1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 struct rq; 78 struct cfs_rq; 79 struct rt_rq; 80 struct sched_group; 81 struct cpuidle_state; 82 83 #ifdef CONFIG_PARAVIRT 84 # include <asm/paravirt.h> 85 # include <asm/paravirt_api_clock.h> 86 #endif 87 88 #include <asm/barrier.h> 89 90 #include "cpupri.h" 91 #include "cpudeadline.h" 92 93 #ifdef CONFIG_SCHED_DEBUG 94 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 95 #else 96 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 97 #endif 98 99 /* task_struct::on_rq states: */ 100 #define TASK_ON_RQ_QUEUED 1 101 #define TASK_ON_RQ_MIGRATING 2 102 103 extern __read_mostly int scheduler_running; 104 105 extern unsigned long calc_load_update; 106 extern atomic_long_t calc_load_tasks; 107 108 extern void calc_global_load_tick(struct rq *this_rq); 109 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 110 111 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 112 113 extern int sysctl_sched_rt_period; 114 extern int sysctl_sched_rt_runtime; 115 extern int sched_rr_timeslice; 116 117 /* 118 * Asymmetric CPU capacity bits 119 */ 120 struct asym_cap_data { 121 struct list_head link; 122 struct rcu_head rcu; 123 unsigned long capacity; 124 unsigned long cpus[]; 125 }; 126 127 extern struct list_head asym_cap_list; 128 129 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 130 131 /* 132 * Helpers for converting nanosecond timing to jiffy resolution 133 */ 134 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 135 136 /* 137 * Increase resolution of nice-level calculations for 64-bit architectures. 138 * The extra resolution improves shares distribution and load balancing of 139 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 140 * hierarchies, especially on larger systems. This is not a user-visible change 141 * and does not change the user-interface for setting shares/weights. 142 * 143 * We increase resolution only if we have enough bits to allow this increased 144 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 145 * are pretty high and the returns do not justify the increased costs. 146 * 147 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 148 * increase coverage and consistency always enable it on 64-bit platforms. 149 */ 150 #ifdef CONFIG_64BIT 151 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 152 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 153 # define scale_load_down(w) \ 154 ({ \ 155 unsigned long __w = (w); \ 156 \ 157 if (__w) \ 158 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 159 __w; \ 160 }) 161 #else 162 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 163 # define scale_load(w) (w) 164 # define scale_load_down(w) (w) 165 #endif 166 167 /* 168 * Task weight (visible to users) and its load (invisible to users) have 169 * independent resolution, but they should be well calibrated. We use 170 * scale_load() and scale_load_down(w) to convert between them. The 171 * following must be true: 172 * 173 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 174 * 175 */ 176 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 177 178 /* 179 * Single value that decides SCHED_DEADLINE internal math precision. 180 * 10 -> just above 1us 181 * 9 -> just above 0.5us 182 */ 183 #define DL_SCALE 10 184 185 /* 186 * Single value that denotes runtime == period, ie unlimited time. 187 */ 188 #define RUNTIME_INF ((u64)~0ULL) 189 190 static inline int idle_policy(int policy) 191 { 192 return policy == SCHED_IDLE; 193 } 194 195 static inline int fair_policy(int policy) 196 { 197 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 198 } 199 200 static inline int rt_policy(int policy) 201 { 202 return policy == SCHED_FIFO || policy == SCHED_RR; 203 } 204 205 static inline int dl_policy(int policy) 206 { 207 return policy == SCHED_DEADLINE; 208 } 209 210 static inline bool valid_policy(int policy) 211 { 212 return idle_policy(policy) || fair_policy(policy) || 213 rt_policy(policy) || dl_policy(policy); 214 } 215 216 static inline int task_has_idle_policy(struct task_struct *p) 217 { 218 return idle_policy(p->policy); 219 } 220 221 static inline int task_has_rt_policy(struct task_struct *p) 222 { 223 return rt_policy(p->policy); 224 } 225 226 static inline int task_has_dl_policy(struct task_struct *p) 227 { 228 return dl_policy(p->policy); 229 } 230 231 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 232 233 static inline void update_avg(u64 *avg, u64 sample) 234 { 235 s64 diff = sample - *avg; 236 237 *avg += diff / 8; 238 } 239 240 /* 241 * Shifting a value by an exponent greater *or equal* to the size of said value 242 * is UB; cap at size-1. 243 */ 244 #define shr_bound(val, shift) \ 245 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 246 247 /* 248 * !! For sched_setattr_nocheck() (kernel) only !! 249 * 250 * This is actually gross. :( 251 * 252 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 253 * tasks, but still be able to sleep. We need this on platforms that cannot 254 * atomically change clock frequency. Remove once fast switching will be 255 * available on such platforms. 256 * 257 * SUGOV stands for SchedUtil GOVernor. 258 */ 259 #define SCHED_FLAG_SUGOV 0x10000000 260 261 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 262 263 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 264 { 265 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 266 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 267 #else 268 return false; 269 #endif 270 } 271 272 /* 273 * Tells if entity @a should preempt entity @b. 274 */ 275 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 276 const struct sched_dl_entity *b) 277 { 278 return dl_entity_is_special(a) || 279 dl_time_before(a->deadline, b->deadline); 280 } 281 282 /* 283 * This is the priority-queue data structure of the RT scheduling class: 284 */ 285 struct rt_prio_array { 286 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 287 struct list_head queue[MAX_RT_PRIO]; 288 }; 289 290 struct rt_bandwidth { 291 /* nests inside the rq lock: */ 292 raw_spinlock_t rt_runtime_lock; 293 ktime_t rt_period; 294 u64 rt_runtime; 295 struct hrtimer rt_period_timer; 296 unsigned int rt_period_active; 297 }; 298 299 static inline int dl_bandwidth_enabled(void) 300 { 301 return sysctl_sched_rt_runtime >= 0; 302 } 303 304 /* 305 * To keep the bandwidth of -deadline tasks under control 306 * we need some place where: 307 * - store the maximum -deadline bandwidth of each cpu; 308 * - cache the fraction of bandwidth that is currently allocated in 309 * each root domain; 310 * 311 * This is all done in the data structure below. It is similar to the 312 * one used for RT-throttling (rt_bandwidth), with the main difference 313 * that, since here we are only interested in admission control, we 314 * do not decrease any runtime while the group "executes", neither we 315 * need a timer to replenish it. 316 * 317 * With respect to SMP, bandwidth is given on a per root domain basis, 318 * meaning that: 319 * - bw (< 100%) is the deadline bandwidth of each CPU; 320 * - total_bw is the currently allocated bandwidth in each root domain; 321 */ 322 struct dl_bw { 323 raw_spinlock_t lock; 324 u64 bw; 325 u64 total_bw; 326 }; 327 328 extern void init_dl_bw(struct dl_bw *dl_b); 329 extern int sched_dl_global_validate(void); 330 extern void sched_dl_do_global(void); 331 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 332 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 333 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 334 extern bool __checkparam_dl(const struct sched_attr *attr); 335 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 336 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 337 extern int dl_bw_check_overflow(int cpu); 338 339 /* 340 * SCHED_DEADLINE supports servers (nested scheduling) with the following 341 * interface: 342 * 343 * dl_se::rq -- runqueue we belong to. 344 * 345 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 346 * server when it runs out of tasks to run. 347 * 348 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 349 * returns NULL. 350 * 351 * dl_server_update() -- called from update_curr_common(), propagates runtime 352 * to the server. 353 * 354 * dl_server_start() 355 * dl_server_stop() -- start/stop the server when it has (no) tasks. 356 * 357 * dl_server_init() -- initializes the server. 358 */ 359 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 360 extern void dl_server_start(struct sched_dl_entity *dl_se); 361 extern void dl_server_stop(struct sched_dl_entity *dl_se); 362 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 363 dl_server_has_tasks_f has_tasks, 364 dl_server_pick_f pick); 365 366 #ifdef CONFIG_CGROUP_SCHED 367 368 extern struct list_head task_groups; 369 370 struct cfs_bandwidth { 371 #ifdef CONFIG_CFS_BANDWIDTH 372 raw_spinlock_t lock; 373 ktime_t period; 374 u64 quota; 375 u64 runtime; 376 u64 burst; 377 u64 runtime_snap; 378 s64 hierarchical_quota; 379 380 u8 idle; 381 u8 period_active; 382 u8 slack_started; 383 struct hrtimer period_timer; 384 struct hrtimer slack_timer; 385 struct list_head throttled_cfs_rq; 386 387 /* Statistics: */ 388 int nr_periods; 389 int nr_throttled; 390 int nr_burst; 391 u64 throttled_time; 392 u64 burst_time; 393 #endif 394 }; 395 396 /* Task group related information */ 397 struct task_group { 398 struct cgroup_subsys_state css; 399 400 #ifdef CONFIG_FAIR_GROUP_SCHED 401 /* schedulable entities of this group on each CPU */ 402 struct sched_entity **se; 403 /* runqueue "owned" by this group on each CPU */ 404 struct cfs_rq **cfs_rq; 405 unsigned long shares; 406 407 /* A positive value indicates that this is a SCHED_IDLE group. */ 408 int idle; 409 410 #ifdef CONFIG_SMP 411 /* 412 * load_avg can be heavily contended at clock tick time, so put 413 * it in its own cache-line separated from the fields above which 414 * will also be accessed at each tick. 415 */ 416 atomic_long_t load_avg ____cacheline_aligned; 417 #endif 418 #endif 419 420 #ifdef CONFIG_RT_GROUP_SCHED 421 struct sched_rt_entity **rt_se; 422 struct rt_rq **rt_rq; 423 424 struct rt_bandwidth rt_bandwidth; 425 #endif 426 427 struct rcu_head rcu; 428 struct list_head list; 429 430 struct task_group *parent; 431 struct list_head siblings; 432 struct list_head children; 433 434 #ifdef CONFIG_SCHED_AUTOGROUP 435 struct autogroup *autogroup; 436 #endif 437 438 struct cfs_bandwidth cfs_bandwidth; 439 440 #ifdef CONFIG_UCLAMP_TASK_GROUP 441 /* The two decimal precision [%] value requested from user-space */ 442 unsigned int uclamp_pct[UCLAMP_CNT]; 443 /* Clamp values requested for a task group */ 444 struct uclamp_se uclamp_req[UCLAMP_CNT]; 445 /* Effective clamp values used for a task group */ 446 struct uclamp_se uclamp[UCLAMP_CNT]; 447 #endif 448 449 }; 450 451 #ifdef CONFIG_FAIR_GROUP_SCHED 452 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 453 454 /* 455 * A weight of 0 or 1 can cause arithmetics problems. 456 * A weight of a cfs_rq is the sum of weights of which entities 457 * are queued on this cfs_rq, so a weight of a entity should not be 458 * too large, so as the shares value of a task group. 459 * (The default weight is 1024 - so there's no practical 460 * limitation from this.) 461 */ 462 #define MIN_SHARES (1UL << 1) 463 #define MAX_SHARES (1UL << 18) 464 #endif 465 466 typedef int (*tg_visitor)(struct task_group *, void *); 467 468 extern int walk_tg_tree_from(struct task_group *from, 469 tg_visitor down, tg_visitor up, void *data); 470 471 /* 472 * Iterate the full tree, calling @down when first entering a node and @up when 473 * leaving it for the final time. 474 * 475 * Caller must hold rcu_lock or sufficient equivalent. 