xref: /linux/kernel/sched/sched.h (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 
73 #include <trace/events/power.h>
74 #include <trace/events/sched.h>
75 
76 #include "../workqueue_internal.h"
77 
78 struct rq;
79 struct cfs_rq;
80 struct rt_rq;
81 struct sched_group;
82 struct cpuidle_state;
83 
84 #ifdef CONFIG_PARAVIRT
85 # include <asm/paravirt.h>
86 # include <asm/paravirt_api_clock.h>
87 #endif
88 
89 #include <asm/barrier.h>
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 /* task_struct::on_rq states: */
101 #define TASK_ON_RQ_QUEUED	1
102 #define TASK_ON_RQ_MIGRATING	2
103 
104 extern __read_mostly int scheduler_running;
105 
106 extern unsigned long calc_load_update;
107 extern atomic_long_t calc_load_tasks;
108 
109 extern void calc_global_load_tick(struct rq *this_rq);
110 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
111 
112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
113 
114 extern int sysctl_sched_rt_period;
115 extern int sysctl_sched_rt_runtime;
116 extern int sched_rr_timeslice;
117 
118 /*
119  * Asymmetric CPU capacity bits
120  */
121 struct asym_cap_data {
122 	struct list_head link;
123 	struct rcu_head rcu;
124 	unsigned long capacity;
125 	unsigned long cpus[];
126 };
127 
128 extern struct list_head asym_cap_list;
129 
130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
131 
132 /*
133  * Helpers for converting nanosecond timing to jiffy resolution
134  */
135 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
136 
137 /*
138  * Increase resolution of nice-level calculations for 64-bit architectures.
139  * The extra resolution improves shares distribution and load balancing of
140  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
141  * hierarchies, especially on larger systems. This is not a user-visible change
142  * and does not change the user-interface for setting shares/weights.
143  *
144  * We increase resolution only if we have enough bits to allow this increased
145  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
146  * are pretty high and the returns do not justify the increased costs.
147  *
148  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
149  * increase coverage and consistency always enable it on 64-bit platforms.
150  */
151 #ifdef CONFIG_64BIT
152 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load_down(w)					\
155 ({								\
156 	unsigned long __w = (w);				\
157 								\
158 	if (__w)						\
159 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
160 	__w;							\
161 })
162 #else
163 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
164 # define scale_load(w)		(w)
165 # define scale_load_down(w)	(w)
166 #endif
167 
168 /*
169  * Task weight (visible to users) and its load (invisible to users) have
170  * independent resolution, but they should be well calibrated. We use
171  * scale_load() and scale_load_down(w) to convert between them. The
172  * following must be true:
173  *
174  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
175  *
176  */
177 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
178 
179 /*
180  * Single value that decides SCHED_DEADLINE internal math precision.
181  * 10 -> just above 1us
182  * 9  -> just above 0.5us
183  */
184 #define DL_SCALE		10
185 
186 /*
187  * Single value that denotes runtime == period, ie unlimited time.
188  */
189 #define RUNTIME_INF		((u64)~0ULL)
190 
191 static inline int idle_policy(int policy)
192 {
193 	return policy == SCHED_IDLE;
194 }
195 
196 static inline int normal_policy(int policy)
197 {
198 #ifdef CONFIG_SCHED_CLASS_EXT
199 	if (policy == SCHED_EXT)
200 		return true;
201 #endif
202 	return policy == SCHED_NORMAL;
203 }
204 
205 static inline int fair_policy(int policy)
206 {
207 	return normal_policy(policy) || policy == SCHED_BATCH;
208 }
209 
210 static inline int rt_policy(int policy)
211 {
212 	return policy == SCHED_FIFO || policy == SCHED_RR;
213 }
214 
215 static inline int dl_policy(int policy)
216 {
217 	return policy == SCHED_DEADLINE;
218 }
219 
220 static inline bool valid_policy(int policy)
221 {
222 	return idle_policy(policy) || fair_policy(policy) ||
223 		rt_policy(policy) || dl_policy(policy);
224 }
225 
226 static inline int task_has_idle_policy(struct task_struct *p)
227 {
228 	return idle_policy(p->policy);
229 }
230 
231 static inline int task_has_rt_policy(struct task_struct *p)
232 {
233 	return rt_policy(p->policy);
234 }
235 
236 static inline int task_has_dl_policy(struct task_struct *p)
237 {
238 	return dl_policy(p->policy);
239 }
240 
241 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
242 
243 static inline void update_avg(u64 *avg, u64 sample)
244 {
245 	s64 diff = sample - *avg;
246 
247 	*avg += diff / 8;
248 }
249 
250 /*
251  * Shifting a value by an exponent greater *or equal* to the size of said value
252  * is UB; cap at size-1.
253  */
254 #define shr_bound(val, shift)							\
255 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
256 
257 /*
258  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
259  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
260  * maps pretty well onto the shares value used by scheduler and the round-trip
261  * conversions preserve the original value over the entire range.
262  */
263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
264 {
265 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
266 }
267 
268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
269 {
270 	return clamp_t(unsigned long,
271 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
272 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
273 }
274 
275 /*
276  * !! For sched_setattr_nocheck() (kernel) only !!
277  *
278  * This is actually gross. :(
279  *
280  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
281  * tasks, but still be able to sleep. We need this on platforms that cannot
282  * atomically change clock frequency. Remove once fast switching will be
283  * available on such platforms.
284  *
285  * SUGOV stands for SchedUtil GOVernor.
286  */
287 #define SCHED_FLAG_SUGOV	0x10000000
288 
289 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
290 
291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
292 {
293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
294 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
295 #else
296 	return false;
297 #endif
298 }
299 
300 /*
301  * Tells if entity @a should preempt entity @b.
302  */
303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
304 				     const struct sched_dl_entity *b)
305 {
306 	return dl_entity_is_special(a) ||
307 	       dl_time_before(a->deadline, b->deadline);
308 }
309 
310 /*
311  * This is the priority-queue data structure of the RT scheduling class:
312  */
313 struct rt_prio_array {
314 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
315 	struct list_head queue[MAX_RT_PRIO];
316 };
317 
318 struct rt_bandwidth {
319 	/* nests inside the rq lock: */
320 	raw_spinlock_t		rt_runtime_lock;
321 	ktime_t			rt_period;
322 	u64			rt_runtime;
323 	struct hrtimer		rt_period_timer;
324 	unsigned int		rt_period_active;
325 };
326 
327 static inline int dl_bandwidth_enabled(void)
328 {
329 	return sysctl_sched_rt_runtime >= 0;
330 }
331 
332 /*
333  * To keep the bandwidth of -deadline tasks under control
334  * we need some place where:
335  *  - store the maximum -deadline bandwidth of each cpu;
336  *  - cache the fraction of bandwidth that is currently allocated in
337  *    each root domain;
338  *
339  * This is all done in the data structure below. It is similar to the
340  * one used for RT-throttling (rt_bandwidth), with the main difference
341  * that, since here we are only interested in admission control, we
342  * do not decrease any runtime while the group "executes", neither we
343  * need a timer to replenish it.
344  *
345  * With respect to SMP, bandwidth is given on a per root domain basis,
346  * meaning that:
347  *  - bw (< 100%) is the deadline bandwidth of each CPU;
348  *  - total_bw is the currently allocated bandwidth in each root domain;
349  */
350 struct dl_bw {
351 	raw_spinlock_t		lock;
352 	u64			bw;
353 	u64			total_bw;
354 };
355 
356 extern void init_dl_bw(struct dl_bw *dl_b);
357 extern int  sched_dl_global_validate(void);
358 extern void sched_dl_do_global(void);
359 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
362 extern bool __checkparam_dl(const struct sched_attr *attr);
363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
364 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
365 extern int  dl_bw_check_overflow(int cpu);
366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
367 /*
368  * SCHED_DEADLINE supports servers (nested scheduling) with the following
369  * interface:
370  *
371  *   dl_se::rq -- runqueue we belong to.
372  *
373  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
374  *                                server when it runs out of tasks to run.
375  *
376  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
377  *                           returns NULL.
378  *
379  *   dl_server_update() -- called from update_curr_common(), propagates runtime
380  *                         to the server.
381  *
382  *   dl_server_start()
383  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
384  *
385  *   dl_server_init() -- initializes the server.
386  */
387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
388 extern void dl_server_start(struct sched_dl_entity *dl_se);
389 extern void dl_server_stop(struct sched_dl_entity *dl_se);
390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
391 		    dl_server_has_tasks_f has_tasks,
392 		    dl_server_pick_f pick_task);
393 
394 extern void dl_server_update_idle_time(struct rq *rq,
395 		    struct task_struct *p);
396 extern void fair_server_init(struct rq *rq);
397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
399 		    u64 runtime, u64 period, bool init);
400 
401 #ifdef CONFIG_CGROUP_SCHED
402 
403 extern struct list_head task_groups;
404 
405 struct cfs_bandwidth {
406 #ifdef CONFIG_CFS_BANDWIDTH
407 	raw_spinlock_t		lock;
408 	ktime_t			period;
409 	u64			quota;
410 	u64			runtime;
411 	u64			burst;
412 	u64			runtime_snap;
413 	s64			hierarchical_quota;
414 
415 	u8			idle;
416 	u8			period_active;
417 	u8			slack_started;
418 	struct hrtimer		period_timer;
419 	struct hrtimer		slack_timer;
420 	struct list_head	throttled_cfs_rq;
421 
422 	/* Statistics: */
423 	int			nr_periods;
424 	int			nr_throttled;
425 	int			nr_burst;
426 	u64			throttled_time;
427 	u64			burst_time;
428 #endif
429 };
430 
431 /* Task group related information */
432 struct task_group {
433 	struct cgroup_subsys_state css;
434 
435 #ifdef CONFIG_GROUP_SCHED_WEIGHT
436 	/* A positive value indicates that this is a SCHED_IDLE group. */
437 	int			idle;
438 #endif
439 
440 #ifdef CONFIG_FAIR_GROUP_SCHED
441 	/* schedulable entities of this group on each CPU */
442 	struct sched_entity	**se;
443 	/* runqueue "owned" by this group on each CPU */
444 	struct cfs_rq		**cfs_rq;
445 	unsigned long		shares;
446 #ifdef	CONFIG_SMP
447 	/*
448 	 * load_avg can be heavily contended at clock tick time, so put
449 	 * it in its own cache-line separated from the fields above which
450 	 * will also be accessed at each tick.
451 	 */
452 	atomic_long_t		load_avg ____cacheline_aligned;
453 #endif
454 #endif
455 
456 #ifdef CONFIG_RT_GROUP_SCHED
457 	struct sched_rt_entity	**rt_se;
458 	struct rt_rq		**rt_rq;
459 
460 	struct rt_bandwidth	rt_bandwidth;
461 #endif
462 
463 #ifdef CONFIG_EXT_GROUP_SCHED
464 	u32			scx_flags;	/* SCX_TG_* */
465 	u32			scx_weight;
466 #endif
467 
468 	struct rcu_head		rcu;
469 	struct list_head	list;
470 
471 	struct task_group	*parent;
472 	struct list_head	siblings;
473 	struct list_head	children;
474 
475 #ifdef CONFIG_SCHED_AUTOGROUP
476 	struct autogroup	*autogroup;
477 #endif
478 
479 	struct cfs_bandwidth	cfs_bandwidth;
480 
481 #ifdef CONFIG_UCLAMP_TASK_GROUP
482 	/* The two decimal precision [%] value requested from user-space */
483 	unsigned int		uclamp_pct[UCLAMP_CNT];
484 	/* Clamp values requested for a task group */
485 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
486 	/* Effective clamp values used for a task group */
487 	struct uclamp_se	uclamp[UCLAMP_CNT];
488 #endif
489 
490 };
491 
492 #ifdef CONFIG_GROUP_SCHED_WEIGHT
493 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
494 
495 /*
496  * A weight of 0 or 1 can cause arithmetics problems.
497  * A weight of a cfs_rq is the sum of weights of which entities
498  * are queued on this cfs_rq, so a weight of a entity should not be
499  * too large, so as the shares value of a task group.
500  * (The default weight is 1024 - so there's no practical
501  *  limitation from this.)
502  */
503 #define MIN_SHARES		(1UL <<  1)
504 #define MAX_SHARES		(1UL << 18)
505 #endif
506 
507 typedef int (*tg_visitor)(struct task_group *, void *);
508 
509 extern int walk_tg_tree_from(struct task_group *from,
510 			     tg_visitor down, tg_visitor up, void *data);
511 
512 /*
513  * Iterate the full tree, calling @down when first entering a node and @up when
514  * leaving it for the final time.
515  *
516  * Caller must hold rcu_lock or sufficient equivalent.
517  */
518 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
519 {
520 	return walk_tg_tree_from(&root_task_group, down, up, data);
521 }
522 
523 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
524 {
525 	return css ? container_of(css, struct task_group, css) : NULL;
526 }
527 
528 extern int tg_nop(struct task_group *tg, void *data);
529 
530 #ifdef CONFIG_FAIR_GROUP_SCHED
531 extern void free_fair_sched_group(struct task_group *tg);
532 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
533 extern void online_fair_sched_group(struct task_group *tg);
534 extern void unregister_fair_sched_group(struct task_group *tg);
535 #else
536 static inline void free_fair_sched_group(struct task_group *tg) { }
537 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
538 {
539        return 1;
540 }
541 static inline void online_fair_sched_group(struct task_group *tg) { }
542 static inline void unregister_fair_sched_group(struct task_group *tg) { }
543 #endif
544 
545 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
546 			struct sched_entity *se, int cpu,
547 			struct sched_entity *parent);
548 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
549 
550 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
551 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
552 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
553 extern bool cfs_task_bw_constrained(struct task_struct *p);
554 
555 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
556 		struct sched_rt_entity *rt_se, int cpu,
557 		struct sched_rt_entity *parent);
558 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
559 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
560 extern long sched_group_rt_runtime(struct task_group *tg);
561 extern long sched_group_rt_period(struct task_group *tg);
562 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
563 
564 extern struct task_group *sched_create_group(struct task_group *parent);
565 extern void sched_online_group(struct task_group *tg,
566 			       struct task_group *parent);
567 extern void sched_destroy_group(struct task_group *tg);
568 extern void sched_release_group(struct task_group *tg);
569 
570 extern void sched_move_task(struct task_struct *tsk);
571 
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
574 
575 extern int sched_group_set_idle(struct task_group *tg, long idle);
576 
577 #ifdef CONFIG_SMP
578 extern void set_task_rq_fair(struct sched_entity *se,
579 			     struct cfs_rq *prev, struct cfs_rq *next);
580 #else /* !CONFIG_SMP */
581 static inline void set_task_rq_fair(struct sched_entity *se,
582 			     struct cfs_rq *prev, struct cfs_rq *next) { }
583 #endif /* CONFIG_SMP */
584 #else /* !CONFIG_FAIR_GROUP_SCHED */
585 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
586 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
587 #endif /* CONFIG_FAIR_GROUP_SCHED */
588 
589 #else /* CONFIG_CGROUP_SCHED */
590 
591 struct cfs_bandwidth { };
592 
593 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
594 
595 #endif	/* CONFIG_CGROUP_SCHED */
596 
597 extern void unregister_rt_sched_group(struct task_group *tg);
598 extern void free_rt_sched_group(struct task_group *tg);
599 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
600 
601 /*
602  * u64_u32_load/u64_u32_store
603  *
604  * Use a copy of a u64 value to protect against data race. This is only
605  * applicable for 32-bits architectures.
