1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 73 #include <trace/events/power.h> 74 #include <trace/events/sched.h> 75 76 #include "../workqueue_internal.h" 77 78 struct rq; 79 struct cfs_rq; 80 struct rt_rq; 81 struct sched_group; 82 struct cpuidle_state; 83 84 #ifdef CONFIG_PARAVIRT 85 # include <asm/paravirt.h> 86 # include <asm/paravirt_api_clock.h> 87 #endif 88 89 #include <asm/barrier.h> 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 /* task_struct::on_rq states: */ 101 #define TASK_ON_RQ_QUEUED 1 102 #define TASK_ON_RQ_MIGRATING 2 103 104 extern __read_mostly int scheduler_running; 105 106 extern unsigned long calc_load_update; 107 extern atomic_long_t calc_load_tasks; 108 109 extern void calc_global_load_tick(struct rq *this_rq); 110 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 111 112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 113 114 extern int sysctl_sched_rt_period; 115 extern int sysctl_sched_rt_runtime; 116 extern int sched_rr_timeslice; 117 118 /* 119 * Asymmetric CPU capacity bits 120 */ 121 struct asym_cap_data { 122 struct list_head link; 123 struct rcu_head rcu; 124 unsigned long capacity; 125 unsigned long cpus[]; 126 }; 127 128 extern struct list_head asym_cap_list; 129 130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 131 132 /* 133 * Helpers for converting nanosecond timing to jiffy resolution 134 */ 135 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 136 137 /* 138 * Increase resolution of nice-level calculations for 64-bit architectures. 139 * The extra resolution improves shares distribution and load balancing of 140 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 141 * hierarchies, especially on larger systems. This is not a user-visible change 142 * and does not change the user-interface for setting shares/weights. 143 * 144 * We increase resolution only if we have enough bits to allow this increased 145 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 146 * are pretty high and the returns do not justify the increased costs. 147 * 148 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 149 * increase coverage and consistency always enable it on 64-bit platforms. 150 */ 151 #ifdef CONFIG_64BIT 152 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 153 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load_down(w) \ 155 ({ \ 156 unsigned long __w = (w); \ 157 \ 158 if (__w) \ 159 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 160 __w; \ 161 }) 162 #else 163 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 164 # define scale_load(w) (w) 165 # define scale_load_down(w) (w) 166 #endif 167 168 /* 169 * Task weight (visible to users) and its load (invisible to users) have 170 * independent resolution, but they should be well calibrated. We use 171 * scale_load() and scale_load_down(w) to convert between them. The 172 * following must be true: 173 * 174 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 175 * 176 */ 177 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 178 179 /* 180 * Single value that decides SCHED_DEADLINE internal math precision. 181 * 10 -> just above 1us 182 * 9 -> just above 0.5us 183 */ 184 #define DL_SCALE 10 185 186 /* 187 * Single value that denotes runtime == period, ie unlimited time. 188 */ 189 #define RUNTIME_INF ((u64)~0ULL) 190 191 static inline int idle_policy(int policy) 192 { 193 return policy == SCHED_IDLE; 194 } 195 196 static inline int normal_policy(int policy) 197 { 198 #ifdef CONFIG_SCHED_CLASS_EXT 199 if (policy == SCHED_EXT) 200 return true; 201 #endif 202 return policy == SCHED_NORMAL; 203 } 204 205 static inline int fair_policy(int policy) 206 { 207 return normal_policy(policy) || policy == SCHED_BATCH; 208 } 209 210 static inline int rt_policy(int policy) 211 { 212 return policy == SCHED_FIFO || policy == SCHED_RR; 213 } 214 215 static inline int dl_policy(int policy) 216 { 217 return policy == SCHED_DEADLINE; 218 } 219 220 static inline bool valid_policy(int policy) 221 { 222 return idle_policy(policy) || fair_policy(policy) || 223 rt_policy(policy) || dl_policy(policy); 224 } 225 226 static inline int task_has_idle_policy(struct task_struct *p) 227 { 228 return idle_policy(p->policy); 229 } 230 231 static inline int task_has_rt_policy(struct task_struct *p) 232 { 233 return rt_policy(p->policy); 234 } 235 236 static inline int task_has_dl_policy(struct task_struct *p) 237 { 238 return dl_policy(p->policy); 239 } 240 241 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 242 243 static inline void update_avg(u64 *avg, u64 sample) 244 { 245 s64 diff = sample - *avg; 246 247 *avg += diff / 8; 248 } 249 250 /* 251 * Shifting a value by an exponent greater *or equal* to the size of said value 252 * is UB; cap at size-1. 253 */ 254 #define shr_bound(val, shift) \ 255 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 256 257 /* 258 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 259 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 260 * maps pretty well onto the shares value used by scheduler and the round-trip 261 * conversions preserve the original value over the entire range. 262 */ 263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 264 { 265 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 266 } 267 268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 269 { 270 return clamp_t(unsigned long, 271 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 272 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 273 } 274 275 /* 276 * !! For sched_setattr_nocheck() (kernel) only !! 277 * 278 * This is actually gross. :( 279 * 280 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 281 * tasks, but still be able to sleep. We need this on platforms that cannot 282 * atomically change clock frequency. Remove once fast switching will be 283 * available on such platforms. 284 * 285 * SUGOV stands for SchedUtil GOVernor. 286 */ 287 #define SCHED_FLAG_SUGOV 0x10000000 288 289 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 290 291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 292 { 293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 294 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 295 #else 296 return false; 297 #endif 298 } 299 300 /* 301 * Tells if entity @a should preempt entity @b. 302 */ 303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 304 const struct sched_dl_entity *b) 305 { 306 return dl_entity_is_special(a) || 307 dl_time_before(a->deadline, b->deadline); 308 } 309 310 /* 311 * This is the priority-queue data structure of the RT scheduling class: 312 */ 313 struct rt_prio_array { 314 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 315 struct list_head queue[MAX_RT_PRIO]; 316 }; 317 318 struct rt_bandwidth { 319 /* nests inside the rq lock: */ 320 raw_spinlock_t rt_runtime_lock; 321 ktime_t rt_period; 322 u64 rt_runtime; 323 struct hrtimer rt_period_timer; 324 unsigned int rt_period_active; 325 }; 326 327 static inline int dl_bandwidth_enabled(void) 328 { 329 return sysctl_sched_rt_runtime >= 0; 330 } 331 332 /* 333 * To keep the bandwidth of -deadline tasks under control 334 * we need some place where: 335 * - store the maximum -deadline bandwidth of each cpu; 336 * - cache the fraction of bandwidth that is currently allocated in 337 * each root domain; 338 * 339 * This is all done in the data structure below. It is similar to the 340 * one used for RT-throttling (rt_bandwidth), with the main difference 341 * that, since here we are only interested in admission control, we 342 * do not decrease any runtime while the group "executes", neither we 343 * need a timer to replenish it. 344 * 345 * With respect to SMP, bandwidth is given on a per root domain basis, 346 * meaning that: 347 * - bw (< 100%) is the deadline bandwidth of each CPU; 348 * - total_bw is the currently allocated bandwidth in each root domain; 349 */ 350 struct dl_bw { 351 raw_spinlock_t lock; 352 u64 bw; 353 u64 total_bw; 354 }; 355 356 extern void init_dl_bw(struct dl_bw *dl_b); 357 extern int sched_dl_global_validate(void); 358 extern void sched_dl_do_global(void); 359 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 362 extern bool __checkparam_dl(const struct sched_attr *attr); 363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 364 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 365 extern int dl_bw_check_overflow(int cpu); 366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 367 /* 368 * SCHED_DEADLINE supports servers (nested scheduling) with the following 369 * interface: 370 * 371 * dl_se::rq -- runqueue we belong to. 372 * 373 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 374 * server when it runs out of tasks to run. 375 * 376 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 377 * returns NULL. 378 * 379 * dl_server_update() -- called from update_curr_common(), propagates runtime 380 * to the server. 381 * 382 * dl_server_start() 383 * dl_server_stop() -- start/stop the server when it has (no) tasks. 384 * 385 * dl_server_init() -- initializes the server. 386 */ 387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 388 extern void dl_server_start(struct sched_dl_entity *dl_se); 389 extern void dl_server_stop(struct sched_dl_entity *dl_se); 390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 391 dl_server_has_tasks_f has_tasks, 392 dl_server_pick_f pick_task); 393 394 extern void dl_server_update_idle_time(struct rq *rq, 395 struct task_struct *p); 396 extern void fair_server_init(struct rq *rq); 397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 399 u64 runtime, u64 period, bool init); 400 401 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 402 { 403 return dl_se->dl_server_active; 404 } 405 406 #ifdef CONFIG_CGROUP_SCHED 407 408 extern struct list_head task_groups; 409 410 struct cfs_bandwidth { 411 #ifdef CONFIG_CFS_BANDWIDTH 412 raw_spinlock_t lock; 413 ktime_t period; 414 u64 quota; 415 u64 runtime; 416 u64 burst; 417 u64 runtime_snap; 418 s64 hierarchical_quota; 419 420 u8 idle; 421 u8 period_active; 422 u8 slack_started; 423 struct hrtimer period_timer; 424 struct hrtimer slack_timer; 425 struct list_head throttled_cfs_rq; 426 427 /* Statistics: */ 428 int nr_periods; 429 int nr_throttled; 430 int nr_burst; 431 u64 throttled_time; 432 u64 burst_time; 433 #endif 434 }; 435 436 /* Task group related information */ 437 struct task_group { 438 struct cgroup_subsys_state css; 439 440 #ifdef CONFIG_GROUP_SCHED_WEIGHT 441 /* A positive value indicates that this is a SCHED_IDLE group. */ 442 int idle; 443 #endif 444 445 #ifdef CONFIG_FAIR_GROUP_SCHED 446 /* schedulable entities of this group on each CPU */ 447 struct sched_entity **se; 448 /* runqueue "owned" by this group on each CPU */ 449 struct cfs_rq **cfs_rq; 450 unsigned long shares; 451 #ifdef CONFIG_SMP 452 /* 453 * load_avg can be heavily contended at clock tick time, so put 454 * it in its own cache-line separated from the fields above which 455 * will also be accessed at each tick. 456 */ 457 atomic_long_t load_avg ____cacheline_aligned; 458 #endif 459 #endif 460 461 #ifdef CONFIG_RT_GROUP_SCHED 462 struct sched_rt_entity **rt_se; 463 struct rt_rq **rt_rq; 464 465 struct rt_bandwidth rt_bandwidth; 466 #endif 467 468 #ifdef CONFIG_EXT_GROUP_SCHED 469 u32 scx_flags; /* SCX_TG_* */ 470 u32 scx_weight; 471 #endif 472 473 struct rcu_head rcu; 474 struct list_head list; 475 476 struct task_group *parent; 477 struct list_head siblings; 478 struct list_head children; 479 480 #ifdef CONFIG_SCHED_AUTOGROUP 481 struct autogroup *autogroup; 482 #endif 483 484 struct cfs_bandwidth cfs_bandwidth; 485 486 #ifdef CONFIG_UCLAMP_TASK_GROUP 487 /* The two decimal precision [%] value requested from user-space */ 488 unsigned int uclamp_pct[UCLAMP_CNT]; 489 /* Clamp values requested for a task group */ 490 struct uclamp_se uclamp_req[UCLAMP_CNT]; 491 /* Effective clamp values used for a task group */ 492 struct uclamp_se uclamp[UCLAMP_CNT]; 493 #endif 494 495 }; 496 497 #ifdef CONFIG_GROUP_SCHED_WEIGHT 498 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 499 500 /* 501 * A weight of 0 or 1 can cause arithmetics problems. 502 * A weight of a cfs_rq is the sum of weights of which entities 503 * are queued on this cfs_rq, so a weight of a entity should not be 504 * too large, so as the shares value of a task group. 505 * (The default weight is 1024 - so there's no practical 506 * limitation from this.) 507 */ 508 #define MIN_SHARES (1UL << 1) 509 #define MAX_SHARES (1UL << 18) 510 #endif 511 512 typedef int (*tg_visitor)(struct task_group *, void *); 513 514 extern int walk_tg_tree_from(struct task_group *from, 515 tg_visitor down, tg_visitor up, void *data); 516 517 /* 518 * Iterate the full tree, calling @down when first entering a node and @up when 519 * leaving it for the final time. 520 * 521 * Caller must hold rcu_lock or sufficient equivalent. 