1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_CGROUP_SCHED 78 #include <linux/cgroup.h> 79 #include <linux/psi.h> 80 #endif 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # include <linux/static_key.h> 84 #endif 85 86 #ifdef CONFIG_PARAVIRT 87 # include <asm/paravirt.h> 88 # include <asm/paravirt_api_clock.h> 89 #endif 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 struct rq; 101 struct cpuidle_state; 102 103 /* task_struct::on_rq states: */ 104 #define TASK_ON_RQ_QUEUED 1 105 #define TASK_ON_RQ_MIGRATING 2 106 107 extern __read_mostly int scheduler_running; 108 109 extern unsigned long calc_load_update; 110 extern atomic_long_t calc_load_tasks; 111 112 extern unsigned int sysctl_sched_child_runs_first; 113 114 extern void calc_global_load_tick(struct rq *this_rq); 115 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 116 117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 118 119 extern unsigned int sysctl_sched_rt_period; 120 extern int sysctl_sched_rt_runtime; 121 extern int sched_rr_timeslice; 122 123 /* 124 * Helpers for converting nanosecond timing to jiffy resolution 125 */ 126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 127 128 /* 129 * Increase resolution of nice-level calculations for 64-bit architectures. 130 * The extra resolution improves shares distribution and load balancing of 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 132 * hierarchies, especially on larger systems. This is not a user-visible change 133 * and does not change the user-interface for setting shares/weights. 134 * 135 * We increase resolution only if we have enough bits to allow this increased 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 137 * are pretty high and the returns do not justify the increased costs. 138 * 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 140 * increase coverage and consistency always enable it on 64-bit platforms. 141 */ 142 #ifdef CONFIG_64BIT 143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 145 # define scale_load_down(w) \ 146 ({ \ 147 unsigned long __w = (w); \ 148 if (__w) \ 149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 150 __w; \ 151 }) 152 #else 153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load(w) (w) 155 # define scale_load_down(w) (w) 156 #endif 157 158 /* 159 * Task weight (visible to users) and its load (invisible to users) have 160 * independent resolution, but they should be well calibrated. We use 161 * scale_load() and scale_load_down(w) to convert between them. The 162 * following must be true: 163 * 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 165 * 166 */ 167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 168 169 /* 170 * Single value that decides SCHED_DEADLINE internal math precision. 171 * 10 -> just above 1us 172 * 9 -> just above 0.5us 173 */ 174 #define DL_SCALE 10 175 176 /* 177 * Single value that denotes runtime == period, ie unlimited time. 178 */ 179 #define RUNTIME_INF ((u64)~0ULL) 180 181 static inline int idle_policy(int policy) 182 { 183 return policy == SCHED_IDLE; 184 } 185 static inline int fair_policy(int policy) 186 { 187 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 188 } 189 190 static inline int rt_policy(int policy) 191 { 192 return policy == SCHED_FIFO || policy == SCHED_RR; 193 } 194 195 static inline int dl_policy(int policy) 196 { 197 return policy == SCHED_DEADLINE; 198 } 199 static inline bool valid_policy(int policy) 200 { 201 return idle_policy(policy) || fair_policy(policy) || 202 rt_policy(policy) || dl_policy(policy); 203 } 204 205 static inline int task_has_idle_policy(struct task_struct *p) 206 { 207 return idle_policy(p->policy); 208 } 209 210 static inline int task_has_rt_policy(struct task_struct *p) 211 { 212 return rt_policy(p->policy); 213 } 214 215 static inline int task_has_dl_policy(struct task_struct *p) 216 { 217 return dl_policy(p->policy); 218 } 219 220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 221 222 static inline void update_avg(u64 *avg, u64 sample) 223 { 224 s64 diff = sample - *avg; 225 *avg += diff / 8; 226 } 227 228 /* 229 * Shifting a value by an exponent greater *or equal* to the size of said value 230 * is UB; cap at size-1. 231 */ 232 #define shr_bound(val, shift) \ 233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 234 235 /* 236 * !! For sched_setattr_nocheck() (kernel) only !! 237 * 238 * This is actually gross. :( 239 * 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 241 * tasks, but still be able to sleep. We need this on platforms that cannot 242 * atomically change clock frequency. Remove once fast switching will be 243 * available on such platforms. 244 * 245 * SUGOV stands for SchedUtil GOVernor. 246 */ 247 #define SCHED_FLAG_SUGOV 0x10000000 248 249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 250 251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 252 { 253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 255 #else 256 return false; 257 #endif 258 } 259 260 /* 261 * Tells if entity @a should preempt entity @b. 262 */ 263 static inline bool 264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 265 { 266 return dl_entity_is_special(a) || 267 dl_time_before(a->deadline, b->deadline); 268 } 269 270 /* 271 * This is the priority-queue data structure of the RT scheduling class: 272 */ 273 struct rt_prio_array { 274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 275 struct list_head queue[MAX_RT_PRIO]; 276 }; 277 278 struct rt_bandwidth { 279 /* nests inside the rq lock: */ 280 raw_spinlock_t rt_runtime_lock; 281 ktime_t rt_period; 282 u64 rt_runtime; 283 struct hrtimer rt_period_timer; 284 unsigned int rt_period_active; 285 }; 286 287 void __dl_clear_params(struct task_struct *p); 288 289 struct dl_bandwidth { 290 raw_spinlock_t dl_runtime_lock; 291 u64 dl_runtime; 292 u64 dl_period; 293 }; 294 295 static inline int dl_bandwidth_enabled(void) 296 { 297 return sysctl_sched_rt_runtime >= 0; 298 } 299 300 /* 301 * To keep the bandwidth of -deadline tasks under control 302 * we need some place where: 303 * - store the maximum -deadline bandwidth of each cpu; 304 * - cache the fraction of bandwidth that is currently allocated in 305 * each root domain; 306 * 307 * This is all done in the data structure below. It is similar to the 308 * one used for RT-throttling (rt_bandwidth), with the main difference 309 * that, since here we are only interested in admission control, we 310 * do not decrease any runtime while the group "executes", neither we 311 * need a timer to replenish it. 312 * 313 * With respect to SMP, bandwidth is given on a per root domain basis, 314 * meaning that: 315 * - bw (< 100%) is the deadline bandwidth of each CPU; 316 * - total_bw is the currently allocated bandwidth in each root domain; 317 */ 318 struct dl_bw { 319 raw_spinlock_t lock; 320 u64 bw; 321 u64 total_bw; 322 }; 323 324 extern void init_dl_bw(struct dl_bw *dl_b); 325 extern int sched_dl_global_validate(void); 326 extern void sched_dl_do_global(void); 327 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 330 extern bool __checkparam_dl(const struct sched_attr *attr); 331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 332 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 333 extern int dl_cpu_busy(int cpu, struct task_struct *p); 334 335 #ifdef CONFIG_CGROUP_SCHED 336 337 struct cfs_rq; 338 struct rt_rq; 339 340 extern struct list_head task_groups; 341 342 struct cfs_bandwidth { 343 #ifdef CONFIG_CFS_BANDWIDTH 344 raw_spinlock_t lock; 345 ktime_t period; 346 u64 quota; 347 u64 runtime; 348 u64 burst; 349 u64 runtime_snap; 350 s64 hierarchical_quota; 351 352 u8 idle; 353 u8 period_active; 354 u8 slack_started; 355 struct hrtimer period_timer; 356 struct hrtimer slack_timer; 357 struct list_head throttled_cfs_rq; 358 359 /* Statistics: */ 360 int nr_periods; 361 int nr_throttled; 362 int nr_burst; 363 u64 throttled_time; 364 u64 burst_time; 365 #endif 366 }; 367 368 /* Task group related information */ 369 struct task_group { 370 struct cgroup_subsys_state css; 371 372 #ifdef CONFIG_FAIR_GROUP_SCHED 373 /* schedulable entities of this group on each CPU */ 374 struct sched_entity **se; 375 /* runqueue "owned" by this group on each CPU */ 376 struct cfs_rq **cfs_rq; 377 unsigned long shares; 378 379 /* A positive value indicates that this is a SCHED_IDLE group. */ 380 int idle; 381 382 #ifdef CONFIG_SMP 383 /* 384 * load_avg can be heavily contended at clock tick time, so put 385 * it in its own cacheline separated from the fields above which 386 * will also be accessed at each tick. 387 */ 388 atomic_long_t load_avg ____cacheline_aligned; 389 #endif 390 #endif 391 392 #ifdef CONFIG_RT_GROUP_SCHED 393 struct sched_rt_entity **rt_se; 394 struct rt_rq **rt_rq; 395 396 struct rt_bandwidth rt_bandwidth; 397 #endif 398 399 struct rcu_head rcu; 400 struct list_head list; 401 402 struct task_group *parent; 403 struct list_head siblings; 404 struct list_head children; 405 406 #ifdef CONFIG_SCHED_AUTOGROUP 407 struct autogroup *autogroup; 408 #endif 409 410 struct cfs_bandwidth cfs_bandwidth; 411 412 #ifdef CONFIG_UCLAMP_TASK_GROUP 413 /* The two decimal precision [%] value requested from user-space */ 414 unsigned int uclamp_pct[UCLAMP_CNT]; 415 /* Clamp values requested for a task group */ 416 struct uclamp_se uclamp_req[UCLAMP_CNT]; 417 /* Effective clamp values used for a task group */ 418 struct uclamp_se uclamp[UCLAMP_CNT]; 419 #endif 420 421 }; 422 423 #ifdef CONFIG_FAIR_GROUP_SCHED 424 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 425 426 /* 427 * A weight of 0 or 1 can cause arithmetics problems. 428 * A weight of a cfs_rq is the sum of weights of which entities 429 * are queued on this cfs_rq, so a weight of a entity should not be 430 * too large, so as the shares value of a task group. 431 * (The default weight is 1024 - so there's no practical 432 * limitation from this.) 433 */ 434 #define MIN_SHARES (1UL << 1) 435 #define MAX_SHARES (1UL << 18) 436 #endif 437 438 typedef int (*tg_visitor)(struct task_group *, void *); 439 440 extern int walk_tg_tree_from(struct task_group *from, 441 tg_visitor down, tg_visitor up, void *data); 442 443 /* 444 * Iterate the full tree, calling @down when first entering a node and @up when 445 * leaving it for the final time. 446 * 447 * Caller must hold rcu_lock or sufficient equivalent. 