1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 73 #include <trace/events/power.h> 74 #include <trace/events/sched.h> 75 76 #include "../workqueue_internal.h" 77 78 struct rq; 79 struct cfs_rq; 80 struct rt_rq; 81 struct sched_group; 82 struct cpuidle_state; 83 84 #ifdef CONFIG_PARAVIRT 85 # include <asm/paravirt.h> 86 # include <asm/paravirt_api_clock.h> 87 #endif 88 89 #include <asm/barrier.h> 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 /* task_struct::on_rq states: */ 101 #define TASK_ON_RQ_QUEUED 1 102 #define TASK_ON_RQ_MIGRATING 2 103 104 extern __read_mostly int scheduler_running; 105 106 extern unsigned long calc_load_update; 107 extern atomic_long_t calc_load_tasks; 108 109 extern void calc_global_load_tick(struct rq *this_rq); 110 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 111 112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 113 114 extern int sysctl_sched_rt_period; 115 extern int sysctl_sched_rt_runtime; 116 extern int sched_rr_timeslice; 117 118 /* 119 * Asymmetric CPU capacity bits 120 */ 121 struct asym_cap_data { 122 struct list_head link; 123 struct rcu_head rcu; 124 unsigned long capacity; 125 unsigned long cpus[]; 126 }; 127 128 extern struct list_head asym_cap_list; 129 130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 131 132 /* 133 * Helpers for converting nanosecond timing to jiffy resolution 134 */ 135 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 136 137 /* 138 * Increase resolution of nice-level calculations for 64-bit architectures. 139 * The extra resolution improves shares distribution and load balancing of 140 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 141 * hierarchies, especially on larger systems. This is not a user-visible change 142 * and does not change the user-interface for setting shares/weights. 143 * 144 * We increase resolution only if we have enough bits to allow this increased 145 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 146 * are pretty high and the returns do not justify the increased costs. 147 * 148 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 149 * increase coverage and consistency always enable it on 64-bit platforms. 150 */ 151 #ifdef CONFIG_64BIT 152 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 153 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load_down(w) \ 155 ({ \ 156 unsigned long __w = (w); \ 157 \ 158 if (__w) \ 159 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 160 __w; \ 161 }) 162 #else 163 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 164 # define scale_load(w) (w) 165 # define scale_load_down(w) (w) 166 #endif 167 168 /* 169 * Task weight (visible to users) and its load (invisible to users) have 170 * independent resolution, but they should be well calibrated. We use 171 * scale_load() and scale_load_down(w) to convert between them. The 172 * following must be true: 173 * 174 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 175 * 176 */ 177 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 178 179 /* 180 * Single value that decides SCHED_DEADLINE internal math precision. 181 * 10 -> just above 1us 182 * 9 -> just above 0.5us 183 */ 184 #define DL_SCALE 10 185 186 /* 187 * Single value that denotes runtime == period, ie unlimited time. 188 */ 189 #define RUNTIME_INF ((u64)~0ULL) 190 191 static inline int idle_policy(int policy) 192 { 193 return policy == SCHED_IDLE; 194 } 195 196 static inline int normal_policy(int policy) 197 { 198 #ifdef CONFIG_SCHED_CLASS_EXT 199 if (policy == SCHED_EXT) 200 return true; 201 #endif 202 return policy == SCHED_NORMAL; 203 } 204 205 static inline int fair_policy(int policy) 206 { 207 return normal_policy(policy) || policy == SCHED_BATCH; 208 } 209 210 static inline int rt_policy(int policy) 211 { 212 return policy == SCHED_FIFO || policy == SCHED_RR; 213 } 214 215 static inline int dl_policy(int policy) 216 { 217 return policy == SCHED_DEADLINE; 218 } 219 220 static inline bool valid_policy(int policy) 221 { 222 return idle_policy(policy) || fair_policy(policy) || 223 rt_policy(policy) || dl_policy(policy); 224 } 225 226 static inline int task_has_idle_policy(struct task_struct *p) 227 { 228 return idle_policy(p->policy); 229 } 230 231 static inline int task_has_rt_policy(struct task_struct *p) 232 { 233 return rt_policy(p->policy); 234 } 235 236 static inline int task_has_dl_policy(struct task_struct *p) 237 { 238 return dl_policy(p->policy); 239 } 240 241 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 242 243 static inline void update_avg(u64 *avg, u64 sample) 244 { 245 s64 diff = sample - *avg; 246 247 *avg += diff / 8; 248 } 249 250 /* 251 * Shifting a value by an exponent greater *or equal* to the size of said value 252 * is UB; cap at size-1. 253 */ 254 #define shr_bound(val, shift) \ 255 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 256 257 /* 258 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 259 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 260 * maps pretty well onto the shares value used by scheduler and the round-trip 261 * conversions preserve the original value over the entire range. 262 */ 263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 264 { 265 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 266 } 267 268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 269 { 270 return clamp_t(unsigned long, 271 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 272 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 273 } 274 275 /* 276 * !! For sched_setattr_nocheck() (kernel) only !! 277 * 278 * This is actually gross. :( 279 * 280 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 281 * tasks, but still be able to sleep. We need this on platforms that cannot 282 * atomically change clock frequency. Remove once fast switching will be 283 * available on such platforms. 284 * 285 * SUGOV stands for SchedUtil GOVernor. 286 */ 287 #define SCHED_FLAG_SUGOV 0x10000000 288 289 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 290 291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 292 { 293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 294 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 295 #else 296 return false; 297 #endif 298 } 299 300 /* 301 * Tells if entity @a should preempt entity @b. 302 */ 303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 304 const struct sched_dl_entity *b) 305 { 306 return dl_entity_is_special(a) || 307 dl_time_before(a->deadline, b->deadline); 308 } 309 310 /* 311 * This is the priority-queue data structure of the RT scheduling class: 312 */ 313 struct rt_prio_array { 314 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 315 struct list_head queue[MAX_RT_PRIO]; 316 }; 317 318 struct rt_bandwidth { 319 /* nests inside the rq lock: */ 320 raw_spinlock_t rt_runtime_lock; 321 ktime_t rt_period; 322 u64 rt_runtime; 323 struct hrtimer rt_period_timer; 324 unsigned int rt_period_active; 325 }; 326 327 static inline int dl_bandwidth_enabled(void) 328 { 329 return sysctl_sched_rt_runtime >= 0; 330 } 331 332 /* 333 * To keep the bandwidth of -deadline tasks under control 334 * we need some place where: 335 * - store the maximum -deadline bandwidth of each cpu; 336 * - cache the fraction of bandwidth that is currently allocated in 337 * each root domain; 338 * 339 * This is all done in the data structure below. It is similar to the 340 * one used for RT-throttling (rt_bandwidth), with the main difference 341 * that, since here we are only interested in admission control, we 342 * do not decrease any runtime while the group "executes", neither we 343 * need a timer to replenish it. 344 * 345 * With respect to SMP, bandwidth is given on a per root domain basis, 346 * meaning that: 347 * - bw (< 100%) is the deadline bandwidth of each CPU; 348 * - total_bw is the currently allocated bandwidth in each root domain; 349 */ 350 struct dl_bw { 351 raw_spinlock_t lock; 352 u64 bw; 353 u64 total_bw; 354 }; 355 356 extern void init_dl_bw(struct dl_bw *dl_b); 357 extern int sched_dl_global_validate(void); 358 extern void sched_dl_do_global(void); 359 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 362 extern bool __checkparam_dl(const struct sched_attr *attr); 363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 364 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 365 extern int dl_bw_check_overflow(int cpu); 366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 367 /* 368 * SCHED_DEADLINE supports servers (nested scheduling) with the following 369 * interface: 370 * 371 * dl_se::rq -- runqueue we belong to. 372 * 373 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 374 * server when it runs out of tasks to run. 375 * 376 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 377 * returns NULL. 378 * 379 * dl_server_update() -- called from update_curr_common(), propagates runtime 380 * to the server. 381 * 382 * dl_server_start() 383 * dl_server_stop() -- start/stop the server when it has (no) tasks. 384 * 385 * dl_server_init() -- initializes the server. 386 */ 387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 388 extern void dl_server_start(struct sched_dl_entity *dl_se); 389 extern void dl_server_stop(struct sched_dl_entity *dl_se); 390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 391 dl_server_has_tasks_f has_tasks, 392 dl_server_pick_f pick_task); 393 394 extern void dl_server_update_idle_time(struct rq *rq, 395 struct task_struct *p); 396 extern void fair_server_init(struct rq *rq); 397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 399 u64 runtime, u64 period, bool init); 400 401 #ifdef CONFIG_CGROUP_SCHED 402 403 extern struct list_head task_groups; 404 405 struct cfs_bandwidth { 406 #ifdef CONFIG_CFS_BANDWIDTH 407 raw_spinlock_t lock; 408 ktime_t period; 409 u64 quota; 410 u64 runtime; 411 u64 burst; 412 u64 runtime_snap; 413 s64 hierarchical_quota; 414 415 u8 idle; 416 u8 period_active; 417 u8 slack_started; 418 struct hrtimer period_timer; 419 struct hrtimer slack_timer; 420 struct list_head throttled_cfs_rq; 421 422 /* Statistics: */ 423 int nr_periods; 424 int nr_throttled; 425 int nr_burst; 426 u64 throttled_time; 427 u64 burst_time; 428 #endif 429 }; 430 431 /* Task group related information */ 432 struct task_group { 433 struct cgroup_subsys_state css; 434 435 #ifdef CONFIG_GROUP_SCHED_WEIGHT 436 /* A positive value indicates that this is a SCHED_IDLE group. */ 437 int idle; 438 #endif 439 440 #ifdef CONFIG_FAIR_GROUP_SCHED 441 /* schedulable entities of this group on each CPU */ 442 struct sched_entity **se; 443 /* runqueue "owned" by this group on each CPU */ 444 struct cfs_rq **cfs_rq; 445 unsigned long shares; 446 #ifdef CONFIG_SMP 447 /* 448 * load_avg can be heavily contended at clock tick time, so put 449 * it in its own cache-line separated from the fields above which 450 * will also be accessed at each tick. 451 */ 452 atomic_long_t load_avg ____cacheline_aligned; 453 #endif 454 #endif 455 456 #ifdef CONFIG_RT_GROUP_SCHED 457 struct sched_rt_entity **rt_se; 458 struct rt_rq **rt_rq; 459 460 struct rt_bandwidth rt_bandwidth; 461 #endif 462 463 #ifdef CONFIG_EXT_GROUP_SCHED 464 u32 scx_flags; /* SCX_TG_* */ 465 u32 scx_weight; 466 #endif 467 468 struct rcu_head rcu; 469 struct list_head list; 470 471 struct task_group *parent; 472 struct list_head siblings; 473 struct list_head children; 474 475 #ifdef CONFIG_SCHED_AUTOGROUP 476 struct autogroup *autogroup; 477 #endif 478 479 struct cfs_bandwidth cfs_bandwidth; 480 481 #ifdef CONFIG_UCLAMP_TASK_GROUP 482 /* The two decimal precision [%] value requested from user-space */ 483 unsigned int uclamp_pct[UCLAMP_CNT]; 484 /* Clamp values requested for a task group */ 485 struct uclamp_se uclamp_req[UCLAMP_CNT]; 486 /* Effective clamp values used for a task group */ 487 struct uclamp_se uclamp[UCLAMP_CNT]; 488 #endif 489 490 }; 491 492 #ifdef CONFIG_GROUP_SCHED_WEIGHT 493 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 494 495 /* 496 * A weight of 0 or 1 can cause arithmetics problems. 497 * A weight of a cfs_rq is the sum of weights of which entities 498 * are queued on this cfs_rq, so a weight of a entity should not be 499 * too large, so as the shares value of a task group. 500 * (The default weight is 1024 - so there's no practical 501 * limitation from this.) 502 */ 503 #define MIN_SHARES (1UL << 1) 504 #define MAX_SHARES (1UL << 18) 505 #endif 506 507 typedef int (*tg_visitor)(struct task_group *, void *); 508 509 extern int walk_tg_tree_from(struct task_group *from, 510 tg_visitor down, tg_visitor up, void *data); 511 512 /* 513 * Iterate the full tree, calling @down when first entering a node and @up when 514 * leaving it for the final time. 515 * 516 * Caller must hold rcu_lock or sufficient equivalent. 