522 */ 523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 524 { 525 return walk_tg_tree_from(&root_task_group, down, up, data); 526 } 527 528 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 529 { 530 return css ? container_of(css, struct task_group, css) : NULL; 531 } 532 533 extern int tg_nop(struct task_group *tg, void *data); 534 535 #ifdef CONFIG_FAIR_GROUP_SCHED 536 extern void free_fair_sched_group(struct task_group *tg); 537 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 538 extern void online_fair_sched_group(struct task_group *tg); 539 extern void unregister_fair_sched_group(struct task_group *tg); 540 #else 541 static inline void free_fair_sched_group(struct task_group *tg) { } 542 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 543 { 544 return 1; 545 } 546 static inline void online_fair_sched_group(struct task_group *tg) { } 547 static inline void unregister_fair_sched_group(struct task_group *tg) { } 548 #endif 549 550 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 551 struct sched_entity *se, int cpu, 552 struct sched_entity *parent); 553 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 554 555 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 556 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 557 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 558 extern bool cfs_task_bw_constrained(struct task_struct *p); 559 560 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 561 struct sched_rt_entity *rt_se, int cpu, 562 struct sched_rt_entity *parent); 563 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 564 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 565 extern long sched_group_rt_runtime(struct task_group *tg); 566 extern long sched_group_rt_period(struct task_group *tg); 567 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 568 569 extern struct task_group *sched_create_group(struct task_group *parent); 570 extern void sched_online_group(struct task_group *tg, 571 struct task_group *parent); 572 extern void sched_destroy_group(struct task_group *tg); 573 extern void sched_release_group(struct task_group *tg); 574 575 extern void sched_move_task(struct task_struct *tsk); 576 577 #ifdef CONFIG_FAIR_GROUP_SCHED 578 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 579 580 extern int sched_group_set_idle(struct task_group *tg, long idle); 581 582 #ifdef CONFIG_SMP 583 extern void set_task_rq_fair(struct sched_entity *se, 584 struct cfs_rq *prev, struct cfs_rq *next); 585 #else /* !CONFIG_SMP */ 586 static inline void set_task_rq_fair(struct sched_entity *se, 587 struct cfs_rq *prev, struct cfs_rq *next) { } 588 #endif /* CONFIG_SMP */ 589 #else /* !CONFIG_FAIR_GROUP_SCHED */ 590 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 591 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 592 #endif /* CONFIG_FAIR_GROUP_SCHED */ 593 594 #else /* CONFIG_CGROUP_SCHED */ 595 596 struct cfs_bandwidth { }; 597 598 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 599 600 #endif /* CONFIG_CGROUP_SCHED */ 601 602 extern void unregister_rt_sched_group(struct task_group *tg); 603 extern void free_rt_sched_group(struct task_group *tg); 604 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 605 606 /* 607 * u64_u32_load/u64_u32_store 608 * 609 * Use a copy of a u64 value to protect against data race. This is only 610 * applicable for 32-bits architectures. 611 */ 612 #ifdef CONFIG_64BIT 613 # define u64_u32_load_copy(var, copy) var 614 # define u64_u32_store_copy(var, copy, val) (var = val) 615 #else 616 # define u64_u32_load_copy(var, copy) \ 617 ({ \ 618 u64 __val, __val_copy; \ 619 do { \ 620 __val_copy = copy; \ 621 /* \ 622 * paired with u64_u32_store_copy(), ordering access \ 623 * to var and copy. \ 624 */ \ 625 smp_rmb(); \ 626 __val = var; \ 627 } while (__val != __val_copy); \ 628 __val; \ 629 }) 630 # define u64_u32_store_copy(var, copy, val) \ 631 do { \ 632 typeof(val) __val = (val); \ 633 var = __val; \ 634 /* \ 635 * paired with u64_u32_load_copy(), ordering access to var and \ 636 * copy. \ 637 */ \ 638 smp_wmb(); \ 639 copy = __val; \ 640 } while (0) 641 #endif 642 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 643 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 644 645 struct balance_callback { 646 struct balance_callback *next; 647 void (*func)(struct rq *rq); 648 }; 649 650 /* CFS-related fields in a runqueue */ 651 struct cfs_rq { 652 struct load_weight load; 653 unsigned int nr_running; 654 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 655 unsigned int idle_nr_running; /* SCHED_IDLE */ 656 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 657 unsigned int h_nr_delayed; 658 659 s64 avg_vruntime; 660 u64 avg_load; 661 662 u64 min_vruntime; 663 #ifdef CONFIG_SCHED_CORE 664 unsigned int forceidle_seq; 665 u64 min_vruntime_fi; 666 #endif 667 668 struct rb_root_cached tasks_timeline; 669 670 /* 671 * 'curr' points to currently running entity on this cfs_rq. 672 * It is set to NULL otherwise (i.e when none are currently running). 673 */ 674 struct sched_entity *curr; 675 struct sched_entity *next; 676 677 #ifdef CONFIG_SMP 678 /* 679 * CFS load tracking 680 */ 681 struct sched_avg avg; 682 #ifndef CONFIG_64BIT 683 u64 last_update_time_copy; 684 #endif 685 struct { 686 raw_spinlock_t lock ____cacheline_aligned; 687 int nr; 688 unsigned long load_avg; 689 unsigned long util_avg; 690 unsigned long runnable_avg; 691 } removed; 692 693 #ifdef CONFIG_FAIR_GROUP_SCHED 694 u64 last_update_tg_load_avg; 695 unsigned long tg_load_avg_contrib; 696 long propagate; 697 long prop_runnable_sum; 698 699 /* 700 * h_load = weight * f(tg) 701 * 702 * Where f(tg) is the recursive weight fraction assigned to 703 * this group. 704 */ 705 unsigned long h_load; 706 u64 last_h_load_update; 707 struct sched_entity *h_load_next; 708 #endif /* CONFIG_FAIR_GROUP_SCHED */ 709 #endif /* CONFIG_SMP */ 710 711 #ifdef CONFIG_FAIR_GROUP_SCHED 712 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 713 714 /* 715 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 716 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 717 * (like users, containers etc.) 718 * 719 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 720 * This list is used during load balance. 721 */ 722 int on_list; 723 struct list_head leaf_cfs_rq_list; 724 struct task_group *tg; /* group that "owns" this runqueue */ 725 726 /* Locally cached copy of our task_group's idle value */ 727 int idle; 728 729 #ifdef CONFIG_CFS_BANDWIDTH 730 int runtime_enabled; 731 s64 runtime_remaining; 732 733 u64 throttled_pelt_idle; 734 #ifndef CONFIG_64BIT 735 u64 throttled_pelt_idle_copy; 736 #endif 737 u64 throttled_clock; 738 u64 throttled_clock_pelt; 739 u64 throttled_clock_pelt_time; 740 u64 throttled_clock_self; 741 u64 throttled_clock_self_time; 742 int throttled; 743 int throttle_count; 744 struct list_head throttled_list; 745 struct list_head throttled_csd_list; 746 #endif /* CONFIG_CFS_BANDWIDTH */ 747 #endif /* CONFIG_FAIR_GROUP_SCHED */ 748 }; 749 750 #ifdef CONFIG_SCHED_CLASS_EXT 751 /* scx_rq->flags, protected by the rq lock */ 752 enum scx_rq_flags { 753 /* 754 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 755 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 756 * only while the BPF scheduler considers the CPU to be online. 757 */ 758 SCX_RQ_ONLINE = 1 << 0, 759 SCX_RQ_CAN_STOP_TICK = 1 << 1, 760 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 761 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 762 SCX_RQ_BYPASSING = 1 << 4, 763 764 SCX_RQ_IN_WAKEUP = 1 << 16, 765 SCX_RQ_IN_BALANCE = 1 << 17, 766 }; 767 768 struct scx_rq { 769 struct scx_dispatch_q local_dsq; 770 struct list_head runnable_list; /* runnable tasks on this rq */ 771 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 772 unsigned long ops_qseq; 773 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 774 u32 nr_running; 775 u32 flags; 776 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 777 bool cpu_released; 778 cpumask_var_t cpus_to_kick; 779 cpumask_var_t cpus_to_kick_if_idle; 780 cpumask_var_t cpus_to_preempt; 781 cpumask_var_t cpus_to_wait; 782 unsigned long pnt_seq; 783 struct balance_callback deferred_bal_cb; 784 struct irq_work deferred_irq_work; 785 struct irq_work kick_cpus_irq_work; 786 }; 787 #endif /* CONFIG_SCHED_CLASS_EXT */ 788 789 static inline int rt_bandwidth_enabled(void) 790 { 791 return sysctl_sched_rt_runtime >= 0; 792 } 793 794 /* RT IPI pull logic requires IRQ_WORK */ 795 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 796 # define HAVE_RT_PUSH_IPI 797 #endif 798 799 /* Real-Time classes' related field in a runqueue: */ 800 struct rt_rq { 801 struct rt_prio_array active; 802 unsigned int rt_nr_running; 803 unsigned int rr_nr_running; 804 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 805 struct { 806 int curr; /* highest queued rt task prio */ 807 #ifdef CONFIG_SMP 808 int next; /* next highest */ 809 #endif 810 } highest_prio; 811 #endif 812 #ifdef CONFIG_SMP 813 bool overloaded; 814 struct plist_head pushable_tasks; 815 816 #endif /* CONFIG_SMP */ 817 int rt_queued; 818 819 #ifdef CONFIG_RT_GROUP_SCHED 820 int rt_throttled; 821 u64 rt_time; 822 u64 rt_runtime; 823 /* Nests inside the rq lock: */ 824 raw_spinlock_t rt_runtime_lock; 825 826 unsigned int rt_nr_boosted; 827 828 struct rq *rq; 829 struct task_group *tg; 830 #endif 831 }; 832 833 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 834 { 835 return rt_rq->rt_queued && rt_rq->rt_nr_running; 836 } 837 838 /* Deadline class' related fields in a runqueue */ 839 struct dl_rq { 840 /* runqueue is an rbtree, ordered by deadline */ 841 struct rb_root_cached root; 842 843 unsigned int dl_nr_running; 844 845 #ifdef CONFIG_SMP 846 /* 847 * Deadline values of the currently executing and the 848 * earliest ready task on this rq. Caching these facilitates 849 * the decision whether or not a ready but not running task 850 * should migrate somewhere else. 851 */ 852 struct { 853 u64 curr; 854 u64 next; 855 } earliest_dl; 856 857 bool overloaded; 858 859 /* 860 * Tasks on this rq that can be pushed away. They are kept in 861 * an rb-tree, ordered by tasks' deadlines, with caching 862 * of the leftmost (earliest deadline) element. 863 */ 864 struct rb_root_cached pushable_dl_tasks_root; 865 #else 866 struct dl_bw dl_bw; 867 #endif 868 /* 869 * "Active utilization" for this runqueue: increased when a 870 * task wakes up (becomes TASK_RUNNING) and decreased when a 871 * task blocks 872 */ 873 u64 running_bw; 874 875 /* 876 * Utilization of the tasks "assigned" to this runqueue (including 877 * the tasks that are in runqueue and the tasks that executed on this 878 * CPU and blocked). Increased when a task moves to this runqueue, and 879 * decreased when the task moves away (migrates, changes scheduling 880 * policy, or terminates). 881 * This is needed to compute the "inactive utilization" for the 882 * runqueue (inactive utilization = this_bw - running_bw). 883 */ 884 u64 this_bw; 885 u64 extra_bw; 886 887 /* 888 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 889 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 890 */ 891 u64 max_bw; 892 893 /* 894 * Inverse of the fraction of CPU utilization that can be reclaimed 895 * by the GRUB algorithm. 896 */ 897 u64 bw_ratio; 898 }; 899 900 #ifdef CONFIG_FAIR_GROUP_SCHED 901 902 /* An entity is a task if it doesn't "own" a runqueue */ 903 #define entity_is_task(se) (!se->my_q) 904 905 static inline void se_update_runnable(struct sched_entity *se) 906 { 907 if (!entity_is_task(se)) { 908 struct cfs_rq *cfs_rq = se->my_q; 909 910 se->runnable_weight = cfs_rq->h_nr_running - cfs_rq->h_nr_delayed; 911 } 912 } 913 914 static inline long se_runnable(struct sched_entity *se) 915 { 916 if (se->sched_delayed) 917 return false; 918 919 if (entity_is_task(se)) 920 return !!se->on_rq; 921 else 922 return se->runnable_weight; 923 } 924 925 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 926 927 #define entity_is_task(se) 1 928 929 static inline void se_update_runnable(struct sched_entity *se) { } 930 931 static inline long se_runnable(struct sched_entity *se) 932 { 933 if (se->sched_delayed) 934 return false; 935 936 return !!se->on_rq; 937 } 938 939 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 940 941 #ifdef CONFIG_SMP 942 /* 943 * XXX we want to get rid of these helpers and use the full load resolution. 944 */ 945 static inline long se_weight(struct sched_entity *se) 946 { 947 return scale_load_down(se->load.weight); 948 } 949 950 951 static inline bool sched_asym_prefer(int a, int b) 952 { 953 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 954 } 955 956 struct perf_domain { 957 struct em_perf_domain *em_pd; 958 struct perf_domain *next; 959 struct rcu_head rcu; 960 }; 961 962 /* 963 * We add the notion of a root-domain which will be used to define per-domain 964 * variables. Each exclusive cpuset essentially defines an island domain by 965 * fully partitioning the member CPUs from any other cpuset. Whenever a new 966 * exclusive cpuset is created, we also create and attach a new root-domain 967 * object. 968 * 969 */ 970 struct root_domain { 971 atomic_t refcount; 972 atomic_t rto_count; 973 struct rcu_head rcu; 974 cpumask_var_t span; 975 cpumask_var_t online; 976 977 /* 978 * Indicate pullable load on at least one CPU, e.g: 979 * - More than one runnable task 980 * - Running task is misfit 981 */ 982 bool overloaded; 983 984 /* Indicate one or more CPUs over-utilized (tipping point) */ 985 bool overutilized; 986 987 /* 988 * The bit corresponding to a CPU gets set here if such CPU has more 989 * than one runnable -deadline task (as it is below for RT tasks). 990 */ 991 cpumask_var_t dlo_mask; 992 atomic_t dlo_count; 993 struct dl_bw dl_bw; 994 struct cpudl cpudl; 995 996 /* 997 * Indicate whether a root_domain's dl_bw has been checked or 998 * updated. It's monotonously increasing value. 999 * 1000 * Also, some corner cases, like 'wrap around' is dangerous, but given 1001 * that u64 is 'big enough'. So that shouldn't be a concern. 1002 */ 1003 u64 visit_gen; 1004 1005 #ifdef HAVE_RT_PUSH_IPI 1006 /* 1007 * For IPI pull requests, loop across the rto_mask. 1008 */ 1009 struct irq_work rto_push_work; 1010 raw_spinlock_t rto_lock; 1011 /* These are only updated and read within rto_lock */ 1012 int rto_loop; 1013 int rto_cpu; 1014 /* These atomics are updated outside of a lock */ 1015 atomic_t rto_loop_next; 1016 atomic_t rto_loop_start; 1017 #endif 1018 /* 1019 * The "RT overload" flag: it gets set if a CPU has more than 1020 * one runnable RT task. 1021 */ 1022 cpumask_var_t rto_mask; 1023 struct cpupri cpupri; 1024 1025 /* 1026 * NULL-terminated list of performance domains intersecting with the 1027 * CPUs of the rd. Protected by RCU. 1028 */ 1029 struct perf_domain __rcu *pd; 1030 }; 1031 1032 extern void init_defrootdomain(void); 1033 extern int sched_init_domains(const struct cpumask *cpu_map); 1034 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1035 extern void sched_get_rd(struct root_domain *rd); 1036 extern void sched_put_rd(struct root_domain *rd); 1037 1038 static inline int get_rd_overloaded(struct root_domain *rd) 1039 { 1040 return READ_ONCE(rd->overloaded); 1041 } 1042 1043 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1044 { 1045 if (get_rd_overloaded(rd) != status) 1046 WRITE_ONCE(rd->overloaded, status); 1047 } 1048 1049 #ifdef HAVE_RT_PUSH_IPI 1050 extern void rto_push_irq_work_func(struct irq_work *work); 1051 #endif 1052 #endif /* CONFIG_SMP */ 1053 1054 #ifdef CONFIG_UCLAMP_TASK 1055 /* 1056 * struct uclamp_bucket - Utilization clamp bucket 1057 * @value: utilization clamp value for tasks on this clamp bucket 1058 * @tasks: number of RUNNABLE tasks on this clamp bucket 1059 * 1060 * Keep track of how many tasks are RUNNABLE for a given utilization 1061 * clamp value. 