1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/prandom.h> 9 #include <linux/sched/affinity.h> 10 #include <linux/sched/autogroup.h> 11 #include <linux/sched/cpufreq.h> 12 #include <linux/sched/deadline.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/rseq_api.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/smt.h> 19 #include <linux/sched/stat.h> 20 #include <linux/sched/sysctl.h> 21 #include <linux/sched/task_flags.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/topology.h> 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 369 * returns NULL. 370 * 371 * dl_server_update() -- called from update_curr_common(), propagates runtime 372 * to the server. 373 * 374 * dl_server_start() -- start the server when it has tasks; it will stop 375 * automatically when there are no more tasks, per 376 * dl_se::server_pick() returning NULL. 377 * 378 * dl_server_stop() -- (force) stop the server; use when updating 379 * parameters. 380 * 381 * dl_server_init() -- initializes the server. 382 * 383 * When started the dl_server will (per dl_defer) schedule a timer for its 384 * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a 385 * server will run at the very end of its period. 386 * 387 * This is done such that any runtime from the target class can be accounted 388 * against the server -- through dl_server_update() above -- such that when it 389 * becomes time to run, it might already be out of runtime and get deferred 390 * until the next period. In this case dl_server_timer() will alternate 391 * between defer and replenish but never actually enqueue the server. 392 * 393 * Only when the target class does not manage to exhaust the server's runtime 394 * (there's actualy starvation in the given period), will the dl_server get on 395 * the runqueue. Once queued it will pick tasks from the target class and run 396 * them until either its runtime is exhaused, at which point its back to 397 * dl_server_timer, or until there are no more tasks to run, at which point 398 * the dl_server stops itself. 399 * 400 * By stopping at this point the dl_server retains bandwidth, which, if a new 401 * task wakes up imminently (starting the server again), can be used -- 402 * subject to CBS wakeup rules -- without having to wait for the next period. 403 * 404 * Additionally, because of the dl_defer behaviour the start/stop behaviour is 405 * naturally thottled to once per period, avoiding high context switch 406 * workloads from spamming the hrtimer program/cancel paths. 407 */ 408 extern void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec); 409 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 410 extern void dl_server_start(struct sched_dl_entity *dl_se); 411 extern void dl_server_stop(struct sched_dl_entity *dl_se); 412 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 413 dl_server_pick_f pick_task); 414 extern void sched_init_dl_servers(void); 415 416 extern void fair_server_init(struct rq *rq); 417 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 418 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 419 u64 runtime, u64 period, bool init); 420 421 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 422 { 423 return dl_se->dl_server_active; 424 } 425 426 #ifdef CONFIG_CGROUP_SCHED 427 428 extern struct list_head task_groups; 429 430 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 431 extern const u64 max_bw_quota_period_us; 432 433 /* 434 * default period for group bandwidth. 435 * default: 0.1s, units: microseconds 436 */ 437 static inline u64 default_bw_period_us(void) 438 { 439 return 100000ULL; 440 } 441 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 442 443 struct cfs_bandwidth { 444 #ifdef CONFIG_CFS_BANDWIDTH 445 raw_spinlock_t lock; 446 ktime_t period; 447 u64 quota; 448 u64 runtime; 449 u64 burst; 450 u64 runtime_snap; 451 s64 hierarchical_quota; 452 453 u8 idle; 454 u8 period_active; 455 u8 slack_started; 456 struct hrtimer period_timer; 457 struct hrtimer slack_timer; 458 struct list_head throttled_cfs_rq; 459 460 /* Statistics: */ 461 int nr_periods; 462 int nr_throttled; 463 int nr_burst; 464 u64 throttled_time; 465 u64 burst_time; 466 #endif /* CONFIG_CFS_BANDWIDTH */ 467 }; 468 469 /* Task group related information */ 470 struct task_group { 471 struct cgroup_subsys_state css; 472 473 #ifdef CONFIG_GROUP_SCHED_WEIGHT 474 /* A positive value indicates that this is a SCHED_IDLE group. */ 475 int idle; 476 #endif 477 478 #ifdef CONFIG_FAIR_GROUP_SCHED 479 /* schedulable entities of this group on each CPU */ 480 struct sched_entity **se; 481 /* runqueue "owned" by this group on each CPU */ 482 struct cfs_rq **cfs_rq; 483 unsigned long shares; 484 /* 485 * load_avg can be heavily contended at clock tick time, so put 486 * it in its own cache-line separated from the fields above which 487 * will also be accessed at each tick. 488 */ 489 atomic_long_t load_avg ____cacheline_aligned; 490 #endif /* CONFIG_FAIR_GROUP_SCHED */ 491 492 #ifdef CONFIG_RT_GROUP_SCHED 493 struct sched_rt_entity **rt_se; 494 struct rt_rq **rt_rq; 495 496 struct rt_bandwidth rt_bandwidth; 497 #endif 498 499 struct scx_task_group scx; 500 501 struct rcu_head rcu; 502 struct list_head list; 503 504 struct task_group *parent; 505 struct list_head siblings; 506 struct list_head children; 507 508 #ifdef CONFIG_SCHED_AUTOGROUP 509 struct autogroup *autogroup; 510 #endif 511 512 struct cfs_bandwidth cfs_bandwidth; 513 514 #ifdef CONFIG_UCLAMP_TASK_GROUP 515 /* The two decimal precision [%] value requested from user-space */ 516 unsigned int uclamp_pct[UCLAMP_CNT]; 517 /* Clamp values requested for a task group */ 518 struct uclamp_se uclamp_req[UCLAMP_CNT]; 519 /* Effective clamp values used for a task group */ 520 struct uclamp_se uclamp[UCLAMP_CNT]; 521 #endif 522 523 }; 524 525 #ifdef CONFIG_GROUP_SCHED_WEIGHT 526 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 527 528 /* 529 * A weight of 0 or 1 can cause arithmetics problems. 530 * A weight of a cfs_rq is the sum of weights of which entities 531 * are queued on this cfs_rq, so a weight of a entity should not be 532 * too large, so as the shares value of a task group. 533 * (The default weight is 1024 - so there's no practical 534 * limitation from this.) 535 */ 536 #define MIN_SHARES (1UL << 1) 537 #define MAX_SHARES (1UL << 18) 538 #endif 539 540 typedef int (*tg_visitor)(struct task_group *, void *); 541 542 extern int walk_tg_tree_from(struct task_group *from, 543 tg_visitor down, tg_visitor up, void *data); 544 545 /* 546 * Iterate the full tree, calling @down when first entering a node and @up when 547 * leaving it for the final time. 548 * 549 * Caller must hold rcu_lock or sufficient equivalent. 550 */ 551 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 552 { 553 return walk_tg_tree_from(&root_task_group, down, up, data); 554 } 555 556 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 557 { 558 return css ? container_of(css, struct task_group, css) : NULL; 559 } 560 561 extern int tg_nop(struct task_group *tg, void *data); 562 563 #ifdef CONFIG_FAIR_GROUP_SCHED 564 extern void free_fair_sched_group(struct task_group *tg); 565 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 566 extern void online_fair_sched_group(struct task_group *tg); 567 extern void unregister_fair_sched_group(struct task_group *tg); 568 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 569 static inline void free_fair_sched_group(struct task_group *tg) { } 570 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 571 { 572 return 1; 573 } 574 static inline void online_fair_sched_group(struct task_group *tg) { } 575 static inline void unregister_fair_sched_group(struct task_group *tg) { } 576 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 577 578 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 579 struct sched_entity *se, int cpu, 580 struct sched_entity *parent); 581 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 582 583 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 584 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 585 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 586 extern bool cfs_task_bw_constrained(struct task_struct *p); 587 588 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 589 struct sched_rt_entity *rt_se, int cpu, 590 struct sched_rt_entity *parent); 591 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 592 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 593 extern long sched_group_rt_runtime(struct task_group *tg); 594 extern long sched_group_rt_period(struct task_group *tg); 595 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 596 597 extern struct task_group *sched_create_group(struct task_group *parent); 598 extern void sched_online_group(struct task_group *tg, 599 struct task_group *parent); 600 extern void sched_destroy_group(struct task_group *tg); 601 extern void sched_release_group(struct task_group *tg); 602 603 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 604 605 #ifdef CONFIG_FAIR_GROUP_SCHED 606 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 607 608 extern int sched_group_set_idle(struct task_group *tg, long idle); 609 610 extern void set_task_rq_fair(struct sched_entity *se, 611 struct cfs_rq *prev, struct cfs_rq *next); 612 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 613 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 614 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 615 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 616 617 #else /* !CONFIG_CGROUP_SCHED: */ 618 619 struct cfs_bandwidth { }; 620 621 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 622 623 #endif /* !CONFIG_CGROUP_SCHED */ 624 625 extern void unregister_rt_sched_group(struct task_group *tg); 626 extern void free_rt_sched_group(struct task_group *tg); 627 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 628 629 /* 630 * u64_u32_load/u64_u32_store 631 * 632 * Use a copy of a u64 value to protect against data race. This is only 633 * applicable for 32-bits architectures. 634 */ 635 #ifdef CONFIG_64BIT 636 # define u64_u32_load_copy(var, copy) var 637 # define u64_u32_store_copy(var, copy, val) (var = val) 638 #else 639 # define u64_u32_load_copy(var, copy) \ 640 ({ \ 641 u64 __val, __val_copy; \ 642 do { \ 643 __val_copy = copy; \ 644 /* \ 645 * paired with u64_u32_store_copy(), ordering access \ 646 * to var and copy. \ 647 */ \ 648 smp_rmb(); \ 649 __val = var; \ 650 } while (__val != __val_copy); \ 651 __val; \ 652 }) 653 # define u64_u32_store_copy(var, copy, val) \ 654 do { \ 655 typeof(val) __val = (val); \ 656 var = __val; \ 657 /* \ 658 * paired with u64_u32_load_copy(), ordering access to var and \ 659 * copy. \ 660 */ \ 661 smp_wmb(); \ 662 copy = __val; \ 663 } while (0) 664 #endif 665 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 666 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 667 668 struct balance_callback { 669 struct balance_callback *next; 670 void (*func)(struct rq *rq); 671 }; 672 673 /* CFS-related fields in a runqueue */ 674 struct cfs_rq { 675 struct load_weight load; 676 unsigned int nr_queued; 677 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 678 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 679 unsigned int h_nr_idle; /* SCHED_IDLE */ 680 681 s64 avg_vruntime; 682 u64 avg_load; 683 684 u64 zero_vruntime; 685 #ifdef CONFIG_SCHED_CORE 686 unsigned int forceidle_seq; 687 u64 zero_vruntime_fi; 688 #endif 689 690 struct rb_root_cached tasks_timeline; 691 692 /* 693 * 'curr' points to currently running entity on this cfs_rq. 694 * It is set to NULL otherwise (i.e when none are currently running). 695 */ 696 struct sched_entity *curr; 697 struct sched_entity *next; 698 699 /* 700 * CFS load tracking 701 */ 702 struct sched_avg avg; 703 #ifndef CONFIG_64BIT 704 u64 last_update_time_copy; 705 #endif 706 struct { 707 raw_spinlock_t lock ____cacheline_aligned; 708 int nr; 709 unsigned long load_avg; 710 unsigned long util_avg; 711 unsigned long runnable_avg; 712 } removed; 713 714 #ifdef CONFIG_FAIR_GROUP_SCHED 715 u64 last_update_tg_load_avg; 716 unsigned long tg_load_avg_contrib; 717 long propagate; 718 long prop_runnable_sum; 719 720 /* 721 * h_load = weight * f(tg) 722 * 723 * Where f(tg) is the recursive weight fraction assigned to 724 * this group. 725 */ 726 unsigned long h_load; 727 u64 last_h_load_update; 728 struct sched_entity *h_load_next; 729 #endif /* CONFIG_FAIR_GROUP_SCHED */ 730 731 #ifdef CONFIG_FAIR_GROUP_SCHED 732 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 733 734 /* 735 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 736 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 737 * (like users, containers etc.) 738 * 739 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 740 * This list is used during load balance. 741 */ 742 int on_list; 743 struct list_head leaf_cfs_rq_list; 744 struct task_group *tg; /* group that "owns" this runqueue */ 745 746 /* Locally cached copy of our task_group's idle value */ 747 int idle; 748 749 #ifdef CONFIG_CFS_BANDWIDTH 750 int runtime_enabled; 751 s64 runtime_remaining; 752 753 u64 throttled_pelt_idle; 754 #ifndef CONFIG_64BIT 755 u64 throttled_pelt_idle_copy; 756 #endif 757 u64 throttled_clock; 758 u64 throttled_clock_pelt; 759 u64 throttled_clock_pelt_time; 760 u64 throttled_clock_self; 761 u64 throttled_clock_self_time; 762 bool throttled:1; 763 bool pelt_clock_throttled:1; 764 int throttle_count; 765 struct list_head throttled_list; 766 struct list_head throttled_csd_list; 767 struct list_head throttled_limbo_list; 768 #endif /* CONFIG_CFS_BANDWIDTH */ 769 #endif /* CONFIG_FAIR_GROUP_SCHED */ 770 }; 771 772 #ifdef CONFIG_SCHED_CLASS_EXT 773 /* scx_rq->flags, protected by the rq lock */ 774 enum scx_rq_flags { 775 /* 776 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 777 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 778 * only while the BPF scheduler considers the CPU to be online. 