476 */ 477 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 478 { 479 return walk_tg_tree_from(&root_task_group, down, up, data); 480 } 481 482 extern int tg_nop(struct task_group *tg, void *data); 483 484 #ifdef CONFIG_FAIR_GROUP_SCHED 485 extern void free_fair_sched_group(struct task_group *tg); 486 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 487 extern void online_fair_sched_group(struct task_group *tg); 488 extern void unregister_fair_sched_group(struct task_group *tg); 489 #else 490 static inline void free_fair_sched_group(struct task_group *tg) { } 491 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 492 { 493 return 1; 494 } 495 static inline void online_fair_sched_group(struct task_group *tg) { } 496 static inline void unregister_fair_sched_group(struct task_group *tg) { } 497 #endif 498 499 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 500 struct sched_entity *se, int cpu, 501 struct sched_entity *parent); 502 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 503 504 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 505 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 506 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 507 extern bool cfs_task_bw_constrained(struct task_struct *p); 508 509 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 510 struct sched_rt_entity *rt_se, int cpu, 511 struct sched_rt_entity *parent); 512 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 513 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 514 extern long sched_group_rt_runtime(struct task_group *tg); 515 extern long sched_group_rt_period(struct task_group *tg); 516 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 517 518 extern struct task_group *sched_create_group(struct task_group *parent); 519 extern void sched_online_group(struct task_group *tg, 520 struct task_group *parent); 521 extern void sched_destroy_group(struct task_group *tg); 522 extern void sched_release_group(struct task_group *tg); 523 524 extern void sched_move_task(struct task_struct *tsk); 525 526 #ifdef CONFIG_FAIR_GROUP_SCHED 527 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 528 529 extern int sched_group_set_idle(struct task_group *tg, long idle); 530 531 #ifdef CONFIG_SMP 532 extern void set_task_rq_fair(struct sched_entity *se, 533 struct cfs_rq *prev, struct cfs_rq *next); 534 #else /* !CONFIG_SMP */ 535 static inline void set_task_rq_fair(struct sched_entity *se, 536 struct cfs_rq *prev, struct cfs_rq *next) { } 537 #endif /* CONFIG_SMP */ 538 #endif /* CONFIG_FAIR_GROUP_SCHED */ 539 540 #else /* CONFIG_CGROUP_SCHED */ 541 542 struct cfs_bandwidth { }; 543 544 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 545 546 #endif /* CONFIG_CGROUP_SCHED */ 547 548 extern void unregister_rt_sched_group(struct task_group *tg); 549 extern void free_rt_sched_group(struct task_group *tg); 550 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 551 552 /* 553 * u64_u32_load/u64_u32_store 554 * 555 * Use a copy of a u64 value to protect against data race. This is only 556 * applicable for 32-bits architectures. 557 */ 558 #ifdef CONFIG_64BIT 559 # define u64_u32_load_copy(var, copy) var 560 # define u64_u32_store_copy(var, copy, val) (var = val) 561 #else 562 # define u64_u32_load_copy(var, copy) \ 563 ({ \ 564 u64 __val, __val_copy; \ 565 do { \ 566 __val_copy = copy; \ 567 /* \ 568 * paired with u64_u32_store_copy(), ordering access \ 569 * to var and copy. \ 570 */ \ 571 smp_rmb(); \ 572 __val = var; \ 573 } while (__val != __val_copy); \ 574 __val; \ 575 }) 576 # define u64_u32_store_copy(var, copy, val) \ 577 do { \ 578 typeof(val) __val = (val); \ 579 var = __val; \ 580 /* \ 581 * paired with u64_u32_load_copy(), ordering access to var and \ 582 * copy. \ 583 */ \ 584 smp_wmb(); \ 585 copy = __val; \ 586 } while (0) 587 #endif 588 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 589 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 590 591 /* CFS-related fields in a runqueue */ 592 struct cfs_rq { 593 struct load_weight load; 594 unsigned int nr_running; 595 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 596 unsigned int idle_nr_running; /* SCHED_IDLE */ 597 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 598 599 s64 avg_vruntime; 600 u64 avg_load; 601 602 u64 exec_clock; 603 u64 min_vruntime; 604 #ifdef CONFIG_SCHED_CORE 605 unsigned int forceidle_seq; 606 u64 min_vruntime_fi; 607 #endif 608 609 #ifndef CONFIG_64BIT 610 u64 min_vruntime_copy; 611 #endif 612 613 struct rb_root_cached tasks_timeline; 614 615 /* 616 * 'curr' points to currently running entity on this cfs_rq. 617 * It is set to NULL otherwise (i.e when none are currently running). 618 */ 619 struct sched_entity *curr; 620 struct sched_entity *next; 621 622 #ifdef CONFIG_SCHED_DEBUG 623 unsigned int nr_spread_over; 624 #endif 625 626 #ifdef CONFIG_SMP 627 /* 628 * CFS load tracking 629 */ 630 struct sched_avg avg; 631 #ifndef CONFIG_64BIT 632 u64 last_update_time_copy; 633 #endif 634 struct { 635 raw_spinlock_t lock ____cacheline_aligned; 636 int nr; 637 unsigned long load_avg; 638 unsigned long util_avg; 639 unsigned long runnable_avg; 640 } removed; 641 642 #ifdef CONFIG_FAIR_GROUP_SCHED 643 u64 last_update_tg_load_avg; 644 unsigned long tg_load_avg_contrib; 645 long propagate; 646 long prop_runnable_sum; 647 648 /* 649 * h_load = weight * f(tg) 650 * 651 * Where f(tg) is the recursive weight fraction assigned to 652 * this group. 653 */ 654 unsigned long h_load; 655 u64 last_h_load_update; 656 struct sched_entity *h_load_next; 657 #endif /* CONFIG_FAIR_GROUP_SCHED */ 658 #endif /* CONFIG_SMP */ 659 660 #ifdef CONFIG_FAIR_GROUP_SCHED 661 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 662 663 /* 664 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 665 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 666 * (like users, containers etc.) 667 * 668 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 669 * This list is used during load balance. 670 */ 671 int on_list; 672 struct list_head leaf_cfs_rq_list; 673 struct task_group *tg; /* group that "owns" this runqueue */ 674 675 /* Locally cached copy of our task_group's idle value */ 676 int idle; 677 678 #ifdef CONFIG_CFS_BANDWIDTH 679 int runtime_enabled; 680 s64 runtime_remaining; 681 682 u64 throttled_pelt_idle; 683 #ifndef CONFIG_64BIT 684 u64 throttled_pelt_idle_copy; 685 #endif 686 u64 throttled_clock; 687 u64 throttled_clock_pelt; 688 u64 throttled_clock_pelt_time; 689 u64 throttled_clock_self; 690 u64 throttled_clock_self_time; 691 int throttled; 692 int throttle_count; 693 struct list_head throttled_list; 694 struct list_head throttled_csd_list; 695 #endif /* CONFIG_CFS_BANDWIDTH */ 696 #endif /* CONFIG_FAIR_GROUP_SCHED */ 697 }; 698 699 static inline int rt_bandwidth_enabled(void) 700 { 701 return sysctl_sched_rt_runtime >= 0; 702 } 703 704 /* RT IPI pull logic requires IRQ_WORK */ 705 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 706 # define HAVE_RT_PUSH_IPI 707 #endif 708 709 /* Real-Time classes' related field in a runqueue: */ 710 struct rt_rq { 711 struct rt_prio_array active; 712 unsigned int rt_nr_running; 713 unsigned int rr_nr_running; 714 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 715 struct { 716 int curr; /* highest queued rt task prio */ 717 #ifdef CONFIG_SMP 718 int next; /* next highest */ 719 #endif 720 } highest_prio; 721 #endif 722 #ifdef CONFIG_SMP 723 bool overloaded; 724 struct plist_head pushable_tasks; 725 726 #endif /* CONFIG_SMP */ 727 int rt_queued; 728 729 int rt_throttled; 730 u64 rt_time; 731 u64 rt_runtime; 732 /* Nests inside the rq lock: */ 733 raw_spinlock_t rt_runtime_lock; 734 735 #ifdef CONFIG_RT_GROUP_SCHED 736 unsigned int rt_nr_boosted; 737 738 struct rq *rq; 739 struct task_group *tg; 740 #endif 741 }; 742 743 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 744 { 745 return rt_rq->rt_queued && rt_rq->rt_nr_running; 746 } 747 748 /* Deadline class' related fields in a runqueue */ 749 struct dl_rq { 750 /* runqueue is an rbtree, ordered by deadline */ 751 struct rb_root_cached root; 752 753 unsigned int dl_nr_running; 754 755 #ifdef CONFIG_SMP 756 /* 757 * Deadline values of the currently executing and the 758 * earliest ready task on this rq. Caching these facilitates 759 * the decision whether or not a ready but not running task 760 * should migrate somewhere else. 761 */ 762 struct { 763 u64 curr; 764 u64 next; 765 } earliest_dl; 766 767 bool overloaded; 768 769 /* 770 * Tasks on this rq that can be pushed away. They are kept in 771 * an rb-tree, ordered by tasks' deadlines, with caching 772 * of the leftmost (earliest deadline) element. 773 */ 774 struct rb_root_cached pushable_dl_tasks_root; 775 #else 776 struct dl_bw dl_bw; 777 #endif 778 /* 779 * "Active utilization" for this runqueue: increased when a 780 * task wakes up (becomes TASK_RUNNING) and decreased when a 781 * task blocks 782 */ 783 u64 running_bw; 784 785 /* 786 * Utilization of the tasks "assigned" to this runqueue (including 787 * the tasks that are in runqueue and the tasks that executed on this 788 * CPU and blocked). Increased when a task moves to this runqueue, and 789 * decreased when the task moves away (migrates, changes scheduling 790 * policy, or terminates). 791 * This is needed to compute the "inactive utilization" for the 792 * runqueue (inactive utilization = this_bw - running_bw). 793 */ 794 u64 this_bw; 795 u64 extra_bw; 796 797 /* 798 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 799 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 800 */ 801 u64 max_bw; 802 803 /* 804 * Inverse of the fraction of CPU utilization that can be reclaimed 805 * by the GRUB algorithm. 806 */ 807 u64 bw_ratio; 808 }; 809 810 #ifdef CONFIG_FAIR_GROUP_SCHED 811 812 /* An entity is a task if it doesn't "own" a runqueue */ 813 #define entity_is_task(se) (!se->my_q) 814 815 static inline void se_update_runnable(struct sched_entity *se) 816 { 817 if (!entity_is_task(se)) 818 se->runnable_weight = se->my_q->h_nr_running; 819 } 820 821 static inline long se_runnable(struct sched_entity *se) 822 { 823 if (entity_is_task(se)) 824 return !!se->on_rq; 825 else 826 return se->runnable_weight; 827 } 828 829 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 830 831 #define entity_is_task(se) 1 832 833 static inline void se_update_runnable(struct sched_entity *se) { } 834 835 static inline long se_runnable(struct sched_entity *se) 836 { 837 return !!se->on_rq; 838 } 839 840 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 841 842 #ifdef CONFIG_SMP 843 /* 844 * XXX we want to get rid of these helpers and use the full load resolution. 845 */ 846 static inline long se_weight(struct sched_entity *se) 847 { 848 return scale_load_down(se->load.weight); 849 } 850 851 852 static inline bool sched_asym_prefer(int a, int b) 853 { 854 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 855 } 856 857 struct perf_domain { 858 struct em_perf_domain *em_pd; 859 struct perf_domain *next; 860 struct rcu_head rcu; 861 }; 862 863 /* 864 * We add the notion of a root-domain which will be used to define per-domain 865 * variables. Each exclusive cpuset essentially defines an island domain by 866 * fully partitioning the member CPUs from any other cpuset. Whenever a new 867 * exclusive cpuset is created, we also create and attach a new root-domain 868 * object. 869 * 870 */ 871 struct root_domain { 872 atomic_t refcount; 873 atomic_t rto_count; 874 struct rcu_head rcu; 875 cpumask_var_t span; 876 cpumask_var_t online; 877 878 /* 879 * Indicate pullable load on at least one CPU, e.g: 880 * - More than one runnable task 881 * - Running task is misfit 882 */ 883 bool overloaded; 884 885 /* Indicate one or more CPUs over-utilized (tipping point) */ 886 bool overutilized; 887 888 /* 889 * The bit corresponding to a CPU gets set here if such CPU has more 890 * than one runnable -deadline task (as it is below for RT tasks). 891 */ 892 cpumask_var_t dlo_mask; 893 atomic_t dlo_count; 894 struct dl_bw dl_bw; 895 struct cpudl cpudl; 896 897 /* 898 * Indicate whether a root_domain's dl_bw has been checked or 899 * updated. It's monotonously increasing value. 900 * 901 * Also, some corner cases, like 'wrap around' is dangerous, but given 902 * that u64 is 'big enough'. So that shouldn't be a concern. 903 */ 904 u64 visit_gen; 905 906 #ifdef HAVE_RT_PUSH_IPI 907 /* 908 * For IPI pull requests, loop across the rto_mask. 909 */ 910 struct irq_work rto_push_work; 911 raw_spinlock_t rto_lock; 912 /* These are only updated and read within rto_lock */ 913 int rto_loop; 914 int rto_cpu; 915 /* These atomics are updated outside of a lock */ 916 atomic_t rto_loop_next; 917 atomic_t rto_loop_start; 918 #endif 919 /* 920 * The "RT overload" flag: it gets set if a CPU has more than 921 * one runnable RT task. 922 */ 923 cpumask_var_t rto_mask; 924 struct cpupri cpupri; 925 926 /* 927 * NULL-terminated list of performance domains intersecting with the 928 * CPUs of the rd. Protected by RCU. 929 */ 930 struct perf_domain __rcu *pd; 931 }; 932 933 extern void init_defrootdomain(void); 934 extern int sched_init_domains(const struct cpumask *cpu_map); 935 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 936 extern void sched_get_rd(struct root_domain *rd); 937 extern void sched_put_rd(struct root_domain *rd); 938 939 static inline int get_rd_overloaded(struct root_domain *rd) 940 { 941 return READ_ONCE(rd->overloaded); 942 } 943 944 static inline void set_rd_overloaded(struct root_domain *rd, int status) 945 { 946 if (get_rd_overloaded(rd) != status) 947 WRITE_ONCE(rd->overloaded, status); 948 } 949 950 #ifdef HAVE_RT_PUSH_IPI 951 extern void rto_push_irq_work_func(struct irq_work *work); 952 #endif 953 #endif /* CONFIG_SMP */ 954 955 #ifdef CONFIG_UCLAMP_TASK 956 /* 957 * struct uclamp_bucket - Utilization clamp bucket 958 * @value: utilization clamp value for tasks on this clamp bucket 959 * @tasks: number of RUNNABLE tasks on this clamp bucket 960 * 961 * Keep track of how many tasks are RUNNABLE for a given utilization 962 * clamp value. 