1062 */ 1063 struct uclamp_bucket { 1064 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1065 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1066 }; 1067 1068 /* 1069 * struct uclamp_rq - rq's utilization clamp 1070 * @value: currently active clamp values for a rq 1071 * @bucket: utilization clamp buckets affecting a rq 1072 * 1073 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1074 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1075 * (or actually running) with that value. 1076 * 1077 * There are up to UCLAMP_CNT possible different clamp values, currently there 1078 * are only two: minimum utilization and maximum utilization. 1079 * 1080 * All utilization clamping values are MAX aggregated, since: 1081 * - for util_min: we want to run the CPU at least at the max of the minimum 1082 * utilization required by its currently RUNNABLE tasks. 1083 * - for util_max: we want to allow the CPU to run up to the max of the 1084 * maximum utilization allowed by its currently RUNNABLE tasks. 1085 * 1086 * Since on each system we expect only a limited number of different 1087 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1088 * the metrics required to compute all the per-rq utilization clamp values. 1089 */ 1090 struct uclamp_rq { 1091 unsigned int value; 1092 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1093 }; 1094 1095 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1096 #endif /* CONFIG_UCLAMP_TASK */ 1097 1098 /* 1099 * This is the main, per-CPU runqueue data structure. 1100 * 1101 * Locking rule: those places that want to lock multiple runqueues 1102 * (such as the load balancing or the thread migration code), lock 1103 * acquire operations must be ordered by ascending &runqueue. 1104 */ 1105 struct rq { 1106 /* runqueue lock: */ 1107 raw_spinlock_t __lock; 1108 1109 unsigned int nr_running; 1110 #ifdef CONFIG_NUMA_BALANCING 1111 unsigned int nr_numa_running; 1112 unsigned int nr_preferred_running; 1113 unsigned int numa_migrate_on; 1114 #endif 1115 #ifdef CONFIG_NO_HZ_COMMON 1116 #ifdef CONFIG_SMP 1117 unsigned long last_blocked_load_update_tick; 1118 unsigned int has_blocked_load; 1119 call_single_data_t nohz_csd; 1120 #endif /* CONFIG_SMP */ 1121 unsigned int nohz_tick_stopped; 1122 atomic_t nohz_flags; 1123 #endif /* CONFIG_NO_HZ_COMMON */ 1124 1125 #ifdef CONFIG_SMP 1126 unsigned int ttwu_pending; 1127 #endif 1128 u64 nr_switches; 1129 1130 #ifdef CONFIG_UCLAMP_TASK 1131 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1132 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1133 unsigned int uclamp_flags; 1134 #define UCLAMP_FLAG_IDLE 0x01 1135 #endif 1136 1137 struct cfs_rq cfs; 1138 struct rt_rq rt; 1139 struct dl_rq dl; 1140 #ifdef CONFIG_SCHED_CLASS_EXT 1141 struct scx_rq scx; 1142 #endif 1143 1144 struct sched_dl_entity fair_server; 1145 1146 #ifdef CONFIG_FAIR_GROUP_SCHED 1147 /* list of leaf cfs_rq on this CPU: */ 1148 struct list_head leaf_cfs_rq_list; 1149 struct list_head *tmp_alone_branch; 1150 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1151 1152 /* 1153 * This is part of a global counter where only the total sum 1154 * over all CPUs matters. A task can increase this counter on 1155 * one CPU and if it got migrated afterwards it may decrease 1156 * it on another CPU. Always updated under the runqueue lock: 1157 */ 1158 unsigned int nr_uninterruptible; 1159 1160 union { 1161 struct task_struct __rcu *donor; /* Scheduler context */ 1162 struct task_struct __rcu *curr; /* Execution context */ 1163 }; 1164 struct sched_dl_entity *dl_server; 1165 struct task_struct *idle; 1166 struct task_struct *stop; 1167 unsigned long next_balance; 1168 struct mm_struct *prev_mm; 1169 1170 unsigned int clock_update_flags; 1171 u64 clock; 1172 /* Ensure that all clocks are in the same cache line */ 1173 u64 clock_task ____cacheline_aligned; 1174 u64 clock_pelt; 1175 unsigned long lost_idle_time; 1176 u64 clock_pelt_idle; 1177 u64 clock_idle; 1178 #ifndef CONFIG_64BIT 1179 u64 clock_pelt_idle_copy; 1180 u64 clock_idle_copy; 1181 #endif 1182 1183 atomic_t nr_iowait; 1184 1185 #ifdef CONFIG_SCHED_DEBUG 1186 u64 last_seen_need_resched_ns; 1187 int ticks_without_resched; 1188 #endif 1189 1190 #ifdef CONFIG_MEMBARRIER 1191 int membarrier_state; 1192 #endif 1193 1194 #ifdef CONFIG_SMP 1195 struct root_domain *rd; 1196 struct sched_domain __rcu *sd; 1197 1198 unsigned long cpu_capacity; 1199 1200 struct balance_callback *balance_callback; 1201 1202 unsigned char nohz_idle_balance; 1203 unsigned char idle_balance; 1204 1205 unsigned long misfit_task_load; 1206 1207 /* For active balancing */ 1208 int active_balance; 1209 int push_cpu; 1210 struct cpu_stop_work active_balance_work; 1211 1212 /* CPU of this runqueue: */ 1213 int cpu; 1214 int online; 1215 1216 struct list_head cfs_tasks; 1217 1218 struct sched_avg avg_rt; 1219 struct sched_avg avg_dl; 1220 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1221 struct sched_avg avg_irq; 1222 #endif 1223 #ifdef CONFIG_SCHED_HW_PRESSURE 1224 struct sched_avg avg_hw; 1225 #endif 1226 u64 idle_stamp; 1227 u64 avg_idle; 1228 1229 /* This is used to determine avg_idle's max value */ 1230 u64 max_idle_balance_cost; 1231 1232 #ifdef CONFIG_HOTPLUG_CPU 1233 struct rcuwait hotplug_wait; 1234 #endif 1235 #endif /* CONFIG_SMP */ 1236 1237 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1238 u64 prev_irq_time; 1239 u64 psi_irq_time; 1240 #endif 1241 #ifdef CONFIG_PARAVIRT 1242 u64 prev_steal_time; 1243 #endif 1244 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1245 u64 prev_steal_time_rq; 1246 #endif 1247 1248 /* calc_load related fields */ 1249 unsigned long calc_load_update; 1250 long calc_load_active; 1251 1252 #ifdef CONFIG_SCHED_HRTICK 1253 #ifdef CONFIG_SMP 1254 call_single_data_t hrtick_csd; 1255 #endif 1256 struct hrtimer hrtick_timer; 1257 ktime_t hrtick_time; 1258 #endif 1259 1260 #ifdef CONFIG_SCHEDSTATS 1261 /* latency stats */ 1262 struct sched_info rq_sched_info; 1263 unsigned long long rq_cpu_time; 1264 1265 /* sys_sched_yield() stats */ 1266 unsigned int yld_count; 1267 1268 /* schedule() stats */ 1269 unsigned int sched_count; 1270 unsigned int sched_goidle; 1271 1272 /* try_to_wake_up() stats */ 1273 unsigned int ttwu_count; 1274 unsigned int ttwu_local; 1275 #endif 1276 1277 #ifdef CONFIG_CPU_IDLE 1278 /* Must be inspected within a RCU lock section */ 1279 struct cpuidle_state *idle_state; 1280 #endif 1281 1282 #ifdef CONFIG_SMP 1283 unsigned int nr_pinned; 1284 #endif 1285 unsigned int push_busy; 1286 struct cpu_stop_work push_work; 1287 1288 #ifdef CONFIG_SCHED_CORE 1289 /* per rq */ 1290 struct rq *core; 1291 struct task_struct *core_pick; 1292 struct sched_dl_entity *core_dl_server; 1293 unsigned int core_enabled; 1294 unsigned int core_sched_seq; 1295 struct rb_root core_tree; 1296 1297 /* shared state -- careful with sched_core_cpu_deactivate() */ 1298 unsigned int core_task_seq; 1299 unsigned int core_pick_seq; 1300 unsigned long core_cookie; 1301 unsigned int core_forceidle_count; 1302 unsigned int core_forceidle_seq; 1303 unsigned int core_forceidle_occupation; 1304 u64 core_forceidle_start; 1305 #endif 1306 1307 /* Scratch cpumask to be temporarily used under rq_lock */ 1308 cpumask_var_t scratch_mask; 1309 1310 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1311 call_single_data_t cfsb_csd; 1312 struct list_head cfsb_csd_list; 1313 #endif 1314 }; 1315 1316 #ifdef CONFIG_FAIR_GROUP_SCHED 1317 1318 /* CPU runqueue to which this cfs_rq is attached */ 1319 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1320 { 1321 return cfs_rq->rq; 1322 } 1323 1324 #else 1325 1326 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1327 { 1328 return container_of(cfs_rq, struct rq, cfs); 1329 } 1330 #endif 1331 1332 static inline int cpu_of(struct rq *rq) 1333 { 1334 #ifdef CONFIG_SMP 1335 return rq->cpu; 1336 #else 1337 return 0; 1338 #endif 1339 } 1340 1341 #define MDF_PUSH 0x01 1342 1343 static inline bool is_migration_disabled(struct task_struct *p) 1344 { 1345 #ifdef CONFIG_SMP 1346 return p->migration_disabled; 1347 #else 1348 return false; 1349 #endif 1350 } 1351 1352 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1353 1354 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1355 #define this_rq() this_cpu_ptr(&runqueues) 1356 #define task_rq(p) cpu_rq(task_cpu(p)) 1357 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1358 #define raw_rq() raw_cpu_ptr(&runqueues) 1359 1360 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1361 { 1362 /* Do nothing */ 1363 } 1364 1365 #ifdef CONFIG_SCHED_CORE 1366 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1367 1368 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1369 1370 static inline bool sched_core_enabled(struct rq *rq) 1371 { 1372 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1373 } 1374 1375 static inline bool sched_core_disabled(void) 1376 { 1377 return !static_branch_unlikely(&__sched_core_enabled); 1378 } 1379 1380 /* 1381 * Be careful with this function; not for general use. The return value isn't 1382 * stable unless you actually hold a relevant rq->__lock. 1383 */ 1384 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1385 { 1386 if (sched_core_enabled(rq)) 1387 return &rq->core->__lock; 1388 1389 return &rq->__lock; 1390 } 1391 1392 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1393 { 1394 if (rq->core_enabled) 1395 return &rq->core->__lock; 1396 1397 return &rq->__lock; 1398 } 1399 1400 extern bool 1401 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1402 1403 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1404 1405 /* 1406 * Helpers to check if the CPU's core cookie matches with the task's cookie 1407 * when core scheduling is enabled. 1408 * A special case is that the task's cookie always matches with CPU's core 1409 * cookie if the CPU is in an idle core. 1410 */ 1411 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1412 { 1413 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1414 if (!sched_core_enabled(rq)) 1415 return true; 1416 1417 return rq->core->core_cookie == p->core_cookie; 1418 } 1419 1420 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1421 { 1422 bool idle_core = true; 1423 int cpu; 1424 1425 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1426 if (!sched_core_enabled(rq)) 1427 return true; 1428 1429 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1430 if (!available_idle_cpu(cpu)) { 1431 idle_core = false; 1432 break; 1433 } 1434 } 1435 1436 /* 1437 * A CPU in an idle core is always the best choice for tasks with 1438 * cookies. 1439 */ 1440 return idle_core || rq->core->core_cookie == p->core_cookie; 1441 } 1442 1443 static inline bool sched_group_cookie_match(struct rq *rq, 1444 struct task_struct *p, 1445 struct sched_group *group) 1446 { 1447 int cpu; 1448 1449 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1450 if (!sched_core_enabled(rq)) 1451 return true; 1452 1453 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1454 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1455 return true; 1456 } 1457 return false; 1458 } 1459 1460 static inline bool sched_core_enqueued(struct task_struct *p) 1461 { 1462 return !RB_EMPTY_NODE(&p->core_node); 1463 } 1464 1465 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1466 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1467 1468 extern void sched_core_get(void); 1469 extern void sched_core_put(void); 1470 1471 #else /* !CONFIG_SCHED_CORE: */ 1472 1473 static inline bool sched_core_enabled(struct rq *rq) 1474 { 1475 return false; 1476 } 1477 1478 static inline bool sched_core_disabled(void) 1479 { 1480 return true; 1481 } 1482 1483 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1484 { 1485 return &rq->__lock; 1486 } 1487 1488 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1489 { 1490 return &rq->__lock; 1491 } 1492 1493 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1494 { 1495 return true; 1496 } 1497 1498 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1499 { 1500 return true; 1501 } 1502 1503 static inline bool sched_group_cookie_match(struct rq *rq, 1504 struct task_struct *p, 1505 struct sched_group *group) 1506 { 1507 return true; 1508 } 1509 1510 #endif /* !CONFIG_SCHED_CORE */ 1511 1512 static inline void lockdep_assert_rq_held(struct rq *rq) 1513 { 1514 lockdep_assert_held(__rq_lockp(rq)); 1515 } 1516 1517 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1518 extern bool raw_spin_rq_trylock(struct rq *rq); 1519 extern void raw_spin_rq_unlock(struct rq *rq); 1520 1521 static inline void raw_spin_rq_lock(struct rq *rq) 1522 { 1523 raw_spin_rq_lock_nested(rq, 0); 1524 } 1525 1526 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1527 { 1528 local_irq_disable(); 1529 raw_spin_rq_lock(rq); 1530 } 1531 1532 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1533 { 1534 raw_spin_rq_unlock(rq); 1535 local_irq_enable(); 1536 } 1537 1538 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1539 { 1540 unsigned long flags; 1541 1542 local_irq_save(flags); 1543 raw_spin_rq_lock(rq); 1544 1545 return flags; 1546 } 1547 1548 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1549 { 1550 raw_spin_rq_unlock(rq); 1551 local_irq_restore(flags); 1552 } 1553 1554 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1555 do { \ 1556 flags = _raw_spin_rq_lock_irqsave(rq); \ 1557 } while (0) 1558 1559 #ifdef CONFIG_SCHED_SMT 1560 extern void __update_idle_core(struct rq *rq); 1561 1562 static inline void update_idle_core(struct rq *rq) 1563 { 1564 if (static_branch_unlikely(&sched_smt_present)) 1565 __update_idle_core(rq); 1566 } 1567 1568 #else 1569 static inline void update_idle_core(struct rq *rq) { } 1570 #endif 1571 1572 #ifdef CONFIG_FAIR_GROUP_SCHED 1573 1574 static inline struct task_struct *task_of(struct sched_entity *se) 1575 { 1576 SCHED_WARN_ON(!entity_is_task(se)); 1577 return container_of(se, struct task_struct, se); 1578 } 1579 1580 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1581 { 1582 return p->se.cfs_rq; 1583 } 1584 1585 /* runqueue on which this entity is (to be) queued */ 1586 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1587 { 1588 return se->cfs_rq; 1589 } 1590 1591 /* runqueue "owned" by this group */ 1592 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1593 { 1594 return grp->my_q; 1595 } 1596 1597 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1598 1599 #define task_of(_se) container_of(_se, struct task_struct, se) 1600 1601 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1602 { 1603 return &task_rq(p)->cfs; 1604 } 1605 1606 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1607 { 1608 const struct task_struct *p = task_of(se); 1609 struct rq *rq = task_rq(p); 1610 1611 return &rq->cfs; 1612 } 1613 1614 /* runqueue "owned" by this group */ 1615 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1616 { 1617 return NULL; 1618 } 1619 1620 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1621 1622 extern void update_rq_clock(struct rq *rq); 1623 1624 /* 1625 * rq::clock_update_flags bits 1626 * 1627 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1628 * call to __schedule(). This is an optimisation to avoid 1629 * neighbouring rq clock updates. 