779 */ 780 SCX_RQ_ONLINE = 1 << 0, 781 SCX_RQ_CAN_STOP_TICK = 1 << 1, 782 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 783 SCX_RQ_BYPASSING = 1 << 4, 784 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 785 SCX_RQ_BAL_CB_PENDING = 1 << 6, /* must queue a cb after dispatching */ 786 787 SCX_RQ_IN_WAKEUP = 1 << 16, 788 SCX_RQ_IN_BALANCE = 1 << 17, 789 }; 790 791 struct scx_rq { 792 struct scx_dispatch_q local_dsq; 793 struct list_head runnable_list; /* runnable tasks on this rq */ 794 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 795 unsigned long ops_qseq; 796 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 797 u32 nr_running; 798 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 799 bool cpu_released; 800 u32 flags; 801 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 802 cpumask_var_t cpus_to_kick; 803 cpumask_var_t cpus_to_kick_if_idle; 804 cpumask_var_t cpus_to_preempt; 805 cpumask_var_t cpus_to_wait; 806 unsigned long pnt_seq; 807 struct balance_callback deferred_bal_cb; 808 struct irq_work deferred_irq_work; 809 struct irq_work kick_cpus_irq_work; 810 }; 811 #endif /* CONFIG_SCHED_CLASS_EXT */ 812 813 static inline int rt_bandwidth_enabled(void) 814 { 815 return sysctl_sched_rt_runtime >= 0; 816 } 817 818 /* RT IPI pull logic requires IRQ_WORK */ 819 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 820 # define HAVE_RT_PUSH_IPI 821 #endif 822 823 /* Real-Time classes' related field in a runqueue: */ 824 struct rt_rq { 825 struct rt_prio_array active; 826 unsigned int rt_nr_running; 827 unsigned int rr_nr_running; 828 struct { 829 int curr; /* highest queued rt task prio */ 830 int next; /* next highest */ 831 } highest_prio; 832 bool overloaded; 833 struct plist_head pushable_tasks; 834 835 int rt_queued; 836 837 #ifdef CONFIG_RT_GROUP_SCHED 838 int rt_throttled; 839 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 840 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 841 /* Nests inside the rq lock: */ 842 raw_spinlock_t rt_runtime_lock; 843 844 unsigned int rt_nr_boosted; 845 846 struct rq *rq; /* this is always top-level rq, cache? */ 847 #endif 848 #ifdef CONFIG_CGROUP_SCHED 849 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 850 #endif 851 }; 852 853 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 854 { 855 return rt_rq->rt_queued && rt_rq->rt_nr_running; 856 } 857 858 /* Deadline class' related fields in a runqueue */ 859 struct dl_rq { 860 /* runqueue is an rbtree, ordered by deadline */ 861 struct rb_root_cached root; 862 863 unsigned int dl_nr_running; 864 865 /* 866 * Deadline values of the currently executing and the 867 * earliest ready task on this rq. Caching these facilitates 868 * the decision whether or not a ready but not running task 869 * should migrate somewhere else. 870 */ 871 struct { 872 u64 curr; 873 u64 next; 874 } earliest_dl; 875 876 bool overloaded; 877 878 /* 879 * Tasks on this rq that can be pushed away. They are kept in 880 * an rb-tree, ordered by tasks' deadlines, with caching 881 * of the leftmost (earliest deadline) element. 882 */ 883 struct rb_root_cached pushable_dl_tasks_root; 884 885 /* 886 * "Active utilization" for this runqueue: increased when a 887 * task wakes up (becomes TASK_RUNNING) and decreased when a 888 * task blocks 889 */ 890 u64 running_bw; 891 892 /* 893 * Utilization of the tasks "assigned" to this runqueue (including 894 * the tasks that are in runqueue and the tasks that executed on this 895 * CPU and blocked). Increased when a task moves to this runqueue, and 896 * decreased when the task moves away (migrates, changes scheduling 897 * policy, or terminates). 898 * This is needed to compute the "inactive utilization" for the 899 * runqueue (inactive utilization = this_bw - running_bw). 900 */ 901 u64 this_bw; 902 u64 extra_bw; 903 904 /* 905 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 906 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 907 */ 908 u64 max_bw; 909 910 /* 911 * Inverse of the fraction of CPU utilization that can be reclaimed 912 * by the GRUB algorithm. 913 */ 914 u64 bw_ratio; 915 }; 916 917 #ifdef CONFIG_FAIR_GROUP_SCHED 918 919 /* An entity is a task if it doesn't "own" a runqueue */ 920 #define entity_is_task(se) (!se->my_q) 921 922 static inline void se_update_runnable(struct sched_entity *se) 923 { 924 if (!entity_is_task(se)) 925 se->runnable_weight = se->my_q->h_nr_runnable; 926 } 927 928 static inline long se_runnable(struct sched_entity *se) 929 { 930 if (se->sched_delayed) 931 return false; 932 933 if (entity_is_task(se)) 934 return !!se->on_rq; 935 else 936 return se->runnable_weight; 937 } 938 939 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 940 941 #define entity_is_task(se) 1 942 943 static inline void se_update_runnable(struct sched_entity *se) { } 944 945 static inline long se_runnable(struct sched_entity *se) 946 { 947 if (se->sched_delayed) 948 return false; 949 950 return !!se->on_rq; 951 } 952 953 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 954 955 /* 956 * XXX we want to get rid of these helpers and use the full load resolution. 957 */ 958 static inline long se_weight(struct sched_entity *se) 959 { 960 return scale_load_down(se->load.weight); 961 } 962 963 964 static inline bool sched_asym_prefer(int a, int b) 965 { 966 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 967 } 968 969 struct perf_domain { 970 struct em_perf_domain *em_pd; 971 struct perf_domain *next; 972 struct rcu_head rcu; 973 }; 974 975 /* 976 * We add the notion of a root-domain which will be used to define per-domain 977 * variables. Each exclusive cpuset essentially defines an island domain by 978 * fully partitioning the member CPUs from any other cpuset. Whenever a new 979 * exclusive cpuset is created, we also create and attach a new root-domain 980 * object. 981 * 982 */ 983 struct root_domain { 984 atomic_t refcount; 985 atomic_t rto_count; 986 struct rcu_head rcu; 987 cpumask_var_t span; 988 cpumask_var_t online; 989 990 /* 991 * Indicate pullable load on at least one CPU, e.g: 992 * - More than one runnable task 993 * - Running task is misfit 994 */ 995 bool overloaded; 996 997 /* Indicate one or more CPUs over-utilized (tipping point) */ 998 bool overutilized; 999 1000 /* 1001 * The bit corresponding to a CPU gets set here if such CPU has more 1002 * than one runnable -deadline task (as it is below for RT tasks). 1003 */ 1004 cpumask_var_t dlo_mask; 1005 atomic_t dlo_count; 1006 struct dl_bw dl_bw; 1007 struct cpudl cpudl; 1008 1009 /* 1010 * Indicate whether a root_domain's dl_bw has been checked or 1011 * updated. It's monotonously increasing value. 1012 * 1013 * Also, some corner cases, like 'wrap around' is dangerous, but given 1014 * that u64 is 'big enough'. So that shouldn't be a concern. 1015 */ 1016 u64 visit_cookie; 1017 1018 #ifdef HAVE_RT_PUSH_IPI 1019 /* 1020 * For IPI pull requests, loop across the rto_mask. 1021 */ 1022 struct irq_work rto_push_work; 1023 raw_spinlock_t rto_lock; 1024 /* These are only updated and read within rto_lock */ 1025 int rto_loop; 1026 int rto_cpu; 1027 /* These atomics are updated outside of a lock */ 1028 atomic_t rto_loop_next; 1029 atomic_t rto_loop_start; 1030 #endif /* HAVE_RT_PUSH_IPI */ 1031 /* 1032 * The "RT overload" flag: it gets set if a CPU has more than 1033 * one runnable RT task. 1034 */ 1035 cpumask_var_t rto_mask; 1036 struct cpupri cpupri; 1037 1038 /* 1039 * NULL-terminated list of performance domains intersecting with the 1040 * CPUs of the rd. Protected by RCU. 1041 */ 1042 struct perf_domain __rcu *pd; 1043 }; 1044 1045 extern void init_defrootdomain(void); 1046 extern int sched_init_domains(const struct cpumask *cpu_map); 1047 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1048 extern void sched_get_rd(struct root_domain *rd); 1049 extern void sched_put_rd(struct root_domain *rd); 1050 1051 static inline int get_rd_overloaded(struct root_domain *rd) 1052 { 1053 return READ_ONCE(rd->overloaded); 1054 } 1055 1056 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1057 { 1058 if (get_rd_overloaded(rd) != status) 1059 WRITE_ONCE(rd->overloaded, status); 1060 } 1061 1062 #ifdef HAVE_RT_PUSH_IPI 1063 extern void rto_push_irq_work_func(struct irq_work *work); 1064 #endif 1065 1066 #ifdef CONFIG_UCLAMP_TASK 1067 /* 1068 * struct uclamp_bucket - Utilization clamp bucket 1069 * @value: utilization clamp value for tasks on this clamp bucket 1070 * @tasks: number of RUNNABLE tasks on this clamp bucket 1071 * 1072 * Keep track of how many tasks are RUNNABLE for a given utilization 1073 * clamp value. 1074 */ 1075 struct uclamp_bucket { 1076 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1077 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1078 }; 1079 1080 /* 1081 * struct uclamp_rq - rq's utilization clamp 1082 * @value: currently active clamp values for a rq 1083 * @bucket: utilization clamp buckets affecting a rq 1084 * 1085 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1086 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1087 * (or actually running) with that value. 1088 * 1089 * There are up to UCLAMP_CNT possible different clamp values, currently there 1090 * are only two: minimum utilization and maximum utilization. 1091 * 1092 * All utilization clamping values are MAX aggregated, since: 1093 * - for util_min: we want to run the CPU at least at the max of the minimum 1094 * utilization required by its currently RUNNABLE tasks. 1095 * - for util_max: we want to allow the CPU to run up to the max of the 1096 * maximum utilization allowed by its currently RUNNABLE tasks. 1097 * 1098 * Since on each system we expect only a limited number of different 1099 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1100 * the metrics required to compute all the per-rq utilization clamp values. 1101 */ 1102 struct uclamp_rq { 1103 unsigned int value; 1104 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1105 }; 1106 1107 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1108 #endif /* CONFIG_UCLAMP_TASK */ 1109 1110 /* 1111 * This is the main, per-CPU runqueue data structure. 1112 * 1113 * Locking rule: those places that want to lock multiple runqueues 1114 * (such as the load balancing or the thread migration code), lock 1115 * acquire operations must be ordered by ascending &runqueue. 1116 */ 1117 struct rq { 1118 /* runqueue lock: */ 1119 raw_spinlock_t __lock; 1120 1121 /* Per class runqueue modification mask; bits in class order. */ 1122 unsigned int queue_mask; 1123 unsigned int nr_running; 1124 #ifdef CONFIG_NUMA_BALANCING 1125 unsigned int nr_numa_running; 1126 unsigned int nr_preferred_running; 1127 unsigned int numa_migrate_on; 1128 #endif 1129 #ifdef CONFIG_NO_HZ_COMMON 1130 unsigned long last_blocked_load_update_tick; 1131 unsigned int has_blocked_load; 1132 call_single_data_t nohz_csd; 1133 unsigned int nohz_tick_stopped; 1134 atomic_t nohz_flags; 1135 #endif /* CONFIG_NO_HZ_COMMON */ 1136 1137 unsigned int ttwu_pending; 1138 u64 nr_switches; 1139 1140 #ifdef CONFIG_UCLAMP_TASK 1141 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1142 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1143 unsigned int uclamp_flags; 1144 #define UCLAMP_FLAG_IDLE 0x01 1145 #endif 1146 1147 struct cfs_rq cfs; 1148 struct rt_rq rt; 1149 struct dl_rq dl; 1150 #ifdef CONFIG_SCHED_CLASS_EXT 1151 struct scx_rq scx; 1152 #endif 1153 1154 struct sched_dl_entity fair_server; 1155 1156 #ifdef CONFIG_FAIR_GROUP_SCHED 1157 /* list of leaf cfs_rq on this CPU: */ 1158 struct list_head leaf_cfs_rq_list; 1159 struct list_head *tmp_alone_branch; 1160 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1161 1162 /* 1163 * This is part of a global counter where only the total sum 1164 * over all CPUs matters. A task can increase this counter on 1165 * one CPU and if it got migrated afterwards it may decrease 1166 * it on another CPU. Always updated under the runqueue lock: 1167 */ 1168 unsigned long nr_uninterruptible; 1169 1170 #ifdef CONFIG_SCHED_PROXY_EXEC 1171 struct task_struct __rcu *donor; /* Scheduling context */ 1172 struct task_struct __rcu *curr; /* Execution context */ 1173 #else 1174 union { 1175 struct task_struct __rcu *donor; /* Scheduler context */ 1176 struct task_struct __rcu *curr; /* Execution context */ 1177 }; 1178 #endif 1179 struct sched_dl_entity *dl_server; 1180 struct task_struct *idle; 1181 struct task_struct *stop; 1182 unsigned long next_balance; 1183 struct mm_struct *prev_mm; 1184 1185 unsigned int clock_update_flags; 1186 u64 clock; 1187 /* Ensure that all clocks are in the same cache line */ 1188 u64 clock_task ____cacheline_aligned; 1189 u64 clock_pelt; 1190 unsigned long lost_idle_time; 1191 u64 clock_pelt_idle; 1192 u64 clock_idle; 1193 #ifndef CONFIG_64BIT 1194 u64 clock_pelt_idle_copy; 1195 u64 clock_idle_copy; 1196 #endif 1197 1198 atomic_t nr_iowait; 1199 1200 u64 last_seen_need_resched_ns; 1201 int ticks_without_resched; 