963 */ 964 struct uclamp_bucket { 965 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 966 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 967 }; 968 969 /* 970 * struct uclamp_rq - rq's utilization clamp 971 * @value: currently active clamp values for a rq 972 * @bucket: utilization clamp buckets affecting a rq 973 * 974 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 975 * A clamp value is affecting a rq when there is at least one task RUNNABLE 976 * (or actually running) with that value. 977 * 978 * There are up to UCLAMP_CNT possible different clamp values, currently there 979 * are only two: minimum utilization and maximum utilization. 980 * 981 * All utilization clamping values are MAX aggregated, since: 982 * - for util_min: we want to run the CPU at least at the max of the minimum 983 * utilization required by its currently RUNNABLE tasks. 984 * - for util_max: we want to allow the CPU to run up to the max of the 985 * maximum utilization allowed by its currently RUNNABLE tasks. 986 * 987 * Since on each system we expect only a limited number of different 988 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 989 * the metrics required to compute all the per-rq utilization clamp values. 990 */ 991 struct uclamp_rq { 992 unsigned int value; 993 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 994 }; 995 996 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 997 #endif /* CONFIG_UCLAMP_TASK */ 998 999 struct balance_callback { 1000 struct balance_callback *next; 1001 void (*func)(struct rq *rq); 1002 }; 1003 1004 /* 1005 * This is the main, per-CPU runqueue data structure. 1006 * 1007 * Locking rule: those places that want to lock multiple runqueues 1008 * (such as the load balancing or the thread migration code), lock 1009 * acquire operations must be ordered by ascending &runqueue. 1010 */ 1011 struct rq { 1012 /* runqueue lock: */ 1013 raw_spinlock_t __lock; 1014 1015 unsigned int nr_running; 1016 #ifdef CONFIG_NUMA_BALANCING 1017 unsigned int nr_numa_running; 1018 unsigned int nr_preferred_running; 1019 unsigned int numa_migrate_on; 1020 #endif 1021 #ifdef CONFIG_NO_HZ_COMMON 1022 #ifdef CONFIG_SMP 1023 unsigned long last_blocked_load_update_tick; 1024 unsigned int has_blocked_load; 1025 call_single_data_t nohz_csd; 1026 #endif /* CONFIG_SMP */ 1027 unsigned int nohz_tick_stopped; 1028 atomic_t nohz_flags; 1029 #endif /* CONFIG_NO_HZ_COMMON */ 1030 1031 #ifdef CONFIG_SMP 1032 unsigned int ttwu_pending; 1033 #endif 1034 u64 nr_switches; 1035 1036 #ifdef CONFIG_UCLAMP_TASK 1037 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1038 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1039 unsigned int uclamp_flags; 1040 #define UCLAMP_FLAG_IDLE 0x01 1041 #endif 1042 1043 struct cfs_rq cfs; 1044 struct rt_rq rt; 1045 struct dl_rq dl; 1046 1047 #ifdef CONFIG_FAIR_GROUP_SCHED 1048 /* list of leaf cfs_rq on this CPU: */ 1049 struct list_head leaf_cfs_rq_list; 1050 struct list_head *tmp_alone_branch; 1051 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1052 1053 /* 1054 * This is part of a global counter where only the total sum 1055 * over all CPUs matters. A task can increase this counter on 1056 * one CPU and if it got migrated afterwards it may decrease 1057 * it on another CPU. Always updated under the runqueue lock: 1058 */ 1059 unsigned int nr_uninterruptible; 1060 1061 struct task_struct __rcu *curr; 1062 struct task_struct *idle; 1063 struct task_struct *stop; 1064 unsigned long next_balance; 1065 struct mm_struct *prev_mm; 1066 1067 unsigned int clock_update_flags; 1068 u64 clock; 1069 /* Ensure that all clocks are in the same cache line */ 1070 u64 clock_task ____cacheline_aligned; 1071 u64 clock_pelt; 1072 unsigned long lost_idle_time; 1073 u64 clock_pelt_idle; 1074 u64 clock_idle; 1075 #ifndef CONFIG_64BIT 1076 u64 clock_pelt_idle_copy; 1077 u64 clock_idle_copy; 1078 #endif 1079 1080 atomic_t nr_iowait; 1081 1082 #ifdef CONFIG_SCHED_DEBUG 1083 u64 last_seen_need_resched_ns; 1084 int ticks_without_resched; 1085 #endif 1086 1087 #ifdef CONFIG_MEMBARRIER 1088 int membarrier_state; 1089 #endif 1090 1091 #ifdef CONFIG_SMP 1092 struct root_domain *rd; 1093 struct sched_domain __rcu *sd; 1094 1095 unsigned long cpu_capacity; 1096 1097 struct balance_callback *balance_callback; 1098 1099 unsigned char nohz_idle_balance; 1100 unsigned char idle_balance; 1101 1102 unsigned long misfit_task_load; 1103 1104 /* For active balancing */ 1105 int active_balance; 1106 int push_cpu; 1107 struct cpu_stop_work active_balance_work; 1108 1109 /* CPU of this runqueue: */ 1110 int cpu; 1111 int online; 1112 1113 struct list_head cfs_tasks; 1114 1115 struct sched_avg avg_rt; 1116 struct sched_avg avg_dl; 1117 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1118 struct sched_avg avg_irq; 1119 #endif 1120 #ifdef CONFIG_SCHED_HW_PRESSURE 1121 struct sched_avg avg_hw; 1122 #endif 1123 u64 idle_stamp; 1124 u64 avg_idle; 1125 1126 /* This is used to determine avg_idle's max value */ 1127 u64 max_idle_balance_cost; 1128 1129 #ifdef CONFIG_HOTPLUG_CPU 1130 struct rcuwait hotplug_wait; 1131 #endif 1132 #endif /* CONFIG_SMP */ 1133 1134 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1135 u64 prev_irq_time; 1136 u64 psi_irq_time; 1137 #endif 1138 #ifdef CONFIG_PARAVIRT 1139 u64 prev_steal_time; 1140 #endif 1141 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1142 u64 prev_steal_time_rq; 1143 #endif 1144 1145 /* calc_load related fields */ 1146 unsigned long calc_load_update; 1147 long calc_load_active; 1148 1149 #ifdef CONFIG_SCHED_HRTICK 1150 #ifdef CONFIG_SMP 1151 call_single_data_t hrtick_csd; 1152 #endif 1153 struct hrtimer hrtick_timer; 1154 ktime_t hrtick_time; 1155 #endif 1156 1157 #ifdef CONFIG_SCHEDSTATS 1158 /* latency stats */ 1159 struct sched_info rq_sched_info; 1160 unsigned long long rq_cpu_time; 1161 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1162 1163 /* sys_sched_yield() stats */ 1164 unsigned int yld_count; 1165 1166 /* schedule() stats */ 1167 unsigned int sched_count; 1168 unsigned int sched_goidle; 1169 1170 /* try_to_wake_up() stats */ 1171 unsigned int ttwu_count; 1172 unsigned int ttwu_local; 1173 #endif 1174 1175 #ifdef CONFIG_CPU_IDLE 1176 /* Must be inspected within a RCU lock section */ 1177 struct cpuidle_state *idle_state; 1178 #endif 1179 1180 #ifdef CONFIG_SMP 1181 unsigned int nr_pinned; 1182 #endif 1183 unsigned int push_busy; 1184 struct cpu_stop_work push_work; 1185 1186 #ifdef CONFIG_SCHED_CORE 1187 /* per rq */ 1188 struct rq *core; 1189 struct task_struct *core_pick; 1190 unsigned int core_enabled; 1191 unsigned int core_sched_seq; 1192 struct rb_root core_tree; 1193 1194 /* shared state -- careful with sched_core_cpu_deactivate() */ 1195 unsigned int core_task_seq; 1196 unsigned int core_pick_seq; 1197 unsigned long core_cookie; 1198 unsigned int core_forceidle_count; 1199 unsigned int core_forceidle_seq; 1200 unsigned int core_forceidle_occupation; 1201 u64 core_forceidle_start; 1202 #endif 1203 1204 /* Scratch cpumask to be temporarily used under rq_lock */ 1205 cpumask_var_t scratch_mask; 1206 1207 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1208 call_single_data_t cfsb_csd; 1209 struct list_head cfsb_csd_list; 1210 #endif 1211 }; 1212 1213 #ifdef CONFIG_FAIR_GROUP_SCHED 1214 1215 /* CPU runqueue to which this cfs_rq is attached */ 1216 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1217 { 1218 return cfs_rq->rq; 1219 } 1220 1221 #else 1222 1223 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1224 { 1225 return container_of(cfs_rq, struct rq, cfs); 1226 } 1227 #endif 1228 1229 static inline int cpu_of(struct rq *rq) 1230 { 1231 #ifdef CONFIG_SMP 1232 return rq->cpu; 1233 #else 1234 return 0; 1235 #endif 1236 } 1237 1238 #define MDF_PUSH 0x01 1239 1240 static inline bool is_migration_disabled(struct task_struct *p) 1241 { 1242 #ifdef CONFIG_SMP 1243 return p->migration_disabled; 1244 #else 1245 return false; 1246 #endif 1247 } 1248 1249 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1250 1251 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1252 #define this_rq() this_cpu_ptr(&runqueues) 1253 #define task_rq(p) cpu_rq(task_cpu(p)) 1254 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1255 #define raw_rq() raw_cpu_ptr(&runqueues) 1256 1257 #ifdef CONFIG_SCHED_CORE 1258 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1259 1260 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1261 1262 static inline bool sched_core_enabled(struct rq *rq) 1263 { 1264 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1265 } 1266 1267 static inline bool sched_core_disabled(void) 1268 { 1269 return !static_branch_unlikely(&__sched_core_enabled); 1270 } 1271 1272 /* 1273 * Be careful with this function; not for general use. The return value isn't 1274 * stable unless you actually hold a relevant rq->__lock. 1275 */ 1276 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1277 { 1278 if (sched_core_enabled(rq)) 1279 return &rq->core->__lock; 1280 1281 return &rq->__lock; 1282 } 1283 1284 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1285 { 1286 if (rq->core_enabled) 1287 return &rq->core->__lock; 1288 1289 return &rq->__lock; 1290 } 1291 1292 extern bool 1293 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1294 1295 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1296 1297 /* 1298 * Helpers to check if the CPU's core cookie matches with the task's cookie 1299 * when core scheduling is enabled. 1300 * A special case is that the task's cookie always matches with CPU's core 1301 * cookie if the CPU is in an idle core. 1302 */ 1303 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1304 { 1305 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1306 if (!sched_core_enabled(rq)) 1307 return true; 1308 1309 return rq->core->core_cookie == p->core_cookie; 1310 } 1311 1312 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1313 { 1314 bool idle_core = true; 1315 int cpu; 1316 1317 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1318 if (!sched_core_enabled(rq)) 1319 return true; 1320 1321 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1322 if (!available_idle_cpu(cpu)) { 1323 idle_core = false; 1324 break; 1325 } 1326 } 1327 1328 /* 1329 * A CPU in an idle core is always the best choice for tasks with 1330 * cookies. 1331 */ 1332 return idle_core || rq->core->core_cookie == p->core_cookie; 1333 } 1334 1335 static inline bool sched_group_cookie_match(struct rq *rq, 1336 struct task_struct *p, 1337 struct sched_group *group) 1338 { 1339 int cpu; 1340 1341 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1342 if (!sched_core_enabled(rq)) 1343 return true; 1344 1345 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1346 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1347 return true; 1348 } 1349 return false; 1350 } 1351 1352 static inline bool sched_core_enqueued(struct task_struct *p) 1353 { 1354 return !RB_EMPTY_NODE(&p->core_node); 1355 } 1356 1357 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1358 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1359 1360 extern void sched_core_get(void); 1361 extern void sched_core_put(void); 1362 1363 #else /* !CONFIG_SCHED_CORE: */ 1364 1365 static inline bool sched_core_enabled(struct rq *rq) 1366 { 1367 return false; 1368 } 1369 1370 static inline bool sched_core_disabled(void) 1371 { 1372 return true; 1373 } 1374 1375 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1376 { 1377 return &rq->__lock; 1378 } 1379 1380 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1381 { 1382 return &rq->__lock; 1383 } 1384 1385 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1386 { 1387 return true; 1388 } 1389 1390 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1391 { 1392 return true; 1393 } 1394 1395 static inline bool sched_group_cookie_match(struct rq *rq, 1396 struct task_struct *p, 1397 struct sched_group *group) 1398 { 1399 return true; 1400 } 1401 1402 #endif /* !CONFIG_SCHED_CORE */ 1403 1404 static inline void lockdep_assert_rq_held(struct rq *rq) 1405 { 1406 lockdep_assert_held(__rq_lockp(rq)); 1407 } 1408 1409 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1410 extern bool raw_spin_rq_trylock(struct rq *rq); 1411 extern void raw_spin_rq_unlock(struct rq *rq); 1412 1413 static inline void raw_spin_rq_lock(struct rq *rq) 1414 { 1415 raw_spin_rq_lock_nested(rq, 0); 1416 } 1417 1418 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1419 { 1420 local_irq_disable(); 1421 raw_spin_rq_lock(rq); 1422 } 1423 1424 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1425 { 1426 raw_spin_rq_unlock(rq); 1427 