606  */
607 #ifdef CONFIG_64BIT
608 # define u64_u32_load_copy(var, copy)		var
609 # define u64_u32_store_copy(var, copy, val)	(var = val)
610 #else
611 # define u64_u32_load_copy(var, copy)					\
612 ({									\
613 	u64 __val, __val_copy;						\
614 	do {								\
615 		__val_copy = copy;					\
616 		/*							\
617 		 * paired with u64_u32_store_copy(), ordering access	\
618 		 * to var and copy.					\
619 		 */							\
620 		smp_rmb();						\
621 		__val = var;						\
622 	} while (__val != __val_copy);					\
623 	__val;								\
624 })
625 # define u64_u32_store_copy(var, copy, val)				\
626 do {									\
627 	typeof(val) __val = (val);					\
628 	var = __val;							\
629 	/*								\
630 	 * paired with u64_u32_load_copy(), ordering access to var and	\
631 	 * copy.							\
632 	 */								\
633 	smp_wmb();							\
634 	copy = __val;							\
635 } while (0)
636 #endif
637 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
638 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
639 
640 struct balance_callback {
641 	struct balance_callback *next;
642 	void (*func)(struct rq *rq);
643 };
644 
645 /* CFS-related fields in a runqueue */
646 struct cfs_rq {
647 	struct load_weight	load;
648 	unsigned int		nr_running;
649 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
650 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
651 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
652 
653 	s64			avg_vruntime;
654 	u64			avg_load;
655 
656 	u64			min_vruntime;
657 #ifdef CONFIG_SCHED_CORE
658 	unsigned int		forceidle_seq;
659 	u64			min_vruntime_fi;
660 #endif
661 
662 	struct rb_root_cached	tasks_timeline;
663 
664 	/*
665 	 * 'curr' points to currently running entity on this cfs_rq.
666 	 * It is set to NULL otherwise (i.e when none are currently running).
667 	 */
668 	struct sched_entity	*curr;
669 	struct sched_entity	*next;
670 
671 #ifdef CONFIG_SMP
672 	/*
673 	 * CFS load tracking
674 	 */
675 	struct sched_avg	avg;
676 #ifndef CONFIG_64BIT
677 	u64			last_update_time_copy;
678 #endif
679 	struct {
680 		raw_spinlock_t	lock ____cacheline_aligned;
681 		int		nr;
682 		unsigned long	load_avg;
683 		unsigned long	util_avg;
684 		unsigned long	runnable_avg;
685 	} removed;
686 
687 #ifdef CONFIG_FAIR_GROUP_SCHED
688 	u64			last_update_tg_load_avg;
689 	unsigned long		tg_load_avg_contrib;
690 	long			propagate;
691 	long			prop_runnable_sum;
692 
693 	/*
694 	 *   h_load = weight * f(tg)
695 	 *
696 	 * Where f(tg) is the recursive weight fraction assigned to
697 	 * this group.
698 	 */
699 	unsigned long		h_load;
700 	u64			last_h_load_update;
701 	struct sched_entity	*h_load_next;
702 #endif /* CONFIG_FAIR_GROUP_SCHED */
703 #endif /* CONFIG_SMP */
704 
705 #ifdef CONFIG_FAIR_GROUP_SCHED
706 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
707 
708 	/*
709 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
710 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
711 	 * (like users, containers etc.)
712 	 *
713 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
714 	 * This list is used during load balance.
715 	 */
716 	int			on_list;
717 	struct list_head	leaf_cfs_rq_list;
718 	struct task_group	*tg;	/* group that "owns" this runqueue */
719 
720 	/* Locally cached copy of our task_group's idle value */
721 	int			idle;
722 
723 #ifdef CONFIG_CFS_BANDWIDTH
724 	int			runtime_enabled;
725 	s64			runtime_remaining;
726 
727 	u64			throttled_pelt_idle;
728 #ifndef CONFIG_64BIT
729 	u64                     throttled_pelt_idle_copy;
730 #endif
731 	u64			throttled_clock;
732 	u64			throttled_clock_pelt;
733 	u64			throttled_clock_pelt_time;
734 	u64			throttled_clock_self;
735 	u64			throttled_clock_self_time;
736 	int			throttled;
737 	int			throttle_count;
738 	struct list_head	throttled_list;
739 	struct list_head	throttled_csd_list;
740 #endif /* CONFIG_CFS_BANDWIDTH */
741 #endif /* CONFIG_FAIR_GROUP_SCHED */
742 };
743 
744 #ifdef CONFIG_SCHED_CLASS_EXT
745 /* scx_rq->flags, protected by the rq lock */
746 enum scx_rq_flags {
747 	/*
748 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
749 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
750 	 * only while the BPF scheduler considers the CPU to be online.
751 	 */
752 	SCX_RQ_ONLINE		= 1 << 0,
753 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
754 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
755 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
756 	SCX_RQ_BYPASSING	= 1 << 4,
757 
758 	SCX_RQ_IN_WAKEUP	= 1 << 16,
759 	SCX_RQ_IN_BALANCE	= 1 << 17,
760 };
761 
762 struct scx_rq {
763 	struct scx_dispatch_q	local_dsq;
764 	struct list_head	runnable_list;		/* runnable tasks on this rq */
765 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
766 	unsigned long		ops_qseq;
767 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
768 	u32			nr_running;
769 	u32			flags;
770 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
771 	bool			cpu_released;
772 	cpumask_var_t		cpus_to_kick;
773 	cpumask_var_t		cpus_to_kick_if_idle;
774 	cpumask_var_t		cpus_to_preempt;
775 	cpumask_var_t		cpus_to_wait;
776 	unsigned long		pnt_seq;
777 	struct balance_callback	deferred_bal_cb;
778 	struct irq_work		deferred_irq_work;
779 	struct irq_work		kick_cpus_irq_work;
780 };
781 #endif /* CONFIG_SCHED_CLASS_EXT */
782 
783 static inline int rt_bandwidth_enabled(void)
784 {
785 	return sysctl_sched_rt_runtime >= 0;
786 }
787 
788 /* RT IPI pull logic requires IRQ_WORK */
789 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
790 # define HAVE_RT_PUSH_IPI
791 #endif
792 
793 /* Real-Time classes' related field in a runqueue: */
794 struct rt_rq {
795 	struct rt_prio_array	active;
796 	unsigned int		rt_nr_running;
797 	unsigned int		rr_nr_running;
798 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
799 	struct {
800 		int		curr; /* highest queued rt task prio */
801 #ifdef CONFIG_SMP
802 		int		next; /* next highest */
803 #endif
804 	} highest_prio;
805 #endif
806 #ifdef CONFIG_SMP
807 	bool			overloaded;
808 	struct plist_head	pushable_tasks;
809 
810 #endif /* CONFIG_SMP */
811 	int			rt_queued;
812 
813 #ifdef CONFIG_RT_GROUP_SCHED
814 	int			rt_throttled;
815 	u64			rt_time;
816 	u64			rt_runtime;
817 	/* Nests inside the rq lock: */
818 	raw_spinlock_t		rt_runtime_lock;
819 
820 	unsigned int		rt_nr_boosted;
821 
822 	struct rq		*rq;
823 	struct task_group	*tg;
824 #endif
825 };
826 
827 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
828 {
829 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
830 }
831 
832 /* Deadline class' related fields in a runqueue */
833 struct dl_rq {
834 	/* runqueue is an rbtree, ordered by deadline */
835 	struct rb_root_cached	root;
836 
837 	unsigned int		dl_nr_running;
838 
839 #ifdef CONFIG_SMP
840 	/*
841 	 * Deadline values of the currently executing and the
842 	 * earliest ready task on this rq. Caching these facilitates
843 	 * the decision whether or not a ready but not running task
844 	 * should migrate somewhere else.
845 	 */
846 	struct {
847 		u64		curr;
848 		u64		next;
849 	} earliest_dl;
850 
851 	bool			overloaded;
852 
853 	/*
854 	 * Tasks on this rq that can be pushed away. They are kept in
855 	 * an rb-tree, ordered by tasks' deadlines, with caching
856 	 * of the leftmost (earliest deadline) element.
857 	 */
858 	struct rb_root_cached	pushable_dl_tasks_root;
859 #else
860 	struct dl_bw		dl_bw;
861 #endif
862 	/*
863 	 * "Active utilization" for this runqueue: increased when a
864 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
865 	 * task blocks
866 	 */
867 	u64			running_bw;
868 
869 	/*
870 	 * Utilization of the tasks "assigned" to this runqueue (including
871 	 * the tasks that are in runqueue and the tasks that executed on this
872 	 * CPU and blocked). Increased when a task moves to this runqueue, and
873 	 * decreased when the task moves away (migrates, changes scheduling
874 	 * policy, or terminates).
875 	 * This is needed to compute the "inactive utilization" for the
876 	 * runqueue (inactive utilization = this_bw - running_bw).
877 	 */
878 	u64			this_bw;
879 	u64			extra_bw;
880 
881 	/*
882 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
883 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
884 	 */
885 	u64			max_bw;
886 
887 	/*
888 	 * Inverse of the fraction of CPU utilization that can be reclaimed
889 	 * by the GRUB algorithm.
890 	 */
891 	u64			bw_ratio;
892 };
893 
894 #ifdef CONFIG_FAIR_GROUP_SCHED
895 
896 /* An entity is a task if it doesn't "own" a runqueue */
897 #define entity_is_task(se)	(!se->my_q)
898 
899 static inline void se_update_runnable(struct sched_entity *se)
900 {
901 	if (!entity_is_task(se))
902 		se->runnable_weight = se->my_q->h_nr_running;
903 }
904 
905 static inline long se_runnable(struct sched_entity *se)
906 {
907 	if (se->sched_delayed)
908 		return false;
909 
910 	if (entity_is_task(se))
911 		return !!se->on_rq;
912 	else
913 		return se->runnable_weight;
914 }
915 
916 #else /* !CONFIG_FAIR_GROUP_SCHED: */
917 
918 #define entity_is_task(se)	1
919 
920 static inline void se_update_runnable(struct sched_entity *se) { }
921 
922 static inline long se_runnable(struct sched_entity *se)
923 {
924 	if (se->sched_delayed)
925 		return false;
926 
927 	return !!se->on_rq;
928 }
929 
930 #endif /* !CONFIG_FAIR_GROUP_SCHED */
931 
932 #ifdef CONFIG_SMP
933 /*
934  * XXX we want to get rid of these helpers and use the full load resolution.
935  */
936 static inline long se_weight(struct sched_entity *se)
937 {
938 	return scale_load_down(se->load.weight);
939 }
940 
941 
942 static inline bool sched_asym_prefer(int a, int b)
943 {
944 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
945 }
946 
947 struct perf_domain {
948 	struct em_perf_domain *em_pd;
949 	struct perf_domain *next;
950 	struct rcu_head rcu;
951 };
952 
953 /*
954  * We add the notion of a root-domain which will be used to define per-domain
955  * variables. Each exclusive cpuset essentially defines an island domain by
956  * fully partitioning the member CPUs from any other cpuset. Whenever a new
957  * exclusive cpuset is created, we also create and attach a new root-domain
958  * object.
959  *
960  */
961 struct root_domain {
962 	atomic_t		refcount;
963 	atomic_t		rto_count;
964 	struct rcu_head		rcu;
965 	cpumask_var_t		span;
966 	cpumask_var_t		online;
967 
968 	/*
969 	 * Indicate pullable load on at least one CPU, e.g:
970 	 * - More than one runnable task
971 	 * - Running task is misfit
972 	 */
973 	bool			overloaded;
974 
975 	/* Indicate one or more CPUs over-utilized (tipping point) */
976 	bool			overutilized;
977 
978 	/*
979 	 * The bit corresponding to a CPU gets set here if such CPU has more
980 	 * than one runnable -deadline task (as it is below for RT tasks).
981 	 */
982 	cpumask_var_t		dlo_mask;
983 	atomic_t		dlo_count;
984 	struct dl_bw		dl_bw;
985 	struct cpudl		cpudl;
986 
987 	/*
988 	 * Indicate whether a root_domain's dl_bw has been checked or
989 	 * updated. It's monotonously increasing value.
990 	 *
991 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
992 	 * that u64 is 'big enough'. So that shouldn't be a concern.
993 	 */
994 	u64 visit_gen;
995 
996 #ifdef HAVE_RT_PUSH_IPI
997 	/*
998 	 * For IPI pull requests, loop across the rto_mask.
999 	 */
1000 	struct irq_work		rto_push_work;
1001 	raw_spinlock_t		rto_lock;
1002 	/* These are only updated and read within rto_lock */
1003 	int			rto_loop;
1004 	int			rto_cpu;
1005 	/* These atomics are updated outside of a lock */
1006 	atomic_t		rto_loop_next;
1007 	atomic_t		rto_loop_start;
1008 #endif
1009 	/*
1010 	 * The "RT overload" flag: it gets set if a CPU has more than
1011 	 * one runnable RT task.