1202 1203 #ifdef CONFIG_MEMBARRIER 1204 int membarrier_state; 1205 #endif 1206 1207 struct root_domain *rd; 1208 struct sched_domain __rcu *sd; 1209 1210 unsigned long cpu_capacity; 1211 1212 struct balance_callback *balance_callback; 1213 1214 unsigned char nohz_idle_balance; 1215 unsigned char idle_balance; 1216 1217 unsigned long misfit_task_load; 1218 1219 /* For active balancing */ 1220 int active_balance; 1221 int push_cpu; 1222 struct cpu_stop_work active_balance_work; 1223 1224 /* CPU of this runqueue: */ 1225 int cpu; 1226 int online; 1227 1228 struct list_head cfs_tasks; 1229 1230 struct sched_avg avg_rt; 1231 struct sched_avg avg_dl; 1232 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1233 struct sched_avg avg_irq; 1234 #endif 1235 #ifdef CONFIG_SCHED_HW_PRESSURE 1236 struct sched_avg avg_hw; 1237 #endif 1238 u64 idle_stamp; 1239 u64 avg_idle; 1240 1241 /* This is used to determine avg_idle's max value */ 1242 u64 max_idle_balance_cost; 1243 1244 #ifdef CONFIG_HOTPLUG_CPU 1245 struct rcuwait hotplug_wait; 1246 #endif 1247 1248 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1249 u64 prev_irq_time; 1250 u64 psi_irq_time; 1251 #endif 1252 #ifdef CONFIG_PARAVIRT 1253 u64 prev_steal_time; 1254 #endif 1255 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1256 u64 prev_steal_time_rq; 1257 #endif 1258 1259 /* calc_load related fields */ 1260 unsigned long calc_load_update; 1261 long calc_load_active; 1262 1263 #ifdef CONFIG_SCHED_HRTICK 1264 call_single_data_t hrtick_csd; 1265 struct hrtimer hrtick_timer; 1266 ktime_t hrtick_time; 1267 #endif 1268 1269 #ifdef CONFIG_SCHEDSTATS 1270 /* latency stats */ 1271 struct sched_info rq_sched_info; 1272 unsigned long long rq_cpu_time; 1273 1274 /* sys_sched_yield() stats */ 1275 unsigned int yld_count; 1276 1277 /* schedule() stats */ 1278 unsigned int sched_count; 1279 unsigned int sched_goidle; 1280 1281 /* try_to_wake_up() stats */ 1282 unsigned int ttwu_count; 1283 unsigned int ttwu_local; 1284 #endif 1285 1286 #ifdef CONFIG_CPU_IDLE 1287 /* Must be inspected within a RCU lock section */ 1288 struct cpuidle_state *idle_state; 1289 #endif 1290 1291 unsigned int nr_pinned; 1292 unsigned int push_busy; 1293 struct cpu_stop_work push_work; 1294 1295 #ifdef CONFIG_SCHED_CORE 1296 /* per rq */ 1297 struct rq *core; 1298 struct task_struct *core_pick; 1299 struct sched_dl_entity *core_dl_server; 1300 unsigned int core_enabled; 1301 unsigned int core_sched_seq; 1302 struct rb_root core_tree; 1303 1304 /* shared state -- careful with sched_core_cpu_deactivate() */ 1305 unsigned int core_task_seq; 1306 unsigned int core_pick_seq; 1307 unsigned long core_cookie; 1308 unsigned int core_forceidle_count; 1309 unsigned int core_forceidle_seq; 1310 unsigned int core_forceidle_occupation; 1311 u64 core_forceidle_start; 1312 #endif /* CONFIG_SCHED_CORE */ 1313 1314 /* Scratch cpumask to be temporarily used under rq_lock */ 1315 cpumask_var_t scratch_mask; 1316 1317 #ifdef CONFIG_CFS_BANDWIDTH 1318 call_single_data_t cfsb_csd; 1319 struct list_head cfsb_csd_list; 1320 #endif 1321 }; 1322 1323 #ifdef CONFIG_FAIR_GROUP_SCHED 1324 1325 /* CPU runqueue to which this cfs_rq is attached */ 1326 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1327 { 1328 return cfs_rq->rq; 1329 } 1330 1331 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1332 1333 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1334 { 1335 return container_of(cfs_rq, struct rq, cfs); 1336 } 1337 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1338 1339 static inline int cpu_of(struct rq *rq) 1340 { 1341 return rq->cpu; 1342 } 1343 1344 #define MDF_PUSH 0x01 1345 1346 static inline bool is_migration_disabled(struct task_struct *p) 1347 { 1348 return p->migration_disabled; 1349 } 1350 1351 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1352 DECLARE_PER_CPU(struct rnd_state, sched_rnd_state); 1353 1354 static inline u32 sched_rng(void) 1355 { 1356 return prandom_u32_state(this_cpu_ptr(&sched_rnd_state)); 1357 } 1358 1359 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1360 #define this_rq() this_cpu_ptr(&runqueues) 1361 #define task_rq(p) cpu_rq(task_cpu(p)) 1362 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1363 #define raw_rq() raw_cpu_ptr(&runqueues) 1364 1365 #ifdef CONFIG_SCHED_PROXY_EXEC 1366 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1367 { 1368 rcu_assign_pointer(rq->donor, t); 1369 } 1370 #else 1371 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1372 { 1373 /* Do nothing */ 1374 } 1375 #endif 1376 1377 #ifdef CONFIG_SCHED_CORE 1378 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1379 1380 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1381 1382 static inline bool sched_core_enabled(struct rq *rq) 1383 { 1384 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1385 } 1386 1387 static inline bool sched_core_disabled(void) 1388 { 1389 return !static_branch_unlikely(&__sched_core_enabled); 1390 } 1391 1392 /* 1393 * Be careful with this function; not for general use. The return value isn't 1394 * stable unless you actually hold a relevant rq->__lock. 1395 */ 1396 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1397 { 1398 if (sched_core_enabled(rq)) 1399 return &rq->core->__lock; 1400 1401 return &rq->__lock; 1402 } 1403 1404 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1405 { 1406 if (rq->core_enabled) 1407 return &rq->core->__lock; 1408 1409 return &rq->__lock; 1410 } 1411 1412 extern bool 1413 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1414 1415 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1416 1417 /* 1418 * Helpers to check if the CPU's core cookie matches with the task's cookie 1419 * when core scheduling is enabled. 1420 * A special case is that the task's cookie always matches with CPU's core 1421 * cookie if the CPU is in an idle core. 1422 */ 1423 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1424 { 1425 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1426 if (!sched_core_enabled(rq)) 1427 return true; 1428 1429 return rq->core->core_cookie == p->core_cookie; 1430 } 1431 1432 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1433 { 1434 bool idle_core = true; 1435 int cpu; 1436 1437 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1438 if (!sched_core_enabled(rq)) 1439 return true; 1440 1441 if (rq->core->core_cookie == p->core_cookie) 1442 return true; 1443 1444 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1445 if (!available_idle_cpu(cpu)) { 1446 idle_core = false; 1447 break; 1448 } 1449 } 1450 1451 /* 1452 * A CPU in an idle core is always the best choice for tasks with 1453 * cookies. 1454 */ 1455 return idle_core; 1456 } 1457 1458 static inline bool sched_group_cookie_match(struct rq *rq, 1459 struct task_struct *p, 1460 struct sched_group *group) 1461 { 1462 int cpu; 1463 1464 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1465 if (!sched_core_enabled(rq)) 1466 return true; 1467 1468 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1469 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1470 return true; 1471 } 1472 return false; 1473 } 1474 1475 static inline bool sched_core_enqueued(struct task_struct *p) 1476 { 1477 return !RB_EMPTY_NODE(&p->core_node); 1478 } 1479 1480 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1481 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1482 1483 extern void sched_core_get(void); 1484 extern void sched_core_put(void); 1485 1486 #else /* !CONFIG_SCHED_CORE: */ 1487 1488 static inline bool sched_core_enabled(struct rq *rq) 1489 { 1490 return false; 1491 } 1492 1493 static inline bool sched_core_disabled(void) 1494 { 1495 return true; 1496 } 1497 1498 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1499 { 1500 return &rq->__lock; 1501 } 1502 1503 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1504 { 1505 return &rq->__lock; 1506 } 1507 1508 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1509 { 1510 return true; 1511 } 1512 1513 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1514 { 1515 return true; 1516 } 1517 1518 static inline bool sched_group_cookie_match(struct rq *rq, 1519 struct task_struct *p, 1520 struct sched_group *group) 1521 { 1522 return true; 1523 } 1524 1525 #endif /* !CONFIG_SCHED_CORE */ 1526 1527 #ifdef CONFIG_RT_GROUP_SCHED 1528 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1529 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1530 static inline bool rt_group_sched_enabled(void) 1531 { 1532 return static_branch_unlikely(&rt_group_sched); 1533 } 1534 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1535 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1536 static inline bool rt_group_sched_enabled(void) 1537 { 1538 return static_branch_likely(&rt_group_sched); 1539 } 1540 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1541 #else /* !CONFIG_RT_GROUP_SCHED: */ 1542 # define rt_group_sched_enabled() false 1543 #endif /* !CONFIG_RT_GROUP_SCHED */ 1544 1545 static inline void lockdep_assert_rq_held(struct rq *rq) 1546 { 1547 lockdep_assert_held(__rq_lockp(rq)); 1548 } 1549 1550 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1551 extern bool raw_spin_rq_trylock(struct rq *rq); 1552 extern void raw_spin_rq_unlock(struct rq *rq); 1553 1554 static inline void raw_spin_rq_lock(struct rq *rq) 1555 { 1556 raw_spin_rq_lock_nested(rq, 0); 1557 } 1558 1559 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1560 { 1561 local_irq_disable(); 1562 raw_spin_rq_lock(rq); 1563 } 1564 1565 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1566 { 1567 raw_spin_rq_unlock(rq); 1568 local_irq_enable(); 1569 } 1570 1571 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1572 { 1573 unsigned long flags; 1574 1575 local_irq_save(flags); 1576 raw_spin_rq_lock(rq); 1577 1578 return flags; 1579 } 1580 1581 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1582 { 1583 raw_spin_rq_unlock(rq); 1584 local_irq_restore(flags); 1585 } 1586 1587 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1588 do { \ 1589 flags = _raw_spin_rq_lock_irqsave(rq); \ 1590 } while (0) 1591 1592 #ifdef CONFIG_SCHED_SMT 1593 extern void __update_idle_core(struct rq *rq); 1594 1595 static inline void update_idle_core(struct rq *rq) 1596 { 1597 if (static_branch_unlikely(&sched_smt_present)) 1598 __update_idle_core(rq); 1599 } 1600 1601 #else /* !CONFIG_SCHED_SMT: */ 1602 static inline void update_idle_core(struct rq *rq) { } 1603 #endif /* !CONFIG_SCHED_SMT */ 1604 1605 #ifdef CONFIG_FAIR_GROUP_SCHED 1606 1607 static inline struct task_struct *task_of(struct sched_entity *se) 1608 { 1609 WARN_ON_ONCE(!entity_is_task(se)); 1610 return container_of(se, struct task_struct, se); 1611 } 1612 1613 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1614 { 1615 return p->se.cfs_rq; 1616 } 1617 1618 /* runqueue on which this entity is (to be) queued */ 1619 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1620 { 1621 return se->cfs_rq; 1622 } 1623 1624 /* runqueue "owned" by this group */ 1625 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1626 { 1627 return grp->my_q; 1628 } 1629 1630 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1631 1632 #define task_of(_se) container_of(_se, struct task_struct, se) 1633 1634 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1635 { 1636 return &task_rq(p)->cfs; 1637 } 1638 1639 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1640 { 1641 const struct task_struct *p = task_of(se); 1642 struct rq *rq = task_rq(p); 1643 1644 return &rq->cfs; 1645 } 1646 1647 /* runqueue "owned" by this group */ 1648 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1649 { 1650 return NULL; 1651 } 1652 1653 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1654 1655 extern void update_rq_clock(struct rq *rq); 1656 1657 /* 1658 * rq::clock_update_flags bits 1659 * 1660 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1661 * call to __schedule(). This is an optimisation to avoid 1662 * neighbouring rq clock updates. 1663 * 1664 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1665 * in effect and calls to update_rq_clock() are being ignored. 1666 * 1667 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1668 * made to update_rq_clock() since the last time rq::lock was pinned. 1669 * 1670 * If inside of __schedule(), clock_update_flags will have been 1671 * shifted left (a left shift is a cheap operation for the fast path 1672 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1673 * 1674 * if (rq-clock_update_flags >= RQCF_UPDATED) 1675 * 1676 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1677 * one position though, because the next rq_unpin_lock() will shift it 1678 * back. 1679 */ 1680 #define RQCF_REQ_SKIP 0x01 1681 #define RQCF_ACT_SKIP 0x02 1682 #define RQCF_UPDATED 0x04 1683 1684 static inline void assert_clock_updated(struct rq *rq) 1685 { 1686 /* 1687 * The only reason for not seeing a clock update since the 1688 * last rq_pin_lock() is if we're currently skipping updates. 1689 */ 1690 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1691 } 1692 1693 static inline u64 rq_clock(struct rq *rq) 1694 { 1695 lockdep_assert_rq_held(rq); 1696 assert_clock_updated(rq); 1697 1698 return rq->clock; 1699 } 1700 1701 static inline u64 rq_clock_task(struct rq *rq) 1702 { 1703 lockdep_assert_rq_held(rq); 1704 assert_clock_updated(rq); 1705 1706 return rq->clock_task; 1707 } 1708 1709 static inline void rq_clock_skip_update(struct rq *rq) 1710 { 1711 lockdep_assert_rq_held(rq); 1712 rq->clock_update_flags |= RQCF_REQ_SKIP; 1713 } 1714 1715 /* 1716 * See rt task throttling, which is the only time a skip 1717 * request is canceled. 