448 */ 449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 450 { 451 return walk_tg_tree_from(&root_task_group, down, up, data); 452 } 453 454 extern int tg_nop(struct task_group *tg, void *data); 455 456 extern void free_fair_sched_group(struct task_group *tg); 457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 458 extern void online_fair_sched_group(struct task_group *tg); 459 extern void unregister_fair_sched_group(struct task_group *tg); 460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 461 struct sched_entity *se, int cpu, 462 struct sched_entity *parent); 463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 464 465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 468 469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 470 struct sched_rt_entity *rt_se, int cpu, 471 struct sched_rt_entity *parent); 472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 474 extern long sched_group_rt_runtime(struct task_group *tg); 475 extern long sched_group_rt_period(struct task_group *tg); 476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 477 478 extern struct task_group *sched_create_group(struct task_group *parent); 479 extern void sched_online_group(struct task_group *tg, 480 struct task_group *parent); 481 extern void sched_destroy_group(struct task_group *tg); 482 extern void sched_release_group(struct task_group *tg); 483 484 extern void sched_move_task(struct task_struct *tsk); 485 486 #ifdef CONFIG_FAIR_GROUP_SCHED 487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 488 489 extern int sched_group_set_idle(struct task_group *tg, long idle); 490 491 #ifdef CONFIG_SMP 492 extern void set_task_rq_fair(struct sched_entity *se, 493 struct cfs_rq *prev, struct cfs_rq *next); 494 #else /* !CONFIG_SMP */ 495 static inline void set_task_rq_fair(struct sched_entity *se, 496 struct cfs_rq *prev, struct cfs_rq *next) { } 497 #endif /* CONFIG_SMP */ 498 #endif /* CONFIG_FAIR_GROUP_SCHED */ 499 500 #else /* CONFIG_CGROUP_SCHED */ 501 502 struct cfs_bandwidth { }; 503 504 #endif /* CONFIG_CGROUP_SCHED */ 505 506 extern void unregister_rt_sched_group(struct task_group *tg); 507 extern void free_rt_sched_group(struct task_group *tg); 508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 509 510 /* 511 * u64_u32_load/u64_u32_store 512 * 513 * Use a copy of a u64 value to protect against data race. This is only 514 * applicable for 32-bits architectures. 515 */ 516 #ifdef CONFIG_64BIT 517 # define u64_u32_load_copy(var, copy) var 518 # define u64_u32_store_copy(var, copy, val) (var = val) 519 #else 520 # define u64_u32_load_copy(var, copy) \ 521 ({ \ 522 u64 __val, __val_copy; \ 523 do { \ 524 __val_copy = copy; \ 525 /* \ 526 * paired with u64_u32_store_copy(), ordering access \ 527 * to var and copy. \ 528 */ \ 529 smp_rmb(); \ 530 __val = var; \ 531 } while (__val != __val_copy); \ 532 __val; \ 533 }) 534 # define u64_u32_store_copy(var, copy, val) \ 535 do { \ 536 typeof(val) __val = (val); \ 537 var = __val; \ 538 /* \ 539 * paired with u64_u32_load_copy(), ordering access to var and \ 540 * copy. \ 541 */ \ 542 smp_wmb(); \ 543 copy = __val; \ 544 } while (0) 545 #endif 546 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 548 549 /* CFS-related fields in a runqueue */ 550 struct cfs_rq { 551 struct load_weight load; 552 unsigned int nr_running; 553 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 554 unsigned int idle_nr_running; /* SCHED_IDLE */ 555 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 556 557 u64 exec_clock; 558 u64 min_vruntime; 559 #ifdef CONFIG_SCHED_CORE 560 unsigned int forceidle_seq; 561 u64 min_vruntime_fi; 562 #endif 563 564 #ifndef CONFIG_64BIT 565 u64 min_vruntime_copy; 566 #endif 567 568 struct rb_root_cached tasks_timeline; 569 570 /* 571 * 'curr' points to currently running entity on this cfs_rq. 572 * It is set to NULL otherwise (i.e when none are currently running). 573 */ 574 struct sched_entity *curr; 575 struct sched_entity *next; 576 struct sched_entity *last; 577 struct sched_entity *skip; 578 579 #ifdef CONFIG_SCHED_DEBUG 580 unsigned int nr_spread_over; 581 #endif 582 583 #ifdef CONFIG_SMP 584 /* 585 * CFS load tracking 586 */ 587 struct sched_avg avg; 588 #ifndef CONFIG_64BIT 589 u64 last_update_time_copy; 590 #endif 591 struct { 592 raw_spinlock_t lock ____cacheline_aligned; 593 int nr; 594 unsigned long load_avg; 595 unsigned long util_avg; 596 unsigned long runnable_avg; 597 } removed; 598 599 #ifdef CONFIG_FAIR_GROUP_SCHED 600 unsigned long tg_load_avg_contrib; 601 long propagate; 602 long prop_runnable_sum; 603 604 /* 605 * h_load = weight * f(tg) 606 * 607 * Where f(tg) is the recursive weight fraction assigned to 608 * this group. 609 */ 610 unsigned long h_load; 611 u64 last_h_load_update; 612 struct sched_entity *h_load_next; 613 #endif /* CONFIG_FAIR_GROUP_SCHED */ 614 #endif /* CONFIG_SMP */ 615 616 #ifdef CONFIG_FAIR_GROUP_SCHED 617 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 618 619 /* 620 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 621 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 622 * (like users, containers etc.) 623 * 624 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 625 * This list is used during load balance. 626 */ 627 int on_list; 628 struct list_head leaf_cfs_rq_list; 629 struct task_group *tg; /* group that "owns" this runqueue */ 630 631 /* Locally cached copy of our task_group's idle value */ 632 int idle; 633 634 #ifdef CONFIG_CFS_BANDWIDTH 635 int runtime_enabled; 636 s64 runtime_remaining; 637 638 u64 throttled_pelt_idle; 639 #ifndef CONFIG_64BIT 640 u64 throttled_pelt_idle_copy; 641 #endif 642 u64 throttled_clock; 643 u64 throttled_clock_pelt; 644 u64 throttled_clock_pelt_time; 645 int throttled; 646 int throttle_count; 647 struct list_head throttled_list; 648 #endif /* CONFIG_CFS_BANDWIDTH */ 649 #endif /* CONFIG_FAIR_GROUP_SCHED */ 650 }; 651 652 static inline int rt_bandwidth_enabled(void) 653 { 654 return sysctl_sched_rt_runtime >= 0; 655 } 656 657 /* RT IPI pull logic requires IRQ_WORK */ 658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 659 # define HAVE_RT_PUSH_IPI 660 #endif 661 662 /* Real-Time classes' related field in a runqueue: */ 663 struct rt_rq { 664 struct rt_prio_array active; 665 unsigned int rt_nr_running; 666 unsigned int rr_nr_running; 667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 668 struct { 669 int curr; /* highest queued rt task prio */ 670 #ifdef CONFIG_SMP 671 int next; /* next highest */ 672 #endif 673 } highest_prio; 674 #endif 675 #ifdef CONFIG_SMP 676 unsigned int rt_nr_migratory; 677 unsigned int rt_nr_total; 678 int overloaded; 679 struct plist_head pushable_tasks; 680 681 #endif /* CONFIG_SMP */ 682 int rt_queued; 683 684 int rt_throttled; 685 u64 rt_time; 686 u64 rt_runtime; 687 /* Nests inside the rq lock: */ 688 raw_spinlock_t rt_runtime_lock; 689 690 #ifdef CONFIG_RT_GROUP_SCHED 691 unsigned int rt_nr_boosted; 692 693 struct rq *rq; 694 struct task_group *tg; 695 #endif 696 }; 697 698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 699 { 700 return rt_rq->rt_queued && rt_rq->rt_nr_running; 701 } 702 703 /* Deadline class' related fields in a runqueue */ 704 struct dl_rq { 705 /* runqueue is an rbtree, ordered by deadline */ 706 struct rb_root_cached root; 707 708 unsigned int dl_nr_running; 709 710 #ifdef CONFIG_SMP 711 /* 712 * Deadline values of the currently executing and the 713 * earliest ready task on this rq. Caching these facilitates 714 * the decision whether or not a ready but not running task 715 * should migrate somewhere else. 716 */ 717 struct { 718 u64 curr; 719 u64 next; 720 } earliest_dl; 721 722 unsigned int dl_nr_migratory; 723 int overloaded; 724 725 /* 726 * Tasks on this rq that can be pushed away. They are kept in 727 * an rb-tree, ordered by tasks' deadlines, with caching 728 * of the leftmost (earliest deadline) element. 729 */ 730 struct rb_root_cached pushable_dl_tasks_root; 731 #else 732 struct dl_bw dl_bw; 733 #endif 734 /* 735 * "Active utilization" for this runqueue: increased when a 736 * task wakes up (becomes TASK_RUNNING) and decreased when a 737 * task blocks 738 */ 739 u64 running_bw; 740 741 /* 742 * Utilization of the tasks "assigned" to this runqueue (including 743 * the tasks that are in runqueue and the tasks that executed on this 744 * CPU and blocked). Increased when a task moves to this runqueue, and 745 * decreased when the task moves away (migrates, changes scheduling 746 * policy, or terminates). 747 * This is needed to compute the "inactive utilization" for the 748 * runqueue (inactive utilization = this_bw - running_bw). 749 */ 750 u64 this_bw; 751 u64 extra_bw; 752 753 /* 754 * Inverse of the fraction of CPU utilization that can be reclaimed 755 * by the GRUB algorithm. 756 */ 757 u64 bw_ratio; 758 }; 759 760 #ifdef CONFIG_FAIR_GROUP_SCHED 761 /* An entity is a task if it doesn't "own" a runqueue */ 762 #define entity_is_task(se) (!se->my_q) 763 764 static inline void se_update_runnable(struct sched_entity *se) 765 { 766 if (!entity_is_task(se)) 767 se->runnable_weight = se->my_q->h_nr_running; 768 } 769 770 static inline long se_runnable(struct sched_entity *se) 771 { 772 if (entity_is_task(se)) 773 return !!se->on_rq; 774 else 775 return se->runnable_weight; 776 } 777 778 #else 779 #define entity_is_task(se) 1 780 781 static inline void se_update_runnable(struct sched_entity *se) {} 782 783 static inline long se_runnable(struct sched_entity *se) 784 { 785 return !!se->on_rq; 786 } 787 #endif 788 789 #ifdef CONFIG_SMP 790 /* 791 * XXX we want to get rid of these helpers and use the full load resolution. 792 */ 793 static inline long se_weight(struct sched_entity *se) 794 { 795 return scale_load_down(se->load.weight); 796 } 797 798 799 static inline bool sched_asym_prefer(int a, int b) 800 { 801 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 802 } 803 804 struct perf_domain { 805 struct em_perf_domain *em_pd; 806 struct perf_domain *next; 807 struct rcu_head rcu; 808 }; 809 810 /* Scheduling group status flags */ 811 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 812 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 813 814 /* 815 * We add the notion of a root-domain which will be used to define per-domain 816 * variables. Each exclusive cpuset essentially defines an island domain by 817 * fully partitioning the member CPUs from any other cpuset. Whenever a new 818 * exclusive cpuset is created, we also create and attach a new root-domain 819 * object. 820 * 821 */ 822 struct root_domain { 823 atomic_t refcount; 824 atomic_t rto_count; 825 struct rcu_head rcu; 826 cpumask_var_t span; 827 cpumask_var_t online; 828 829 /* 830 * Indicate pullable load on at least one CPU, e.g: 831 * - More than one runnable task 832 * - Running task is misfit 833 */ 834 int overload; 835 836 /* Indicate one or more cpus over-utilized (tipping point) */ 837 int overutilized; 838 839 /* 840 * The bit corresponding to a CPU gets set here if such CPU has more 841 * than one runnable -deadline task (as it is below for RT tasks). 842 */ 843 cpumask_var_t dlo_mask; 844 atomic_t dlo_count; 845 struct dl_bw dl_bw; 846 struct cpudl cpudl; 847 848 /* 849 * Indicate whether a root_domain's dl_bw has been checked or 850 * updated. It's monotonously increasing value. 851 * 852 * Also, some corner cases, like 'wrap around' is dangerous, but given 853 * that u64 is 'big enough'. So that shouldn't be a concern. 