1630 * 1631 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1632 * in effect and calls to update_rq_clock() are being ignored. 1633 * 1634 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1635 * made to update_rq_clock() since the last time rq::lock was pinned. 1636 * 1637 * If inside of __schedule(), clock_update_flags will have been 1638 * shifted left (a left shift is a cheap operation for the fast path 1639 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1640 * 1641 * if (rq-clock_update_flags >= RQCF_UPDATED) 1642 * 1643 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1644 * one position though, because the next rq_unpin_lock() will shift it 1645 * back. 1646 */ 1647 #define RQCF_REQ_SKIP 0x01 1648 #define RQCF_ACT_SKIP 0x02 1649 #define RQCF_UPDATED 0x04 1650 1651 static inline void assert_clock_updated(struct rq *rq) 1652 { 1653 /* 1654 * The only reason for not seeing a clock update since the 1655 * last rq_pin_lock() is if we're currently skipping updates. 1656 */ 1657 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1658 } 1659 1660 static inline u64 rq_clock(struct rq *rq) 1661 { 1662 lockdep_assert_rq_held(rq); 1663 assert_clock_updated(rq); 1664 1665 return rq->clock; 1666 } 1667 1668 static inline u64 rq_clock_task(struct rq *rq) 1669 { 1670 lockdep_assert_rq_held(rq); 1671 assert_clock_updated(rq); 1672 1673 return rq->clock_task; 1674 } 1675 1676 static inline void rq_clock_skip_update(struct rq *rq) 1677 { 1678 lockdep_assert_rq_held(rq); 1679 rq->clock_update_flags |= RQCF_REQ_SKIP; 1680 } 1681 1682 /* 1683 * See rt task throttling, which is the only time a skip 1684 * request is canceled. 1685 */ 1686 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1687 { 1688 lockdep_assert_rq_held(rq); 1689 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1690 } 1691 1692 /* 1693 * During cpu offlining and rq wide unthrottling, we can trigger 1694 * an update_rq_clock() for several cfs and rt runqueues (Typically 1695 * when using list_for_each_entry_*) 1696 * rq_clock_start_loop_update() can be called after updating the clock 1697 * once and before iterating over the list to prevent multiple update. 1698 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1699 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1700 */ 1701 static inline void rq_clock_start_loop_update(struct rq *rq) 1702 { 1703 lockdep_assert_rq_held(rq); 1704 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); 1705 rq->clock_update_flags |= RQCF_ACT_SKIP; 1706 } 1707 1708 static inline void rq_clock_stop_loop_update(struct rq *rq) 1709 { 1710 lockdep_assert_rq_held(rq); 1711 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1712 } 1713 1714 struct rq_flags { 1715 unsigned long flags; 1716 struct pin_cookie cookie; 1717 #ifdef CONFIG_SCHED_DEBUG 1718 /* 1719 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1720 * current pin context is stashed here in case it needs to be 1721 * restored in rq_repin_lock(). 1722 */ 1723 unsigned int clock_update_flags; 1724 #endif 1725 }; 1726 1727 extern struct balance_callback balance_push_callback; 1728 1729 /* 1730 * Lockdep annotation that avoids accidental unlocks; it's like a 1731 * sticky/continuous lockdep_assert_held(). 1732 * 1733 * This avoids code that has access to 'struct rq *rq' (basically everything in 1734 * the scheduler) from accidentally unlocking the rq if they do not also have a 1735 * copy of the (on-stack) 'struct rq_flags rf'. 1736 * 1737 * Also see Documentation/locking/lockdep-design.rst. 1738 */ 1739 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1740 { 1741 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1742 1743 #ifdef CONFIG_SCHED_DEBUG 1744 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1745 rf->clock_update_flags = 0; 1746 # ifdef CONFIG_SMP 1747 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1748 # endif 1749 #endif 1750 } 1751 1752 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1753 { 1754 #ifdef CONFIG_SCHED_DEBUG 1755 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1756 rf->clock_update_flags = RQCF_UPDATED; 1757 #endif 1758 1759 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1760 } 1761 1762 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1763 { 1764 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1765 1766 #ifdef CONFIG_SCHED_DEBUG 1767 /* 1768 * Restore the value we stashed in @rf for this pin context. 1769 */ 1770 rq->clock_update_flags |= rf->clock_update_flags; 1771 #endif 1772 } 1773 1774 extern 1775 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1776 __acquires(rq->lock); 1777 1778 extern 1779 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1780 __acquires(p->pi_lock) 1781 __acquires(rq->lock); 1782 1783 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1784 __releases(rq->lock) 1785 { 1786 rq_unpin_lock(rq, rf); 1787 raw_spin_rq_unlock(rq); 1788 } 1789 1790 static inline void 1791 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1792 __releases(rq->lock) 1793 __releases(p->pi_lock) 1794 { 1795 rq_unpin_lock(rq, rf); 1796 raw_spin_rq_unlock(rq); 1797 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1798 } 1799 1800 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1801 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1802 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1803 struct rq *rq; struct rq_flags rf) 1804 1805 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1806 __acquires(rq->lock) 1807 { 1808 raw_spin_rq_lock_irqsave(rq, rf->flags); 1809 rq_pin_lock(rq, rf); 1810 } 1811 1812 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1813 __acquires(rq->lock) 1814 { 1815 raw_spin_rq_lock_irq(rq); 1816 rq_pin_lock(rq, rf); 1817 } 1818 1819 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1820 __acquires(rq->lock) 1821 { 1822 raw_spin_rq_lock(rq); 1823 rq_pin_lock(rq, rf); 1824 } 1825 1826 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1827 __releases(rq->lock) 1828 { 1829 rq_unpin_lock(rq, rf); 1830 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1831 } 1832 1833 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1834 __releases(rq->lock) 1835 { 1836 rq_unpin_lock(rq, rf); 1837 raw_spin_rq_unlock_irq(rq); 1838 } 1839 1840 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1841 __releases(rq->lock) 1842 { 1843 rq_unpin_lock(rq, rf); 1844 raw_spin_rq_unlock(rq); 1845 } 1846 1847 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1848 rq_lock(_T->lock, &_T->rf), 1849 rq_unlock(_T->lock, &_T->rf), 1850 struct rq_flags rf) 1851 1852 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1853 rq_lock_irq(_T->lock, &_T->rf), 1854 rq_unlock_irq(_T->lock, &_T->rf), 1855 struct rq_flags rf) 1856 1857 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1858 rq_lock_irqsave(_T->lock, &_T->rf), 1859 rq_unlock_irqrestore(_T->lock, &_T->rf), 1860 struct rq_flags rf) 1861 1862 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1863 __acquires(rq->lock) 1864 { 1865 struct rq *rq; 1866 1867 local_irq_disable(); 1868 rq = this_rq(); 1869 rq_lock(rq, rf); 1870 1871 return rq; 1872 } 1873 1874 #ifdef CONFIG_NUMA 1875 1876 enum numa_topology_type { 1877 NUMA_DIRECT, 1878 NUMA_GLUELESS_MESH, 1879 NUMA_BACKPLANE, 1880 }; 1881 1882 extern enum numa_topology_type sched_numa_topology_type; 1883 extern int sched_max_numa_distance; 1884 extern bool find_numa_distance(int distance); 1885 extern void sched_init_numa(int offline_node); 1886 extern void sched_update_numa(int cpu, bool online); 1887 extern void sched_domains_numa_masks_set(unsigned int cpu); 1888 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1889 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1890 1891 #else /* !CONFIG_NUMA: */ 1892 1893 static inline void sched_init_numa(int offline_node) { } 1894 static inline void sched_update_numa(int cpu, bool online) { } 1895 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1896 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1897 1898 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1899 { 1900 return nr_cpu_ids; 1901 } 1902 1903 #endif /* !CONFIG_NUMA */ 1904 1905 #ifdef CONFIG_NUMA_BALANCING 1906 1907 /* The regions in numa_faults array from task_struct */ 1908 enum numa_faults_stats { 1909 NUMA_MEM = 0, 1910 NUMA_CPU, 1911 NUMA_MEMBUF, 1912 NUMA_CPUBUF 1913 }; 1914 1915 extern void sched_setnuma(struct task_struct *p, int node); 1916 extern int migrate_task_to(struct task_struct *p, int cpu); 1917 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1918 int cpu, int scpu); 1919 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1920 1921 #else /* !CONFIG_NUMA_BALANCING: */ 1922 1923 static inline void 1924 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1925 { 1926 } 1927 1928 #endif /* !CONFIG_NUMA_BALANCING */ 1929 1930 #ifdef CONFIG_SMP 1931 1932 static inline void 1933 queue_balance_callback(struct rq *rq, 1934 struct balance_callback *head, 1935 void (*func)(struct rq *rq)) 1936 { 1937 lockdep_assert_rq_held(rq); 1938 1939 /* 1940 * Don't (re)queue an already queued item; nor queue anything when 1941 * balance_push() is active, see the comment with 1942 * balance_push_callback. 1943 */ 1944 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1945 return; 1946 1947 head->func = func; 1948 head->next = rq->balance_callback; 1949 rq->balance_callback = head; 1950 } 1951 1952 #define rcu_dereference_check_sched_domain(p) \ 1953 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1954 1955 /* 1956 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1957 * See destroy_sched_domains: call_rcu for details. 1958 * 1959 * The domain tree of any CPU may only be accessed from within 1960 * preempt-disabled sections. 1961 */ 1962 #define for_each_domain(cpu, __sd) \ 1963 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1964 __sd; __sd = __sd->parent) 1965 1966 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1967 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1968 static const unsigned int SD_SHARED_CHILD_MASK = 1969 #include <linux/sched/sd_flags.h> 1970 0; 1971 #undef SD_FLAG 1972 1973 /** 1974 * highest_flag_domain - Return highest sched_domain containing flag. 1975 * @cpu: The CPU whose highest level of sched domain is to 1976 * be returned. 1977 * @flag: The flag to check for the highest sched_domain 1978 * for the given CPU. 1979 * 1980 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1981 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1982 */ 1983 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1984 { 1985 struct sched_domain *sd, *hsd = NULL; 1986 1987 for_each_domain(cpu, sd) { 1988 if (sd->flags & flag) { 1989 hsd = sd; 1990 continue; 1991 } 1992 1993 /* 1994 * Stop the search if @flag is known to be shared at lower 1995 * levels. It will not be found further up. 1996 */ 1997 if (flag & SD_SHARED_CHILD_MASK) 1998 break; 1999 } 2000 2001 return hsd; 2002 } 2003 2004 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2005 { 2006 struct sched_domain *sd; 2007 2008 for_each_domain(cpu, sd) { 2009 if (sd->flags & flag) 2010 break; 2011 } 2012 2013 return sd; 2014 } 2015 2016 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2017 DECLARE_PER_CPU(int, sd_llc_size); 2018 DECLARE_PER_CPU(int, sd_llc_id); 2019 DECLARE_PER_CPU(int, sd_share_id); 2020 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2021 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2022 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2023 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2024 2025 extern struct static_key_false sched_asym_cpucapacity; 2026 extern struct static_key_false sched_cluster_active; 2027 2028 static __always_inline bool sched_asym_cpucap_active(void) 2029 { 2030 return static_branch_unlikely(&sched_asym_cpucapacity); 2031 } 2032 2033 struct sched_group_capacity { 2034 atomic_t ref; 2035 /* 2036 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2037 * for a single CPU. 2038 */ 2039 unsigned long capacity; 2040 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2041 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2042 unsigned long next_update; 2043 int imbalance; /* XXX unrelated to capacity but shared group state */ 2044 2045 #ifdef CONFIG_SCHED_DEBUG 2046 int id; 2047 #endif 2048 2049 unsigned long cpumask[]; /* Balance mask */ 2050 }; 2051 2052 struct sched_group { 2053 struct sched_group *next; /* Must be a circular list */ 2054 atomic_t ref; 2055 2056 unsigned int group_weight; 2057 unsigned int cores; 2058 struct sched_group_capacity *sgc; 2059 int asym_prefer_cpu; /* CPU of highest priority in group */ 2060 int flags; 2061 2062 /* 2063 * The CPUs this group covers. 