1718 */ 1719 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1720 { 1721 lockdep_assert_rq_held(rq); 1722 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1723 } 1724 1725 /* 1726 * During cpu offlining and rq wide unthrottling, we can trigger 1727 * an update_rq_clock() for several cfs and rt runqueues (Typically 1728 * when using list_for_each_entry_*) 1729 * rq_clock_start_loop_update() can be called after updating the clock 1730 * once and before iterating over the list to prevent multiple update. 1731 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1732 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1733 */ 1734 static inline void rq_clock_start_loop_update(struct rq *rq) 1735 { 1736 lockdep_assert_rq_held(rq); 1737 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1738 rq->clock_update_flags |= RQCF_ACT_SKIP; 1739 } 1740 1741 static inline void rq_clock_stop_loop_update(struct rq *rq) 1742 { 1743 lockdep_assert_rq_held(rq); 1744 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1745 } 1746 1747 struct rq_flags { 1748 unsigned long flags; 1749 struct pin_cookie cookie; 1750 /* 1751 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1752 * current pin context is stashed here in case it needs to be 1753 * restored in rq_repin_lock(). 1754 */ 1755 unsigned int clock_update_flags; 1756 }; 1757 1758 extern struct balance_callback balance_push_callback; 1759 1760 #ifdef CONFIG_SCHED_CLASS_EXT 1761 extern const struct sched_class ext_sched_class; 1762 1763 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1764 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1765 1766 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1767 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1768 1769 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1770 { 1771 if (!scx_enabled()) 1772 return; 1773 WRITE_ONCE(rq->scx.clock, clock); 1774 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1775 } 1776 1777 static inline void scx_rq_clock_invalidate(struct rq *rq) 1778 { 1779 if (!scx_enabled()) 1780 return; 1781 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1782 } 1783 1784 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1785 #define scx_enabled() false 1786 #define scx_switched_all() false 1787 1788 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1789 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1790 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1791 1792 /* 1793 * Lockdep annotation that avoids accidental unlocks; it's like a 1794 * sticky/continuous lockdep_assert_held(). 1795 * 1796 * This avoids code that has access to 'struct rq *rq' (basically everything in 1797 * the scheduler) from accidentally unlocking the rq if they do not also have a 1798 * copy of the (on-stack) 'struct rq_flags rf'. 1799 * 1800 * Also see Documentation/locking/lockdep-design.rst. 1801 */ 1802 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1803 { 1804 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1805 1806 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1807 rf->clock_update_flags = 0; 1808 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1809 } 1810 1811 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1812 { 1813 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1814 rf->clock_update_flags = RQCF_UPDATED; 1815 1816 scx_rq_clock_invalidate(rq); 1817 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1818 } 1819 1820 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1821 { 1822 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1823 1824 /* 1825 * Restore the value we stashed in @rf for this pin context. 1826 */ 1827 rq->clock_update_flags |= rf->clock_update_flags; 1828 } 1829 1830 extern 1831 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1832 __acquires(rq->lock); 1833 1834 extern 1835 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1836 __acquires(p->pi_lock) 1837 __acquires(rq->lock); 1838 1839 static inline void 1840 __task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1841 __releases(rq->lock) 1842 { 1843 rq_unpin_lock(rq, rf); 1844 raw_spin_rq_unlock(rq); 1845 } 1846 1847 static inline void 1848 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1849 __releases(rq->lock) 1850 __releases(p->pi_lock) 1851 { 1852 __task_rq_unlock(rq, p, rf); 1853 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1854 } 1855 1856 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1857 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1858 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1859 struct rq *rq; struct rq_flags rf) 1860 1861 DEFINE_LOCK_GUARD_1(__task_rq_lock, struct task_struct, 1862 _T->rq = __task_rq_lock(_T->lock, &_T->rf), 1863 __task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1864 struct rq *rq; struct rq_flags rf) 1865 1866 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1867 __acquires(rq->lock) 1868 { 1869 raw_spin_rq_lock_irqsave(rq, rf->flags); 1870 rq_pin_lock(rq, rf); 1871 } 1872 1873 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1874 __acquires(rq->lock) 1875 { 1876 raw_spin_rq_lock_irq(rq); 1877 rq_pin_lock(rq, rf); 1878 } 1879 1880 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1881 __acquires(rq->lock) 1882 { 1883 raw_spin_rq_lock(rq); 1884 rq_pin_lock(rq, rf); 1885 } 1886 1887 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1888 __releases(rq->lock) 1889 { 1890 rq_unpin_lock(rq, rf); 1891 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1892 } 1893 1894 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1895 __releases(rq->lock) 1896 { 1897 rq_unpin_lock(rq, rf); 1898 raw_spin_rq_unlock_irq(rq); 1899 } 1900 1901 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1902 __releases(rq->lock) 1903 { 1904 rq_unpin_lock(rq, rf); 1905 raw_spin_rq_unlock(rq); 1906 } 1907 1908 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1909 rq_lock(_T->lock, &_T->rf), 1910 rq_unlock(_T->lock, &_T->rf), 1911 struct rq_flags rf) 1912 1913 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1914 rq_lock_irq(_T->lock, &_T->rf), 1915 rq_unlock_irq(_T->lock, &_T->rf), 1916 struct rq_flags rf) 1917 1918 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1919 rq_lock_irqsave(_T->lock, &_T->rf), 1920 rq_unlock_irqrestore(_T->lock, &_T->rf), 1921 struct rq_flags rf) 1922 1923 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1924 __acquires(rq->lock) 1925 { 1926 struct rq *rq; 1927 1928 local_irq_disable(); 1929 rq = this_rq(); 1930 rq_lock(rq, rf); 1931 1932 return rq; 1933 } 1934 1935 #ifdef CONFIG_NUMA 1936 1937 enum numa_topology_type { 1938 NUMA_DIRECT, 1939 NUMA_GLUELESS_MESH, 1940 NUMA_BACKPLANE, 1941 }; 1942 1943 extern enum numa_topology_type sched_numa_topology_type; 1944 extern int sched_max_numa_distance; 1945 extern bool find_numa_distance(int distance); 1946 extern void sched_init_numa(int offline_node); 1947 extern void sched_update_numa(int cpu, bool online); 1948 extern void sched_domains_numa_masks_set(unsigned int cpu); 1949 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1950 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1951 1952 #else /* !CONFIG_NUMA: */ 1953 1954 static inline void sched_init_numa(int offline_node) { } 1955 static inline void sched_update_numa(int cpu, bool online) { } 1956 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1957 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1958 1959 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1960 { 1961 return nr_cpu_ids; 1962 } 1963 1964 #endif /* !CONFIG_NUMA */ 1965 1966 #ifdef CONFIG_NUMA_BALANCING 1967 1968 /* The regions in numa_faults array from task_struct */ 1969 enum numa_faults_stats { 1970 NUMA_MEM = 0, 1971 NUMA_CPU, 1972 NUMA_MEMBUF, 1973 NUMA_CPUBUF 1974 }; 1975 1976 extern void sched_setnuma(struct task_struct *p, int node); 1977 extern int migrate_task_to(struct task_struct *p, int cpu); 1978 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1979 int cpu, int scpu); 1980 extern void init_numa_balancing(u64 clone_flags, struct task_struct *p); 1981 1982 #else /* !CONFIG_NUMA_BALANCING: */ 1983 1984 static inline void 1985 init_numa_balancing(u64 clone_flags, struct task_struct *p) 1986 { 1987 } 1988 1989 #endif /* !CONFIG_NUMA_BALANCING */ 1990 1991 static inline void 1992 queue_balance_callback(struct rq *rq, 1993 struct balance_callback *head, 1994 void (*func)(struct rq *rq)) 1995 { 1996 lockdep_assert_rq_held(rq); 1997 1998 /* 1999 * Don't (re)queue an already queued item; nor queue anything when 2000 * balance_push() is active, see the comment with 2001 * balance_push_callback. 2002 */ 2003 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 2004 return; 2005 2006 head->func = func; 2007 head->next = rq->balance_callback; 2008 rq->balance_callback = head; 2009 } 2010 2011 #define rcu_dereference_check_sched_domain(p) \ 2012 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 2013 2014 /* 2015 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 2016 * See destroy_sched_domains: call_rcu for details. 2017 * 2018 * The domain tree of any CPU may only be accessed from within 2019 * preempt-disabled sections. 2020 */ 2021 #define for_each_domain(cpu, __sd) \ 2022 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 2023 __sd; __sd = __sd->parent) 2024 2025 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 2026 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 2027 static const unsigned int SD_SHARED_CHILD_MASK = 2028 #include <linux/sched/sd_flags.h> 2029 0; 2030 #undef SD_FLAG 2031 2032 /** 2033 * highest_flag_domain - Return highest sched_domain containing flag. 2034 * @cpu: The CPU whose highest level of sched domain is to 2035 * be returned. 2036 * @flag: The flag to check for the highest sched_domain 2037 * for the given CPU. 2038 * 2039 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 2040 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 2041 */ 2042 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2043 { 2044 struct sched_domain *sd, *hsd = NULL; 2045 2046 for_each_domain(cpu, sd) { 2047 if (sd->flags & flag) { 2048 hsd = sd; 2049 continue; 2050 } 2051 2052 /* 2053 * Stop the search if @flag is known to be shared at lower 2054 * levels. It will not be found further up. 2055 */ 2056 if (flag & SD_SHARED_CHILD_MASK) 2057 break; 2058 } 2059 2060 return hsd; 2061 } 2062 2063 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2064 { 2065 struct sched_domain *sd; 2066 2067 for_each_domain(cpu, sd) { 2068 if (sd->flags & flag) 2069 break; 2070 } 2071 2072 return sd; 2073 } 2074 2075 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2076 DECLARE_PER_CPU(int, sd_llc_size); 2077 DECLARE_PER_CPU(int, sd_llc_id); 2078 DECLARE_PER_CPU(int, sd_share_id); 2079 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2080 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2081 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2082 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2083 2084 extern struct static_key_false sched_asym_cpucapacity; 2085 extern struct static_key_false sched_cluster_active; 2086 2087 static __always_inline bool sched_asym_cpucap_active(void) 2088 { 2089 return static_branch_unlikely(&sched_asym_cpucapacity); 2090 } 2091 2092 struct sched_group_capacity { 2093 atomic_t ref; 2094 /* 2095 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2096 * for a single CPU. 2097 */ 2098 unsigned long capacity; 2099 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2100 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2101 unsigned long next_update; 2102 int imbalance; /* XXX unrelated to capacity but shared group state */ 2103 2104 int id; 2105 2106 unsigned long cpumask[]; /* Balance mask */ 2107 }; 2108 2109 struct sched_group { 2110 struct sched_group *next; /* Must be a circular list */ 2111 atomic_t ref; 2112 2113 unsigned int group_weight; 2114 unsigned int cores; 2115 struct sched_group_capacity *sgc; 2116 int asym_prefer_cpu; /* CPU of highest priority in group */ 2117 int flags; 2118 2119 /* 2120 * The CPUs this group covers. 2121 * 2122 * NOTE: this field is variable length. (Allocated dynamically 2123 * by attaching extra space to the end of the structure, 2124 * depending on how many CPUs the kernel has booted up with) 2125 */ 2126 unsigned long cpumask[]; 2127 }; 2128 2129 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2130 { 2131 return to_cpumask(sg->cpumask); 2132 } 2133 2134 /* 2135 * See build_balance_mask(). 2136 */ 2137 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2138 { 2139 return to_cpumask(sg->sgc->cpumask); 2140 } 2141 2142 extern int group_balance_cpu(struct sched_group *sg); 2143 2144 extern void update_sched_domain_debugfs(void); 2145 extern void dirty_sched_domain_sysctl(int cpu); 2146 2147 extern int sched_update_scaling(void); 2148 2149 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2150 { 2151 if (!p->user_cpus_ptr) 2152 return cpu_possible_mask; /* &init_task.cpus_mask */ 2153 return p->user_cpus_ptr; 2154 } 2155 2156 #ifdef CONFIG_CGROUP_SCHED 2157 2158 /* 2159 * Return the group to which this tasks belongs. 2160 * 2161 * We cannot use task_css() and friends because the cgroup subsystem 2162 * changes that value before the cgroup_subsys::attach() method is called, 2163 * therefore we cannot pin it and might observe the wrong value. 