xref: /linux/kernel/sched/sched.h (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 #include <linux/sched.h>
4 #include <linux/sched/autogroup.h>
5 #include <linux/sched/sysctl.h>
6 #include <linux/sched/topology.h>
7 #include <linux/sched/rt.h>
8 #include <linux/sched/deadline.h>
9 #include <linux/sched/clock.h>
10 #include <linux/sched/wake_q.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/cpufreq.h>
15 #include <linux/sched/stat.h>
16 #include <linux/sched/nohz.h>
17 #include <linux/sched/debug.h>
18 #include <linux/sched/hotplug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/sched/init.h>
23 
24 #include <linux/u64_stats_sync.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/binfmts.h>
27 #include <linux/mutex.h>
28 #include <linux/spinlock.h>
29 #include <linux/stop_machine.h>
30 #include <linux/irq_work.h>
31 #include <linux/tick.h>
32 #include <linux/slab.h>
33 #include <linux/cgroup.h>
34 
35 #ifdef CONFIG_PARAVIRT
36 #include <asm/paravirt.h>
37 #endif
38 
39 #include "cpupri.h"
40 #include "cpudeadline.h"
41 
42 #ifdef CONFIG_SCHED_DEBUG
43 # define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
44 #else
45 # define SCHED_WARN_ON(x)	({ (void)(x), 0; })
46 #endif
47 
48 struct rq;
49 struct cpuidle_state;
50 
51 /* task_struct::on_rq states: */
52 #define TASK_ON_RQ_QUEUED	1
53 #define TASK_ON_RQ_MIGRATING	2
54 
55 extern __read_mostly int scheduler_running;
56 
57 extern unsigned long calc_load_update;
58 extern atomic_long_t calc_load_tasks;
59 
60 extern void calc_global_load_tick(struct rq *this_rq);
61 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
62 
63 #ifdef CONFIG_SMP
64 extern void cpu_load_update_active(struct rq *this_rq);
65 #else
66 static inline void cpu_load_update_active(struct rq *this_rq) { }
67 #endif
68 
69 /*
70  * Helpers for converting nanosecond timing to jiffy resolution
71  */
72 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
73 
74 /*
75  * Increase resolution of nice-level calculations for 64-bit architectures.
76  * The extra resolution improves shares distribution and load balancing of
77  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
78  * hierarchies, especially on larger systems. This is not a user-visible change
79  * and does not change the user-interface for setting shares/weights.
80  *
81  * We increase resolution only if we have enough bits to allow this increased
82  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
83  * pretty high and the returns do not justify the increased costs.
84  *
85  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
86  * increase coverage and consistency always enable it on 64bit platforms.
87  */
88 #ifdef CONFIG_64BIT
89 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
90 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
91 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
92 #else
93 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
94 # define scale_load(w)		(w)
95 # define scale_load_down(w)	(w)
96 #endif
97 
98 /*
99  * Task weight (visible to users) and its load (invisible to users) have
100  * independent resolution, but they should be well calibrated. We use
101  * scale_load() and scale_load_down(w) to convert between them. The
102  * following must be true:
103  *
104  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
105  *
106  */
107 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
108 
109 /*
110  * Single value that decides SCHED_DEADLINE internal math precision.
111  * 10 -> just above 1us
112  * 9  -> just above 0.5us
113  */
114 #define DL_SCALE (10)
115 
116 /*
117  * These are the 'tuning knobs' of the scheduler:
118  */
119 
120 /*
121  * single value that denotes runtime == period, ie unlimited time.
122  */
123 #define RUNTIME_INF	((u64)~0ULL)
124 
125 static inline int idle_policy(int policy)
126 {
127 	return policy == SCHED_IDLE;
128 }
129 static inline int fair_policy(int policy)
130 {
131 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
132 }
133 
134 static inline int rt_policy(int policy)
135 {
136 	return policy == SCHED_FIFO || policy == SCHED_RR;
137 }
138 
139 static inline int dl_policy(int policy)
140 {
141 	return policy == SCHED_DEADLINE;
142 }
143 static inline bool valid_policy(int policy)
144 {
145 	return idle_policy(policy) || fair_policy(policy) ||
146 		rt_policy(policy) || dl_policy(policy);
147 }
148 
149 static inline int task_has_rt_policy(struct task_struct *p)
150 {
151 	return rt_policy(p->policy);
152 }
153 
154 static inline int task_has_dl_policy(struct task_struct *p)
155 {
156 	return dl_policy(p->policy);
157 }
158 
159 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
160 
161 /*
162  * !! For sched_setattr_nocheck() (kernel) only !!