1012 	 */
1013 	cpumask_var_t		rto_mask;
1014 	struct cpupri		cpupri;
1015 
1016 	/*
1017 	 * NULL-terminated list of performance domains intersecting with the
1018 	 * CPUs of the rd. Protected by RCU.
1019 	 */
1020 	struct perf_domain __rcu *pd;
1021 };
1022 
1023 extern void init_defrootdomain(void);
1024 extern int sched_init_domains(const struct cpumask *cpu_map);
1025 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1026 extern void sched_get_rd(struct root_domain *rd);
1027 extern void sched_put_rd(struct root_domain *rd);
1028 
1029 static inline int get_rd_overloaded(struct root_domain *rd)
1030 {
1031 	return READ_ONCE(rd->overloaded);
1032 }
1033 
1034 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1035 {
1036 	if (get_rd_overloaded(rd) != status)
1037 		WRITE_ONCE(rd->overloaded, status);
1038 }
1039 
1040 #ifdef HAVE_RT_PUSH_IPI
1041 extern void rto_push_irq_work_func(struct irq_work *work);
1042 #endif
1043 #endif /* CONFIG_SMP */
1044 
1045 #ifdef CONFIG_UCLAMP_TASK
1046 /*
1047  * struct uclamp_bucket - Utilization clamp bucket
1048  * @value: utilization clamp value for tasks on this clamp bucket
1049  * @tasks: number of RUNNABLE tasks on this clamp bucket
1050  *
1051  * Keep track of how many tasks are RUNNABLE for a given utilization
1052  * clamp value.
1053  */
1054 struct uclamp_bucket {
1055 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1056 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1057 };
1058 
1059 /*
1060  * struct uclamp_rq - rq's utilization clamp
1061  * @value: currently active clamp values for a rq
1062  * @bucket: utilization clamp buckets affecting a rq
1063  *
1064  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1065  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1066  * (or actually running) with that value.
1067  *
1068  * There are up to UCLAMP_CNT possible different clamp values, currently there
1069  * are only two: minimum utilization and maximum utilization.
1070  *
1071  * All utilization clamping values are MAX aggregated, since:
1072  * - for util_min: we want to run the CPU at least at the max of the minimum
1073  *   utilization required by its currently RUNNABLE tasks.
1074  * - for util_max: we want to allow the CPU to run up to the max of the
1075  *   maximum utilization allowed by its currently RUNNABLE tasks.
1076  *
1077  * Since on each system we expect only a limited number of different
1078  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1079  * the metrics required to compute all the per-rq utilization clamp values.
1080  */
1081 struct uclamp_rq {
1082 	unsigned int value;
1083 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1084 };
1085 
1086 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1087 #endif /* CONFIG_UCLAMP_TASK */
1088 
1089 /*
1090  * This is the main, per-CPU runqueue data structure.
1091  *
1092  * Locking rule: those places that want to lock multiple runqueues
1093  * (such as the load balancing or the thread migration code), lock
1094  * acquire operations must be ordered by ascending &runqueue.
1095  */
1096 struct rq {
1097 	/* runqueue lock: */
1098 	raw_spinlock_t		__lock;
1099 
1100 	unsigned int		nr_running;
1101 #ifdef CONFIG_NUMA_BALANCING
1102 	unsigned int		nr_numa_running;
1103 	unsigned int		nr_preferred_running;
1104 	unsigned int		numa_migrate_on;
1105 #endif
1106 #ifdef CONFIG_NO_HZ_COMMON
1107 #ifdef CONFIG_SMP
1108 	unsigned long		last_blocked_load_update_tick;
1109 	unsigned int		has_blocked_load;
1110 	call_single_data_t	nohz_csd;
1111 #endif /* CONFIG_SMP */
1112 	unsigned int		nohz_tick_stopped;
1113 	atomic_t		nohz_flags;
1114 #endif /* CONFIG_NO_HZ_COMMON */
1115 
1116 #ifdef CONFIG_SMP
1117 	unsigned int		ttwu_pending;
1118 #endif
1119 	u64			nr_switches;
1120 
1121 #ifdef CONFIG_UCLAMP_TASK
1122 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1123 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1124 	unsigned int		uclamp_flags;
1125 #define UCLAMP_FLAG_IDLE 0x01
1126 #endif
1127 
1128 	struct cfs_rq		cfs;
1129 	struct rt_rq		rt;
1130 	struct dl_rq		dl;
1131 #ifdef CONFIG_SCHED_CLASS_EXT
1132 	struct scx_rq		scx;
1133 #endif
1134 
1135 	struct sched_dl_entity	fair_server;
1136 
1137 #ifdef CONFIG_FAIR_GROUP_SCHED
1138 	/* list of leaf cfs_rq on this CPU: */
1139 	struct list_head	leaf_cfs_rq_list;
1140 	struct list_head	*tmp_alone_branch;
1141 #endif /* CONFIG_FAIR_GROUP_SCHED */
1142 
1143 	/*
1144 	 * This is part of a global counter where only the total sum
1145 	 * over all CPUs matters. A task can increase this counter on
1146 	 * one CPU and if it got migrated afterwards it may decrease
1147 	 * it on another CPU. Always updated under the runqueue lock:
1148 	 */
1149 	unsigned int		nr_uninterruptible;
1150 
1151 	union {
1152 		struct task_struct __rcu *donor; /* Scheduler context */
1153 		struct task_struct __rcu *curr;  /* Execution context */
1154 	};
1155 	struct sched_dl_entity	*dl_server;
1156 	struct task_struct	*idle;
1157 	struct task_struct	*stop;
1158 	unsigned long		next_balance;
1159 	struct mm_struct	*prev_mm;
1160 
1161 	unsigned int		clock_update_flags;
1162 	u64			clock;
1163 	/* Ensure that all clocks are in the same cache line */
1164 	u64			clock_task ____cacheline_aligned;
1165 	u64			clock_pelt;
1166 	unsigned long		lost_idle_time;
1167 	u64			clock_pelt_idle;
1168 	u64			clock_idle;
1169 #ifndef CONFIG_64BIT
1170 	u64			clock_pelt_idle_copy;
1171 	u64			clock_idle_copy;
1172 #endif
1173 
1174 	atomic_t		nr_iowait;
1175 
1176 #ifdef CONFIG_SCHED_DEBUG
1177 	u64 last_seen_need_resched_ns;
1178 	int ticks_without_resched;
1179 #endif
1180 
1181 #ifdef CONFIG_MEMBARRIER
1182 	int membarrier_state;
1183 #endif
1184 
1185 #ifdef CONFIG_SMP
1186 	struct root_domain		*rd;
1187 	struct sched_domain __rcu	*sd;
1188 
1189 	unsigned long		cpu_capacity;
1190 
1191 	struct balance_callback *balance_callback;
1192 
1193 	unsigned char		nohz_idle_balance;
1194 	unsigned char		idle_balance;
1195 
1196 	unsigned long		misfit_task_load;
1197 
1198 	/* For active balancing */
1199 	int			active_balance;
1200 	int			push_cpu;
1201 	struct cpu_stop_work	active_balance_work;
1202 
1203 	/* CPU of this runqueue: */
1204 	int			cpu;
1205 	int			online;
1206 
1207 	struct list_head cfs_tasks;
1208 
1209 	struct sched_avg	avg_rt;
1210 	struct sched_avg	avg_dl;
1211 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1212 	struct sched_avg	avg_irq;
1213 #endif
1214 #ifdef CONFIG_SCHED_HW_PRESSURE
1215 	struct sched_avg	avg_hw;
1216 #endif
1217 	u64			idle_stamp;
1218 	u64			avg_idle;
1219 
1220 	/* This is used to determine avg_idle's max value */
1221 	u64			max_idle_balance_cost;
1222 
1223 #ifdef CONFIG_HOTPLUG_CPU
1224 	struct rcuwait		hotplug_wait;
1225 #endif
1226 #endif /* CONFIG_SMP */
1227 
1228 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1229 	u64			prev_irq_time;
1230 	u64			psi_irq_time;
1231 #endif
1232 #ifdef CONFIG_PARAVIRT
1233 	u64			prev_steal_time;
1234 #endif
1235 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1236 	u64			prev_steal_time_rq;
1237 #endif
1238 
1239 	/* calc_load related fields */
1240 	unsigned long		calc_load_update;
1241 	long			calc_load_active;
1242 
1243 #ifdef CONFIG_SCHED_HRTICK
1244 #ifdef CONFIG_SMP
1245 	call_single_data_t	hrtick_csd;
1246 #endif
1247 	struct hrtimer		hrtick_timer;
1248 	ktime_t			hrtick_time;
1249 #endif
1250 
1251 #ifdef CONFIG_SCHEDSTATS
1252 	/* latency stats */
1253 	struct sched_info	rq_sched_info;
1254 	unsigned long long	rq_cpu_time;
1255 
1256 	/* sys_sched_yield() stats */
1257 	unsigned int		yld_count;
1258 
1259 	/* schedule() stats */
1260 	unsigned int		sched_count;
1261 	unsigned int		sched_goidle;
1262 
1263 	/* try_to_wake_up() stats */
1264 	unsigned int		ttwu_count;
1265 	unsigned int		ttwu_local;
1266 #endif
1267 
1268 #ifdef CONFIG_CPU_IDLE
1269 	/* Must be inspected within a RCU lock section */
1270 	struct cpuidle_state	*idle_state;
1271 #endif
1272 
1273 #ifdef CONFIG_SMP
1274 	unsigned int		nr_pinned;
1275 #endif
1276 	unsigned int		push_busy;
1277 	struct cpu_stop_work	push_work;
1278 
1279 #ifdef CONFIG_SCHED_CORE
1280 	/* per rq */
1281 	struct rq		*core;
1282 	struct task_struct	*core_pick;
1283 	struct sched_dl_entity	*core_dl_server;
1284 	unsigned int		core_enabled;
1285 	unsigned int		core_sched_seq;
1286 	struct rb_root		core_tree;
1287 
1288 	/* shared state -- careful with sched_core_cpu_deactivate() */
1289 	unsigned int		core_task_seq;
1290 	unsigned int		core_pick_seq;
1291 	unsigned long		core_cookie;
1292 	unsigned int		core_forceidle_count;
1293 	unsigned int		core_forceidle_seq;
1294 	unsigned int		core_forceidle_occupation;
1295 	u64			core_forceidle_start;
1296 #endif
1297 
1298 	/* Scratch cpumask to be temporarily used under rq_lock */
1299 	cpumask_var_t		scratch_mask;
1300 
1301 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1302 	call_single_data_t	cfsb_csd;
1303 	struct list_head	cfsb_csd_list;
1304 #endif
1305 };
1306 
1307 #ifdef CONFIG_FAIR_GROUP_SCHED
1308 
1309 /* CPU runqueue to which this cfs_rq is attached */
1310 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1311 {
1312 	return cfs_rq->rq;
1313 }
1314 
1315 #else
1316 
1317 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1318 {
1319 	return container_of(cfs_rq, struct rq, cfs);
1320 }
1321 #endif
1322 
1323 static inline int cpu_of(struct rq *rq)
1324 {
1325 #ifdef CONFIG_SMP
1326 	return rq->cpu;
1327 #else
1328 	return 0;
1329 #endif
1330 }
1331 
1332 #define MDF_PUSH		0x01
1333 
1334 static inline bool is_migration_disabled(struct task_struct *p)
1335 {
1336 #ifdef CONFIG_SMP
1337 	return p->migration_disabled;
1338 #else
1339 	return false;
1340 #endif
1341 }
1342 
1343 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1344 
1345 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1346 #define this_rq()		this_cpu_ptr(&runqueues)
1347 #define task_rq(p)		cpu_rq(task_cpu(p))
1348 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1349 #define raw_rq()		raw_cpu_ptr(&runqueues)
1350 
1351 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1352 {
1353 	/* Do nothing */
1354 }
1355 
1356 #ifdef CONFIG_SCHED_CORE
1357 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1358 
1359 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1360 
1361 static inline bool sched_core_enabled(struct rq *rq)
1362 {
1363 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1364 }
1365 
1366 static inline bool sched_core_disabled(void)
1367 {
1368 	return !static_branch_unlikely(&__sched_core_enabled);
1369 }
1370 
1371 /*
1372  * Be careful with this function; not for general use. The return value isn't
1373  * stable unless you actually hold a relevant rq->__lock.
1374  */
1375 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1376 {
1377 	if (sched_core_enabled(rq))
1378 		return &rq->core->__lock;
1379 
1380 	return &rq->__lock;
1381 }
1382 
1383 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1384 {
1385 	if (rq->core_enabled)
1386 		return &rq->core->__lock;
1387 
1388 	return &rq->__lock;
1389 }
1390 
1391 extern bool
1392 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1393 
1394 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1395 
1396 /*
1397  * Helpers to check if the CPU's core cookie matches with the task's cookie
1398  * when core scheduling is enabled.
1399  * A special case is that the task's cookie always matches with CPU's core
1400  * cookie if the CPU is in an idle core.
1401  */
1402 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1403 {
1404 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1405 	if (!sched_core_enabled(rq))
1406 		return true;
1407 
1408 	return rq->core->core_cookie == p->core_cookie;
1409 }
1410 
1411 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1412 {
1413 	bool idle_core = true;
1414 	int cpu;
1415 
1416 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1417 	if (!sched_core_enabled(rq))
1418 		return true;
1419 
1420 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1421 		if (!available_idle_cpu(cpu)) {
1422 			idle_core = false;
1423 			break;
1424 		}
1425 	}
1426 
1427 	/*
1428 	 * A CPU in an idle core is always the best choice for tasks with
1429 	 * cookies.