2164 * 2165 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2166 * core changes this before calling sched_move_task(). 2167 * 2168 * Instead we use a 'copy' which is updated from sched_move_task() while 2169 * holding both task_struct::pi_lock and rq::lock. 2170 */ 2171 static inline struct task_group *task_group(struct task_struct *p) 2172 { 2173 return p->sched_task_group; 2174 } 2175 2176 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2177 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2178 { 2179 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2180 struct task_group *tg = task_group(p); 2181 #endif 2182 2183 #ifdef CONFIG_FAIR_GROUP_SCHED 2184 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2185 p->se.cfs_rq = tg->cfs_rq[cpu]; 2186 p->se.parent = tg->se[cpu]; 2187 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2188 #endif 2189 2190 #ifdef CONFIG_RT_GROUP_SCHED 2191 /* 2192 * p->rt.rt_rq is NULL initially and it is easier to assign 2193 * root_task_group's rt_rq than switching in rt_rq_of_se() 2194 * Clobbers tg(!) 2195 */ 2196 if (!rt_group_sched_enabled()) 2197 tg = &root_task_group; 2198 p->rt.rt_rq = tg->rt_rq[cpu]; 2199 p->rt.parent = tg->rt_se[cpu]; 2200 #endif /* CONFIG_RT_GROUP_SCHED */ 2201 } 2202 2203 #else /* !CONFIG_CGROUP_SCHED: */ 2204 2205 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2206 2207 static inline struct task_group *task_group(struct task_struct *p) 2208 { 2209 return NULL; 2210 } 2211 2212 #endif /* !CONFIG_CGROUP_SCHED */ 2213 2214 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2215 { 2216 set_task_rq(p, cpu); 2217 #ifdef CONFIG_SMP 2218 /* 2219 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2220 * successfully executed on another CPU. We must ensure that updates of 2221 * per-task data have been completed by this moment. 2222 */ 2223 smp_wmb(); 2224 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2225 p->wake_cpu = cpu; 2226 rseq_sched_set_ids_changed(p); 2227 #endif /* CONFIG_SMP */ 2228 } 2229 2230 /* 2231 * Tunables: 2232 */ 2233 2234 #define SCHED_FEAT(name, enabled) \ 2235 __SCHED_FEAT_##name , 2236 2237 enum { 2238 #include "features.h" 2239 __SCHED_FEAT_NR, 2240 }; 2241 2242 #undef SCHED_FEAT 2243 2244 /* 2245 * To support run-time toggling of sched features, all the translation units 2246 * (but core.c) reference the sysctl_sched_features defined in core.c. 2247 */ 2248 extern __read_mostly unsigned int sysctl_sched_features; 2249 2250 #ifdef CONFIG_JUMP_LABEL 2251 2252 #define SCHED_FEAT(name, enabled) \ 2253 static __always_inline bool static_branch_##name(struct static_key *key) \ 2254 { \ 2255 return static_key_##enabled(key); \ 2256 } 2257 2258 #include "features.h" 2259 #undef SCHED_FEAT 2260 2261 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2262 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2263 2264 #else /* !CONFIG_JUMP_LABEL: */ 2265 2266 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2267 2268 #endif /* !CONFIG_JUMP_LABEL */ 2269 2270 extern struct static_key_false sched_numa_balancing; 2271 extern struct static_key_false sched_schedstats; 2272 2273 static inline u64 global_rt_period(void) 2274 { 2275 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2276 } 2277 2278 static inline u64 global_rt_runtime(void) 2279 { 2280 if (sysctl_sched_rt_runtime < 0) 2281 return RUNTIME_INF; 2282 2283 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2284 } 2285 2286 /* 2287 * Is p the current execution context? 2288 */ 2289 static inline int task_current(struct rq *rq, struct task_struct *p) 2290 { 2291 return rq->curr == p; 2292 } 2293 2294 /* 2295 * Is p the current scheduling context? 2296 * 2297 * Note that it might be the current execution context at the same time if 2298 * rq->curr == rq->donor == p. 2299 */ 2300 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2301 { 2302 return rq->donor == p; 2303 } 2304 2305 static inline bool task_is_blocked(struct task_struct *p) 2306 { 2307 if (!sched_proxy_exec()) 2308 return false; 2309 2310 return !!p->blocked_on; 2311 } 2312 2313 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2314 { 2315 return p->on_cpu; 2316 } 2317 2318 static inline int task_on_rq_queued(struct task_struct *p) 2319 { 2320 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2321 } 2322 2323 static inline int task_on_rq_migrating(struct task_struct *p) 2324 { 2325 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2326 } 2327 2328 /* Wake flags. The first three directly map to some SD flag value */ 2329 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2330 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2331 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2332 2333 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2334 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2335 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2336 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2337 2338 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2339 static_assert(WF_FORK == SD_BALANCE_FORK); 2340 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2341 2342 /* 2343 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2344 * of tasks with abnormal "nice" values across CPUs the contribution that 2345 * each task makes to its run queue's load is weighted according to its 2346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2347 * scaled version of the new time slice allocation that they receive on time 2348 * slice expiry etc. 2349 */ 2350 2351 #define WEIGHT_IDLEPRIO 3 2352 #define WMULT_IDLEPRIO 1431655765 2353 2354 extern const int sched_prio_to_weight[40]; 2355 extern const u32 sched_prio_to_wmult[40]; 2356 2357 /* 2358 * {de,en}queue flags: 2359 * 2360 * SLEEP/WAKEUP - task is no-longer/just-became runnable 2361 * 2362 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2363 * are in a known state which allows modification. Such pairs 2364 * should preserve as much state as possible. 2365 * 2366 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2367 * in the runqueue. 2368 * 2369 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2370 * 2371 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2372 * 2373 * DELAYED - de/re-queue a sched_delayed task 2374 * 2375 * CLASS - going to update p->sched_class; makes sched_change call the 2376 * various switch methods. 2377 * 2378 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2379 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2380 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2381 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2382 * 2383 * XXX SAVE/RESTORE in combination with CLASS doesn't really make sense, but 2384 * SCHED_DEADLINE seems to rely on this for now. 2385 */ 2386 2387 #define DEQUEUE_SLEEP 0x0001 /* Matches ENQUEUE_WAKEUP */ 2388 #define DEQUEUE_SAVE 0x0002 /* Matches ENQUEUE_RESTORE */ 2389 #define DEQUEUE_MOVE 0x0004 /* Matches ENQUEUE_MOVE */ 2390 #define DEQUEUE_NOCLOCK 0x0008 /* Matches ENQUEUE_NOCLOCK */ 2391 2392 #define DEQUEUE_MIGRATING 0x0010 /* Matches ENQUEUE_MIGRATING */ 2393 #define DEQUEUE_DELAYED 0x0020 /* Matches ENQUEUE_DELAYED */ 2394 #define DEQUEUE_CLASS 0x0040 /* Matches ENQUEUE_CLASS */ 2395 2396 #define DEQUEUE_SPECIAL 0x00010000 2397 #define DEQUEUE_THROTTLE 0x00020000 2398 2399 #define ENQUEUE_WAKEUP 0x0001 2400 #define ENQUEUE_RESTORE 0x0002 2401 #define ENQUEUE_MOVE 0x0004 2402 #define ENQUEUE_NOCLOCK 0x0008 2403 2404 #define ENQUEUE_MIGRATING 0x0010 2405 #define ENQUEUE_DELAYED 0x0020 2406 #define ENQUEUE_CLASS 0x0040 2407 2408 #define ENQUEUE_HEAD 0x00010000 2409 #define ENQUEUE_REPLENISH 0x00020000 2410 #define ENQUEUE_MIGRATED 0x00040000 2411 #define ENQUEUE_INITIAL 0x00080000 2412 #define ENQUEUE_RQ_SELECTED 0x00100000 2413 2414 #define RETRY_TASK ((void *)-1UL) 2415 2416 struct affinity_context { 2417 const struct cpumask *new_mask; 2418 struct cpumask *user_mask; 2419 unsigned int flags; 2420 }; 2421 2422 extern s64 update_curr_common(struct rq *rq); 2423 2424 struct sched_class { 2425 2426 #ifdef CONFIG_UCLAMP_TASK 2427 int uclamp_enabled; 2428 #endif 2429 /* 2430 * idle: 0 2431 * ext: 1 2432 * fair: 2 2433 * rt: 4 2434 * dl: 8 2435 * stop: 16 2436 */ 2437 unsigned int queue_mask; 2438 2439 /* 2440 * move_queued_task/activate_task/enqueue_task: rq->lock 2441 * ttwu_do_activate/activate_task/enqueue_task: rq->lock 2442 * wake_up_new_task/activate_task/enqueue_task: task_rq_lock 2443 * ttwu_runnable/enqueue_task: task_rq_lock 2444 * proxy_task_current: rq->lock 2445 * sched_change_end 2446 */ 2447 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2448 /* 2449 * move_queued_task/deactivate_task/dequeue_task: rq->lock 2450 * __schedule/block_task/dequeue_task: rq->lock 2451 * proxy_task_current: rq->lock 2452 * wait_task_inactive: task_rq_lock 2453 * sched_change_begin 2454 */ 2455 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2456 2457 /* 2458 * do_sched_yield: rq->lock 2459 */ 2460 void (*yield_task) (struct rq *rq); 2461 /* 2462 * yield_to: rq->lock (double) 2463 */ 2464 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2465 2466 /* 2467 * move_queued_task: rq->lock 2468 * __migrate_swap_task: rq->lock 2469 * ttwu_do_activate: rq->lock 2470 * ttwu_runnable: task_rq_lock 2471 * wake_up_new_task: task_rq_lock 2472 */ 2473 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2474 2475 /* 2476 * schedule/pick_next_task/prev_balance: rq->lock 2477 */ 2478 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2479 2480 /* 2481 * schedule/pick_next_task: rq->lock 2482 */ 2483 struct task_struct *(*pick_task)(struct rq *rq, struct rq_flags *rf); 2484 /* 2485 * Optional! When implemented pick_next_task() should be equivalent to: 2486 * 2487 * next = pick_task(); 2488 * if (next) { 2489 * put_prev_task(prev); 2490 * set_next_task_first(next); 2491 * } 2492 */ 2493 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev, 2494 struct rq_flags *rf); 2495 2496 /* 2497 * sched_change: 2498 * __schedule: rq->lock 2499 */ 2500 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2501 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2502 2503 /* 2504 * select_task_rq: p->pi_lock 2505 * sched_exec: p->pi_lock 2506 */ 2507 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2508 2509 /* 2510 * set_task_cpu: p->pi_lock || rq->lock (ttwu like) 2511 */ 2512 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2513 2514 /* 2515 * ttwu_do_activate: rq->lock 2516 * wake_up_new_task: task_rq_lock 2517 */ 2518 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2519 2520 /* 2521 * do_set_cpus_allowed: task_rq_lock + sched_change 2522 */ 2523 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2524 2525 /* 2526 * sched_set_rq_{on,off}line: rq->lock 2527 */ 2528 void (*rq_online)(struct rq *rq); 2529 void (*rq_offline)(struct rq *rq); 2530 2531 /* 2532 * push_cpu_stop: p->pi_lock && rq->lock 2533 */ 2534 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2535 2536 /* 2537 * hrtick: rq->lock 2538 * sched_tick: rq->lock 2539 * sched_tick_remote: rq->lock 2540 */ 2541 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2542 /* 2543 * sched_cgroup_fork: p->pi_lock 2544 */ 2545 void (*task_fork)(struct task_struct *p); 2546 /* 2547 * finish_task_switch: no locks 2548 */ 2549 void (*task_dead)(struct task_struct *p); 2550 2551 /* 2552 * sched_change 2553 */ 2554 void (*switching_from)(struct rq *this_rq, struct task_struct *task); 2555 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 2556 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2557 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2558 u64 (*get_prio) (struct rq *this_rq, struct task_struct *task); 2559 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2560 u64 oldprio); 2561 2562 /* 2563 * set_load_weight: task_rq_lock + sched_change 2564 * __setscheduler_parms: task_rq_lock + sched_change 2565 */ 2566 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2567 const struct load_weight *lw); 2568 2569 /* 2570 * sched_rr_get_interval: task_rq_lock 2571 */ 2572 unsigned int (*get_rr_interval)(struct rq *rq, 2573 struct task_struct *task); 2574 2575 /* 2576 * task_sched_runtime: task_rq_lock 2577 */ 2578 void (*update_curr)(struct rq *rq); 2579 2580 #ifdef CONFIG_FAIR_GROUP_SCHED 2581 /* 2582 * sched_change_group: task_rq_lock + sched_change 2583 */ 2584 void (*task_change_group)(struct task_struct *p); 2585 #endif 2586 2587 #ifdef CONFIG_SCHED_CORE 2588 /* 2589 * pick_next_task: rq->lock 2590 * try_steal_cookie: rq->lock (double) 2591 */ 2592 int (*task_is_throttled)(struct task_struct *p, int cpu); 2593 #endif 2594 }; 2595 2596 /* 2597 * Does not nest; only used around sched_class::pick_task() rq-lock-breaks. 