1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 369 * server when it runs out of tasks to run. 370 * 371 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 372 * returns NULL. 373 * 374 * dl_server_update() -- called from update_curr_common(), propagates runtime 375 * to the server. 376 * 377 * dl_server_start() 378 * dl_server_stop() -- start/stop the server when it has (no) tasks. 379 * 380 * dl_server_init() -- initializes the server. 381 */ 382 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 383 extern void dl_server_start(struct sched_dl_entity *dl_se); 384 extern void dl_server_stop(struct sched_dl_entity *dl_se); 385 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 386 dl_server_has_tasks_f has_tasks, 387 dl_server_pick_f pick_task); 388 389 extern void dl_server_update_idle_time(struct rq *rq, 390 struct task_struct *p); 391 extern void fair_server_init(struct rq *rq); 392 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 393 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 394 u64 runtime, u64 period, bool init); 395 396 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 397 { 398 return dl_se->dl_server_active; 399 } 400 401 #ifdef CONFIG_CGROUP_SCHED 402 403 extern struct list_head task_groups; 404 405 #ifdef CONFIG_CFS_BANDWIDTH 406 extern const u64 max_bw_quota_period_us; 407 408 /* 409 * default period for group bandwidth. 410 * default: 0.1s, units: microseconds 411 */ 412 static inline u64 default_bw_period_us(void) 413 { 414 return 100000ULL; 415 } 416 #endif /* CONFIG_CFS_BANDWIDTH */ 417 418 struct cfs_bandwidth { 419 #ifdef CONFIG_CFS_BANDWIDTH 420 raw_spinlock_t lock; 421 ktime_t period; 422 u64 quota; 423 u64 runtime; 424 u64 burst; 425 u64 runtime_snap; 426 s64 hierarchical_quota; 427 428 u8 idle; 429 u8 period_active; 430 u8 slack_started; 431 struct hrtimer period_timer; 432 struct hrtimer slack_timer; 433 struct list_head throttled_cfs_rq; 434 435 /* Statistics: */ 436 int nr_periods; 437 int nr_throttled; 438 int nr_burst; 439 u64 throttled_time; 440 u64 burst_time; 441 #endif /* CONFIG_CFS_BANDWIDTH */ 442 }; 443 444 /* Task group related information */ 445 struct task_group { 446 struct cgroup_subsys_state css; 447 448 #ifdef CONFIG_GROUP_SCHED_WEIGHT 449 /* A positive value indicates that this is a SCHED_IDLE group. */ 450 int idle; 451 #endif 452 453 #ifdef CONFIG_FAIR_GROUP_SCHED 454 /* schedulable entities of this group on each CPU */ 455 struct sched_entity **se; 456 /* runqueue "owned" by this group on each CPU */ 457 struct cfs_rq **cfs_rq; 458 unsigned long shares; 459 /* 460 * load_avg can be heavily contended at clock tick time, so put 461 * it in its own cache-line separated from the fields above which 462 * will also be accessed at each tick. 463 */ 464 atomic_long_t load_avg ____cacheline_aligned; 465 #endif /* CONFIG_FAIR_GROUP_SCHED */ 466 467 #ifdef CONFIG_RT_GROUP_SCHED 468 struct sched_rt_entity **rt_se; 469 struct rt_rq **rt_rq; 470 471 struct rt_bandwidth rt_bandwidth; 472 #endif 473 474 #ifdef CONFIG_EXT_GROUP_SCHED 475 u32 scx_flags; /* SCX_TG_* */ 476 u32 scx_weight; 477 #endif 478 479 struct rcu_head rcu; 480 struct list_head list; 481 482 struct task_group *parent; 483 struct list_head siblings; 484 struct list_head children; 485 486 #ifdef CONFIG_SCHED_AUTOGROUP 487 struct autogroup *autogroup; 488 #endif 489 490 struct cfs_bandwidth cfs_bandwidth; 491 492 #ifdef CONFIG_UCLAMP_TASK_GROUP 493 /* The two decimal precision [%] value requested from user-space */ 494 unsigned int uclamp_pct[UCLAMP_CNT]; 495 /* Clamp values requested for a task group */ 496 struct uclamp_se uclamp_req[UCLAMP_CNT]; 497 /* Effective clamp values used for a task group */ 498 struct uclamp_se uclamp[UCLAMP_CNT]; 499 #endif 500 501 }; 502 503 #ifdef CONFIG_GROUP_SCHED_WEIGHT 504 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 505 506 /* 507 * A weight of 0 or 1 can cause arithmetics problems. 508 * A weight of a cfs_rq is the sum of weights of which entities 509 * are queued on this cfs_rq, so a weight of a entity should not be 510 * too large, so as the shares value of a task group. 511 * (The default weight is 1024 - so there's no practical 512 * limitation from this.) 513 */ 514 #define MIN_SHARES (1UL << 1) 515 #define MAX_SHARES (1UL << 18) 516 #endif 517 518 typedef int (*tg_visitor)(struct task_group *, void *); 519 520 extern int walk_tg_tree_from(struct task_group *from, 521 tg_visitor down, tg_visitor up, void *data); 522 523 /* 524 * Iterate the full tree, calling @down when first entering a node and @up when 525 * leaving it for the final time. 526 * 527 * Caller must hold rcu_lock or sufficient equivalent. 528 */ 529 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 530 { 531 return walk_tg_tree_from(&root_task_group, down, up, data); 532 } 533 534 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 535 { 536 return css ? container_of(css, struct task_group, css) : NULL; 537 } 538 539 extern int tg_nop(struct task_group *tg, void *data); 540 541 #ifdef CONFIG_FAIR_GROUP_SCHED 542 extern void free_fair_sched_group(struct task_group *tg); 543 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 544 extern void online_fair_sched_group(struct task_group *tg); 545 extern void unregister_fair_sched_group(struct task_group *tg); 546 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 547 static inline void free_fair_sched_group(struct task_group *tg) { } 548 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 549 { 550 return 1; 551 } 552 static inline void online_fair_sched_group(struct task_group *tg) { } 553 static inline void unregister_fair_sched_group(struct task_group *tg) { } 554 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 555 556 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 557 struct sched_entity *se, int cpu, 558 struct sched_entity *parent); 559 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 560 561 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 562 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 563 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 564 extern bool cfs_task_bw_constrained(struct task_struct *p); 565 566 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 567 struct sched_rt_entity *rt_se, int cpu, 568 struct sched_rt_entity *parent); 569 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 570 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 571 extern long sched_group_rt_runtime(struct task_group *tg); 572 extern long sched_group_rt_period(struct task_group *tg); 573 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 574 575 extern struct task_group *sched_create_group(struct task_group *parent); 576 extern void sched_online_group(struct task_group *tg, 577 struct task_group *parent); 578 extern void sched_destroy_group(struct task_group *tg); 579 extern void sched_release_group(struct task_group *tg); 580 581 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 582 583 #ifdef CONFIG_FAIR_GROUP_SCHED 584 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 585 586 extern int sched_group_set_idle(struct task_group *tg, long idle); 587 588 extern void set_task_rq_fair(struct sched_entity *se, 589 struct cfs_rq *prev, struct cfs_rq *next); 590 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 591 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 592 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 593 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 594 595 #else /* !CONFIG_CGROUP_SCHED: */ 596 597 struct cfs_bandwidth { }; 598 599 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 600 601 #endif /* !CONFIG_CGROUP_SCHED */ 602 603 extern void unregister_rt_sched_group(struct task_group *tg); 604 extern void free_rt_sched_group(struct task_group *tg); 605 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 606 607 /* 608 * u64_u32_load/u64_u32_store 609 * 610 * Use a copy of a u64 value to protect against data race. This is only 611 * applicable for 32-bits architectures. 612 */ 613 #ifdef CONFIG_64BIT 614 # define u64_u32_load_copy(var, copy) var 615 # define u64_u32_store_copy(var, copy, val) (var = val) 616 #else 617 # define u64_u32_load_copy(var, copy) \ 618 ({ \ 619 u64 __val, __val_copy; \ 620 do { \ 621 __val_copy = copy; \ 622 /* \ 623 * paired with u64_u32_store_copy(), ordering access \ 624 * to var and copy. \ 625 */ \ 626 smp_rmb(); \ 627 __val = var; \ 628 } while (__val != __val_copy); \ 629 __val; \ 630 }) 631 # define u64_u32_store_copy(var, copy, val) \ 632 do { \ 633 typeof(val) __val = (val); \ 634 var = __val; \ 635 /* \ 636 * paired with u64_u32_load_copy(), ordering access to var and \ 637 * copy. \ 638 */ \ 639 smp_wmb(); \ 640 copy = __val; \ 641 } while (0) 642 #endif 643 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 644 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 645 646 struct balance_callback { 647 struct balance_callback *next; 648 void (*func)(struct rq *rq); 649 }; 650 651 /* CFS-related fields in a runqueue */ 652 struct cfs_rq { 653 struct load_weight load; 654 unsigned int nr_queued; 655 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 656 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 657 unsigned int h_nr_idle; /* SCHED_IDLE */ 658 659 s64 avg_vruntime; 660 u64 avg_load; 661 662 u64 min_vruntime; 663 #ifdef CONFIG_SCHED_CORE 664 unsigned int forceidle_seq; 665 u64 min_vruntime_fi; 666 #endif 667 668 struct rb_root_cached tasks_timeline; 669 670 /* 671 * 'curr' points to currently running entity on this cfs_rq. 672 * It is set to NULL otherwise (i.e when none are currently running). 673 */ 674 struct sched_entity *curr; 675 struct sched_entity *next; 676 677 /* 678 * CFS load tracking 679 */ 680 struct sched_avg avg; 681 #ifndef CONFIG_64BIT 682 u64 last_update_time_copy; 683 #endif 684 struct { 685 raw_spinlock_t lock ____cacheline_aligned; 686 int nr; 687 unsigned long load_avg; 688 unsigned long util_avg; 689 unsigned long runnable_avg; 690 } removed; 691 692 #ifdef CONFIG_FAIR_GROUP_SCHED 693 u64 last_update_tg_load_avg; 694 unsigned long tg_load_avg_contrib; 695 long propagate; 696 long prop_runnable_sum; 697 698 /* 699 * h_load = weight * f(tg) 700 * 701 * Where f(tg) is the recursive weight fraction assigned to 702 * this group. 703 */ 704 unsigned long h_load; 705 u64 last_h_load_update; 706 struct sched_entity *h_load_next; 707 #endif /* CONFIG_FAIR_GROUP_SCHED */ 708 709 #ifdef CONFIG_FAIR_GROUP_SCHED 710 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 711 712 /* 713 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 714 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 715 * (like users, containers etc.) 716 * 717 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 718 * This list is used during load balance. 719 */ 720 int on_list; 721 struct list_head leaf_cfs_rq_list; 722 struct task_group *tg; /* group that "owns" this runqueue */ 723 724 /* Locally cached copy of our task_group's idle value */ 725 int idle; 726 727 #ifdef CONFIG_CFS_BANDWIDTH 728 int runtime_enabled; 729 s64 runtime_remaining; 730 731 u64 throttled_pelt_idle; 732 #ifndef CONFIG_64BIT 733 u64 throttled_pelt_idle_copy; 734 #endif 735 u64 throttled_clock; 736 u64 throttled_clock_pelt; 737 u64 throttled_clock_pelt_time; 738 u64 throttled_clock_self; 739 u64 throttled_clock_self_time; 740 int throttled; 741 int throttle_count; 742 struct list_head throttled_list; 743 struct list_head throttled_csd_list; 744 #endif /* CONFIG_CFS_BANDWIDTH */ 745 #endif /* CONFIG_FAIR_GROUP_SCHED */ 746 }; 747 748 #ifdef CONFIG_SCHED_CLASS_EXT 749 /* scx_rq->flags, protected by the rq lock */ 750 enum scx_rq_flags { 751 /* 752 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 753 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 754 * only while the BPF scheduler considers the CPU to be online. 