854 */ 855 u64 visit_gen; 856 857 #ifdef HAVE_RT_PUSH_IPI 858 /* 859 * For IPI pull requests, loop across the rto_mask. 860 */ 861 struct irq_work rto_push_work; 862 raw_spinlock_t rto_lock; 863 /* These are only updated and read within rto_lock */ 864 int rto_loop; 865 int rto_cpu; 866 /* These atomics are updated outside of a lock */ 867 atomic_t rto_loop_next; 868 atomic_t rto_loop_start; 869 #endif 870 /* 871 * The "RT overload" flag: it gets set if a CPU has more than 872 * one runnable RT task. 873 */ 874 cpumask_var_t rto_mask; 875 struct cpupri cpupri; 876 877 unsigned long max_cpu_capacity; 878 879 /* 880 * NULL-terminated list of performance domains intersecting with the 881 * CPUs of the rd. Protected by RCU. 882 */ 883 struct perf_domain __rcu *pd; 884 }; 885 886 extern void init_defrootdomain(void); 887 extern int sched_init_domains(const struct cpumask *cpu_map); 888 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 889 extern void sched_get_rd(struct root_domain *rd); 890 extern void sched_put_rd(struct root_domain *rd); 891 892 #ifdef HAVE_RT_PUSH_IPI 893 extern void rto_push_irq_work_func(struct irq_work *work); 894 #endif 895 #endif /* CONFIG_SMP */ 896 897 #ifdef CONFIG_UCLAMP_TASK 898 /* 899 * struct uclamp_bucket - Utilization clamp bucket 900 * @value: utilization clamp value for tasks on this clamp bucket 901 * @tasks: number of RUNNABLE tasks on this clamp bucket 902 * 903 * Keep track of how many tasks are RUNNABLE for a given utilization 904 * clamp value. 905 */ 906 struct uclamp_bucket { 907 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 908 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 909 }; 910 911 /* 912 * struct uclamp_rq - rq's utilization clamp 913 * @value: currently active clamp values for a rq 914 * @bucket: utilization clamp buckets affecting a rq 915 * 916 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 917 * A clamp value is affecting a rq when there is at least one task RUNNABLE 918 * (or actually running) with that value. 919 * 920 * There are up to UCLAMP_CNT possible different clamp values, currently there 921 * are only two: minimum utilization and maximum utilization. 922 * 923 * All utilization clamping values are MAX aggregated, since: 924 * - for util_min: we want to run the CPU at least at the max of the minimum 925 * utilization required by its currently RUNNABLE tasks. 926 * - for util_max: we want to allow the CPU to run up to the max of the 927 * maximum utilization allowed by its currently RUNNABLE tasks. 928 * 929 * Since on each system we expect only a limited number of different 930 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 931 * the metrics required to compute all the per-rq utilization clamp values. 932 */ 933 struct uclamp_rq { 934 unsigned int value; 935 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 936 }; 937 938 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 939 #endif /* CONFIG_UCLAMP_TASK */ 940 941 /* 942 * This is the main, per-CPU runqueue data structure. 943 * 944 * Locking rule: those places that want to lock multiple runqueues 945 * (such as the load balancing or the thread migration code), lock 946 * acquire operations must be ordered by ascending &runqueue. 947 */ 948 struct rq { 949 /* runqueue lock: */ 950 raw_spinlock_t __lock; 951 952 /* 953 * nr_running and cpu_load should be in the same cacheline because 954 * remote CPUs use both these fields when doing load calculation. 955 */ 956 unsigned int nr_running; 957 #ifdef CONFIG_NUMA_BALANCING 958 unsigned int nr_numa_running; 959 unsigned int nr_preferred_running; 960 unsigned int numa_migrate_on; 961 #endif 962 #ifdef CONFIG_NO_HZ_COMMON 963 #ifdef CONFIG_SMP 964 unsigned long last_blocked_load_update_tick; 965 unsigned int has_blocked_load; 966 call_single_data_t nohz_csd; 967 #endif /* CONFIG_SMP */ 968 unsigned int nohz_tick_stopped; 969 atomic_t nohz_flags; 970 #endif /* CONFIG_NO_HZ_COMMON */ 971 972 #ifdef CONFIG_SMP 973 unsigned int ttwu_pending; 974 #endif 975 u64 nr_switches; 976 977 #ifdef CONFIG_UCLAMP_TASK 978 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 979 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 980 unsigned int uclamp_flags; 981 #define UCLAMP_FLAG_IDLE 0x01 982 #endif 983 984 struct cfs_rq cfs; 985 struct rt_rq rt; 986 struct dl_rq dl; 987 988 #ifdef CONFIG_FAIR_GROUP_SCHED 989 /* list of leaf cfs_rq on this CPU: */ 990 struct list_head leaf_cfs_rq_list; 991 struct list_head *tmp_alone_branch; 992 #endif /* CONFIG_FAIR_GROUP_SCHED */ 993 994 /* 995 * This is part of a global counter where only the total sum 996 * over all CPUs matters. A task can increase this counter on 997 * one CPU and if it got migrated afterwards it may decrease 998 * it on another CPU. Always updated under the runqueue lock: 999 */ 1000 unsigned int nr_uninterruptible; 1001 1002 struct task_struct __rcu *curr; 1003 struct task_struct *idle; 1004 struct task_struct *stop; 1005 unsigned long next_balance; 1006 struct mm_struct *prev_mm; 1007 1008 unsigned int clock_update_flags; 1009 u64 clock; 1010 /* Ensure that all clocks are in the same cache line */ 1011 u64 clock_task ____cacheline_aligned; 1012 u64 clock_pelt; 1013 unsigned long lost_idle_time; 1014 u64 clock_pelt_idle; 1015 u64 clock_idle; 1016 #ifndef CONFIG_64BIT 1017 u64 clock_pelt_idle_copy; 1018 u64 clock_idle_copy; 1019 #endif 1020 1021 atomic_t nr_iowait; 1022 1023 #ifdef CONFIG_SCHED_DEBUG 1024 u64 last_seen_need_resched_ns; 1025 int ticks_without_resched; 1026 #endif 1027 1028 #ifdef CONFIG_MEMBARRIER 1029 int membarrier_state; 1030 #endif 1031 1032 #ifdef CONFIG_SMP 1033 struct root_domain *rd; 1034 struct sched_domain __rcu *sd; 1035 1036 unsigned long cpu_capacity; 1037 unsigned long cpu_capacity_orig; 1038 1039 struct callback_head *balance_callback; 1040 1041 unsigned char nohz_idle_balance; 1042 unsigned char idle_balance; 1043 1044 unsigned long misfit_task_load; 1045 1046 /* For active balancing */ 1047 int active_balance; 1048 int push_cpu; 1049 struct cpu_stop_work active_balance_work; 1050 1051 /* CPU of this runqueue: */ 1052 int cpu; 1053 int online; 1054 1055 struct list_head cfs_tasks; 1056 1057 struct sched_avg avg_rt; 1058 struct sched_avg avg_dl; 1059 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1060 struct sched_avg avg_irq; 1061 #endif 1062 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1063 struct sched_avg avg_thermal; 1064 #endif 1065 u64 idle_stamp; 1066 u64 avg_idle; 1067 1068 unsigned long wake_stamp; 1069 u64 wake_avg_idle; 1070 1071 /* This is used to determine avg_idle's max value */ 1072 u64 max_idle_balance_cost; 1073 1074 #ifdef CONFIG_HOTPLUG_CPU 1075 struct rcuwait hotplug_wait; 1076 #endif 1077 #endif /* CONFIG_SMP */ 1078 1079 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1080 u64 prev_irq_time; 1081 #endif 1082 #ifdef CONFIG_PARAVIRT 1083 u64 prev_steal_time; 1084 #endif 1085 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1086 u64 prev_steal_time_rq; 1087 #endif 1088 1089 /* calc_load related fields */ 1090 unsigned long calc_load_update; 1091 long calc_load_active; 1092 1093 #ifdef CONFIG_SCHED_HRTICK 1094 #ifdef CONFIG_SMP 1095 call_single_data_t hrtick_csd; 1096 #endif 1097 struct hrtimer hrtick_timer; 1098 ktime_t hrtick_time; 1099 #endif 1100 1101 #ifdef CONFIG_SCHEDSTATS 1102 /* latency stats */ 1103 struct sched_info rq_sched_info; 1104 unsigned long long rq_cpu_time; 1105 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1106 1107 /* sys_sched_yield() stats */ 1108 unsigned int yld_count; 1109 1110 /* schedule() stats */ 1111 unsigned int sched_count; 1112 unsigned int sched_goidle; 1113 1114 /* try_to_wake_up() stats */ 1115 unsigned int ttwu_count; 1116 unsigned int ttwu_local; 1117 #endif 1118 1119 #ifdef CONFIG_CPU_IDLE 1120 /* Must be inspected within a rcu lock section */ 1121 struct cpuidle_state *idle_state; 1122 #endif 1123 1124 #ifdef CONFIG_SMP 1125 unsigned int nr_pinned; 1126 #endif 1127 unsigned int push_busy; 1128 struct cpu_stop_work push_work; 1129 1130 #ifdef CONFIG_SCHED_CORE 1131 /* per rq */ 1132 struct rq *core; 1133 struct task_struct *core_pick; 1134 unsigned int core_enabled; 1135 unsigned int core_sched_seq; 1136 struct rb_root core_tree; 1137 1138 /* shared state -- careful with sched_core_cpu_deactivate() */ 1139 unsigned int core_task_seq; 1140 unsigned int core_pick_seq; 1141 unsigned long core_cookie; 1142 unsigned int core_forceidle_count; 1143 unsigned int core_forceidle_seq; 1144 unsigned int core_forceidle_occupation; 1145 u64 core_forceidle_start; 1146 #endif 1147 }; 1148 1149 #ifdef CONFIG_FAIR_GROUP_SCHED 1150 1151 /* CPU runqueue to which this cfs_rq is attached */ 1152 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1153 { 1154 return cfs_rq->rq; 1155 } 1156 1157 #else 1158 1159 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1160 { 1161 return container_of(cfs_rq, struct rq, cfs); 1162 } 1163 #endif 1164 1165 static inline int cpu_of(struct rq *rq) 1166 { 1167 #ifdef CONFIG_SMP 1168 return rq->cpu; 1169 #else 1170 return 0; 1171 #endif 1172 } 1173 1174 #define MDF_PUSH 0x01 1175 1176 static inline bool is_migration_disabled(struct task_struct *p) 1177 { 1178 #ifdef CONFIG_SMP 1179 return p->migration_disabled; 1180 #else 1181 return false; 1182 #endif 1183 } 1184 1185 struct sched_group; 1186 #ifdef CONFIG_SCHED_CORE 1187 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1188 1189 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1190 1191 static inline bool sched_core_enabled(struct rq *rq) 1192 { 1193 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1194 } 1195 1196 static inline bool sched_core_disabled(void) 1197 { 1198 return !static_branch_unlikely(&__sched_core_enabled); 1199 } 1200 1201 /* 1202 * Be careful with this function; not for general use. The return value isn't 1203 * stable unless you actually hold a relevant rq->__lock. 1204 */ 1205 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1206 { 1207 if (sched_core_enabled(rq)) 1208 return &rq->core->__lock; 1209 1210 return &rq->__lock; 1211 } 1212 1213 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1214 { 1215 if (rq->core_enabled) 1216 return &rq->core->__lock; 1217 1218 return &rq->__lock; 1219 } 1220 1221 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1222 1223 /* 1224 * Helpers to check if the CPU's core cookie matches with the task's cookie 1225 * when core scheduling is enabled. 1226 * A special case is that the task's cookie always matches with CPU's core 1227 * cookie if the CPU is in an idle core. 1228 */ 1229 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1230 { 1231 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1232 if (!sched_core_enabled(rq)) 1233 return true; 1234 1235 return rq->core->core_cookie == p->core_cookie; 1236 } 1237 1238 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1239 { 1240 bool idle_core = true; 1241 int cpu; 1242 1243 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1244 if (!sched_core_enabled(rq)) 1245 return true; 1246 1247 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1248 if (!available_idle_cpu(cpu)) { 1249 idle_core = false; 1250 break; 1251 } 1252 } 1253 1254 /* 1255 * A CPU in an idle core is always the best choice for tasks with 1256 * cookies. 