
1901 
1902 extern void resched_curr(struct rq *rq);
1903 extern void resched_cpu(int cpu);
1904 
1905 extern struct rt_bandwidth def_rt_bandwidth;
1906 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1907 
1908 extern struct dl_bandwidth def_dl_bandwidth;
1909 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1910 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1911 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1912 
1913 #define BW_SHIFT		20
1914 #define BW_UNIT			(1 << BW_SHIFT)
1915 #define RATIO_SHIFT		8
1916 unsigned long to_ratio(u64 period, u64 runtime);
1917 
1918 extern void init_entity_runnable_average(struct sched_entity *se);
1919 extern void post_init_entity_util_avg(struct task_struct *p);
1920 
1921 #ifdef CONFIG_NO_HZ_FULL
1922 extern bool sched_can_stop_tick(struct rq *rq);
1923 extern int __init sched_tick_offload_init(void);
1924 
1925 /*
1926  * Tick may be needed by tasks in the runqueue depending on their policy and
1927  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1928  * nohz mode if necessary.
1929  */
1930 static inline void sched_update_tick_dependency(struct rq *rq)
1931 {
1932 	int cpu;
1933 
1934 	if (!tick_nohz_full_enabled())
1935 		return;
1936 
1937 	cpu = cpu_of(rq);
1938 
1939 	if (!tick_nohz_full_cpu(cpu))
1940 		return;
1941 
1942 	if (sched_can_stop_tick(rq))
1943 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1944 	else
1945 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1946 }
1947 #else
1948 static inline int sched_tick_offload_init(void) { return 0; }
1949 static inline void sched_update_tick_dependency(struct rq *rq) { }
1950 #endif
1951 
1952 static inline void add_nr_running(struct rq *rq, unsigned count)
1953 {
1954 	unsigned prev_nr = rq->nr_running;
1955 
1956 	rq->nr_running = prev_nr + count;
1957 
1958 #ifdef CONFIG_SMP
1959 	if (prev_nr < 2 && rq->nr_running >= 2) {
1960 		if (!READ_ONCE(rq->rd->overload))
1961 			WRITE_ONCE(rq->rd->overload, 1);
1962 	}
1963 #endif
1964 
1965 	sched_update_tick_dependency(rq);
1966 }
1967 
1968 static inline void sub_nr_running(struct rq *rq, unsigned count)
1969 {
1970 	rq->nr_running -= count;
1971 	/* Check if we still need preemption */
1972 	sched_update_tick_dependency(rq);
1973 }
1974 
1975 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1976 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1977 
1978 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1979 
1980 extern const_debug unsigned int sysctl_sched_nr_migrate;
1981 extern const_debug unsigned int sysctl_sched_migration_cost;
1982 
1983 #ifdef CONFIG_SCHED_HRTICK
1984 
1985 /*
1986  * Use hrtick when:
1987  *  - enabled by features
1988  *  - hrtimer is actually high res
1989  */
1990 static inline int hrtick_enabled(struct rq *rq)
1991 {
1992 	if (!sched_feat(HRTICK))
1993 		return 0;
1994 	if (!cpu_active(cpu_of(rq)))
1995 		return 0;
1996 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1997 }
1998 
1999 void hrtick_start(struct rq *rq, u64 delay);
2000 
2001 #else
2002 
2003 static inline int hrtick_enabled(struct rq *rq)
2004 {
2005 	return 0;
2006 }
2007 
2008 #endif /* CONFIG_SCHED_HRTICK */
2009 
2010 #ifndef arch_scale_freq_tick
2011 static __always_inline
2012 void arch_scale_freq_tick(void)
2013 {
2014 }
2015 #endif
2016 
2017 #ifndef arch_scale_freq_capacity
2018 static __always_inline
2019 unsigned long arch_scale_freq_capacity(int cpu)
2020 {
2021 	return SCHED_CAPACITY_SCALE;
2022 }
2023 #endif
2024 
2025 #ifdef CONFIG_SMP
2026 #ifdef CONFIG_PREEMPTION
2027 
2028 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2029 
2030 /*
2031  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2032  * way at the expense of forcing extra atomic operations in all
2033  * invocations.  This assures that the double_lock is acquired using the
2034  * same underlying policy as the spinlock_t on this architecture, which
2035  * reduces latency compared to the unfair variant below.  However, it
2036  * also adds more overhead and therefore may reduce throughput.
2037  */
2038 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2039 	__releases(this_rq->lock)
2040 	__acquires(busiest->lock)
2041 	__acquires(this_rq->lock)
2042 {
2043 	raw_spin_unlock(&this_rq->lock);
2044 	double_rq_lock(this_rq, busiest);
2045 
2046 	return 1;
2047 }
2048 
2049 #else
2050 /*
2051  * Unfair double_lock_balance: Optimizes throughput at the expense of
2052  * latency by eliminating extra atomic operations when the locks are
2053  * already in proper order on entry.  This favors lower CPU-ids and will
2054  * grant the double lock to lower CPUs over higher ids under contention,
2055  * regardless of entry order into the function.