1430 	 */
1431 	return idle_core || rq->core->core_cookie == p->core_cookie;
1432 }
1433 
1434 static inline bool sched_group_cookie_match(struct rq *rq,
1435 					    struct task_struct *p,
1436 					    struct sched_group *group)
1437 {
1438 	int cpu;
1439 
1440 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1441 	if (!sched_core_enabled(rq))
1442 		return true;
1443 
1444 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1445 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1446 			return true;
1447 	}
1448 	return false;
1449 }
1450 
1451 static inline bool sched_core_enqueued(struct task_struct *p)
1452 {
1453 	return !RB_EMPTY_NODE(&p->core_node);
1454 }
1455 
1456 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1457 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1458 
1459 extern void sched_core_get(void);
1460 extern void sched_core_put(void);
1461 
1462 #else /* !CONFIG_SCHED_CORE: */
1463 
1464 static inline bool sched_core_enabled(struct rq *rq)
1465 {
1466 	return false;
1467 }
1468 
1469 static inline bool sched_core_disabled(void)
1470 {
1471 	return true;
1472 }
1473 
1474 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1475 {
1476 	return &rq->__lock;
1477 }
1478 
1479 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1480 {
1481 	return &rq->__lock;
1482 }
1483 
1484 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1485 {
1486 	return true;
1487 }
1488 
1489 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1490 {
1491 	return true;
1492 }
1493 
1494 static inline bool sched_group_cookie_match(struct rq *rq,
1495 					    struct task_struct *p,
1496 					    struct sched_group *group)
1497 {
1498 	return true;
1499 }
1500 
1501 #endif /* !CONFIG_SCHED_CORE */
1502 
1503 static inline void lockdep_assert_rq_held(struct rq *rq)
1504 {
1505 	lockdep_assert_held(__rq_lockp(rq));
1506 }
1507 
1508 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1509 extern bool raw_spin_rq_trylock(struct rq *rq);
1510 extern void raw_spin_rq_unlock(struct rq *rq);
1511 
1512 static inline void raw_spin_rq_lock(struct rq *rq)
1513 {
1514 	raw_spin_rq_lock_nested(rq, 0);
1515 }
1516 
1517 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1518 {
1519 	local_irq_disable();
1520 	raw_spin_rq_lock(rq);
1521 }
1522 
1523 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1524 {
1525 	raw_spin_rq_unlock(rq);
1526 	local_irq_enable();
1527 }
1528 
1529 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1530 {
1531 	unsigned long flags;
1532 
1533 	local_irq_save(flags);
1534 	raw_spin_rq_lock(rq);
1535 
1536 	return flags;
1537 }
1538 
1539 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1540 {
1541 	raw_spin_rq_unlock(rq);
1542 	local_irq_restore(flags);
1543 }
1544 
1545 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1546 do {						\
1547 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1548 } while (0)
1549 
1550 #ifdef CONFIG_SCHED_SMT
1551 extern void __update_idle_core(struct rq *rq);
1552 
1553 static inline void update_idle_core(struct rq *rq)
1554 {
1555 	if (static_branch_unlikely(&sched_smt_present))
1556 		__update_idle_core(rq);
1557 }
1558 
1559 #else
1560 static inline void update_idle_core(struct rq *rq) { }
1561 #endif
1562 
1563 #ifdef CONFIG_FAIR_GROUP_SCHED
1564 
1565 static inline struct task_struct *task_of(struct sched_entity *se)
1566 {
1567 	SCHED_WARN_ON(!entity_is_task(se));
1568 	return container_of(se, struct task_struct, se);
1569 }
1570 
1571 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1572 {
1573 	return p->se.cfs_rq;
1574 }
1575 
1576 /* runqueue on which this entity is (to be) queued */
1577 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1578 {
1579 	return se->cfs_rq;
1580 }
1581 
1582 /* runqueue "owned" by this group */
1583 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1584 {
1585 	return grp->my_q;
1586 }
1587 
1588 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1589 
1590 #define task_of(_se)		container_of(_se, struct task_struct, se)
1591 
1592 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1593 {
1594 	return &task_rq(p)->cfs;
1595 }
1596 
1597 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1598 {
1599 	const struct task_struct *p = task_of(se);
1600 	struct rq *rq = task_rq(p);
1601 
1602 	return &rq->cfs;
1603 }
1604 
1605 /* runqueue "owned" by this group */
1606 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1607 {
1608 	return NULL;
1609 }
1610 
1611 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1612 
1613 extern void update_rq_clock(struct rq *rq);
1614 
1615 /*
1616  * rq::clock_update_flags bits
1617  *
1618  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1619  *  call to __schedule(). This is an optimisation to avoid
1620  *  neighbouring rq clock updates.
1621  *
1622  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1623  *  in effect and calls to update_rq_clock() are being ignored.
1624  *
1625  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1626  *  made to update_rq_clock() since the last time rq::lock was pinned.
1627  *
1628  * If inside of __schedule(), clock_update_flags will have been
1629  * shifted left (a left shift is a cheap operation for the fast path
1630  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1631  *
1632  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1633  *
1634  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1635  * one position though, because the next rq_unpin_lock() will shift it
1636  * back.
1637  */
1638 #define RQCF_REQ_SKIP		0x01
1639 #define RQCF_ACT_SKIP		0x02
1640 #define RQCF_UPDATED		0x04
1641 
1642 static inline void assert_clock_updated(struct rq *rq)
1643 {
1644 	/*
1645 	 * The only reason for not seeing a clock update since the
1646 	 * last rq_pin_lock() is if we're currently skipping updates.
1647 	 */
1648 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1649 }
1650 
1651 static inline u64 rq_clock(struct rq *rq)
1652 {
1653 	lockdep_assert_rq_held(rq);
1654 	assert_clock_updated(rq);
1655 
1656 	return rq->clock;
1657 }
1658 
1659 static inline u64 rq_clock_task(struct rq *rq)
1660 {
1661 	lockdep_assert_rq_held(rq);
1662 	assert_clock_updated(rq);
1663 
1664 	return rq->clock_task;
1665 }
1666 
1667 static inline void rq_clock_skip_update(struct rq *rq)
1668 {
1669 	lockdep_assert_rq_held(rq);
1670 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1671 }
1672 
1673 /*
1674  * See rt task throttling, which is the only time a skip
1675  * request is canceled.
1676  */
1677 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1678 {
1679 	lockdep_assert_rq_held(rq);
1680 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1681 }
1682 
1683 /*
1684  * During cpu offlining and rq wide unthrottling, we can trigger
1685  * an update_rq_clock() for several cfs and rt runqueues (Typically
1686  * when using list_for_each_entry_*)
1687  * rq_clock_start_loop_update() can be called after updating the clock
1688  * once and before iterating over the list to prevent multiple update.
1689  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1690  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1691  */
1692 static inline void rq_clock_start_loop_update(struct rq *rq)
1693 {
1694 	lockdep_assert_rq_held(rq);
1695 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1696 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1697 }
1698 
1699 static inline void rq_clock_stop_loop_update(struct rq *rq)
1700 {
1701 	lockdep_assert_rq_held(rq);
1702 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1703 }
1704 
1705 struct rq_flags {
1706 	unsigned long flags;
1707 	struct pin_cookie cookie;
1708 #ifdef CONFIG_SCHED_DEBUG
1709 	/*
1710 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1711 	 * current pin context is stashed here in case it needs to be
1712 	 * restored in rq_repin_lock().
1713 	 */
1714 	unsigned int clock_update_flags;
1715 #endif
1716 };
1717 
1718 extern struct balance_callback balance_push_callback;
1719 
1720 /*
1721  * Lockdep annotation that avoids accidental unlocks; it's like a
1722  * sticky/continuous lockdep_assert_held().
1723  *
1724  * This avoids code that has access to 'struct rq *rq' (basically everything in
1725  * the scheduler) from accidentally unlocking the rq if they do not also have a
1726  * copy of the (on-stack) 'struct rq_flags rf'.
1727  *
1728  * Also see Documentation/locking/lockdep-design.rst.
1729  */
1730 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1731 {
1732 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1733 
1734 #ifdef CONFIG_SCHED_DEBUG
1735 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1736 	rf->clock_update_flags = 0;
1737 # ifdef CONFIG_SMP
1738 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1739 # endif
1740 #endif
1741 }
1742 
1743 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1744 {
1745 #ifdef CONFIG_SCHED_DEBUG
1746 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1747 		rf->clock_update_flags = RQCF_UPDATED;
1748 #endif
1749 
1750 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1751 }
1752 
1753 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1754 {
1755 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1756 
1757 #ifdef CONFIG_SCHED_DEBUG
1758 	/*
1759 	 * Restore the value we stashed in @rf for this pin context.
1760 	 */
1761 	rq->clock_update_flags |= rf->clock_update_flags;
1762 #endif
1763 }
1764 
1765 extern
1766 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1767 	__acquires(rq->lock);
1768 
1769 extern
1770 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1771 	__acquires(p->pi_lock)
1772 	__acquires(rq->lock);
1773 
1774 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1775 	__releases(rq->lock)
1776 {
1777 	rq_unpin_lock(rq, rf);
1778 	raw_spin_rq_unlock(rq);
1779 }
1780 
1781 static inline void
1782 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1783 	__releases(rq->lock)
1784 	__releases(p->pi_lock)
1785 {
1786 	rq_unpin_lock(rq, rf);
1787 	raw_spin_rq_unlock(rq);
1788 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1789 }
1790 
1791 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1792 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1793 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1794 		    struct rq *rq; struct rq_flags rf)
1795 
1796 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1797 	__acquires(rq->lock)
1798 {
1799 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1800 	rq_pin_lock(rq, rf);
1801 }
1802 
1803 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1804 	__acquires(rq->lock)
1805 {
1806 	raw_spin_rq_lock_irq(rq);
1807 	rq_pin_lock(rq, rf);
1808 }
1809 
1810 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1811 	__acquires(rq->lock)
1812 {
1813 	raw_spin_rq_lock(rq);
1814 	rq_pin_lock(rq, rf);
1815 }
1816 
1817 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1818 	__releases(rq->lock)
1819 {
1820 	rq_unpin_lock(rq, rf);
1821 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1822 }
1823 
1824 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1825 	__releases(rq->lock)
1826 {
1827 	rq_unpin_lock(rq, rf);
1828 	raw_spin_rq_unlock_irq(rq);
1829 }
1830 
1831 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1832 	__releases(rq->lock)
1833 {
1834 	rq_unpin_lock(rq, rf);
1835 	raw_spin_rq_unlock(rq);
1836 }
1837 
1838 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1839 		    rq_lock(_T->lock, &_T->rf),
1840 		    rq_unlock(_T->lock, &_T->rf),
1841 		    struct rq_flags rf)
1842 
1843 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1844 		    rq_lock_irq(_T->lock, &_T->rf),
1845 		    rq_unlock_irq(_T->lock, &_T->rf),
1846 		    struct rq_flags rf)
1847 
1848 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1849 		    rq_lock_irqsave(_T->lock, &_T->rf),
1850 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1851 		    struct rq_flags rf)
1852 
1853 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1854 	__acquires(rq->lock)
1855 {
1856 	struct rq *rq;
1857 
1858 	local_irq_disable();
1859 	rq = this_rq();
1860 	rq_lock(rq, rf);
1861 
1862 	return rq;
1863 }
1864 
1865 #ifdef CONFIG_NUMA
1866 
1867 enum numa_topology_type {
1868 	NUMA_DIRECT,
1869 	NUMA_GLUELESS_MESH,
1870 	NUMA_BACKPLANE,
1871 };
1872 
1873 extern enum numa_topology_type sched_numa_topology_type;
1874 extern int sched_max_numa_distance;
1875 extern bool find_numa_distance(int distance);
1876 extern void sched_init_numa(int offline_node);
1877 extern void sched_update_numa(int cpu, bool online);
1878 extern void sched_domains_numa_masks_set(unsigned int cpu);
1879 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1880 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1881 
1882 #else /* !CONFIG_NUMA: */
1883 
1884 static inline void sched_init_numa(int offline_node) { }
1885 static inline void sched_update_numa(int cpu, bool online) { }
1886 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1887 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1888 
1889 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1890 {
1891 	return nr_cpu_ids;
1892 }
1893 
1894 #endif /* !CONFIG_NUMA */
1895 
1896 #ifdef CONFIG_NUMA_BALANCING
1897 
1898 /* The regions in numa_faults array from task_struct */
1899 enum numa_faults_stats {
1900 	NUMA_MEM = 0,
1901 	NUMA_CPU,
1902 	NUMA_MEMBUF,
1903 	NUMA_CPUBUF
1904 };
1905 
1906 extern void sched_setnuma(struct task_struct *p, int node);
1907 extern int migrate_task_to(struct task_struct *p, int cpu);
1908 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1909 			int cpu, int scpu);
1910 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1911 
1912 #else /* !CONFIG_NUMA_BALANCING: */
1913 
1914 static inline void
1915 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1916 {
1917 }
1918 
1919 #endif /* !CONFIG_NUMA_BALANCING */
1920 
1921 #ifdef CONFIG_SMP
1922 
1923 static inline void
1924 queue_balance_callback(struct rq *rq,
1925 		       struct balance_callback *head,
1926 		       void (*func)(struct rq *rq))
1927 {
1928 	lockdep_assert_rq_held(rq);
1929 
1930 	/*
1931 	 * Don't (re)queue an already queued item; nor queue anything when
1932 	 * balance_push() is active, see the comment with
1933 	 * balance_push_callback.
1934 	 */
1935 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1936 		return;
1937 
1938 	head->func = func;
1939 	head->next = rq->balance_callback;
1940 	rq->balance_callback = head;
1941 }
1942 
1943 #define rcu_dereference_check_sched_domain(p) \
1944 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1945 
1946 /*
1947  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1948  * See destroy_sched_domains: call_rcu for details.
1949  *
1950  * The domain tree of any CPU may only be accessed from within
1951  * preempt-disabled sections.
1952  */
1953 #define for_each_domain(cpu, __sd) \
1954 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1955 			__sd; __sd = __sd->parent)
1956 
1957 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1958 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1959 static const unsigned int SD_SHARED_CHILD_MASK =
1960 #include <linux/sched/sd_flags.h>
1961 0;
1962 #undef SD_FLAG
1963 
1964 /**
1965  * highest_flag_domain - Return highest sched_domain containing flag.
1966  * @cpu:	The CPU whose highest level of sched domain is to
1967  *		be returned.