1257 */ 1258 return idle_core || rq->core->core_cookie == p->core_cookie; 1259 } 1260 1261 static inline bool sched_group_cookie_match(struct rq *rq, 1262 struct task_struct *p, 1263 struct sched_group *group) 1264 { 1265 int cpu; 1266 1267 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1268 if (!sched_core_enabled(rq)) 1269 return true; 1270 1271 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1272 if (sched_core_cookie_match(rq, p)) 1273 return true; 1274 } 1275 return false; 1276 } 1277 1278 static inline bool sched_core_enqueued(struct task_struct *p) 1279 { 1280 return !RB_EMPTY_NODE(&p->core_node); 1281 } 1282 1283 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1284 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1285 1286 extern void sched_core_get(void); 1287 extern void sched_core_put(void); 1288 1289 #else /* !CONFIG_SCHED_CORE */ 1290 1291 static inline bool sched_core_enabled(struct rq *rq) 1292 { 1293 return false; 1294 } 1295 1296 static inline bool sched_core_disabled(void) 1297 { 1298 return true; 1299 } 1300 1301 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1302 { 1303 return &rq->__lock; 1304 } 1305 1306 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1307 { 1308 return &rq->__lock; 1309 } 1310 1311 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1312 { 1313 return true; 1314 } 1315 1316 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1317 { 1318 return true; 1319 } 1320 1321 static inline bool sched_group_cookie_match(struct rq *rq, 1322 struct task_struct *p, 1323 struct sched_group *group) 1324 { 1325 return true; 1326 } 1327 #endif /* CONFIG_SCHED_CORE */ 1328 1329 static inline void lockdep_assert_rq_held(struct rq *rq) 1330 { 1331 lockdep_assert_held(__rq_lockp(rq)); 1332 } 1333 1334 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1335 extern bool raw_spin_rq_trylock(struct rq *rq); 1336 extern void raw_spin_rq_unlock(struct rq *rq); 1337 1338 static inline void raw_spin_rq_lock(struct rq *rq) 1339 { 1340 raw_spin_rq_lock_nested(rq, 0); 1341 } 1342 1343 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1344 { 1345 local_irq_disable(); 1346 raw_spin_rq_lock(rq); 1347 } 1348 1349 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1350 { 1351 raw_spin_rq_unlock(rq); 1352 local_irq_enable(); 1353 } 1354 1355 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1356 { 1357 unsigned long flags; 1358 local_irq_save(flags); 1359 raw_spin_rq_lock(rq); 1360 return flags; 1361 } 1362 1363 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1364 { 1365 raw_spin_rq_unlock(rq); 1366 local_irq_restore(flags); 1367 } 1368 1369 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1370 do { \ 1371 flags = _raw_spin_rq_lock_irqsave(rq); \ 1372 } while (0) 1373 1374 #ifdef CONFIG_SCHED_SMT 1375 extern void __update_idle_core(struct rq *rq); 1376 1377 static inline void update_idle_core(struct rq *rq) 1378 { 1379 if (static_branch_unlikely(&sched_smt_present)) 1380 __update_idle_core(rq); 1381 } 1382 1383 #else 1384 static inline void update_idle_core(struct rq *rq) { } 1385 #endif 1386 1387 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1388 1389 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1390 #define this_rq() this_cpu_ptr(&runqueues) 1391 #define task_rq(p) cpu_rq(task_cpu(p)) 1392 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1393 #define raw_rq() raw_cpu_ptr(&runqueues) 1394 1395 #ifdef CONFIG_FAIR_GROUP_SCHED 1396 static inline struct task_struct *task_of(struct sched_entity *se) 1397 { 1398 SCHED_WARN_ON(!entity_is_task(se)); 1399 return container_of(se, struct task_struct, se); 1400 } 1401 1402 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1403 { 1404 return p->se.cfs_rq; 1405 } 1406 1407 /* runqueue on which this entity is (to be) queued */ 1408 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1409 { 1410 return se->cfs_rq; 1411 } 1412 1413 /* runqueue "owned" by this group */ 1414 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1415 { 1416 return grp->my_q; 1417 } 1418 1419 #else 1420 1421 static inline struct task_struct *task_of(struct sched_entity *se) 1422 { 1423 return container_of(se, struct task_struct, se); 1424 } 1425 1426 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1427 { 1428 return &task_rq(p)->cfs; 1429 } 1430 1431 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1432 { 1433 struct task_struct *p = task_of(se); 1434 struct rq *rq = task_rq(p); 1435 1436 return &rq->cfs; 1437 } 1438 1439 /* runqueue "owned" by this group */ 1440 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1441 { 1442 return NULL; 1443 } 1444 #endif 1445 1446 extern void update_rq_clock(struct rq *rq); 1447 1448 /* 1449 * rq::clock_update_flags bits 1450 * 1451 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1452 * call to __schedule(). This is an optimisation to avoid 1453 * neighbouring rq clock updates. 1454 * 1455 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1456 * in effect and calls to update_rq_clock() are being ignored. 1457 * 1458 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1459 * made to update_rq_clock() since the last time rq::lock was pinned. 1460 * 1461 * If inside of __schedule(), clock_update_flags will have been 1462 * shifted left (a left shift is a cheap operation for the fast path 1463 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1464 * 1465 * if (rq-clock_update_flags >= RQCF_UPDATED) 1466 * 1467 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1468 * one position though, because the next rq_unpin_lock() will shift it 1469 * back. 1470 */ 1471 #define RQCF_REQ_SKIP 0x01 1472 #define RQCF_ACT_SKIP 0x02 1473 #define RQCF_UPDATED 0x04 1474 1475 static inline void assert_clock_updated(struct rq *rq) 1476 { 1477 /* 1478 * The only reason for not seeing a clock update since the 1479 * last rq_pin_lock() is if we're currently skipping updates. 1480 */ 1481 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1482 } 1483 1484 static inline u64 rq_clock(struct rq *rq) 1485 { 1486 lockdep_assert_rq_held(rq); 1487 assert_clock_updated(rq); 1488 1489 return rq->clock; 1490 } 1491 1492 static inline u64 rq_clock_task(struct rq *rq) 1493 { 1494 lockdep_assert_rq_held(rq); 1495 assert_clock_updated(rq); 1496 1497 return rq->clock_task; 1498 } 1499 1500 /** 1501 * By default the decay is the default pelt decay period. 1502 * The decay shift can change the decay period in 1503 * multiples of 32. 1504 * Decay shift Decay period(ms) 1505 * 0 32 1506 * 1 64 1507 * 2 128 1508 * 3 256 1509 * 4 512 1510 */ 1511 extern int sched_thermal_decay_shift; 1512 1513 static inline u64 rq_clock_thermal(struct rq *rq) 1514 { 1515 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1516 } 1517 1518 static inline void rq_clock_skip_update(struct rq *rq) 1519 { 1520 lockdep_assert_rq_held(rq); 1521 rq->clock_update_flags |= RQCF_REQ_SKIP; 1522 } 1523 1524 /* 1525 * See rt task throttling, which is the only time a skip 1526 * request is canceled. 1527 */ 1528 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1529 { 1530 lockdep_assert_rq_held(rq); 1531 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1532 } 1533 1534 struct rq_flags { 1535 unsigned long flags; 1536 struct pin_cookie cookie; 1537 #ifdef CONFIG_SCHED_DEBUG 1538 /* 1539 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1540 * current pin context is stashed here in case it needs to be 1541 * restored in rq_repin_lock(). 1542 */ 1543 unsigned int clock_update_flags; 1544 #endif 1545 }; 1546 1547 extern struct callback_head balance_push_callback; 1548 1549 /* 1550 * Lockdep annotation that avoids accidental unlocks; it's like a 1551 * sticky/continuous lockdep_assert_held(). 1552 * 1553 * This avoids code that has access to 'struct rq *rq' (basically everything in 1554 * the scheduler) from accidentally unlocking the rq if they do not also have a 1555 * copy of the (on-stack) 'struct rq_flags rf'. 1556 * 1557 * Also see Documentation/locking/lockdep-design.rst. 1558 */ 1559 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1560 { 1561 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1562 1563 #ifdef CONFIG_SCHED_DEBUG 1564 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1565 rf->clock_update_flags = 0; 1566 #ifdef CONFIG_SMP 1567 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1568 #endif 1569 #endif 1570 } 1571 1572 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1573 { 1574 #ifdef CONFIG_SCHED_DEBUG 1575 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1576 rf->clock_update_flags = RQCF_UPDATED; 1577 #endif 1578 1579 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1580 } 1581 1582 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1583 { 1584 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1585 1586 #ifdef CONFIG_SCHED_DEBUG 1587 /* 1588 * Restore the value we stashed in @rf for this pin context. 1589 */ 1590 rq->clock_update_flags |= rf->clock_update_flags; 1591 #endif 1592 } 1593 1594 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1595 __acquires(rq->lock); 1596 1597 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1598 __acquires(p->pi_lock) 1599 __acquires(rq->lock); 1600 1601 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1602 __releases(rq->lock) 1603 { 1604 rq_unpin_lock(rq, rf); 1605 raw_spin_rq_unlock(rq); 1606 } 1607 1608 static inline void 1609 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1610 __releases(rq->lock) 1611 __releases(p->pi_lock) 1612 { 1613 rq_unpin_lock(rq, rf); 1614 raw_spin_rq_unlock(rq); 1615 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1616 } 1617 1618 static inline void 1619 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1620 __acquires(rq->lock) 1621 { 1622 raw_spin_rq_lock_irqsave(rq, rf->flags); 1623 rq_pin_lock(rq, rf); 1624 } 1625 1626 static inline void 1627 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1628 __acquires(rq->lock) 1629 { 1630 raw_spin_rq_lock_irq(rq); 1631 rq_pin_lock(rq, rf); 1632 } 1633 1634 static inline void 1635 rq_lock(struct rq *rq, struct rq_flags *rf) 1636 __acquires(rq->lock) 1637 { 1638 raw_spin_rq_lock(rq); 1639 rq_pin_lock(rq, rf); 1640 } 1641 1642 static inline void 1643 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1644 __releases(rq->lock) 1645 { 1646 rq_unpin_lock(rq, rf); 1647 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1648 } 1649 1650 static inline void 1651 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1652 __releases(rq->lock) 1653 { 1654 rq_unpin_lock(rq, rf); 1655 raw_spin_rq_unlock_irq(rq); 1656 } 1657 1658 static inline void 1659 rq_unlock(struct rq *rq, struct rq_flags *rf) 1660 __releases(rq->lock) 1661 { 1662 rq_unpin_lock(rq, rf); 1663 raw_spin_rq_unlock(rq); 1664 } 1665 1666 static inline struct rq * 1667 this_rq_lock_irq(struct rq_flags *rf) 1668 __acquires(rq->lock) 1669 { 1670 struct rq *rq; 1671 1672 local_irq_disable(); 1673 rq = this_rq(); 1674 rq_lock(rq, rf); 1675 return rq; 1676 } 1677 1678 #ifdef CONFIG_NUMA 1679 enum numa_topology_type { 1680 NUMA_DIRECT, 1681 NUMA_GLUELESS_MESH, 1682 NUMA_BACKPLANE, 1683 }; 1684 extern enum numa_topology_type sched_numa_topology_type; 1685 extern int sched_max_numa_distance; 1686 extern bool find_numa_distance(int distance); 1687 extern void sched_init_numa(int offline_node); 1688 extern void sched_update_numa(int cpu, bool online); 1689 extern void sched_domains_numa_masks_set(unsigned int cpu); 1690 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1691 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1692 #else 1693 static inline void sched_init_numa(int offline_node) { } 1694 static inline void sched_update_numa(int cpu, bool online) { } 1695 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1696 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1697 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1698 { 1699 return nr_cpu_ids; 1700 } 1701 #endif 1702 1703 #ifdef CONFIG_NUMA_BALANCING 1704 /* The regions in numa_faults array from task_struct */ 1705 enum numa_faults_stats { 1706 NUMA_MEM = 0, 1707 NUMA_CPU, 1708 NUMA_MEMBUF, 1709 NUMA_CPUBUF 1710 }; 1711 extern void sched_setnuma(struct task_struct *p, int node); 1712 extern int migrate_task_to(struct task_struct *p, int cpu); 1713 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1714 int cpu, int scpu); 1715 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1716 #else 1717 static inline void 1718 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1719 { 1720 } 1721 #endif /* CONFIG_NUMA_BALANCING */ 1722 1723 #ifdef CONFIG_SMP 1724 1725 static inline void 1726 queue_balance_callback(struct rq *rq, 1727 struct callback_head *head, 1728 void (*func)(struct rq *rq)) 1729 { 1730 lockdep_assert_rq_held(rq); 1731 1732 /* 1733 * Don't (re)queue an already queued item; nor queue anything when 1734 * balance_push() is active, see the comment with 1735 * balance_push_callback. 