2056  */
2057 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2058 	__releases(this_rq->lock)
2059 	__acquires(busiest->lock)
2060 	__acquires(this_rq->lock)
2061 {
2062 	int ret = 0;
2063 
2064 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2065 		if (busiest < this_rq) {
2066 			raw_spin_unlock(&this_rq->lock);
2067 			raw_spin_lock(&busiest->lock);
2068 			raw_spin_lock_nested(&this_rq->lock,
2069 					      SINGLE_DEPTH_NESTING);
2070 			ret = 1;
2071 		} else
2072 			raw_spin_lock_nested(&busiest->lock,
2073 					      SINGLE_DEPTH_NESTING);
2074 	}
2075 	return ret;
2076 }
2077 
2078 #endif /* CONFIG_PREEMPTION */
2079 
2080 /*
2081  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2082  */
2083 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2084 {
2085 	if (unlikely(!irqs_disabled())) {
2086 		/* printk() doesn't work well under rq->lock */
2087 		raw_spin_unlock(&this_rq->lock);
2088 		BUG_ON(1);
2089 	}
2090 
2091 	return _double_lock_balance(this_rq, busiest);
2092 }
2093 
2094 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2095 	__releases(busiest->lock)
2096 {
2097 	raw_spin_unlock(&busiest->lock);
2098 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2099 }
2100 
2101 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2102 {
2103 	if (l1 > l2)
2104 		swap(l1, l2);
2105 
2106 	spin_lock(l1);
2107 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2108 }
2109 
2110 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2111 {
2112 	if (l1 > l2)
2113 		swap(l1, l2);
2114 
2115 	spin_lock_irq(l1);
2116 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2117 }
2118 
2119 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2120 {
2121 	if (l1 > l2)
2122 		swap(l1, l2);
2123 
2124 	raw_spin_lock(l1);
2125 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2126 }
2127 
2128 /*
2129  * double_rq_lock - safely lock two runqueues
2130  *
2131  * Note this does not disable interrupts like task_rq_lock,
2132  * you need to do so manually before calling.
2133  */
2134 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2135 	__acquires(rq1->lock)
2136 	__acquires(rq2->lock)
2137 {
2138 	BUG_ON(!irqs_disabled());
2139 	if (rq1 == rq2) {
2140 		raw_spin_lock(&rq1->lock);
2141 		__acquire(rq2->lock);	/* Fake it out ;) */
2142 	} else {
2143 		if (rq1 < rq2) {
2144 			raw_spin_lock(&rq1->lock);
2145 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2146 		} else {
2147 			raw_spin_lock(&rq2->lock);
2148 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2149 		}
2150 	}
2151 }
2152 
2153 /*
2154  * double_rq_unlock - safely unlock two runqueues
2155  *
2156  * Note this does not restore interrupts like task_rq_unlock,
2157  * you need to do so manually after calling.
2158  */
2159 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2160 	__releases(rq1->lock)
2161 	__releases(rq2->lock)
2162 {
2163 	raw_spin_unlock(&rq1->lock);
2164 	if (rq1 != rq2)
2165 		raw_spin_unlock(&rq2->lock);
2166 	else
2167 		__release(rq2->lock);
2168 }
2169 
2170 extern void set_rq_online (struct rq *rq);
2171 extern void set_rq_offline(struct rq *rq);
2172 extern bool sched_smp_initialized;
2173 
2174 #else /* CONFIG_SMP */
2175 
2176 /*
2177  * double_rq_lock - safely lock two runqueues
2178  *
2179  * Note this does not disable interrupts like task_rq_lock,
2180  * you need to do so manually before calling.
2181  */
2182 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2183 	__acquires(rq1->lock)
2184 	__acquires(rq2->lock)
2185 {
2186 	BUG_ON(!irqs_disabled());
2187 	BUG_ON(rq1 != rq2);
2188 	raw_spin_lock(&rq1->lock);
2189 	__acquire(rq2->lock);	/* Fake it out ;) */
2190 }
2191 
2192 /*
2193  * double_rq_unlock - safely unlock two runqueues
2194  *
2195  * Note this does not restore interrupts like task_rq_unlock,
2196  * you need to do so manually after calling.