local_irq_enable(); 1428 } 1429 1430 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1431 { 1432 unsigned long flags; 1433 1434 local_irq_save(flags); 1435 raw_spin_rq_lock(rq); 1436 1437 return flags; 1438 } 1439 1440 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1441 { 1442 raw_spin_rq_unlock(rq); 1443 local_irq_restore(flags); 1444 } 1445 1446 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1447 do { \ 1448 flags = _raw_spin_rq_lock_irqsave(rq); \ 1449 } while (0) 1450 1451 #ifdef CONFIG_SCHED_SMT 1452 extern void __update_idle_core(struct rq *rq); 1453 1454 static inline void update_idle_core(struct rq *rq) 1455 { 1456 if (static_branch_unlikely(&sched_smt_present)) 1457 __update_idle_core(rq); 1458 } 1459 1460 #else 1461 static inline void update_idle_core(struct rq *rq) { } 1462 #endif 1463 1464 #ifdef CONFIG_FAIR_GROUP_SCHED 1465 1466 static inline struct task_struct *task_of(struct sched_entity *se) 1467 { 1468 SCHED_WARN_ON(!entity_is_task(se)); 1469 return container_of(se, struct task_struct, se); 1470 } 1471 1472 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1473 { 1474 return p->se.cfs_rq; 1475 } 1476 1477 /* runqueue on which this entity is (to be) queued */ 1478 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1479 { 1480 return se->cfs_rq; 1481 } 1482 1483 /* runqueue "owned" by this group */ 1484 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1485 { 1486 return grp->my_q; 1487 } 1488 1489 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1490 1491 #define task_of(_se) container_of(_se, struct task_struct, se) 1492 1493 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1494 { 1495 return &task_rq(p)->cfs; 1496 } 1497 1498 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1499 { 1500 const struct task_struct *p = task_of(se); 1501 struct rq *rq = task_rq(p); 1502 1503 return &rq->cfs; 1504 } 1505 1506 /* runqueue "owned" by this group */ 1507 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1508 { 1509 return NULL; 1510 } 1511 1512 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1513 1514 extern void update_rq_clock(struct rq *rq); 1515 1516 /* 1517 * rq::clock_update_flags bits 1518 * 1519 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1520 * call to __schedule(). This is an optimisation to avoid 1521 * neighbouring rq clock updates. 1522 * 1523 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1524 * in effect and calls to update_rq_clock() are being ignored. 1525 * 1526 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1527 * made to update_rq_clock() since the last time rq::lock was pinned. 1528 * 1529 * If inside of __schedule(), clock_update_flags will have been 1530 * shifted left (a left shift is a cheap operation for the fast path 1531 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1532 * 1533 * if (rq-clock_update_flags >= RQCF_UPDATED) 1534 * 1535 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1536 * one position though, because the next rq_unpin_lock() will shift it 1537 * back. 1538 */ 1539 #define RQCF_REQ_SKIP 0x01 1540 #define RQCF_ACT_SKIP 0x02 1541 #define RQCF_UPDATED 0x04 1542 1543 static inline void assert_clock_updated(struct rq *rq) 1544 { 1545 /* 1546 * The only reason for not seeing a clock update since the 1547 * last rq_pin_lock() is if we're currently skipping updates. 1548 */ 1549 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1550 } 1551 1552 static inline u64 rq_clock(struct rq *rq) 1553 { 1554 lockdep_assert_rq_held(rq); 1555 assert_clock_updated(rq); 1556 1557 return rq->clock; 1558 } 1559 1560 static inline u64 rq_clock_task(struct rq *rq) 1561 { 1562 lockdep_assert_rq_held(rq); 1563 assert_clock_updated(rq); 1564 1565 return rq->clock_task; 1566 } 1567 1568 static inline void rq_clock_skip_update(struct rq *rq) 1569 { 1570 lockdep_assert_rq_held(rq); 1571 rq->clock_update_flags |= RQCF_REQ_SKIP; 1572 } 1573 1574 /* 1575 * See rt task throttling, which is the only time a skip 1576 * request is canceled. 1577 */ 1578 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1579 { 1580 lockdep_assert_rq_held(rq); 1581 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1582 } 1583 1584 /* 1585 * During cpu offlining and rq wide unthrottling, we can trigger 1586 * an update_rq_clock() for several cfs and rt runqueues (Typically 1587 * when using list_for_each_entry_*) 1588 * rq_clock_start_loop_update() can be called after updating the clock 1589 * once and before iterating over the list to prevent multiple update. 1590 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1591 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1592 */ 1593 static inline void rq_clock_start_loop_update(struct rq *rq) 1594 { 1595 lockdep_assert_rq_held(rq); 1596 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); 1597 rq->clock_update_flags |= RQCF_ACT_SKIP; 1598 } 1599 1600 static inline void rq_clock_stop_loop_update(struct rq *rq) 1601 { 1602 lockdep_assert_rq_held(rq); 1603 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1604 } 1605 1606 struct rq_flags { 1607 unsigned long flags; 1608 struct pin_cookie cookie; 1609 #ifdef CONFIG_SCHED_DEBUG 1610 /* 1611 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1612 * current pin context is stashed here in case it needs to be 1613 * restored in rq_repin_lock(). 1614 */ 1615 unsigned int clock_update_flags; 1616 #endif 1617 }; 1618 1619 extern struct balance_callback balance_push_callback; 1620 1621 /* 1622 * Lockdep annotation that avoids accidental unlocks; it's like a 1623 * sticky/continuous lockdep_assert_held(). 1624 * 1625 * This avoids code that has access to 'struct rq *rq' (basically everything in 1626 * the scheduler) from accidentally unlocking the rq if they do not also have a 1627 * copy of the (on-stack) 'struct rq_flags rf'. 1628 * 1629 * Also see Documentation/locking/lockdep-design.rst. 1630 */ 1631 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1632 { 1633 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1634 1635 #ifdef CONFIG_SCHED_DEBUG 1636 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1637 rf->clock_update_flags = 0; 1638 # ifdef CONFIG_SMP 1639 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1640 # endif 1641 #endif 1642 } 1643 1644 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1645 { 1646 #ifdef CONFIG_SCHED_DEBUG 1647 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1648 rf->clock_update_flags = RQCF_UPDATED; 1649 #endif 1650 1651 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1652 } 1653 1654 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1655 { 1656 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1657 1658 #ifdef CONFIG_SCHED_DEBUG 1659 /* 1660 * Restore the value we stashed in @rf for this pin context. 1661 */ 1662 rq->clock_update_flags |= rf->clock_update_flags; 1663 #endif 1664 } 1665 1666 extern 1667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1668 __acquires(rq->lock); 1669 1670 extern 1671 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1672 __acquires(p->pi_lock) 1673 __acquires(rq->lock); 1674 1675 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1676 __releases(rq->lock) 1677 { 1678 rq_unpin_lock(rq, rf); 1679 raw_spin_rq_unlock(rq); 1680 } 1681 1682 static inline void 1683 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1684 __releases(rq->lock) 1685 __releases(p->pi_lock) 1686 { 1687 rq_unpin_lock(rq, rf); 1688 raw_spin_rq_unlock(rq); 1689 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1690 } 1691 1692 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1693 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1694 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1695 struct rq *rq; struct rq_flags rf) 1696 1697 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1698 __acquires(rq->lock) 1699 { 1700 raw_spin_rq_lock_irqsave(rq, rf->flags); 1701 rq_pin_lock(rq, rf); 1702 } 1703 1704 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1705 __acquires(rq->lock) 1706 { 1707 raw_spin_rq_lock_irq(rq); 1708 rq_pin_lock(rq, rf); 1709 } 1710 1711 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1712 __acquires(rq->lock) 1713 { 1714 raw_spin_rq_lock(rq); 1715 rq_pin_lock(rq, rf); 1716 } 1717 1718 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1719 __releases(rq->lock) 1720 { 1721 rq_unpin_lock(rq, rf); 1722 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1723 } 1724 1725 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1726 __releases(rq->lock) 1727 { 1728 rq_unpin_lock(rq, rf); 1729 raw_spin_rq_unlock_irq(rq); 1730 } 1731 1732 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1733 __releases(rq->lock) 1734 { 1735 rq_unpin_lock(rq, rf); 1736 raw_spin_rq_unlock(rq); 1737 } 1738 1739 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1740 rq_lock(_T->lock, &_T->rf), 1741 rq_unlock(_T->lock, &_T->rf), 1742 struct rq_flags rf) 1743 1744 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1745 rq_lock_irq(_T->lock, &_T->rf), 1746 rq_unlock_irq(_T->lock, &_T->rf), 1747 struct rq_flags rf) 1748 1749 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1750 rq_lock_irqsave(_T->lock, &_T->rf), 1751 rq_unlock_irqrestore(_T->lock, &_T->rf), 1752 struct rq_flags rf) 1753 1754 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1755 __acquires(rq->lock) 1756 { 1757 struct rq *rq; 1758 1759 local_irq_disable(); 1760 rq = this_rq(); 1761 rq_lock(rq, rf); 1762 1763 return rq; 1764 } 1765 1766 #ifdef CONFIG_NUMA 1767 1768 enum numa_topology_type { 1769 NUMA_DIRECT, 1770 NUMA_GLUELESS_MESH, 1771 NUMA_BACKPLANE, 1772 }; 1773 1774 extern enum numa_topology_type sched_numa_topology_type; 1775 extern int sched_max_numa_distance; 1776 extern bool find_numa_distance(int distance); 1777 extern void sched_init_numa(int offline_node); 1778 extern void sched_update_numa(int cpu, bool online); 1779 extern void sched_domains_numa_masks_set(unsigned int cpu); 1780 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1781 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1782 1783 #else /* !CONFIG_NUMA: */ 1784 1785 static inline void sched_init_numa(int offline_node) { } 1786 static inline void sched_update_numa(int cpu, bool online) { } 1787 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1788 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1789 1790 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1791 { 1792 return nr_cpu_ids; 1793 } 1794 1795 #endif /* !CONFIG_NUMA */ 1796 1797 #ifdef CONFIG_NUMA_BALANCING 1798 1799 /* The regions in numa_faults array from task_struct */ 1800 enum numa_faults_stats { 1801 NUMA_MEM = 0, 1802 NUMA_CPU, 1803 NUMA_MEMBUF, 1804 NUMA_CPUBUF 1805 }; 1806 1807 extern void sched_setnuma(struct task_struct *p, int node); 1808 extern int migrate_task_to(struct task_struct *p, int cpu); 1809 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1810 int cpu, int scpu); 1811 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1812 1813 #else /* !CONFIG_NUMA_BALANCING: */ 1814 1815 static inline void 1816 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1817 { 1818 } 1819 1820 #endif /* !CONFIG_NUMA_BALANCING */ 1821 1822 #ifdef CONFIG_SMP 1823 1824 static inline void 1825 queue_balance_callback(struct rq *rq, 1826 struct balance_callback *head, 1827 void (*func)(struct rq *rq)) 1828 { 1829 lockdep_assert_rq_held(rq); 1830 1831 /* 1832 * Don't (re)queue an already queued item; nor queue anything when 1833 * balance_push() is active, see the comment with 1834 * balance_push_callback. 1835 */ 1836 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1837 return; 1838 1839 head->func = func; 1840 head->next = rq->balance_callback; 1841 rq->balance_callback = head; 1842 } 1843 1844 #define rcu_dereference_check_sched_domain(p) \ 1845 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1846 1847 /* 1848 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1849 * See destroy_sched_domains: call_rcu for details. 1850 * 1851 * The domain tree of any CPU may only be accessed from within 1852 * preempt-disabled sections. 1853 */ 1854 #define for_each_domain(cpu, __sd) \ 1855 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1856 __sd; __sd = __sd->parent) 1857 1858 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1859 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1860 static const unsigned int SD_SHARED_CHILD_MASK = 1861 #include <linux/sched/sd_flags.h> 1862 0; 1863 #undef SD_FLAG 1864 1865 /** 1866 * highest_flag_domain - Return highest sched_domain containing flag. 1867 * @cpu: The CPU whose highest level of sched domain is to 1868 * be returned. 