1736 */ 1737 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1738 return; 1739 1740 head->func = (void (*)(struct callback_head *))func; 1741 head->next = rq->balance_callback; 1742 rq->balance_callback = head; 1743 } 1744 1745 #define rcu_dereference_check_sched_domain(p) \ 1746 rcu_dereference_check((p), \ 1747 lockdep_is_held(&sched_domains_mutex)) 1748 1749 /* 1750 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1751 * See destroy_sched_domains: call_rcu for details. 1752 * 1753 * The domain tree of any CPU may only be accessed from within 1754 * preempt-disabled sections. 1755 */ 1756 #define for_each_domain(cpu, __sd) \ 1757 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1758 __sd; __sd = __sd->parent) 1759 1760 /** 1761 * highest_flag_domain - Return highest sched_domain containing flag. 1762 * @cpu: The CPU whose highest level of sched domain is to 1763 * be returned. 1764 * @flag: The flag to check for the highest sched_domain 1765 * for the given CPU. 1766 * 1767 * Returns the highest sched_domain of a CPU which contains the given flag. 1768 */ 1769 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1770 { 1771 struct sched_domain *sd, *hsd = NULL; 1772 1773 for_each_domain(cpu, sd) { 1774 if (!(sd->flags & flag)) 1775 break; 1776 hsd = sd; 1777 } 1778 1779 return hsd; 1780 } 1781 1782 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1783 { 1784 struct sched_domain *sd; 1785 1786 for_each_domain(cpu, sd) { 1787 if (sd->flags & flag) 1788 break; 1789 } 1790 1791 return sd; 1792 } 1793 1794 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1795 DECLARE_PER_CPU(int, sd_llc_size); 1796 DECLARE_PER_CPU(int, sd_llc_id); 1797 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1798 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1799 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1800 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1801 extern struct static_key_false sched_asym_cpucapacity; 1802 1803 static __always_inline bool sched_asym_cpucap_active(void) 1804 { 1805 return static_branch_unlikely(&sched_asym_cpucapacity); 1806 } 1807 1808 struct sched_group_capacity { 1809 atomic_t ref; 1810 /* 1811 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1812 * for a single CPU. 1813 */ 1814 unsigned long capacity; 1815 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1816 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1817 unsigned long next_update; 1818 int imbalance; /* XXX unrelated to capacity but shared group state */ 1819 1820 #ifdef CONFIG_SCHED_DEBUG 1821 int id; 1822 #endif 1823 1824 unsigned long cpumask[]; /* Balance mask */ 1825 }; 1826 1827 struct sched_group { 1828 struct sched_group *next; /* Must be a circular list */ 1829 atomic_t ref; 1830 1831 unsigned int group_weight; 1832 struct sched_group_capacity *sgc; 1833 int asym_prefer_cpu; /* CPU of highest priority in group */ 1834 int flags; 1835 1836 /* 1837 * The CPUs this group covers. 1838 * 1839 * NOTE: this field is variable length. (Allocated dynamically 1840 * by attaching extra space to the end of the structure, 1841 * depending on how many CPUs the kernel has booted up with) 1842 */ 1843 unsigned long cpumask[]; 1844 }; 1845 1846 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1847 { 1848 return to_cpumask(sg->cpumask); 1849 } 1850 1851 /* 1852 * See build_balance_mask(). 1853 */ 1854 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1855 { 1856 return to_cpumask(sg->sgc->cpumask); 1857 } 1858 1859 extern int group_balance_cpu(struct sched_group *sg); 1860 1861 #ifdef CONFIG_SCHED_DEBUG 1862 void update_sched_domain_debugfs(void); 1863 void dirty_sched_domain_sysctl(int cpu); 1864 #else 1865 static inline void update_sched_domain_debugfs(void) 1866 { 1867 } 1868 static inline void dirty_sched_domain_sysctl(int cpu) 1869 { 1870 } 1871 #endif 1872 1873 extern int sched_update_scaling(void); 1874 #endif /* CONFIG_SMP */ 1875 1876 #include "stats.h" 1877 1878 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1879 1880 extern void __sched_core_account_forceidle(struct rq *rq); 1881 1882 static inline void sched_core_account_forceidle(struct rq *rq) 1883 { 1884 if (schedstat_enabled()) 1885 __sched_core_account_forceidle(rq); 1886 } 1887 1888 extern void __sched_core_tick(struct rq *rq); 1889 1890 static inline void sched_core_tick(struct rq *rq) 1891 { 1892 if (sched_core_enabled(rq) && schedstat_enabled()) 1893 __sched_core_tick(rq); 1894 } 1895 1896 #else 1897 1898 static inline void sched_core_account_forceidle(struct rq *rq) {} 1899 1900 static inline void sched_core_tick(struct rq *rq) {} 1901 1902 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1903 1904 #ifdef CONFIG_CGROUP_SCHED 1905 1906 /* 1907 * Return the group to which this tasks belongs. 1908 * 1909 * We cannot use task_css() and friends because the cgroup subsystem 1910 * changes that value before the cgroup_subsys::attach() method is called, 1911 * therefore we cannot pin it and might observe the wrong value. 1912 * 1913 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1914 * core changes this before calling sched_move_task(). 1915 * 1916 * Instead we use a 'copy' which is updated from sched_move_task() while 1917 * holding both task_struct::pi_lock and rq::lock. 1918 */ 1919 static inline struct task_group *task_group(struct task_struct *p) 1920 { 1921 return p->sched_task_group; 1922 } 1923 1924 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1925 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1926 { 1927 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1928 struct task_group *tg = task_group(p); 1929 #endif 1930 1931 #ifdef CONFIG_FAIR_GROUP_SCHED 1932 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1933 p->se.cfs_rq = tg->cfs_rq[cpu]; 1934 p->se.parent = tg->se[cpu]; 1935 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 1936 #endif 1937 1938 #ifdef CONFIG_RT_GROUP_SCHED 1939 p->rt.rt_rq = tg->rt_rq[cpu]; 1940 p->rt.parent = tg->rt_se[cpu]; 1941 #endif 1942 } 1943 1944 #else /* CONFIG_CGROUP_SCHED */ 1945 1946 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1947 static inline struct task_group *task_group(struct task_struct *p) 1948 { 1949 return NULL; 1950 } 1951 1952 #endif /* CONFIG_CGROUP_SCHED */ 1953 1954 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1955 { 1956 set_task_rq(p, cpu); 1957 #ifdef CONFIG_SMP 1958 /* 1959 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1960 * successfully executed on another CPU. We must ensure that updates of 1961 * per-task data have been completed by this moment. 1962 */ 1963 smp_wmb(); 1964 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1965 p->wake_cpu = cpu; 1966 #endif 1967 } 1968 1969 /* 1970 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1971 */ 1972 #ifdef CONFIG_SCHED_DEBUG 1973 # define const_debug __read_mostly 1974 #else 1975 # define const_debug const 1976 #endif 1977 1978 #define SCHED_FEAT(name, enabled) \ 1979 __SCHED_FEAT_##name , 1980 1981 enum { 1982 #include "features.h" 1983 __SCHED_FEAT_NR, 1984 }; 1985 1986 #undef SCHED_FEAT 1987 1988 #ifdef CONFIG_SCHED_DEBUG 1989 1990 /* 1991 * To support run-time toggling of sched features, all the translation units 1992 * (but core.c) reference the sysctl_sched_features defined in core.c. 1993 */ 1994 extern const_debug unsigned int sysctl_sched_features; 1995 1996 #ifdef CONFIG_JUMP_LABEL 1997 #define SCHED_FEAT(name, enabled) \ 1998 static __always_inline bool static_branch_##name(struct static_key *key) \ 1999 { \ 2000 return static_key_##enabled(key); \ 2001 } 2002 2003 #include "features.h" 2004 #undef SCHED_FEAT 2005 2006 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2007 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2008 2009 #else /* !CONFIG_JUMP_LABEL */ 2010 2011 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2012 2013 #endif /* CONFIG_JUMP_LABEL */ 2014 2015 #else /* !SCHED_DEBUG */ 2016 2017 /* 2018 * Each translation unit has its own copy of sysctl_sched_features to allow 2019 * constants propagation at compile time and compiler optimization based on 2020 * features default. 2021 */ 2022 #define SCHED_FEAT(name, enabled) \ 2023 (1UL << __SCHED_FEAT_##name) * enabled | 2024 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2025 #include "features.h" 2026 0; 2027 #undef SCHED_FEAT 2028 2029 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2030 2031 #endif /* SCHED_DEBUG */ 2032 2033 extern struct static_key_false sched_numa_balancing; 2034 extern struct static_key_false sched_schedstats; 2035 2036 static inline u64 global_rt_period(void) 2037 { 2038 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2039 } 2040 2041 static inline u64 global_rt_runtime(void) 2042 { 2043 if (sysctl_sched_rt_runtime < 0) 2044 return RUNTIME_INF; 2045 2046 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2047 } 2048 2049 static inline int task_current(struct rq *rq, struct task_struct *p) 2050 { 2051 return rq->curr == p; 2052 } 2053 2054 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2055 { 2056 #ifdef CONFIG_SMP 2057 return p->on_cpu; 2058 #else 2059 return task_current(rq, p); 2060 #endif 2061 } 2062 2063 static inline int task_on_rq_queued(struct task_struct *p) 2064 { 2065 return p->on_rq == TASK_ON_RQ_QUEUED; 2066 } 2067 2068 static inline int task_on_rq_migrating(struct task_struct *p) 2069 { 2070 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2071 } 2072 2073 /* Wake flags. The first three directly map to some SD flag value */ 2074 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2075 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2076 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2077 2078 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2079 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2080 2081 #ifdef CONFIG_SMP 2082 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2083 static_assert(WF_FORK == SD_BALANCE_FORK); 2084 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2085 #endif 2086 2087 /* 2088 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2089 * of tasks with abnormal "nice" values across CPUs the contribution that 2090 * each task makes to its run queue's load is weighted according to its 2091 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2092 * scaled version of the new time slice allocation that they receive on time 2093 * slice expiry etc. 2094 */ 2095 2096 #define WEIGHT_IDLEPRIO 3 2097 #define WMULT_IDLEPRIO 1431655765 2098 2099 extern const int sched_prio_to_weight[40]; 2100 extern const u32 sched_prio_to_wmult[40]; 2101 2102 /* 2103 * {de,en}queue flags: 2104 * 2105 * DEQUEUE_SLEEP - task is no longer runnable 2106 * ENQUEUE_WAKEUP - task just became runnable 2107 * 2108 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2109 * are in a known state which allows modification. Such pairs 2110 * should preserve as much state as possible. 