2598 */ 2599 static inline void rq_modified_clear(struct rq *rq) 2600 { 2601 rq->queue_mask = 0; 2602 } 2603 2604 static inline bool rq_modified_above(struct rq *rq, const struct sched_class * class) 2605 { 2606 unsigned int mask = class->queue_mask; 2607 return rq->queue_mask & ~((mask << 1) - 1); 2608 } 2609 2610 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2611 { 2612 WARN_ON_ONCE(rq->donor != prev); 2613 prev->sched_class->put_prev_task(rq, prev, NULL); 2614 } 2615 2616 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2617 { 2618 next->sched_class->set_next_task(rq, next, false); 2619 } 2620 2621 static inline void 2622 __put_prev_set_next_dl_server(struct rq *rq, 2623 struct task_struct *prev, 2624 struct task_struct *next) 2625 { 2626 prev->dl_server = NULL; 2627 next->dl_server = rq->dl_server; 2628 rq->dl_server = NULL; 2629 } 2630 2631 static inline void put_prev_set_next_task(struct rq *rq, 2632 struct task_struct *prev, 2633 struct task_struct *next) 2634 { 2635 WARN_ON_ONCE(rq->donor != prev); 2636 2637 __put_prev_set_next_dl_server(rq, prev, next); 2638 2639 if (next == prev) 2640 return; 2641 2642 prev->sched_class->put_prev_task(rq, prev, next); 2643 next->sched_class->set_next_task(rq, next, true); 2644 } 2645 2646 /* 2647 * Helper to define a sched_class instance; each one is placed in a separate 2648 * section which is ordered by the linker script: 2649 * 2650 * include/asm-generic/vmlinux.lds.h 2651 * 2652 * *CAREFUL* they are laid out in *REVERSE* order!!! 2653 * 2654 * Also enforce alignment on the instance, not the type, to guarantee layout. 2655 */ 2656 #define DEFINE_SCHED_CLASS(name) \ 2657 const struct sched_class name##_sched_class \ 2658 __aligned(__alignof__(struct sched_class)) \ 2659 __section("__" #name "_sched_class") 2660 2661 /* Defined in include/asm-generic/vmlinux.lds.h */ 2662 extern struct sched_class __sched_class_highest[]; 2663 extern struct sched_class __sched_class_lowest[]; 2664 2665 extern const struct sched_class stop_sched_class; 2666 extern const struct sched_class dl_sched_class; 2667 extern const struct sched_class rt_sched_class; 2668 extern const struct sched_class fair_sched_class; 2669 extern const struct sched_class idle_sched_class; 2670 2671 /* 2672 * Iterate only active classes. SCX can take over all fair tasks or be 2673 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2674 */ 2675 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2676 { 2677 class++; 2678 #ifdef CONFIG_SCHED_CLASS_EXT 2679 if (scx_switched_all() && class == &fair_sched_class) 2680 class++; 2681 if (!scx_enabled() && class == &ext_sched_class) 2682 class++; 2683 #endif 2684 return class; 2685 } 2686 2687 #define for_class_range(class, _from, _to) \ 2688 for (class = (_from); class < (_to); class++) 2689 2690 #define for_each_class(class) \ 2691 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2692 2693 #define for_active_class_range(class, _from, _to) \ 2694 for (class = (_from); class != (_to); class = next_active_class(class)) 2695 2696 #define for_each_active_class(class) \ 2697 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2698 2699 #define sched_class_above(_a, _b) ((_a) < (_b)) 2700 2701 static inline bool sched_stop_runnable(struct rq *rq) 2702 { 2703 return rq->stop && task_on_rq_queued(rq->stop); 2704 } 2705 2706 static inline bool sched_dl_runnable(struct rq *rq) 2707 { 2708 return rq->dl.dl_nr_running > 0; 2709 } 2710 2711 static inline bool sched_rt_runnable(struct rq *rq) 2712 { 2713 return rq->rt.rt_queued > 0; 2714 } 2715 2716 static inline bool sched_fair_runnable(struct rq *rq) 2717 { 2718 return rq->cfs.nr_queued > 0; 2719 } 2720 2721 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, 2722 struct rq_flags *rf); 2723 extern struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf); 2724 2725 #define SCA_CHECK 0x01 2726 #define SCA_MIGRATE_DISABLE 0x02 2727 #define SCA_MIGRATE_ENABLE 0x04 2728 #define SCA_USER 0x08 2729 2730 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2731 2732 extern void sched_balance_trigger(struct rq *rq); 2733 2734 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2735 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2736 2737 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2738 { 2739 /* When not in the task's cpumask, no point in looking further. */ 2740 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2741 return false; 2742 2743 /* Can @cpu run a user thread? */ 2744 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2745 return false; 2746 2747 return true; 2748 } 2749 2750 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2751 { 2752 /* 2753 * See set_cpus_allowed_force() above for the rcu_head usage. 2754 */ 2755 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2756 2757 return kmalloc_node(size, GFP_KERNEL, node); 2758 } 2759 2760 static inline struct task_struct *get_push_task(struct rq *rq) 2761 { 2762 struct task_struct *p = rq->donor; 2763 2764 lockdep_assert_rq_held(rq); 2765 2766 if (rq->push_busy) 2767 return NULL; 2768 2769 if (p->nr_cpus_allowed == 1) 2770 return NULL; 2771 2772 if (p->migration_disabled) 2773 return NULL; 2774 2775 rq->push_busy = true; 2776 return get_task_struct(p); 2777 } 2778 2779 extern int push_cpu_stop(void *arg); 2780 2781 #ifdef CONFIG_CPU_IDLE 2782 2783 static inline void idle_set_state(struct rq *rq, 2784 struct cpuidle_state *idle_state) 2785 { 2786 rq->idle_state = idle_state; 2787 } 2788 2789 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2790 { 2791 WARN_ON_ONCE(!rcu_read_lock_held()); 2792 2793 return rq->idle_state; 2794 } 2795 2796 #else /* !CONFIG_CPU_IDLE: */ 2797 2798 static inline void idle_set_state(struct rq *rq, 2799 struct cpuidle_state *idle_state) 2800 { 2801 } 2802 2803 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2804 { 2805 return NULL; 2806 } 2807 2808 #endif /* !CONFIG_CPU_IDLE */ 2809 2810 extern void schedule_idle(void); 2811 asmlinkage void schedule_user(void); 2812 2813 extern void sysrq_sched_debug_show(void); 2814 extern void sched_init_granularity(void); 2815 extern void update_max_interval(void); 2816 2817 extern void init_sched_dl_class(void); 2818 extern void init_sched_rt_class(void); 2819 extern void init_sched_fair_class(void); 2820 2821 extern void resched_curr(struct rq *rq); 2822 extern void resched_curr_lazy(struct rq *rq); 2823 extern void resched_cpu(int cpu); 2824 2825 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2826 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2827 2828 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2829 2830 extern void init_cfs_throttle_work(struct task_struct *p); 2831 2832 #define BW_SHIFT 20 2833 #define BW_UNIT (1 << BW_SHIFT) 2834 #define RATIO_SHIFT 8 2835 #define MAX_BW_BITS (64 - BW_SHIFT) 2836 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2837 2838 extern unsigned long to_ratio(u64 period, u64 runtime); 2839 2840 extern void init_entity_runnable_average(struct sched_entity *se); 2841 extern void post_init_entity_util_avg(struct task_struct *p); 2842 2843 #ifdef CONFIG_NO_HZ_FULL 2844 extern bool sched_can_stop_tick(struct rq *rq); 2845 extern int __init sched_tick_offload_init(void); 2846 2847 /* 2848 * Tick may be needed by tasks in the runqueue depending on their policy and 2849 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2850 * nohz mode if necessary. 2851 */ 2852 static inline void sched_update_tick_dependency(struct rq *rq) 2853 { 2854 int cpu = cpu_of(rq); 2855 2856 if (!tick_nohz_full_cpu(cpu)) 2857 return; 2858 2859 if (sched_can_stop_tick(rq)) 2860 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2861 else 2862 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2863 } 2864 #else /* !CONFIG_NO_HZ_FULL: */ 2865 static inline int sched_tick_offload_init(void) { return 0; } 2866 static inline void sched_update_tick_dependency(struct rq *rq) { } 2867 #endif /* !CONFIG_NO_HZ_FULL */ 2868 2869 static inline void add_nr_running(struct rq *rq, unsigned count) 2870 { 2871 unsigned prev_nr = rq->nr_running; 2872 2873 rq->nr_running = prev_nr + count; 2874 if (trace_sched_update_nr_running_tp_enabled()) { 2875 call_trace_sched_update_nr_running(rq, count); 2876 } 2877 2878 if (prev_nr < 2 && rq->nr_running >= 2) 2879 set_rd_overloaded(rq->rd, 1); 2880 2881 sched_update_tick_dependency(rq); 2882 } 2883 2884 static inline void sub_nr_running(struct rq *rq, unsigned count) 2885 { 2886 rq->nr_running -= count; 2887 if (trace_sched_update_nr_running_tp_enabled()) { 2888 call_trace_sched_update_nr_running(rq, -count); 2889 } 2890 2891 /* Check if we still need preemption */ 2892 sched_update_tick_dependency(rq); 2893 } 2894 2895 static inline void __block_task(struct rq *rq, struct task_struct *p) 2896 { 2897 if (p->sched_contributes_to_load) 2898 rq->nr_uninterruptible++; 2899 2900 if (p->in_iowait) { 2901 atomic_inc(&rq->nr_iowait); 2902 delayacct_blkio_start(); 2903 } 2904 2905 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2906 2907 /* 2908 * The moment this write goes through, ttwu() can swoop in and migrate 2909 * this task, rendering our rq->__lock ineffective. 2910 * 2911 * __schedule() try_to_wake_up() 2912 * LOCK rq->__lock LOCK p->pi_lock 2913 * pick_next_task() 2914 * pick_next_task_fair() 2915 * pick_next_entity() 2916 * dequeue_entities() 2917 * __block_task() 2918 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2919 * break; 2920 * 2921 * ACQUIRE (after ctrl-dep) 2922 * 2923 * cpu = select_task_rq(); 2924 * set_task_cpu(p, cpu); 2925 * ttwu_queue() 2926 * ttwu_do_activate() 2927 * LOCK rq->__lock 2928 * activate_task() 2929 * STORE p->on_rq = 1 2930 * UNLOCK rq->__lock 2931 * 2932 * Callers must ensure to not reference @p after this -- we no longer 2933 * own it. 2934 */ 2935 smp_store_release(&p->on_rq, 0); 2936 } 2937 2938 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2939 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2940 2941 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2942 2943 #ifdef CONFIG_PREEMPT_RT 2944 # define SCHED_NR_MIGRATE_BREAK 8 2945 #else 2946 # define SCHED_NR_MIGRATE_BREAK 32 2947 #endif 2948 2949 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2950 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2951 2952 extern unsigned int sysctl_sched_base_slice; 2953 2954 extern int sysctl_resched_latency_warn_ms; 2955 extern int sysctl_resched_latency_warn_once; 2956 2957 extern unsigned int sysctl_sched_tunable_scaling; 2958 2959 extern unsigned int sysctl_numa_balancing_scan_delay; 2960 extern unsigned int sysctl_numa_balancing_scan_period_min; 2961 extern unsigned int sysctl_numa_balancing_scan_period_max; 2962 extern unsigned int sysctl_numa_balancing_scan_size; 2963 extern unsigned int sysctl_numa_balancing_hot_threshold; 2964 2965 #ifdef CONFIG_SCHED_HRTICK 2966 2967 /* 2968 * Use hrtick when: 2969 * - enabled by features 2970 * - hrtimer is actually high res 2971 */ 2972 static inline int hrtick_enabled(struct rq *rq) 2973 { 2974 if (!cpu_active(cpu_of(rq))) 2975 return 0; 2976 return hrtimer_is_hres_active(&rq->hrtick_timer); 2977 } 2978 2979 static inline int hrtick_enabled_fair(struct rq *rq) 2980 { 2981 if (!sched_feat(HRTICK)) 2982 return 0; 2983 return hrtick_enabled(rq); 2984 } 2985 2986 static inline int hrtick_enabled_dl(struct rq *rq) 2987 { 2988 if (!sched_feat(HRTICK_DL)) 2989 return 0; 2990 return hrtick_enabled(rq); 2991 } 2992 2993 extern void hrtick_start(struct rq *rq, u64 delay); 2994 2995 #else /* !CONFIG_SCHED_HRTICK: */ 2996 2997 static inline int hrtick_enabled_fair(struct rq *rq) 2998 { 2999 return 0; 3000 } 3001 3002 static inline int hrtick_enabled_dl(struct rq *rq) 3003 { 3004 return 0; 3005 } 3006 3007 static inline int hrtick_enabled(struct rq *rq) 3008 { 3009 return 0; 3010 } 3011 3012 #endif /* !CONFIG_SCHED_HRTICK */ 3013 3014 #ifndef arch_scale_freq_tick 3015 static __always_inline void arch_scale_freq_tick(void) { } 3016 #endif 3017 3018 #ifndef arch_scale_freq_capacity 3019 /** 3020 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 3021 * @cpu: the CPU in question. 3022 * 3023 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 3024 * 3025 * f_curr 3026 * ------ * SCHED_CAPACITY_SCALE 3027 * f_max 3028 */ 3029 static __always_inline 3030 unsigned long arch_scale_freq_capacity(int cpu) 3031 { 3032 return SCHED_CAPACITY_SCALE; 3033 } 3034 #endif 3035 3036 /* 3037 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 3038 * acquire rq lock instead of rq_lock(). So at the end of these two functions 3039 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 3040 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 3041 */ 3042 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 3043 { 3044 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 3045 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 3046 } 3047 3048 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 3049 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 3050 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 3051 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 3052 _lock; return _t; } 3053 3054 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 3055 { 3056 #ifdef CONFIG_SCHED_CORE 3057 /* 3058 * In order to not have {0,2},{1,3} turn into into an AB-BA, 3059 * order by core-id first and cpu-id second. 3060 * 3061 * Notably: 3062 * 3063 * double_rq_lock(0,3); will take core-0, core-1 lock 3064 * double_rq_lock(1,2); will take core-1, core-0 lock 3065 * 3066 * when only cpu-id is considered. 3067 */ 3068 if (rq1->core->cpu < rq2->core->cpu) 3069 return true; 3070 if (rq1->core->cpu > rq2->core->cpu) 3071 return false; 3072 3073 /* 3074 * __sched_core_flip() relies on SMT having cpu-id lock order. 3075 */ 3076 #endif /* CONFIG_SCHED_CORE */ 3077 return rq1->cpu < rq2->cpu; 3078 } 3079 3080 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 3081 3082 #ifdef CONFIG_PREEMPTION 3083 3084 /* 3085 * fair double_lock_balance: Safely acquires both rq->locks in a fair 3086 * way at the expense of forcing extra atomic operations in all 3087 * invocations. This assures that the double_lock is acquired using the 3088 * same underlying policy as the spinlock_t on this architecture, which 3089 * reduces latency compared to the unfair variant below. However, it 3090 * also adds more overhead and therefore may reduce throughput. 