1869 * @flag: The flag to check for the highest sched_domain 1870 * for the given CPU. 1871 * 1872 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1873 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1874 */ 1875 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1876 { 1877 struct sched_domain *sd, *hsd = NULL; 1878 1879 for_each_domain(cpu, sd) { 1880 if (sd->flags & flag) { 1881 hsd = sd; 1882 continue; 1883 } 1884 1885 /* 1886 * Stop the search if @flag is known to be shared at lower 1887 * levels. It will not be found further up. 1888 */ 1889 if (flag & SD_SHARED_CHILD_MASK) 1890 break; 1891 } 1892 1893 return hsd; 1894 } 1895 1896 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1897 { 1898 struct sched_domain *sd; 1899 1900 for_each_domain(cpu, sd) { 1901 if (sd->flags & flag) 1902 break; 1903 } 1904 1905 return sd; 1906 } 1907 1908 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1909 DECLARE_PER_CPU(int, sd_llc_size); 1910 DECLARE_PER_CPU(int, sd_llc_id); 1911 DECLARE_PER_CPU(int, sd_share_id); 1912 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1913 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1914 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1915 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1916 1917 extern struct static_key_false sched_asym_cpucapacity; 1918 extern struct static_key_false sched_cluster_active; 1919 1920 static __always_inline bool sched_asym_cpucap_active(void) 1921 { 1922 return static_branch_unlikely(&sched_asym_cpucapacity); 1923 } 1924 1925 struct sched_group_capacity { 1926 atomic_t ref; 1927 /* 1928 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1929 * for a single CPU. 1930 */ 1931 unsigned long capacity; 1932 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1933 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1934 unsigned long next_update; 1935 int imbalance; /* XXX unrelated to capacity but shared group state */ 1936 1937 #ifdef CONFIG_SCHED_DEBUG 1938 int id; 1939 #endif 1940 1941 unsigned long cpumask[]; /* Balance mask */ 1942 }; 1943 1944 struct sched_group { 1945 struct sched_group *next; /* Must be a circular list */ 1946 atomic_t ref; 1947 1948 unsigned int group_weight; 1949 unsigned int cores; 1950 struct sched_group_capacity *sgc; 1951 int asym_prefer_cpu; /* CPU of highest priority in group */ 1952 int flags; 1953 1954 /* 1955 * The CPUs this group covers. 1956 * 1957 * NOTE: this field is variable length. (Allocated dynamically 1958 * by attaching extra space to the end of the structure, 1959 * depending on how many CPUs the kernel has booted up with) 1960 */ 1961 unsigned long cpumask[]; 1962 }; 1963 1964 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1965 { 1966 return to_cpumask(sg->cpumask); 1967 } 1968 1969 /* 1970 * See build_balance_mask(). 1971 */ 1972 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1973 { 1974 return to_cpumask(sg->sgc->cpumask); 1975 } 1976 1977 extern int group_balance_cpu(struct sched_group *sg); 1978 1979 #ifdef CONFIG_SCHED_DEBUG 1980 extern void update_sched_domain_debugfs(void); 1981 extern void dirty_sched_domain_sysctl(int cpu); 1982 #else 1983 static inline void update_sched_domain_debugfs(void) { } 1984 static inline void dirty_sched_domain_sysctl(int cpu) { } 1985 #endif 1986 1987 extern int sched_update_scaling(void); 1988 1989 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 1990 { 1991 if (!p->user_cpus_ptr) 1992 return cpu_possible_mask; /* &init_task.cpus_mask */ 1993 return p->user_cpus_ptr; 1994 } 1995 1996 #endif /* CONFIG_SMP */ 1997 1998 #include "stats.h" 1999 2000 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 2001 2002 extern void __sched_core_account_forceidle(struct rq *rq); 2003 2004 static inline void sched_core_account_forceidle(struct rq *rq) 2005 { 2006 if (schedstat_enabled()) 2007 __sched_core_account_forceidle(rq); 2008 } 2009 2010 extern void __sched_core_tick(struct rq *rq); 2011 2012 static inline void sched_core_tick(struct rq *rq) 2013 { 2014 if (sched_core_enabled(rq) && schedstat_enabled()) 2015 __sched_core_tick(rq); 2016 } 2017 2018 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 2019 2020 static inline void sched_core_account_forceidle(struct rq *rq) { } 2021 2022 static inline void sched_core_tick(struct rq *rq) { } 2023 2024 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 2025 2026 #ifdef CONFIG_CGROUP_SCHED 2027 2028 /* 2029 * Return the group to which this tasks belongs. 2030 * 2031 * We cannot use task_css() and friends because the cgroup subsystem 2032 * changes that value before the cgroup_subsys::attach() method is called, 2033 * therefore we cannot pin it and might observe the wrong value. 2034 * 2035 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2036 * core changes this before calling sched_move_task(). 2037 * 2038 * Instead we use a 'copy' which is updated from sched_move_task() while 2039 * holding both task_struct::pi_lock and rq::lock. 2040 */ 2041 static inline struct task_group *task_group(struct task_struct *p) 2042 { 2043 return p->sched_task_group; 2044 } 2045 2046 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2047 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2048 { 2049 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2050 struct task_group *tg = task_group(p); 2051 #endif 2052 2053 #ifdef CONFIG_FAIR_GROUP_SCHED 2054 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2055 p->se.cfs_rq = tg->cfs_rq[cpu]; 2056 p->se.parent = tg->se[cpu]; 2057 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2058 #endif 2059 2060 #ifdef CONFIG_RT_GROUP_SCHED 2061 p->rt.rt_rq = tg->rt_rq[cpu]; 2062 p->rt.parent = tg->rt_se[cpu]; 2063 #endif 2064 } 2065 2066 #else /* !CONFIG_CGROUP_SCHED: */ 2067 2068 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2069 2070 static inline struct task_group *task_group(struct task_struct *p) 2071 { 2072 return NULL; 2073 } 2074 2075 #endif /* !CONFIG_CGROUP_SCHED */ 2076 2077 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2078 { 2079 set_task_rq(p, cpu); 2080 #ifdef CONFIG_SMP 2081 /* 2082 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2083 * successfully executed on another CPU. We must ensure that updates of 2084 * per-task data have been completed by this moment. 2085 */ 2086 smp_wmb(); 2087 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2088 p->wake_cpu = cpu; 2089 #endif 2090 } 2091 2092 /* 2093 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 2094 */ 2095 #ifdef CONFIG_SCHED_DEBUG 2096 # define const_debug __read_mostly 2097 #else 2098 # define const_debug const 2099 #endif 2100 2101 #define SCHED_FEAT(name, enabled) \ 2102 __SCHED_FEAT_##name , 2103 2104 enum { 2105 #include "features.h" 2106 __SCHED_FEAT_NR, 2107 }; 2108 2109 #undef SCHED_FEAT 2110 2111 #ifdef CONFIG_SCHED_DEBUG 2112 2113 /* 2114 * To support run-time toggling of sched features, all the translation units 2115 * (but core.c) reference the sysctl_sched_features defined in core.c. 2116 */ 2117 extern const_debug unsigned int sysctl_sched_features; 2118 2119 #ifdef CONFIG_JUMP_LABEL 2120 2121 #define SCHED_FEAT(name, enabled) \ 2122 static __always_inline bool static_branch_##name(struct static_key *key) \ 2123 { \ 2124 return static_key_##enabled(key); \ 2125 } 2126 2127 #include "features.h" 2128 #undef SCHED_FEAT 2129 2130 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2131 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2132 2133 #else /* !CONFIG_JUMP_LABEL: */ 2134 2135 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2136 2137 #endif /* !CONFIG_JUMP_LABEL */ 2138 2139 #else /* !SCHED_DEBUG: */ 2140 2141 /* 2142 * Each translation unit has its own copy of sysctl_sched_features to allow 2143 * constants propagation at compile time and compiler optimization based on 2144 * features default. 2145 */ 2146 #define SCHED_FEAT(name, enabled) \ 2147 (1UL << __SCHED_FEAT_##name) * enabled | 2148 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2149 #include "features.h" 2150 0; 2151 #undef SCHED_FEAT 2152 2153 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2154 2155 #endif /* !SCHED_DEBUG */ 2156 2157 extern struct static_key_false sched_numa_balancing; 2158 extern struct static_key_false sched_schedstats; 2159 2160 static inline u64 global_rt_period(void) 2161 { 2162 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2163 } 2164 2165 static inline u64 global_rt_runtime(void) 2166 { 2167 if (sysctl_sched_rt_runtime < 0) 2168 return RUNTIME_INF; 2169 2170 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2171 } 2172 2173 static inline int task_current(struct rq *rq, struct task_struct *p) 2174 { 2175 return rq->curr == p; 2176 } 2177 2178 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2179 { 2180 #ifdef CONFIG_SMP 2181 return p->on_cpu; 2182 #else 2183 return task_current(rq, p); 2184 #endif 2185 } 2186 2187 static inline int task_on_rq_queued(struct task_struct *p) 2188 { 2189 return p->on_rq == TASK_ON_RQ_QUEUED; 2190 } 2191 2192 static inline int task_on_rq_migrating(struct task_struct *p) 2193 { 2194 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2195 } 2196 2197 /* Wake flags. The first three directly map to some SD flag value */ 2198 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2199 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2200 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2201 2202 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2203 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2204 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2205 2206 #ifdef CONFIG_SMP 2207 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2208 static_assert(WF_FORK == SD_BALANCE_FORK); 2209 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2210 #endif 2211 2212 /* 2213 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2214 * of tasks with abnormal "nice" values across CPUs the contribution that 2215 * each task makes to its run queue's load is weighted according to its 2216 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2217 * scaled version of the new time slice allocation that they receive on time 2218 * slice expiry etc. 2219 */ 2220 2221 #define WEIGHT_IDLEPRIO 3 2222 #define WMULT_IDLEPRIO 1431655765 2223 2224 extern const int sched_prio_to_weight[40]; 2225 extern const u32 sched_prio_to_wmult[40]; 2226 2227 /* 2228 * {de,en}queue flags: 2229 * 2230 * DEQUEUE_SLEEP - task is no longer runnable 2231 * ENQUEUE_WAKEUP - task just became runnable 2232 * 2233 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2234 * are in a known state which allows modification. Such pairs 2235 * should preserve as much state as possible. 2236 * 2237 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2238 * in the runqueue. 2239 * 2240 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2241 * 2242 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2243 * 2244 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2245 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2246 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2247 * 2248 */ 2249 2250 #define DEQUEUE_SLEEP 0x01 2251 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2252 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2253 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2254 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2255 2256 #define ENQUEUE_WAKEUP 0x01 2257 #define ENQUEUE_RESTORE 0x02 2258 #define ENQUEUE_MOVE 0x04 2259 #define ENQUEUE_NOCLOCK 0x08 2260 2261 #define ENQUEUE_HEAD 0x10 2262 #define ENQUEUE_REPLENISH 0x20 2263 #ifdef CONFIG_SMP 2264 #define ENQUEUE_MIGRATED 0x40 2265 #else 2266 #define ENQUEUE_MIGRATED 0x00 2267 #endif 2268 #define ENQUEUE_INITIAL 0x80 2269 #define ENQUEUE_MIGRATING 0x100 2270 2271 #define RETRY_TASK ((void *)-1UL) 2272 2273 struct affinity_context { 2274 const struct cpumask *new_mask; 2275 struct cpumask *user_mask; 2276 unsigned int flags; 2277 }; 2278 2279 extern s64 update_curr_common(struct rq *rq); 2280 2281 struct sched_class { 2282 2283 #ifdef CONFIG_UCLAMP_TASK 2284 int uclamp_enabled; 2285 #endif 2286 2287 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2288 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2289 void (*yield_task) (struct rq *rq); 2290 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2291 2292 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2293 2294 struct task_struct *(*pick_next_task)(struct rq *rq); 2295 2296 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2297 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2298 2299 #ifdef CONFIG_SMP 2300 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2301 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2302 2303 struct task_struct * (*pick_task)(struct rq *rq); 2304 2305 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2306 2307 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2308 2309 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2310 2311 void (*rq_online)(struct rq *rq); 2312 void (*rq_offline)(struct rq *rq); 2313 2314 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2315 #endif 2316 2317 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2318 void (*task_fork)(struct task_struct *p); 2319 void (*task_dead)(struct task_struct *p); 2320 2321 /* 2322 * The switched_from() call is allowed to drop rq->lock, therefore we 2323 * cannot assume the switched_from/switched_to pair is serialized by 2324 * rq->lock. They are however serialized by p->pi_lock. 2325 */ 2326 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2327 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2328 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2329 int oldprio); 2330 2331 unsigned int (*get_rr_interval)(struct rq *rq, 2332 struct task_struct *task); 2333 2334 void (*update_curr)(struct rq *rq); 2335 2336 #ifdef CONFIG_FAIR_GROUP_SCHED 2337 void (*task_change_group)(struct task_struct *p); 2338 #endif 2339 2340 #ifdef CONFIG_SCHED_CORE 2341 int (*task_is_throttled)(struct task_struct *p, int cpu); 2342 #endif 2343 }; 2344 2345 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2346 { 2347 WARN_ON_ONCE(rq->curr != prev); 2348 prev->sched_class->put_prev_task(rq, prev); 2349 } 2350 2351 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2352 { 2353 next->sched_class->set_next_task(rq, next, false); 2354 } 2355 2356 2357 /* 2358 * Helper to define a sched_class instance; each one is placed in a separate 2359 * section which is ordered by the linker script: 2360 * 2361 * include/asm-generic/vmlinux.lds.h 2362 * 2363 * *CAREFUL* they are laid out in *REVERSE* order!!! 