2111 * 2112 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2113 * in the runqueue. 2114 * 2115 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2116 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2117 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2118 * 2119 */ 2120 2121 #define DEQUEUE_SLEEP 0x01 2122 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2123 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2124 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2125 2126 #define ENQUEUE_WAKEUP 0x01 2127 #define ENQUEUE_RESTORE 0x02 2128 #define ENQUEUE_MOVE 0x04 2129 #define ENQUEUE_NOCLOCK 0x08 2130 2131 #define ENQUEUE_HEAD 0x10 2132 #define ENQUEUE_REPLENISH 0x20 2133 #ifdef CONFIG_SMP 2134 #define ENQUEUE_MIGRATED 0x40 2135 #else 2136 #define ENQUEUE_MIGRATED 0x00 2137 #endif 2138 2139 #define RETRY_TASK ((void *)-1UL) 2140 2141 struct sched_class { 2142 2143 #ifdef CONFIG_UCLAMP_TASK 2144 int uclamp_enabled; 2145 #endif 2146 2147 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2148 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2149 void (*yield_task) (struct rq *rq); 2150 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2151 2152 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2153 2154 struct task_struct *(*pick_next_task)(struct rq *rq); 2155 2156 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2157 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2158 2159 #ifdef CONFIG_SMP 2160 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2161 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2162 2163 struct task_struct * (*pick_task)(struct rq *rq); 2164 2165 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2166 2167 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2168 2169 void (*set_cpus_allowed)(struct task_struct *p, 2170 const struct cpumask *newmask, 2171 u32 flags); 2172 2173 void (*rq_online)(struct rq *rq); 2174 void (*rq_offline)(struct rq *rq); 2175 2176 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2177 #endif 2178 2179 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2180 void (*task_fork)(struct task_struct *p); 2181 void (*task_dead)(struct task_struct *p); 2182 2183 /* 2184 * The switched_from() call is allowed to drop rq->lock, therefore we 2185 * cannot assume the switched_from/switched_to pair is serialized by 2186 * rq->lock. They are however serialized by p->pi_lock. 2187 */ 2188 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2189 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2190 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2191 int oldprio); 2192 2193 unsigned int (*get_rr_interval)(struct rq *rq, 2194 struct task_struct *task); 2195 2196 void (*update_curr)(struct rq *rq); 2197 2198 #ifdef CONFIG_FAIR_GROUP_SCHED 2199 void (*task_change_group)(struct task_struct *p); 2200 #endif 2201 }; 2202 2203 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2204 { 2205 WARN_ON_ONCE(rq->curr != prev); 2206 prev->sched_class->put_prev_task(rq, prev); 2207 } 2208 2209 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2210 { 2211 next->sched_class->set_next_task(rq, next, false); 2212 } 2213 2214 2215 /* 2216 * Helper to define a sched_class instance; each one is placed in a separate 2217 * section which is ordered by the linker script: 2218 * 2219 * include/asm-generic/vmlinux.lds.h 2220 * 2221 * *CAREFUL* they are laid out in *REVERSE* order!!! 2222 * 2223 * Also enforce alignment on the instance, not the type, to guarantee layout. 2224 */ 2225 #define DEFINE_SCHED_CLASS(name) \ 2226 const struct sched_class name##_sched_class \ 2227 __aligned(__alignof__(struct sched_class)) \ 2228 __section("__" #name "_sched_class") 2229 2230 /* Defined in include/asm-generic/vmlinux.lds.h */ 2231 extern struct sched_class __sched_class_highest[]; 2232 extern struct sched_class __sched_class_lowest[]; 2233 2234 #define for_class_range(class, _from, _to) \ 2235 for (class = (_from); class < (_to); class++) 2236 2237 #define for_each_class(class) \ 2238 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2239 2240 #define sched_class_above(_a, _b) ((_a) < (_b)) 2241 2242 extern const struct sched_class stop_sched_class; 2243 extern const struct sched_class dl_sched_class; 2244 extern const struct sched_class rt_sched_class; 2245 extern const struct sched_class fair_sched_class; 2246 extern const struct sched_class idle_sched_class; 2247 2248 static inline bool sched_stop_runnable(struct rq *rq) 2249 { 2250 return rq->stop && task_on_rq_queued(rq->stop); 2251 } 2252 2253 static inline bool sched_dl_runnable(struct rq *rq) 2254 { 2255 return rq->dl.dl_nr_running > 0; 2256 } 2257 2258 static inline bool sched_rt_runnable(struct rq *rq) 2259 { 2260 return rq->rt.rt_queued > 0; 2261 } 2262 2263 static inline bool sched_fair_runnable(struct rq *rq) 2264 { 2265 return rq->cfs.nr_running > 0; 2266 } 2267 2268 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2269 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2270 2271 #define SCA_CHECK 0x01 2272 #define SCA_MIGRATE_DISABLE 0x02 2273 #define SCA_MIGRATE_ENABLE 0x04 2274 #define SCA_USER 0x08 2275 2276 #ifdef CONFIG_SMP 2277 2278 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2279 2280 extern void trigger_load_balance(struct rq *rq); 2281 2282 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags); 2283 2284 static inline struct task_struct *get_push_task(struct rq *rq) 2285 { 2286 struct task_struct *p = rq->curr; 2287 2288 lockdep_assert_rq_held(rq); 2289 2290 if (rq->push_busy) 2291 return NULL; 2292 2293 if (p->nr_cpus_allowed == 1) 2294 return NULL; 2295 2296 if (p->migration_disabled) 2297 return NULL; 2298 2299 rq->push_busy = true; 2300 return get_task_struct(p); 2301 } 2302 2303 extern int push_cpu_stop(void *arg); 2304 2305 #endif 2306 2307 #ifdef CONFIG_CPU_IDLE 2308 static inline void idle_set_state(struct rq *rq, 2309 struct cpuidle_state *idle_state) 2310 { 2311 rq->idle_state = idle_state; 2312 } 2313 2314 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2315 { 2316 SCHED_WARN_ON(!rcu_read_lock_held()); 2317 2318 return rq->idle_state; 2319 } 2320 #else 2321 static inline void idle_set_state(struct rq *rq, 2322 struct cpuidle_state *idle_state) 2323 { 2324 } 2325 2326 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2327 { 2328 return NULL; 2329 } 2330 #endif 2331 2332 extern void schedule_idle(void); 2333 2334 extern void sysrq_sched_debug_show(void); 2335 extern void sched_init_granularity(void); 2336 extern void update_max_interval(void); 2337 2338 extern void init_sched_dl_class(void); 2339 extern void init_sched_rt_class(void); 2340 extern void init_sched_fair_class(void); 2341 2342 extern void reweight_task(struct task_struct *p, int prio); 2343 2344 extern void resched_curr(struct rq *rq); 2345 extern void resched_cpu(int cpu); 2346 2347 extern struct rt_bandwidth def_rt_bandwidth; 2348 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2349 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2350 2351 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2352 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2353 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2354 2355 #define BW_SHIFT 20 2356 #define BW_UNIT (1 << BW_SHIFT) 2357 #define RATIO_SHIFT 8 2358 #define MAX_BW_BITS (64 - BW_SHIFT) 2359 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2360 unsigned long to_ratio(u64 period, u64 runtime); 2361 2362 extern void init_entity_runnable_average(struct sched_entity *se); 2363 extern void post_init_entity_util_avg(struct task_struct *p); 2364 2365 #ifdef CONFIG_NO_HZ_FULL 2366 extern bool sched_can_stop_tick(struct rq *rq); 2367 extern int __init sched_tick_offload_init(void); 2368 2369 /* 2370 * Tick may be needed by tasks in the runqueue depending on their policy and 2371 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2372 * nohz mode if necessary. 2373 */ 2374 static inline void sched_update_tick_dependency(struct rq *rq) 2375 { 2376 int cpu = cpu_of(rq); 2377 2378 if (!tick_nohz_full_cpu(cpu)) 2379 return; 2380 2381 if (sched_can_stop_tick(rq)) 2382 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2383 else 2384 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2385 } 2386 #else 2387 static inline int sched_tick_offload_init(void) { return 0; } 2388 static inline void sched_update_tick_dependency(struct rq *rq) { } 2389 #endif 2390 2391 static inline void add_nr_running(struct rq *rq, unsigned count) 2392 { 2393 unsigned prev_nr = rq->nr_running; 2394 2395 rq->nr_running = prev_nr + count; 2396 if (trace_sched_update_nr_running_tp_enabled()) { 2397 call_trace_sched_update_nr_running(rq, count); 2398 } 2399 2400 #ifdef CONFIG_SMP 2401 if (prev_nr < 2 && rq->nr_running >= 2) { 2402 if (!READ_ONCE(rq->rd->overload)) 2403 WRITE_ONCE(rq->rd->overload, 1); 2404 } 2405 #endif 2406 2407 sched_update_tick_dependency(rq); 2408 } 2409 2410 static inline void sub_nr_running(struct rq *rq, unsigned count) 2411 { 2412 rq->nr_running -= count; 2413 if (trace_sched_update_nr_running_tp_enabled()) { 2414 call_trace_sched_update_nr_running(rq, -count); 2415 } 2416 2417 /* Check if we still need preemption */ 2418 sched_update_tick_dependency(rq); 2419 } 2420 2421 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2422 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2423 2424 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2425 2426 #ifdef CONFIG_PREEMPT_RT 2427 #define SCHED_NR_MIGRATE_BREAK 8 2428 #else 2429 #define SCHED_NR_MIGRATE_BREAK 32 2430 #endif 2431 2432 extern const_debug unsigned int sysctl_sched_nr_migrate; 2433 extern const_debug unsigned int sysctl_sched_migration_cost; 2434 2435 #ifdef CONFIG_SCHED_DEBUG 2436 extern unsigned int sysctl_sched_latency; 2437 extern unsigned int sysctl_sched_min_granularity; 2438 extern unsigned int sysctl_sched_idle_min_granularity; 2439 extern unsigned int sysctl_sched_wakeup_granularity; 2440 extern int sysctl_resched_latency_warn_ms; 2441 extern int sysctl_resched_latency_warn_once; 2442 2443 extern unsigned int sysctl_sched_tunable_scaling; 2444 2445 extern unsigned int sysctl_numa_balancing_scan_delay; 2446 extern unsigned int sysctl_numa_balancing_scan_period_min; 2447 extern unsigned int sysctl_numa_balancing_scan_period_max; 2448 extern unsigned int sysctl_numa_balancing_scan_size; 2449 extern unsigned int sysctl_numa_balancing_hot_threshold; 2450 #endif 2451 2452 #ifdef CONFIG_SCHED_HRTICK 2453 2454 /* 2455 * Use hrtick when: 2456 * - enabled by features 2457 * - hrtimer is actually high res 2458 */ 2459 static inline int hrtick_enabled(struct rq *rq) 2460 { 2461 if (!cpu_active(cpu_of(rq))) 2462 return 0; 2463 return hrtimer_is_hres_active(&rq->hrtick_timer); 2464 } 2465 2466 static inline int hrtick_enabled_fair(struct rq *rq) 2467 { 2468 if (!sched_feat(HRTICK)) 2469 return 0; 2470 return hrtick_enabled(rq); 2471 } 2472 2473 static inline int hrtick_enabled_dl(struct rq *rq) 2474 { 2475 if (!sched_feat(HRTICK_DL)) 2476 return 0; 2477 return hrtick_enabled(rq); 2478 } 2479 2480 void hrtick_start(struct rq *rq, u64 delay); 2481 2482 #else 2483 2484 static inline int hrtick_enabled_fair(struct rq *rq) 2485 { 2486 return 0; 2487 } 2488 2489 static inline int hrtick_enabled_dl(struct rq *rq) 2490 { 2491 return 0; 2492 } 2493 2494 static inline int hrtick_enabled(struct rq *rq) 2495 { 2496 return 0; 2497 } 2498 2499 #endif /* CONFIG_SCHED_HRTICK */ 2500 2501 #ifndef arch_scale_freq_tick 2502 static __always_inline 2503 void arch_scale_freq_tick(void) 2504 { 2505 } 2506 #endif 2507 2508 #ifndef arch_scale_freq_capacity 2509 /** 2510 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2511 * @cpu: the CPU in question. 