517 */ 518 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 519 { 520 return walk_tg_tree_from(&root_task_group, down, up, data); 521 } 522 523 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 524 { 525 return css ? container_of(css, struct task_group, css) : NULL; 526 } 527 528 extern int tg_nop(struct task_group *tg, void *data); 529 530 #ifdef CONFIG_FAIR_GROUP_SCHED 531 extern void free_fair_sched_group(struct task_group *tg); 532 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 533 extern void online_fair_sched_group(struct task_group *tg); 534 extern void unregister_fair_sched_group(struct task_group *tg); 535 #else 536 static inline void free_fair_sched_group(struct task_group *tg) { } 537 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 538 { 539 return 1; 540 } 541 static inline void online_fair_sched_group(struct task_group *tg) { } 542 static inline void unregister_fair_sched_group(struct task_group *tg) { } 543 #endif 544 545 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 546 struct sched_entity *se, int cpu, 547 struct sched_entity *parent); 548 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 549 550 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 551 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 552 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 553 extern bool cfs_task_bw_constrained(struct task_struct *p); 554 555 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 556 struct sched_rt_entity *rt_se, int cpu, 557 struct sched_rt_entity *parent); 558 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 559 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 560 extern long sched_group_rt_runtime(struct task_group *tg); 561 extern long sched_group_rt_period(struct task_group *tg); 562 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 563 564 extern struct task_group *sched_create_group(struct task_group *parent); 565 extern void sched_online_group(struct task_group *tg, 566 struct task_group *parent); 567 extern void sched_destroy_group(struct task_group *tg); 568 extern void sched_release_group(struct task_group *tg); 569 570 extern void sched_move_task(struct task_struct *tsk); 571 572 #ifdef CONFIG_FAIR_GROUP_SCHED 573 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 574 575 extern int sched_group_set_idle(struct task_group *tg, long idle); 576 577 #ifdef CONFIG_SMP 578 extern void set_task_rq_fair(struct sched_entity *se, 579 struct cfs_rq *prev, struct cfs_rq *next); 580 #else /* !CONFIG_SMP */ 581 static inline void set_task_rq_fair(struct sched_entity *se, 582 struct cfs_rq *prev, struct cfs_rq *next) { } 583 #endif /* CONFIG_SMP */ 584 #else /* !CONFIG_FAIR_GROUP_SCHED */ 585 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 586 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 587 #endif /* CONFIG_FAIR_GROUP_SCHED */ 588 589 #else /* CONFIG_CGROUP_SCHED */ 590 591 struct cfs_bandwidth { }; 592 593 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 594 595 #endif /* CONFIG_CGROUP_SCHED */ 596 597 extern void unregister_rt_sched_group(struct task_group *tg); 598 extern void free_rt_sched_group(struct task_group *tg); 599 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 600 601 /* 602 * u64_u32_load/u64_u32_store 603 * 604 * Use a copy of a u64 value to protect against data race. This is only 605 * applicable for 32-bits architectures. 606 */ 607 #ifdef CONFIG_64BIT 608 # define u64_u32_load_copy(var, copy) var 609 # define u64_u32_store_copy(var, copy, val) (var = val) 610 #else 611 # define u64_u32_load_copy(var, copy) \ 612 ({ \ 613 u64 __val, __val_copy; \ 614 do { \ 615 __val_copy = copy; \ 616 /* \ 617 * paired with u64_u32_store_copy(), ordering access \ 618 * to var and copy. \ 619 */ \ 620 smp_rmb(); \ 621 __val = var; \ 622 } while (__val != __val_copy); \ 623 __val; \ 624 }) 625 # define u64_u32_store_copy(var, copy, val) \ 626 do { \ 627 typeof(val) __val = (val); \ 628 var = __val; \ 629 /* \ 630 * paired with u64_u32_load_copy(), ordering access to var and \ 631 * copy. \ 632 */ \ 633 smp_wmb(); \ 634 copy = __val; \ 635 } while (0) 636 #endif 637 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 638 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 639 640 struct balance_callback { 641 struct balance_callback *next; 642 void (*func)(struct rq *rq); 643 }; 644 645 /* CFS-related fields in a runqueue */ 646 struct cfs_rq { 647 struct load_weight load; 648 unsigned int nr_running; 649 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 650 unsigned int idle_nr_running; /* SCHED_IDLE */ 651 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 652 653 s64 avg_vruntime; 654 u64 avg_load; 655 656 u64 min_vruntime; 657 #ifdef CONFIG_SCHED_CORE 658 unsigned int forceidle_seq; 659 u64 min_vruntime_fi; 660 #endif 661 662 struct rb_root_cached tasks_timeline; 663 664 /* 665 * 'curr' points to currently running entity on this cfs_rq. 666 * It is set to NULL otherwise (i.e when none are currently running). 667 */ 668 struct sched_entity *curr; 669 struct sched_entity *next; 670 671 #ifdef CONFIG_SMP 672 /* 673 * CFS load tracking 674 */ 675 struct sched_avg avg; 676 #ifndef CONFIG_64BIT 677 u64 last_update_time_copy; 678 #endif 679 struct { 680 raw_spinlock_t lock ____cacheline_aligned; 681 int nr; 682 unsigned long load_avg; 683 unsigned long util_avg; 684 unsigned long runnable_avg; 685 } removed; 686 687 #ifdef CONFIG_FAIR_GROUP_SCHED 688 u64 last_update_tg_load_avg; 689 unsigned long tg_load_avg_contrib; 690 long propagate; 691 long prop_runnable_sum; 692 693 /* 694 * h_load = weight * f(tg) 695 * 696 * Where f(tg) is the recursive weight fraction assigned to 697 * this group. 698 */ 699 unsigned long h_load; 700 u64 last_h_load_update; 701 struct sched_entity *h_load_next; 702 #endif /* CONFIG_FAIR_GROUP_SCHED */ 703 #endif /* CONFIG_SMP */ 704 705 #ifdef CONFIG_FAIR_GROUP_SCHED 706 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 707 708 /* 709 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 710 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 711 * (like users, containers etc.) 712 * 713 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 714 * This list is used during load balance. 715 */ 716 int on_list; 717 struct list_head leaf_cfs_rq_list; 718 struct task_group *tg; /* group that "owns" this runqueue */ 719 720 /* Locally cached copy of our task_group's idle value */ 721 int idle; 722 723 #ifdef CONFIG_CFS_BANDWIDTH 724 int runtime_enabled; 725 s64 runtime_remaining; 726 727 u64 throttled_pelt_idle; 728 #ifndef CONFIG_64BIT 729 u64 throttled_pelt_idle_copy; 730 #endif 731 u64 throttled_clock; 732 u64 throttled_clock_pelt; 733 u64 throttled_clock_pelt_time; 734 u64 throttled_clock_self; 735 u64 throttled_clock_self_time; 736 int throttled; 737 int throttle_count; 738 struct list_head throttled_list; 739 struct list_head throttled_csd_list; 740 #endif /* CONFIG_CFS_BANDWIDTH */ 741 #endif /* CONFIG_FAIR_GROUP_SCHED */ 742 }; 743 744 #ifdef CONFIG_SCHED_CLASS_EXT 745 /* scx_rq->flags, protected by the rq lock */ 746 enum scx_rq_flags { 747 /* 748 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 749 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 750 * only while the BPF scheduler considers the CPU to be online. 751 */ 752 SCX_RQ_ONLINE = 1 << 0, 753 SCX_RQ_CAN_STOP_TICK = 1 << 1, 754 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 755 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 756 SCX_RQ_BYPASSING = 1 << 4, 757 758 SCX_RQ_IN_WAKEUP = 1 << 16, 759 SCX_RQ_IN_BALANCE = 1 << 17, 760 }; 761 762 struct scx_rq { 763 struct scx_dispatch_q local_dsq; 764 struct list_head runnable_list; /* runnable tasks on this rq */ 765 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 766 unsigned long ops_qseq; 767 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 768 u32 nr_running; 769 u32 flags; 770 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 771 bool cpu_released; 772 cpumask_var_t cpus_to_kick; 773 cpumask_var_t cpus_to_kick_if_idle; 774 cpumask_var_t cpus_to_preempt; 775 cpumask_var_t cpus_to_wait; 776 unsigned long pnt_seq; 777 struct balance_callback deferred_bal_cb; 778 struct irq_work deferred_irq_work; 779 struct irq_work kick_cpus_irq_work; 780 }; 781 #endif /* CONFIG_SCHED_CLASS_EXT */ 782 783 static inline int rt_bandwidth_enabled(void) 784 { 785 return sysctl_sched_rt_runtime >= 0; 786 } 787 788 /* RT IPI pull logic requires IRQ_WORK */ 789 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 790 # define HAVE_RT_PUSH_IPI 791 #endif 792 793 /* Real-Time classes' related field in a runqueue: */ 794 struct rt_rq { 795 struct rt_prio_array active; 796 unsigned int rt_nr_running; 797 unsigned int rr_nr_running; 798 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 799 struct { 800 int curr; /* highest queued rt task prio */ 801 #ifdef CONFIG_SMP 802 int next; /* next highest */ 803 #endif 804 } highest_prio; 805 #endif 806 #ifdef CONFIG_SMP 807 bool overloaded; 808 struct plist_head pushable_tasks; 809 810 #endif /* CONFIG_SMP */ 811 int rt_queued; 812 813 #ifdef CONFIG_RT_GROUP_SCHED 814 int rt_throttled; 815 u64 rt_time; 816 u64 rt_runtime; 817 /* Nests inside the rq lock: */ 818 raw_spinlock_t rt_runtime_lock; 819 820 unsigned int rt_nr_boosted; 821 822 struct rq *rq; 823 struct task_group *tg; 824 #endif 825 }; 826 827 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 828 { 829 return rt_rq->rt_queued && rt_rq->rt_nr_running; 830 } 831 832 /* Deadline class' related fields in a runqueue */ 833 struct dl_rq { 834 /* runqueue is an rbtree, ordered by deadline */ 835 struct rb_root_cached root; 836 837 unsigned int dl_nr_running; 838 839 #ifdef CONFIG_SMP 840 /* 841 * Deadline values of the currently executing and the 842 * earliest ready task on this rq. Caching these facilitates 843 * the decision whether or not a ready but not running task 844 * should migrate somewhere else. 845 */ 846 struct { 847 u64 curr; 848 u64 next; 849 } earliest_dl; 850 851 bool overloaded; 852 853 /* 854 * Tasks on this rq that can be pushed away. They are kept in 855 * an rb-tree, ordered by tasks' deadlines, with caching 856 * of the leftmost (earliest deadline) element. 857 */ 858 struct rb_root_cached pushable_dl_tasks_root; 859 #else 860 struct dl_bw dl_bw; 861 #endif 862 /* 863 * "Active utilization" for this runqueue: increased when a 864 * task wakes up (becomes TASK_RUNNING) and decreased when a 865 * task blocks 866 */ 867 u64 running_bw; 868 869 /* 870 * Utilization of the tasks "assigned" to this runqueue (including 871 * the tasks that are in runqueue and the tasks that executed on this 872 * CPU and blocked). Increased when a task moves to this runqueue, and 873 * decreased when the task moves away (migrates, changes scheduling 874 * policy, or terminates). 875 * This is needed to compute the "inactive utilization" for the 876 * runqueue (inactive utilization = this_bw - running_bw). 877 */ 878 u64 this_bw; 879 u64 extra_bw; 880 881 /* 882 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 883 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 884 */ 885 u64 max_bw; 886 887 /* 888 * Inverse of the fraction of CPU utilization that can be reclaimed 889 * by the GRUB algorithm. 890 */ 891 u64 bw_ratio; 892 }; 893 894 #ifdef CONFIG_FAIR_GROUP_SCHED 895 896 /* An entity is a task if it doesn't "own" a runqueue */ 897 #define entity_is_task(se) (!se->my_q) 898 899 static inline void se_update_runnable(struct sched_entity *se) 900 { 901 if (!entity_is_task(se)) 902 se->runnable_weight = se->my_q->h_nr_running; 903 } 904 905 static inline long se_runnable(struct sched_entity *se) 906 { 907 if (se->sched_delayed) 908 return false; 909 910 if (entity_is_task(se)) 911 return !!se->on_rq; 912 else 913 return se->runnable_weight; 914 } 915 916 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 917 918 #define entity_is_task(se) 1 919 920 static inline void se_update_runnable(struct sched_entity *se) { } 921 922 static inline long se_runnable(struct sched_entity *se) 923 { 924 if (se->sched_delayed) 925 return false; 926 927 return !!se->on_rq; 928 } 929 930 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 931 932 #ifdef CONFIG_SMP 933 /* 934 * XXX we want to get rid of these helpers and use the full load resolution. 935 */ 936 static inline long se_weight(struct sched_entity *se) 937 { 938 return scale_load_down(se->load.weight); 939 } 940 941 942 static inline bool sched_asym_prefer(int a, int b) 943 { 944 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 945 } 946 947 struct perf_domain { 948 struct em_perf_domain *em_pd; 949 struct perf_domain *next; 950 struct rcu_head rcu; 951 }; 952 953 /* 954 * We add the notion of a root-domain which will be used to define per-domain 955 * variables. Each exclusive cpuset essentially defines an island domain by 956 * fully partitioning the member CPUs from any other cpuset. Whenever a new 957 * exclusive cpuset is created, we also create and attach a new root-domain 958 * object. 959 * 960 */ 961 struct root_domain { 962 atomic_t refcount; 963 atomic_t rto_count; 964 struct rcu_head rcu; 965 cpumask_var_t span; 966 cpumask_var_t online; 967 968 /* 969 * Indicate pullable load on at least one CPU, e.g: 970 * - More than one runnable task 971 * - Running task is misfit 972 */ 973 bool overloaded; 974 975 /* Indicate one or more CPUs over-utilized (tipping point) */ 976 bool overutilized; 977 978 /* 979 * The bit corresponding to a CPU gets set here if such CPU has more 980 * than one runnable -deadline task (as it is below for RT tasks). 981 */ 982 cpumask_var_t dlo_mask; 983 atomic_t dlo_count; 984 struct dl_bw dl_bw; 985 struct cpudl cpudl; 986 987 /* 988 * Indicate whether a root_domain's dl_bw has been checked or 989 * updated. It's monotonously increasing value. 990 * 991 * Also, some corner cases, like 'wrap around' is dangerous, but given 992 * that u64 is 'big enough'. So that shouldn't be a concern. 993 */ 994 u64 visit_gen; 995 996 #ifdef HAVE_RT_PUSH_IPI 997 /* 998 * For IPI pull requests, loop across the rto_mask. 999 */ 1000 struct irq_work rto_push_work; 1001 raw_spinlock_t rto_lock; 1002 /* These are only updated and read within rto_lock */ 1003 int rto_loop; 1004 int rto_cpu; 1005 /* These atomics are updated outside of a lock */ 1006 atomic_t rto_loop_next; 1007 atomic_t rto_loop_start; 1008 #endif 1009 /* 1010 * The "RT overload" flag: it gets set if a CPU has more than 1011 * one runnable RT task. 1012 */ 1013 cpumask_var_t rto_mask; 1014 struct cpupri cpupri; 1015 1016 /* 1017 * NULL-terminated list of performance domains intersecting with the 1018 * CPUs of the rd. Protected by RCU. 1019 */ 1020 struct perf_domain __rcu *pd; 1021 }; 1022 1023 extern void init_defrootdomain(void); 1024 extern int sched_init_domains(const struct cpumask *cpu_map); 1025 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1026 extern void sched_get_rd(struct root_domain *rd); 1027 extern void sched_put_rd(struct root_domain *rd); 1028 1029 static inline int get_rd_overloaded(struct root_domain *rd) 1030 { 1031 return READ_ONCE(rd->overloaded); 1032 } 1033 1034 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1035 { 1036 if (get_rd_overloaded(rd) != status) 1037 WRITE_ONCE(rd->overloaded, status); 1038 } 1039 1040 #ifdef HAVE_RT_PUSH_IPI 1041 extern void rto_push_irq_work_func(struct irq_work *work); 1042 #endif 1043 #endif /* CONFIG_SMP */ 1044 1045 #ifdef CONFIG_UCLAMP_TASK 1046 /* 1047 * struct uclamp_bucket - Utilization clamp bucket 1048 * @value: utilization clamp value for tasks on this clamp bucket 1049 * @tasks: number of RUNNABLE tasks on this clamp bucket 1050 * 1051 * Keep track of how many tasks are RUNNABLE for a given utilization 1052 * clamp value. 