755 */ 756 SCX_RQ_ONLINE = 1 << 0, 757 SCX_RQ_CAN_STOP_TICK = 1 << 1, 758 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 759 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 760 SCX_RQ_BYPASSING = 1 << 4, 761 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 762 763 SCX_RQ_IN_WAKEUP = 1 << 16, 764 SCX_RQ_IN_BALANCE = 1 << 17, 765 }; 766 767 struct scx_rq { 768 struct scx_dispatch_q local_dsq; 769 struct list_head runnable_list; /* runnable tasks on this rq */ 770 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 771 unsigned long ops_qseq; 772 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 773 u32 nr_running; 774 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 775 bool cpu_released; 776 u32 flags; 777 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 778 cpumask_var_t cpus_to_kick; 779 cpumask_var_t cpus_to_kick_if_idle; 780 cpumask_var_t cpus_to_preempt; 781 cpumask_var_t cpus_to_wait; 782 unsigned long pnt_seq; 783 struct balance_callback deferred_bal_cb; 784 struct irq_work deferred_irq_work; 785 struct irq_work kick_cpus_irq_work; 786 }; 787 #endif /* CONFIG_SCHED_CLASS_EXT */ 788 789 static inline int rt_bandwidth_enabled(void) 790 { 791 return sysctl_sched_rt_runtime >= 0; 792 } 793 794 /* RT IPI pull logic requires IRQ_WORK */ 795 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 796 # define HAVE_RT_PUSH_IPI 797 #endif 798 799 /* Real-Time classes' related field in a runqueue: */ 800 struct rt_rq { 801 struct rt_prio_array active; 802 unsigned int rt_nr_running; 803 unsigned int rr_nr_running; 804 struct { 805 int curr; /* highest queued rt task prio */ 806 int next; /* next highest */ 807 } highest_prio; 808 bool overloaded; 809 struct plist_head pushable_tasks; 810 811 int rt_queued; 812 813 #ifdef CONFIG_RT_GROUP_SCHED 814 int rt_throttled; 815 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 816 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 817 /* Nests inside the rq lock: */ 818 raw_spinlock_t rt_runtime_lock; 819 820 unsigned int rt_nr_boosted; 821 822 struct rq *rq; /* this is always top-level rq, cache? */ 823 #endif 824 #ifdef CONFIG_CGROUP_SCHED 825 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 826 #endif 827 }; 828 829 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 830 { 831 return rt_rq->rt_queued && rt_rq->rt_nr_running; 832 } 833 834 /* Deadline class' related fields in a runqueue */ 835 struct dl_rq { 836 /* runqueue is an rbtree, ordered by deadline */ 837 struct rb_root_cached root; 838 839 unsigned int dl_nr_running; 840 841 /* 842 * Deadline values of the currently executing and the 843 * earliest ready task on this rq. Caching these facilitates 844 * the decision whether or not a ready but not running task 845 * should migrate somewhere else. 846 */ 847 struct { 848 u64 curr; 849 u64 next; 850 } earliest_dl; 851 852 bool overloaded; 853 854 /* 855 * Tasks on this rq that can be pushed away. They are kept in 856 * an rb-tree, ordered by tasks' deadlines, with caching 857 * of the leftmost (earliest deadline) element. 858 */ 859 struct rb_root_cached pushable_dl_tasks_root; 860 861 /* 862 * "Active utilization" for this runqueue: increased when a 863 * task wakes up (becomes TASK_RUNNING) and decreased when a 864 * task blocks 865 */ 866 u64 running_bw; 867 868 /* 869 * Utilization of the tasks "assigned" to this runqueue (including 870 * the tasks that are in runqueue and the tasks that executed on this 871 * CPU and blocked). Increased when a task moves to this runqueue, and 872 * decreased when the task moves away (migrates, changes scheduling 873 * policy, or terminates). 874 * This is needed to compute the "inactive utilization" for the 875 * runqueue (inactive utilization = this_bw - running_bw). 876 */ 877 u64 this_bw; 878 u64 extra_bw; 879 880 /* 881 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 882 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 883 */ 884 u64 max_bw; 885 886 /* 887 * Inverse of the fraction of CPU utilization that can be reclaimed 888 * by the GRUB algorithm. 889 */ 890 u64 bw_ratio; 891 }; 892 893 #ifdef CONFIG_FAIR_GROUP_SCHED 894 895 /* An entity is a task if it doesn't "own" a runqueue */ 896 #define entity_is_task(se) (!se->my_q) 897 898 static inline void se_update_runnable(struct sched_entity *se) 899 { 900 if (!entity_is_task(se)) 901 se->runnable_weight = se->my_q->h_nr_runnable; 902 } 903 904 static inline long se_runnable(struct sched_entity *se) 905 { 906 if (se->sched_delayed) 907 return false; 908 909 if (entity_is_task(se)) 910 return !!se->on_rq; 911 else 912 return se->runnable_weight; 913 } 914 915 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 916 917 #define entity_is_task(se) 1 918 919 static inline void se_update_runnable(struct sched_entity *se) { } 920 921 static inline long se_runnable(struct sched_entity *se) 922 { 923 if (se->sched_delayed) 924 return false; 925 926 return !!se->on_rq; 927 } 928 929 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 930 931 /* 932 * XXX we want to get rid of these helpers and use the full load resolution. 933 */ 934 static inline long se_weight(struct sched_entity *se) 935 { 936 return scale_load_down(se->load.weight); 937 } 938 939 940 static inline bool sched_asym_prefer(int a, int b) 941 { 942 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 943 } 944 945 struct perf_domain { 946 struct em_perf_domain *em_pd; 947 struct perf_domain *next; 948 struct rcu_head rcu; 949 }; 950 951 /* 952 * We add the notion of a root-domain which will be used to define per-domain 953 * variables. Each exclusive cpuset essentially defines an island domain by 954 * fully partitioning the member CPUs from any other cpuset. Whenever a new 955 * exclusive cpuset is created, we also create and attach a new root-domain 956 * object. 957 * 958 */ 959 struct root_domain { 960 atomic_t refcount; 961 atomic_t rto_count; 962 struct rcu_head rcu; 963 cpumask_var_t span; 964 cpumask_var_t online; 965 966 /* 967 * Indicate pullable load on at least one CPU, e.g: 968 * - More than one runnable task 969 * - Running task is misfit 970 */ 971 bool overloaded; 972 973 /* Indicate one or more CPUs over-utilized (tipping point) */ 974 bool overutilized; 975 976 /* 977 * The bit corresponding to a CPU gets set here if such CPU has more 978 * than one runnable -deadline task (as it is below for RT tasks). 979 */ 980 cpumask_var_t dlo_mask; 981 atomic_t dlo_count; 982 struct dl_bw dl_bw; 983 struct cpudl cpudl; 984 985 /* 986 * Indicate whether a root_domain's dl_bw has been checked or 987 * updated. It's monotonously increasing value. 988 * 989 * Also, some corner cases, like 'wrap around' is dangerous, but given 990 * that u64 is 'big enough'. So that shouldn't be a concern. 991 */ 992 u64 visit_cookie; 993 994 #ifdef HAVE_RT_PUSH_IPI 995 /* 996 * For IPI pull requests, loop across the rto_mask. 997 */ 998 struct irq_work rto_push_work; 999 raw_spinlock_t rto_lock; 1000 /* These are only updated and read within rto_lock */ 1001 int rto_loop; 1002 int rto_cpu; 1003 /* These atomics are updated outside of a lock */ 1004 atomic_t rto_loop_next; 1005 atomic_t rto_loop_start; 1006 #endif /* HAVE_RT_PUSH_IPI */ 1007 /* 1008 * The "RT overload" flag: it gets set if a CPU has more than 1009 * one runnable RT task. 1010 */ 1011 cpumask_var_t rto_mask; 1012 struct cpupri cpupri; 1013 1014 /* 1015 * NULL-terminated list of performance domains intersecting with the 1016 * CPUs of the rd. Protected by RCU. 1017 */ 1018 struct perf_domain __rcu *pd; 1019 }; 1020 1021 extern void init_defrootdomain(void); 1022 extern int sched_init_domains(const struct cpumask *cpu_map); 1023 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1024 extern void sched_get_rd(struct root_domain *rd); 1025 extern void sched_put_rd(struct root_domain *rd); 1026 1027 static inline int get_rd_overloaded(struct root_domain *rd) 1028 { 1029 return READ_ONCE(rd->overloaded); 1030 } 1031 1032 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1033 { 1034 if (get_rd_overloaded(rd) != status) 1035 WRITE_ONCE(rd->overloaded, status); 1036 } 1037 1038 #ifdef HAVE_RT_PUSH_IPI 1039 extern void rto_push_irq_work_func(struct irq_work *work); 1040 #endif 1041 1042 #ifdef CONFIG_UCLAMP_TASK 1043 /* 1044 * struct uclamp_bucket - Utilization clamp bucket 1045 * @value: utilization clamp value for tasks on this clamp bucket 1046 * @tasks: number of RUNNABLE tasks on this clamp bucket 1047 * 1048 * Keep track of how many tasks are RUNNABLE for a given utilization 1049 * clamp value. 1050 */ 1051 struct uclamp_bucket { 1052 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1053 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1054 }; 1055 1056 /* 1057 * struct uclamp_rq - rq's utilization clamp 1058 * @value: currently active clamp values for a rq 1059 * @bucket: utilization clamp buckets affecting a rq 1060 * 1061 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1062 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1063 * (or actually running) with that value. 1064 * 1065 * There are up to UCLAMP_CNT possible different clamp values, currently there 1066 * are only two: minimum utilization and maximum utilization. 1067 * 1068 * All utilization clamping values are MAX aggregated, since: 1069 * - for util_min: we want to run the CPU at least at the max of the minimum 1070 * utilization required by its currently RUNNABLE tasks. 1071 * - for util_max: we want to allow the CPU to run up to the max of the 1072 * maximum utilization allowed by its currently RUNNABLE tasks. 1073 * 1074 * Since on each system we expect only a limited number of different 1075 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1076 * the metrics required to compute all the per-rq utilization clamp values. 1077 */ 1078 struct uclamp_rq { 1079 unsigned int value; 1080 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1081 }; 1082 1083 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1084 #endif /* CONFIG_UCLAMP_TASK */ 1085 1086 /* 1087 * This is the main, per-CPU runqueue data structure. 1088 * 1089 * Locking rule: those places that want to lock multiple runqueues 1090 * (such as the load balancing or the thread migration code), lock 1091 * acquire operations must be ordered by ascending &runqueue. 1092 */ 1093 struct rq { 1094 /* runqueue lock: */ 1095 raw_spinlock_t __lock; 1096 1097 unsigned int nr_running; 1098 #ifdef CONFIG_NUMA_BALANCING 1099 unsigned int nr_numa_running; 1100 unsigned int nr_preferred_running; 1101 unsigned int numa_migrate_on; 1102 #endif 1103 #ifdef CONFIG_NO_HZ_COMMON 1104 unsigned long last_blocked_load_update_tick; 1105 unsigned int has_blocked_load; 1106 call_single_data_t nohz_csd; 1107 unsigned int nohz_tick_stopped; 1108 atomic_t nohz_flags; 1109 #endif /* CONFIG_NO_HZ_COMMON */ 1110 1111 unsigned int ttwu_pending; 1112 u64 nr_switches; 1113 1114 #ifdef CONFIG_UCLAMP_TASK 1115 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1116 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1117 unsigned int uclamp_flags; 1118 #define UCLAMP_FLAG_IDLE 0x01 1119 #endif 1120 1121 struct cfs_rq cfs; 1122 struct rt_rq rt; 1123 struct dl_rq dl; 1124 #ifdef CONFIG_SCHED_CLASS_EXT 1125 struct scx_rq scx; 1126 #endif 1127 1128 struct sched_dl_entity fair_server; 1129 1130 #ifdef CONFIG_FAIR_GROUP_SCHED 1131 /* list of leaf cfs_rq on this CPU: */ 1132 struct list_head leaf_cfs_rq_list; 1133 struct list_head *tmp_alone_branch; 1134 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1135 1136 /* 1137 * This is part of a global counter where only the total sum 1138 * over all CPUs matters. A task can increase this counter on 1139 * one CPU and if it got migrated afterwards it may decrease 1140 * it on another CPU. Always updated under the runqueue lock: 1141 */ 1142 unsigned int nr_uninterruptible; 1143 1144 union { 1145 struct task_struct __rcu *donor; /* Scheduler context */ 1146 struct task_struct __rcu *curr; /* Execution context */ 1147 }; 1148 struct sched_dl_entity *dl_server; 1149 struct task_struct *idle; 1150 struct task_struct *stop; 1151 unsigned long next_balance; 1152 struct mm_struct *prev_mm; 1153 1154 unsigned int clock_update_flags; 1155 u64 clock; 1156 /* Ensure that all clocks are in the same cache line */ 1157 u64 clock_task ____cacheline_aligned; 1158 u64 clock_pelt; 1159 unsigned long lost_idle_time; 1160 u64 clock_pelt_idle; 1161 u64 clock_idle; 1162 #ifndef CONFIG_64BIT 1163 u64 clock_pelt_idle_copy; 1164 u64 clock_idle_copy; 1165 #endif 1166 1167 atomic_t nr_iowait; 1168 1169 u64 last_seen_need_resched_ns; 1170 int ticks_without_resched; 1171 1172 #ifdef CONFIG_MEMBARRIER 1173 int membarrier_state; 1174 #endif 1175 1176 struct root_domain *rd; 1177 struct sched_domain __rcu *sd; 1178 1179 unsigned long cpu_capacity; 1180 1181 struct balance_callback *balance_callback; 1182 1183 unsigned char nohz_idle_balance; 1184 unsigned char idle_balance; 1185 1186 unsigned long misfit_task_load; 1187 1188 /* For active balancing */ 1189 int active_balance; 1190 int push_cpu; 1191 struct cpu_stop_work active_balance_work; 1192 1193 /* CPU of this runqueue: */ 1194 int cpu; 1195 int online; 1196 1197 struct list_head cfs_tasks; 1198 1199 struct sched_avg avg_rt; 1200 struct sched_avg avg_dl; 1201 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1202 struct sched_avg avg_irq; 1203 #endif 1204 #ifdef CONFIG_SCHED_HW_PRESSURE 1205 struct sched_avg avg_hw; 1206 #endif 1207 u64 idle_stamp; 1208 u64 avg_idle; 1209 1210 /* This is used to determine avg_idle's max value */ 1211 u64 max_idle_balance_cost; 1212 1213 #ifdef CONFIG_HOTPLUG_CPU 1214 struct rcuwait hotplug_wait; 1215 #endif 1216 1217 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1218 u64 prev_irq_time; 1219 u64 psi_irq_time; 1220 #endif 1221 #ifdef CONFIG_PARAVIRT 1222 u64 prev_steal_time; 1223 #endif 