2512 * 2513 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2514 * 2515 * f_curr 2516 * ------ * SCHED_CAPACITY_SCALE 2517 * f_max 2518 */ 2519 static __always_inline 2520 unsigned long arch_scale_freq_capacity(int cpu) 2521 { 2522 return SCHED_CAPACITY_SCALE; 2523 } 2524 #endif 2525 2526 #ifdef CONFIG_SCHED_DEBUG 2527 /* 2528 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2529 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2530 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2531 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2532 */ 2533 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2534 { 2535 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2536 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2537 #ifdef CONFIG_SMP 2538 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2539 #endif 2540 } 2541 #else 2542 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2543 #endif 2544 2545 #ifdef CONFIG_SMP 2546 2547 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2548 { 2549 #ifdef CONFIG_SCHED_CORE 2550 /* 2551 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2552 * order by core-id first and cpu-id second. 2553 * 2554 * Notably: 2555 * 2556 * double_rq_lock(0,3); will take core-0, core-1 lock 2557 * double_rq_lock(1,2); will take core-1, core-0 lock 2558 * 2559 * when only cpu-id is considered. 2560 */ 2561 if (rq1->core->cpu < rq2->core->cpu) 2562 return true; 2563 if (rq1->core->cpu > rq2->core->cpu) 2564 return false; 2565 2566 /* 2567 * __sched_core_flip() relies on SMT having cpu-id lock order. 2568 */ 2569 #endif 2570 return rq1->cpu < rq2->cpu; 2571 } 2572 2573 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2574 2575 #ifdef CONFIG_PREEMPTION 2576 2577 /* 2578 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2579 * way at the expense of forcing extra atomic operations in all 2580 * invocations. This assures that the double_lock is acquired using the 2581 * same underlying policy as the spinlock_t on this architecture, which 2582 * reduces latency compared to the unfair variant below. However, it 2583 * also adds more overhead and therefore may reduce throughput. 2584 */ 2585 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2586 __releases(this_rq->lock) 2587 __acquires(busiest->lock) 2588 __acquires(this_rq->lock) 2589 { 2590 raw_spin_rq_unlock(this_rq); 2591 double_rq_lock(this_rq, busiest); 2592 2593 return 1; 2594 } 2595 2596 #else 2597 /* 2598 * Unfair double_lock_balance: Optimizes throughput at the expense of 2599 * latency by eliminating extra atomic operations when the locks are 2600 * already in proper order on entry. This favors lower CPU-ids and will 2601 * grant the double lock to lower CPUs over higher ids under contention, 2602 * regardless of entry order into the function. 2603 */ 2604 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2605 __releases(this_rq->lock) 2606 __acquires(busiest->lock) 2607 __acquires(this_rq->lock) 2608 { 2609 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2610 likely(raw_spin_rq_trylock(busiest))) { 2611 double_rq_clock_clear_update(this_rq, busiest); 2612 return 0; 2613 } 2614 2615 if (rq_order_less(this_rq, busiest)) { 2616 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2617 double_rq_clock_clear_update(this_rq, busiest); 2618 return 0; 2619 } 2620 2621 raw_spin_rq_unlock(this_rq); 2622 double_rq_lock(this_rq, busiest); 2623 2624 return 1; 2625 } 2626 2627 #endif /* CONFIG_PREEMPTION */ 2628 2629 /* 2630 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2631 */ 2632 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2633 { 2634 lockdep_assert_irqs_disabled(); 2635 2636 return _double_lock_balance(this_rq, busiest); 2637 } 2638 2639 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2640 __releases(busiest->lock) 2641 { 2642 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2643 raw_spin_rq_unlock(busiest); 2644 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2645 } 2646 2647 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2648 { 2649 if (l1 > l2) 2650 swap(l1, l2); 2651 2652 spin_lock(l1); 2653 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2654 } 2655 2656 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2657 { 2658 if (l1 > l2) 2659 swap(l1, l2); 2660 2661 spin_lock_irq(l1); 2662 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2663 } 2664 2665 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2666 { 2667 if (l1 > l2) 2668 swap(l1, l2); 2669 2670 raw_spin_lock(l1); 2671 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2672 } 2673 2674 /* 2675 * double_rq_unlock - safely unlock two runqueues 2676 * 2677 * Note this does not restore interrupts like task_rq_unlock, 2678 * you need to do so manually after calling. 2679 */ 2680 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2681 __releases(rq1->lock) 2682 __releases(rq2->lock) 2683 { 2684 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2685 raw_spin_rq_unlock(rq2); 2686 else 2687 __release(rq2->lock); 2688 raw_spin_rq_unlock(rq1); 2689 } 2690 2691 extern void set_rq_online (struct rq *rq); 2692 extern void set_rq_offline(struct rq *rq); 2693 extern bool sched_smp_initialized; 2694 2695 #else /* CONFIG_SMP */ 2696 2697 /* 2698 * double_rq_lock - safely lock two runqueues 2699 * 2700 * Note this does not disable interrupts like task_rq_lock, 2701 * you need to do so manually before calling. 2702 */ 2703 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2704 __acquires(rq1->lock) 2705 __acquires(rq2->lock) 2706 { 2707 WARN_ON_ONCE(!irqs_disabled()); 2708 WARN_ON_ONCE(rq1 != rq2); 2709 raw_spin_rq_lock(rq1); 2710 __acquire(rq2->lock); /* Fake it out ;) */ 2711 double_rq_clock_clear_update(rq1, rq2); 2712 } 2713 2714 /* 2715 * double_rq_unlock - safely unlock two runqueues 2716 * 2717 * Note this does not restore interrupts like task_rq_unlock, 2718 * you need to do so manually after calling. 2719 */ 2720 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2721 __releases(rq1->lock) 2722 __releases(rq2->lock) 2723 { 2724 WARN_ON_ONCE(rq1 != rq2); 2725 raw_spin_rq_unlock(rq1); 2726 __release(rq2->lock); 2727 } 2728 2729 #endif 2730 2731 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2732 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2733 2734 #ifdef CONFIG_SCHED_DEBUG 2735 extern bool sched_debug_verbose; 2736 2737 extern void print_cfs_stats(struct seq_file *m, int cpu); 2738 extern void print_rt_stats(struct seq_file *m, int cpu); 2739 extern void print_dl_stats(struct seq_file *m, int cpu); 2740 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2741 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2742 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2743 2744 extern void resched_latency_warn(int cpu, u64 latency); 2745 #ifdef CONFIG_NUMA_BALANCING 2746 extern void 2747 show_numa_stats(struct task_struct *p, struct seq_file *m); 2748 extern void 2749 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2750 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2751 #endif /* CONFIG_NUMA_BALANCING */ 2752 #else 2753 static inline void resched_latency_warn(int cpu, u64 latency) {} 2754 #endif /* CONFIG_SCHED_DEBUG */ 2755 2756 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2757 extern void init_rt_rq(struct rt_rq *rt_rq); 2758 extern void init_dl_rq(struct dl_rq *dl_rq); 2759 2760 extern void cfs_bandwidth_usage_inc(void); 2761 extern void cfs_bandwidth_usage_dec(void); 2762 2763 #ifdef CONFIG_NO_HZ_COMMON 2764 #define NOHZ_BALANCE_KICK_BIT 0 2765 #define NOHZ_STATS_KICK_BIT 1 2766 #define NOHZ_NEWILB_KICK_BIT 2 2767 #define NOHZ_NEXT_KICK_BIT 3 2768 2769 /* Run rebalance_domains() */ 2770 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2771 /* Update blocked load */ 2772 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2773 /* Update blocked load when entering idle */ 2774 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2775 /* Update nohz.next_balance */ 2776 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2777 2778 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2779 2780 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2781 2782 extern void nohz_balance_exit_idle(struct rq *rq); 2783 #else 2784 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2785 #endif 2786 2787 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2788 extern void nohz_run_idle_balance(int cpu); 2789 #else 2790 static inline void nohz_run_idle_balance(int cpu) { } 2791 #endif 2792 2793 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2794 struct irqtime { 2795 u64 total; 2796 u64 tick_delta; 2797 u64 irq_start_time; 2798 struct u64_stats_sync sync; 2799 }; 2800 2801 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2802 2803 /* 2804 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2805 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2806 * and never move forward. 2807 */ 2808 static inline u64 irq_time_read(int cpu) 2809 { 2810 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2811 unsigned int seq; 2812 u64 total; 2813 2814 do { 2815 seq = __u64_stats_fetch_begin(&irqtime->sync); 2816 total = irqtime->total; 2817 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2818 2819 return total; 2820 } 2821 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2822 2823 #ifdef CONFIG_CPU_FREQ 2824 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2825 2826 /** 2827 * cpufreq_update_util - Take a note about CPU utilization changes. 2828 * @rq: Runqueue to carry out the update for. 2829 * @flags: Update reason flags. 2830 * 2831 * This function is called by the scheduler on the CPU whose utilization is 2832 * being updated. 2833 * 2834 * It can only be called from RCU-sched read-side critical sections. 