1053 */ 1054 struct uclamp_bucket { 1055 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1056 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1057 }; 1058 1059 /* 1060 * struct uclamp_rq - rq's utilization clamp 1061 * @value: currently active clamp values for a rq 1062 * @bucket: utilization clamp buckets affecting a rq 1063 * 1064 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1065 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1066 * (or actually running) with that value. 1067 * 1068 * There are up to UCLAMP_CNT possible different clamp values, currently there 1069 * are only two: minimum utilization and maximum utilization. 1070 * 1071 * All utilization clamping values are MAX aggregated, since: 1072 * - for util_min: we want to run the CPU at least at the max of the minimum 1073 * utilization required by its currently RUNNABLE tasks. 1074 * - for util_max: we want to allow the CPU to run up to the max of the 1075 * maximum utilization allowed by its currently RUNNABLE tasks. 1076 * 1077 * Since on each system we expect only a limited number of different 1078 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1079 * the metrics required to compute all the per-rq utilization clamp values. 1080 */ 1081 struct uclamp_rq { 1082 unsigned int value; 1083 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1084 }; 1085 1086 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1087 #endif /* CONFIG_UCLAMP_TASK */ 1088 1089 /* 1090 * This is the main, per-CPU runqueue data structure. 1091 * 1092 * Locking rule: those places that want to lock multiple runqueues 1093 * (such as the load balancing or the thread migration code), lock 1094 * acquire operations must be ordered by ascending &runqueue. 1095 */ 1096 struct rq { 1097 /* runqueue lock: */ 1098 raw_spinlock_t __lock; 1099 1100 unsigned int nr_running; 1101 #ifdef CONFIG_NUMA_BALANCING 1102 unsigned int nr_numa_running; 1103 unsigned int nr_preferred_running; 1104 unsigned int numa_migrate_on; 1105 #endif 1106 #ifdef CONFIG_NO_HZ_COMMON 1107 #ifdef CONFIG_SMP 1108 unsigned long last_blocked_load_update_tick; 1109 unsigned int has_blocked_load; 1110 call_single_data_t nohz_csd; 1111 #endif /* CONFIG_SMP */ 1112 unsigned int nohz_tick_stopped; 1113 atomic_t nohz_flags; 1114 #endif /* CONFIG_NO_HZ_COMMON */ 1115 1116 #ifdef CONFIG_SMP 1117 unsigned int ttwu_pending; 1118 #endif 1119 u64 nr_switches; 1120 1121 #ifdef CONFIG_UCLAMP_TASK 1122 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1123 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1124 unsigned int uclamp_flags; 1125 #define UCLAMP_FLAG_IDLE 0x01 1126 #endif 1127 1128 struct cfs_rq cfs; 1129 struct rt_rq rt; 1130 struct dl_rq dl; 1131 #ifdef CONFIG_SCHED_CLASS_EXT 1132 struct scx_rq scx; 1133 #endif 1134 1135 struct sched_dl_entity fair_server; 1136 1137 #ifdef CONFIG_FAIR_GROUP_SCHED 1138 /* list of leaf cfs_rq on this CPU: */ 1139 struct list_head leaf_cfs_rq_list; 1140 struct list_head *tmp_alone_branch; 1141 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1142 1143 /* 1144 * This is part of a global counter where only the total sum 1145 * over all CPUs matters. A task can increase this counter on 1146 * one CPU and if it got migrated afterwards it may decrease 1147 * it on another CPU. Always updated under the runqueue lock: 1148 */ 1149 unsigned int nr_uninterruptible; 1150 1151 union { 1152 struct task_struct __rcu *donor; /* Scheduler context */ 1153 struct task_struct __rcu *curr; /* Execution context */ 1154 }; 1155 struct sched_dl_entity *dl_server; 1156 struct task_struct *idle; 1157 struct task_struct *stop; 1158 unsigned long next_balance; 1159 struct mm_struct *prev_mm; 1160 1161 unsigned int clock_update_flags; 1162 u64 clock; 1163 /* Ensure that all clocks are in the same cache line */ 1164 u64 clock_task ____cacheline_aligned; 1165 u64 clock_pelt; 1166 unsigned long lost_idle_time; 1167 u64 clock_pelt_idle; 1168 u64 clock_idle; 1169 #ifndef CONFIG_64BIT 1170 u64 clock_pelt_idle_copy; 1171 u64 clock_idle_copy; 1172 #endif 1173 1174 atomic_t nr_iowait; 1175 1176 #ifdef CONFIG_SCHED_DEBUG 1177 u64 last_seen_need_resched_ns; 1178 int ticks_without_resched; 1179 #endif 1180 1181 #ifdef CONFIG_MEMBARRIER 1182 int membarrier_state; 1183 #endif 1184 1185 #ifdef CONFIG_SMP 1186 struct root_domain *rd; 1187 struct sched_domain __rcu *sd; 1188 1189 unsigned long cpu_capacity; 1190 1191 struct balance_callback *balance_callback; 1192 1193 unsigned char nohz_idle_balance; 1194 unsigned char idle_balance; 1195 1196 unsigned long misfit_task_load; 1197 1198 /* For active balancing */ 1199 int active_balance; 1200 int push_cpu; 1201 struct cpu_stop_work active_balance_work; 1202 1203 /* CPU of this runqueue: */ 1204 int cpu; 1205 int online; 1206 1207 struct list_head cfs_tasks; 1208 1209 struct sched_avg avg_rt; 1210 struct sched_avg avg_dl; 1211 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1212 struct sched_avg avg_irq; 1213 #endif 1214 #ifdef CONFIG_SCHED_HW_PRESSURE 1215 struct sched_avg avg_hw; 1216 #endif 1217 u64 idle_stamp; 1218 u64 avg_idle; 1219 1220 /* This is used to determine avg_idle's max value */ 1221 u64 max_idle_balance_cost; 1222 1223 #ifdef CONFIG_HOTPLUG_CPU 1224 struct rcuwait hotplug_wait; 1225 #endif 1226 #endif /* CONFIG_SMP */ 1227 1228 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1229 u64 prev_irq_time; 1230 u64 psi_irq_time; 1231 #endif 1232 #ifdef CONFIG_PARAVIRT 1233 u64 prev_steal_time; 1234 #endif 1235 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1236 u64 prev_steal_time_rq; 1237 #endif 1238 1239 /* calc_load related fields */ 1240 unsigned long calc_load_update; 1241 long calc_load_active; 1242 1243 #ifdef CONFIG_SCHED_HRTICK 1244 #ifdef CONFIG_SMP 1245 call_single_data_t hrtick_csd; 1246 #endif 1247 struct hrtimer hrtick_timer; 1248 ktime_t hrtick_time; 1249 #endif 1250 1251 #ifdef CONFIG_SCHEDSTATS 1252 /* latency stats */ 1253 struct sched_info rq_sched_info; 1254 unsigned long long rq_cpu_time; 1255 1256 /* sys_sched_yield() stats */ 1257 unsigned int yld_count; 1258 1259 /* schedule() stats */ 1260 unsigned int sched_count; 1261 unsigned int sched_goidle; 1262 1263 /* try_to_wake_up() stats */ 1264 unsigned int ttwu_count; 1265 unsigned int ttwu_local; 1266 #endif 1267 1268 #ifdef CONFIG_CPU_IDLE 1269 /* Must be inspected within a RCU lock section */ 1270 struct cpuidle_state *idle_state; 1271 #endif 1272 1273 #ifdef CONFIG_SMP 1274 unsigned int nr_pinned; 1275 #endif 1276 unsigned int push_busy; 1277 struct cpu_stop_work push_work; 1278 1279 #ifdef CONFIG_SCHED_CORE 1280 /* per rq */ 1281 struct rq *core; 1282 struct task_struct *core_pick; 1283 struct sched_dl_entity *core_dl_server; 1284 unsigned int core_enabled; 1285 unsigned int core_sched_seq; 1286 struct rb_root core_tree; 1287 1288 /* shared state -- careful with sched_core_cpu_deactivate() */ 1289 unsigned int core_task_seq; 1290 unsigned int core_pick_seq; 1291 unsigned long core_cookie; 1292 unsigned int core_forceidle_count; 1293 unsigned int core_forceidle_seq; 1294 unsigned int core_forceidle_occupation; 1295 u64 core_forceidle_start; 1296 #endif 1297 1298 /* Scratch cpumask to be temporarily used under rq_lock */ 1299 cpumask_var_t scratch_mask; 1300 1301 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1302 call_single_data_t cfsb_csd; 1303 struct list_head cfsb_csd_list; 1304 #endif 1305 }; 1306 1307 #ifdef CONFIG_FAIR_GROUP_SCHED 1308 1309 /* CPU runqueue to which this cfs_rq is attached */ 1310 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1311 { 1312 return cfs_rq->rq; 1313 } 1314 1315 #else 1316 1317 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1318 { 1319 return container_of(cfs_rq, struct rq, cfs); 1320 } 1321 #endif 1322 1323 static inline int cpu_of(struct rq *rq) 1324 { 1325 #ifdef CONFIG_SMP 1326 return rq->cpu; 1327 #else 1328 return 0; 1329 #endif 1330 } 1331 1332 #define MDF_PUSH 0x01 1333 1334 static inline bool is_migration_disabled(struct task_struct *p) 1335 { 1336 #ifdef CONFIG_SMP 1337 return p->migration_disabled; 1338 #else 1339 return false; 1340 #endif 1341 } 1342 1343 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1344 1345 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1346 #define this_rq() this_cpu_ptr(&runqueues) 1347 #define task_rq(p) cpu_rq(task_cpu(p)) 1348 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1349 #define raw_rq() raw_cpu_ptr(&runqueues) 1350 1351 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1352 { 1353 /* Do nothing */ 1354 } 1355 1356 #ifdef CONFIG_SCHED_CORE 1357 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1358 1359 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1360 1361 static inline bool sched_core_enabled(struct rq *rq) 1362 { 1363 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1364 } 1365 1366 static inline bool sched_core_disabled(void) 1367 { 1368 return !static_branch_unlikely(&__sched_core_enabled); 1369 } 1370 1371 /* 1372 * Be careful with this function; not for general use. The return value isn't 1373 * stable unless you actually hold a relevant rq->__lock. 1374 */ 1375 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1376 { 1377 if (sched_core_enabled(rq)) 1378 return &rq->core->__lock; 1379 1380 return &rq->__lock; 1381 } 1382 1383 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1384 { 1385 if (rq->core_enabled) 1386 return &rq->core->__lock; 1387 1388 return &rq->__lock; 1389 } 1390 1391 extern bool 1392 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1393 1394 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1395 1396 /* 1397 * Helpers to check if the CPU's core cookie matches with the task's cookie 1398 * when core scheduling is enabled. 1399 * A special case is that the task's cookie always matches with CPU's core 1400 * cookie if the CPU is in an idle core. 1401 */ 1402 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1403 { 1404 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1405 if (!sched_core_enabled(rq)) 1406 return true; 1407 1408 return rq->core->core_cookie == p->core_cookie; 1409 } 1410 1411 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1412 { 1413 bool idle_core = true; 1414 int cpu; 1415 1416 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1417 if (!sched_core_enabled(rq)) 1418 return true; 1419 1420 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1421 if (!available_idle_cpu(cpu)) { 1422 idle_core = false; 1423 break; 1424 } 1425 } 1426 1427 /* 1428 * A CPU in an idle core is always the best choice for tasks with 1429 * cookies. 1430 */ 1431 return idle_core || rq->core->core_cookie == p->core_cookie; 1432 } 1433 1434 static inline bool sched_group_cookie_match(struct rq *rq, 1435 struct task_struct *p, 1436 struct sched_group *group) 1437 { 1438 int cpu; 1439 1440 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1441 if (!sched_core_enabled(rq)) 1442 return true; 1443 1444 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1445 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1446 return true; 1447 } 1448 return false; 1449 } 1450 1451 static inline bool sched_core_enqueued(struct task_struct *p) 1452 { 1453 return !RB_EMPTY_NODE(&p->core_node); 1454 } 1455 1456 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1457 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1458 1459 extern void sched_core_get(void); 1460 extern void sched_core_put(void); 1461 1462 #else /* !CONFIG_SCHED_CORE: */ 1463 1464 static inline bool sched_core_enabled(struct rq *rq) 1465 { 1466 return false; 1467 } 1468 1469 static inline bool sched_core_disabled(void) 1470 { 1471 return true; 1472 } 1473 1474 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1475 { 1476 return &rq->__lock; 1477 } 1478 1479 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1480 { 1481 return &rq->__lock; 1482 } 1483 1484 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1485 { 1486 return true; 1487 } 1488 1489 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1490 { 1491 return true; 1492 } 1493 1494 static inline bool sched_group_cookie_match(struct rq *rq, 1495 struct task_struct *p, 1496 struct sched_group *group) 1497 { 1498 return true; 1499 } 1500 1501 #endif /* !CONFIG_SCHED_CORE */ 1502 1503 static inline void lockdep_assert_rq_held(struct rq *rq) 1504 { 1505 lockdep_assert_held(__rq_lockp(rq)); 1506 } 1507 1508 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1509 extern bool raw_spin_rq_trylock(struct rq *rq); 1510 extern void raw_spin_rq_unlock(struct rq *rq); 1511 1512 static inline void raw_spin_rq_lock(struct rq *rq) 1513 { 1514 raw_spin_rq_lock_nested(rq, 0); 1515 } 1516 1517 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1518 { 1519 local_irq_disable(); 1520 raw_spin_rq_lock(rq); 1521 } 1522 1523 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1524 { 1525 raw_spin_rq_unlock(rq); 1526 local_irq_enable(); 1527 } 1528 1529 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1530 { 1531 unsigned long flags; 1532 1533 local_irq_save(flags); 1534 raw_spin_rq_lock(rq); 1535 1536 return flags; 1537 } 1538 1539 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1540 { 1541 raw_spin_rq_unlock(rq); 1542 local_irq_restore(flags); 1543 } 1544 1545 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1546 do { \ 1547 flags = _raw_spin_rq_lock_irqsave(rq); \ 1548 } while (0) 1549 1550 #ifdef CONFIG_SCHED_SMT 1551 extern void __update_idle_core(struct rq *rq); 1552 1553 static inline void update_idle_core(struct rq *rq) 1554 { 1555 if (static_branch_unlikely(&sched_smt_present)) 1556 __update_idle_core(rq); 1557 } 1558 1559 #else 1560 static inline void update_idle_core(struct rq *rq) { } 1561 #endif 1562 1563 #ifdef CONFIG_FAIR_GROUP_SCHED 1564 1565 static inline struct task_struct *task_of(struct sched_entity *se) 1566 { 1567 SCHED_WARN_ON(!entity_is_task(se)); 1568 return container_of(se, struct task_struct, se); 1569 } 1570 1571 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1572 { 1573 return p->se.cfs_rq; 1574 } 1575 1576 /* runqueue on which this entity is (to be) queued */ 1577 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1578 { 1579 return se->cfs_rq; 1580 } 1581 1582 /* runqueue "owned" by this group */ 1583 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1584 { 1585 return grp->my_q; 1586 } 1587 1588 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1589 1590 #define task_of(_se) container_of(_se, struct task_struct, se) 1591 1592 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1593 { 1594 return &task_rq(p)->cfs; 1595 } 1596 1597 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1598 { 1599 const struct task_struct *p = task_of(se); 1600 struct rq *rq = task_rq(p); 1601 1602 return &rq->cfs; 1603 } 1604 1605 /* runqueue "owned" by this group */ 1606 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1607 { 1608 return NULL; 1609 } 1610 1611 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1612 1613 extern void update_rq_clock(struct rq *rq); 1614 1615 /* 1616 * rq::clock_update_flags bits 1617 * 1618 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1619 * call to __schedule(). This is an optimisation to avoid 1620 * neighbouring rq clock updates. 