1224 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1225 u64 prev_steal_time_rq; 1226 #endif 1227 1228 /* calc_load related fields */ 1229 unsigned long calc_load_update; 1230 long calc_load_active; 1231 1232 #ifdef CONFIG_SCHED_HRTICK 1233 call_single_data_t hrtick_csd; 1234 struct hrtimer hrtick_timer; 1235 ktime_t hrtick_time; 1236 #endif 1237 1238 #ifdef CONFIG_SCHEDSTATS 1239 /* latency stats */ 1240 struct sched_info rq_sched_info; 1241 unsigned long long rq_cpu_time; 1242 1243 /* sys_sched_yield() stats */ 1244 unsigned int yld_count; 1245 1246 /* schedule() stats */ 1247 unsigned int sched_count; 1248 unsigned int sched_goidle; 1249 1250 /* try_to_wake_up() stats */ 1251 unsigned int ttwu_count; 1252 unsigned int ttwu_local; 1253 #endif 1254 1255 #ifdef CONFIG_CPU_IDLE 1256 /* Must be inspected within a RCU lock section */ 1257 struct cpuidle_state *idle_state; 1258 #endif 1259 1260 unsigned int nr_pinned; 1261 unsigned int push_busy; 1262 struct cpu_stop_work push_work; 1263 1264 #ifdef CONFIG_SCHED_CORE 1265 /* per rq */ 1266 struct rq *core; 1267 struct task_struct *core_pick; 1268 struct sched_dl_entity *core_dl_server; 1269 unsigned int core_enabled; 1270 unsigned int core_sched_seq; 1271 struct rb_root core_tree; 1272 1273 /* shared state -- careful with sched_core_cpu_deactivate() */ 1274 unsigned int core_task_seq; 1275 unsigned int core_pick_seq; 1276 unsigned long core_cookie; 1277 unsigned int core_forceidle_count; 1278 unsigned int core_forceidle_seq; 1279 unsigned int core_forceidle_occupation; 1280 u64 core_forceidle_start; 1281 #endif /* CONFIG_SCHED_CORE */ 1282 1283 /* Scratch cpumask to be temporarily used under rq_lock */ 1284 cpumask_var_t scratch_mask; 1285 1286 #ifdef CONFIG_CFS_BANDWIDTH 1287 call_single_data_t cfsb_csd; 1288 struct list_head cfsb_csd_list; 1289 #endif 1290 }; 1291 1292 #ifdef CONFIG_FAIR_GROUP_SCHED 1293 1294 /* CPU runqueue to which this cfs_rq is attached */ 1295 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1296 { 1297 return cfs_rq->rq; 1298 } 1299 1300 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1301 1302 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1303 { 1304 return container_of(cfs_rq, struct rq, cfs); 1305 } 1306 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1307 1308 static inline int cpu_of(struct rq *rq) 1309 { 1310 return rq->cpu; 1311 } 1312 1313 #define MDF_PUSH 0x01 1314 1315 static inline bool is_migration_disabled(struct task_struct *p) 1316 { 1317 return p->migration_disabled; 1318 } 1319 1320 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1321 1322 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1323 #define this_rq() this_cpu_ptr(&runqueues) 1324 #define task_rq(p) cpu_rq(task_cpu(p)) 1325 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1326 #define raw_rq() raw_cpu_ptr(&runqueues) 1327 1328 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1329 { 1330 /* Do nothing */ 1331 } 1332 1333 #ifdef CONFIG_SCHED_CORE 1334 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1335 1336 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1337 1338 static inline bool sched_core_enabled(struct rq *rq) 1339 { 1340 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1341 } 1342 1343 static inline bool sched_core_disabled(void) 1344 { 1345 return !static_branch_unlikely(&__sched_core_enabled); 1346 } 1347 1348 /* 1349 * Be careful with this function; not for general use. The return value isn't 1350 * stable unless you actually hold a relevant rq->__lock. 1351 */ 1352 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1353 { 1354 if (sched_core_enabled(rq)) 1355 return &rq->core->__lock; 1356 1357 return &rq->__lock; 1358 } 1359 1360 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1361 { 1362 if (rq->core_enabled) 1363 return &rq->core->__lock; 1364 1365 return &rq->__lock; 1366 } 1367 1368 extern bool 1369 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1370 1371 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1372 1373 /* 1374 * Helpers to check if the CPU's core cookie matches with the task's cookie 1375 * when core scheduling is enabled. 1376 * A special case is that the task's cookie always matches with CPU's core 1377 * cookie if the CPU is in an idle core. 1378 */ 1379 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1380 { 1381 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1382 if (!sched_core_enabled(rq)) 1383 return true; 1384 1385 return rq->core->core_cookie == p->core_cookie; 1386 } 1387 1388 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1389 { 1390 bool idle_core = true; 1391 int cpu; 1392 1393 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1394 if (!sched_core_enabled(rq)) 1395 return true; 1396 1397 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1398 if (!available_idle_cpu(cpu)) { 1399 idle_core = false; 1400 break; 1401 } 1402 } 1403 1404 /* 1405 * A CPU in an idle core is always the best choice for tasks with 1406 * cookies. 1407 */ 1408 return idle_core || rq->core->core_cookie == p->core_cookie; 1409 } 1410 1411 static inline bool sched_group_cookie_match(struct rq *rq, 1412 struct task_struct *p, 1413 struct sched_group *group) 1414 { 1415 int cpu; 1416 1417 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1418 if (!sched_core_enabled(rq)) 1419 return true; 1420 1421 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1422 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1423 return true; 1424 } 1425 return false; 1426 } 1427 1428 static inline bool sched_core_enqueued(struct task_struct *p) 1429 { 1430 return !RB_EMPTY_NODE(&p->core_node); 1431 } 1432 1433 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1434 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1435 1436 extern void sched_core_get(void); 1437 extern void sched_core_put(void); 1438 1439 #else /* !CONFIG_SCHED_CORE: */ 1440 1441 static inline bool sched_core_enabled(struct rq *rq) 1442 { 1443 return false; 1444 } 1445 1446 static inline bool sched_core_disabled(void) 1447 { 1448 return true; 1449 } 1450 1451 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1452 { 1453 return &rq->__lock; 1454 } 1455 1456 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1457 { 1458 return &rq->__lock; 1459 } 1460 1461 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1462 { 1463 return true; 1464 } 1465 1466 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1467 { 1468 return true; 1469 } 1470 1471 static inline bool sched_group_cookie_match(struct rq *rq, 1472 struct task_struct *p, 1473 struct sched_group *group) 1474 { 1475 return true; 1476 } 1477 1478 #endif /* !CONFIG_SCHED_CORE */ 1479 1480 #ifdef CONFIG_RT_GROUP_SCHED 1481 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1482 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1483 static inline bool rt_group_sched_enabled(void) 1484 { 1485 return static_branch_unlikely(&rt_group_sched); 1486 } 1487 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1488 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1489 static inline bool rt_group_sched_enabled(void) 1490 { 1491 return static_branch_likely(&rt_group_sched); 1492 } 1493 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1494 #else /* !CONFIG_RT_GROUP_SCHED: */ 1495 # define rt_group_sched_enabled() false 1496 #endif /* !CONFIG_RT_GROUP_SCHED */ 1497 1498 static inline void lockdep_assert_rq_held(struct rq *rq) 1499 { 1500 lockdep_assert_held(__rq_lockp(rq)); 1501 } 1502 1503 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1504 extern bool raw_spin_rq_trylock(struct rq *rq); 1505 extern void raw_spin_rq_unlock(struct rq *rq); 1506 1507 static inline void raw_spin_rq_lock(struct rq *rq) 1508 { 1509 raw_spin_rq_lock_nested(rq, 0); 1510 } 1511 1512 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1513 { 1514 local_irq_disable(); 1515 raw_spin_rq_lock(rq); 1516 } 1517 1518 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1519 { 1520 raw_spin_rq_unlock(rq); 1521 local_irq_enable(); 1522 } 1523 1524 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1525 { 1526 unsigned long flags; 1527 1528 local_irq_save(flags); 1529 raw_spin_rq_lock(rq); 1530 1531 return flags; 1532 } 1533 1534 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1535 { 1536 raw_spin_rq_unlock(rq); 1537 local_irq_restore(flags); 1538 } 1539 1540 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1541 do { \ 1542 flags = _raw_spin_rq_lock_irqsave(rq); \ 1543 } while (0) 1544 1545 #ifdef CONFIG_SCHED_SMT 1546 extern void __update_idle_core(struct rq *rq); 1547 1548 static inline void update_idle_core(struct rq *rq) 1549 { 1550 if (static_branch_unlikely(&sched_smt_present)) 1551 __update_idle_core(rq); 1552 } 1553 1554 #else /* !CONFIG_SCHED_SMT: */ 1555 static inline void update_idle_core(struct rq *rq) { } 1556 #endif /* !CONFIG_SCHED_SMT */ 1557 1558 #ifdef CONFIG_FAIR_GROUP_SCHED 1559 1560 static inline struct task_struct *task_of(struct sched_entity *se) 1561 { 1562 WARN_ON_ONCE(!entity_is_task(se)); 1563 return container_of(se, struct task_struct, se); 1564 } 1565 1566 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1567 { 1568 return p->se.cfs_rq; 1569 } 1570 1571 /* runqueue on which this entity is (to be) queued */ 1572 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1573 { 1574 return se->cfs_rq; 1575 } 1576 1577 /* runqueue "owned" by this group */ 1578 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1579 { 1580 return grp->my_q; 1581 } 1582 1583 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1584 1585 #define task_of(_se) container_of(_se, struct task_struct, se) 1586 1587 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1588 { 1589 return &task_rq(p)->cfs; 1590 } 1591 1592 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1593 { 1594 const struct task_struct *p = task_of(se); 1595 struct rq *rq = task_rq(p); 1596 1597 return &rq->cfs; 1598 } 1599 1600 /* runqueue "owned" by this group */ 1601 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1602 { 1603 return NULL; 1604 } 1605 1606 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1607 1608 extern void update_rq_clock(struct rq *rq); 1609 1610 /* 1611 * rq::clock_update_flags bits 1612 * 1613 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1614 * call to __schedule(). This is an optimisation to avoid 1615 * neighbouring rq clock updates. 1616 * 1617 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1618 * in effect and calls to update_rq_clock() are being ignored. 1619 * 1620 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1621 * made to update_rq_clock() since the last time rq::lock was pinned. 1622 * 1623 * If inside of __schedule(), clock_update_flags will have been 1624 * shifted left (a left shift is a cheap operation for the fast path 1625 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1626 * 1627 * if (rq-clock_update_flags >= RQCF_UPDATED) 1628 * 1629 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1630 * one position though, because the next rq_unpin_lock() will shift it 1631 * back. 1632 */ 1633 #define RQCF_REQ_SKIP 0x01 1634 #define RQCF_ACT_SKIP 0x02 1635 #define RQCF_UPDATED 0x04 1636 1637 static inline void assert_clock_updated(struct rq *rq) 1638 { 1639 /* 1640 * The only reason for not seeing a clock update since the 1641 * last rq_pin_lock() is if we're currently skipping updates. 1642 */ 1643 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1644 } 1645 1646 static inline u64 rq_clock(struct rq *rq) 1647 { 1648 lockdep_assert_rq_held(rq); 1649 assert_clock_updated(rq); 1650 1651 return rq->clock; 1652 } 1653 1654 static inline u64 rq_clock_task(struct rq *rq) 1655 { 1656 lockdep_assert_rq_held(rq); 1657 assert_clock_updated(rq); 1658 1659 return rq->clock_task; 1660 } 1661 1662 static inline void rq_clock_skip_update(struct rq *rq) 1663 { 1664 lockdep_assert_rq_held(rq); 1665 rq->clock_update_flags |= RQCF_REQ_SKIP; 1666 } 1667 1668 /* 1669 * See rt task throttling, which is the only time a skip 1670 * request is canceled. 1671 */ 1672 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1673 { 1674 lockdep_assert_rq_held(rq); 1675 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1676 } 1677 1678 /* 1679 * During cpu offlining and rq wide unthrottling, we can trigger 1680 * an update_rq_clock() for several cfs and rt runqueues (Typically 1681 * when using list_for_each_entry_*) 1682 * rq_clock_start_loop_update() can be called after updating the clock 1683 * once and before iterating over the list to prevent multiple update. 