2835 * 2836 * The way cpufreq is currently arranged requires it to evaluate the CPU 2837 * performance state (frequency/voltage) on a regular basis to prevent it from 2838 * being stuck in a completely inadequate performance level for too long. 2839 * That is not guaranteed to happen if the updates are only triggered from CFS 2840 * and DL, though, because they may not be coming in if only RT tasks are 2841 * active all the time (or there are RT tasks only). 2842 * 2843 * As a workaround for that issue, this function is called periodically by the 2844 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2845 * but that really is a band-aid. Going forward it should be replaced with 2846 * solutions targeted more specifically at RT tasks. 2847 */ 2848 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2849 { 2850 struct update_util_data *data; 2851 2852 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2853 cpu_of(rq))); 2854 if (data) 2855 data->func(data, rq_clock(rq), flags); 2856 } 2857 #else 2858 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2859 #endif /* CONFIG_CPU_FREQ */ 2860 2861 #ifdef arch_scale_freq_capacity 2862 # ifndef arch_scale_freq_invariant 2863 # define arch_scale_freq_invariant() true 2864 # endif 2865 #else 2866 # define arch_scale_freq_invariant() false 2867 #endif 2868 2869 #ifdef CONFIG_SMP 2870 static inline unsigned long capacity_orig_of(int cpu) 2871 { 2872 return cpu_rq(cpu)->cpu_capacity_orig; 2873 } 2874 2875 /** 2876 * enum cpu_util_type - CPU utilization type 2877 * @FREQUENCY_UTIL: Utilization used to select frequency 2878 * @ENERGY_UTIL: Utilization used during energy calculation 2879 * 2880 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2881 * need to be aggregated differently depending on the usage made of them. This 2882 * enum is used within effective_cpu_util() to differentiate the types of 2883 * utilization expected by the callers, and adjust the aggregation accordingly. 2884 */ 2885 enum cpu_util_type { 2886 FREQUENCY_UTIL, 2887 ENERGY_UTIL, 2888 }; 2889 2890 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2891 enum cpu_util_type type, 2892 struct task_struct *p); 2893 2894 /* 2895 * Verify the fitness of task @p to run on @cpu taking into account the 2896 * CPU original capacity and the runtime/deadline ratio of the task. 2897 * 2898 * The function will return true if the original capacity of @cpu is 2899 * greater than or equal to task's deadline density right shifted by 2900 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 2901 */ 2902 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 2903 { 2904 unsigned long cap = arch_scale_cpu_capacity(cpu); 2905 2906 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 2907 } 2908 2909 static inline unsigned long cpu_bw_dl(struct rq *rq) 2910 { 2911 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2912 } 2913 2914 static inline unsigned long cpu_util_dl(struct rq *rq) 2915 { 2916 return READ_ONCE(rq->avg_dl.util_avg); 2917 } 2918 2919 /** 2920 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2921 * @cpu: the CPU to get the utilization for. 2922 * 2923 * The unit of the return value must be the same as the one of CPU capacity 2924 * so that CPU utilization can be compared with CPU capacity. 2925 * 2926 * CPU utilization is the sum of running time of runnable tasks plus the 2927 * recent utilization of currently non-runnable tasks on that CPU. 2928 * It represents the amount of CPU capacity currently used by CFS tasks in 2929 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2930 * capacity at f_max. 2931 * 2932 * The estimated CPU utilization is defined as the maximum between CPU 2933 * utilization and sum of the estimated utilization of the currently 2934 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2935 * previously-executed tasks, which helps better deduce how busy a CPU will 2936 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2937 * of such a task would be significantly decayed at this point of time. 2938 * 2939 * CPU utilization can be higher than the current CPU capacity 2940 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2941 * of rounding errors as well as task migrations or wakeups of new tasks. 2942 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2943 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2944 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2945 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2946 * though since this is useful for predicting the CPU capacity required 2947 * after task migrations (scheduler-driven DVFS). 2948 * 2949 * Return: (Estimated) utilization for the specified CPU. 2950 */ 2951 static inline unsigned long cpu_util_cfs(int cpu) 2952 { 2953 struct cfs_rq *cfs_rq; 2954 unsigned long util; 2955 2956 cfs_rq = &cpu_rq(cpu)->cfs; 2957 util = READ_ONCE(cfs_rq->avg.util_avg); 2958 2959 if (sched_feat(UTIL_EST)) { 2960 util = max_t(unsigned long, util, 2961 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 2962 } 2963 2964 return min(util, capacity_orig_of(cpu)); 2965 } 2966 2967 static inline unsigned long cpu_util_rt(struct rq *rq) 2968 { 2969 return READ_ONCE(rq->avg_rt.util_avg); 2970 } 2971 #endif 2972 2973 #ifdef CONFIG_UCLAMP_TASK 2974 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 2975 2976 /** 2977 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 2978 * @rq: The rq to clamp against. Must not be NULL. 2979 * @util: The util value to clamp. 2980 * @p: The task to clamp against. Can be NULL if you want to clamp 2981 * against @rq only. 2982 * 2983 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 2984 * 2985 * If sched_uclamp_used static key is disabled, then just return the util 2986 * without any clamping since uclamp aggregation at the rq level in the fast 2987 * path is disabled, rendering this operation a NOP. 2988 * 2989 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 2990 * will return the correct effective uclamp value of the task even if the 2991 * static key is disabled. 2992 */ 2993 static __always_inline 2994 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 2995 struct task_struct *p) 2996 { 2997 unsigned long min_util = 0; 2998 unsigned long max_util = 0; 2999 3000 if (!static_branch_likely(&sched_uclamp_used)) 3001 return util; 3002 3003 if (p) { 3004 min_util = uclamp_eff_value(p, UCLAMP_MIN); 3005 max_util = uclamp_eff_value(p, UCLAMP_MAX); 3006 3007 /* 3008 * Ignore last runnable task's max clamp, as this task will 3009 * reset it. Similarly, no need to read the rq's min clamp. 3010 */ 3011 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 3012 goto out; 3013 } 3014 3015 min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value)); 3016 max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value)); 3017 out: 3018 /* 3019 * Since CPU's {min,max}_util clamps are MAX aggregated considering 3020 * RUNNABLE tasks with _different_ clamps, we can end up with an 3021 * inversion. Fix it now when the clamps are applied. 3022 */ 3023 if (unlikely(min_util >= max_util)) 3024 return min_util; 3025 3026 return clamp(util, min_util, max_util); 3027 } 3028 3029 /* Is the rq being capped/throttled by uclamp_max? */ 3030 static inline bool uclamp_rq_is_capped(struct rq *rq) 3031 { 3032 unsigned long rq_util; 3033 unsigned long max_util; 3034 3035 if (!static_branch_likely(&sched_uclamp_used)) 3036 return false; 3037 3038 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3039 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3040 3041 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3042 } 3043 3044 /* 3045 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3046 * by default in the fast path and only gets turned on once userspace performs 3047 * an operation that requires it. 3048 * 3049 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3050 * hence is active. 3051 */ 3052 static inline bool uclamp_is_used(void) 3053 { 3054 return static_branch_likely(&sched_uclamp_used); 3055 } 3056 #else /* CONFIG_UCLAMP_TASK */ 3057 static inline 3058 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3059 struct task_struct *p) 3060 { 3061 return util; 3062 } 3063 3064 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3065 3066 static inline bool uclamp_is_used(void) 3067 { 3068 return false; 3069 } 3070 #endif /* CONFIG_UCLAMP_TASK */ 3071 3072 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3073 static inline unsigned long cpu_util_irq(struct rq *rq) 3074 { 3075 return rq->avg_irq.util_avg; 3076 } 3077 3078 static inline 3079 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3080 { 3081 util *= (max - irq); 3082 util /= max; 3083 3084 return util; 3085 3086 } 3087 #else 3088 static inline unsigned long cpu_util_irq(struct rq *rq) 3089 { 3090 return 0; 3091 } 3092 3093 static inline 3094 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3095 { 3096 return util; 3097 } 3098 #endif 3099 3100 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3101 3102 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3103 3104 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3105 3106 static inline bool sched_energy_enabled(void) 3107 { 3108 return static_branch_unlikely(&sched_energy_present); 3109 } 3110 3111 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3112 3113 #define perf_domain_span(pd) NULL 3114 static inline bool sched_energy_enabled(void) { return false; } 3115 3116 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3117 3118 #ifdef CONFIG_MEMBARRIER 3119 /* 3120 * The scheduler provides memory barriers required by membarrier between: 3121 * - prior user-space memory accesses and store to rq->membarrier_state, 3122 * - store to rq->membarrier_state and following user-space memory accesses. 3123 * In the same way it provides those guarantees around store to rq->curr. 3124 */ 3125 static inline void membarrier_switch_mm(struct rq *rq, 3126 struct mm_struct *prev_mm, 3127 struct mm_struct *next_mm) 3128 { 3129 int membarrier_state; 3130 3131 if (prev_mm == next_mm) 3132 return; 3133 3134 membarrier_state = atomic_read(&next_mm->membarrier_state); 3135 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3136 return; 3137 3138 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3139 } 3140 #else 3141 static inline void membarrier_switch_mm(struct rq *rq, 3142 struct mm_struct *prev_mm, 3143 struct mm_struct *next_mm) 3144 { 3145 } 3146 #endif 3147 3148 #ifdef CONFIG_SMP 3149 static inline bool is_per_cpu_kthread(struct task_struct *p) 3150 { 3151 if (!(p->flags & PF_KTHREAD)) 3152 return false; 3153 3154 if (p->nr_cpus_allowed != 1) 3155 return false; 3156 3157 return true; 3158 } 3159 #endif 3160 3161 extern void swake_up_all_locked(struct swait_queue_head *q); 3162 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3163 3164 #ifdef CONFIG_PREEMPT_DYNAMIC 3165 extern int preempt_dynamic_mode; 3166 extern int sched_dynamic_mode(const char *str); 3167 extern void sched_dynamic_update(int mode); 3168 #endif 3169 3170 static inline void update_current_exec_runtime(struct task_struct *curr, 3171 u64 now, u64 delta_exec) 3172 { 3173 curr->se.sum_exec_runtime += delta_exec; 3174 account_group_exec_runtime(curr, delta_exec); 3175 3176 curr->se.exec_start = now; 3177 cgroup_account_cputime(curr, delta_exec); 3178 } 3179 3180 #endif /* _KERNEL_SCHED_SCHED_H */ 3181