1621 * 1622 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1623 * in effect and calls to update_rq_clock() are being ignored. 1624 * 1625 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1626 * made to update_rq_clock() since the last time rq::lock was pinned. 1627 * 1628 * If inside of __schedule(), clock_update_flags will have been 1629 * shifted left (a left shift is a cheap operation for the fast path 1630 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1631 * 1632 * if (rq-clock_update_flags >= RQCF_UPDATED) 1633 * 1634 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1635 * one position though, because the next rq_unpin_lock() will shift it 1636 * back. 1637 */ 1638 #define RQCF_REQ_SKIP 0x01 1639 #define RQCF_ACT_SKIP 0x02 1640 #define RQCF_UPDATED 0x04 1641 1642 static inline void assert_clock_updated(struct rq *rq) 1643 { 1644 /* 1645 * The only reason for not seeing a clock update since the 1646 * last rq_pin_lock() is if we're currently skipping updates. 1647 */ 1648 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1649 } 1650 1651 static inline u64 rq_clock(struct rq *rq) 1652 { 1653 lockdep_assert_rq_held(rq); 1654 assert_clock_updated(rq); 1655 1656 return rq->clock; 1657 } 1658 1659 static inline u64 rq_clock_task(struct rq *rq) 1660 { 1661 lockdep_assert_rq_held(rq); 1662 assert_clock_updated(rq); 1663 1664 return rq->clock_task; 1665 } 1666 1667 static inline void rq_clock_skip_update(struct rq *rq) 1668 { 1669 lockdep_assert_rq_held(rq); 1670 rq->clock_update_flags |= RQCF_REQ_SKIP; 1671 } 1672 1673 /* 1674 * See rt task throttling, which is the only time a skip 1675 * request is canceled. 1676 */ 1677 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1678 { 1679 lockdep_assert_rq_held(rq); 1680 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1681 } 1682 1683 /* 1684 * During cpu offlining and rq wide unthrottling, we can trigger 1685 * an update_rq_clock() for several cfs and rt runqueues (Typically 1686 * when using list_for_each_entry_*) 1687 * rq_clock_start_loop_update() can be called after updating the clock 1688 * once and before iterating over the list to prevent multiple update. 1689 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1690 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1691 */ 1692 static inline void rq_clock_start_loop_update(struct rq *rq) 1693 { 1694 lockdep_assert_rq_held(rq); 1695 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); 1696 rq->clock_update_flags |= RQCF_ACT_SKIP; 1697 } 1698 1699 static inline void rq_clock_stop_loop_update(struct rq *rq) 1700 { 1701 lockdep_assert_rq_held(rq); 1702 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1703 } 1704 1705 struct rq_flags { 1706 unsigned long flags; 1707 struct pin_cookie cookie; 1708 #ifdef CONFIG_SCHED_DEBUG 1709 /* 1710 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1711 * current pin context is stashed here in case it needs to be 1712 * restored in rq_repin_lock(). 1713 */ 1714 unsigned int clock_update_flags; 1715 #endif 1716 }; 1717 1718 extern struct balance_callback balance_push_callback; 1719 1720 /* 1721 * Lockdep annotation that avoids accidental unlocks; it's like a 1722 * sticky/continuous lockdep_assert_held(). 1723 * 1724 * This avoids code that has access to 'struct rq *rq' (basically everything in 1725 * the scheduler) from accidentally unlocking the rq if they do not also have a 1726 * copy of the (on-stack) 'struct rq_flags rf'. 1727 * 1728 * Also see Documentation/locking/lockdep-design.rst. 1729 */ 1730 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1731 { 1732 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1733 1734 #ifdef CONFIG_SCHED_DEBUG 1735 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1736 rf->clock_update_flags = 0; 1737 # ifdef CONFIG_SMP 1738 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1739 # endif 1740 #endif 1741 } 1742 1743 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1744 { 1745 #ifdef CONFIG_SCHED_DEBUG 1746 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1747 rf->clock_update_flags = RQCF_UPDATED; 1748 #endif 1749 1750 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1751 } 1752 1753 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1754 { 1755 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1756 1757 #ifdef CONFIG_SCHED_DEBUG 1758 /* 1759 * Restore the value we stashed in @rf for this pin context. 1760 */ 1761 rq->clock_update_flags |= rf->clock_update_flags; 1762 #endif 1763 } 1764 1765 extern 1766 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1767 __acquires(rq->lock); 1768 1769 extern 1770 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1771 __acquires(p->pi_lock) 1772 __acquires(rq->lock); 1773 1774 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1775 __releases(rq->lock) 1776 { 1777 rq_unpin_lock(rq, rf); 1778 raw_spin_rq_unlock(rq); 1779 } 1780 1781 static inline void 1782 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1783 __releases(rq->lock) 1784 __releases(p->pi_lock) 1785 { 1786 rq_unpin_lock(rq, rf); 1787 raw_spin_rq_unlock(rq); 1788 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1789 } 1790 1791 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1792 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1793 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1794 struct rq *rq; struct rq_flags rf) 1795 1796 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1797 __acquires(rq->lock) 1798 { 1799 raw_spin_rq_lock_irqsave(rq, rf->flags); 1800 rq_pin_lock(rq, rf); 1801 } 1802 1803 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1804 __acquires(rq->lock) 1805 { 1806 raw_spin_rq_lock_irq(rq); 1807 rq_pin_lock(rq, rf); 1808 } 1809 1810 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1811 __acquires(rq->lock) 1812 { 1813 raw_spin_rq_lock(rq); 1814 rq_pin_lock(rq, rf); 1815 } 1816 1817 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1818 __releases(rq->lock) 1819 { 1820 rq_unpin_lock(rq, rf); 1821 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1822 } 1823 1824 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1825 __releases(rq->lock) 1826 { 1827 rq_unpin_lock(rq, rf); 1828 raw_spin_rq_unlock_irq(rq); 1829 } 1830 1831 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1832 __releases(rq->lock) 1833 { 1834 rq_unpin_lock(rq, rf); 1835 raw_spin_rq_unlock(rq); 1836 } 1837 1838 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1839 rq_lock(_T->lock, &_T->rf), 1840 rq_unlock(_T->lock, &_T->rf), 1841 struct rq_flags rf) 1842 1843 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1844 rq_lock_irq(_T->lock, &_T->rf), 1845 rq_unlock_irq(_T->lock, &_T->rf), 1846 struct rq_flags rf) 1847 1848 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1849 rq_lock_irqsave(_T->lock, &_T->rf), 1850 rq_unlock_irqrestore(_T->lock, &_T->rf), 1851 struct rq_flags rf) 1852 1853 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1854 __acquires(rq->lock) 1855 { 1856 struct rq *rq; 1857 1858 local_irq_disable(); 1859 rq = this_rq(); 1860 rq_lock(rq, rf); 1861 1862 return rq; 1863 } 1864 1865 #ifdef CONFIG_NUMA 1866 1867 enum numa_topology_type { 1868 NUMA_DIRECT, 1869 NUMA_GLUELESS_MESH, 1870 NUMA_BACKPLANE, 1871 }; 1872 1873 extern enum numa_topology_type sched_numa_topology_type; 1874 extern int sched_max_numa_distance; 1875 extern bool find_numa_distance(int distance); 1876 extern void sched_init_numa(int offline_node); 1877 extern void sched_update_numa(int cpu, bool online); 1878 extern void sched_domains_numa_masks_set(unsigned int cpu); 1879 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1880 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1881 1882 #else /* !CONFIG_NUMA: */ 1883 1884 static inline void sched_init_numa(int offline_node) { } 1885 static inline void sched_update_numa(int cpu, bool online) { } 1886 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1887 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1888 1889 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1890 { 1891 return nr_cpu_ids; 1892 } 1893 1894 #endif /* !CONFIG_NUMA */ 1895 1896 #ifdef CONFIG_NUMA_BALANCING 1897 1898 /* The regions in numa_faults array from task_struct */ 1899 enum numa_faults_stats { 1900 NUMA_MEM = 0, 1901 NUMA_CPU, 1902 NUMA_MEMBUF, 1903 NUMA_CPUBUF 1904 }; 1905 1906 extern void sched_setnuma(struct task_struct *p, int node); 1907 extern int migrate_task_to(struct task_struct *p, int cpu); 1908 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1909 int cpu, int scpu); 1910 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1911 1912 #else /* !CONFIG_NUMA_BALANCING: */ 1913 1914 static inline void 1915 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1916 { 1917 } 1918 1919 #endif /* !CONFIG_NUMA_BALANCING */ 1920 1921 #ifdef CONFIG_SMP 1922 1923 static inline void 1924 queue_balance_callback(struct rq *rq, 1925 struct balance_callback *head, 1926 void (*func)(struct rq *rq)) 1927 { 1928 lockdep_assert_rq_held(rq); 1929 1930 /* 1931 * Don't (re)queue an already queued item; nor queue anything when 1932 * balance_push() is active, see the comment with 1933 * balance_push_callback. 1934 */ 1935 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1936 return; 1937 1938 head->func = func; 1939 head->next = rq->balance_callback; 1940 rq->balance_callback = head; 1941 } 1942 1943 #define rcu_dereference_check_sched_domain(p) \ 1944 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1945 1946 /* 1947 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1948 * See destroy_sched_domains: call_rcu for details. 1949 * 1950 * The domain tree of any CPU may only be accessed from within 1951 * preempt-disabled sections. 1952 */ 1953 #define for_each_domain(cpu, __sd) \ 1954 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1955 __sd; __sd = __sd->parent) 1956 1957 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1958 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1959 static const unsigned int SD_SHARED_CHILD_MASK = 1960 #include <linux/sched/sd_flags.h> 1961 0; 1962 #undef SD_FLAG 1963 1964 /** 1965 * highest_flag_domain - Return highest sched_domain containing flag. 1966 * @cpu: The CPU whose highest level of sched domain is to 1967 * be returned. 1968 * @flag: The flag to check for the highest sched_domain 1969 * for the given CPU. 1970 * 1971 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1972 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1973 */ 1974 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1975 { 1976 struct sched_domain *sd, *hsd = NULL; 1977 1978 for_each_domain(cpu, sd) { 1979 if (sd->flags & flag) { 1980 hsd = sd; 1981 continue; 1982 } 1983 1984 /* 1985 * Stop the search if @flag is known to be shared at lower 1986 * levels. It will not be found further up. 1987 */ 1988 if (flag & SD_SHARED_CHILD_MASK) 1989 break; 1990 } 1991 1992 return hsd; 1993 } 1994 1995 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1996 { 1997 struct sched_domain *sd; 1998 1999 for_each_domain(cpu, sd) { 2000 if (sd->flags & flag) 2001 break; 2002 } 2003 2004 return sd; 2005 } 2006 2007 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2008 DECLARE_PER_CPU(int, sd_llc_size); 2009 DECLARE_PER_CPU(int, sd_llc_id); 2010 DECLARE_PER_CPU(int, sd_share_id); 2011 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2012 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2013 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2014 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2015 2016 extern struct static_key_false sched_asym_cpucapacity; 2017 extern struct static_key_false sched_cluster_active; 2018 2019 static __always_inline bool sched_asym_cpucap_active(void) 2020 { 2021 return static_branch_unlikely(&sched_asym_cpucapacity); 2022 } 2023 2024 struct sched_group_capacity { 2025 atomic_t ref; 2026 /* 2027 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2028 * for a single CPU. 2029 */ 2030 unsigned long capacity; 2031 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2032 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2033 unsigned long next_update; 2034 int imbalance; /* XXX unrelated to capacity but shared group state */ 2035 2036 #ifdef CONFIG_SCHED_DEBUG 2037 int id; 2038 #endif 2039 2040 unsigned long cpumask[]; /* Balance mask */ 2041 }; 2042 2043 struct sched_group { 2044 struct sched_group *next; /* Must be a circular list */ 2045 atomic_t ref; 2046 2047 unsigned int group_weight; 2048 unsigned int cores; 2049 struct sched_group_capacity *sgc; 2050 int asym_prefer_cpu; /* CPU of highest priority in group */ 2051 int flags; 2052 2053 /* 2054 * The CPUs this group covers. 