1684 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1685 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1686 */ 1687 static inline void rq_clock_start_loop_update(struct rq *rq) 1688 { 1689 lockdep_assert_rq_held(rq); 1690 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1691 rq->clock_update_flags |= RQCF_ACT_SKIP; 1692 } 1693 1694 static inline void rq_clock_stop_loop_update(struct rq *rq) 1695 { 1696 lockdep_assert_rq_held(rq); 1697 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1698 } 1699 1700 struct rq_flags { 1701 unsigned long flags; 1702 struct pin_cookie cookie; 1703 /* 1704 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1705 * current pin context is stashed here in case it needs to be 1706 * restored in rq_repin_lock(). 1707 */ 1708 unsigned int clock_update_flags; 1709 }; 1710 1711 extern struct balance_callback balance_push_callback; 1712 1713 #ifdef CONFIG_SCHED_CLASS_EXT 1714 extern const struct sched_class ext_sched_class; 1715 1716 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1717 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1718 1719 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1720 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1721 1722 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1723 { 1724 if (!scx_enabled()) 1725 return; 1726 WRITE_ONCE(rq->scx.clock, clock); 1727 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1728 } 1729 1730 static inline void scx_rq_clock_invalidate(struct rq *rq) 1731 { 1732 if (!scx_enabled()) 1733 return; 1734 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1735 } 1736 1737 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1738 #define scx_enabled() false 1739 #define scx_switched_all() false 1740 1741 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1742 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1743 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1744 1745 /* 1746 * Lockdep annotation that avoids accidental unlocks; it's like a 1747 * sticky/continuous lockdep_assert_held(). 1748 * 1749 * This avoids code that has access to 'struct rq *rq' (basically everything in 1750 * the scheduler) from accidentally unlocking the rq if they do not also have a 1751 * copy of the (on-stack) 'struct rq_flags rf'. 1752 * 1753 * Also see Documentation/locking/lockdep-design.rst. 1754 */ 1755 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1756 { 1757 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1758 1759 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1760 rf->clock_update_flags = 0; 1761 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1762 } 1763 1764 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1765 { 1766 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1767 rf->clock_update_flags = RQCF_UPDATED; 1768 1769 scx_rq_clock_invalidate(rq); 1770 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1771 } 1772 1773 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1774 { 1775 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1776 1777 /* 1778 * Restore the value we stashed in @rf for this pin context. 1779 */ 1780 rq->clock_update_flags |= rf->clock_update_flags; 1781 } 1782 1783 extern 1784 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1785 __acquires(rq->lock); 1786 1787 extern 1788 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1789 __acquires(p->pi_lock) 1790 __acquires(rq->lock); 1791 1792 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1793 __releases(rq->lock) 1794 { 1795 rq_unpin_lock(rq, rf); 1796 raw_spin_rq_unlock(rq); 1797 } 1798 1799 static inline void 1800 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1801 __releases(rq->lock) 1802 __releases(p->pi_lock) 1803 { 1804 rq_unpin_lock(rq, rf); 1805 raw_spin_rq_unlock(rq); 1806 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1807 } 1808 1809 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1810 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1811 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1812 struct rq *rq; struct rq_flags rf) 1813 1814 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1815 __acquires(rq->lock) 1816 { 1817 raw_spin_rq_lock_irqsave(rq, rf->flags); 1818 rq_pin_lock(rq, rf); 1819 } 1820 1821 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1822 __acquires(rq->lock) 1823 { 1824 raw_spin_rq_lock_irq(rq); 1825 rq_pin_lock(rq, rf); 1826 } 1827 1828 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1829 __acquires(rq->lock) 1830 { 1831 raw_spin_rq_lock(rq); 1832 rq_pin_lock(rq, rf); 1833 } 1834 1835 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1836 __releases(rq->lock) 1837 { 1838 rq_unpin_lock(rq, rf); 1839 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1840 } 1841 1842 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1843 __releases(rq->lock) 1844 { 1845 rq_unpin_lock(rq, rf); 1846 raw_spin_rq_unlock_irq(rq); 1847 } 1848 1849 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1850 __releases(rq->lock) 1851 { 1852 rq_unpin_lock(rq, rf); 1853 raw_spin_rq_unlock(rq); 1854 } 1855 1856 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1857 rq_lock(_T->lock, &_T->rf), 1858 rq_unlock(_T->lock, &_T->rf), 1859 struct rq_flags rf) 1860 1861 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1862 rq_lock_irq(_T->lock, &_T->rf), 1863 rq_unlock_irq(_T->lock, &_T->rf), 1864 struct rq_flags rf) 1865 1866 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1867 rq_lock_irqsave(_T->lock, &_T->rf), 1868 rq_unlock_irqrestore(_T->lock, &_T->rf), 1869 struct rq_flags rf) 1870 1871 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1872 __acquires(rq->lock) 1873 { 1874 struct rq *rq; 1875 1876 local_irq_disable(); 1877 rq = this_rq(); 1878 rq_lock(rq, rf); 1879 1880 return rq; 1881 } 1882 1883 #ifdef CONFIG_NUMA 1884 1885 enum numa_topology_type { 1886 NUMA_DIRECT, 1887 NUMA_GLUELESS_MESH, 1888 NUMA_BACKPLANE, 1889 }; 1890 1891 extern enum numa_topology_type sched_numa_topology_type; 1892 extern int sched_max_numa_distance; 1893 extern bool find_numa_distance(int distance); 1894 extern void sched_init_numa(int offline_node); 1895 extern void sched_update_numa(int cpu, bool online); 1896 extern void sched_domains_numa_masks_set(unsigned int cpu); 1897 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1898 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1899 1900 #else /* !CONFIG_NUMA: */ 1901 1902 static inline void sched_init_numa(int offline_node) { } 1903 static inline void sched_update_numa(int cpu, bool online) { } 1904 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1905 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1906 1907 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1908 { 1909 return nr_cpu_ids; 1910 } 1911 1912 #endif /* !CONFIG_NUMA */ 1913 1914 #ifdef CONFIG_NUMA_BALANCING 1915 1916 /* The regions in numa_faults array from task_struct */ 1917 enum numa_faults_stats { 1918 NUMA_MEM = 0, 1919 NUMA_CPU, 1920 NUMA_MEMBUF, 1921 NUMA_CPUBUF 1922 }; 1923 1924 extern void sched_setnuma(struct task_struct *p, int node); 1925 extern int migrate_task_to(struct task_struct *p, int cpu); 1926 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1927 int cpu, int scpu); 1928 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1929 1930 #else /* !CONFIG_NUMA_BALANCING: */ 1931 1932 static inline void 1933 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1934 { 1935 } 1936 1937 #endif /* !CONFIG_NUMA_BALANCING */ 1938 1939 static inline void 1940 queue_balance_callback(struct rq *rq, 1941 struct balance_callback *head, 1942 void (*func)(struct rq *rq)) 1943 { 1944 lockdep_assert_rq_held(rq); 1945 1946 /* 1947 * Don't (re)queue an already queued item; nor queue anything when 1948 * balance_push() is active, see the comment with 1949 * balance_push_callback. 1950 */ 1951 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1952 return; 1953 1954 head->func = func; 1955 head->next = rq->balance_callback; 1956 rq->balance_callback = head; 1957 } 1958 1959 #define rcu_dereference_check_sched_domain(p) \ 1960 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1961 1962 /* 1963 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1964 * See destroy_sched_domains: call_rcu for details. 1965 * 1966 * The domain tree of any CPU may only be accessed from within 1967 * preempt-disabled sections. 1968 */ 1969 #define for_each_domain(cpu, __sd) \ 1970 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1971 __sd; __sd = __sd->parent) 1972 1973 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1974 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1975 static const unsigned int SD_SHARED_CHILD_MASK = 1976 #include <linux/sched/sd_flags.h> 1977 0; 1978 #undef SD_FLAG 1979 1980 /** 1981 * highest_flag_domain - Return highest sched_domain containing flag. 1982 * @cpu: The CPU whose highest level of sched domain is to 1983 * be returned. 1984 * @flag: The flag to check for the highest sched_domain 1985 * for the given CPU. 1986 * 1987 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1988 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1989 */ 1990 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1991 { 1992 struct sched_domain *sd, *hsd = NULL; 1993 1994 for_each_domain(cpu, sd) { 1995 if (sd->flags & flag) { 1996 hsd = sd; 1997 continue; 1998 } 1999 2000 /* 2001 * Stop the search if @flag is known to be shared at lower 2002 * levels. It will not be found further up. 2003 */ 2004 if (flag & SD_SHARED_CHILD_MASK) 2005 break; 2006 } 2007 2008 return hsd; 2009 } 2010 2011 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2012 { 2013 struct sched_domain *sd; 2014 2015 for_each_domain(cpu, sd) { 2016 if (sd->flags & flag) 2017 break; 2018 } 2019 2020 return sd; 2021 } 2022 2023 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2024 DECLARE_PER_CPU(int, sd_llc_size); 2025 DECLARE_PER_CPU(int, sd_llc_id); 2026 DECLARE_PER_CPU(int, sd_share_id); 2027 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2028 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2029 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2030 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2031 2032 extern struct static_key_false sched_asym_cpucapacity; 2033 extern struct static_key_false sched_cluster_active; 2034 2035 static __always_inline bool sched_asym_cpucap_active(void) 2036 { 2037 return static_branch_unlikely(&sched_asym_cpucapacity); 2038 } 2039 2040 struct sched_group_capacity { 2041 atomic_t ref; 2042 /* 2043 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2044 * for a single CPU. 2045 */ 2046 unsigned long capacity; 2047 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2048 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2049 unsigned long next_update; 2050 int imbalance; /* XXX unrelated to capacity but shared group state */ 2051 2052 int id; 2053 2054 unsigned long cpumask[]; /* Balance mask */ 2055 }; 2056 2057 struct sched_group { 2058 struct sched_group *next; /* Must be a circular list */ 2059 atomic_t ref; 2060 2061 unsigned int group_weight; 2062 unsigned int cores; 2063 struct sched_group_capacity *sgc; 2064 int asym_prefer_cpu; /* CPU of highest priority in group */ 2065 int flags; 2066 2067 /* 2068 * The CPUs this group covers. 2069 * 2070 * NOTE: this field is variable length. (Allocated dynamically 2071 * by attaching extra space to the end of the structure, 2072 * depending on how many CPUs the kernel has booted up with) 2073 */ 2074 unsigned long cpumask[]; 2075 }; 2076 2077 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2078 { 2079 return to_cpumask(sg->cpumask); 2080 } 2081 2082 /* 2083 * See build_balance_mask(). 2084 */ 2085 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2086 { 2087 return to_cpumask(sg->sgc->cpumask); 2088 } 2089 2090 extern int group_balance_cpu(struct sched_group *sg); 2091 2092 extern void update_sched_domain_debugfs(void); 2093 extern void dirty_sched_domain_sysctl(int cpu); 2094 2095 extern int sched_update_scaling(void); 2096 2097 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2098 { 2099 if (!p->user_cpus_ptr) 2100 return cpu_possible_mask; /* &init_task.cpus_mask */ 2101 return p->user_cpus_ptr; 2102 } 2103 2104 #ifdef CONFIG_CGROUP_SCHED 2105 2106 /* 2107 * Return the group to which this tasks belongs. 2108 * 2109 * We cannot use task_css() and friends because the cgroup subsystem 2110 * changes that value before the cgroup_subsys::attach() method is called, 2111 * therefore we cannot pin it and might observe the wrong value. 2112 * 2113 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2114 * core changes this before calling sched_move_task(). 