2197  */
2198 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2199 	__releases(rq1->lock)
2200 	__releases(rq2->lock)
2201 {
2202 	BUG_ON(rq1 != rq2);
2203 	raw_spin_unlock(&rq1->lock);
2204 	__release(rq2->lock);
2205 }
2206 
2207 #endif
2208 
2209 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2210 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2211 
2212 #ifdef	CONFIG_SCHED_DEBUG
2213 extern bool sched_debug_enabled;
2214 
2215 extern void print_cfs_stats(struct seq_file *m, int cpu);
2216 extern void print_rt_stats(struct seq_file *m, int cpu);
2217 extern void print_dl_stats(struct seq_file *m, int cpu);
2218 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2219 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2220 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2221 #ifdef CONFIG_NUMA_BALANCING
2222 extern void
2223 show_numa_stats(struct task_struct *p, struct seq_file *m);
2224 extern void
2225 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2226 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2227 #endif /* CONFIG_NUMA_BALANCING */
2228 #endif /* CONFIG_SCHED_DEBUG */
2229 
2230 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2231 extern void init_rt_rq(struct rt_rq *rt_rq);
2232 extern void init_dl_rq(struct dl_rq *dl_rq);
2233 
2234 extern void cfs_bandwidth_usage_inc(void);
2235 extern void cfs_bandwidth_usage_dec(void);
2236 
2237 #ifdef CONFIG_NO_HZ_COMMON
2238 #define NOHZ_BALANCE_KICK_BIT	0
2239 #define NOHZ_STATS_KICK_BIT	1
2240 
2241 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2242 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2243 
2244 #define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2245 
2246 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2247 
2248 extern void nohz_balance_exit_idle(struct rq *rq);
2249 #else
2250 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2251 #endif
2252 
2253 
2254 #ifdef CONFIG_SMP
2255 static inline
2256 void __dl_update(struct dl_bw *dl_b, s64 bw)
2257 {
2258 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2259 	int i;
2260 
2261 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2262 			 "sched RCU must be held");
2263 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2264 		struct rq *rq = cpu_rq(i);
2265 
2266 		rq->dl.extra_bw += bw;
2267 	}
2268 }
2269 #else
2270 static inline
2271 void __dl_update(struct dl_bw *dl_b, s64 bw)
2272 {
2273 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2274 
2275 	dl->extra_bw += bw;
2276 }
2277 #endif
2278 
2279 
2280 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2281 struct irqtime {
2282 	u64			total;
2283 	u64			tick_delta;
2284 	u64			irq_start_time;
2285 	struct u64_stats_sync	sync;
2286 };
2287 
2288 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2289 
2290 /*
2291  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2292  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2293  * and never move forward.
2294  */
2295 static inline u64 irq_time_read(int cpu)
2296 {
2297 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2298 	unsigned int seq;
2299 	u64 total;
2300 
2301 	do {
2302 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2303 		total = irqtime->total;
2304 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2305 
2306 	return total;
2307 }
2308 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2309 
2310 #ifdef CONFIG_CPU_FREQ
2311 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2312 
2313 /**
2314  * cpufreq_update_util - Take a note about CPU utilization changes.
2315  * @rq: Runqueue to carry out the update for.
2316  * @flags: Update reason flags.
2317  *
2318  * This function is called by the scheduler on the CPU whose utilization is
2319  * being updated.
2320  *
2321  * It can only be called from RCU-sched read-side critical sections.
2322  *
2323  * The way cpufreq is currently arranged requires it to evaluate the CPU
2324  * performance state (frequency/voltage) on a regular basis to prevent it from
2325  * being stuck in a completely inadequate performance level for too long.
2326  * That is not guaranteed to happen if the updates are only triggered from CFS
2327  * and DL, though, because they may not be coming in if only RT tasks are
2328  * active all the time (or there are RT tasks only).
2329  *
2330  * As a workaround for that issue, this function is called periodically by the
2331  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2332  * but that really is a band-aid.  Going forward it should be replaced with
2333  * solutions targeted more specifically at RT tasks.
2334  */
2335 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2336 {
2337 	struct update_util_data *data;
2338 
2339 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2340 						  cpu_of(rq)));
2341 	if (data)
2342 		data->func(data, rq_clock(rq), flags);
2343 }
2344 #else
2345 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2346 #endif /* CONFIG_CPU_FREQ */
2347 
2348 #ifdef CONFIG_UCLAMP_TASK
2349 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2350 
2351 static __always_inline
2352 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2353 				  struct task_struct *p)
2354 {
2355 	unsigned long min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2356 	unsigned long max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2357 
2358 	if (p) {
2359 		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2360 		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2361 	}
2362 
2363 	/*
2364 	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2365 	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2366 	 * inversion. Fix it now when the clamps are applied.