2364 * 2365 * Also enforce alignment on the instance, not the type, to guarantee layout. 2366 */ 2367 #define DEFINE_SCHED_CLASS(name) \ 2368 const struct sched_class name##_sched_class \ 2369 __aligned(__alignof__(struct sched_class)) \ 2370 __section("__" #name "_sched_class") 2371 2372 /* Defined in include/asm-generic/vmlinux.lds.h */ 2373 extern struct sched_class __sched_class_highest[]; 2374 extern struct sched_class __sched_class_lowest[]; 2375 2376 #define for_class_range(class, _from, _to) \ 2377 for (class = (_from); class < (_to); class++) 2378 2379 #define for_each_class(class) \ 2380 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2381 2382 #define sched_class_above(_a, _b) ((_a) < (_b)) 2383 2384 extern const struct sched_class stop_sched_class; 2385 extern const struct sched_class dl_sched_class; 2386 extern const struct sched_class rt_sched_class; 2387 extern const struct sched_class fair_sched_class; 2388 extern const struct sched_class idle_sched_class; 2389 2390 static inline bool sched_stop_runnable(struct rq *rq) 2391 { 2392 return rq->stop && task_on_rq_queued(rq->stop); 2393 } 2394 2395 static inline bool sched_dl_runnable(struct rq *rq) 2396 { 2397 return rq->dl.dl_nr_running > 0; 2398 } 2399 2400 static inline bool sched_rt_runnable(struct rq *rq) 2401 { 2402 return rq->rt.rt_queued > 0; 2403 } 2404 2405 static inline bool sched_fair_runnable(struct rq *rq) 2406 { 2407 return rq->cfs.nr_running > 0; 2408 } 2409 2410 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2411 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2412 2413 #define SCA_CHECK 0x01 2414 #define SCA_MIGRATE_DISABLE 0x02 2415 #define SCA_MIGRATE_ENABLE 0x04 2416 #define SCA_USER 0x08 2417 2418 #ifdef CONFIG_SMP 2419 2420 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2421 2422 extern void sched_balance_trigger(struct rq *rq); 2423 2424 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2425 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2426 2427 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2428 { 2429 /* 2430 * See do_set_cpus_allowed() above for the rcu_head usage. 2431 */ 2432 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2433 2434 return kmalloc_node(size, GFP_KERNEL, node); 2435 } 2436 2437 static inline struct task_struct *get_push_task(struct rq *rq) 2438 { 2439 struct task_struct *p = rq->curr; 2440 2441 lockdep_assert_rq_held(rq); 2442 2443 if (rq->push_busy) 2444 return NULL; 2445 2446 if (p->nr_cpus_allowed == 1) 2447 return NULL; 2448 2449 if (p->migration_disabled) 2450 return NULL; 2451 2452 rq->push_busy = true; 2453 return get_task_struct(p); 2454 } 2455 2456 extern int push_cpu_stop(void *arg); 2457 2458 #else /* !CONFIG_SMP: */ 2459 2460 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2461 struct affinity_context *ctx) 2462 { 2463 return set_cpus_allowed_ptr(p, ctx->new_mask); 2464 } 2465 2466 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2467 { 2468 return NULL; 2469 } 2470 2471 #endif /* !CONFIG_SMP */ 2472 2473 #ifdef CONFIG_CPU_IDLE 2474 2475 static inline void idle_set_state(struct rq *rq, 2476 struct cpuidle_state *idle_state) 2477 { 2478 rq->idle_state = idle_state; 2479 } 2480 2481 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2482 { 2483 SCHED_WARN_ON(!rcu_read_lock_held()); 2484 2485 return rq->idle_state; 2486 } 2487 2488 #else /* !CONFIG_CPU_IDLE: */ 2489 2490 static inline void idle_set_state(struct rq *rq, 2491 struct cpuidle_state *idle_state) 2492 { 2493 } 2494 2495 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2496 { 2497 return NULL; 2498 } 2499 2500 #endif /* !CONFIG_CPU_IDLE */ 2501 2502 extern void schedule_idle(void); 2503 asmlinkage void schedule_user(void); 2504 2505 extern void sysrq_sched_debug_show(void); 2506 extern void sched_init_granularity(void); 2507 extern void update_max_interval(void); 2508 2509 extern void init_sched_dl_class(void); 2510 extern void init_sched_rt_class(void); 2511 extern void init_sched_fair_class(void); 2512 2513 extern void reweight_task(struct task_struct *p, const struct load_weight *lw); 2514 2515 extern void resched_curr(struct rq *rq); 2516 extern void resched_cpu(int cpu); 2517 2518 extern struct rt_bandwidth def_rt_bandwidth; 2519 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2520 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2521 2522 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2523 2524 #define BW_SHIFT 20 2525 #define BW_UNIT (1 << BW_SHIFT) 2526 #define RATIO_SHIFT 8 2527 #define MAX_BW_BITS (64 - BW_SHIFT) 2528 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2529 2530 extern unsigned long to_ratio(u64 period, u64 runtime); 2531 2532 extern void init_entity_runnable_average(struct sched_entity *se); 2533 extern void post_init_entity_util_avg(struct task_struct *p); 2534 2535 #ifdef CONFIG_NO_HZ_FULL 2536 extern bool sched_can_stop_tick(struct rq *rq); 2537 extern int __init sched_tick_offload_init(void); 2538 2539 /* 2540 * Tick may be needed by tasks in the runqueue depending on their policy and 2541 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2542 * nohz mode if necessary. 2543 */ 2544 static inline void sched_update_tick_dependency(struct rq *rq) 2545 { 2546 int cpu = cpu_of(rq); 2547 2548 if (!tick_nohz_full_cpu(cpu)) 2549 return; 2550 2551 if (sched_can_stop_tick(rq)) 2552 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2553 else 2554 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2555 } 2556 #else /* !CONFIG_NO_HZ_FULL: */ 2557 static inline int sched_tick_offload_init(void) { return 0; } 2558 static inline void sched_update_tick_dependency(struct rq *rq) { } 2559 #endif /* !CONFIG_NO_HZ_FULL */ 2560 2561 static inline void add_nr_running(struct rq *rq, unsigned count) 2562 { 2563 unsigned prev_nr = rq->nr_running; 2564 2565 rq->nr_running = prev_nr + count; 2566 if (trace_sched_update_nr_running_tp_enabled()) { 2567 call_trace_sched_update_nr_running(rq, count); 2568 } 2569 2570 #ifdef CONFIG_SMP 2571 if (prev_nr < 2 && rq->nr_running >= 2) 2572 set_rd_overloaded(rq->rd, 1); 2573 #endif 2574 2575 sched_update_tick_dependency(rq); 2576 } 2577 2578 static inline void sub_nr_running(struct rq *rq, unsigned count) 2579 { 2580 rq->nr_running -= count; 2581 if (trace_sched_update_nr_running_tp_enabled()) { 2582 call_trace_sched_update_nr_running(rq, -count); 2583 } 2584 2585 /* Check if we still need preemption */ 2586 sched_update_tick_dependency(rq); 2587 } 2588 2589 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2590 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2591 2592 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2593 2594 #ifdef CONFIG_PREEMPT_RT 2595 # define SCHED_NR_MIGRATE_BREAK 8 2596 #else 2597 # define SCHED_NR_MIGRATE_BREAK 32 2598 #endif 2599 2600 extern const_debug unsigned int sysctl_sched_nr_migrate; 2601 extern const_debug unsigned int sysctl_sched_migration_cost; 2602 2603 extern unsigned int sysctl_sched_base_slice; 2604 2605 #ifdef CONFIG_SCHED_DEBUG 2606 extern int sysctl_resched_latency_warn_ms; 2607 extern int sysctl_resched_latency_warn_once; 2608 2609 extern unsigned int sysctl_sched_tunable_scaling; 2610 2611 extern unsigned int sysctl_numa_balancing_scan_delay; 2612 extern unsigned int sysctl_numa_balancing_scan_period_min; 2613 extern unsigned int sysctl_numa_balancing_scan_period_max; 2614 extern unsigned int sysctl_numa_balancing_scan_size; 2615 extern unsigned int sysctl_numa_balancing_hot_threshold; 2616 #endif 2617 2618 #ifdef CONFIG_SCHED_HRTICK 2619 2620 /* 2621 * Use hrtick when: 2622 * - enabled by features 2623 * - hrtimer is actually high res 2624 */ 2625 static inline int hrtick_enabled(struct rq *rq) 2626 { 2627 if (!cpu_active(cpu_of(rq))) 2628 return 0; 2629 return hrtimer_is_hres_active(&rq->hrtick_timer); 2630 } 2631 2632 static inline int hrtick_enabled_fair(struct rq *rq) 2633 { 2634 if (!sched_feat(HRTICK)) 2635 return 0; 2636 return hrtick_enabled(rq); 2637 } 2638 2639 static inline int hrtick_enabled_dl(struct rq *rq) 2640 { 2641 if (!sched_feat(HRTICK_DL)) 2642 return 0; 2643 return hrtick_enabled(rq); 2644 } 2645 2646 extern void hrtick_start(struct rq *rq, u64 delay); 2647 2648 #else /* !CONFIG_SCHED_HRTICK: */ 2649 2650 static inline int hrtick_enabled_fair(struct rq *rq) 2651 { 2652 return 0; 2653 } 2654 2655 static inline int hrtick_enabled_dl(struct rq *rq) 2656 { 2657 return 0; 2658 } 2659 2660 static inline int hrtick_enabled(struct rq *rq) 2661 { 2662 return 0; 2663 } 2664 2665 #endif /* !CONFIG_SCHED_HRTICK */ 2666 2667 #ifndef arch_scale_freq_tick 2668 static __always_inline void arch_scale_freq_tick(void) { } 2669 #endif 2670 2671 #ifndef arch_scale_freq_capacity 2672 /** 2673 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2674 * @cpu: the CPU in question. 2675 * 2676 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2677 * 2678 * f_curr 2679 * ------ * SCHED_CAPACITY_SCALE 2680 * f_max 2681 */ 2682 static __always_inline 2683 unsigned long arch_scale_freq_capacity(int cpu) 2684 { 2685 return SCHED_CAPACITY_SCALE; 2686 } 2687 #endif 2688 2689 #ifdef CONFIG_SCHED_DEBUG 2690 /* 2691 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2692 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2693 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2694 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2695 */ 2696 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2697 { 2698 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2699 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2700 #ifdef CONFIG_SMP 2701 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2702 #endif 2703 } 2704 #else 2705 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { } 2706 #endif 2707 2708 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2709 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2710 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2711 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2712 _lock; return _t; } 2713 2714 #ifdef CONFIG_SMP 2715 2716 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2717 { 2718 #ifdef CONFIG_SCHED_CORE 2719 /* 2720 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2721 * order by core-id first and cpu-id second. 2722 * 2723 * Notably: 2724 * 2725 * double_rq_lock(0,3); will take core-0, core-1 lock 2726 * double_rq_lock(1,2); will take core-1, core-0 lock 2727 * 2728 * when only cpu-id is considered. 2729 */ 2730 if (rq1->core->cpu < rq2->core->cpu) 2731 return true; 2732 if (rq1->core->cpu > rq2->core->cpu) 2733 return false; 2734 2735 /* 2736 * __sched_core_flip() relies on SMT having cpu-id lock order. 2737 */ 2738 #endif 2739 return rq1->cpu < rq2->cpu; 2740 } 2741 2742 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2743 2744 #ifdef CONFIG_PREEMPTION 2745 2746 /* 2747 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2748 * way at the expense of forcing extra atomic operations in all 2749 * invocations. This assures that the double_lock is acquired using the 2750 * same underlying policy as the spinlock_t on this architecture, which 2751 * reduces latency compared to the unfair variant below. However, it 2752 * also adds more overhead and therefore may reduce throughput. 