2115 * 2116 * Instead we use a 'copy' which is updated from sched_move_task() while 2117 * holding both task_struct::pi_lock and rq::lock. 2118 */ 2119 static inline struct task_group *task_group(struct task_struct *p) 2120 { 2121 return p->sched_task_group; 2122 } 2123 2124 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2125 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2126 { 2127 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2128 struct task_group *tg = task_group(p); 2129 #endif 2130 2131 #ifdef CONFIG_FAIR_GROUP_SCHED 2132 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2133 p->se.cfs_rq = tg->cfs_rq[cpu]; 2134 p->se.parent = tg->se[cpu]; 2135 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2136 #endif 2137 2138 #ifdef CONFIG_RT_GROUP_SCHED 2139 /* 2140 * p->rt.rt_rq is NULL initially and it is easier to assign 2141 * root_task_group's rt_rq than switching in rt_rq_of_se() 2142 * Clobbers tg(!) 2143 */ 2144 if (!rt_group_sched_enabled()) 2145 tg = &root_task_group; 2146 p->rt.rt_rq = tg->rt_rq[cpu]; 2147 p->rt.parent = tg->rt_se[cpu]; 2148 #endif /* CONFIG_RT_GROUP_SCHED */ 2149 } 2150 2151 #else /* !CONFIG_CGROUP_SCHED: */ 2152 2153 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2154 2155 static inline struct task_group *task_group(struct task_struct *p) 2156 { 2157 return NULL; 2158 } 2159 2160 #endif /* !CONFIG_CGROUP_SCHED */ 2161 2162 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2163 { 2164 set_task_rq(p, cpu); 2165 #ifdef CONFIG_SMP 2166 /* 2167 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2168 * successfully executed on another CPU. We must ensure that updates of 2169 * per-task data have been completed by this moment. 2170 */ 2171 smp_wmb(); 2172 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2173 p->wake_cpu = cpu; 2174 #endif /* CONFIG_SMP */ 2175 } 2176 2177 /* 2178 * Tunables: 2179 */ 2180 2181 #define SCHED_FEAT(name, enabled) \ 2182 __SCHED_FEAT_##name , 2183 2184 enum { 2185 #include "features.h" 2186 __SCHED_FEAT_NR, 2187 }; 2188 2189 #undef SCHED_FEAT 2190 2191 /* 2192 * To support run-time toggling of sched features, all the translation units 2193 * (but core.c) reference the sysctl_sched_features defined in core.c. 2194 */ 2195 extern __read_mostly unsigned int sysctl_sched_features; 2196 2197 #ifdef CONFIG_JUMP_LABEL 2198 2199 #define SCHED_FEAT(name, enabled) \ 2200 static __always_inline bool static_branch_##name(struct static_key *key) \ 2201 { \ 2202 return static_key_##enabled(key); \ 2203 } 2204 2205 #include "features.h" 2206 #undef SCHED_FEAT 2207 2208 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2209 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2210 2211 #else /* !CONFIG_JUMP_LABEL: */ 2212 2213 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2214 2215 #endif /* !CONFIG_JUMP_LABEL */ 2216 2217 extern struct static_key_false sched_numa_balancing; 2218 extern struct static_key_false sched_schedstats; 2219 2220 static inline u64 global_rt_period(void) 2221 { 2222 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2223 } 2224 2225 static inline u64 global_rt_runtime(void) 2226 { 2227 if (sysctl_sched_rt_runtime < 0) 2228 return RUNTIME_INF; 2229 2230 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2231 } 2232 2233 /* 2234 * Is p the current execution context? 2235 */ 2236 static inline int task_current(struct rq *rq, struct task_struct *p) 2237 { 2238 return rq->curr == p; 2239 } 2240 2241 /* 2242 * Is p the current scheduling context? 2243 * 2244 * Note that it might be the current execution context at the same time if 2245 * rq->curr == rq->donor == p. 2246 */ 2247 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2248 { 2249 return rq->donor == p; 2250 } 2251 2252 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2253 { 2254 return p->on_cpu; 2255 } 2256 2257 static inline int task_on_rq_queued(struct task_struct *p) 2258 { 2259 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2260 } 2261 2262 static inline int task_on_rq_migrating(struct task_struct *p) 2263 { 2264 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2265 } 2266 2267 /* Wake flags. The first three directly map to some SD flag value */ 2268 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2269 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2270 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2271 2272 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2273 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2274 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2275 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2276 2277 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2278 static_assert(WF_FORK == SD_BALANCE_FORK); 2279 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2280 2281 /* 2282 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2283 * of tasks with abnormal "nice" values across CPUs the contribution that 2284 * each task makes to its run queue's load is weighted according to its 2285 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2286 * scaled version of the new time slice allocation that they receive on time 2287 * slice expiry etc. 2288 */ 2289 2290 #define WEIGHT_IDLEPRIO 3 2291 #define WMULT_IDLEPRIO 1431655765 2292 2293 extern const int sched_prio_to_weight[40]; 2294 extern const u32 sched_prio_to_wmult[40]; 2295 2296 /* 2297 * {de,en}queue flags: 2298 * 2299 * DEQUEUE_SLEEP - task is no longer runnable 2300 * ENQUEUE_WAKEUP - task just became runnable 2301 * 2302 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2303 * are in a known state which allows modification. Such pairs 2304 * should preserve as much state as possible. 2305 * 2306 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2307 * in the runqueue. 2308 * 2309 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2310 * 2311 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2312 * 2313 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2314 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2315 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2316 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2317 * 2318 */ 2319 2320 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2321 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2322 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2323 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2324 #define DEQUEUE_SPECIAL 0x10 2325 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2326 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2327 2328 #define ENQUEUE_WAKEUP 0x01 2329 #define ENQUEUE_RESTORE 0x02 2330 #define ENQUEUE_MOVE 0x04 2331 #define ENQUEUE_NOCLOCK 0x08 2332 2333 #define ENQUEUE_HEAD 0x10 2334 #define ENQUEUE_REPLENISH 0x20 2335 #define ENQUEUE_MIGRATED 0x40 2336 #define ENQUEUE_INITIAL 0x80 2337 #define ENQUEUE_MIGRATING 0x100 2338 #define ENQUEUE_DELAYED 0x200 2339 #define ENQUEUE_RQ_SELECTED 0x400 2340 2341 #define RETRY_TASK ((void *)-1UL) 2342 2343 struct affinity_context { 2344 const struct cpumask *new_mask; 2345 struct cpumask *user_mask; 2346 unsigned int flags; 2347 }; 2348 2349 extern s64 update_curr_common(struct rq *rq); 2350 2351 struct sched_class { 2352 2353 #ifdef CONFIG_UCLAMP_TASK 2354 int uclamp_enabled; 2355 #endif 2356 2357 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2358 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2359 void (*yield_task) (struct rq *rq); 2360 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2361 2362 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2363 2364 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2365 struct task_struct *(*pick_task)(struct rq *rq); 2366 /* 2367 * Optional! When implemented pick_next_task() should be equivalent to: 2368 * 2369 * next = pick_task(); 2370 * if (next) { 2371 * put_prev_task(prev); 2372 * set_next_task_first(next); 2373 * } 2374 */ 2375 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2376 2377 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2378 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2379 2380 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2381 2382 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2383 2384 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2385 2386 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2387 2388 void (*rq_online)(struct rq *rq); 2389 void (*rq_offline)(struct rq *rq); 2390 2391 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2392 2393 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2394 void (*task_fork)(struct task_struct *p); 2395 void (*task_dead)(struct task_struct *p); 2396 2397 /* 2398 * The switched_from() call is allowed to drop rq->lock, therefore we 2399 * cannot assume the switched_from/switched_to pair is serialized by 2400 * rq->lock. They are however serialized by p->pi_lock. 2401 */ 2402 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2403 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2404 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2405 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2406 const struct load_weight *lw); 2407 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2408 int oldprio); 2409 2410 unsigned int (*get_rr_interval)(struct rq *rq, 2411 struct task_struct *task); 2412 2413 void (*update_curr)(struct rq *rq); 2414 2415 #ifdef CONFIG_FAIR_GROUP_SCHED 2416 void (*task_change_group)(struct task_struct *p); 2417 #endif 2418 2419 #ifdef CONFIG_SCHED_CORE 2420 int (*task_is_throttled)(struct task_struct *p, int cpu); 2421 #endif 2422 }; 2423 2424 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2425 { 2426 WARN_ON_ONCE(rq->donor != prev); 2427 prev->sched_class->put_prev_task(rq, prev, NULL); 2428 } 2429 2430 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2431 { 2432 next->sched_class->set_next_task(rq, next, false); 2433 } 2434 2435 static inline void 2436 __put_prev_set_next_dl_server(struct rq *rq, 2437 struct task_struct *prev, 2438 struct task_struct *next) 2439 { 2440 prev->dl_server = NULL; 2441 next->dl_server = rq->dl_server; 2442 rq->dl_server = NULL; 2443 } 2444 2445 static inline void put_prev_set_next_task(struct rq *rq, 2446 struct task_struct *prev, 2447 struct task_struct *next) 2448 { 2449 WARN_ON_ONCE(rq->curr != prev); 2450 2451 __put_prev_set_next_dl_server(rq, prev, next); 2452 2453 if (next == prev) 2454 return; 2455 2456 prev->sched_class->put_prev_task(rq, prev, next); 2457 next->sched_class->set_next_task(rq, next, true); 2458 } 2459 2460 /* 2461 * Helper to define a sched_class instance; each one is placed in a separate 2462 * section which is ordered by the linker script: 2463 * 2464 * include/asm-generic/vmlinux.lds.h 2465 * 2466 * *CAREFUL* they are laid out in *REVERSE* order!!! 2467 * 2468 * Also enforce alignment on the instance, not the type, to guarantee layout. 2469 */ 2470 #define DEFINE_SCHED_CLASS(name) \ 2471 const struct sched_class name##_sched_class \ 2472 __aligned(__alignof__(struct sched_class)) \ 2473 __section("__" #name "_sched_class") 2474 2475 /* Defined in include/asm-generic/vmlinux.lds.h */ 2476 extern struct sched_class __sched_class_highest[]; 2477 extern struct sched_class __sched_class_lowest[]; 2478 2479 extern const struct sched_class stop_sched_class; 2480 extern const struct sched_class dl_sched_class; 2481 extern const struct sched_class rt_sched_class; 2482 extern const struct sched_class fair_sched_class; 2483 extern const struct sched_class idle_sched_class; 2484 2485 /* 2486 * Iterate only active classes. SCX can take over all fair tasks or be 2487 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2488 */ 2489 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2490 { 2491 class++; 2492 #ifdef CONFIG_SCHED_CLASS_EXT 2493 if (scx_switched_all() && class == &fair_sched_class) 2494 class++; 2495 if (!scx_enabled() && class == &ext_sched_class) 2496 class++; 2497 #endif 2498 return class; 2499 } 2500 2501 #define for_class_range(class, _from, _to) \ 2502 for (class = (_from); class < (_to); class++) 2503 2504 #define for_each_class(class) \ 2505 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2506 2507 #define for_active_class_range(class, _from, _to) \ 2508 for (class = (_from); class != (_to); class = next_active_class(class)) 2509 2510 #define for_each_active_class(class) \ 2511 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2512 2513 #define sched_class_above(_a, _b) ((_a) < (_b)) 2514 2515 static inline bool sched_stop_runnable(struct rq *rq) 2516 { 2517 return rq->stop && task_on_rq_queued(rq->stop); 2518 } 2519 2520 static inline bool sched_dl_runnable(struct rq *rq) 2521 { 2522 return rq->dl.dl_nr_running > 0; 2523 } 2524 2525 static inline bool sched_rt_runnable(struct rq *rq) 2526 { 2527 return rq->rt.rt_queued > 0; 2528 } 2529 2530 static inline bool sched_fair_runnable(struct rq *rq) 2531 { 2532 return rq->cfs.nr_queued > 0; 2533 } 2534 2535 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2536 extern struct task_struct *pick_task_idle(struct rq *rq); 2537 2538 #define SCA_CHECK 0x01 2539 #define SCA_MIGRATE_DISABLE 0x02 2540 #define SCA_MIGRATE_ENABLE 0x04 2541 #define SCA_USER 0x08 2542 2543 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2544 2545 extern void sched_balance_trigger(struct rq *rq); 2546 2547 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2548 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2549 2550 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2551 { 2552 /* When not in the task's cpumask, no point in looking further. */ 2553 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2554 return false; 2555 2556 /* Can @cpu run a user thread? */ 2557 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2558 return false; 2559 2560 return true; 2561 } 2562 2563 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2564 { 2565 /* 2566 * See do_set_cpus_allowed() above for the rcu_head usage. 