2367 	 */
2368 	if (unlikely(min_util >= max_util))
2369 		return min_util;
2370 
2371 	return clamp(util, min_util, max_util);
2372 }
2373 #else /* CONFIG_UCLAMP_TASK */
2374 static inline
2375 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2376 				  struct task_struct *p)
2377 {
2378 	return util;
2379 }
2380 #endif /* CONFIG_UCLAMP_TASK */
2381 
2382 #ifdef arch_scale_freq_capacity
2383 # ifndef arch_scale_freq_invariant
2384 #  define arch_scale_freq_invariant()	true
2385 # endif
2386 #else
2387 # define arch_scale_freq_invariant()	false
2388 #endif
2389 
2390 #ifdef CONFIG_SMP
2391 static inline unsigned long capacity_orig_of(int cpu)
2392 {
2393 	return cpu_rq(cpu)->cpu_capacity_orig;
2394 }
2395 #endif
2396 
2397 /**
2398  * enum schedutil_type - CPU utilization type
2399  * @FREQUENCY_UTIL:	Utilization used to select frequency
2400  * @ENERGY_UTIL:	Utilization used during energy calculation
2401  *
2402  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2403  * need to be aggregated differently depending on the usage made of them. This
2404  * enum is used within schedutil_freq_util() to differentiate the types of
2405  * utilization expected by the callers, and adjust the aggregation accordingly.
2406  */
2407 enum schedutil_type {
2408 	FREQUENCY_UTIL,
2409 	ENERGY_UTIL,
2410 };
2411 
2412 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2413 
2414 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2415 				 unsigned long max, enum schedutil_type type,
2416 				 struct task_struct *p);
2417 
2418 static inline unsigned long cpu_bw_dl(struct rq *rq)
2419 {
2420 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2421 }
2422 
2423 static inline unsigned long cpu_util_dl(struct rq *rq)
2424 {
2425 	return READ_ONCE(rq->avg_dl.util_avg);
2426 }
2427 
2428 static inline unsigned long cpu_util_cfs(struct rq *rq)
2429 {
2430 	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2431 
2432 	if (sched_feat(UTIL_EST)) {
2433 		util = max_t(unsigned long, util,
2434 			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2435 	}
2436 
2437 	return util;
2438 }
2439 
2440 static inline unsigned long cpu_util_rt(struct rq *rq)
2441 {
2442 	return READ_ONCE(rq->avg_rt.util_avg);
2443 }
2444 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2445 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2446 				 unsigned long max, enum schedutil_type type,
2447 				 struct task_struct *p)
2448 {
2449 	return 0;
2450 }
2451 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2452 
2453 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2454 static inline unsigned long cpu_util_irq(struct rq *rq)
2455 {
2456 	return rq->avg_irq.util_avg;
2457 }
2458 
2459 static inline
2460 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2461 {
2462 	util *= (max - irq);
2463 	util /= max;
2464 
2465 	return util;
2466 
2467 }
2468 #else
2469 static inline unsigned long cpu_util_irq(struct rq *rq)
2470 {
2471 	return 0;
2472 }
2473 
2474 static inline
2475 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2476 {
2477 	return util;
2478 }
2479 #endif
2480 
2481 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2482 
2483 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2484 
2485 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2486 
2487 static inline bool sched_energy_enabled(void)
2488 {
2489 	return static_branch_unlikely(&sched_energy_present);
2490 }
2491 
2492 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2493 
2494 #define perf_domain_span(pd) NULL
2495 static inline bool sched_energy_enabled(void) { return false; }
2496 
2497 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2498 
2499 #ifdef CONFIG_MEMBARRIER
2500 /*
2501  * The scheduler provides memory barriers required by membarrier between:
2502  * - prior user-space memory accesses and store to rq->membarrier_state,
2503  * - store to rq->membarrier_state and following user-space memory accesses.
2504  * In the same way it provides those guarantees around store to rq->curr.
2505  */
2506 static inline void membarrier_switch_mm(struct rq *rq,
2507 					struct mm_struct *prev_mm,
2508 					struct mm_struct *next_mm)
2509 {
2510 	int membarrier_state;
2511 
2512 	if (prev_mm == next_mm)
2513 		return;
2514 
2515 	membarrier_state = atomic_read(&next_mm->membarrier_state);
2516 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2517 		return;
2518 
2519 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2520 }
2521 #else
2522 static inline void membarrier_switch_mm(struct rq *rq,
2523 					struct mm_struct *prev_mm,
2524 					struct mm_struct *next_mm)
2525 {
2526 }
2527 #endif
2528 
2529 #ifdef CONFIG_SMP
2530 static inline bool is_per_cpu_kthread(struct task_struct *p)
2531 {
2532 	if (!(p->flags & PF_KTHREAD))
2533 		return false;
2534 
2535 	if (p->nr_cpus_allowed != 1)
2536 		return false;
2537 
2538 	return true;
2539 }
2540 #endif
2541 
2542 void swake_up_all_locked(struct swait_queue_head *q);
2543 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2544