2055 * 2056 * NOTE: this field is variable length. (Allocated dynamically 2057 * by attaching extra space to the end of the structure, 2058 * depending on how many CPUs the kernel has booted up with) 2059 */ 2060 unsigned long cpumask[]; 2061 }; 2062 2063 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2064 { 2065 return to_cpumask(sg->cpumask); 2066 } 2067 2068 /* 2069 * See build_balance_mask(). 2070 */ 2071 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2072 { 2073 return to_cpumask(sg->sgc->cpumask); 2074 } 2075 2076 extern int group_balance_cpu(struct sched_group *sg); 2077 2078 #ifdef CONFIG_SCHED_DEBUG 2079 extern void update_sched_domain_debugfs(void); 2080 extern void dirty_sched_domain_sysctl(int cpu); 2081 #else 2082 static inline void update_sched_domain_debugfs(void) { } 2083 static inline void dirty_sched_domain_sysctl(int cpu) { } 2084 #endif 2085 2086 extern int sched_update_scaling(void); 2087 2088 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2089 { 2090 if (!p->user_cpus_ptr) 2091 return cpu_possible_mask; /* &init_task.cpus_mask */ 2092 return p->user_cpus_ptr; 2093 } 2094 2095 #endif /* CONFIG_SMP */ 2096 2097 #ifdef CONFIG_CGROUP_SCHED 2098 2099 /* 2100 * Return the group to which this tasks belongs. 2101 * 2102 * We cannot use task_css() and friends because the cgroup subsystem 2103 * changes that value before the cgroup_subsys::attach() method is called, 2104 * therefore we cannot pin it and might observe the wrong value. 2105 * 2106 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2107 * core changes this before calling sched_move_task(). 2108 * 2109 * Instead we use a 'copy' which is updated from sched_move_task() while 2110 * holding both task_struct::pi_lock and rq::lock. 2111 */ 2112 static inline struct task_group *task_group(struct task_struct *p) 2113 { 2114 return p->sched_task_group; 2115 } 2116 2117 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2118 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2119 { 2120 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2121 struct task_group *tg = task_group(p); 2122 #endif 2123 2124 #ifdef CONFIG_FAIR_GROUP_SCHED 2125 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2126 p->se.cfs_rq = tg->cfs_rq[cpu]; 2127 p->se.parent = tg->se[cpu]; 2128 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2129 #endif 2130 2131 #ifdef CONFIG_RT_GROUP_SCHED 2132 p->rt.rt_rq = tg->rt_rq[cpu]; 2133 p->rt.parent = tg->rt_se[cpu]; 2134 #endif 2135 } 2136 2137 #else /* !CONFIG_CGROUP_SCHED: */ 2138 2139 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2140 2141 static inline struct task_group *task_group(struct task_struct *p) 2142 { 2143 return NULL; 2144 } 2145 2146 #endif /* !CONFIG_CGROUP_SCHED */ 2147 2148 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2149 { 2150 set_task_rq(p, cpu); 2151 #ifdef CONFIG_SMP 2152 /* 2153 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2154 * successfully executed on another CPU. We must ensure that updates of 2155 * per-task data have been completed by this moment. 2156 */ 2157 smp_wmb(); 2158 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2159 p->wake_cpu = cpu; 2160 #endif 2161 } 2162 2163 /* 2164 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 2165 */ 2166 #ifdef CONFIG_SCHED_DEBUG 2167 # define const_debug __read_mostly 2168 #else 2169 # define const_debug const 2170 #endif 2171 2172 #define SCHED_FEAT(name, enabled) \ 2173 __SCHED_FEAT_##name , 2174 2175 enum { 2176 #include "features.h" 2177 __SCHED_FEAT_NR, 2178 }; 2179 2180 #undef SCHED_FEAT 2181 2182 #ifdef CONFIG_SCHED_DEBUG 2183 2184 /* 2185 * To support run-time toggling of sched features, all the translation units 2186 * (but core.c) reference the sysctl_sched_features defined in core.c. 2187 */ 2188 extern const_debug unsigned int sysctl_sched_features; 2189 2190 #ifdef CONFIG_JUMP_LABEL 2191 2192 #define SCHED_FEAT(name, enabled) \ 2193 static __always_inline bool static_branch_##name(struct static_key *key) \ 2194 { \ 2195 return static_key_##enabled(key); \ 2196 } 2197 2198 #include "features.h" 2199 #undef SCHED_FEAT 2200 2201 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2202 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2203 2204 #else /* !CONFIG_JUMP_LABEL: */ 2205 2206 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2207 2208 #endif /* !CONFIG_JUMP_LABEL */ 2209 2210 #else /* !SCHED_DEBUG: */ 2211 2212 /* 2213 * Each translation unit has its own copy of sysctl_sched_features to allow 2214 * constants propagation at compile time and compiler optimization based on 2215 * features default. 2216 */ 2217 #define SCHED_FEAT(name, enabled) \ 2218 (1UL << __SCHED_FEAT_##name) * enabled | 2219 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2220 #include "features.h" 2221 0; 2222 #undef SCHED_FEAT 2223 2224 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2225 2226 #endif /* !SCHED_DEBUG */ 2227 2228 extern struct static_key_false sched_numa_balancing; 2229 extern struct static_key_false sched_schedstats; 2230 2231 static inline u64 global_rt_period(void) 2232 { 2233 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2234 } 2235 2236 static inline u64 global_rt_runtime(void) 2237 { 2238 if (sysctl_sched_rt_runtime < 0) 2239 return RUNTIME_INF; 2240 2241 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2242 } 2243 2244 /* 2245 * Is p the current execution context? 2246 */ 2247 static inline int task_current(struct rq *rq, struct task_struct *p) 2248 { 2249 return rq->curr == p; 2250 } 2251 2252 /* 2253 * Is p the current scheduling context? 2254 * 2255 * Note that it might be the current execution context at the same time if 2256 * rq->curr == rq->donor == p. 2257 */ 2258 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2259 { 2260 return rq->donor == p; 2261 } 2262 2263 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2264 { 2265 #ifdef CONFIG_SMP 2266 return p->on_cpu; 2267 #else 2268 return task_current(rq, p); 2269 #endif 2270 } 2271 2272 static inline int task_on_rq_queued(struct task_struct *p) 2273 { 2274 return p->on_rq == TASK_ON_RQ_QUEUED; 2275 } 2276 2277 static inline int task_on_rq_migrating(struct task_struct *p) 2278 { 2279 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2280 } 2281 2282 /* Wake flags. The first three directly map to some SD flag value */ 2283 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2284 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2285 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2286 2287 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2288 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2289 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2290 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2291 2292 #ifdef CONFIG_SMP 2293 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2294 static_assert(WF_FORK == SD_BALANCE_FORK); 2295 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2296 #endif 2297 2298 /* 2299 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2300 * of tasks with abnormal "nice" values across CPUs the contribution that 2301 * each task makes to its run queue's load is weighted according to its 2302 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2303 * scaled version of the new time slice allocation that they receive on time 2304 * slice expiry etc. 2305 */ 2306 2307 #define WEIGHT_IDLEPRIO 3 2308 #define WMULT_IDLEPRIO 1431655765 2309 2310 extern const int sched_prio_to_weight[40]; 2311 extern const u32 sched_prio_to_wmult[40]; 2312 2313 /* 2314 * {de,en}queue flags: 2315 * 2316 * DEQUEUE_SLEEP - task is no longer runnable 2317 * ENQUEUE_WAKEUP - task just became runnable 2318 * 2319 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2320 * are in a known state which allows modification. Such pairs 2321 * should preserve as much state as possible. 2322 * 2323 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2324 * in the runqueue. 2325 * 2326 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2327 * 2328 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2329 * 2330 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2331 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2332 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2333 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2334 * 2335 */ 2336 2337 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2338 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2339 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2340 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2341 #define DEQUEUE_SPECIAL 0x10 2342 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2343 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2344 2345 #define ENQUEUE_WAKEUP 0x01 2346 #define ENQUEUE_RESTORE 0x02 2347 #define ENQUEUE_MOVE 0x04 2348 #define ENQUEUE_NOCLOCK 0x08 2349 2350 #define ENQUEUE_HEAD 0x10 2351 #define ENQUEUE_REPLENISH 0x20 2352 #ifdef CONFIG_SMP 2353 #define ENQUEUE_MIGRATED 0x40 2354 #else 2355 #define ENQUEUE_MIGRATED 0x00 2356 #endif 2357 #define ENQUEUE_INITIAL 0x80 2358 #define ENQUEUE_MIGRATING 0x100 2359 #define ENQUEUE_DELAYED 0x200 2360 #define ENQUEUE_RQ_SELECTED 0x400 2361 2362 #define RETRY_TASK ((void *)-1UL) 2363 2364 struct affinity_context { 2365 const struct cpumask *new_mask; 2366 struct cpumask *user_mask; 2367 unsigned int flags; 2368 }; 2369 2370 extern s64 update_curr_common(struct rq *rq); 2371 2372 struct sched_class { 2373 2374 #ifdef CONFIG_UCLAMP_TASK 2375 int uclamp_enabled; 2376 #endif 2377 2378 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2379 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2380 void (*yield_task) (struct rq *rq); 2381 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2382 2383 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2384 2385 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2386 struct task_struct *(*pick_task)(struct rq *rq); 2387 /* 2388 * Optional! When implemented pick_next_task() should be equivalent to: 2389 * 2390 * next = pick_task(); 2391 * if (next) { 2392 * put_prev_task(prev); 2393 * set_next_task_first(next); 2394 * } 2395 */ 2396 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2397 2398 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2399 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2400 2401 #ifdef CONFIG_SMP 2402 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2403 2404 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2405 2406 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2407 2408 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2409 2410 void (*rq_online)(struct rq *rq); 2411 void (*rq_offline)(struct rq *rq); 2412 2413 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2414 #endif 2415 2416 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2417 void (*task_fork)(struct task_struct *p); 2418 void (*task_dead)(struct task_struct *p); 2419 2420 /* 2421 * The switched_from() call is allowed to drop rq->lock, therefore we 2422 * cannot assume the switched_from/switched_to pair is serialized by 2423 * rq->lock. They are however serialized by p->pi_lock. 2424 */ 2425 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2426 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2427 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2428 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2429 const struct load_weight *lw); 2430 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2431 int oldprio); 2432 2433 unsigned int (*get_rr_interval)(struct rq *rq, 2434 struct task_struct *task); 2435 2436 void (*update_curr)(struct rq *rq); 2437 2438 #ifdef CONFIG_FAIR_GROUP_SCHED 2439 void (*task_change_group)(struct task_struct *p); 2440 #endif 2441 2442 #ifdef CONFIG_SCHED_CORE 2443 int (*task_is_throttled)(struct task_struct *p, int cpu); 2444 #endif 2445 }; 2446 2447 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2448 { 2449 WARN_ON_ONCE(rq->donor != prev); 2450 prev->sched_class->put_prev_task(rq, prev, NULL); 2451 } 2452 2453 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2454 { 2455 next->sched_class->set_next_task(rq, next, false); 2456 } 2457 2458 static inline void 2459 __put_prev_set_next_dl_server(struct rq *rq, 2460 struct task_struct *prev, 2461 struct task_struct *next) 2462 { 2463 prev->dl_server = NULL; 2464 next->dl_server = rq->dl_server; 2465 rq->dl_server = NULL; 2466 } 2467 2468 static inline void put_prev_set_next_task(struct rq *rq, 2469 struct task_struct *prev, 2470 struct task_struct *next) 2471 { 2472 WARN_ON_ONCE(rq->curr != prev); 2473 2474 __put_prev_set_next_dl_server(rq, prev, next); 2475 2476 if (next == prev) 2477 return; 2478 2479 prev->sched_class->put_prev_task(rq, prev, next); 2480 next->sched_class->set_next_task(rq, next, true); 2481 } 2482 2483 /* 2484 * Helper to define a sched_class instance; each one is placed in a separate 2485 * section which is ordered by the linker script: 2486 * 2487 * include/asm-generic/vmlinux.lds.h 2488 * 2489 * *CAREFUL* they are laid out in *REVERSE* order!!! 2490 * 2491 * Also enforce alignment on the instance, not the type, to guarantee layout. 