2567 */ 2568 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2569 2570 return kmalloc_node(size, GFP_KERNEL, node); 2571 } 2572 2573 static inline struct task_struct *get_push_task(struct rq *rq) 2574 { 2575 struct task_struct *p = rq->donor; 2576 2577 lockdep_assert_rq_held(rq); 2578 2579 if (rq->push_busy) 2580 return NULL; 2581 2582 if (p->nr_cpus_allowed == 1) 2583 return NULL; 2584 2585 if (p->migration_disabled) 2586 return NULL; 2587 2588 rq->push_busy = true; 2589 return get_task_struct(p); 2590 } 2591 2592 extern int push_cpu_stop(void *arg); 2593 2594 #ifdef CONFIG_CPU_IDLE 2595 2596 static inline void idle_set_state(struct rq *rq, 2597 struct cpuidle_state *idle_state) 2598 { 2599 rq->idle_state = idle_state; 2600 } 2601 2602 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2603 { 2604 WARN_ON_ONCE(!rcu_read_lock_held()); 2605 2606 return rq->idle_state; 2607 } 2608 2609 #else /* !CONFIG_CPU_IDLE: */ 2610 2611 static inline void idle_set_state(struct rq *rq, 2612 struct cpuidle_state *idle_state) 2613 { 2614 } 2615 2616 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2617 { 2618 return NULL; 2619 } 2620 2621 #endif /* !CONFIG_CPU_IDLE */ 2622 2623 extern void schedule_idle(void); 2624 asmlinkage void schedule_user(void); 2625 2626 extern void sysrq_sched_debug_show(void); 2627 extern void sched_init_granularity(void); 2628 extern void update_max_interval(void); 2629 2630 extern void init_sched_dl_class(void); 2631 extern void init_sched_rt_class(void); 2632 extern void init_sched_fair_class(void); 2633 2634 extern void resched_curr(struct rq *rq); 2635 extern void resched_curr_lazy(struct rq *rq); 2636 extern void resched_cpu(int cpu); 2637 2638 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2639 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2640 2641 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2642 2643 #define BW_SHIFT 20 2644 #define BW_UNIT (1 << BW_SHIFT) 2645 #define RATIO_SHIFT 8 2646 #define MAX_BW_BITS (64 - BW_SHIFT) 2647 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2648 2649 extern unsigned long to_ratio(u64 period, u64 runtime); 2650 2651 extern void init_entity_runnable_average(struct sched_entity *se); 2652 extern void post_init_entity_util_avg(struct task_struct *p); 2653 2654 #ifdef CONFIG_NO_HZ_FULL 2655 extern bool sched_can_stop_tick(struct rq *rq); 2656 extern int __init sched_tick_offload_init(void); 2657 2658 /* 2659 * Tick may be needed by tasks in the runqueue depending on their policy and 2660 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2661 * nohz mode if necessary. 2662 */ 2663 static inline void sched_update_tick_dependency(struct rq *rq) 2664 { 2665 int cpu = cpu_of(rq); 2666 2667 if (!tick_nohz_full_cpu(cpu)) 2668 return; 2669 2670 if (sched_can_stop_tick(rq)) 2671 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2672 else 2673 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2674 } 2675 #else /* !CONFIG_NO_HZ_FULL: */ 2676 static inline int sched_tick_offload_init(void) { return 0; } 2677 static inline void sched_update_tick_dependency(struct rq *rq) { } 2678 #endif /* !CONFIG_NO_HZ_FULL */ 2679 2680 static inline void add_nr_running(struct rq *rq, unsigned count) 2681 { 2682 unsigned prev_nr = rq->nr_running; 2683 2684 rq->nr_running = prev_nr + count; 2685 if (trace_sched_update_nr_running_tp_enabled()) { 2686 call_trace_sched_update_nr_running(rq, count); 2687 } 2688 2689 if (prev_nr < 2 && rq->nr_running >= 2) 2690 set_rd_overloaded(rq->rd, 1); 2691 2692 sched_update_tick_dependency(rq); 2693 } 2694 2695 static inline void sub_nr_running(struct rq *rq, unsigned count) 2696 { 2697 rq->nr_running -= count; 2698 if (trace_sched_update_nr_running_tp_enabled()) { 2699 call_trace_sched_update_nr_running(rq, -count); 2700 } 2701 2702 /* Check if we still need preemption */ 2703 sched_update_tick_dependency(rq); 2704 } 2705 2706 static inline void __block_task(struct rq *rq, struct task_struct *p) 2707 { 2708 if (p->sched_contributes_to_load) 2709 rq->nr_uninterruptible++; 2710 2711 if (p->in_iowait) { 2712 atomic_inc(&rq->nr_iowait); 2713 delayacct_blkio_start(); 2714 } 2715 2716 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2717 2718 /* 2719 * The moment this write goes through, ttwu() can swoop in and migrate 2720 * this task, rendering our rq->__lock ineffective. 2721 * 2722 * __schedule() try_to_wake_up() 2723 * LOCK rq->__lock LOCK p->pi_lock 2724 * pick_next_task() 2725 * pick_next_task_fair() 2726 * pick_next_entity() 2727 * dequeue_entities() 2728 * __block_task() 2729 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2730 * break; 2731 * 2732 * ACQUIRE (after ctrl-dep) 2733 * 2734 * cpu = select_task_rq(); 2735 * set_task_cpu(p, cpu); 2736 * ttwu_queue() 2737 * ttwu_do_activate() 2738 * LOCK rq->__lock 2739 * activate_task() 2740 * STORE p->on_rq = 1 2741 * UNLOCK rq->__lock 2742 * 2743 * Callers must ensure to not reference @p after this -- we no longer 2744 * own it. 2745 */ 2746 smp_store_release(&p->on_rq, 0); 2747 } 2748 2749 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2750 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2751 2752 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2753 2754 #ifdef CONFIG_PREEMPT_RT 2755 # define SCHED_NR_MIGRATE_BREAK 8 2756 #else 2757 # define SCHED_NR_MIGRATE_BREAK 32 2758 #endif 2759 2760 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2761 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2762 2763 extern unsigned int sysctl_sched_base_slice; 2764 2765 extern int sysctl_resched_latency_warn_ms; 2766 extern int sysctl_resched_latency_warn_once; 2767 2768 extern unsigned int sysctl_sched_tunable_scaling; 2769 2770 extern unsigned int sysctl_numa_balancing_scan_delay; 2771 extern unsigned int sysctl_numa_balancing_scan_period_min; 2772 extern unsigned int sysctl_numa_balancing_scan_period_max; 2773 extern unsigned int sysctl_numa_balancing_scan_size; 2774 extern unsigned int sysctl_numa_balancing_hot_threshold; 2775 2776 #ifdef CONFIG_SCHED_HRTICK 2777 2778 /* 2779 * Use hrtick when: 2780 * - enabled by features 2781 * - hrtimer is actually high res 2782 */ 2783 static inline int hrtick_enabled(struct rq *rq) 2784 { 2785 if (!cpu_active(cpu_of(rq))) 2786 return 0; 2787 return hrtimer_is_hres_active(&rq->hrtick_timer); 2788 } 2789 2790 static inline int hrtick_enabled_fair(struct rq *rq) 2791 { 2792 if (!sched_feat(HRTICK)) 2793 return 0; 2794 return hrtick_enabled(rq); 2795 } 2796 2797 static inline int hrtick_enabled_dl(struct rq *rq) 2798 { 2799 if (!sched_feat(HRTICK_DL)) 2800 return 0; 2801 return hrtick_enabled(rq); 2802 } 2803 2804 extern void hrtick_start(struct rq *rq, u64 delay); 2805 2806 #else /* !CONFIG_SCHED_HRTICK: */ 2807 2808 static inline int hrtick_enabled_fair(struct rq *rq) 2809 { 2810 return 0; 2811 } 2812 2813 static inline int hrtick_enabled_dl(struct rq *rq) 2814 { 2815 return 0; 2816 } 2817 2818 static inline int hrtick_enabled(struct rq *rq) 2819 { 2820 return 0; 2821 } 2822 2823 #endif /* !CONFIG_SCHED_HRTICK */ 2824 2825 #ifndef arch_scale_freq_tick 2826 static __always_inline void arch_scale_freq_tick(void) { } 2827 #endif 2828 2829 #ifndef arch_scale_freq_capacity 2830 /** 2831 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2832 * @cpu: the CPU in question. 2833 * 2834 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2835 * 2836 * f_curr 2837 * ------ * SCHED_CAPACITY_SCALE 2838 * f_max 2839 */ 2840 static __always_inline 2841 unsigned long arch_scale_freq_capacity(int cpu) 2842 { 2843 return SCHED_CAPACITY_SCALE; 2844 } 2845 #endif 2846 2847 /* 2848 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2849 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2850 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2851 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2852 */ 2853 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2854 { 2855 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2856 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2857 } 2858 2859 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2860 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2861 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2862 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2863 _lock; return _t; } 2864 2865 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2866 { 2867 #ifdef CONFIG_SCHED_CORE 2868 /* 2869 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2870 * order by core-id first and cpu-id second. 2871 * 2872 * Notably: 2873 * 2874 * double_rq_lock(0,3); will take core-0, core-1 lock 2875 * double_rq_lock(1,2); will take core-1, core-0 lock 2876 * 2877 * when only cpu-id is considered. 2878 */ 2879 if (rq1->core->cpu < rq2->core->cpu) 2880 return true; 2881 if (rq1->core->cpu > rq2->core->cpu) 2882 return false; 2883 2884 /* 2885 * __sched_core_flip() relies on SMT having cpu-id lock order. 2886 */ 2887 #endif /* CONFIG_SCHED_CORE */ 2888 return rq1->cpu < rq2->cpu; 2889 } 2890 2891 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2892 2893 #ifdef CONFIG_PREEMPTION 2894 2895 /* 2896 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2897 * way at the expense of forcing extra atomic operations in all 2898 * invocations. This assures that the double_lock is acquired using the 2899 * same underlying policy as the spinlock_t on this architecture, which 2900 * reduces latency compared to the unfair variant below. However, it 2901 * also adds more overhead and therefore may reduce throughput. 2902 */ 2903 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2904 __releases(this_rq->lock) 2905 __acquires(busiest->lock) 2906 __acquires(this_rq->lock) 2907 { 2908 raw_spin_rq_unlock(this_rq); 2909 double_rq_lock(this_rq, busiest); 2910 2911 return 1; 2912 } 2913 2914 #else /* !CONFIG_PREEMPTION: */ 2915 /* 2916 * Unfair double_lock_balance: Optimizes throughput at the expense of 2917 * latency by eliminating extra atomic operations when the locks are 2918 * already in proper order on entry. This favors lower CPU-ids and will 2919 * grant the double lock to lower CPUs over higher ids under contention, 2920 * regardless of entry order into the function. 2921 */ 2922 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2923 __releases(this_rq->lock) 2924 __acquires(busiest->lock) 2925 __acquires(this_rq->lock) 2926 { 2927 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2928 likely(raw_spin_rq_trylock(busiest))) { 2929 double_rq_clock_clear_update(this_rq, busiest); 2930 return 0; 2931 } 2932 2933 if (rq_order_less(this_rq, busiest)) { 2934 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2935 double_rq_clock_clear_update(this_rq, busiest); 2936 return 0; 2937 } 2938 2939 raw_spin_rq_unlock(this_rq); 2940 double_rq_lock(this_rq, busiest); 2941 2942 return 1; 2943 } 2944 2945 #endif /* !CONFIG_PREEMPTION */ 2946 2947 /* 2948 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2949 */ 2950 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2951 { 2952 lockdep_assert_irqs_disabled(); 2953 2954 return _double_lock_balance(this_rq, busiest); 2955 } 2956 2957 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2958 __releases(busiest->lock) 2959 { 2960 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2961 raw_spin_rq_unlock(busiest); 2962 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2963 } 2964 2965 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2966 { 2967 if (l1 > l2) 2968 swap(l1, l2); 2969 2970 spin_lock(l1); 2971 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2972 } 2973 2974 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2975 { 2976 if (l1 > l2) 2977 swap(l1, l2); 2978 2979 spin_lock_irq(l1); 2980 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2981 } 2982 2983 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2984 { 2985 if (l1 > l2) 2986 swap(l1, l2); 2987 2988 raw_spin_lock(l1); 2989 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2990 } 2991 2992 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2993 { 2994 raw_spin_unlock(l1); 2995 raw_spin_unlock(l2); 2996 } 2997 2998 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 2999 double_raw_lock(_T->lock, _T->lock2), 3000 double_raw_unlock(_T->lock, _T->lock2)) 3001 3002 /* 3003 * double_rq_unlock - safely unlock two runqueues 3004 * 3005 * Note this does not restore interrupts like task_rq_unlock, 3006 * you need to do so manually after calling. 