1968  * @flag:	The flag to check for the highest sched_domain
1969  *		for the given CPU.
1970  *
1971  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1972  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1973  */
1974 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1975 {
1976 	struct sched_domain *sd, *hsd = NULL;
1977 
1978 	for_each_domain(cpu, sd) {
1979 		if (sd->flags & flag) {
1980 			hsd = sd;
1981 			continue;
1982 		}
1983 
1984 		/*
1985 		 * Stop the search if @flag is known to be shared at lower
1986 		 * levels. It will not be found further up.
1987 		 */
1988 		if (flag & SD_SHARED_CHILD_MASK)
1989 			break;
1990 	}
1991 
1992 	return hsd;
1993 }
1994 
1995 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1996 {
1997 	struct sched_domain *sd;
1998 
1999 	for_each_domain(cpu, sd) {
2000 		if (sd->flags & flag)
2001 			break;
2002 	}
2003 
2004 	return sd;
2005 }
2006 
2007 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2008 DECLARE_PER_CPU(int, sd_llc_size);
2009 DECLARE_PER_CPU(int, sd_llc_id);
2010 DECLARE_PER_CPU(int, sd_share_id);
2011 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2012 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2013 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2014 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2015 
2016 extern struct static_key_false sched_asym_cpucapacity;
2017 extern struct static_key_false sched_cluster_active;
2018 
2019 static __always_inline bool sched_asym_cpucap_active(void)
2020 {
2021 	return static_branch_unlikely(&sched_asym_cpucapacity);
2022 }
2023 
2024 struct sched_group_capacity {
2025 	atomic_t		ref;
2026 	/*
2027 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2028 	 * for a single CPU.
2029 	 */
2030 	unsigned long		capacity;
2031 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2032 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2033 	unsigned long		next_update;
2034 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2035 
2036 #ifdef CONFIG_SCHED_DEBUG
2037 	int			id;
2038 #endif
2039 
2040 	unsigned long		cpumask[];		/* Balance mask */
2041 };
2042 
2043 struct sched_group {
2044 	struct sched_group	*next;			/* Must be a circular list */
2045 	atomic_t		ref;
2046 
2047 	unsigned int		group_weight;
2048 	unsigned int		cores;
2049 	struct sched_group_capacity *sgc;
2050 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2051 	int			flags;
2052 
2053 	/*
2054 	 * The CPUs this group covers.
2055 	 *
2056 	 * NOTE: this field is variable length. (Allocated dynamically
2057 	 * by attaching extra space to the end of the structure,
2058 	 * depending on how many CPUs the kernel has booted up with)
2059 	 */
2060 	unsigned long		cpumask[];
2061 };
2062 
2063 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2064 {
2065 	return to_cpumask(sg->cpumask);
2066 }
2067 
2068 /*
2069  * See build_balance_mask().
2070  */
2071 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2072 {
2073 	return to_cpumask(sg->sgc->cpumask);
2074 }
2075 
2076 extern int group_balance_cpu(struct sched_group *sg);
2077 
2078 #ifdef CONFIG_SCHED_DEBUG
2079 extern void update_sched_domain_debugfs(void);
2080 extern void dirty_sched_domain_sysctl(int cpu);
2081 #else
2082 static inline void update_sched_domain_debugfs(void) { }
2083 static inline void dirty_sched_domain_sysctl(int cpu) { }
2084 #endif
2085 
2086 extern int sched_update_scaling(void);
2087 
2088 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2089 {
2090 	if (!p->user_cpus_ptr)
2091 		return cpu_possible_mask; /* &init_task.cpus_mask */
2092 	return p->user_cpus_ptr;
2093 }
2094 
2095 #endif /* CONFIG_SMP */
2096 
2097 #ifdef CONFIG_CGROUP_SCHED
2098 
2099 /*
2100  * Return the group to which this tasks belongs.
2101  *
2102  * We cannot use task_css() and friends because the cgroup subsystem
2103  * changes that value before the cgroup_subsys::attach() method is called,
2104  * therefore we cannot pin it and might observe the wrong value.
2105  *
2106  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2107  * core changes this before calling sched_move_task().
2108  *
2109  * Instead we use a 'copy' which is updated from sched_move_task() while
2110  * holding both task_struct::pi_lock and rq::lock.
2111  */
2112 static inline struct task_group *task_group(struct task_struct *p)
2113 {
2114 	return p->sched_task_group;
2115 }
2116 
2117 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2118 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2119 {
2120 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2121 	struct task_group *tg = task_group(p);
2122 #endif
2123 
2124 #ifdef CONFIG_FAIR_GROUP_SCHED
2125 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2126 	p->se.cfs_rq = tg->cfs_rq[cpu];
2127 	p->se.parent = tg->se[cpu];
2128 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2129 #endif
2130 
2131 #ifdef CONFIG_RT_GROUP_SCHED
2132 	p->rt.rt_rq  = tg->rt_rq[cpu];
2133 	p->rt.parent = tg->rt_se[cpu];
2134 #endif
2135 }
2136 
2137 #else /* !CONFIG_CGROUP_SCHED: */
2138 
2139 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2140 
2141 static inline struct task_group *task_group(struct task_struct *p)
2142 {
2143 	return NULL;
2144 }
2145 
2146 #endif /* !CONFIG_CGROUP_SCHED */
2147 
2148 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2149 {
2150 	set_task_rq(p, cpu);
2151 #ifdef CONFIG_SMP
2152 	/*
2153 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2154 	 * successfully executed on another CPU. We must ensure that updates of
2155 	 * per-task data have been completed by this moment.
2156 	 */
2157 	smp_wmb();
2158 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2159 	p->wake_cpu = cpu;
2160 #endif
2161 }
2162 
2163 /*
2164  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2165  */
2166 #ifdef CONFIG_SCHED_DEBUG
2167 # define const_debug __read_mostly
2168 #else
2169 # define const_debug const
2170 #endif
2171 
2172 #define SCHED_FEAT(name, enabled)	\
2173 	__SCHED_FEAT_##name ,
2174 
2175 enum {
2176 #include "features.h"
2177 	__SCHED_FEAT_NR,
2178 };
2179 
2180 #undef SCHED_FEAT
2181 
2182 #ifdef CONFIG_SCHED_DEBUG
2183 
2184 /*
2185  * To support run-time toggling of sched features, all the translation units
2186  * (but core.c) reference the sysctl_sched_features defined in core.c.
2187  */
2188 extern const_debug unsigned int sysctl_sched_features;
2189 
2190 #ifdef CONFIG_JUMP_LABEL
2191 
2192 #define SCHED_FEAT(name, enabled)					\
2193 static __always_inline bool static_branch_##name(struct static_key *key) \
2194 {									\
2195 	return static_key_##enabled(key);				\
2196 }
2197 
2198 #include "features.h"
2199 #undef SCHED_FEAT
2200 
2201 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2202 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2203 
2204 #else /* !CONFIG_JUMP_LABEL: */
2205 
2206 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2207 
2208 #endif /* !CONFIG_JUMP_LABEL */
2209 
2210 #else /* !SCHED_DEBUG: */
2211 
2212 /*
2213  * Each translation unit has its own copy of sysctl_sched_features to allow
2214  * constants propagation at compile time and compiler optimization based on
2215  * features default.
2216  */
2217 #define SCHED_FEAT(name, enabled)	\
2218 	(1UL << __SCHED_FEAT_##name) * enabled |
2219 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2220 #include "features.h"
2221 	0;
2222 #undef SCHED_FEAT
2223 
2224 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2225 
2226 #endif /* !SCHED_DEBUG */
2227 
2228 extern struct static_key_false sched_numa_balancing;
2229 extern struct static_key_false sched_schedstats;
2230 
2231 static inline u64 global_rt_period(void)
2232 {
2233 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2234 }
2235 
2236 static inline u64 global_rt_runtime(void)
2237 {
2238 	if (sysctl_sched_rt_runtime < 0)
2239 		return RUNTIME_INF;
2240 
2241 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2242 }
2243 
2244 /*
2245  * Is p the current execution context?
2246  */
2247 static inline int task_current(struct rq *rq, struct task_struct *p)
2248 {
2249 	return rq->curr == p;
2250 }
2251 
2252 /*
2253  * Is p the current scheduling context?
2254  *
2255  * Note that it might be the current execution context at the same time if
2256  * rq->curr == rq->donor == p.
2257  */
2258 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2259 {
2260 	return rq->donor == p;
2261 }
2262 
2263 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2264 {
2265 #ifdef CONFIG_SMP
2266 	return p->on_cpu;
2267 #else
2268 	return task_current(rq, p);
2269 #endif
2270 }
2271 
2272 static inline int task_on_rq_queued(struct task_struct *p)
2273 {
2274 	return p->on_rq == TASK_ON_RQ_QUEUED;
2275 }
2276 
2277 static inline int task_on_rq_migrating(struct task_struct *p)
2278 {
2279 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2280 }
2281 
2282 /* Wake flags. The first three directly map to some SD flag value */
2283 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2284 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2285 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2286 
2287 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2288 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2289 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2290 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2291 
2292 #ifdef CONFIG_SMP
2293 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2294 static_assert(WF_FORK == SD_BALANCE_FORK);
2295 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2296 #endif
2297 
2298 /*
2299  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2300  * of tasks with abnormal "nice" values across CPUs the contribution that
2301  * each task makes to its run queue's load is weighted according to its
2302  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2303  * scaled version of the new time slice allocation that they receive on time
2304  * slice expiry etc.
2305  */
2306 
2307 #define WEIGHT_IDLEPRIO		3
2308 #define WMULT_IDLEPRIO		1431655765
2309 
2310 extern const int		sched_prio_to_weight[40];
2311 extern const u32		sched_prio_to_wmult[40];
2312 
2313 /*
2314  * {de,en}queue flags:
2315  *
2316  * DEQUEUE_SLEEP  - task is no longer runnable
2317  * ENQUEUE_WAKEUP - task just became runnable
2318  *
2319  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2320  *                are in a known state which allows modification. Such pairs
2321  *                should preserve as much state as possible.
2322  *
2323  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2324  *        in the runqueue.
2325  *
2326  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2327  *
2328  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2329  *
2330  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2331  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2332  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2333  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2334  *
2335  */
2336 
2337 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2338 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2339 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2340 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2341 #define DEQUEUE_SPECIAL		0x10
2342 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2343 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2344 
2345 #define ENQUEUE_WAKEUP		0x01
2346 #define ENQUEUE_RESTORE		0x02
2347 #define ENQUEUE_MOVE		0x04
2348 #define ENQUEUE_NOCLOCK		0x08
2349 
2350 #define ENQUEUE_HEAD		0x10
2351 #define ENQUEUE_REPLENISH	0x20
2352 #ifdef CONFIG_SMP
2353 #define ENQUEUE_MIGRATED	0x40
2354 #else
2355 #define ENQUEUE_MIGRATED	0x00
2356 #endif
2357 #define ENQUEUE_INITIAL		0x80
2358 #define ENQUEUE_MIGRATING	0x100
2359 #define ENQUEUE_DELAYED		0x200
2360 #define ENQUEUE_RQ_SELECTED	0x400
2361 
2362 #define RETRY_TASK		((void *)-1UL)
2363 
2364 struct affinity_context {
2365 	const struct cpumask	*new_mask;
2366 	struct cpumask		*user_mask;
2367 	unsigned int		flags;
2368 };
2369 
2370 extern s64 update_curr_common(struct rq *rq);
2371 
2372 struct sched_class {
2373 
2374 #ifdef CONFIG_UCLAMP_TASK
2375 	int uclamp_enabled;
2376 #endif
2377 
2378 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2379 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2380 	void (*yield_task)   (struct rq *rq);
2381 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2382 
2383 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2384 
2385 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2386 	struct task_struct *(*pick_task)(struct rq *rq);
2387 	/*
2388 	 * Optional! When implemented pick_next_task() should be equivalent to:
2389 	 *
2390 	 *   next = pick_task();
2391 	 *   if (next) {
2392 	 *       put_prev_task(prev);
2393 	 *       set_next_task_first(next);
2394 	 *   }
2395 	 */
2396 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2397 
2398 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2399 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2400 
2401 #ifdef CONFIG_SMP
2402 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2403 
2404 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2405 
2406 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2407 
2408 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2409 
2410 	void (*rq_online)(struct rq *rq);
2411 	void (*rq_offline)(struct rq *rq);
2412 
2413 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2414 #endif
2415 
2416 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2417 	void (*task_fork)(struct task_struct *p);
2418 	void (*task_dead)(struct task_struct *p);
2419 
2420 	/*
2421 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2422 	 * cannot assume the switched_from/switched_to pair is serialized by
2423 	 * rq->lock. They are however serialized by p->pi_lock.
2424 	 */
2425 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2426 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2427 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2428 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2429 			      const struct load_weight *lw);
2430 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2431 			      int oldprio);
2432 
2433 	unsigned int (*get_rr_interval)(struct rq *rq,
2434 					struct task_struct *task);
2435 
2436 	void (*update_curr)(struct rq *rq);
2437 
2438 #ifdef CONFIG_FAIR_GROUP_SCHED
2439 	void (*task_change_group)(struct task_struct *p);
2440 #endif
2441 
2442 #ifdef CONFIG_SCHED_CORE
2443 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2444 #endif
2445 };
2446 
2447 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2448 {
2449 	WARN_ON_ONCE(rq->donor != prev);
2450 	prev->sched_class->put_prev_task(rq, prev, NULL);
2451 }
2452 
2453 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2454 {
2455 	next->sched_class->set_next_task(rq, next, false);
2456 }
2457 
2458 static inline void
2459 __put_prev_set_next_dl_server(struct rq *rq,
2460 			      struct task_struct *prev,
2461 			      struct task_struct *next)
2462 {
2463 	prev->dl_server = NULL;
2464 	next->dl_server = rq->dl_server;
2465 	rq->dl_server = NULL;
2466 }
2467 
2468 static inline void put_prev_set_next_task(struct rq *rq,
2469 					  struct task_struct *prev,
2470 					  struct task_struct *next)
2471 {
2472 	WARN_ON_ONCE(rq->curr != prev);
2473 
2474 	__put_prev_set_next_dl_server(rq, prev, next);
2475 
2476 	if (next == prev)
2477 		return;
2478 
2479 	prev->sched_class->put_prev_task(rq, prev, next);
2480 	next->sched_class->set_next_task(rq, next, true);
2481 }
2482 
2483 /*
2484  * Helper to define a sched_class instance; each one is placed in a separate
2485  * section which is ordered by the linker script:
2486  *
2487  *   include/asm-generic/vmlinux.lds.h
2488  *
2489  * *CAREFUL* they are laid out in *REVERSE* order!!!