2064 * 2065 * NOTE: this field is variable length. (Allocated dynamically 2066 * by attaching extra space to the end of the structure, 2067 * depending on how many CPUs the kernel has booted up with) 2068 */ 2069 unsigned long cpumask[]; 2070 }; 2071 2072 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2073 { 2074 return to_cpumask(sg->cpumask); 2075 } 2076 2077 /* 2078 * See build_balance_mask(). 2079 */ 2080 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2081 { 2082 return to_cpumask(sg->sgc->cpumask); 2083 } 2084 2085 extern int group_balance_cpu(struct sched_group *sg); 2086 2087 #ifdef CONFIG_SCHED_DEBUG 2088 extern void update_sched_domain_debugfs(void); 2089 extern void dirty_sched_domain_sysctl(int cpu); 2090 #else 2091 static inline void update_sched_domain_debugfs(void) { } 2092 static inline void dirty_sched_domain_sysctl(int cpu) { } 2093 #endif 2094 2095 extern int sched_update_scaling(void); 2096 2097 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2098 { 2099 if (!p->user_cpus_ptr) 2100 return cpu_possible_mask; /* &init_task.cpus_mask */ 2101 return p->user_cpus_ptr; 2102 } 2103 2104 #endif /* CONFIG_SMP */ 2105 2106 #ifdef CONFIG_CGROUP_SCHED 2107 2108 /* 2109 * Return the group to which this tasks belongs. 2110 * 2111 * We cannot use task_css() and friends because the cgroup subsystem 2112 * changes that value before the cgroup_subsys::attach() method is called, 2113 * therefore we cannot pin it and might observe the wrong value. 2114 * 2115 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2116 * core changes this before calling sched_move_task(). 2117 * 2118 * Instead we use a 'copy' which is updated from sched_move_task() while 2119 * holding both task_struct::pi_lock and rq::lock. 2120 */ 2121 static inline struct task_group *task_group(struct task_struct *p) 2122 { 2123 return p->sched_task_group; 2124 } 2125 2126 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2127 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2128 { 2129 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2130 struct task_group *tg = task_group(p); 2131 #endif 2132 2133 #ifdef CONFIG_FAIR_GROUP_SCHED 2134 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2135 p->se.cfs_rq = tg->cfs_rq[cpu]; 2136 p->se.parent = tg->se[cpu]; 2137 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2138 #endif 2139 2140 #ifdef CONFIG_RT_GROUP_SCHED 2141 p->rt.rt_rq = tg->rt_rq[cpu]; 2142 p->rt.parent = tg->rt_se[cpu]; 2143 #endif 2144 } 2145 2146 #else /* !CONFIG_CGROUP_SCHED: */ 2147 2148 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2149 2150 static inline struct task_group *task_group(struct task_struct *p) 2151 { 2152 return NULL; 2153 } 2154 2155 #endif /* !CONFIG_CGROUP_SCHED */ 2156 2157 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2158 { 2159 set_task_rq(p, cpu); 2160 #ifdef CONFIG_SMP 2161 /* 2162 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2163 * successfully executed on another CPU. We must ensure that updates of 2164 * per-task data have been completed by this moment. 2165 */ 2166 smp_wmb(); 2167 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2168 p->wake_cpu = cpu; 2169 #endif 2170 } 2171 2172 /* 2173 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 2174 */ 2175 #ifdef CONFIG_SCHED_DEBUG 2176 # define const_debug __read_mostly 2177 #else 2178 # define const_debug const 2179 #endif 2180 2181 #define SCHED_FEAT(name, enabled) \ 2182 __SCHED_FEAT_##name , 2183 2184 enum { 2185 #include "features.h" 2186 __SCHED_FEAT_NR, 2187 }; 2188 2189 #undef SCHED_FEAT 2190 2191 #ifdef CONFIG_SCHED_DEBUG 2192 2193 /* 2194 * To support run-time toggling of sched features, all the translation units 2195 * (but core.c) reference the sysctl_sched_features defined in core.c. 2196 */ 2197 extern const_debug unsigned int sysctl_sched_features; 2198 2199 #ifdef CONFIG_JUMP_LABEL 2200 2201 #define SCHED_FEAT(name, enabled) \ 2202 static __always_inline bool static_branch_##name(struct static_key *key) \ 2203 { \ 2204 return static_key_##enabled(key); \ 2205 } 2206 2207 #include "features.h" 2208 #undef SCHED_FEAT 2209 2210 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2211 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2212 2213 #else /* !CONFIG_JUMP_LABEL: */ 2214 2215 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2216 2217 #endif /* !CONFIG_JUMP_LABEL */ 2218 2219 #else /* !SCHED_DEBUG: */ 2220 2221 /* 2222 * Each translation unit has its own copy of sysctl_sched_features to allow 2223 * constants propagation at compile time and compiler optimization based on 2224 * features default. 2225 */ 2226 #define SCHED_FEAT(name, enabled) \ 2227 (1UL << __SCHED_FEAT_##name) * enabled | 2228 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2229 #include "features.h" 2230 0; 2231 #undef SCHED_FEAT 2232 2233 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2234 2235 #endif /* !SCHED_DEBUG */ 2236 2237 extern struct static_key_false sched_numa_balancing; 2238 extern struct static_key_false sched_schedstats; 2239 2240 static inline u64 global_rt_period(void) 2241 { 2242 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2243 } 2244 2245 static inline u64 global_rt_runtime(void) 2246 { 2247 if (sysctl_sched_rt_runtime < 0) 2248 return RUNTIME_INF; 2249 2250 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2251 } 2252 2253 /* 2254 * Is p the current execution context? 2255 */ 2256 static inline int task_current(struct rq *rq, struct task_struct *p) 2257 { 2258 return rq->curr == p; 2259 } 2260 2261 /* 2262 * Is p the current scheduling context? 2263 * 2264 * Note that it might be the current execution context at the same time if 2265 * rq->curr == rq->donor == p. 2266 */ 2267 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2268 { 2269 return rq->donor == p; 2270 } 2271 2272 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2273 { 2274 #ifdef CONFIG_SMP 2275 return p->on_cpu; 2276 #else 2277 return task_current(rq, p); 2278 #endif 2279 } 2280 2281 static inline int task_on_rq_queued(struct task_struct *p) 2282 { 2283 return p->on_rq == TASK_ON_RQ_QUEUED; 2284 } 2285 2286 static inline int task_on_rq_migrating(struct task_struct *p) 2287 { 2288 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2289 } 2290 2291 /* Wake flags. The first three directly map to some SD flag value */ 2292 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2293 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2294 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2295 2296 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2297 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2298 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2299 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2300 2301 #ifdef CONFIG_SMP 2302 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2303 static_assert(WF_FORK == SD_BALANCE_FORK); 2304 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2305 #endif 2306 2307 /* 2308 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2309 * of tasks with abnormal "nice" values across CPUs the contribution that 2310 * each task makes to its run queue's load is weighted according to its 2311 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2312 * scaled version of the new time slice allocation that they receive on time 2313 * slice expiry etc. 2314 */ 2315 2316 #define WEIGHT_IDLEPRIO 3 2317 #define WMULT_IDLEPRIO 1431655765 2318 2319 extern const int sched_prio_to_weight[40]; 2320 extern const u32 sched_prio_to_wmult[40]; 2321 2322 /* 2323 * {de,en}queue flags: 2324 * 2325 * DEQUEUE_SLEEP - task is no longer runnable 2326 * ENQUEUE_WAKEUP - task just became runnable 2327 * 2328 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2329 * are in a known state which allows modification. Such pairs 2330 * should preserve as much state as possible. 2331 * 2332 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2333 * in the runqueue. 2334 * 2335 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2336 * 2337 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2338 * 2339 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2340 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2341 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2342 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2343 * 2344 */ 2345 2346 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2347 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2348 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2349 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2350 #define DEQUEUE_SPECIAL 0x10 2351 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2352 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2353 2354 #define ENQUEUE_WAKEUP 0x01 2355 #define ENQUEUE_RESTORE 0x02 2356 #define ENQUEUE_MOVE 0x04 2357 #define ENQUEUE_NOCLOCK 0x08 2358 2359 #define ENQUEUE_HEAD 0x10 2360 #define ENQUEUE_REPLENISH 0x20 2361 #ifdef CONFIG_SMP 2362 #define ENQUEUE_MIGRATED 0x40 2363 #else 2364 #define ENQUEUE_MIGRATED 0x00 2365 #endif 2366 #define ENQUEUE_INITIAL 0x80 2367 #define ENQUEUE_MIGRATING 0x100 2368 #define ENQUEUE_DELAYED 0x200 2369 #define ENQUEUE_RQ_SELECTED 0x400 2370 2371 #define RETRY_TASK ((void *)-1UL) 2372 2373 struct affinity_context { 2374 const struct cpumask *new_mask; 2375 struct cpumask *user_mask; 2376 unsigned int flags; 2377 }; 2378 2379 extern s64 update_curr_common(struct rq *rq); 2380 2381 struct sched_class { 2382 2383 #ifdef CONFIG_UCLAMP_TASK 2384 int uclamp_enabled; 2385 #endif 2386 2387 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2388 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2389 void (*yield_task) (struct rq *rq); 2390 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2391 2392 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2393 2394 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2395 struct task_struct *(*pick_task)(struct rq *rq); 2396 /* 2397 * Optional! When implemented pick_next_task() should be equivalent to: 2398 * 2399 * next = pick_task(); 2400 * if (next) { 2401 * put_prev_task(prev); 2402 * set_next_task_first(next); 2403 * } 2404 */ 2405 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2406 2407 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2408 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2409 2410 #ifdef CONFIG_SMP 2411 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2412 2413 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2414 2415 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2416 2417 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2418 2419 void (*rq_online)(struct rq *rq); 2420 void (*rq_offline)(struct rq *rq); 2421 2422 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2423 #endif 2424 2425 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2426 void (*task_fork)(struct task_struct *p); 2427 void (*task_dead)(struct task_struct *p); 2428 2429 /* 2430 * The switched_from() call is allowed to drop rq->lock, therefore we 2431 * cannot assume the switched_from/switched_to pair is serialized by 2432 * rq->lock. They are however serialized by p->pi_lock. 2433 */ 2434 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2435 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2436 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2437 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2438 const struct load_weight *lw); 2439 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2440 int oldprio); 2441 2442 unsigned int (*get_rr_interval)(struct rq *rq, 2443 struct task_struct *task); 2444 2445 void (*update_curr)(struct rq *rq); 2446 2447 #ifdef CONFIG_FAIR_GROUP_SCHED 2448 void (*task_change_group)(struct task_struct *p); 2449 #endif 2450 2451 #ifdef CONFIG_SCHED_CORE 2452 int (*task_is_throttled)(struct task_struct *p, int cpu); 2453 #endif 2454 }; 2455 2456 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2457 { 2458 WARN_ON_ONCE(rq->donor != prev); 2459 prev->sched_class->put_prev_task(rq, prev, NULL); 2460 } 2461 2462 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2463 { 2464 next->sched_class->set_next_task(rq, next, false); 2465 } 2466 2467 static inline void 2468 __put_prev_set_next_dl_server(struct rq *rq, 2469 struct task_struct *prev, 2470 struct task_struct *next) 2471 { 2472 prev->dl_server = NULL; 2473 next->dl_server = rq->dl_server; 2474 rq->dl_server = NULL; 2475 } 2476 2477 static inline void put_prev_set_next_task(struct rq *rq, 2478 struct task_struct *prev, 2479 struct task_struct *next) 2480 { 2481 WARN_ON_ONCE(rq->curr != prev); 2482 2483 __put_prev_set_next_dl_server(rq, prev, next); 2484 2485 if (next == prev) 2486 return; 2487 2488 prev->sched_class->put_prev_task(rq, prev, next); 2489 next->sched_class->set_next_task(rq, next, true); 2490 } 2491 2492 /* 2493 * Helper to define a sched_class instance; each one is placed in a separate 2494 * section which is ordered by the linker script: 2495 * 2496 * include/asm-generic/vmlinux.lds.h 2497 * 2498 * *CAREFUL* they are laid out in *REVERSE* order!!! 2499 * 2500 * Also enforce alignment on the instance, not the type, to guarantee layout. 