2753 */ 2754 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2755 __releases(this_rq->lock) 2756 __acquires(busiest->lock) 2757 __acquires(this_rq->lock) 2758 { 2759 raw_spin_rq_unlock(this_rq); 2760 double_rq_lock(this_rq, busiest); 2761 2762 return 1; 2763 } 2764 2765 #else /* !CONFIG_PREEMPTION: */ 2766 /* 2767 * Unfair double_lock_balance: Optimizes throughput at the expense of 2768 * latency by eliminating extra atomic operations when the locks are 2769 * already in proper order on entry. This favors lower CPU-ids and will 2770 * grant the double lock to lower CPUs over higher ids under contention, 2771 * regardless of entry order into the function. 2772 */ 2773 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2774 __releases(this_rq->lock) 2775 __acquires(busiest->lock) 2776 __acquires(this_rq->lock) 2777 { 2778 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2779 likely(raw_spin_rq_trylock(busiest))) { 2780 double_rq_clock_clear_update(this_rq, busiest); 2781 return 0; 2782 } 2783 2784 if (rq_order_less(this_rq, busiest)) { 2785 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2786 double_rq_clock_clear_update(this_rq, busiest); 2787 return 0; 2788 } 2789 2790 raw_spin_rq_unlock(this_rq); 2791 double_rq_lock(this_rq, busiest); 2792 2793 return 1; 2794 } 2795 2796 #endif /* !CONFIG_PREEMPTION */ 2797 2798 /* 2799 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2800 */ 2801 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2802 { 2803 lockdep_assert_irqs_disabled(); 2804 2805 return _double_lock_balance(this_rq, busiest); 2806 } 2807 2808 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2809 __releases(busiest->lock) 2810 { 2811 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2812 raw_spin_rq_unlock(busiest); 2813 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2814 } 2815 2816 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2817 { 2818 if (l1 > l2) 2819 swap(l1, l2); 2820 2821 spin_lock(l1); 2822 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2823 } 2824 2825 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2826 { 2827 if (l1 > l2) 2828 swap(l1, l2); 2829 2830 spin_lock_irq(l1); 2831 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2832 } 2833 2834 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2835 { 2836 if (l1 > l2) 2837 swap(l1, l2); 2838 2839 raw_spin_lock(l1); 2840 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2841 } 2842 2843 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2844 { 2845 raw_spin_unlock(l1); 2846 raw_spin_unlock(l2); 2847 } 2848 2849 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 2850 double_raw_lock(_T->lock, _T->lock2), 2851 double_raw_unlock(_T->lock, _T->lock2)) 2852 2853 /* 2854 * double_rq_unlock - safely unlock two runqueues 2855 * 2856 * Note this does not restore interrupts like task_rq_unlock, 2857 * you need to do so manually after calling. 2858 */ 2859 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2860 __releases(rq1->lock) 2861 __releases(rq2->lock) 2862 { 2863 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2864 raw_spin_rq_unlock(rq2); 2865 else 2866 __release(rq2->lock); 2867 raw_spin_rq_unlock(rq1); 2868 } 2869 2870 extern void set_rq_online (struct rq *rq); 2871 extern void set_rq_offline(struct rq *rq); 2872 2873 extern bool sched_smp_initialized; 2874 2875 #else /* !CONFIG_SMP: */ 2876 2877 /* 2878 * double_rq_lock - safely lock two runqueues 2879 * 2880 * Note this does not disable interrupts like task_rq_lock, 2881 * you need to do so manually before calling. 2882 */ 2883 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2884 __acquires(rq1->lock) 2885 __acquires(rq2->lock) 2886 { 2887 WARN_ON_ONCE(!irqs_disabled()); 2888 WARN_ON_ONCE(rq1 != rq2); 2889 raw_spin_rq_lock(rq1); 2890 __acquire(rq2->lock); /* Fake it out ;) */ 2891 double_rq_clock_clear_update(rq1, rq2); 2892 } 2893 2894 /* 2895 * double_rq_unlock - safely unlock two runqueues 2896 * 2897 * Note this does not restore interrupts like task_rq_unlock, 2898 * you need to do so manually after calling. 2899 */ 2900 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2901 __releases(rq1->lock) 2902 __releases(rq2->lock) 2903 { 2904 WARN_ON_ONCE(rq1 != rq2); 2905 raw_spin_rq_unlock(rq1); 2906 __release(rq2->lock); 2907 } 2908 2909 #endif /* !CONFIG_SMP */ 2910 2911 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 2912 double_rq_lock(_T->lock, _T->lock2), 2913 double_rq_unlock(_T->lock, _T->lock2)) 2914 2915 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 2916 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2917 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2918 2919 #ifdef CONFIG_SCHED_DEBUG 2920 extern bool sched_debug_verbose; 2921 2922 extern void print_cfs_stats(struct seq_file *m, int cpu); 2923 extern void print_rt_stats(struct seq_file *m, int cpu); 2924 extern void print_dl_stats(struct seq_file *m, int cpu); 2925 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2926 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2927 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2928 2929 extern void resched_latency_warn(int cpu, u64 latency); 2930 # ifdef CONFIG_NUMA_BALANCING 2931 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 2932 extern void 2933 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2934 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2935 # endif /* CONFIG_NUMA_BALANCING */ 2936 #else /* !CONFIG_SCHED_DEBUG: */ 2937 static inline void resched_latency_warn(int cpu, u64 latency) { } 2938 #endif /* !CONFIG_SCHED_DEBUG */ 2939 2940 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2941 extern void init_rt_rq(struct rt_rq *rt_rq); 2942 extern void init_dl_rq(struct dl_rq *dl_rq); 2943 2944 extern void cfs_bandwidth_usage_inc(void); 2945 extern void cfs_bandwidth_usage_dec(void); 2946 2947 #ifdef CONFIG_NO_HZ_COMMON 2948 2949 #define NOHZ_BALANCE_KICK_BIT 0 2950 #define NOHZ_STATS_KICK_BIT 1 2951 #define NOHZ_NEWILB_KICK_BIT 2 2952 #define NOHZ_NEXT_KICK_BIT 3 2953 2954 /* Run sched_balance_domains() */ 2955 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2956 /* Update blocked load */ 2957 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2958 /* Update blocked load when entering idle */ 2959 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2960 /* Update nohz.next_balance */ 2961 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2962 2963 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2964 2965 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2966 2967 extern void nohz_balance_exit_idle(struct rq *rq); 2968 #else /* !CONFIG_NO_HZ_COMMON: */ 2969 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2970 #endif /* !CONFIG_NO_HZ_COMMON */ 2971 2972 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2973 extern void nohz_run_idle_balance(int cpu); 2974 #else 2975 static inline void nohz_run_idle_balance(int cpu) { } 2976 #endif 2977 2978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2979 2980 struct irqtime { 2981 u64 total; 2982 u64 tick_delta; 2983 u64 irq_start_time; 2984 struct u64_stats_sync sync; 2985 }; 2986 2987 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2988 2989 /* 2990 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2991 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2992 * and never move forward. 2993 */ 2994 static inline u64 irq_time_read(int cpu) 2995 { 2996 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2997 unsigned int seq; 2998 u64 total; 2999 3000 do { 3001 seq = __u64_stats_fetch_begin(&irqtime->sync); 3002 total = irqtime->total; 3003 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3004 3005 return total; 3006 } 3007 3008 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3009 3010 #ifdef CONFIG_CPU_FREQ 3011 3012 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3013 3014 /** 3015 * cpufreq_update_util - Take a note about CPU utilization changes. 3016 * @rq: Runqueue to carry out the update for. 3017 * @flags: Update reason flags. 3018 * 3019 * This function is called by the scheduler on the CPU whose utilization is 3020 * being updated. 3021 * 3022 * It can only be called from RCU-sched read-side critical sections. 3023 * 3024 * The way cpufreq is currently arranged requires it to evaluate the CPU 3025 * performance state (frequency/voltage) on a regular basis to prevent it from 3026 * being stuck in a completely inadequate performance level for too long. 3027 * That is not guaranteed to happen if the updates are only triggered from CFS 3028 * and DL, though, because they may not be coming in if only RT tasks are 3029 * active all the time (or there are RT tasks only). 3030 * 3031 * As a workaround for that issue, this function is called periodically by the 3032 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3033 * but that really is a band-aid. Going forward it should be replaced with 3034 * solutions targeted more specifically at RT tasks. 3035 */ 3036 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3037 { 3038 struct update_util_data *data; 3039 3040 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3041 cpu_of(rq))); 3042 if (data) 3043 data->func(data, rq_clock(rq), flags); 3044 } 3045 #else /* !CONFIG_CPU_FREQ: */ 3046 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3047 #endif /* !CONFIG_CPU_FREQ */ 3048 3049 #ifdef arch_scale_freq_capacity 3050 # ifndef arch_scale_freq_invariant 3051 # define arch_scale_freq_invariant() true 3052 # endif 3053 #else 3054 # define arch_scale_freq_invariant() false 3055 #endif 3056 3057 #ifdef CONFIG_SMP 3058 3059 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3060 unsigned long *min, 3061 unsigned long *max); 3062 3063 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3064 unsigned long min, 3065 unsigned long max); 3066 3067 3068 /* 3069 * Verify the fitness of task @p to run on @cpu taking into account the 3070 * CPU original capacity and the runtime/deadline ratio of the task. 3071 * 3072 * The function will return true if the original capacity of @cpu is 3073 * greater than or equal to task's deadline density right shifted by 3074 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3075 */ 3076 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3077 { 3078 unsigned long cap = arch_scale_cpu_capacity(cpu); 3079 3080 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3081 } 3082 3083 static inline unsigned long cpu_bw_dl(struct rq *rq) 3084 { 3085 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3086 } 3087 3088 static inline unsigned long cpu_util_dl(struct rq *rq) 3089 { 3090 return READ_ONCE(rq->avg_dl.util_avg); 3091 } 3092 3093 3094 extern unsigned long cpu_util_cfs(int cpu); 3095 extern unsigned long cpu_util_cfs_boost(int cpu); 3096 3097 static inline unsigned long cpu_util_rt(struct rq *rq) 3098 { 3099 return READ_ONCE(rq->avg_rt.util_avg); 3100 } 3101 3102 #endif /* CONFIG_SMP */ 3103 3104 #ifdef CONFIG_UCLAMP_TASK 3105 3106 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3107 3108 static inline unsigned long uclamp_rq_get(struct rq *rq, 3109 enum uclamp_id clamp_id) 3110 { 3111 return READ_ONCE(rq->uclamp[clamp_id].value); 3112 } 3113 3114 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3115 unsigned int value) 3116 { 3117 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3118 } 3119 3120 static inline bool uclamp_rq_is_idle(struct rq *rq) 3121 { 3122 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3123 } 3124 3125 /* Is the rq being capped/throttled by uclamp_max? */ 3126 static inline bool uclamp_rq_is_capped(struct rq *rq) 3127 { 3128 unsigned long rq_util; 3129 unsigned long max_util; 3130 3131 if (!static_branch_likely(&sched_uclamp_used)) 3132 return false; 3133 3134 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3135 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3136 3137 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3138 } 3139 3140 /* 3141 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3142 * by default in the fast path and only gets turned on once userspace performs 3143 * an operation that requires it. 3144 * 3145 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3146 * hence is active. 