2490  *
2491  * Also enforce alignment on the instance, not the type, to guarantee layout.
2492  */
2493 #define DEFINE_SCHED_CLASS(name) \
2494 const struct sched_class name##_sched_class \
2495 	__aligned(__alignof__(struct sched_class)) \
2496 	__section("__" #name "_sched_class")
2497 
2498 /* Defined in include/asm-generic/vmlinux.lds.h */
2499 extern struct sched_class __sched_class_highest[];
2500 extern struct sched_class __sched_class_lowest[];
2501 
2502 extern const struct sched_class stop_sched_class;
2503 extern const struct sched_class dl_sched_class;
2504 extern const struct sched_class rt_sched_class;
2505 extern const struct sched_class fair_sched_class;
2506 extern const struct sched_class idle_sched_class;
2507 
2508 #ifdef CONFIG_SCHED_CLASS_EXT
2509 extern const struct sched_class ext_sched_class;
2510 
2511 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
2512 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
2513 
2514 #define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
2515 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
2516 #else /* !CONFIG_SCHED_CLASS_EXT */
2517 #define scx_enabled()		false
2518 #define scx_switched_all()	false
2519 #endif /* !CONFIG_SCHED_CLASS_EXT */
2520 
2521 /*
2522  * Iterate only active classes. SCX can take over all fair tasks or be
2523  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2524  */
2525 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2526 {
2527 	class++;
2528 #ifdef CONFIG_SCHED_CLASS_EXT
2529 	if (scx_switched_all() && class == &fair_sched_class)
2530 		class++;
2531 	if (!scx_enabled() && class == &ext_sched_class)
2532 		class++;
2533 #endif
2534 	return class;
2535 }
2536 
2537 #define for_class_range(class, _from, _to) \
2538 	for (class = (_from); class < (_to); class++)
2539 
2540 #define for_each_class(class) \
2541 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2542 
2543 #define for_active_class_range(class, _from, _to)				\
2544 	for (class = (_from); class != (_to); class = next_active_class(class))
2545 
2546 #define for_each_active_class(class)						\
2547 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2548 
2549 #define sched_class_above(_a, _b)	((_a) < (_b))
2550 
2551 static inline bool sched_stop_runnable(struct rq *rq)
2552 {
2553 	return rq->stop && task_on_rq_queued(rq->stop);
2554 }
2555 
2556 static inline bool sched_dl_runnable(struct rq *rq)
2557 {
2558 	return rq->dl.dl_nr_running > 0;
2559 }
2560 
2561 static inline bool sched_rt_runnable(struct rq *rq)
2562 {
2563 	return rq->rt.rt_queued > 0;
2564 }
2565 
2566 static inline bool sched_fair_runnable(struct rq *rq)
2567 {
2568 	return rq->cfs.nr_running > 0;
2569 }
2570 
2571 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2572 extern struct task_struct *pick_task_idle(struct rq *rq);
2573 
2574 #define SCA_CHECK		0x01
2575 #define SCA_MIGRATE_DISABLE	0x02
2576 #define SCA_MIGRATE_ENABLE	0x04
2577 #define SCA_USER		0x08
2578 
2579 #ifdef CONFIG_SMP
2580 
2581 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2582 
2583 extern void sched_balance_trigger(struct rq *rq);
2584 
2585 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2586 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2587 
2588 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2589 {
2590 	/* When not in the task's cpumask, no point in looking further. */
2591 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2592 		return false;
2593 
2594 	/* Can @cpu run a user thread? */
2595 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2596 		return false;
2597 
2598 	return true;
2599 }
2600 
2601 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2602 {
2603 	/*
2604 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2605 	 */
2606 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2607 
2608 	return kmalloc_node(size, GFP_KERNEL, node);
2609 }
2610 
2611 static inline struct task_struct *get_push_task(struct rq *rq)
2612 {
2613 	struct task_struct *p = rq->donor;
2614 
2615 	lockdep_assert_rq_held(rq);
2616 
2617 	if (rq->push_busy)
2618 		return NULL;
2619 
2620 	if (p->nr_cpus_allowed == 1)
2621 		return NULL;
2622 
2623 	if (p->migration_disabled)
2624 		return NULL;
2625 
2626 	rq->push_busy = true;
2627 	return get_task_struct(p);
2628 }
2629 
2630 extern int push_cpu_stop(void *arg);
2631 
2632 #else /* !CONFIG_SMP: */
2633 
2634 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2635 {
2636 	return true;
2637 }
2638 
2639 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2640 					 struct affinity_context *ctx)
2641 {
2642 	return set_cpus_allowed_ptr(p, ctx->new_mask);
2643 }
2644 
2645 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2646 {
2647 	return NULL;
2648 }
2649 
2650 #endif /* !CONFIG_SMP */
2651 
2652 #ifdef CONFIG_CPU_IDLE
2653 
2654 static inline void idle_set_state(struct rq *rq,
2655 				  struct cpuidle_state *idle_state)
2656 {
2657 	rq->idle_state = idle_state;
2658 }
2659 
2660 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2661 {
2662 	SCHED_WARN_ON(!rcu_read_lock_held());
2663 
2664 	return rq->idle_state;
2665 }
2666 
2667 #else /* !CONFIG_CPU_IDLE: */
2668 
2669 static inline void idle_set_state(struct rq *rq,
2670 				  struct cpuidle_state *idle_state)
2671 {
2672 }
2673 
2674 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2675 {
2676 	return NULL;
2677 }
2678 
2679 #endif /* !CONFIG_CPU_IDLE */
2680 
2681 extern void schedule_idle(void);
2682 asmlinkage void schedule_user(void);
2683 
2684 extern void sysrq_sched_debug_show(void);
2685 extern void sched_init_granularity(void);
2686 extern void update_max_interval(void);
2687 
2688 extern void init_sched_dl_class(void);
2689 extern void init_sched_rt_class(void);
2690 extern void init_sched_fair_class(void);
2691 
2692 extern void resched_curr(struct rq *rq);
2693 extern void resched_curr_lazy(struct rq *rq);
2694 extern void resched_cpu(int cpu);
2695 
2696 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2697 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2698 
2699 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2700 
2701 #define BW_SHIFT		20
2702 #define BW_UNIT			(1 << BW_SHIFT)
2703 #define RATIO_SHIFT		8
2704 #define MAX_BW_BITS		(64 - BW_SHIFT)
2705 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2706 
2707 extern unsigned long to_ratio(u64 period, u64 runtime);
2708 
2709 extern void init_entity_runnable_average(struct sched_entity *se);
2710 extern void post_init_entity_util_avg(struct task_struct *p);
2711 
2712 #ifdef CONFIG_NO_HZ_FULL
2713 extern bool sched_can_stop_tick(struct rq *rq);
2714 extern int __init sched_tick_offload_init(void);
2715 
2716 /*
2717  * Tick may be needed by tasks in the runqueue depending on their policy and
2718  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2719  * nohz mode if necessary.
2720  */
2721 static inline void sched_update_tick_dependency(struct rq *rq)
2722 {
2723 	int cpu = cpu_of(rq);
2724 
2725 	if (!tick_nohz_full_cpu(cpu))
2726 		return;
2727 
2728 	if (sched_can_stop_tick(rq))
2729 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2730 	else
2731 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2732 }
2733 #else /* !CONFIG_NO_HZ_FULL: */
2734 static inline int sched_tick_offload_init(void) { return 0; }
2735 static inline void sched_update_tick_dependency(struct rq *rq) { }
2736 #endif /* !CONFIG_NO_HZ_FULL */
2737 
2738 static inline void add_nr_running(struct rq *rq, unsigned count)
2739 {
2740 	unsigned prev_nr = rq->nr_running;
2741 
2742 	rq->nr_running = prev_nr + count;
2743 	if (trace_sched_update_nr_running_tp_enabled()) {
2744 		call_trace_sched_update_nr_running(rq, count);
2745 	}
2746 
2747 #ifdef CONFIG_SMP
2748 	if (prev_nr < 2 && rq->nr_running >= 2)
2749 		set_rd_overloaded(rq->rd, 1);
2750 #endif
2751 
2752 	sched_update_tick_dependency(rq);
2753 }
2754 
2755 static inline void sub_nr_running(struct rq *rq, unsigned count)
2756 {
2757 	rq->nr_running -= count;
2758 	if (trace_sched_update_nr_running_tp_enabled()) {
2759 		call_trace_sched_update_nr_running(rq, -count);
2760 	}
2761 
2762 	/* Check if we still need preemption */
2763 	sched_update_tick_dependency(rq);
2764 }
2765 
2766 static inline void __block_task(struct rq *rq, struct task_struct *p)
2767 {
2768 	if (p->sched_contributes_to_load)
2769 		rq->nr_uninterruptible++;
2770 
2771 	if (p->in_iowait) {
2772 		atomic_inc(&rq->nr_iowait);
2773 		delayacct_blkio_start();
2774 	}
2775 
2776 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2777 
2778 	/*
2779 	 * The moment this write goes through, ttwu() can swoop in and migrate
2780 	 * this task, rendering our rq->__lock ineffective.
2781 	 *
2782 	 * __schedule()				try_to_wake_up()
2783 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2784 	 *   pick_next_task()
2785 	 *     pick_next_task_fair()
2786 	 *       pick_next_entity()
2787 	 *         dequeue_entities()
2788 	 *           __block_task()
2789 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2790 	 *					    break;
2791 	 *
2792 	 *					  ACQUIRE (after ctrl-dep)
2793 	 *
2794 	 *					  cpu = select_task_rq();
2795 	 *					  set_task_cpu(p, cpu);
2796 	 *					  ttwu_queue()
2797 	 *					    ttwu_do_activate()
2798 	 *					      LOCK rq->__lock
2799 	 *					      activate_task()
2800 	 *					        STORE p->on_rq = 1
2801 	 *   UNLOCK rq->__lock
2802 	 *
2803 	 * Callers must ensure to not reference @p after this -- we no longer
2804 	 * own it.
2805 	 */
2806 	smp_store_release(&p->on_rq, 0);
2807 }
2808 
2809 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2810 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2811 
2812 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2813 
2814 #ifdef CONFIG_PREEMPT_RT
2815 # define SCHED_NR_MIGRATE_BREAK 8
2816 #else
2817 # define SCHED_NR_MIGRATE_BREAK 32
2818 #endif
2819 
2820 extern const_debug unsigned int sysctl_sched_nr_migrate;
2821 extern const_debug unsigned int sysctl_sched_migration_cost;
2822 
2823 extern unsigned int sysctl_sched_base_slice;
2824 
2825 #ifdef CONFIG_SCHED_DEBUG
2826 extern int sysctl_resched_latency_warn_ms;
2827 extern int sysctl_resched_latency_warn_once;
2828 
2829 extern unsigned int sysctl_sched_tunable_scaling;
2830 
2831 extern unsigned int sysctl_numa_balancing_scan_delay;
2832 extern unsigned int sysctl_numa_balancing_scan_period_min;
2833 extern unsigned int sysctl_numa_balancing_scan_period_max;
2834 extern unsigned int sysctl_numa_balancing_scan_size;
2835 extern unsigned int sysctl_numa_balancing_hot_threshold;
2836 #endif
2837 
2838 #ifdef CONFIG_SCHED_HRTICK
2839 
2840 /*
2841  * Use hrtick when:
2842  *  - enabled by features
2843  *  - hrtimer is actually high res
2844  */
2845 static inline int hrtick_enabled(struct rq *rq)
2846 {
2847 	if (!cpu_active(cpu_of(rq)))
2848 		return 0;
2849 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2850 }
2851 
2852 static inline int hrtick_enabled_fair(struct rq *rq)
2853 {
2854 	if (!sched_feat(HRTICK))
2855 		return 0;
2856 	return hrtick_enabled(rq);
2857 }
2858 
2859 static inline int hrtick_enabled_dl(struct rq *rq)
2860 {
2861 	if (!sched_feat(HRTICK_DL))
2862 		return 0;
2863 	return hrtick_enabled(rq);
2864 }
2865 
2866 extern void hrtick_start(struct rq *rq, u64 delay);
2867 
2868 #else /* !CONFIG_SCHED_HRTICK: */
2869 
2870 static inline int hrtick_enabled_fair(struct rq *rq)
2871 {
2872 	return 0;
2873 }
2874 
2875 static inline int hrtick_enabled_dl(struct rq *rq)
2876 {
2877 	return 0;
2878 }
2879 
2880 static inline int hrtick_enabled(struct rq *rq)
2881 {
2882 	return 0;
2883 }
2884 
2885 #endif /* !CONFIG_SCHED_HRTICK */
2886 
2887 #ifndef arch_scale_freq_tick
2888 static __always_inline void arch_scale_freq_tick(void) { }
2889 #endif
2890 
2891 #ifndef arch_scale_freq_capacity
2892 /**
2893  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2894  * @cpu: the CPU in question.
2895  *
2896  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2897  *
2898  *     f_curr
2899  *     ------ * SCHED_CAPACITY_SCALE
2900  *     f_max
2901  */
2902 static __always_inline
2903 unsigned long arch_scale_freq_capacity(int cpu)
2904 {
2905 	return SCHED_CAPACITY_SCALE;
2906 }
2907 #endif
2908 
2909 #ifdef CONFIG_SCHED_DEBUG
2910 /*
2911  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2912  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2913  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2914  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2915  */
2916 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2917 {
2918 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2919 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2920 #ifdef CONFIG_SMP
2921 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2922 #endif
2923 }
2924 #else
2925 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2926 #endif
2927 
2928 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2929 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2930 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2931 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2932   _lock; return _t; }
2933 
2934 #ifdef CONFIG_SMP
2935 
2936 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2937 {
2938 #ifdef CONFIG_SCHED_CORE
2939 	/*
2940 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2941 	 * order by core-id first and cpu-id second.