2501 */ 2502 #define DEFINE_SCHED_CLASS(name) \ 2503 const struct sched_class name##_sched_class \ 2504 __aligned(__alignof__(struct sched_class)) \ 2505 __section("__" #name "_sched_class") 2506 2507 /* Defined in include/asm-generic/vmlinux.lds.h */ 2508 extern struct sched_class __sched_class_highest[]; 2509 extern struct sched_class __sched_class_lowest[]; 2510 2511 extern const struct sched_class stop_sched_class; 2512 extern const struct sched_class dl_sched_class; 2513 extern const struct sched_class rt_sched_class; 2514 extern const struct sched_class fair_sched_class; 2515 extern const struct sched_class idle_sched_class; 2516 2517 #ifdef CONFIG_SCHED_CLASS_EXT 2518 extern const struct sched_class ext_sched_class; 2519 2520 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */ 2521 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 2522 2523 #define scx_enabled() static_branch_unlikely(&__scx_ops_enabled) 2524 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 2525 #else /* !CONFIG_SCHED_CLASS_EXT */ 2526 #define scx_enabled() false 2527 #define scx_switched_all() false 2528 #endif /* !CONFIG_SCHED_CLASS_EXT */ 2529 2530 /* 2531 * Iterate only active classes. SCX can take over all fair tasks or be 2532 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2533 */ 2534 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2535 { 2536 class++; 2537 #ifdef CONFIG_SCHED_CLASS_EXT 2538 if (scx_switched_all() && class == &fair_sched_class) 2539 class++; 2540 if (!scx_enabled() && class == &ext_sched_class) 2541 class++; 2542 #endif 2543 return class; 2544 } 2545 2546 #define for_class_range(class, _from, _to) \ 2547 for (class = (_from); class < (_to); class++) 2548 2549 #define for_each_class(class) \ 2550 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2551 2552 #define for_active_class_range(class, _from, _to) \ 2553 for (class = (_from); class != (_to); class = next_active_class(class)) 2554 2555 #define for_each_active_class(class) \ 2556 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2557 2558 #define sched_class_above(_a, _b) ((_a) < (_b)) 2559 2560 static inline bool sched_stop_runnable(struct rq *rq) 2561 { 2562 return rq->stop && task_on_rq_queued(rq->stop); 2563 } 2564 2565 static inline bool sched_dl_runnable(struct rq *rq) 2566 { 2567 return rq->dl.dl_nr_running > 0; 2568 } 2569 2570 static inline bool sched_rt_runnable(struct rq *rq) 2571 { 2572 return rq->rt.rt_queued > 0; 2573 } 2574 2575 static inline bool sched_fair_runnable(struct rq *rq) 2576 { 2577 return rq->cfs.nr_running > 0; 2578 } 2579 2580 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2581 extern struct task_struct *pick_task_idle(struct rq *rq); 2582 2583 #define SCA_CHECK 0x01 2584 #define SCA_MIGRATE_DISABLE 0x02 2585 #define SCA_MIGRATE_ENABLE 0x04 2586 #define SCA_USER 0x08 2587 2588 #ifdef CONFIG_SMP 2589 2590 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2591 2592 extern void sched_balance_trigger(struct rq *rq); 2593 2594 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2595 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2596 2597 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2598 { 2599 /* When not in the task's cpumask, no point in looking further. */ 2600 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2601 return false; 2602 2603 /* Can @cpu run a user thread? */ 2604 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2605 return false; 2606 2607 return true; 2608 } 2609 2610 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2611 { 2612 /* 2613 * See do_set_cpus_allowed() above for the rcu_head usage. 2614 */ 2615 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2616 2617 return kmalloc_node(size, GFP_KERNEL, node); 2618 } 2619 2620 static inline struct task_struct *get_push_task(struct rq *rq) 2621 { 2622 struct task_struct *p = rq->donor; 2623 2624 lockdep_assert_rq_held(rq); 2625 2626 if (rq->push_busy) 2627 return NULL; 2628 2629 if (p->nr_cpus_allowed == 1) 2630 return NULL; 2631 2632 if (p->migration_disabled) 2633 return NULL; 2634 2635 rq->push_busy = true; 2636 return get_task_struct(p); 2637 } 2638 2639 extern int push_cpu_stop(void *arg); 2640 2641 #else /* !CONFIG_SMP: */ 2642 2643 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2644 { 2645 return true; 2646 } 2647 2648 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2649 struct affinity_context *ctx) 2650 { 2651 return set_cpus_allowed_ptr(p, ctx->new_mask); 2652 } 2653 2654 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2655 { 2656 return NULL; 2657 } 2658 2659 #endif /* !CONFIG_SMP */ 2660 2661 #ifdef CONFIG_CPU_IDLE 2662 2663 static inline void idle_set_state(struct rq *rq, 2664 struct cpuidle_state *idle_state) 2665 { 2666 rq->idle_state = idle_state; 2667 } 2668 2669 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2670 { 2671 SCHED_WARN_ON(!rcu_read_lock_held()); 2672 2673 return rq->idle_state; 2674 } 2675 2676 #else /* !CONFIG_CPU_IDLE: */ 2677 2678 static inline void idle_set_state(struct rq *rq, 2679 struct cpuidle_state *idle_state) 2680 { 2681 } 2682 2683 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2684 { 2685 return NULL; 2686 } 2687 2688 #endif /* !CONFIG_CPU_IDLE */ 2689 2690 extern void schedule_idle(void); 2691 asmlinkage void schedule_user(void); 2692 2693 extern void sysrq_sched_debug_show(void); 2694 extern void sched_init_granularity(void); 2695 extern void update_max_interval(void); 2696 2697 extern void init_sched_dl_class(void); 2698 extern void init_sched_rt_class(void); 2699 extern void init_sched_fair_class(void); 2700 2701 extern void resched_curr(struct rq *rq); 2702 extern void resched_curr_lazy(struct rq *rq); 2703 extern void resched_cpu(int cpu); 2704 2705 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2706 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2707 2708 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2709 2710 #define BW_SHIFT 20 2711 #define BW_UNIT (1 << BW_SHIFT) 2712 #define RATIO_SHIFT 8 2713 #define MAX_BW_BITS (64 - BW_SHIFT) 2714 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2715 2716 extern unsigned long to_ratio(u64 period, u64 runtime); 2717 2718 extern void init_entity_runnable_average(struct sched_entity *se); 2719 extern void post_init_entity_util_avg(struct task_struct *p); 2720 2721 #ifdef CONFIG_NO_HZ_FULL 2722 extern bool sched_can_stop_tick(struct rq *rq); 2723 extern int __init sched_tick_offload_init(void); 2724 2725 /* 2726 * Tick may be needed by tasks in the runqueue depending on their policy and 2727 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2728 * nohz mode if necessary. 2729 */ 2730 static inline void sched_update_tick_dependency(struct rq *rq) 2731 { 2732 int cpu = cpu_of(rq); 2733 2734 if (!tick_nohz_full_cpu(cpu)) 2735 return; 2736 2737 if (sched_can_stop_tick(rq)) 2738 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2739 else 2740 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2741 } 2742 #else /* !CONFIG_NO_HZ_FULL: */ 2743 static inline int sched_tick_offload_init(void) { return 0; } 2744 static inline void sched_update_tick_dependency(struct rq *rq) { } 2745 #endif /* !CONFIG_NO_HZ_FULL */ 2746 2747 static inline void add_nr_running(struct rq *rq, unsigned count) 2748 { 2749 unsigned prev_nr = rq->nr_running; 2750 2751 rq->nr_running = prev_nr + count; 2752 if (trace_sched_update_nr_running_tp_enabled()) { 2753 call_trace_sched_update_nr_running(rq, count); 2754 } 2755 2756 #ifdef CONFIG_SMP 2757 if (prev_nr < 2 && rq->nr_running >= 2) 2758 set_rd_overloaded(rq->rd, 1); 2759 #endif 2760 2761 sched_update_tick_dependency(rq); 2762 } 2763 2764 static inline void sub_nr_running(struct rq *rq, unsigned count) 2765 { 2766 rq->nr_running -= count; 2767 if (trace_sched_update_nr_running_tp_enabled()) { 2768 call_trace_sched_update_nr_running(rq, -count); 2769 } 2770 2771 /* Check if we still need preemption */ 2772 sched_update_tick_dependency(rq); 2773 } 2774 2775 static inline void __block_task(struct rq *rq, struct task_struct *p) 2776 { 2777 if (p->sched_contributes_to_load) 2778 rq->nr_uninterruptible++; 2779 2780 if (p->in_iowait) { 2781 atomic_inc(&rq->nr_iowait); 2782 delayacct_blkio_start(); 2783 } 2784 2785 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2786 2787 /* 2788 * The moment this write goes through, ttwu() can swoop in and migrate 2789 * this task, rendering our rq->__lock ineffective. 2790 * 2791 * __schedule() try_to_wake_up() 2792 * LOCK rq->__lock LOCK p->pi_lock 2793 * pick_next_task() 2794 * pick_next_task_fair() 2795 * pick_next_entity() 2796 * dequeue_entities() 2797 * __block_task() 2798 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2799 * break; 2800 * 2801 * ACQUIRE (after ctrl-dep) 2802 * 2803 * cpu = select_task_rq(); 2804 * set_task_cpu(p, cpu); 2805 * ttwu_queue() 2806 * ttwu_do_activate() 2807 * LOCK rq->__lock 2808 * activate_task() 2809 * STORE p->on_rq = 1 2810 * UNLOCK rq->__lock 2811 * 2812 * Callers must ensure to not reference @p after this -- we no longer 2813 * own it. 2814 */ 2815 smp_store_release(&p->on_rq, 0); 2816 } 2817 2818 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2819 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2820 2821 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2822 2823 #ifdef CONFIG_PREEMPT_RT 2824 # define SCHED_NR_MIGRATE_BREAK 8 2825 #else 2826 # define SCHED_NR_MIGRATE_BREAK 32 2827 #endif 2828 2829 extern const_debug unsigned int sysctl_sched_nr_migrate; 2830 extern const_debug unsigned int sysctl_sched_migration_cost; 2831 2832 extern unsigned int sysctl_sched_base_slice; 2833 2834 #ifdef CONFIG_SCHED_DEBUG 2835 extern int sysctl_resched_latency_warn_ms; 2836 extern int sysctl_resched_latency_warn_once; 2837 2838 extern unsigned int sysctl_sched_tunable_scaling; 2839 2840 extern unsigned int sysctl_numa_balancing_scan_delay; 2841 extern unsigned int sysctl_numa_balancing_scan_period_min; 2842 extern unsigned int sysctl_numa_balancing_scan_period_max; 2843 extern unsigned int sysctl_numa_balancing_scan_size; 2844 extern unsigned int sysctl_numa_balancing_hot_threshold; 2845 #endif 2846 2847 #ifdef CONFIG_SCHED_HRTICK 2848 2849 /* 2850 * Use hrtick when: 2851 * - enabled by features 2852 * - hrtimer is actually high res 2853 */ 2854 static inline int hrtick_enabled(struct rq *rq) 2855 { 2856 if (!cpu_active(cpu_of(rq))) 2857 return 0; 2858 return hrtimer_is_hres_active(&rq->hrtick_timer); 2859 } 2860 2861 static inline int hrtick_enabled_fair(struct rq *rq) 2862 { 2863 if (!sched_feat(HRTICK)) 2864 return 0; 2865 return hrtick_enabled(rq); 2866 } 2867 2868 static inline int hrtick_enabled_dl(struct rq *rq) 2869 { 2870 if (!sched_feat(HRTICK_DL)) 2871 return 0; 2872 return hrtick_enabled(rq); 2873 } 2874 2875 extern void hrtick_start(struct rq *rq, u64 delay); 2876 2877 #else /* !CONFIG_SCHED_HRTICK: */ 2878 2879 static inline int hrtick_enabled_fair(struct rq *rq) 2880 { 2881 return 0; 2882 } 2883 2884 static inline int hrtick_enabled_dl(struct rq *rq) 2885 { 2886 return 0; 2887 } 2888 2889 static inline int hrtick_enabled(struct rq *rq) 2890 { 2891 return 0; 2892 } 2893 2894 #endif /* !CONFIG_SCHED_HRTICK */ 2895 2896 #ifndef arch_scale_freq_tick 2897 static __always_inline void arch_scale_freq_tick(void) { } 2898 #endif 2899 2900 #ifndef arch_scale_freq_capacity 2901 /** 2902 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2903 * @cpu: the CPU in question. 2904 * 2905 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2906 * 2907 * f_curr 2908 * ------ * SCHED_CAPACITY_SCALE 2909 * f_max 2910 */ 2911 static __always_inline 2912 unsigned long arch_scale_freq_capacity(int cpu) 2913 { 2914 return SCHED_CAPACITY_SCALE; 2915 } 2916 #endif 2917 2918 #ifdef CONFIG_SCHED_DEBUG 2919 /* 2920 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2921 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2922 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2923 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2924 */ 2925 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2926 { 2927 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2928 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2929 #ifdef CONFIG_SMP 2930 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2931 #endif 2932 } 2933 #else 2934 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { } 2935 #endif 2936 2937 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2938 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2939 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2940 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2941 _lock; return _t; } 2942 2943 #ifdef CONFIG_SMP 2944 2945 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2946 { 2947 #ifdef CONFIG_SCHED_CORE 2948 /* 2949 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2950 * order by core-id first and cpu-id second. 2951 * 2952 * Notably: 2953 * 2954 * double_rq_lock(0,3); will take core-0, core-1 lock 2955 * double_rq_lock(1,2); will take core-1, core-0 lock 2956 * 2957 * when only cpu-id is considered. 2958 */ 2959 if (rq1->core->cpu < rq2->core->cpu) 2960 return true; 2961 if (rq1->core->cpu > rq2->core->cpu) 2962 return false; 2963 2964 /* 2965 * __sched_core_flip() relies on SMT having cpu-id lock order. 2966 */ 2967 #endif 2968 return rq1->cpu < rq2->cpu; 2969 } 2970 2971 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2972 2973 #ifdef CONFIG_PREEMPTION 2974 2975 /* 2976 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2977 * way at the expense of forcing extra atomic operations in all 2978 * invocations. This assures that the double_lock is acquired using the 2979 * same underlying policy as the spinlock_t on this architecture, which 2980 * reduces latency compared to the unfair variant below. However, it 2981 * also adds more overhead and therefore may reduce throughput. 2982 */ 2983 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2984 __releases(this_rq->lock) 2985 __acquires(busiest->lock) 2986 __acquires(this_rq->lock) 2987 { 2988 raw_spin_rq_unlock(this_rq); 2989 double_rq_lock(this_rq, busiest); 2990 2991 return 1; 2992 } 2993 2994 #else /* !CONFIG_PREEMPTION: */ 2995 /* 2996 * Unfair double_lock_balance: Optimizes throughput at the expense of 2997 * latency by eliminating extra atomic operations when the locks are 2998 * already in proper order on entry. This favors lower CPU-ids and will 2999 * grant the double lock to lower CPUs over higher ids under contention, 3000 * regardless of entry order into the function. 