163  *
164  * This is actually gross. :(
165  *
166  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
167  * tasks, but still be able to sleep. We need this on platforms that cannot
168  * atomically change clock frequency. Remove once fast switching will be
169  * available on such platforms.
170  *
171  * SUGOV stands for SchedUtil GOVernor.
172  */
173 #define SCHED_FLAG_SUGOV	0x10000000
174 
175 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
176 {
177 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
178 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
179 #else
180 	return false;
181 #endif
182 }
183 
184 /*
185  * Tells if entity @a should preempt entity @b.
186  */
187 static inline bool
188 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
189 {
190 	return dl_entity_is_special(a) ||
191 	       dl_time_before(a->deadline, b->deadline);
192 }
193 
194 /*
195  * This is the priority-queue data structure of the RT scheduling class:
196  */
197 struct rt_prio_array {
198 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
199 	struct list_head queue[MAX_RT_PRIO];
200 };
201 
202 struct rt_bandwidth {
203 	/* nests inside the rq lock: */
204 	raw_spinlock_t		rt_runtime_lock;
205 	ktime_t			rt_period;
206 	u64			rt_runtime;
207 	struct hrtimer		rt_period_timer;
208 	unsigned int		rt_period_active;
209 };
210 
211 void __dl_clear_params(struct task_struct *p);
212 
213 /*
214  * To keep the bandwidth of -deadline tasks and groups under control
215  * we need some place where:
216  *  - store the maximum -deadline bandwidth of the system (the group);
217  *  - cache the fraction of that bandwidth that is currently allocated.
218  *
219  * This is all done in the data structure below. It is similar to the
220  * one used for RT-throttling (rt_bandwidth), with the main difference
221  * that, since here we are only interested in admission control, we
222  * do not decrease any runtime while the group "executes", neither we
223  * need a timer to replenish it.
224  *
225  * With respect to SMP, the bandwidth is given on a per-CPU basis,
226  * meaning that:
227  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
228  *  - dl_total_bw array contains, in the i-eth element, the currently
229  *    allocated bandwidth on the i-eth CPU.
230  * Moreover, groups consume bandwidth on each CPU, while tasks only
231  * consume bandwidth on the CPU they're running on.
232  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
233  * that will be shown the next time the proc or cgroup controls will
234  * be red. It on its turn can be changed by writing on its own
235  * control.
236  */
237 struct dl_bandwidth {
238 	raw_spinlock_t dl_runtime_lock;
239 	u64 dl_runtime;
240 	u64 dl_period;
241 };
242 
243 static inline int dl_bandwidth_enabled(void)
244 {
245 	return sysctl_sched_rt_runtime >= 0;
246 }
247 
248 struct dl_bw {
249 	raw_spinlock_t lock;
250 	u64 bw, total_bw;
251 };
252 
253 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
254 
255 static inline
256 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
257 {
258 	dl_b->total_bw -= tsk_bw;
259 	__dl_update(dl_b, (s32)tsk_bw / cpus);
260 }
261 
262 static inline
263 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
264 {
265 	dl_b->total_bw += tsk_bw;
266 	__dl_update(dl_b, -((s32)tsk_bw / cpus));
267 }
268 
269 static inline
270 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
271 {
272 	return dl_b->bw != -1 &&
273 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
274 }
275 
276 void dl_change_utilization(struct task_struct *p, u64 new_bw);
277 extern void init_dl_bw(struct dl_bw *dl_b);
278 extern int sched_dl_global_validate(void);
279 extern void sched_dl_do_global(void);
280 extern int sched_dl_overflow(struct task_struct *p, int policy,
281 			     const struct sched_attr *attr);
282 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
283 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
284 extern bool __checkparam_dl(const struct sched_attr *attr);
285 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
286 extern int dl_task_can_attach(struct task_struct *p,
287 			      const struct cpumask *cs_cpus_allowed);
288 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
289 					const struct cpumask *trial);
290 extern bool dl_cpu_busy(unsigned int cpu);
291 
292 #ifdef CONFIG_CGROUP_SCHED
293 
294 #include <linux/cgroup.h>
295 
296 struct cfs_rq;
297 struct rt_rq;
298 
299 extern struct list_head task_groups;
300 
301 struct cfs_bandwidth {
302 #ifdef CONFIG_CFS_BANDWIDTH
303 	raw_spinlock_t lock;
304 	ktime_t period;
305 	u64 quota, runtime;
306 	s64 hierarchical_quota;
307 	u64 runtime_expires;
308 
309 	int idle, period_active;
310 	struct hrtimer period_timer, slack_timer;
311 	struct list_head throttled_cfs_rq;
312 
313 	/* statistics */
314 	int nr_periods, nr_throttled;
315 	u64 throttled_time;
316 #endif
317 };
318 
319 /* task group related information */
320 struct task_group {
321 	struct cgroup_subsys_state css;
322 
323 #ifdef CONFIG_FAIR_GROUP_SCHED
324 	/* schedulable entities of this group on each cpu */
325 	struct sched_entity **se;
326 	/* runqueue "owned" by this group on each cpu */
327 	struct cfs_rq **cfs_rq;
328 	unsigned long shares;
329 
330 #ifdef	CONFIG_SMP
331 	/*
332 	 * load_avg can be heavily contended at clock tick time, so put
333 	 * it in its own cacheline separated from the fields above which
334 	 * will also be accessed at each tick.