2942 	 *
2943 	 * Notably:
2944 	 *
2945 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2946 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2947 	 *
2948 	 * when only cpu-id is considered.
2949 	 */
2950 	if (rq1->core->cpu < rq2->core->cpu)
2951 		return true;
2952 	if (rq1->core->cpu > rq2->core->cpu)
2953 		return false;
2954 
2955 	/*
2956 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2957 	 */
2958 #endif
2959 	return rq1->cpu < rq2->cpu;
2960 }
2961 
2962 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2963 
2964 #ifdef CONFIG_PREEMPTION
2965 
2966 /*
2967  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2968  * way at the expense of forcing extra atomic operations in all
2969  * invocations.  This assures that the double_lock is acquired using the
2970  * same underlying policy as the spinlock_t on this architecture, which
2971  * reduces latency compared to the unfair variant below.  However, it
2972  * also adds more overhead and therefore may reduce throughput.
2973  */
2974 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2975 	__releases(this_rq->lock)
2976 	__acquires(busiest->lock)
2977 	__acquires(this_rq->lock)
2978 {
2979 	raw_spin_rq_unlock(this_rq);
2980 	double_rq_lock(this_rq, busiest);
2981 
2982 	return 1;
2983 }
2984 
2985 #else /* !CONFIG_PREEMPTION: */
2986 /*
2987  * Unfair double_lock_balance: Optimizes throughput at the expense of
2988  * latency by eliminating extra atomic operations when the locks are
2989  * already in proper order on entry.  This favors lower CPU-ids and will
2990  * grant the double lock to lower CPUs over higher ids under contention,
2991  * regardless of entry order into the function.
2992  */
2993 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2994 	__releases(this_rq->lock)
2995 	__acquires(busiest->lock)
2996 	__acquires(this_rq->lock)
2997 {
2998 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2999 	    likely(raw_spin_rq_trylock(busiest))) {
3000 		double_rq_clock_clear_update(this_rq, busiest);
3001 		return 0;
3002 	}
3003 
3004 	if (rq_order_less(this_rq, busiest)) {
3005 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3006 		double_rq_clock_clear_update(this_rq, busiest);
3007 		return 0;
3008 	}
3009 
3010 	raw_spin_rq_unlock(this_rq);
3011 	double_rq_lock(this_rq, busiest);
3012 
3013 	return 1;
3014 }
3015 
3016 #endif /* !CONFIG_PREEMPTION */
3017 
3018 /*
3019  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3020  */
3021 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3022 {
3023 	lockdep_assert_irqs_disabled();
3024 
3025 	return _double_lock_balance(this_rq, busiest);
3026 }
3027 
3028 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3029 	__releases(busiest->lock)
3030 {
3031 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3032 		raw_spin_rq_unlock(busiest);
3033 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3034 }
3035 
3036 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3037 {
3038 	if (l1 > l2)
3039 		swap(l1, l2);
3040 
3041 	spin_lock(l1);
3042 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3043 }
3044 
3045 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3046 {
3047 	if (l1 > l2)
3048 		swap(l1, l2);
3049 
3050 	spin_lock_irq(l1);
3051 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3052 }
3053 
3054 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3055 {
3056 	if (l1 > l2)
3057 		swap(l1, l2);
3058 
3059 	raw_spin_lock(l1);
3060 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3061 }
3062 
3063 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3064 {
3065 	raw_spin_unlock(l1);
3066 	raw_spin_unlock(l2);
3067 }
3068 
3069 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3070 		    double_raw_lock(_T->lock, _T->lock2),
3071 		    double_raw_unlock(_T->lock, _T->lock2))
3072 
3073 /*
3074  * double_rq_unlock - safely unlock two runqueues
3075  *
3076  * Note this does not restore interrupts like task_rq_unlock,
3077  * you need to do so manually after calling.
3078  */
3079 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3080 	__releases(rq1->lock)
3081 	__releases(rq2->lock)
3082 {
3083 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3084 		raw_spin_rq_unlock(rq2);
3085 	else
3086 		__release(rq2->lock);
3087 	raw_spin_rq_unlock(rq1);
3088 }
3089 
3090 extern void set_rq_online (struct rq *rq);
3091 extern void set_rq_offline(struct rq *rq);
3092 
3093 extern bool sched_smp_initialized;
3094 
3095 #else /* !CONFIG_SMP: */
3096 
3097 /*
3098  * double_rq_lock - safely lock two runqueues
3099  *
3100  * Note this does not disable interrupts like task_rq_lock,
3101  * you need to do so manually before calling.
3102  */
3103 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3104 	__acquires(rq1->lock)
3105 	__acquires(rq2->lock)
3106 {
3107 	WARN_ON_ONCE(!irqs_disabled());
3108 	WARN_ON_ONCE(rq1 != rq2);
3109 	raw_spin_rq_lock(rq1);
3110 	__acquire(rq2->lock);	/* Fake it out ;) */
3111 	double_rq_clock_clear_update(rq1, rq2);
3112 }
3113 
3114 /*
3115  * double_rq_unlock - safely unlock two runqueues
3116  *
3117  * Note this does not restore interrupts like task_rq_unlock,
3118  * you need to do so manually after calling.
3119  */
3120 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3121 	__releases(rq1->lock)
3122 	__releases(rq2->lock)
3123 {
3124 	WARN_ON_ONCE(rq1 != rq2);
3125 	raw_spin_rq_unlock(rq1);
3126 	__release(rq2->lock);
3127 }
3128 
3129 #endif /* !CONFIG_SMP */
3130 
3131 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3132 		    double_rq_lock(_T->lock, _T->lock2),
3133 		    double_rq_unlock(_T->lock, _T->lock2))
3134 
3135 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3136 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3137 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3138 
3139 #ifdef	CONFIG_SCHED_DEBUG
3140 extern bool sched_debug_verbose;
3141 
3142 extern void print_cfs_stats(struct seq_file *m, int cpu);
3143 extern void print_rt_stats(struct seq_file *m, int cpu);
3144 extern void print_dl_stats(struct seq_file *m, int cpu);
3145 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3146 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3147 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3148 
3149 extern void resched_latency_warn(int cpu, u64 latency);
3150 # ifdef CONFIG_NUMA_BALANCING
3151 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3152 extern void
3153 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3154 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3155 # endif /* CONFIG_NUMA_BALANCING */
3156 #else /* !CONFIG_SCHED_DEBUG: */
3157 static inline void resched_latency_warn(int cpu, u64 latency) { }
3158 #endif /* !CONFIG_SCHED_DEBUG */
3159 
3160 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3161 extern void init_rt_rq(struct rt_rq *rt_rq);
3162 extern void init_dl_rq(struct dl_rq *dl_rq);
3163 
3164 extern void cfs_bandwidth_usage_inc(void);
3165 extern void cfs_bandwidth_usage_dec(void);
3166 
3167 #ifdef CONFIG_NO_HZ_COMMON
3168 
3169 #define NOHZ_BALANCE_KICK_BIT	0
3170 #define NOHZ_STATS_KICK_BIT	1
3171 #define NOHZ_NEWILB_KICK_BIT	2
3172 #define NOHZ_NEXT_KICK_BIT	3
3173 
3174 /* Run sched_balance_domains() */
3175 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3176 /* Update blocked load */
3177 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3178 /* Update blocked load when entering idle */
3179 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3180 /* Update nohz.next_balance */
3181 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3182 
3183 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3184 
3185 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3186 
3187 extern void nohz_balance_exit_idle(struct rq *rq);
3188 #else /* !CONFIG_NO_HZ_COMMON: */
3189 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3190 #endif /* !CONFIG_NO_HZ_COMMON */
3191 
3192 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3193 extern void nohz_run_idle_balance(int cpu);
3194 #else
3195 static inline void nohz_run_idle_balance(int cpu) { }
3196 #endif
3197 
3198 #include "stats.h"
3199 
3200 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3201 
3202 extern void __sched_core_account_forceidle(struct rq *rq);
3203 
3204 static inline void sched_core_account_forceidle(struct rq *rq)
3205 {
3206 	if (schedstat_enabled())
3207 		__sched_core_account_forceidle(rq);
3208 }
3209 
3210 extern void __sched_core_tick(struct rq *rq);
3211 
3212 static inline void sched_core_tick(struct rq *rq)
3213 {
3214 	if (sched_core_enabled(rq) && schedstat_enabled())
3215 		__sched_core_tick(rq);
3216 }
3217 
3218 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3219 
3220 static inline void sched_core_account_forceidle(struct rq *rq) { }
3221 
3222 static inline void sched_core_tick(struct rq *rq) { }
3223 
3224 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3225 
3226 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3227 
3228 struct irqtime {
3229 	u64			total;
3230 	u64			tick_delta;
3231 	u64			irq_start_time;
3232 	struct u64_stats_sync	sync;
3233 };
3234 
3235 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3236 
3237 /*
3238  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3239  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3240  * and never move forward.
3241  */
3242 static inline u64 irq_time_read(int cpu)
3243 {
3244 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3245 	unsigned int seq;
3246 	u64 total;
3247 
3248 	do {
3249 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3250 		total = irqtime->total;
3251 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3252 
3253 	return total;
3254 }
3255 
3256 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3257 
3258 #ifdef CONFIG_CPU_FREQ
3259 
3260 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3261 
3262 /**
3263  * cpufreq_update_util - Take a note about CPU utilization changes.
3264  * @rq: Runqueue to carry out the update for.
3265  * @flags: Update reason flags.
3266  *
3267  * This function is called by the scheduler on the CPU whose utilization is
3268  * being updated.
3269  *
3270  * It can only be called from RCU-sched read-side critical sections.
3271  *
3272  * The way cpufreq is currently arranged requires it to evaluate the CPU
3273  * performance state (frequency/voltage) on a regular basis to prevent it from
3274  * being stuck in a completely inadequate performance level for too long.
3275  * That is not guaranteed to happen if the updates are only triggered from CFS
3276  * and DL, though, because they may not be coming in if only RT tasks are
3277  * active all the time (or there are RT tasks only).
3278  *
3279  * As a workaround for that issue, this function is called periodically by the
3280  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3281  * but that really is a band-aid.  Going forward it should be replaced with
3282  * solutions targeted more specifically at RT tasks.
3283  */
3284 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3285 {
3286 	struct update_util_data *data;
3287 
3288 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3289 						  cpu_of(rq)));
3290 	if (data)
3291 		data->func(data, rq_clock(rq), flags);
3292 }
3293 #else /* !CONFIG_CPU_FREQ: */
3294 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3295 #endif /* !CONFIG_CPU_FREQ */
3296 
3297 #ifdef arch_scale_freq_capacity
3298 # ifndef arch_scale_freq_invariant
3299 #  define arch_scale_freq_invariant()	true
3300 # endif
3301 #else
3302 # define arch_scale_freq_invariant()	false
3303 #endif
3304 
3305 #ifdef CONFIG_SMP
3306 
3307 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3308 				 unsigned long *min,
3309 				 unsigned long *max);
3310 
3311 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3312 				 unsigned long min,
3313 				 unsigned long max);
3314 
3315 
3316 /*
3317  * Verify the fitness of task @p to run on @cpu taking into account the
3318  * CPU original capacity and the runtime/deadline ratio of the task.
3319  *
3320  * The function will return true if the original capacity of @cpu is
3321  * greater than or equal to task's deadline density right shifted by
3322  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3323  */
3324 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3325 {
3326 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3327 
3328 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3329 }
3330 
3331 static inline unsigned long cpu_bw_dl(struct rq *rq)
3332 {
3333 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3334 }
3335 
3336 static inline unsigned long cpu_util_dl(struct rq *rq)
3337 {
3338 	return READ_ONCE(rq->avg_dl.util_avg);
3339 }
3340 
3341 
3342 extern unsigned long cpu_util_cfs(int cpu);
3343 extern unsigned long cpu_util_cfs_boost(int cpu);
3344 
3345 static inline unsigned long cpu_util_rt(struct rq *rq)
3346 {
3347 	return READ_ONCE(rq->avg_rt.util_avg);
3348 }
3349 
3350 #else /* !CONFIG_SMP */
3351 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3352 #endif /* CONFIG_SMP */
3353 
3354 #ifdef CONFIG_UCLAMP_TASK
3355 
3356 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3357 
3358 static inline unsigned long uclamp_rq_get(struct rq *rq,
3359 					  enum uclamp_id clamp_id)
3360 {
3361 	return READ_ONCE(rq->uclamp[clamp_id].value);
3362 }
3363 
3364 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3365 				 unsigned int value)
3366 {
3367 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3368 }
3369 
3370 static inline bool uclamp_rq_is_idle(struct rq *rq)
3371 {
3372 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3373 }
3374 
3375 /* Is the rq being capped/throttled by uclamp_max? */
3376 static inline bool uclamp_rq_is_capped(struct rq *rq)
3377 {
3378 	unsigned long rq_util;
3379 	unsigned long max_util;
3380 
3381 	if (!static_branch_likely(&sched_uclamp_used))
3382 		return false;
3383 
3384 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3385 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3386 
3387 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3388 }
3389 
3390 /*
3391  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3392  * by default in the fast path and only gets turned on once userspace performs
3393  * an operation that requires it.
3394  *
3395  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3396  * hence is active.