3001 */ 3002 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 3003 __releases(this_rq->lock) 3004 __acquires(busiest->lock) 3005 __acquires(this_rq->lock) 3006 { 3007 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 3008 likely(raw_spin_rq_trylock(busiest))) { 3009 double_rq_clock_clear_update(this_rq, busiest); 3010 return 0; 3011 } 3012 3013 if (rq_order_less(this_rq, busiest)) { 3014 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 3015 double_rq_clock_clear_update(this_rq, busiest); 3016 return 0; 3017 } 3018 3019 raw_spin_rq_unlock(this_rq); 3020 double_rq_lock(this_rq, busiest); 3021 3022 return 1; 3023 } 3024 3025 #endif /* !CONFIG_PREEMPTION */ 3026 3027 /* 3028 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 3029 */ 3030 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 3031 { 3032 lockdep_assert_irqs_disabled(); 3033 3034 return _double_lock_balance(this_rq, busiest); 3035 } 3036 3037 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3038 __releases(busiest->lock) 3039 { 3040 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3041 raw_spin_rq_unlock(busiest); 3042 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3043 } 3044 3045 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3046 { 3047 if (l1 > l2) 3048 swap(l1, l2); 3049 3050 spin_lock(l1); 3051 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3052 } 3053 3054 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3055 { 3056 if (l1 > l2) 3057 swap(l1, l2); 3058 3059 spin_lock_irq(l1); 3060 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3061 } 3062 3063 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3064 { 3065 if (l1 > l2) 3066 swap(l1, l2); 3067 3068 raw_spin_lock(l1); 3069 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3070 } 3071 3072 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3073 { 3074 raw_spin_unlock(l1); 3075 raw_spin_unlock(l2); 3076 } 3077 3078 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3079 double_raw_lock(_T->lock, _T->lock2), 3080 double_raw_unlock(_T->lock, _T->lock2)) 3081 3082 /* 3083 * double_rq_unlock - safely unlock two runqueues 3084 * 3085 * Note this does not restore interrupts like task_rq_unlock, 3086 * you need to do so manually after calling. 3087 */ 3088 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3089 __releases(rq1->lock) 3090 __releases(rq2->lock) 3091 { 3092 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3093 raw_spin_rq_unlock(rq2); 3094 else 3095 __release(rq2->lock); 3096 raw_spin_rq_unlock(rq1); 3097 } 3098 3099 extern void set_rq_online (struct rq *rq); 3100 extern void set_rq_offline(struct rq *rq); 3101 3102 extern bool sched_smp_initialized; 3103 3104 #else /* !CONFIG_SMP: */ 3105 3106 /* 3107 * double_rq_lock - safely lock two runqueues 3108 * 3109 * Note this does not disable interrupts like task_rq_lock, 3110 * you need to do so manually before calling. 3111 */ 3112 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 3113 __acquires(rq1->lock) 3114 __acquires(rq2->lock) 3115 { 3116 WARN_ON_ONCE(!irqs_disabled()); 3117 WARN_ON_ONCE(rq1 != rq2); 3118 raw_spin_rq_lock(rq1); 3119 __acquire(rq2->lock); /* Fake it out ;) */ 3120 double_rq_clock_clear_update(rq1, rq2); 3121 } 3122 3123 /* 3124 * double_rq_unlock - safely unlock two runqueues 3125 * 3126 * Note this does not restore interrupts like task_rq_unlock, 3127 * you need to do so manually after calling. 3128 */ 3129 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3130 __releases(rq1->lock) 3131 __releases(rq2->lock) 3132 { 3133 WARN_ON_ONCE(rq1 != rq2); 3134 raw_spin_rq_unlock(rq1); 3135 __release(rq2->lock); 3136 } 3137 3138 #endif /* !CONFIG_SMP */ 3139 3140 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3141 double_rq_lock(_T->lock, _T->lock2), 3142 double_rq_unlock(_T->lock, _T->lock2)) 3143 3144 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3145 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3146 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3147 3148 #ifdef CONFIG_SCHED_DEBUG 3149 extern bool sched_debug_verbose; 3150 3151 extern void print_cfs_stats(struct seq_file *m, int cpu); 3152 extern void print_rt_stats(struct seq_file *m, int cpu); 3153 extern void print_dl_stats(struct seq_file *m, int cpu); 3154 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3155 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3156 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3157 3158 extern void resched_latency_warn(int cpu, u64 latency); 3159 # ifdef CONFIG_NUMA_BALANCING 3160 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3161 extern void 3162 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3163 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3164 # endif /* CONFIG_NUMA_BALANCING */ 3165 #else /* !CONFIG_SCHED_DEBUG: */ 3166 static inline void resched_latency_warn(int cpu, u64 latency) { } 3167 #endif /* !CONFIG_SCHED_DEBUG */ 3168 3169 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3170 extern void init_rt_rq(struct rt_rq *rt_rq); 3171 extern void init_dl_rq(struct dl_rq *dl_rq); 3172 3173 extern void cfs_bandwidth_usage_inc(void); 3174 extern void cfs_bandwidth_usage_dec(void); 3175 3176 #ifdef CONFIG_NO_HZ_COMMON 3177 3178 #define NOHZ_BALANCE_KICK_BIT 0 3179 #define NOHZ_STATS_KICK_BIT 1 3180 #define NOHZ_NEWILB_KICK_BIT 2 3181 #define NOHZ_NEXT_KICK_BIT 3 3182 3183 /* Run sched_balance_domains() */ 3184 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3185 /* Update blocked load */ 3186 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3187 /* Update blocked load when entering idle */ 3188 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3189 /* Update nohz.next_balance */ 3190 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3191 3192 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3193 3194 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3195 3196 extern void nohz_balance_exit_idle(struct rq *rq); 3197 #else /* !CONFIG_NO_HZ_COMMON: */ 3198 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3199 #endif /* !CONFIG_NO_HZ_COMMON */ 3200 3201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 3202 extern void nohz_run_idle_balance(int cpu); 3203 #else 3204 static inline void nohz_run_idle_balance(int cpu) { } 3205 #endif 3206 3207 #include "stats.h" 3208 3209 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3210 3211 extern void __sched_core_account_forceidle(struct rq *rq); 3212 3213 static inline void sched_core_account_forceidle(struct rq *rq) 3214 { 3215 if (schedstat_enabled()) 3216 __sched_core_account_forceidle(rq); 3217 } 3218 3219 extern void __sched_core_tick(struct rq *rq); 3220 3221 static inline void sched_core_tick(struct rq *rq) 3222 { 3223 if (sched_core_enabled(rq) && schedstat_enabled()) 3224 __sched_core_tick(rq); 3225 } 3226 3227 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3228 3229 static inline void sched_core_account_forceidle(struct rq *rq) { } 3230 3231 static inline void sched_core_tick(struct rq *rq) { } 3232 3233 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3234 3235 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3236 3237 struct irqtime { 3238 u64 total; 3239 u64 tick_delta; 3240 u64 irq_start_time; 3241 struct u64_stats_sync sync; 3242 }; 3243 3244 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3245 3246 /* 3247 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3248 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3249 * and never move forward. 3250 */ 3251 static inline u64 irq_time_read(int cpu) 3252 { 3253 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3254 unsigned int seq; 3255 u64 total; 3256 3257 do { 3258 seq = __u64_stats_fetch_begin(&irqtime->sync); 3259 total = irqtime->total; 3260 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3261 3262 return total; 3263 } 3264 3265 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3266 3267 #ifdef CONFIG_CPU_FREQ 3268 3269 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3270 3271 /** 3272 * cpufreq_update_util - Take a note about CPU utilization changes. 3273 * @rq: Runqueue to carry out the update for. 3274 * @flags: Update reason flags. 3275 * 3276 * This function is called by the scheduler on the CPU whose utilization is 3277 * being updated. 3278 * 3279 * It can only be called from RCU-sched read-side critical sections. 3280 * 3281 * The way cpufreq is currently arranged requires it to evaluate the CPU 3282 * performance state (frequency/voltage) on a regular basis to prevent it from 3283 * being stuck in a completely inadequate performance level for too long. 3284 * That is not guaranteed to happen if the updates are only triggered from CFS 3285 * and DL, though, because they may not be coming in if only RT tasks are 3286 * active all the time (or there are RT tasks only). 3287 * 3288 * As a workaround for that issue, this function is called periodically by the 3289 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3290 * but that really is a band-aid. Going forward it should be replaced with 3291 * solutions targeted more specifically at RT tasks. 3292 */ 3293 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3294 { 3295 struct update_util_data *data; 3296 3297 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3298 cpu_of(rq))); 3299 if (data) 3300 data->func(data, rq_clock(rq), flags); 3301 } 3302 #else /* !CONFIG_CPU_FREQ: */ 3303 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3304 #endif /* !CONFIG_CPU_FREQ */ 3305 3306 #ifdef arch_scale_freq_capacity 3307 # ifndef arch_scale_freq_invariant 3308 # define arch_scale_freq_invariant() true 3309 # endif 3310 #else 3311 # define arch_scale_freq_invariant() false 3312 #endif 3313 3314 #ifdef CONFIG_SMP 3315 3316 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3317 unsigned long *min, 3318 unsigned long *max); 3319 3320 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3321 unsigned long min, 3322 unsigned long max); 3323 3324 3325 /* 3326 * Verify the fitness of task @p to run on @cpu taking into account the 3327 * CPU original capacity and the runtime/deadline ratio of the task. 3328 * 3329 * The function will return true if the original capacity of @cpu is 3330 * greater than or equal to task's deadline density right shifted by 3331 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3332 */ 3333 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3334 { 3335 unsigned long cap = arch_scale_cpu_capacity(cpu); 3336 3337 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3338 } 3339 3340 static inline unsigned long cpu_bw_dl(struct rq *rq) 3341 { 3342 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3343 } 3344 3345 static inline unsigned long cpu_util_dl(struct rq *rq) 3346 { 3347 return READ_ONCE(rq->avg_dl.util_avg); 3348 } 3349 3350 3351 extern unsigned long cpu_util_cfs(int cpu); 3352 extern unsigned long cpu_util_cfs_boost(int cpu); 3353 3354 static inline unsigned long cpu_util_rt(struct rq *rq) 3355 { 3356 return READ_ONCE(rq->avg_rt.util_avg); 3357 } 3358 3359 #else /* !CONFIG_SMP */ 3360 static inline bool update_other_load_avgs(struct rq *rq) { return false; } 3361 #endif /* CONFIG_SMP */ 3362 3363 #ifdef CONFIG_UCLAMP_TASK 3364 3365 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3366 3367 static inline unsigned long uclamp_rq_get(struct rq *rq, 3368 enum uclamp_id clamp_id) 3369 { 3370 return READ_ONCE(rq->uclamp[clamp_id].value); 3371 } 3372 3373 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3374 unsigned int value) 3375 { 3376 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3377 } 3378 3379 static inline bool uclamp_rq_is_idle(struct rq *rq) 3380 { 3381 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3382 } 3383 3384 /* Is the rq being capped/throttled by uclamp_max? */ 3385 static inline bool uclamp_rq_is_capped(struct rq *rq) 3386 { 3387 unsigned long rq_util; 3388 unsigned long max_util; 3389 3390 if (!static_branch_likely(&sched_uclamp_used)) 3391 return false; 3392 3393 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3394 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3395 3396 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3397 } 3398 3399 /* 3400 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3401 * by default in the fast path and only gets turned on once userspace performs 3402 * an operation that requires it. 3403 * 3404 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3405 * hence is active. 