2492 */ 2493 #define DEFINE_SCHED_CLASS(name) \ 2494 const struct sched_class name##_sched_class \ 2495 __aligned(__alignof__(struct sched_class)) \ 2496 __section("__" #name "_sched_class") 2497 2498 /* Defined in include/asm-generic/vmlinux.lds.h */ 2499 extern struct sched_class __sched_class_highest[]; 2500 extern struct sched_class __sched_class_lowest[]; 2501 2502 extern const struct sched_class stop_sched_class; 2503 extern const struct sched_class dl_sched_class; 2504 extern const struct sched_class rt_sched_class; 2505 extern const struct sched_class fair_sched_class; 2506 extern const struct sched_class idle_sched_class; 2507 2508 #ifdef CONFIG_SCHED_CLASS_EXT 2509 extern const struct sched_class ext_sched_class; 2510 2511 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */ 2512 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 2513 2514 #define scx_enabled() static_branch_unlikely(&__scx_ops_enabled) 2515 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 2516 #else /* !CONFIG_SCHED_CLASS_EXT */ 2517 #define scx_enabled() false 2518 #define scx_switched_all() false 2519 #endif /* !CONFIG_SCHED_CLASS_EXT */ 2520 2521 /* 2522 * Iterate only active classes. SCX can take over all fair tasks or be 2523 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2524 */ 2525 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2526 { 2527 class++; 2528 #ifdef CONFIG_SCHED_CLASS_EXT 2529 if (scx_switched_all() && class == &fair_sched_class) 2530 class++; 2531 if (!scx_enabled() && class == &ext_sched_class) 2532 class++; 2533 #endif 2534 return class; 2535 } 2536 2537 #define for_class_range(class, _from, _to) \ 2538 for (class = (_from); class < (_to); class++) 2539 2540 #define for_each_class(class) \ 2541 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2542 2543 #define for_active_class_range(class, _from, _to) \ 2544 for (class = (_from); class != (_to); class = next_active_class(class)) 2545 2546 #define for_each_active_class(class) \ 2547 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2548 2549 #define sched_class_above(_a, _b) ((_a) < (_b)) 2550 2551 static inline bool sched_stop_runnable(struct rq *rq) 2552 { 2553 return rq->stop && task_on_rq_queued(rq->stop); 2554 } 2555 2556 static inline bool sched_dl_runnable(struct rq *rq) 2557 { 2558 return rq->dl.dl_nr_running > 0; 2559 } 2560 2561 static inline bool sched_rt_runnable(struct rq *rq) 2562 { 2563 return rq->rt.rt_queued > 0; 2564 } 2565 2566 static inline bool sched_fair_runnable(struct rq *rq) 2567 { 2568 return rq->cfs.nr_running > 0; 2569 } 2570 2571 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2572 extern struct task_struct *pick_task_idle(struct rq *rq); 2573 2574 #define SCA_CHECK 0x01 2575 #define SCA_MIGRATE_DISABLE 0x02 2576 #define SCA_MIGRATE_ENABLE 0x04 2577 #define SCA_USER 0x08 2578 2579 #ifdef CONFIG_SMP 2580 2581 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2582 2583 extern void sched_balance_trigger(struct rq *rq); 2584 2585 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2586 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2587 2588 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2589 { 2590 /* When not in the task's cpumask, no point in looking further. */ 2591 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2592 return false; 2593 2594 /* Can @cpu run a user thread? */ 2595 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2596 return false; 2597 2598 return true; 2599 } 2600 2601 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2602 { 2603 /* 2604 * See do_set_cpus_allowed() above for the rcu_head usage. 2605 */ 2606 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2607 2608 return kmalloc_node(size, GFP_KERNEL, node); 2609 } 2610 2611 static inline struct task_struct *get_push_task(struct rq *rq) 2612 { 2613 struct task_struct *p = rq->donor; 2614 2615 lockdep_assert_rq_held(rq); 2616 2617 if (rq->push_busy) 2618 return NULL; 2619 2620 if (p->nr_cpus_allowed == 1) 2621 return NULL; 2622 2623 if (p->migration_disabled) 2624 return NULL; 2625 2626 rq->push_busy = true; 2627 return get_task_struct(p); 2628 } 2629 2630 extern int push_cpu_stop(void *arg); 2631 2632 #else /* !CONFIG_SMP: */ 2633 2634 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2635 { 2636 return true; 2637 } 2638 2639 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2640 struct affinity_context *ctx) 2641 { 2642 return set_cpus_allowed_ptr(p, ctx->new_mask); 2643 } 2644 2645 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2646 { 2647 return NULL; 2648 } 2649 2650 #endif /* !CONFIG_SMP */ 2651 2652 #ifdef CONFIG_CPU_IDLE 2653 2654 static inline void idle_set_state(struct rq *rq, 2655 struct cpuidle_state *idle_state) 2656 { 2657 rq->idle_state = idle_state; 2658 } 2659 2660 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2661 { 2662 SCHED_WARN_ON(!rcu_read_lock_held()); 2663 2664 return rq->idle_state; 2665 } 2666 2667 #else /* !CONFIG_CPU_IDLE: */ 2668 2669 static inline void idle_set_state(struct rq *rq, 2670 struct cpuidle_state *idle_state) 2671 { 2672 } 2673 2674 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2675 { 2676 return NULL; 2677 } 2678 2679 #endif /* !CONFIG_CPU_IDLE */ 2680 2681 extern void schedule_idle(void); 2682 asmlinkage void schedule_user(void); 2683 2684 extern void sysrq_sched_debug_show(void); 2685 extern void sched_init_granularity(void); 2686 extern void update_max_interval(void); 2687 2688 extern void init_sched_dl_class(void); 2689 extern void init_sched_rt_class(void); 2690 extern void init_sched_fair_class(void); 2691 2692 extern void resched_curr(struct rq *rq); 2693 extern void resched_curr_lazy(struct rq *rq); 2694 extern void resched_cpu(int cpu); 2695 2696 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2697 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2698 2699 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2700 2701 #define BW_SHIFT 20 2702 #define BW_UNIT (1 << BW_SHIFT) 2703 #define RATIO_SHIFT 8 2704 #define MAX_BW_BITS (64 - BW_SHIFT) 2705 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2706 2707 extern unsigned long to_ratio(u64 period, u64 runtime); 2708 2709 extern void init_entity_runnable_average(struct sched_entity *se); 2710 extern void post_init_entity_util_avg(struct task_struct *p); 2711 2712 #ifdef CONFIG_NO_HZ_FULL 2713 extern bool sched_can_stop_tick(struct rq *rq); 2714 extern int __init sched_tick_offload_init(void); 2715 2716 /* 2717 * Tick may be needed by tasks in the runqueue depending on their policy and 2718 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2719 * nohz mode if necessary. 2720 */ 2721 static inline void sched_update_tick_dependency(struct rq *rq) 2722 { 2723 int cpu = cpu_of(rq); 2724 2725 if (!tick_nohz_full_cpu(cpu)) 2726 return; 2727 2728 if (sched_can_stop_tick(rq)) 2729 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2730 else 2731 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2732 } 2733 #else /* !CONFIG_NO_HZ_FULL: */ 2734 static inline int sched_tick_offload_init(void) { return 0; } 2735 static inline void sched_update_tick_dependency(struct rq *rq) { } 2736 #endif /* !CONFIG_NO_HZ_FULL */ 2737 2738 static inline void add_nr_running(struct rq *rq, unsigned count) 2739 { 2740 unsigned prev_nr = rq->nr_running; 2741 2742 rq->nr_running = prev_nr + count; 2743 if (trace_sched_update_nr_running_tp_enabled()) { 2744 call_trace_sched_update_nr_running(rq, count); 2745 } 2746 2747 #ifdef CONFIG_SMP 2748 if (prev_nr < 2 && rq->nr_running >= 2) 2749 set_rd_overloaded(rq->rd, 1); 2750 #endif 2751 2752 sched_update_tick_dependency(rq); 2753 } 2754 2755 static inline void sub_nr_running(struct rq *rq, unsigned count) 2756 { 2757 rq->nr_running -= count; 2758 if (trace_sched_update_nr_running_tp_enabled()) { 2759 call_trace_sched_update_nr_running(rq, -count); 2760 } 2761 2762 /* Check if we still need preemption */ 2763 sched_update_tick_dependency(rq); 2764 } 2765 2766 static inline void __block_task(struct rq *rq, struct task_struct *p) 2767 { 2768 if (p->sched_contributes_to_load) 2769 rq->nr_uninterruptible++; 2770 2771 if (p->in_iowait) { 2772 atomic_inc(&rq->nr_iowait); 2773 delayacct_blkio_start(); 2774 } 2775 2776 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2777 2778 /* 2779 * The moment this write goes through, ttwu() can swoop in and migrate 2780 * this task, rendering our rq->__lock ineffective. 2781 * 2782 * __schedule() try_to_wake_up() 2783 * LOCK rq->__lock LOCK p->pi_lock 2784 * pick_next_task() 2785 * pick_next_task_fair() 2786 * pick_next_entity() 2787 * dequeue_entities() 2788 * __block_task() 2789 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2790 * break; 2791 * 2792 * ACQUIRE (after ctrl-dep) 2793 * 2794 * cpu = select_task_rq(); 2795 * set_task_cpu(p, cpu); 2796 * ttwu_queue() 2797 * ttwu_do_activate() 2798 * LOCK rq->__lock 2799 * activate_task() 2800 * STORE p->on_rq = 1 2801 * UNLOCK rq->__lock 2802 * 2803 * Callers must ensure to not reference @p after this -- we no longer 2804 * own it. 2805 */ 2806 smp_store_release(&p->on_rq, 0); 2807 } 2808 2809 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2810 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2811 2812 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2813 2814 #ifdef CONFIG_PREEMPT_RT 2815 # define SCHED_NR_MIGRATE_BREAK 8 2816 #else 2817 # define SCHED_NR_MIGRATE_BREAK 32 2818 #endif 2819 2820 extern const_debug unsigned int sysctl_sched_nr_migrate; 2821 extern const_debug unsigned int sysctl_sched_migration_cost; 2822 2823 extern unsigned int sysctl_sched_base_slice; 2824 2825 #ifdef CONFIG_SCHED_DEBUG 2826 extern int sysctl_resched_latency_warn_ms; 2827 extern int sysctl_resched_latency_warn_once; 2828 2829 extern unsigned int sysctl_sched_tunable_scaling; 2830 2831 extern unsigned int sysctl_numa_balancing_scan_delay; 2832 extern unsigned int sysctl_numa_balancing_scan_period_min; 2833 extern unsigned int sysctl_numa_balancing_scan_period_max; 2834 extern unsigned int sysctl_numa_balancing_scan_size; 2835 extern unsigned int sysctl_numa_balancing_hot_threshold; 2836 #endif 2837 2838 #ifdef CONFIG_SCHED_HRTICK 2839 2840 /* 2841 * Use hrtick when: 2842 * - enabled by features 2843 * - hrtimer is actually high res 2844 */ 2845 static inline int hrtick_enabled(struct rq *rq) 2846 { 2847 if (!cpu_active(cpu_of(rq))) 2848 return 0; 2849 return hrtimer_is_hres_active(&rq->hrtick_timer); 2850 } 2851 2852 static inline int hrtick_enabled_fair(struct rq *rq) 2853 { 2854 if (!sched_feat(HRTICK)) 2855 return 0; 2856 return hrtick_enabled(rq); 2857 } 2858 2859 static inline int hrtick_enabled_dl(struct rq *rq) 2860 { 2861 if (!sched_feat(HRTICK_DL)) 2862 return 0; 2863 return hrtick_enabled(rq); 2864 } 2865 2866 extern void hrtick_start(struct rq *rq, u64 delay); 2867 2868 #else /* !CONFIG_SCHED_HRTICK: */ 2869 2870 static inline int hrtick_enabled_fair(struct rq *rq) 2871 { 2872 return 0; 2873 } 2874 2875 static inline int hrtick_enabled_dl(struct rq *rq) 2876 { 2877 return 0; 2878 } 2879 2880 static inline int hrtick_enabled(struct rq *rq) 2881 { 2882 return 0; 2883 } 2884 2885 #endif /* !CONFIG_SCHED_HRTICK */ 2886 2887 #ifndef arch_scale_freq_tick 2888 static __always_inline void arch_scale_freq_tick(void) { } 2889 #endif 2890 2891 #ifndef arch_scale_freq_capacity 2892 /** 2893 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2894 * @cpu: the CPU in question. 2895 * 2896 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2897 * 2898 * f_curr 2899 * ------ * SCHED_CAPACITY_SCALE 2900 * f_max 2901 */ 2902 static __always_inline 2903 unsigned long arch_scale_freq_capacity(int cpu) 2904 { 2905 return SCHED_CAPACITY_SCALE; 2906 } 2907 #endif 2908 2909 #ifdef CONFIG_SCHED_DEBUG 2910 /* 2911 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2912 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2913 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2914 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2915 */ 2916 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2917 { 2918 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2919 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2920 #ifdef CONFIG_SMP 2921 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2922 #endif 2923 } 2924 #else 2925 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { } 2926 #endif 2927 2928 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2929 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2930 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2931 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2932 _lock; return _t; } 2933 2934 #ifdef CONFIG_SMP 2935 2936 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2937 { 2938 #ifdef CONFIG_SCHED_CORE 2939 /* 2940 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2941 * order by core-id first and cpu-id second. 2942 * 2943 * Notably: 2944 * 2945 * double_rq_lock(0,3); will take core-0, core-1 lock 2946 * double_rq_lock(1,2); will take core-1, core-0 lock 2947 * 2948 * when only cpu-id is considered. 2949 */ 2950 if (rq1->core->cpu < rq2->core->cpu) 2951 return true; 2952 if (rq1->core->cpu > rq2->core->cpu) 2953 return false; 2954 2955 /* 2956 * __sched_core_flip() relies on SMT having cpu-id lock order. 2957 */ 2958 #endif 2959 return rq1->cpu < rq2->cpu; 2960 } 2961 2962 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2963 2964 #ifdef CONFIG_PREEMPTION 2965 2966 /* 2967 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2968 * way at the expense of forcing extra atomic operations in all 2969 * invocations. This assures that the double_lock is acquired using the 2970 * same underlying policy as the spinlock_t on this architecture, which 2971 * reduces latency compared to the unfair variant below. However, it 2972 * also adds more overhead and therefore may reduce throughput. 2973 */ 2974 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2975 __releases(this_rq->lock) 2976 __acquires(busiest->lock) 2977 __acquires(this_rq->lock) 2978 { 2979 raw_spin_rq_unlock(this_rq); 2980 double_rq_lock(this_rq, busiest); 2981 2982 return 1; 2983 } 2984 2985 #else /* !CONFIG_PREEMPTION: */ 2986 /* 2987 * Unfair double_lock_balance: Optimizes throughput at the expense of 2988 * latency by eliminating extra atomic operations when the locks are 2989 * already in proper order on entry. This favors lower CPU-ids and will 2990 * grant the double lock to lower CPUs over higher ids under contention, 2991 * regardless of entry order into the function. 