3397  */
3398 static inline bool uclamp_is_used(void)
3399 {
3400 	return static_branch_likely(&sched_uclamp_used);
3401 }
3402 
3403 #define for_each_clamp_id(clamp_id) \
3404 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3405 
3406 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3407 
3408 
3409 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3410 {
3411 	if (clamp_id == UCLAMP_MIN)
3412 		return 0;
3413 	return SCHED_CAPACITY_SCALE;
3414 }
3415 
3416 /* Integer rounded range for each bucket */
3417 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3418 
3419 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3420 {
3421 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3422 }
3423 
3424 static inline void
3425 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3426 {
3427 	uc_se->value = value;
3428 	uc_se->bucket_id = uclamp_bucket_id(value);
3429 	uc_se->user_defined = user_defined;
3430 }
3431 
3432 #else /* !CONFIG_UCLAMP_TASK: */
3433 
3434 static inline unsigned long
3435 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3436 {
3437 	if (clamp_id == UCLAMP_MIN)
3438 		return 0;
3439 
3440 	return SCHED_CAPACITY_SCALE;
3441 }
3442 
3443 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3444 
3445 static inline bool uclamp_is_used(void)
3446 {
3447 	return false;
3448 }
3449 
3450 static inline unsigned long
3451 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3452 {
3453 	if (clamp_id == UCLAMP_MIN)
3454 		return 0;
3455 
3456 	return SCHED_CAPACITY_SCALE;
3457 }
3458 
3459 static inline void
3460 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3461 {
3462 }
3463 
3464 static inline bool uclamp_rq_is_idle(struct rq *rq)
3465 {
3466 	return false;
3467 }
3468 
3469 #endif /* !CONFIG_UCLAMP_TASK */
3470 
3471 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3472 
3473 static inline unsigned long cpu_util_irq(struct rq *rq)
3474 {
3475 	return READ_ONCE(rq->avg_irq.util_avg);
3476 }
3477 
3478 static inline
3479 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3480 {
3481 	util *= (max - irq);
3482 	util /= max;
3483 
3484 	return util;
3485 
3486 }
3487 
3488 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3489 
3490 static inline unsigned long cpu_util_irq(struct rq *rq)
3491 {
3492 	return 0;
3493 }
3494 
3495 static inline
3496 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3497 {
3498 	return util;
3499 }
3500 
3501 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3502 
3503 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3504 
3505 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3506 
3507 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3508 
3509 static inline bool sched_energy_enabled(void)
3510 {
3511 	return static_branch_unlikely(&sched_energy_present);
3512 }
3513 
3514 extern struct cpufreq_governor schedutil_gov;
3515 
3516 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3517 
3518 #define perf_domain_span(pd) NULL
3519 
3520 static inline bool sched_energy_enabled(void) { return false; }
3521 
3522 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3523 
3524 #ifdef CONFIG_MEMBARRIER
3525 
3526 /*
3527  * The scheduler provides memory barriers required by membarrier between:
3528  * - prior user-space memory accesses and store to rq->membarrier_state,
3529  * - store to rq->membarrier_state and following user-space memory accesses.
3530  * In the same way it provides those guarantees around store to rq->curr.
3531  */
3532 static inline void membarrier_switch_mm(struct rq *rq,
3533 					struct mm_struct *prev_mm,
3534 					struct mm_struct *next_mm)
3535 {
3536 	int membarrier_state;
3537 
3538 	if (prev_mm == next_mm)
3539 		return;
3540 
3541 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3542 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3543 		return;
3544 
3545 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3546 }
3547 
3548 #else /* !CONFIG_MEMBARRIER :*/
3549 
3550 static inline void membarrier_switch_mm(struct rq *rq,
3551 					struct mm_struct *prev_mm,
3552 					struct mm_struct *next_mm)
3553 {
3554 }
3555 
3556 #endif /* !CONFIG_MEMBARRIER */
3557 
3558 #ifdef CONFIG_SMP
3559 static inline bool is_per_cpu_kthread(struct task_struct *p)
3560 {
3561 	if (!(p->flags & PF_KTHREAD))
3562 		return false;
3563 
3564 	if (p->nr_cpus_allowed != 1)
3565 		return false;
3566 
3567 	return true;
3568 }
3569 #endif
3570 
3571 extern void swake_up_all_locked(struct swait_queue_head *q);
3572 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3573 
3574 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3575 
3576 #ifdef CONFIG_PREEMPT_DYNAMIC
3577 extern int preempt_dynamic_mode;
3578 extern int sched_dynamic_mode(const char *str);
3579 extern void sched_dynamic_update(int mode);
3580 #endif
3581 
3582 #ifdef CONFIG_SCHED_MM_CID
3583 
3584 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3585 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3586 
3587 extern raw_spinlock_t cid_lock;
3588 extern int use_cid_lock;
3589 
3590 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3591 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3592 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3593 extern void init_sched_mm_cid(struct task_struct *t);
3594 
3595 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3596 {
3597 	if (cid < 0)
3598 		return;
3599 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3600 }
3601 
3602 /*
3603  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3604  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3605  * be held to transition to other states.
3606  *
3607  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3608  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3609  */
3610 static inline void mm_cid_put_lazy(struct task_struct *t)
3611 {
3612 	struct mm_struct *mm = t->mm;
3613 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3614 	int cid;
3615 
3616 	lockdep_assert_irqs_disabled();
3617 	cid = __this_cpu_read(pcpu_cid->cid);
3618 	if (!mm_cid_is_lazy_put(cid) ||
3619 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3620 		return;
3621 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3622 }
3623 
3624 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3625 {
3626 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3627 	int cid, res;
3628 
3629 	lockdep_assert_irqs_disabled();
3630 	cid = __this_cpu_read(pcpu_cid->cid);
3631 	for (;;) {
3632 		if (mm_cid_is_unset(cid))
3633 			return MM_CID_UNSET;
3634 		/*
3635 		 * Attempt transition from valid or lazy-put to unset.
3636 		 */
3637 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3638 		if (res == cid)
3639 			break;
3640 		cid = res;
3641 	}
3642 	return cid;
3643 }
3644 
3645 static inline void mm_cid_put(struct mm_struct *mm)
3646 {
3647 	int cid;
3648 
3649 	lockdep_assert_irqs_disabled();
3650 	cid = mm_cid_pcpu_unset(mm);
3651 	if (cid == MM_CID_UNSET)
3652 		return;
3653 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3654 }
3655 
3656 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3657 {
3658 	struct cpumask *cidmask = mm_cidmask(mm);
3659 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3660 	int cid = __this_cpu_read(pcpu_cid->recent_cid);
3661 
3662 	/* Try to re-use recent cid. This improves cache locality. */
3663 	if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
3664 		return cid;
3665 	/*
3666 	 * Expand cid allocation if the maximum number of concurrency
3667 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3668 	 * and number of threads. Expanding cid allocation as much as
3669 	 * possible improves cache locality.
3670 	 */
3671 	cid = atomic_read(&mm->max_nr_cid);
3672 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3673 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3674 			continue;
3675 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3676 			return cid;
3677 	}
3678 	/*
3679 	 * Find the first available concurrency id.
3680 	 * Retry finding first zero bit if the mask is temporarily
3681 	 * filled. This only happens during concurrent remote-clear
3682 	 * which owns a cid without holding a rq lock.
3683 	 */
3684 	for (;;) {
3685 		cid = cpumask_first_zero(cidmask);
3686 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3687 			break;
3688 		cpu_relax();
3689 	}
3690 	if (cpumask_test_and_set_cpu(cid, cidmask))
3691 		return -1;
3692 
3693 	return cid;
3694 }
3695 
3696 /*
3697  * Save a snapshot of the current runqueue time of this cpu
3698  * with the per-cpu cid value, allowing to estimate how recently it was used.
3699  */
3700 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3701 {
3702 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3703 
3704 	lockdep_assert_rq_held(rq);
3705 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3706 }
3707 
3708 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3709 			       struct mm_struct *mm)
3710 {
3711 	int cid;
3712 
3713 	/*
3714 	 * All allocations (even those using the cid_lock) are lock-free. If
3715 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3716 	 * guarantee forward progress.
3717 	 */
3718 	if (!READ_ONCE(use_cid_lock)) {
3719 		cid = __mm_cid_try_get(t, mm);
3720 		if (cid >= 0)
3721 			goto end;
3722 		raw_spin_lock(&cid_lock);
3723 	} else {
3724 		raw_spin_lock(&cid_lock);
3725 		cid = __mm_cid_try_get(t, mm);
3726 		if (cid >= 0)
3727 			goto unlock;
3728 	}
3729 
3730 	/*
3731 	 * cid concurrently allocated. Retry while forcing following
3732 	 * allocations to use the cid_lock to ensure forward progress.
3733 	 */
3734 	WRITE_ONCE(use_cid_lock, 1);
3735 	/*
3736 	 * Set use_cid_lock before allocation. Only care about program order
3737 	 * because this is only required for forward progress.
3738 	 */
3739 	barrier();
3740 	/*
3741 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3742 	 * all newcoming allocations observe the use_cid_lock flag set.
3743 	 */
3744 	do {
3745 		cid = __mm_cid_try_get(t, mm);
3746 		cpu_relax();
3747 	} while (cid < 0);
3748 	/*
3749 	 * Allocate before clearing use_cid_lock. Only care about
3750 	 * program order because this is for forward progress.
3751 	 */
3752 	barrier();
3753 	WRITE_ONCE(use_cid_lock, 0);
3754 unlock:
3755 	raw_spin_unlock(&cid_lock);
3756 end:
3757 	mm_cid_snapshot_time(rq, mm);
3758 
3759 	return cid;
3760 }
3761 
3762 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3763 			     struct mm_struct *mm)
3764 {
3765 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3766 	struct cpumask *cpumask;
3767 	int cid;
3768 
3769 	lockdep_assert_rq_held(rq);
3770 	cpumask = mm_cidmask(mm);
3771 	cid = __this_cpu_read(pcpu_cid->cid);
3772 	if (mm_cid_is_valid(cid)) {
3773 		mm_cid_snapshot_time(rq, mm);
3774 		return cid;
3775 	}
3776 	if (mm_cid_is_lazy_put(cid)) {
3777 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3778 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3779 	}
3780 	cid = __mm_cid_get(rq, t, mm);
3781 	__this_cpu_write(pcpu_cid->cid, cid);
3782 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3783 
3784 	return cid;
3785 }
3786 
3787 static inline void switch_mm_cid(struct rq *rq,
3788 				 struct task_struct *prev,
3789 				 struct task_struct *next)
3790 {
3791 	/*
3792 	 * Provide a memory barrier between rq->curr store and load of
3793 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3794 	 *
3795 	 * Should be adapted if context_switch() is modified.
3796 	 */
3797 	if (!next->mm) {                                // to kernel
3798 		/*
3799 		 * user -> kernel transition does not guarantee a barrier, but
3800 		 * we can use the fact that it performs an atomic operation in
3801 		 * mmgrab().
3802 		 */
3803 		if (prev->mm)                           // from user
3804 			smp_mb__after_mmgrab();
3805 		/*
3806 		 * kernel -> kernel transition does not change rq->curr->mm
3807 		 * state. It stays NULL.
3808 		 */
3809 	} else {                                        // to user
3810 		/*
3811 		 * kernel -> user transition does not provide a barrier
3812 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3813 		 * Provide it here.
3814 		 */
3815 		if (!prev->mm) {                        // from kernel
3816 			smp_mb();
3817 		} else {				// from user
3818 			/*
3819 			 * user->user transition relies on an implicit
3820 			 * memory barrier in switch_mm() when
3821 			 * current->mm changes. If the architecture
3822 			 * switch_mm() does not have an implicit memory
3823 			 * barrier, it is emitted here.  If current->mm
3824 			 * is unchanged, no barrier is needed.
3825 			 */
3826 			smp_mb__after_switch_mm();
3827 		}
3828 	}
3829 	if (prev->mm_cid_active) {
3830 		mm_cid_snapshot_time(rq, prev->mm);
3831 		mm_cid_put_lazy(prev);
3832 		prev->mm_cid = -1;
3833 	}
3834 	if (next->mm_cid_active)
3835 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3836 }
3837 
3838 #else /* !CONFIG_SCHED_MM_CID: */
3839 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3840 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3841 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3842 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3843 static inline void init_sched_mm_cid(struct task_struct *t) { }
3844 #endif /* !CONFIG_SCHED_MM_CID */
3845 
3846 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3847 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3848 #ifdef CONFIG_SMP
3849 static inline
3850 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3851 {
3852 	lockdep_assert_rq_held(src_rq);
3853 	lockdep_assert_rq_held(dst_rq);
3854 
3855 	deactivate_task(src_rq, task, 0);
3856 	set_task_cpu(task, dst_rq->cpu);
3857 	activate_task(dst_rq, task, 0);
3858 }
3859 
3860 static inline
3861 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3862 {
3863 	if (!task_on_cpu(rq, p) &&
3864 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3865 		return true;
3866 
3867 	return false;
3868 }
3869 #endif
3870 
3871 #ifdef CONFIG_RT_MUTEXES
3872 
3873 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3874 {
3875 	if (pi_task)
3876 		prio = min(prio, pi_task->prio);
3877 
3878 	return prio;
3879 }
3880 
3881 static inline int rt_effective_prio(struct task_struct *p, int prio)
3882 {
3883 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3884 
3885 	return __rt_effective_prio(pi_task, prio);
3886 }
3887 
3888 #else /* !CONFIG_RT_MUTEXES: */
3889 
3890 static inline int rt_effective_prio(struct task_struct *p, int prio)
3891 {
3892 	return prio;
3893 }
3894 
3895 #endif /* !CONFIG_RT_MUTEXES */
3896 
3897 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3898 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3899 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3900 extern void set_load_weight(struct task_struct *p, bool update_load);
3901 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3902 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3903 
3904 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3905 				 const struct sched_class *prev_class);
3906 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3907 				const struct sched_class *prev_class,
3908 				int oldprio);
3909 
3910 #ifdef CONFIG_SMP
3911 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3912 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3913 #else
3914 
3915 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3916 {
3917 	return NULL;
3918 }
3919 
3920 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3921 {
3922 }
3923 
3924 #endif
3925 
3926 #ifdef CONFIG_SCHED_CLASS_EXT
3927 /*
3928  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3929  * and establish invariants.
3930  */
3931 struct sched_enq_and_set_ctx {
3932 	struct task_struct	*p;
3933 	int			queue_flags;
3934 	bool			queued;
3935 	bool			running;
3936 };
3937 
3938 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3939 			    struct sched_enq_and_set_ctx *ctx);
3940 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3941 
3942 #endif /* CONFIG_SCHED_CLASS_EXT */
3943 
3944 #include "ext.h"
3945 
3946 #endif /* _KERNEL_SCHED_SCHED_H */
3947