3091 */ 3092 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 3093 __releases(this_rq->lock) 3094 __acquires(busiest->lock) 3095 __acquires(this_rq->lock) 3096 { 3097 raw_spin_rq_unlock(this_rq); 3098 double_rq_lock(this_rq, busiest); 3099 3100 return 1; 3101 } 3102 3103 #else /* !CONFIG_PREEMPTION: */ 3104 /* 3105 * Unfair double_lock_balance: Optimizes throughput at the expense of 3106 * latency by eliminating extra atomic operations when the locks are 3107 * already in proper order on entry. This favors lower CPU-ids and will 3108 * grant the double lock to lower CPUs over higher ids under contention, 3109 * regardless of entry order into the function. 3110 */ 3111 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 3112 __releases(this_rq->lock) 3113 __acquires(busiest->lock) 3114 __acquires(this_rq->lock) 3115 { 3116 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 3117 likely(raw_spin_rq_trylock(busiest))) { 3118 double_rq_clock_clear_update(this_rq, busiest); 3119 return 0; 3120 } 3121 3122 if (rq_order_less(this_rq, busiest)) { 3123 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 3124 double_rq_clock_clear_update(this_rq, busiest); 3125 return 0; 3126 } 3127 3128 raw_spin_rq_unlock(this_rq); 3129 double_rq_lock(this_rq, busiest); 3130 3131 return 1; 3132 } 3133 3134 #endif /* !CONFIG_PREEMPTION */ 3135 3136 /* 3137 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 3138 */ 3139 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 3140 { 3141 lockdep_assert_irqs_disabled(); 3142 3143 return _double_lock_balance(this_rq, busiest); 3144 } 3145 3146 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3147 __releases(busiest->lock) 3148 { 3149 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3150 raw_spin_rq_unlock(busiest); 3151 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3152 } 3153 3154 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3155 { 3156 if (l1 > l2) 3157 swap(l1, l2); 3158 3159 spin_lock(l1); 3160 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3161 } 3162 3163 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3164 { 3165 if (l1 > l2) 3166 swap(l1, l2); 3167 3168 spin_lock_irq(l1); 3169 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3170 } 3171 3172 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3173 { 3174 if (l1 > l2) 3175 swap(l1, l2); 3176 3177 raw_spin_lock(l1); 3178 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3179 } 3180 3181 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3182 { 3183 raw_spin_unlock(l1); 3184 raw_spin_unlock(l2); 3185 } 3186 3187 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3188 double_raw_lock(_T->lock, _T->lock2), 3189 double_raw_unlock(_T->lock, _T->lock2)) 3190 3191 /* 3192 * double_rq_unlock - safely unlock two runqueues 3193 * 3194 * Note this does not restore interrupts like task_rq_unlock, 3195 * you need to do so manually after calling. 3196 */ 3197 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3198 __releases(rq1->lock) 3199 __releases(rq2->lock) 3200 { 3201 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3202 raw_spin_rq_unlock(rq2); 3203 else 3204 __release(rq2->lock); 3205 raw_spin_rq_unlock(rq1); 3206 } 3207 3208 extern void set_rq_online (struct rq *rq); 3209 extern void set_rq_offline(struct rq *rq); 3210 3211 extern bool sched_smp_initialized; 3212 3213 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3214 double_rq_lock(_T->lock, _T->lock2), 3215 double_rq_unlock(_T->lock, _T->lock2)) 3216 3217 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3218 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3219 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3220 3221 extern bool sched_debug_verbose; 3222 3223 extern void print_cfs_stats(struct seq_file *m, int cpu); 3224 extern void print_rt_stats(struct seq_file *m, int cpu); 3225 extern void print_dl_stats(struct seq_file *m, int cpu); 3226 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3227 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3228 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3229 3230 extern void resched_latency_warn(int cpu, u64 latency); 3231 3232 #ifdef CONFIG_NUMA_BALANCING 3233 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3234 extern void 3235 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3236 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3237 #endif /* CONFIG_NUMA_BALANCING */ 3238 3239 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3240 extern void init_rt_rq(struct rt_rq *rt_rq); 3241 extern void init_dl_rq(struct dl_rq *dl_rq); 3242 3243 extern void cfs_bandwidth_usage_inc(void); 3244 extern void cfs_bandwidth_usage_dec(void); 3245 3246 #ifdef CONFIG_NO_HZ_COMMON 3247 3248 #define NOHZ_BALANCE_KICK_BIT 0 3249 #define NOHZ_STATS_KICK_BIT 1 3250 #define NOHZ_NEWILB_KICK_BIT 2 3251 #define NOHZ_NEXT_KICK_BIT 3 3252 3253 /* Run sched_balance_domains() */ 3254 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3255 /* Update blocked load */ 3256 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3257 /* Update blocked load when entering idle */ 3258 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3259 /* Update nohz.next_balance */ 3260 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3261 3262 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3263 3264 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3265 3266 extern void nohz_balance_exit_idle(struct rq *rq); 3267 #else /* !CONFIG_NO_HZ_COMMON: */ 3268 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3269 #endif /* !CONFIG_NO_HZ_COMMON */ 3270 3271 #ifdef CONFIG_NO_HZ_COMMON 3272 extern void nohz_run_idle_balance(int cpu); 3273 #else 3274 static inline void nohz_run_idle_balance(int cpu) { } 3275 #endif 3276 3277 #include "stats.h" 3278 3279 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3280 3281 extern void __sched_core_account_forceidle(struct rq *rq); 3282 3283 static inline void sched_core_account_forceidle(struct rq *rq) 3284 { 3285 if (schedstat_enabled()) 3286 __sched_core_account_forceidle(rq); 3287 } 3288 3289 extern void __sched_core_tick(struct rq *rq); 3290 3291 static inline void sched_core_tick(struct rq *rq) 3292 { 3293 if (sched_core_enabled(rq) && schedstat_enabled()) 3294 __sched_core_tick(rq); 3295 } 3296 3297 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3298 3299 static inline void sched_core_account_forceidle(struct rq *rq) { } 3300 3301 static inline void sched_core_tick(struct rq *rq) { } 3302 3303 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3304 3305 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3306 3307 struct irqtime { 3308 u64 total; 3309 u64 tick_delta; 3310 u64 irq_start_time; 3311 struct u64_stats_sync sync; 3312 }; 3313 3314 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3315 extern int sched_clock_irqtime; 3316 3317 static inline int irqtime_enabled(void) 3318 { 3319 return sched_clock_irqtime; 3320 } 3321 3322 /* 3323 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3324 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3325 * and never move forward. 3326 */ 3327 static inline u64 irq_time_read(int cpu) 3328 { 3329 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3330 unsigned int seq; 3331 u64 total; 3332 3333 do { 3334 seq = __u64_stats_fetch_begin(&irqtime->sync); 3335 total = irqtime->total; 3336 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3337 3338 return total; 3339 } 3340 3341 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3342 3343 static inline int irqtime_enabled(void) 3344 { 3345 return 0; 3346 } 3347 3348 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3349 3350 #ifdef CONFIG_CPU_FREQ 3351 3352 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3353 3354 /** 3355 * cpufreq_update_util - Take a note about CPU utilization changes. 3356 * @rq: Runqueue to carry out the update for. 3357 * @flags: Update reason flags. 3358 * 3359 * This function is called by the scheduler on the CPU whose utilization is 3360 * being updated. 3361 * 3362 * It can only be called from RCU-sched read-side critical sections. 3363 * 3364 * The way cpufreq is currently arranged requires it to evaluate the CPU 3365 * performance state (frequency/voltage) on a regular basis to prevent it from 3366 * being stuck in a completely inadequate performance level for too long. 3367 * That is not guaranteed to happen if the updates are only triggered from CFS 3368 * and DL, though, because they may not be coming in if only RT tasks are 3369 * active all the time (or there are RT tasks only). 3370 * 3371 * As a workaround for that issue, this function is called periodically by the 3372 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3373 * but that really is a band-aid. Going forward it should be replaced with 3374 * solutions targeted more specifically at RT tasks. 3375 */ 3376 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3377 { 3378 struct update_util_data *data; 3379 3380 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3381 cpu_of(rq))); 3382 if (data) 3383 data->func(data, rq_clock(rq), flags); 3384 } 3385 #else /* !CONFIG_CPU_FREQ: */ 3386 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3387 #endif /* !CONFIG_CPU_FREQ */ 3388 3389 #ifdef arch_scale_freq_capacity 3390 # ifndef arch_scale_freq_invariant 3391 # define arch_scale_freq_invariant() true 3392 # endif 3393 #else 3394 # define arch_scale_freq_invariant() false 3395 #endif 3396 3397 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3398 unsigned long *min, 3399 unsigned long *max); 3400 3401 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3402 unsigned long min, 3403 unsigned long max); 3404 3405 3406 /* 3407 * Verify the fitness of task @p to run on @cpu taking into account the 3408 * CPU original capacity and the runtime/deadline ratio of the task. 3409 * 3410 * The function will return true if the original capacity of @cpu is 3411 * greater than or equal to task's deadline density right shifted by 3412 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3413 */ 3414 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3415 { 3416 unsigned long cap = arch_scale_cpu_capacity(cpu); 3417 3418 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3419 } 3420 3421 static inline unsigned long cpu_bw_dl(struct rq *rq) 3422 { 3423 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3424 } 3425 3426 static inline unsigned long cpu_util_dl(struct rq *rq) 3427 { 3428 return READ_ONCE(rq->avg_dl.util_avg); 3429 } 3430 3431 3432 extern unsigned long cpu_util_cfs(int cpu); 3433 extern unsigned long cpu_util_cfs_boost(int cpu); 3434 3435 static inline unsigned long cpu_util_rt(struct rq *rq) 3436 { 3437 return READ_ONCE(rq->avg_rt.util_avg); 3438 } 3439 3440 #ifdef CONFIG_UCLAMP_TASK 3441 3442 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3443 3444 /* 3445 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3446 * by default in the fast path and only gets turned on once userspace performs 3447 * an operation that requires it. 3448 * 3449 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3450 * hence is active. 3451 */ 3452 static inline bool uclamp_is_used(void) 3453 { 3454 return static_branch_likely(&sched_uclamp_used); 3455 } 3456 3457 /* 3458 * Enabling static branches would get the cpus_read_lock(), 3459 * check whether uclamp_is_used before enable it to avoid always 3460 * calling cpus_read_lock(). Because we never disable this 3461 * static key once enable it. 3462 */ 3463 static inline void sched_uclamp_enable(void) 3464 { 3465 if (!uclamp_is_used()) 3466 static_branch_enable(&sched_uclamp_used); 3467 } 3468 3469 static inline unsigned long uclamp_rq_get(struct rq *rq, 3470 enum uclamp_id clamp_id) 3471 { 3472 return READ_ONCE(rq->uclamp[clamp_id].value); 3473 } 3474 3475 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3476 unsigned int value) 3477 { 3478 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3479 } 3480 3481 static inline bool uclamp_rq_is_idle(struct rq *rq) 3482 { 3483 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3484 } 3485 3486 /* Is the rq being capped/throttled by uclamp_max? */ 3487 static inline bool uclamp_rq_is_capped(struct rq *rq) 3488 { 3489 unsigned long rq_util; 3490 unsigned long max_util; 3491 3492 if (!uclamp_is_used()) 3493 return false; 3494 3495 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3496 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3497 3498 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3499 } 3500 3501 #define for_each_clamp_id(clamp_id) \ 3502 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3503 3504 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3505 3506 3507 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3508 { 3509 if (clamp_id == UCLAMP_MIN) 3510 return 0; 3511 return SCHED_CAPACITY_SCALE; 3512 } 3513 3514 /* Integer rounded range for each bucket */ 3515 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3516 3517 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3518 { 3519 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3520 } 3521 3522 static inline void 3523 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3524 { 3525 uc_se->value = value; 3526 uc_se->bucket_id = uclamp_bucket_id(value); 3527 uc_se->user_defined = user_defined; 3528 } 3529 3530 #else /* !CONFIG_UCLAMP_TASK: */ 3531 3532 static inline unsigned long 3533 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3534 { 3535 if (clamp_id == UCLAMP_MIN) 3536 return 0; 3537 3538 return SCHED_CAPACITY_SCALE; 3539 } 3540 3541 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3542 3543 static inline bool uclamp_is_used(void) 3544 { 3545 return false; 3546 } 3547 3548 static inline void sched_uclamp_enable(void) {} 3549 3550 static inline unsigned long 3551 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3552 { 3553 if (clamp_id == UCLAMP_MIN) 3554 return 0; 3555 3556 return SCHED_CAPACITY_SCALE; 3557 } 3558 3559 static inline void 3560 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3561 { 3562 } 3563 3564 static inline bool uclamp_rq_is_idle(struct rq *rq) 3565 { 3566 return false; 3567 } 3568 3569 #endif /* !CONFIG_UCLAMP_TASK */ 3570 3571 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3572 3573 static inline unsigned long cpu_util_irq(struct rq *rq) 3574 { 3575 return READ_ONCE(rq->avg_irq.util_avg); 3576 } 3577 3578 static inline 3579 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3580 { 3581 util *= (max - irq); 3582 util /= max; 3583 3584 return util; 3585 3586 } 3587 3588 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3589 3590 static inline unsigned long cpu_util_irq(struct rq *rq) 3591 { 3592 return 0; 3593 } 3594 3595 static inline 3596 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3597 { 3598 return util; 3599 } 3600 3601 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3602 3603 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3604 3605 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3606 3607 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3608 3609 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3610 3611 static inline bool sched_energy_enabled(void) 3612 { 3613 return static_branch_unlikely(&sched_energy_present); 3614 } 3615 3616 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3617 3618 #define perf_domain_span(pd) NULL 3619 3620 static inline bool sched_energy_enabled(void) { return false; } 3621 3622 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3623 3624 #ifdef CONFIG_MEMBARRIER 3625 3626 /* 3627 * The scheduler provides memory barriers required by membarrier between: 3628 * - prior user-space memory accesses and store to rq->membarrier_state, 3629 * - store to rq->membarrier_state and following user-space memory accesses. 3630 * In the same way it provides those guarantees around store to rq->curr. 3631 */ 3632 static inline void membarrier_switch_mm(struct rq *rq, 3633 struct mm_struct *prev_mm, 3634 struct mm_struct *next_mm) 3635 { 3636 int membarrier_state; 3637 3638 if (prev_mm == next_mm) 3639 return; 3640 3641 membarrier_state = atomic_read(&next_mm->membarrier_state); 3642 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3643 return; 3644 3645 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3646 } 3647 3648 #else /* !CONFIG_MEMBARRIER: */ 3649 3650 static inline void membarrier_switch_mm(struct rq *rq, 3651 struct mm_struct *prev_mm, 3652 struct mm_struct *next_mm) 3653 { 3654 } 3655 3656 #endif /* !CONFIG_MEMBARRIER */ 3657 3658 static inline bool is_per_cpu_kthread(struct task_struct *p) 3659 { 3660 if (!(p->flags & PF_KTHREAD)) 3661 return false; 3662 3663 if (p->nr_cpus_allowed != 1) 3664 return false; 3665 3666 return true; 3667 } 3668 3669 extern void swake_up_all_locked(struct swait_queue_head *q); 3670 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3671 3672 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3673 3674 #ifdef CONFIG_PREEMPT_DYNAMIC 3675 extern int preempt_dynamic_mode; 3676 extern int sched_dynamic_mode(const char *str); 3677 extern void sched_dynamic_update(int mode); 3678 #endif 3679 extern const char *preempt_modes[]; 3680 3681 #ifdef CONFIG_SCHED_MM_CID 3682 3683 static __always_inline bool cid_on_cpu(unsigned int cid) 3684 { 3685 return cid & MM_CID_ONCPU; 3686 } 3687 3688 static __always_inline bool cid_in_transit(unsigned int cid) 3689 { 3690 return cid & MM_CID_TRANSIT; 3691 } 3692 3693 static __always_inline unsigned int cpu_cid_to_cid(unsigned int cid) 3694 { 3695 return cid & ~MM_CID_ONCPU; 3696 } 3697 3698 static __always_inline unsigned int cid_to_cpu_cid(unsigned int cid) 3699 { 3700 return cid | MM_CID_ONCPU; 3701 } 3702 3703 static __always_inline unsigned int cid_to_transit_cid(unsigned int cid) 3704 { 3705 return cid | MM_CID_TRANSIT; 3706 } 3707 3708 static __always_inline unsigned int cid_from_transit_cid(unsigned int cid) 3709 { 3710 return cid & ~MM_CID_TRANSIT; 3711 } 3712 3713 static __always_inline bool cid_on_task(unsigned int cid) 3714 { 3715 /* True if none of the MM_CID_ONCPU, MM_CID_TRANSIT, MM_CID_UNSET bits is set */ 3716 return cid < MM_CID_TRANSIT; 3717 } 3718 3719 static __always_inline void mm_drop_cid(struct mm_struct *mm, unsigned int cid) 3720 { 3721 clear_bit(cid, mm_cidmask(mm)); 3722 } 3723 3724 static __always_inline void mm_unset_cid_on_task(struct task_struct *t) 3725 { 3726 unsigned int cid = t->mm_cid.cid; 3727 3728 t->mm_cid.cid = MM_CID_UNSET; 3729 if (cid_on_task(cid)) 3730 mm_drop_cid(t->mm, cid); 3731 } 3732 3733 static __always_inline void mm_drop_cid_on_cpu(struct mm_struct *mm, struct mm_cid_pcpu *pcp) 3734 { 3735 /* Clear the ONCPU bit, but do not set UNSET in the per CPU storage */ 3736 pcp->cid = cpu_cid_to_cid(pcp->cid); 3737 mm_drop_cid(mm, pcp->cid); 3738 } 3739 3740 static inline unsigned int __mm_get_cid(struct mm_struct *mm, unsigned int max_cids) 3741 { 3742 unsigned int cid = find_first_zero_bit(mm_cidmask(mm), max_cids); 3743 3744 if (cid >= max_cids) 3745 return MM_CID_UNSET; 3746 if (test_and_set_bit(cid, mm_cidmask(mm))) 3747 return MM_CID_UNSET; 3748 return cid; 3749 } 3750 3751 static inline unsigned int mm_get_cid(struct mm_struct *mm) 3752 { 3753 unsigned int cid = __mm_get_cid(mm, READ_ONCE(mm->mm_cid.max_cids)); 3754 3755 while (cid == MM_CID_UNSET) { 3756 cpu_relax(); 3757 cid = __mm_get_cid(mm, num_possible_cpus()); 3758 } 3759 return cid; 3760 } 3761 3762 static inline unsigned int mm_cid_converge(struct mm_struct *mm, unsigned int orig_cid, 3763 unsigned int max_cids) 3764 { 3765 unsigned int new_cid, cid = cpu_cid_to_cid(orig_cid); 3766 3767 /* Is it in the optimal CID space? */ 3768 if (likely(cid < max_cids)) 3769 return orig_cid; 3770 3771 /* Try to find one in the optimal space. Otherwise keep the provided. */ 3772 new_cid = __mm_get_cid(mm, max_cids); 3773 if (new_cid != MM_CID_UNSET) { 3774 mm_drop_cid(mm, cid); 3775 /* Preserve the ONCPU mode of the original CID */ 3776 return new_cid | (orig_cid & MM_CID_ONCPU); 3777 } 3778 return orig_cid; 3779 } 3780 3781 static __always_inline void mm_cid_update_task_cid(struct task_struct *t, unsigned int cid) 3782 { 3783 if (t->mm_cid.cid != cid) { 3784 t->mm_cid.cid = cid; 3785 rseq_sched_set_ids_changed(t); 3786 } 3787 } 3788 3789 static __always_inline void mm_cid_update_pcpu_cid(struct mm_struct *mm, unsigned int cid) 3790 { 3791 __this_cpu_write(mm->mm_cid.pcpu->cid, cid); 3792 } 3793 3794 static __always_inline void mm_cid_from_cpu(struct task_struct *t, unsigned int cpu_cid) 3795 { 3796 unsigned int max_cids, tcid = t->mm_cid.cid; 3797 struct mm_struct *mm = t->mm; 3798 3799 max_cids = READ_ONCE(mm->mm_cid.max_cids); 3800 /* Optimize for the common case where both have the ONCPU bit set */ 3801 if (likely(cid_on_cpu(cpu_cid & tcid))) { 3802 if (likely(cpu_cid_to_cid(cpu_cid) < max_cids)) { 3803 mm_cid_update_task_cid(t, cpu_cid); 3804 return; 3805 } 3806 /* Try to converge into the optimal CID space */ 3807 cpu_cid = mm_cid_converge(mm, cpu_cid, max_cids); 3808 } else { 3809 /* Hand over or drop the task owned CID */ 3810 if (cid_on_task(tcid)) { 3811 if (cid_on_cpu(cpu_cid)) 3812 mm_unset_cid_on_task(t); 3813 else 3814 cpu_cid = cid_to_cpu_cid(tcid); 3815 } 3816 /* Still nothing, allocate a new one */ 3817 if (!cid_on_cpu(cpu_cid)) 3818 cpu_cid = cid_to_cpu_cid(mm_get_cid(mm)); 3819 } 3820 mm_cid_update_pcpu_cid(mm, cpu_cid); 3821 mm_cid_update_task_cid(t, cpu_cid); 3822 } 3823 3824 static __always_inline void mm_cid_from_task(struct task_struct *t, unsigned int cpu_cid) 3825 { 3826 unsigned int max_cids, tcid = t->mm_cid.cid; 3827 struct mm_struct *mm = t->mm; 3828 3829 max_cids = READ_ONCE(mm->mm_cid.max_cids); 3830 /* Optimize for the common case, where both have the ONCPU bit clear */ 3831 if (likely(cid_on_task(tcid | cpu_cid))) { 3832 if (likely(tcid < max_cids)) { 3833 mm_cid_update_pcpu_cid(mm, tcid); 3834 return; 3835 } 3836 /* Try to converge into the optimal CID space */ 3837 tcid = mm_cid_converge(mm, tcid, max_cids); 3838 } else { 3839 /* Hand over or drop the CPU owned CID */ 3840 if (cid_on_cpu(cpu_cid)) { 3841 if (cid_on_task(tcid)) 3842 mm_drop_cid_on_cpu(mm, this_cpu_ptr(mm->mm_cid.pcpu)); 3843 else 3844 tcid = cpu_cid_to_cid(cpu_cid); 3845 } 3846 /* Still nothing, allocate a new one */ 3847 if (!cid_on_task(tcid)) 3848 tcid = mm_get_cid(mm); 3849 /* Set the transition mode flag if required */ 3850 tcid |= READ_ONCE(mm->mm_cid.transit); 3851 } 3852 mm_cid_update_pcpu_cid(mm, tcid); 3853 mm_cid_update_task_cid(t, tcid); 3854 } 3855 3856 static __always_inline void mm_cid_schedin(struct task_struct *next) 3857 { 3858 struct mm_struct *mm = next->mm; 3859 unsigned int cpu_cid; 3860 3861 if (!next->mm_cid.active) 3862 return; 3863 3864 cpu_cid = __this_cpu_read(mm->mm_cid.pcpu->cid); 3865 if (likely(!READ_ONCE(mm->mm_cid.percpu))) 3866 mm_cid_from_task(next, cpu_cid); 3867 else 3868 mm_cid_from_cpu(next, cpu_cid); 3869 } 3870 3871 static __always_inline void mm_cid_schedout(struct task_struct *prev) 3872 { 3873 /* During mode transitions CIDs are temporary and need to be dropped */ 3874 if (likely(!cid_in_transit(prev->mm_cid.cid))) 3875 return; 3876 3877 mm_drop_cid(prev->mm, cid_from_transit_cid(prev->mm_cid.cid)); 3878 prev->mm_cid.cid = MM_CID_UNSET; 3879 } 3880 3881 static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) 3882 { 3883 mm_cid_schedout(prev); 3884 mm_cid_schedin(next); 3885 } 3886 3887 #else /* !CONFIG_SCHED_MM_CID: */ 3888 static inline void mm_cid_switch_to(struct task_struct *prev, struct task_struct *next) { } 3889 #endif /* !CONFIG_SCHED_MM_CID */ 3890 3891 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3892 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3893 static inline 3894 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3895 { 3896 lockdep_assert_rq_held(src_rq); 3897 lockdep_assert_rq_held(dst_rq); 3898 3899 deactivate_task(src_rq, task, 0); 3900 set_task_cpu(task, dst_rq->cpu); 3901 activate_task(dst_rq, task, 0); 3902 } 3903 3904 static inline 3905 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3906 { 3907 if (!task_on_cpu(rq, p) && 3908 cpumask_test_cpu(cpu, &p->cpus_mask)) 3909 return true; 3910 3911 return false; 3912 } 3913 3914 #ifdef CONFIG_RT_MUTEXES 3915 3916 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3917 { 3918 if (pi_task) 3919 prio = min(prio, pi_task->prio); 3920 3921 return prio; 3922 } 3923 3924 static inline int rt_effective_prio(struct task_struct *p, int prio) 3925 { 3926 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3927 3928 return __rt_effective_prio(pi_task, prio); 3929 } 3930 3931 #else /* !CONFIG_RT_MUTEXES: */ 3932 3933 static inline int rt_effective_prio(struct task_struct *p, int prio) 3934 { 3935 return prio; 3936 } 3937 3938 #endif /* !CONFIG_RT_MUTEXES */ 3939 3940 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3941 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3942 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3943 extern void set_load_weight(struct task_struct *p, bool update_load); 3944 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3945 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3946 3947 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3948 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3949 3950 /* 3951 * The 'sched_change' pattern is the safe, easy and slow way of changing a 3952 * task's scheduling properties. It dequeues a task, such that the scheduler 3953 * is fully unaware of it; at which point its properties can be modified; 3954 * after which it is enqueued again. 3955 * 3956 * Typically this must be called while holding task_rq_lock, since most/all 3957 * properties are serialized under those locks. There is currently one 3958 * exception to this rule in sched/ext which only holds rq->lock. 3959 */ 3960 3961 /* 3962 * This structure is a temporary, used to preserve/convey the queueing state 3963 * of the task between sched_change_begin() and sched_change_end(). Ensuring 3964 * the task's queueing state is idempotent across the operation. 3965 */ 3966 struct sched_change_ctx { 3967 u64 prio; 3968 struct task_struct *p; 3969 int flags; 3970 bool queued; 3971 bool running; 3972 }; 3973 3974 struct sched_change_ctx *sched_change_begin(struct task_struct *p, unsigned int flags); 3975 void sched_change_end(struct sched_change_ctx *ctx); 3976 3977 DEFINE_CLASS(sched_change, struct sched_change_ctx *, 3978 sched_change_end(_T), 3979 sched_change_begin(p, flags), 3980 struct task_struct *p, unsigned int flags) 3981 3982 DEFINE_CLASS_IS_UNCONDITIONAL(sched_change) 3983 3984 #include "ext.h" 3985 3986 #endif /* _KERNEL_SCHED_SCHED_H */ 3987