2992 */ 2993 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2994 __releases(this_rq->lock) 2995 __acquires(busiest->lock) 2996 __acquires(this_rq->lock) 2997 { 2998 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2999 likely(raw_spin_rq_trylock(busiest))) { 3000 double_rq_clock_clear_update(this_rq, busiest); 3001 return 0; 3002 } 3003 3004 if (rq_order_less(this_rq, busiest)) { 3005 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 3006 double_rq_clock_clear_update(this_rq, busiest); 3007 return 0; 3008 } 3009 3010 raw_spin_rq_unlock(this_rq); 3011 double_rq_lock(this_rq, busiest); 3012 3013 return 1; 3014 } 3015 3016 #endif /* !CONFIG_PREEMPTION */ 3017 3018 /* 3019 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 3020 */ 3021 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 3022 { 3023 lockdep_assert_irqs_disabled(); 3024 3025 return _double_lock_balance(this_rq, busiest); 3026 } 3027 3028 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3029 __releases(busiest->lock) 3030 { 3031 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3032 raw_spin_rq_unlock(busiest); 3033 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3034 } 3035 3036 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3037 { 3038 if (l1 > l2) 3039 swap(l1, l2); 3040 3041 spin_lock(l1); 3042 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3043 } 3044 3045 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3046 { 3047 if (l1 > l2) 3048 swap(l1, l2); 3049 3050 spin_lock_irq(l1); 3051 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3052 } 3053 3054 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3055 { 3056 if (l1 > l2) 3057 swap(l1, l2); 3058 3059 raw_spin_lock(l1); 3060 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3061 } 3062 3063 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3064 { 3065 raw_spin_unlock(l1); 3066 raw_spin_unlock(l2); 3067 } 3068 3069 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3070 double_raw_lock(_T->lock, _T->lock2), 3071 double_raw_unlock(_T->lock, _T->lock2)) 3072 3073 /* 3074 * double_rq_unlock - safely unlock two runqueues 3075 * 3076 * Note this does not restore interrupts like task_rq_unlock, 3077 * you need to do so manually after calling. 3078 */ 3079 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3080 __releases(rq1->lock) 3081 __releases(rq2->lock) 3082 { 3083 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3084 raw_spin_rq_unlock(rq2); 3085 else 3086 __release(rq2->lock); 3087 raw_spin_rq_unlock(rq1); 3088 } 3089 3090 extern void set_rq_online (struct rq *rq); 3091 extern void set_rq_offline(struct rq *rq); 3092 3093 extern bool sched_smp_initialized; 3094 3095 #else /* !CONFIG_SMP: */ 3096 3097 /* 3098 * double_rq_lock - safely lock two runqueues 3099 * 3100 * Note this does not disable interrupts like task_rq_lock, 3101 * you need to do so manually before calling. 3102 */ 3103 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 3104 __acquires(rq1->lock) 3105 __acquires(rq2->lock) 3106 { 3107 WARN_ON_ONCE(!irqs_disabled()); 3108 WARN_ON_ONCE(rq1 != rq2); 3109 raw_spin_rq_lock(rq1); 3110 __acquire(rq2->lock); /* Fake it out ;) */ 3111 double_rq_clock_clear_update(rq1, rq2); 3112 } 3113 3114 /* 3115 * double_rq_unlock - safely unlock two runqueues 3116 * 3117 * Note this does not restore interrupts like task_rq_unlock, 3118 * you need to do so manually after calling. 3119 */ 3120 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3121 __releases(rq1->lock) 3122 __releases(rq2->lock) 3123 { 3124 WARN_ON_ONCE(rq1 != rq2); 3125 raw_spin_rq_unlock(rq1); 3126 __release(rq2->lock); 3127 } 3128 3129 #endif /* !CONFIG_SMP */ 3130 3131 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3132 double_rq_lock(_T->lock, _T->lock2), 3133 double_rq_unlock(_T->lock, _T->lock2)) 3134 3135 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3136 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3137 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3138 3139 #ifdef CONFIG_SCHED_DEBUG 3140 extern bool sched_debug_verbose; 3141 3142 extern void print_cfs_stats(struct seq_file *m, int cpu); 3143 extern void print_rt_stats(struct seq_file *m, int cpu); 3144 extern void print_dl_stats(struct seq_file *m, int cpu); 3145 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3146 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3147 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3148 3149 extern void resched_latency_warn(int cpu, u64 latency); 3150 # ifdef CONFIG_NUMA_BALANCING 3151 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3152 extern void 3153 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3154 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3155 # endif /* CONFIG_NUMA_BALANCING */ 3156 #else /* !CONFIG_SCHED_DEBUG: */ 3157 static inline void resched_latency_warn(int cpu, u64 latency) { } 3158 #endif /* !CONFIG_SCHED_DEBUG */ 3159 3160 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3161 extern void init_rt_rq(struct rt_rq *rt_rq); 3162 extern void init_dl_rq(struct dl_rq *dl_rq); 3163 3164 extern void cfs_bandwidth_usage_inc(void); 3165 extern void cfs_bandwidth_usage_dec(void); 3166 3167 #ifdef CONFIG_NO_HZ_COMMON 3168 3169 #define NOHZ_BALANCE_KICK_BIT 0 3170 #define NOHZ_STATS_KICK_BIT 1 3171 #define NOHZ_NEWILB_KICK_BIT 2 3172 #define NOHZ_NEXT_KICK_BIT 3 3173 3174 /* Run sched_balance_domains() */ 3175 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3176 /* Update blocked load */ 3177 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3178 /* Update blocked load when entering idle */ 3179 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3180 /* Update nohz.next_balance */ 3181 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3182 3183 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3184 3185 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3186 3187 extern void nohz_balance_exit_idle(struct rq *rq); 3188 #else /* !CONFIG_NO_HZ_COMMON: */ 3189 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3190 #endif /* !CONFIG_NO_HZ_COMMON */ 3191 3192 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 3193 extern void nohz_run_idle_balance(int cpu); 3194 #else 3195 static inline void nohz_run_idle_balance(int cpu) { } 3196 #endif 3197 3198 #include "stats.h" 3199 3200 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3201 3202 extern void __sched_core_account_forceidle(struct rq *rq); 3203 3204 static inline void sched_core_account_forceidle(struct rq *rq) 3205 { 3206 if (schedstat_enabled()) 3207 __sched_core_account_forceidle(rq); 3208 } 3209 3210 extern void __sched_core_tick(struct rq *rq); 3211 3212 static inline void sched_core_tick(struct rq *rq) 3213 { 3214 if (sched_core_enabled(rq) && schedstat_enabled()) 3215 __sched_core_tick(rq); 3216 } 3217 3218 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3219 3220 static inline void sched_core_account_forceidle(struct rq *rq) { } 3221 3222 static inline void sched_core_tick(struct rq *rq) { } 3223 3224 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3225 3226 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3227 3228 struct irqtime { 3229 u64 total; 3230 u64 tick_delta; 3231 u64 irq_start_time; 3232 struct u64_stats_sync sync; 3233 }; 3234 3235 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3236 3237 /* 3238 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3239 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3240 * and never move forward. 3241 */ 3242 static inline u64 irq_time_read(int cpu) 3243 { 3244 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3245 unsigned int seq; 3246 u64 total; 3247 3248 do { 3249 seq = __u64_stats_fetch_begin(&irqtime->sync); 3250 total = irqtime->total; 3251 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3252 3253 return total; 3254 } 3255 3256 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3257 3258 #ifdef CONFIG_CPU_FREQ 3259 3260 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3261 3262 /** 3263 * cpufreq_update_util - Take a note about CPU utilization changes. 3264 * @rq: Runqueue to carry out the update for. 3265 * @flags: Update reason flags. 3266 * 3267 * This function is called by the scheduler on the CPU whose utilization is 3268 * being updated. 3269 * 3270 * It can only be called from RCU-sched read-side critical sections. 3271 * 3272 * The way cpufreq is currently arranged requires it to evaluate the CPU 3273 * performance state (frequency/voltage) on a regular basis to prevent it from 3274 * being stuck in a completely inadequate performance level for too long. 3275 * That is not guaranteed to happen if the updates are only triggered from CFS 3276 * and DL, though, because they may not be coming in if only RT tasks are 3277 * active all the time (or there are RT tasks only). 3278 * 3279 * As a workaround for that issue, this function is called periodically by the 3280 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3281 * but that really is a band-aid. Going forward it should be replaced with 3282 * solutions targeted more specifically at RT tasks. 3283 */ 3284 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3285 { 3286 struct update_util_data *data; 3287 3288 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3289 cpu_of(rq))); 3290 if (data) 3291 data->func(data, rq_clock(rq), flags); 3292 } 3293 #else /* !CONFIG_CPU_FREQ: */ 3294 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3295 #endif /* !CONFIG_CPU_FREQ */ 3296 3297 #ifdef arch_scale_freq_capacity 3298 # ifndef arch_scale_freq_invariant 3299 # define arch_scale_freq_invariant() true 3300 # endif 3301 #else 3302 # define arch_scale_freq_invariant() false 3303 #endif 3304 3305 #ifdef CONFIG_SMP 3306 3307 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3308 unsigned long *min, 3309 unsigned long *max); 3310 3311 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3312 unsigned long min, 3313 unsigned long max); 3314 3315 3316 /* 3317 * Verify the fitness of task @p to run on @cpu taking into account the 3318 * CPU original capacity and the runtime/deadline ratio of the task. 3319 * 3320 * The function will return true if the original capacity of @cpu is 3321 * greater than or equal to task's deadline density right shifted by 3322 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3323 */ 3324 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3325 { 3326 unsigned long cap = arch_scale_cpu_capacity(cpu); 3327 3328 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3329 } 3330 3331 static inline unsigned long cpu_bw_dl(struct rq *rq) 3332 { 3333 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3334 } 3335 3336 static inline unsigned long cpu_util_dl(struct rq *rq) 3337 { 3338 return READ_ONCE(rq->avg_dl.util_avg); 3339 } 3340 3341 3342 extern unsigned long cpu_util_cfs(int cpu); 3343 extern unsigned long cpu_util_cfs_boost(int cpu); 3344 3345 static inline unsigned long cpu_util_rt(struct rq *rq) 3346 { 3347 return READ_ONCE(rq->avg_rt.util_avg); 3348 } 3349 3350 #else /* !CONFIG_SMP */ 3351 static inline bool update_other_load_avgs(struct rq *rq) { return false; } 3352 #endif /* CONFIG_SMP */ 3353 3354 #ifdef CONFIG_UCLAMP_TASK 3355 3356 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3357 3358 static inline unsigned long uclamp_rq_get(struct rq *rq, 3359 enum uclamp_id clamp_id) 3360 { 3361 return READ_ONCE(rq->uclamp[clamp_id].value); 3362 } 3363 3364 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3365 unsigned int value) 3366 { 3367 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3368 } 3369 3370 static inline bool uclamp_rq_is_idle(struct rq *rq) 3371 { 3372 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3373 } 3374 3375 /* Is the rq being capped/throttled by uclamp_max? */ 3376 static inline bool uclamp_rq_is_capped(struct rq *rq) 3377 { 3378 unsigned long rq_util; 3379 unsigned long max_util; 3380 3381 if (!static_branch_likely(&sched_uclamp_used)) 3382 return false; 3383 3384 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3385 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3386 3387 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3388 } 3389 3390 /* 3391 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3392 * by default in the fast path and only gets turned on once userspace performs 3393 * an operation that requires it. 3394 * 3395 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3396 * hence is active. 