3406 */ 3407 static inline bool uclamp_is_used(void) 3408 { 3409 return static_branch_likely(&sched_uclamp_used); 3410 } 3411 3412 #define for_each_clamp_id(clamp_id) \ 3413 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3414 3415 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3416 3417 3418 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3419 { 3420 if (clamp_id == UCLAMP_MIN) 3421 return 0; 3422 return SCHED_CAPACITY_SCALE; 3423 } 3424 3425 /* Integer rounded range for each bucket */ 3426 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3427 3428 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3429 { 3430 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3431 } 3432 3433 static inline void 3434 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3435 { 3436 uc_se->value = value; 3437 uc_se->bucket_id = uclamp_bucket_id(value); 3438 uc_se->user_defined = user_defined; 3439 } 3440 3441 #else /* !CONFIG_UCLAMP_TASK: */ 3442 3443 static inline unsigned long 3444 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3445 { 3446 if (clamp_id == UCLAMP_MIN) 3447 return 0; 3448 3449 return SCHED_CAPACITY_SCALE; 3450 } 3451 3452 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3453 3454 static inline bool uclamp_is_used(void) 3455 { 3456 return false; 3457 } 3458 3459 static inline unsigned long 3460 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3461 { 3462 if (clamp_id == UCLAMP_MIN) 3463 return 0; 3464 3465 return SCHED_CAPACITY_SCALE; 3466 } 3467 3468 static inline void 3469 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3470 { 3471 } 3472 3473 static inline bool uclamp_rq_is_idle(struct rq *rq) 3474 { 3475 return false; 3476 } 3477 3478 #endif /* !CONFIG_UCLAMP_TASK */ 3479 3480 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3481 3482 static inline unsigned long cpu_util_irq(struct rq *rq) 3483 { 3484 return READ_ONCE(rq->avg_irq.util_avg); 3485 } 3486 3487 static inline 3488 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3489 { 3490 util *= (max - irq); 3491 util /= max; 3492 3493 return util; 3494 3495 } 3496 3497 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3498 3499 static inline unsigned long cpu_util_irq(struct rq *rq) 3500 { 3501 return 0; 3502 } 3503 3504 static inline 3505 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3506 { 3507 return util; 3508 } 3509 3510 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3511 3512 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3513 3514 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3515 3516 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3517 3518 static inline bool sched_energy_enabled(void) 3519 { 3520 return static_branch_unlikely(&sched_energy_present); 3521 } 3522 3523 extern struct cpufreq_governor schedutil_gov; 3524 3525 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3526 3527 #define perf_domain_span(pd) NULL 3528 3529 static inline bool sched_energy_enabled(void) { return false; } 3530 3531 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3532 3533 #ifdef CONFIG_MEMBARRIER 3534 3535 /* 3536 * The scheduler provides memory barriers required by membarrier between: 3537 * - prior user-space memory accesses and store to rq->membarrier_state, 3538 * - store to rq->membarrier_state and following user-space memory accesses. 3539 * In the same way it provides those guarantees around store to rq->curr. 3540 */ 3541 static inline void membarrier_switch_mm(struct rq *rq, 3542 struct mm_struct *prev_mm, 3543 struct mm_struct *next_mm) 3544 { 3545 int membarrier_state; 3546 3547 if (prev_mm == next_mm) 3548 return; 3549 3550 membarrier_state = atomic_read(&next_mm->membarrier_state); 3551 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3552 return; 3553 3554 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3555 } 3556 3557 #else /* !CONFIG_MEMBARRIER :*/ 3558 3559 static inline void membarrier_switch_mm(struct rq *rq, 3560 struct mm_struct *prev_mm, 3561 struct mm_struct *next_mm) 3562 { 3563 } 3564 3565 #endif /* !CONFIG_MEMBARRIER */ 3566 3567 #ifdef CONFIG_SMP 3568 static inline bool is_per_cpu_kthread(struct task_struct *p) 3569 { 3570 if (!(p->flags & PF_KTHREAD)) 3571 return false; 3572 3573 if (p->nr_cpus_allowed != 1) 3574 return false; 3575 3576 return true; 3577 } 3578 #endif 3579 3580 extern void swake_up_all_locked(struct swait_queue_head *q); 3581 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3582 3583 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3584 3585 #ifdef CONFIG_PREEMPT_DYNAMIC 3586 extern int preempt_dynamic_mode; 3587 extern int sched_dynamic_mode(const char *str); 3588 extern void sched_dynamic_update(int mode); 3589 #endif 3590 3591 #ifdef CONFIG_SCHED_MM_CID 3592 3593 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3594 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3595 3596 extern raw_spinlock_t cid_lock; 3597 extern int use_cid_lock; 3598 3599 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3600 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3601 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3602 extern void init_sched_mm_cid(struct task_struct *t); 3603 3604 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3605 { 3606 if (cid < 0) 3607 return; 3608 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3609 } 3610 3611 /* 3612 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3613 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3614 * be held to transition to other states. 3615 * 3616 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3617 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3618 */ 3619 static inline void mm_cid_put_lazy(struct task_struct *t) 3620 { 3621 struct mm_struct *mm = t->mm; 3622 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3623 int cid; 3624 3625 lockdep_assert_irqs_disabled(); 3626 cid = __this_cpu_read(pcpu_cid->cid); 3627 if (!mm_cid_is_lazy_put(cid) || 3628 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3629 return; 3630 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3631 } 3632 3633 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3634 { 3635 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3636 int cid, res; 3637 3638 lockdep_assert_irqs_disabled(); 3639 cid = __this_cpu_read(pcpu_cid->cid); 3640 for (;;) { 3641 if (mm_cid_is_unset(cid)) 3642 return MM_CID_UNSET; 3643 /* 3644 * Attempt transition from valid or lazy-put to unset. 3645 */ 3646 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3647 if (res == cid) 3648 break; 3649 cid = res; 3650 } 3651 return cid; 3652 } 3653 3654 static inline void mm_cid_put(struct mm_struct *mm) 3655 { 3656 int cid; 3657 3658 lockdep_assert_irqs_disabled(); 3659 cid = mm_cid_pcpu_unset(mm); 3660 if (cid == MM_CID_UNSET) 3661 return; 3662 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3663 } 3664 3665 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3666 { 3667 struct cpumask *cidmask = mm_cidmask(mm); 3668 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3669 int cid = __this_cpu_read(pcpu_cid->recent_cid); 3670 3671 /* Try to re-use recent cid. This improves cache locality. */ 3672 if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask)) 3673 return cid; 3674 /* 3675 * Expand cid allocation if the maximum number of concurrency 3676 * IDs allocated (max_nr_cid) is below the number cpus allowed 3677 * and number of threads. Expanding cid allocation as much as 3678 * possible improves cache locality. 3679 */ 3680 cid = atomic_read(&mm->max_nr_cid); 3681 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3682 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3683 continue; 3684 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3685 return cid; 3686 } 3687 /* 3688 * Find the first available concurrency id. 3689 * Retry finding first zero bit if the mask is temporarily 3690 * filled. This only happens during concurrent remote-clear 3691 * which owns a cid without holding a rq lock. 3692 */ 3693 for (;;) { 3694 cid = cpumask_first_zero(cidmask); 3695 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3696 break; 3697 cpu_relax(); 3698 } 3699 if (cpumask_test_and_set_cpu(cid, cidmask)) 3700 return -1; 3701 3702 return cid; 3703 } 3704 3705 /* 3706 * Save a snapshot of the current runqueue time of this cpu 3707 * with the per-cpu cid value, allowing to estimate how recently it was used. 3708 */ 3709 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3710 { 3711 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3712 3713 lockdep_assert_rq_held(rq); 3714 WRITE_ONCE(pcpu_cid->time, rq->clock); 3715 } 3716 3717 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3718 struct mm_struct *mm) 3719 { 3720 int cid; 3721 3722 /* 3723 * All allocations (even those using the cid_lock) are lock-free. If 3724 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3725 * guarantee forward progress. 3726 */ 3727 if (!READ_ONCE(use_cid_lock)) { 3728 cid = __mm_cid_try_get(t, mm); 3729 if (cid >= 0) 3730 goto end; 3731 raw_spin_lock(&cid_lock); 3732 } else { 3733 raw_spin_lock(&cid_lock); 3734 cid = __mm_cid_try_get(t, mm); 3735 if (cid >= 0) 3736 goto unlock; 3737 } 3738 3739 /* 3740 * cid concurrently allocated. Retry while forcing following 3741 * allocations to use the cid_lock to ensure forward progress. 3742 */ 3743 WRITE_ONCE(use_cid_lock, 1); 3744 /* 3745 * Set use_cid_lock before allocation. Only care about program order 3746 * because this is only required for forward progress. 3747 */ 3748 barrier(); 3749 /* 3750 * Retry until it succeeds. It is guaranteed to eventually succeed once 3751 * all newcoming allocations observe the use_cid_lock flag set. 3752 */ 3753 do { 3754 cid = __mm_cid_try_get(t, mm); 3755 cpu_relax(); 3756 } while (cid < 0); 3757 /* 3758 * Allocate before clearing use_cid_lock. Only care about 3759 * program order because this is for forward progress. 3760 */ 3761 barrier(); 3762 WRITE_ONCE(use_cid_lock, 0); 3763 unlock: 3764 raw_spin_unlock(&cid_lock); 3765 end: 3766 mm_cid_snapshot_time(rq, mm); 3767 3768 return cid; 3769 } 3770 3771 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3772 struct mm_struct *mm) 3773 { 3774 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3775 struct cpumask *cpumask; 3776 int cid; 3777 3778 lockdep_assert_rq_held(rq); 3779 cpumask = mm_cidmask(mm); 3780 cid = __this_cpu_read(pcpu_cid->cid); 3781 if (mm_cid_is_valid(cid)) { 3782 mm_cid_snapshot_time(rq, mm); 3783 return cid; 3784 } 3785 if (mm_cid_is_lazy_put(cid)) { 3786 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3787 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3788 } 3789 cid = __mm_cid_get(rq, t, mm); 3790 __this_cpu_write(pcpu_cid->cid, cid); 3791 __this_cpu_write(pcpu_cid->recent_cid, cid); 3792 3793 return cid; 3794 } 3795 3796 static inline void switch_mm_cid(struct rq *rq, 3797 struct task_struct *prev, 3798 struct task_struct *next) 3799 { 3800 /* 3801 * Provide a memory barrier between rq->curr store and load of 3802 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3803 * 3804 * Should be adapted if context_switch() is modified. 3805 */ 3806 if (!next->mm) { // to kernel 3807 /* 3808 * user -> kernel transition does not guarantee a barrier, but 3809 * we can use the fact that it performs an atomic operation in 3810 * mmgrab(). 3811 */ 3812 if (prev->mm) // from user 3813 smp_mb__after_mmgrab(); 3814 /* 3815 * kernel -> kernel transition does not change rq->curr->mm 3816 * state. It stays NULL. 3817 */ 3818 } else { // to user 3819 /* 3820 * kernel -> user transition does not provide a barrier 3821 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3822 * Provide it here. 3823 */ 3824 if (!prev->mm) { // from kernel 3825 smp_mb(); 3826 } else { // from user 3827 /* 3828 * user->user transition relies on an implicit 3829 * memory barrier in switch_mm() when 3830 * current->mm changes. If the architecture 3831 * switch_mm() does not have an implicit memory 3832 * barrier, it is emitted here. If current->mm 3833 * is unchanged, no barrier is needed. 3834 */ 3835 smp_mb__after_switch_mm(); 3836 } 3837 } 3838 if (prev->mm_cid_active) { 3839 mm_cid_snapshot_time(rq, prev->mm); 3840 mm_cid_put_lazy(prev); 3841 prev->mm_cid = -1; 3842 } 3843 if (next->mm_cid_active) 3844 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3845 } 3846 3847 #else /* !CONFIG_SCHED_MM_CID: */ 3848 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3849 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3850 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3851 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3852 static inline void init_sched_mm_cid(struct task_struct *t) { } 3853 #endif /* !CONFIG_SCHED_MM_CID */ 3854 3855 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3856 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3857 #ifdef CONFIG_SMP 3858 static inline 3859 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3860 { 3861 lockdep_assert_rq_held(src_rq); 3862 lockdep_assert_rq_held(dst_rq); 3863 3864 deactivate_task(src_rq, task, 0); 3865 set_task_cpu(task, dst_rq->cpu); 3866 activate_task(dst_rq, task, 0); 3867 } 3868 3869 static inline 3870 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3871 { 3872 if (!task_on_cpu(rq, p) && 3873 cpumask_test_cpu(cpu, &p->cpus_mask)) 3874 return true; 3875 3876 return false; 3877 } 3878 #endif 3879 3880 #ifdef CONFIG_RT_MUTEXES 3881 3882 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3883 { 3884 if (pi_task) 3885 prio = min(prio, pi_task->prio); 3886 3887 return prio; 3888 } 3889 3890 static inline int rt_effective_prio(struct task_struct *p, int prio) 3891 { 3892 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3893 3894 return __rt_effective_prio(pi_task, prio); 3895 } 3896 3897 #else /* !CONFIG_RT_MUTEXES: */ 3898 3899 static inline int rt_effective_prio(struct task_struct *p, int prio) 3900 { 3901 return prio; 3902 } 3903 3904 #endif /* !CONFIG_RT_MUTEXES */ 3905 3906 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3907 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3908 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3909 extern void set_load_weight(struct task_struct *p, bool update_load); 3910 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3911 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3912 3913 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3914 const struct sched_class *prev_class); 3915 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3916 const struct sched_class *prev_class, 3917 int oldprio); 3918 3919 #ifdef CONFIG_SMP 3920 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3921 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3922 #else 3923 3924 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 3925 { 3926 return NULL; 3927 } 3928 3929 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 3930 { 3931 } 3932 3933 #endif 3934 3935 #ifdef CONFIG_SCHED_CLASS_EXT 3936 /* 3937 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3938 * and establish invariants. 3939 */ 3940 struct sched_enq_and_set_ctx { 3941 struct task_struct *p; 3942 int queue_flags; 3943 bool queued; 3944 bool running; 3945 }; 3946 3947 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3948 struct sched_enq_and_set_ctx *ctx); 3949 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3950 3951 #endif /* CONFIG_SCHED_CLASS_EXT */ 3952 3953 #include "ext.h" 3954 3955 #endif /* _KERNEL_SCHED_SCHED_H */ 3956