3007 */ 3008 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3009 __releases(rq1->lock) 3010 __releases(rq2->lock) 3011 { 3012 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3013 raw_spin_rq_unlock(rq2); 3014 else 3015 __release(rq2->lock); 3016 raw_spin_rq_unlock(rq1); 3017 } 3018 3019 extern void set_rq_online (struct rq *rq); 3020 extern void set_rq_offline(struct rq *rq); 3021 3022 extern bool sched_smp_initialized; 3023 3024 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3025 double_rq_lock(_T->lock, _T->lock2), 3026 double_rq_unlock(_T->lock, _T->lock2)) 3027 3028 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3029 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3030 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3031 3032 extern bool sched_debug_verbose; 3033 3034 extern void print_cfs_stats(struct seq_file *m, int cpu); 3035 extern void print_rt_stats(struct seq_file *m, int cpu); 3036 extern void print_dl_stats(struct seq_file *m, int cpu); 3037 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3038 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3039 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3040 3041 extern void resched_latency_warn(int cpu, u64 latency); 3042 3043 #ifdef CONFIG_NUMA_BALANCING 3044 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3045 extern void 3046 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3047 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3048 #endif /* CONFIG_NUMA_BALANCING */ 3049 3050 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3051 extern void init_rt_rq(struct rt_rq *rt_rq); 3052 extern void init_dl_rq(struct dl_rq *dl_rq); 3053 3054 extern void cfs_bandwidth_usage_inc(void); 3055 extern void cfs_bandwidth_usage_dec(void); 3056 3057 #ifdef CONFIG_NO_HZ_COMMON 3058 3059 #define NOHZ_BALANCE_KICK_BIT 0 3060 #define NOHZ_STATS_KICK_BIT 1 3061 #define NOHZ_NEWILB_KICK_BIT 2 3062 #define NOHZ_NEXT_KICK_BIT 3 3063 3064 /* Run sched_balance_domains() */ 3065 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3066 /* Update blocked load */ 3067 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3068 /* Update blocked load when entering idle */ 3069 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3070 /* Update nohz.next_balance */ 3071 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3072 3073 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3074 3075 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3076 3077 extern void nohz_balance_exit_idle(struct rq *rq); 3078 #else /* !CONFIG_NO_HZ_COMMON: */ 3079 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3080 #endif /* !CONFIG_NO_HZ_COMMON */ 3081 3082 #ifdef CONFIG_NO_HZ_COMMON 3083 extern void nohz_run_idle_balance(int cpu); 3084 #else 3085 static inline void nohz_run_idle_balance(int cpu) { } 3086 #endif 3087 3088 #include "stats.h" 3089 3090 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3091 3092 extern void __sched_core_account_forceidle(struct rq *rq); 3093 3094 static inline void sched_core_account_forceidle(struct rq *rq) 3095 { 3096 if (schedstat_enabled()) 3097 __sched_core_account_forceidle(rq); 3098 } 3099 3100 extern void __sched_core_tick(struct rq *rq); 3101 3102 static inline void sched_core_tick(struct rq *rq) 3103 { 3104 if (sched_core_enabled(rq) && schedstat_enabled()) 3105 __sched_core_tick(rq); 3106 } 3107 3108 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3109 3110 static inline void sched_core_account_forceidle(struct rq *rq) { } 3111 3112 static inline void sched_core_tick(struct rq *rq) { } 3113 3114 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3115 3116 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3117 3118 struct irqtime { 3119 u64 total; 3120 u64 tick_delta; 3121 u64 irq_start_time; 3122 struct u64_stats_sync sync; 3123 }; 3124 3125 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3126 extern int sched_clock_irqtime; 3127 3128 static inline int irqtime_enabled(void) 3129 { 3130 return sched_clock_irqtime; 3131 } 3132 3133 /* 3134 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3135 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3136 * and never move forward. 3137 */ 3138 static inline u64 irq_time_read(int cpu) 3139 { 3140 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3141 unsigned int seq; 3142 u64 total; 3143 3144 do { 3145 seq = __u64_stats_fetch_begin(&irqtime->sync); 3146 total = irqtime->total; 3147 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3148 3149 return total; 3150 } 3151 3152 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3153 3154 static inline int irqtime_enabled(void) 3155 { 3156 return 0; 3157 } 3158 3159 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3160 3161 #ifdef CONFIG_CPU_FREQ 3162 3163 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3164 3165 /** 3166 * cpufreq_update_util - Take a note about CPU utilization changes. 3167 * @rq: Runqueue to carry out the update for. 3168 * @flags: Update reason flags. 3169 * 3170 * This function is called by the scheduler on the CPU whose utilization is 3171 * being updated. 3172 * 3173 * It can only be called from RCU-sched read-side critical sections. 3174 * 3175 * The way cpufreq is currently arranged requires it to evaluate the CPU 3176 * performance state (frequency/voltage) on a regular basis to prevent it from 3177 * being stuck in a completely inadequate performance level for too long. 3178 * That is not guaranteed to happen if the updates are only triggered from CFS 3179 * and DL, though, because they may not be coming in if only RT tasks are 3180 * active all the time (or there are RT tasks only). 3181 * 3182 * As a workaround for that issue, this function is called periodically by the 3183 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3184 * but that really is a band-aid. Going forward it should be replaced with 3185 * solutions targeted more specifically at RT tasks. 3186 */ 3187 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3188 { 3189 struct update_util_data *data; 3190 3191 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3192 cpu_of(rq))); 3193 if (data) 3194 data->func(data, rq_clock(rq), flags); 3195 } 3196 #else /* !CONFIG_CPU_FREQ: */ 3197 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3198 #endif /* !CONFIG_CPU_FREQ */ 3199 3200 #ifdef arch_scale_freq_capacity 3201 # ifndef arch_scale_freq_invariant 3202 # define arch_scale_freq_invariant() true 3203 # endif 3204 #else 3205 # define arch_scale_freq_invariant() false 3206 #endif 3207 3208 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3209 unsigned long *min, 3210 unsigned long *max); 3211 3212 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3213 unsigned long min, 3214 unsigned long max); 3215 3216 3217 /* 3218 * Verify the fitness of task @p to run on @cpu taking into account the 3219 * CPU original capacity and the runtime/deadline ratio of the task. 3220 * 3221 * The function will return true if the original capacity of @cpu is 3222 * greater than or equal to task's deadline density right shifted by 3223 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3224 */ 3225 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3226 { 3227 unsigned long cap = arch_scale_cpu_capacity(cpu); 3228 3229 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3230 } 3231 3232 static inline unsigned long cpu_bw_dl(struct rq *rq) 3233 { 3234 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3235 } 3236 3237 static inline unsigned long cpu_util_dl(struct rq *rq) 3238 { 3239 return READ_ONCE(rq->avg_dl.util_avg); 3240 } 3241 3242 3243 extern unsigned long cpu_util_cfs(int cpu); 3244 extern unsigned long cpu_util_cfs_boost(int cpu); 3245 3246 static inline unsigned long cpu_util_rt(struct rq *rq) 3247 { 3248 return READ_ONCE(rq->avg_rt.util_avg); 3249 } 3250 3251 #ifdef CONFIG_UCLAMP_TASK 3252 3253 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3254 3255 /* 3256 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3257 * by default in the fast path and only gets turned on once userspace performs 3258 * an operation that requires it. 3259 * 3260 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3261 * hence is active. 3262 */ 3263 static inline bool uclamp_is_used(void) 3264 { 3265 return static_branch_likely(&sched_uclamp_used); 3266 } 3267 3268 /* 3269 * Enabling static branches would get the cpus_read_lock(), 3270 * check whether uclamp_is_used before enable it to avoid always 3271 * calling cpus_read_lock(). Because we never disable this 3272 * static key once enable it. 3273 */ 3274 static inline void sched_uclamp_enable(void) 3275 { 3276 if (!uclamp_is_used()) 3277 static_branch_enable(&sched_uclamp_used); 3278 } 3279 3280 static inline unsigned long uclamp_rq_get(struct rq *rq, 3281 enum uclamp_id clamp_id) 3282 { 3283 return READ_ONCE(rq->uclamp[clamp_id].value); 3284 } 3285 3286 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3287 unsigned int value) 3288 { 3289 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3290 } 3291 3292 static inline bool uclamp_rq_is_idle(struct rq *rq) 3293 { 3294 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3295 } 3296 3297 /* Is the rq being capped/throttled by uclamp_max? */ 3298 static inline bool uclamp_rq_is_capped(struct rq *rq) 3299 { 3300 unsigned long rq_util; 3301 unsigned long max_util; 3302 3303 if (!uclamp_is_used()) 3304 return false; 3305 3306 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3307 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3308 3309 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3310 } 3311 3312 #define for_each_clamp_id(clamp_id) \ 3313 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3314 3315 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3316 3317 3318 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3319 { 3320 if (clamp_id == UCLAMP_MIN) 3321 return 0; 3322 return SCHED_CAPACITY_SCALE; 3323 } 3324 3325 /* Integer rounded range for each bucket */ 3326 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3327 3328 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3329 { 3330 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3331 } 3332 3333 static inline void 3334 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3335 { 3336 uc_se->value = value; 3337 uc_se->bucket_id = uclamp_bucket_id(value); 3338 uc_se->user_defined = user_defined; 3339 } 3340 3341 #else /* !CONFIG_UCLAMP_TASK: */ 3342 3343 static inline unsigned long 3344 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3345 { 3346 if (clamp_id == UCLAMP_MIN) 3347 return 0; 3348 3349 return SCHED_CAPACITY_SCALE; 3350 } 3351 3352 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3353 3354 static inline bool uclamp_is_used(void) 3355 { 3356 return false; 3357 } 3358 3359 static inline void sched_uclamp_enable(void) {} 3360 3361 static inline unsigned long 3362 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3363 { 3364 if (clamp_id == UCLAMP_MIN) 3365 return 0; 3366 3367 return SCHED_CAPACITY_SCALE; 3368 } 3369 3370 static inline void 3371 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3372 { 3373 } 3374 3375 static inline bool uclamp_rq_is_idle(struct rq *rq) 3376 { 3377 return false; 3378 } 3379 3380 #endif /* !CONFIG_UCLAMP_TASK */ 3381 3382 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3383 3384 static inline unsigned long cpu_util_irq(struct rq *rq) 3385 { 3386 return READ_ONCE(rq->avg_irq.util_avg); 3387 } 3388 3389 static inline 3390 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3391 { 3392 util *= (max - irq); 3393 util /= max; 3394 3395 return util; 3396 3397 } 3398 3399 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3400 3401 static inline unsigned long cpu_util_irq(struct rq *rq) 3402 { 3403 return 0; 3404 } 3405 3406 static inline 3407 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3408 { 3409 return util; 3410 } 3411 3412 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3413 3414 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3415 3416 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3417 3418 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3419 3420 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3421 3422 static inline bool sched_energy_enabled(void) 3423 { 3424 return static_branch_unlikely(&sched_energy_present); 3425 } 3426 3427 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3428 3429 #define perf_domain_span(pd) NULL 3430 3431 static inline bool sched_energy_enabled(void) { return false; } 3432 3433 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3434 3435 #ifdef CONFIG_MEMBARRIER 3436 3437 /* 3438 * The scheduler provides memory barriers required by membarrier between: 3439 * - prior user-space memory accesses and store to rq->membarrier_state, 3440 * - store to rq->membarrier_state and following user-space memory accesses. 