3397 */ 3398 static inline bool uclamp_is_used(void) 3399 { 3400 return static_branch_likely(&sched_uclamp_used); 3401 } 3402 3403 #define for_each_clamp_id(clamp_id) \ 3404 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3405 3406 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3407 3408 3409 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3410 { 3411 if (clamp_id == UCLAMP_MIN) 3412 return 0; 3413 return SCHED_CAPACITY_SCALE; 3414 } 3415 3416 /* Integer rounded range for each bucket */ 3417 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3418 3419 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3420 { 3421 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3422 } 3423 3424 static inline void 3425 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3426 { 3427 uc_se->value = value; 3428 uc_se->bucket_id = uclamp_bucket_id(value); 3429 uc_se->user_defined = user_defined; 3430 } 3431 3432 #else /* !CONFIG_UCLAMP_TASK: */ 3433 3434 static inline unsigned long 3435 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3436 { 3437 if (clamp_id == UCLAMP_MIN) 3438 return 0; 3439 3440 return SCHED_CAPACITY_SCALE; 3441 } 3442 3443 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3444 3445 static inline bool uclamp_is_used(void) 3446 { 3447 return false; 3448 } 3449 3450 static inline unsigned long 3451 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3452 { 3453 if (clamp_id == UCLAMP_MIN) 3454 return 0; 3455 3456 return SCHED_CAPACITY_SCALE; 3457 } 3458 3459 static inline void 3460 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3461 { 3462 } 3463 3464 static inline bool uclamp_rq_is_idle(struct rq *rq) 3465 { 3466 return false; 3467 } 3468 3469 #endif /* !CONFIG_UCLAMP_TASK */ 3470 3471 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3472 3473 static inline unsigned long cpu_util_irq(struct rq *rq) 3474 { 3475 return READ_ONCE(rq->avg_irq.util_avg); 3476 } 3477 3478 static inline 3479 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3480 { 3481 util *= (max - irq); 3482 util /= max; 3483 3484 return util; 3485 3486 } 3487 3488 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3489 3490 static inline unsigned long cpu_util_irq(struct rq *rq) 3491 { 3492 return 0; 3493 } 3494 3495 static inline 3496 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3497 { 3498 return util; 3499 } 3500 3501 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3502 3503 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3504 3505 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3506 3507 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3508 3509 static inline bool sched_energy_enabled(void) 3510 { 3511 return static_branch_unlikely(&sched_energy_present); 3512 } 3513 3514 extern struct cpufreq_governor schedutil_gov; 3515 3516 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3517 3518 #define perf_domain_span(pd) NULL 3519 3520 static inline bool sched_energy_enabled(void) { return false; } 3521 3522 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3523 3524 #ifdef CONFIG_MEMBARRIER 3525 3526 /* 3527 * The scheduler provides memory barriers required by membarrier between: 3528 * - prior user-space memory accesses and store to rq->membarrier_state, 3529 * - store to rq->membarrier_state and following user-space memory accesses. 3530 * In the same way it provides those guarantees around store to rq->curr. 3531 */ 3532 static inline void membarrier_switch_mm(struct rq *rq, 3533 struct mm_struct *prev_mm, 3534 struct mm_struct *next_mm) 3535 { 3536 int membarrier_state; 3537 3538 if (prev_mm == next_mm) 3539 return; 3540 3541 membarrier_state = atomic_read(&next_mm->membarrier_state); 3542 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3543 return; 3544 3545 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3546 } 3547 3548 #else /* !CONFIG_MEMBARRIER :*/ 3549 3550 static inline void membarrier_switch_mm(struct rq *rq, 3551 struct mm_struct *prev_mm, 3552 struct mm_struct *next_mm) 3553 { 3554 } 3555 3556 #endif /* !CONFIG_MEMBARRIER */ 3557 3558 #ifdef CONFIG_SMP 3559 static inline bool is_per_cpu_kthread(struct task_struct *p) 3560 { 3561 if (!(p->flags & PF_KTHREAD)) 3562 return false; 3563 3564 if (p->nr_cpus_allowed != 1) 3565 return false; 3566 3567 return true; 3568 } 3569 #endif 3570 3571 extern void swake_up_all_locked(struct swait_queue_head *q); 3572 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3573 3574 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3575 3576 #ifdef CONFIG_PREEMPT_DYNAMIC 3577 extern int preempt_dynamic_mode; 3578 extern int sched_dynamic_mode(const char *str); 3579 extern void sched_dynamic_update(int mode); 3580 #endif 3581 3582 #ifdef CONFIG_SCHED_MM_CID 3583 3584 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3585 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3586 3587 extern raw_spinlock_t cid_lock; 3588 extern int use_cid_lock; 3589 3590 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3591 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3592 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3593 extern void init_sched_mm_cid(struct task_struct *t); 3594 3595 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3596 { 3597 if (cid < 0) 3598 return; 3599 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3600 } 3601 3602 /* 3603 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3604 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3605 * be held to transition to other states. 3606 * 3607 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3608 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3609 */ 3610 static inline void mm_cid_put_lazy(struct task_struct *t) 3611 { 3612 struct mm_struct *mm = t->mm; 3613 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3614 int cid; 3615 3616 lockdep_assert_irqs_disabled(); 3617 cid = __this_cpu_read(pcpu_cid->cid); 3618 if (!mm_cid_is_lazy_put(cid) || 3619 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3620 return; 3621 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3622 } 3623 3624 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3625 { 3626 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3627 int cid, res; 3628 3629 lockdep_assert_irqs_disabled(); 3630 cid = __this_cpu_read(pcpu_cid->cid); 3631 for (;;) { 3632 if (mm_cid_is_unset(cid)) 3633 return MM_CID_UNSET; 3634 /* 3635 * Attempt transition from valid or lazy-put to unset. 3636 */ 3637 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3638 if (res == cid) 3639 break; 3640 cid = res; 3641 } 3642 return cid; 3643 } 3644 3645 static inline void mm_cid_put(struct mm_struct *mm) 3646 { 3647 int cid; 3648 3649 lockdep_assert_irqs_disabled(); 3650 cid = mm_cid_pcpu_unset(mm); 3651 if (cid == MM_CID_UNSET) 3652 return; 3653 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3654 } 3655 3656 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3657 { 3658 struct cpumask *cidmask = mm_cidmask(mm); 3659 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3660 int cid = __this_cpu_read(pcpu_cid->recent_cid); 3661 3662 /* Try to re-use recent cid. This improves cache locality. */ 3663 if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask)) 3664 return cid; 3665 /* 3666 * Expand cid allocation if the maximum number of concurrency 3667 * IDs allocated (max_nr_cid) is below the number cpus allowed 3668 * and number of threads. Expanding cid allocation as much as 3669 * possible improves cache locality. 3670 */ 3671 cid = atomic_read(&mm->max_nr_cid); 3672 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3673 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3674 continue; 3675 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3676 return cid; 3677 } 3678 /* 3679 * Find the first available concurrency id. 3680 * Retry finding first zero bit if the mask is temporarily 3681 * filled. This only happens during concurrent remote-clear 3682 * which owns a cid without holding a rq lock. 3683 */ 3684 for (;;) { 3685 cid = cpumask_first_zero(cidmask); 3686 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3687 break; 3688 cpu_relax(); 3689 } 3690 if (cpumask_test_and_set_cpu(cid, cidmask)) 3691 return -1; 3692 3693 return cid; 3694 } 3695 3696 /* 3697 * Save a snapshot of the current runqueue time of this cpu 3698 * with the per-cpu cid value, allowing to estimate how recently it was used. 3699 */ 3700 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3701 { 3702 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3703 3704 lockdep_assert_rq_held(rq); 3705 WRITE_ONCE(pcpu_cid->time, rq->clock); 3706 } 3707 3708 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3709 struct mm_struct *mm) 3710 { 3711 int cid; 3712 3713 /* 3714 * All allocations (even those using the cid_lock) are lock-free. If 3715 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3716 * guarantee forward progress. 3717 */ 3718 if (!READ_ONCE(use_cid_lock)) { 3719 cid = __mm_cid_try_get(t, mm); 3720 if (cid >= 0) 3721 goto end; 3722 raw_spin_lock(&cid_lock); 3723 } else { 3724 raw_spin_lock(&cid_lock); 3725 cid = __mm_cid_try_get(t, mm); 3726 if (cid >= 0) 3727 goto unlock; 3728 } 3729 3730 /* 3731 * cid concurrently allocated. Retry while forcing following 3732 * allocations to use the cid_lock to ensure forward progress. 3733 */ 3734 WRITE_ONCE(use_cid_lock, 1); 3735 /* 3736 * Set use_cid_lock before allocation. Only care about program order 3737 * because this is only required for forward progress. 3738 */ 3739 barrier(); 3740 /* 3741 * Retry until it succeeds. It is guaranteed to eventually succeed once 3742 * all newcoming allocations observe the use_cid_lock flag set. 3743 */ 3744 do { 3745 cid = __mm_cid_try_get(t, mm); 3746 cpu_relax(); 3747 } while (cid < 0); 3748 /* 3749 * Allocate before clearing use_cid_lock. Only care about 3750 * program order because this is for forward progress. 3751 */ 3752 barrier(); 3753 WRITE_ONCE(use_cid_lock, 0); 3754 unlock: 3755 raw_spin_unlock(&cid_lock); 3756 end: 3757 mm_cid_snapshot_time(rq, mm); 3758 3759 return cid; 3760 } 3761 3762 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3763 struct mm_struct *mm) 3764 { 3765 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3766 struct cpumask *cpumask; 3767 int cid; 3768 3769 lockdep_assert_rq_held(rq); 3770 cpumask = mm_cidmask(mm); 3771 cid = __this_cpu_read(pcpu_cid->cid); 3772 if (mm_cid_is_valid(cid)) { 3773 mm_cid_snapshot_time(rq, mm); 3774 return cid; 3775 } 3776 if (mm_cid_is_lazy_put(cid)) { 3777 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3778 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3779 } 3780 cid = __mm_cid_get(rq, t, mm); 3781 __this_cpu_write(pcpu_cid->cid, cid); 3782 __this_cpu_write(pcpu_cid->recent_cid, cid); 3783 3784 return cid; 3785 } 3786 3787 static inline void switch_mm_cid(struct rq *rq, 3788 struct task_struct *prev, 3789 struct task_struct *next) 3790 { 3791 /* 3792 * Provide a memory barrier between rq->curr store and load of 3793 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3794 * 3795 * Should be adapted if context_switch() is modified. 3796 */ 3797 if (!next->mm) { // to kernel 3798 /* 3799 * user -> kernel transition does not guarantee a barrier, but 3800 * we can use the fact that it performs an atomic operation in 3801 * mmgrab(). 3802 */ 3803 if (prev->mm) // from user 3804 smp_mb__after_mmgrab(); 3805 /* 3806 * kernel -> kernel transition does not change rq->curr->mm 3807 * state. It stays NULL. 3808 */ 3809 } else { // to user 3810 /* 3811 * kernel -> user transition does not provide a barrier 3812 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3813 * Provide it here. 3814 */ 3815 if (!prev->mm) { // from kernel 3816 smp_mb(); 3817 } else { // from user 3818 /* 3819 * user->user transition relies on an implicit 3820 * memory barrier in switch_mm() when 3821 * current->mm changes. If the architecture 3822 * switch_mm() does not have an implicit memory 3823 * barrier, it is emitted here. If current->mm 3824 * is unchanged, no barrier is needed. 3825 */ 3826 smp_mb__after_switch_mm(); 3827 } 3828 } 3829 if (prev->mm_cid_active) { 3830 mm_cid_snapshot_time(rq, prev->mm); 3831 mm_cid_put_lazy(prev); 3832 prev->mm_cid = -1; 3833 } 3834 if (next->mm_cid_active) 3835 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3836 } 3837 3838 #else /* !CONFIG_SCHED_MM_CID: */ 3839 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3840 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3841 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3842 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3843 static inline void init_sched_mm_cid(struct task_struct *t) { } 3844 #endif /* !CONFIG_SCHED_MM_CID */ 3845 3846 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3847 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3848 #ifdef CONFIG_SMP 3849 static inline 3850 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3851 { 3852 lockdep_assert_rq_held(src_rq); 3853 lockdep_assert_rq_held(dst_rq); 3854 3855 deactivate_task(src_rq, task, 0); 3856 set_task_cpu(task, dst_rq->cpu); 3857 activate_task(dst_rq, task, 0); 3858 } 3859 3860 static inline 3861 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3862 { 3863 if (!task_on_cpu(rq, p) && 3864 cpumask_test_cpu(cpu, &p->cpus_mask)) 3865 return true; 3866 3867 return false; 3868 } 3869 #endif 3870 3871 #ifdef CONFIG_RT_MUTEXES 3872 3873 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3874 { 3875 if (pi_task) 3876 prio = min(prio, pi_task->prio); 3877 3878 return prio; 3879 } 3880 3881 static inline int rt_effective_prio(struct task_struct *p, int prio) 3882 { 3883 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3884 3885 return __rt_effective_prio(pi_task, prio); 3886 } 3887 3888 #else /* !CONFIG_RT_MUTEXES: */ 3889 3890 static inline int rt_effective_prio(struct task_struct *p, int prio) 3891 { 3892 return prio; 3893 } 3894 3895 #endif /* !CONFIG_RT_MUTEXES */ 3896 3897 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3898 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3899 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3900 extern void set_load_weight(struct task_struct *p, bool update_load); 3901 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3902 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3903 3904 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3905 const struct sched_class *prev_class); 3906 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3907 const struct sched_class *prev_class, 3908 int oldprio); 3909 3910 #ifdef CONFIG_SMP 3911 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3912 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3913 #else 3914 3915 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 3916 { 3917 return NULL; 3918 } 3919 3920 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 3921 { 3922 } 3923 3924 #endif 3925 3926 #ifdef CONFIG_SCHED_CLASS_EXT 3927 /* 3928 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3929 * and establish invariants. 3930 */ 3931 struct sched_enq_and_set_ctx { 3932 struct task_struct *p; 3933 int queue_flags; 3934 bool queued; 3935 bool running; 3936 }; 3937 3938 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3939 struct sched_enq_and_set_ctx *ctx); 3940 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3941 3942 #endif /* CONFIG_SCHED_CLASS_EXT */ 3943 3944 #include "ext.h" 3945 3946 #endif /* _KERNEL_SCHED_SCHED_H */ 3947