335 	 */
336 	atomic_long_t load_avg ____cacheline_aligned;
337 #endif
338 #endif
339 
340 #ifdef CONFIG_RT_GROUP_SCHED
341 	struct sched_rt_entity **rt_se;
342 	struct rt_rq **rt_rq;
343 
344 	struct rt_bandwidth rt_bandwidth;
345 #endif
346 
347 	struct rcu_head rcu;
348 	struct list_head list;
349 
350 	struct task_group *parent;
351 	struct list_head siblings;
352 	struct list_head children;
353 
354 #ifdef CONFIG_SCHED_AUTOGROUP
355 	struct autogroup *autogroup;
356 #endif
357 
358 	struct cfs_bandwidth cfs_bandwidth;
359 };
360 
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
363 
364 /*
365  * A weight of 0 or 1 can cause arithmetics problems.
366  * A weight of a cfs_rq is the sum of weights of which entities
367  * are queued on this cfs_rq, so a weight of a entity should not be
368  * too large, so as the shares value of a task group.
369  * (The default weight is 1024 - so there's no practical
370  *  limitation from this.)
371  */
372 #define MIN_SHARES	(1UL <<  1)
373 #define MAX_SHARES	(1UL << 18)
374 #endif
375 
376 typedef int (*tg_visitor)(struct task_group *, void *);
377 
378 extern int walk_tg_tree_from(struct task_group *from,
379 			     tg_visitor down, tg_visitor up, void *data);
380 
381 /*
382  * Iterate the full tree, calling @down when first entering a node and @up when
383  * leaving it for the final time.
384  *
385  * Caller must hold rcu_lock or sufficient equivalent.
386  */
387 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
388 {
389 	return walk_tg_tree_from(&root_task_group, down, up, data);
390 }
391 
392 extern int tg_nop(struct task_group *tg, void *data);
393 
394 extern void free_fair_sched_group(struct task_group *tg);
395 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
396 extern void online_fair_sched_group(struct task_group *tg);
397 extern void unregister_fair_sched_group(struct task_group *tg);
398 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
399 			struct sched_entity *se, int cpu,
400 			struct sched_entity *parent);
401 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
402 
403 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
404 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
405 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
406 
407 extern void free_rt_sched_group(struct task_group *tg);
408 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
409 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
410 		struct sched_rt_entity *rt_se, int cpu,
411 		struct sched_rt_entity *parent);
412 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
413 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
414 extern long sched_group_rt_runtime(struct task_group *tg);
415 extern long sched_group_rt_period(struct task_group *tg);
416 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
417 
418 extern struct task_group *sched_create_group(struct task_group *parent);
419 extern void sched_online_group(struct task_group *tg,
420 			       struct task_group *parent);
421 extern void sched_destroy_group(struct task_group *tg);
422 extern void sched_offline_group(struct task_group *tg);
423 
424 extern void sched_move_task(struct task_struct *tsk);
425 
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
428 
429 #ifdef CONFIG_SMP
430 extern void set_task_rq_fair(struct sched_entity *se,
431 			     struct cfs_rq *prev, struct cfs_rq *next);
432 #else /* !CONFIG_SMP */
433 static inline void set_task_rq_fair(struct sched_entity *se,
434 			     struct cfs_rq *prev, struct cfs_rq *next) { }
435 #endif /* CONFIG_SMP */
436 #endif /* CONFIG_FAIR_GROUP_SCHED */
437 
438 #else /* CONFIG_CGROUP_SCHED */
439 
440 struct cfs_bandwidth { };
441 
442 #endif	/* CONFIG_CGROUP_SCHED */
443 
444 /* CFS-related fields in a runqueue */
445 struct cfs_rq {
446 	struct load_weight load;
447 	unsigned long runnable_weight;
448 	unsigned int nr_running, h_nr_running;
449 
450 	u64 exec_clock;
451 	u64 min_vruntime;
452 #ifndef CONFIG_64BIT
453 	u64 min_vruntime_copy;
454 #endif
455 
456 	struct rb_root_cached tasks_timeline;
457 
458 	/*
459 	 * 'curr' points to currently running entity on this cfs_rq.