3147 */ 3148 static inline bool uclamp_is_used(void) 3149 { 3150 return static_branch_likely(&sched_uclamp_used); 3151 } 3152 3153 #define for_each_clamp_id(clamp_id) \ 3154 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3155 3156 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3157 3158 3159 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3160 { 3161 if (clamp_id == UCLAMP_MIN) 3162 return 0; 3163 return SCHED_CAPACITY_SCALE; 3164 } 3165 3166 /* Integer rounded range for each bucket */ 3167 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3168 3169 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3170 { 3171 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3172 } 3173 3174 static inline void 3175 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3176 { 3177 uc_se->value = value; 3178 uc_se->bucket_id = uclamp_bucket_id(value); 3179 uc_se->user_defined = user_defined; 3180 } 3181 3182 #else /* !CONFIG_UCLAMP_TASK: */ 3183 3184 static inline unsigned long 3185 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3186 { 3187 if (clamp_id == UCLAMP_MIN) 3188 return 0; 3189 3190 return SCHED_CAPACITY_SCALE; 3191 } 3192 3193 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3194 3195 static inline bool uclamp_is_used(void) 3196 { 3197 return false; 3198 } 3199 3200 static inline unsigned long 3201 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3202 { 3203 if (clamp_id == UCLAMP_MIN) 3204 return 0; 3205 3206 return SCHED_CAPACITY_SCALE; 3207 } 3208 3209 static inline void 3210 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3211 { 3212 } 3213 3214 static inline bool uclamp_rq_is_idle(struct rq *rq) 3215 { 3216 return false; 3217 } 3218 3219 #endif /* !CONFIG_UCLAMP_TASK */ 3220 3221 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3222 3223 static inline unsigned long cpu_util_irq(struct rq *rq) 3224 { 3225 return READ_ONCE(rq->avg_irq.util_avg); 3226 } 3227 3228 static inline 3229 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3230 { 3231 util *= (max - irq); 3232 util /= max; 3233 3234 return util; 3235 3236 } 3237 3238 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3239 3240 static inline unsigned long cpu_util_irq(struct rq *rq) 3241 { 3242 return 0; 3243 } 3244 3245 static inline 3246 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3247 { 3248 return util; 3249 } 3250 3251 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3252 3253 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3254 3255 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3256 3257 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3258 3259 static inline bool sched_energy_enabled(void) 3260 { 3261 return static_branch_unlikely(&sched_energy_present); 3262 } 3263 3264 extern struct cpufreq_governor schedutil_gov; 3265 3266 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3267 3268 #define perf_domain_span(pd) NULL 3269 3270 static inline bool sched_energy_enabled(void) { return false; } 3271 3272 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3273 3274 #ifdef CONFIG_MEMBARRIER 3275 3276 /* 3277 * The scheduler provides memory barriers required by membarrier between: 3278 * - prior user-space memory accesses and store to rq->membarrier_state, 3279 * - store to rq->membarrier_state and following user-space memory accesses. 3280 * In the same way it provides those guarantees around store to rq->curr. 3281 */ 3282 static inline void membarrier_switch_mm(struct rq *rq, 3283 struct mm_struct *prev_mm, 3284 struct mm_struct *next_mm) 3285 { 3286 int membarrier_state; 3287 3288 if (prev_mm == next_mm) 3289 return; 3290 3291 membarrier_state = atomic_read(&next_mm->membarrier_state); 3292 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3293 return; 3294 3295 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3296 } 3297 3298 #else /* !CONFIG_MEMBARRIER :*/ 3299 3300 static inline void membarrier_switch_mm(struct rq *rq, 3301 struct mm_struct *prev_mm, 3302 struct mm_struct *next_mm) 3303 { 3304 } 3305 3306 #endif /* !CONFIG_MEMBARRIER */ 3307 3308 #ifdef CONFIG_SMP 3309 static inline bool is_per_cpu_kthread(struct task_struct *p) 3310 { 3311 if (!(p->flags & PF_KTHREAD)) 3312 return false; 3313 3314 if (p->nr_cpus_allowed != 1) 3315 return false; 3316 3317 return true; 3318 } 3319 #endif 3320 3321 extern void swake_up_all_locked(struct swait_queue_head *q); 3322 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3323 3324 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3325 3326 #ifdef CONFIG_PREEMPT_DYNAMIC 3327 extern int preempt_dynamic_mode; 3328 extern int sched_dynamic_mode(const char *str); 3329 extern void sched_dynamic_update(int mode); 3330 #endif 3331 3332 #ifdef CONFIG_SCHED_MM_CID 3333 3334 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3335 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3336 3337 extern raw_spinlock_t cid_lock; 3338 extern int use_cid_lock; 3339 3340 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3341 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3342 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3343 extern void init_sched_mm_cid(struct task_struct *t); 3344 3345 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3346 { 3347 if (cid < 0) 3348 return; 3349 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3350 } 3351 3352 /* 3353 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3354 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3355 * be held to transition to other states. 3356 * 3357 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3358 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3359 */ 3360 static inline void mm_cid_put_lazy(struct task_struct *t) 3361 { 3362 struct mm_struct *mm = t->mm; 3363 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3364 int cid; 3365 3366 lockdep_assert_irqs_disabled(); 3367 cid = __this_cpu_read(pcpu_cid->cid); 3368 if (!mm_cid_is_lazy_put(cid) || 3369 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3370 return; 3371 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3372 } 3373 3374 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3375 { 3376 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3377 int cid, res; 3378 3379 lockdep_assert_irqs_disabled(); 3380 cid = __this_cpu_read(pcpu_cid->cid); 3381 for (;;) { 3382 if (mm_cid_is_unset(cid)) 3383 return MM_CID_UNSET; 3384 /* 3385 * Attempt transition from valid or lazy-put to unset. 3386 */ 3387 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3388 if (res == cid) 3389 break; 3390 cid = res; 3391 } 3392 return cid; 3393 } 3394 3395 static inline void mm_cid_put(struct mm_struct *mm) 3396 { 3397 int cid; 3398 3399 lockdep_assert_irqs_disabled(); 3400 cid = mm_cid_pcpu_unset(mm); 3401 if (cid == MM_CID_UNSET) 3402 return; 3403 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3404 } 3405 3406 static inline int __mm_cid_try_get(struct mm_struct *mm) 3407 { 3408 struct cpumask *cpumask; 3409 int cid; 3410 3411 cpumask = mm_cidmask(mm); 3412 /* 3413 * Retry finding first zero bit if the mask is temporarily 3414 * filled. This only happens during concurrent remote-clear 3415 * which owns a cid without holding a rq lock. 3416 */ 3417 for (;;) { 3418 cid = cpumask_first_zero(cpumask); 3419 if (cid < nr_cpu_ids) 3420 break; 3421 cpu_relax(); 3422 } 3423 if (cpumask_test_and_set_cpu(cid, cpumask)) 3424 return -1; 3425 3426 return cid; 3427 } 3428 3429 /* 3430 * Save a snapshot of the current runqueue time of this cpu 3431 * with the per-cpu cid value, allowing to estimate how recently it was used. 3432 */ 3433 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3434 { 3435 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3436 3437 lockdep_assert_rq_held(rq); 3438 WRITE_ONCE(pcpu_cid->time, rq->clock); 3439 } 3440 3441 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) 3442 { 3443 int cid; 3444 3445 /* 3446 * All allocations (even those using the cid_lock) are lock-free. If 3447 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3448 * guarantee forward progress. 3449 */ 3450 if (!READ_ONCE(use_cid_lock)) { 3451 cid = __mm_cid_try_get(mm); 3452 if (cid >= 0) 3453 goto end; 3454 raw_spin_lock(&cid_lock); 3455 } else { 3456 raw_spin_lock(&cid_lock); 3457 cid = __mm_cid_try_get(mm); 3458 if (cid >= 0) 3459 goto unlock; 3460 } 3461 3462 /* 3463 * cid concurrently allocated. Retry while forcing following 3464 * allocations to use the cid_lock to ensure forward progress. 3465 */ 3466 WRITE_ONCE(use_cid_lock, 1); 3467 /* 3468 * Set use_cid_lock before allocation. Only care about program order 3469 * because this is only required for forward progress. 3470 */ 3471 barrier(); 3472 /* 3473 * Retry until it succeeds. It is guaranteed to eventually succeed once 3474 * all newcoming allocations observe the use_cid_lock flag set. 3475 */ 3476 do { 3477 cid = __mm_cid_try_get(mm); 3478 cpu_relax(); 3479 } while (cid < 0); 3480 /* 3481 * Allocate before clearing use_cid_lock. Only care about 3482 * program order because this is for forward progress. 3483 */ 3484 barrier(); 3485 WRITE_ONCE(use_cid_lock, 0); 3486 unlock: 3487 raw_spin_unlock(&cid_lock); 3488 end: 3489 mm_cid_snapshot_time(rq, mm); 3490 3491 return cid; 3492 } 3493 3494 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) 3495 { 3496 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3497 struct cpumask *cpumask; 3498 int cid; 3499 3500 lockdep_assert_rq_held(rq); 3501 cpumask = mm_cidmask(mm); 3502 cid = __this_cpu_read(pcpu_cid->cid); 3503 if (mm_cid_is_valid(cid)) { 3504 mm_cid_snapshot_time(rq, mm); 3505 return cid; 3506 } 3507 if (mm_cid_is_lazy_put(cid)) { 3508 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3509 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3510 } 3511 cid = __mm_cid_get(rq, mm); 3512 __this_cpu_write(pcpu_cid->cid, cid); 3513 3514 return cid; 3515 } 3516 3517 static inline void switch_mm_cid(struct rq *rq, 3518 struct task_struct *prev, 3519 struct task_struct *next) 3520 { 3521 /* 3522 * Provide a memory barrier between rq->curr store and load of 3523 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3524 * 3525 * Should be adapted if context_switch() is modified. 3526 */ 3527 if (!next->mm) { // to kernel 3528 /* 3529 * user -> kernel transition does not guarantee a barrier, but 3530 * we can use the fact that it performs an atomic operation in 3531 * mmgrab(). 3532 */ 3533 if (prev->mm) // from user 3534 smp_mb__after_mmgrab(); 3535 /* 3536 * kernel -> kernel transition does not change rq->curr->mm 3537 * state. It stays NULL. 3538 */ 3539 } else { // to user 3540 /* 3541 * kernel -> user transition does not provide a barrier 3542 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3543 * Provide it here. 3544 */ 3545 if (!prev->mm) { // from kernel 3546 smp_mb(); 3547 } else { // from user 3548 /* 3549 * user->user transition relies on an implicit 3550 * memory barrier in switch_mm() when 3551 * current->mm changes. If the architecture 3552 * switch_mm() does not have an implicit memory 3553 * barrier, it is emitted here. If current->mm 3554 * is unchanged, no barrier is needed. 3555 */ 3556 smp_mb__after_switch_mm(); 3557 } 3558 } 3559 if (prev->mm_cid_active) { 3560 mm_cid_snapshot_time(rq, prev->mm); 3561 mm_cid_put_lazy(prev); 3562 prev->mm_cid = -1; 3563 } 3564 if (next->mm_cid_active) 3565 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); 3566 } 3567 3568 #else /* !CONFIG_SCHED_MM_CID: */ 3569 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3570 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3571 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3572 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3573 static inline void init_sched_mm_cid(struct task_struct *t) { } 3574 #endif /* !CONFIG_SCHED_MM_CID */ 3575 3576 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3577 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3578 3579 #ifdef CONFIG_RT_MUTEXES 3580 3581 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3582 { 3583 if (pi_task) 3584 prio = min(prio, pi_task->prio); 3585 3586 return prio; 3587 } 3588 3589 static inline int rt_effective_prio(struct task_struct *p, int prio) 3590 { 3591 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3592 3593 return __rt_effective_prio(pi_task, prio); 3594 } 3595 3596 #else /* !CONFIG_RT_MUTEXES: */ 3597 3598 static inline int rt_effective_prio(struct task_struct *p, int prio) 3599 { 3600 return prio; 3601 } 3602 3603 #endif /* !CONFIG_RT_MUTEXES */ 3604 3605 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3606 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3607 extern void __setscheduler_prio(struct task_struct *p, int prio); 3608 extern void set_load_weight(struct task_struct *p, bool update_load); 3609 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3610 extern void dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3611 3612 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3613 const struct sched_class *prev_class, 3614 int oldprio); 3615 3616 #ifdef CONFIG_SMP 3617 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3618 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3619 #else 3620 3621 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 3622 { 3623 return NULL; 3624 } 3625 3626 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 3627 { 3628 } 3629 3630 #endif 3631 3632 #endif /* _KERNEL_SCHED_SCHED_H */ 3633