3441 * In the same way it provides those guarantees around store to rq->curr. 3442 */ 3443 static inline void membarrier_switch_mm(struct rq *rq, 3444 struct mm_struct *prev_mm, 3445 struct mm_struct *next_mm) 3446 { 3447 int membarrier_state; 3448 3449 if (prev_mm == next_mm) 3450 return; 3451 3452 membarrier_state = atomic_read(&next_mm->membarrier_state); 3453 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3454 return; 3455 3456 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3457 } 3458 3459 #else /* !CONFIG_MEMBARRIER: */ 3460 3461 static inline void membarrier_switch_mm(struct rq *rq, 3462 struct mm_struct *prev_mm, 3463 struct mm_struct *next_mm) 3464 { 3465 } 3466 3467 #endif /* !CONFIG_MEMBARRIER */ 3468 3469 static inline bool is_per_cpu_kthread(struct task_struct *p) 3470 { 3471 if (!(p->flags & PF_KTHREAD)) 3472 return false; 3473 3474 if (p->nr_cpus_allowed != 1) 3475 return false; 3476 3477 return true; 3478 } 3479 3480 extern void swake_up_all_locked(struct swait_queue_head *q); 3481 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3482 3483 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3484 3485 #ifdef CONFIG_PREEMPT_DYNAMIC 3486 extern int preempt_dynamic_mode; 3487 extern int sched_dynamic_mode(const char *str); 3488 extern void sched_dynamic_update(int mode); 3489 #endif 3490 extern const char *preempt_modes[]; 3491 3492 #ifdef CONFIG_SCHED_MM_CID 3493 3494 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3495 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3496 3497 extern raw_spinlock_t cid_lock; 3498 extern int use_cid_lock; 3499 3500 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3501 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3502 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3503 extern void init_sched_mm_cid(struct task_struct *t); 3504 3505 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3506 { 3507 if (cid < 0) 3508 return; 3509 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3510 } 3511 3512 /* 3513 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3514 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3515 * be held to transition to other states. 3516 * 3517 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3518 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3519 */ 3520 static inline void mm_cid_put_lazy(struct task_struct *t) 3521 { 3522 struct mm_struct *mm = t->mm; 3523 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3524 int cid; 3525 3526 lockdep_assert_irqs_disabled(); 3527 cid = __this_cpu_read(pcpu_cid->cid); 3528 if (!mm_cid_is_lazy_put(cid) || 3529 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3530 return; 3531 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3532 } 3533 3534 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3535 { 3536 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3537 int cid, res; 3538 3539 lockdep_assert_irqs_disabled(); 3540 cid = __this_cpu_read(pcpu_cid->cid); 3541 for (;;) { 3542 if (mm_cid_is_unset(cid)) 3543 return MM_CID_UNSET; 3544 /* 3545 * Attempt transition from valid or lazy-put to unset. 3546 */ 3547 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3548 if (res == cid) 3549 break; 3550 cid = res; 3551 } 3552 return cid; 3553 } 3554 3555 static inline void mm_cid_put(struct mm_struct *mm) 3556 { 3557 int cid; 3558 3559 lockdep_assert_irqs_disabled(); 3560 cid = mm_cid_pcpu_unset(mm); 3561 if (cid == MM_CID_UNSET) 3562 return; 3563 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3564 } 3565 3566 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3567 { 3568 struct cpumask *cidmask = mm_cidmask(mm); 3569 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3570 int cid, max_nr_cid, allowed_max_nr_cid; 3571 3572 /* 3573 * After shrinking the number of threads or reducing the number 3574 * of allowed cpus, reduce the value of max_nr_cid so expansion 3575 * of cid allocation will preserve cache locality if the number 3576 * of threads or allowed cpus increase again. 3577 */ 3578 max_nr_cid = atomic_read(&mm->max_nr_cid); 3579 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3580 atomic_read(&mm->mm_users))), 3581 max_nr_cid > allowed_max_nr_cid) { 3582 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3583 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3584 max_nr_cid = allowed_max_nr_cid; 3585 break; 3586 } 3587 } 3588 /* Try to re-use recent cid. This improves cache locality. */ 3589 cid = __this_cpu_read(pcpu_cid->recent_cid); 3590 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3591 !cpumask_test_and_set_cpu(cid, cidmask)) 3592 return cid; 3593 /* 3594 * Expand cid allocation if the maximum number of concurrency 3595 * IDs allocated (max_nr_cid) is below the number cpus allowed 3596 * and number of threads. Expanding cid allocation as much as 3597 * possible improves cache locality. 3598 */ 3599 cid = max_nr_cid; 3600 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3601 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3602 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3603 continue; 3604 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3605 return cid; 3606 } 3607 /* 3608 * Find the first available concurrency id. 3609 * Retry finding first zero bit if the mask is temporarily 3610 * filled. This only happens during concurrent remote-clear 3611 * which owns a cid without holding a rq lock. 3612 */ 3613 for (;;) { 3614 cid = cpumask_first_zero(cidmask); 3615 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3616 break; 3617 cpu_relax(); 3618 } 3619 if (cpumask_test_and_set_cpu(cid, cidmask)) 3620 return -1; 3621 3622 return cid; 3623 } 3624 3625 /* 3626 * Save a snapshot of the current runqueue time of this cpu 3627 * with the per-cpu cid value, allowing to estimate how recently it was used. 3628 */ 3629 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3630 { 3631 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3632 3633 lockdep_assert_rq_held(rq); 3634 WRITE_ONCE(pcpu_cid->time, rq->clock); 3635 } 3636 3637 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3638 struct mm_struct *mm) 3639 { 3640 int cid; 3641 3642 /* 3643 * All allocations (even those using the cid_lock) are lock-free. If 3644 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3645 * guarantee forward progress. 3646 */ 3647 if (!READ_ONCE(use_cid_lock)) { 3648 cid = __mm_cid_try_get(t, mm); 3649 if (cid >= 0) 3650 goto end; 3651 raw_spin_lock(&cid_lock); 3652 } else { 3653 raw_spin_lock(&cid_lock); 3654 cid = __mm_cid_try_get(t, mm); 3655 if (cid >= 0) 3656 goto unlock; 3657 } 3658 3659 /* 3660 * cid concurrently allocated. Retry while forcing following 3661 * allocations to use the cid_lock to ensure forward progress. 3662 */ 3663 WRITE_ONCE(use_cid_lock, 1); 3664 /* 3665 * Set use_cid_lock before allocation. Only care about program order 3666 * because this is only required for forward progress. 3667 */ 3668 barrier(); 3669 /* 3670 * Retry until it succeeds. It is guaranteed to eventually succeed once 3671 * all newcoming allocations observe the use_cid_lock flag set. 3672 */ 3673 do { 3674 cid = __mm_cid_try_get(t, mm); 3675 cpu_relax(); 3676 } while (cid < 0); 3677 /* 3678 * Allocate before clearing use_cid_lock. Only care about 3679 * program order because this is for forward progress. 3680 */ 3681 barrier(); 3682 WRITE_ONCE(use_cid_lock, 0); 3683 unlock: 3684 raw_spin_unlock(&cid_lock); 3685 end: 3686 mm_cid_snapshot_time(rq, mm); 3687 3688 return cid; 3689 } 3690 3691 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3692 struct mm_struct *mm) 3693 { 3694 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3695 struct cpumask *cpumask; 3696 int cid; 3697 3698 lockdep_assert_rq_held(rq); 3699 cpumask = mm_cidmask(mm); 3700 cid = __this_cpu_read(pcpu_cid->cid); 3701 if (mm_cid_is_valid(cid)) { 3702 mm_cid_snapshot_time(rq, mm); 3703 return cid; 3704 } 3705 if (mm_cid_is_lazy_put(cid)) { 3706 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3707 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3708 } 3709 cid = __mm_cid_get(rq, t, mm); 3710 __this_cpu_write(pcpu_cid->cid, cid); 3711 __this_cpu_write(pcpu_cid->recent_cid, cid); 3712 3713 return cid; 3714 } 3715 3716 static inline void switch_mm_cid(struct rq *rq, 3717 struct task_struct *prev, 3718 struct task_struct *next) 3719 { 3720 /* 3721 * Provide a memory barrier between rq->curr store and load of 3722 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3723 * 3724 * Should be adapted if context_switch() is modified. 3725 */ 3726 if (!next->mm) { // to kernel 3727 /* 3728 * user -> kernel transition does not guarantee a barrier, but 3729 * we can use the fact that it performs an atomic operation in 3730 * mmgrab(). 3731 */ 3732 if (prev->mm) // from user 3733 smp_mb__after_mmgrab(); 3734 /* 3735 * kernel -> kernel transition does not change rq->curr->mm 3736 * state. It stays NULL. 3737 */ 3738 } else { // to user 3739 /* 3740 * kernel -> user transition does not provide a barrier 3741 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3742 * Provide it here. 3743 */ 3744 if (!prev->mm) { // from kernel 3745 smp_mb(); 3746 } else { // from user 3747 /* 3748 * user->user transition relies on an implicit 3749 * memory barrier in switch_mm() when 3750 * current->mm changes. If the architecture 3751 * switch_mm() does not have an implicit memory 3752 * barrier, it is emitted here. If current->mm 3753 * is unchanged, no barrier is needed. 3754 */ 3755 smp_mb__after_switch_mm(); 3756 } 3757 } 3758 if (prev->mm_cid_active) { 3759 mm_cid_snapshot_time(rq, prev->mm); 3760 mm_cid_put_lazy(prev); 3761 prev->mm_cid = -1; 3762 } 3763 if (next->mm_cid_active) 3764 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3765 } 3766 3767 #else /* !CONFIG_SCHED_MM_CID: */ 3768 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3769 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3770 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3771 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3772 static inline void init_sched_mm_cid(struct task_struct *t) { } 3773 #endif /* !CONFIG_SCHED_MM_CID */ 3774 3775 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3776 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3777 static inline 3778 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3779 { 3780 lockdep_assert_rq_held(src_rq); 3781 lockdep_assert_rq_held(dst_rq); 3782 3783 deactivate_task(src_rq, task, 0); 3784 set_task_cpu(task, dst_rq->cpu); 3785 activate_task(dst_rq, task, 0); 3786 } 3787 3788 static inline 3789 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3790 { 3791 if (!task_on_cpu(rq, p) && 3792 cpumask_test_cpu(cpu, &p->cpus_mask)) 3793 return true; 3794 3795 return false; 3796 } 3797 3798 #ifdef CONFIG_RT_MUTEXES 3799 3800 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3801 { 3802 if (pi_task) 3803 prio = min(prio, pi_task->prio); 3804 3805 return prio; 3806 } 3807 3808 static inline int rt_effective_prio(struct task_struct *p, int prio) 3809 { 3810 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3811 3812 return __rt_effective_prio(pi_task, prio); 3813 } 3814 3815 #else /* !CONFIG_RT_MUTEXES: */ 3816 3817 static inline int rt_effective_prio(struct task_struct *p, int prio) 3818 { 3819 return prio; 3820 } 3821 3822 #endif /* !CONFIG_RT_MUTEXES */ 3823 3824 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3825 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3826 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3827 extern void set_load_weight(struct task_struct *p, bool update_load); 3828 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3829 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3830 3831 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3832 const struct sched_class *prev_class); 3833 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3834 const struct sched_class *prev_class, 3835 int oldprio); 3836 3837 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3838 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3839 3840 #ifdef CONFIG_SCHED_CLASS_EXT 3841 /* 3842 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3843 * and establish invariants. 3844 */ 3845 struct sched_enq_and_set_ctx { 3846 struct task_struct *p; 3847 int queue_flags; 3848 bool queued; 3849 bool running; 3850 }; 3851 3852 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3853 struct sched_enq_and_set_ctx *ctx); 3854 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3855 3856 #endif /* CONFIG_SCHED_CLASS_EXT */ 3857 3858 #include "ext.h" 3859 3860 #endif /* _KERNEL_SCHED_SCHED_H */ 3861