460 	 * It is set to NULL otherwise (i.e when none are currently running).
461 	 */
462 	struct sched_entity *curr, *next, *last, *skip;
463 
464 #ifdef	CONFIG_SCHED_DEBUG
465 	unsigned int nr_spread_over;
466 #endif
467 
468 #ifdef CONFIG_SMP
469 	/*
470 	 * CFS load tracking
471 	 */
472 	struct sched_avg avg;
473 #ifndef CONFIG_64BIT
474 	u64 load_last_update_time_copy;
475 #endif
476 	struct {
477 		raw_spinlock_t	lock ____cacheline_aligned;
478 		int		nr;
479 		unsigned long	load_avg;
480 		unsigned long	util_avg;
481 		unsigned long	runnable_sum;
482 	} removed;
483 
484 #ifdef CONFIG_FAIR_GROUP_SCHED
485 	unsigned long tg_load_avg_contrib;
486 	long propagate;
487 	long prop_runnable_sum;
488 
489 	/*
490 	 *   h_load = weight * f(tg)
491 	 *
492 	 * Where f(tg) is the recursive weight fraction assigned to
493 	 * this group.
494 	 */
495 	unsigned long h_load;
496 	u64 last_h_load_update;
497 	struct sched_entity *h_load_next;
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499 #endif /* CONFIG_SMP */
500 
501 #ifdef CONFIG_FAIR_GROUP_SCHED
502 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
503 
504 	/*
505 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
506 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
507 	 * (like users, containers etc.)
508 	 *
509 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
510 	 * list is used during load balance.
511 	 */
512 	int on_list;
513 	struct list_head leaf_cfs_rq_list;
514 	struct task_group *tg;	/* group that "owns" this runqueue */
515 
516 #ifdef CONFIG_CFS_BANDWIDTH
517 	int runtime_enabled;
518 	u64 runtime_expires;
519 	s64 runtime_remaining;
520 
521 	u64 throttled_clock, throttled_clock_task;
522 	u64 throttled_clock_task_time;
523 	int throttled, throttle_count;
524 	struct list_head throttled_list;
525 #endif /* CONFIG_CFS_BANDWIDTH */
526 #endif /* CONFIG_FAIR_GROUP_SCHED */
527 };
528 
529 static inline int rt_bandwidth_enabled(void)
530 {
531 	return sysctl_sched_rt_runtime >= 0;
532 }
533 
534 /* RT IPI pull logic requires IRQ_WORK */
535 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
536 # define HAVE_RT_PUSH_IPI
537 #endif
538 
539 /* Real-Time classes' related field in a runqueue: */
540 struct rt_rq {
541 	struct rt_prio_array active;
542 	unsigned int rt_nr_running;
543 	unsigned int rr_nr_running;
544 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
545 	struct {
546 		int curr; /* highest queued rt task prio */
547 #ifdef CONFIG_SMP
548 		int next; /* next highest */
549 #endif
550 	} highest_prio;
551 #endif
552 #ifdef CONFIG_SMP
553 	unsigned long rt_nr_migratory;
554 	unsigned long rt_nr_total;
555 	int overloaded;
556 	struct plist_head pushable_tasks;
557 #endif /* CONFIG_SMP */
558 	int rt_queued;
559 
560 	int rt_throttled;
561 	u64 rt_time;
562 	u64 rt_runtime;
563 	/* Nests inside the rq lock: */
564 	raw_spinlock_t rt_runtime_lock;
565 
566 #ifdef CONFIG_RT_GROUP_SCHED
567 	unsigned long rt_nr_boosted;
568 
569 	struct rq *rq;
570 	struct task_group *tg;
571 #endif
572 };
573 
574 /* Deadline class' related fields in a runqueue */
575 struct dl_rq {
576 	/* runqueue is an rbtree, ordered by deadline */
577 	struct rb_root_cached root;
578 
579 	unsigned long dl_nr_running;
580 
581 #ifdef CONFIG_SMP
582 	/*
583 	 * Deadline values of the currently executing and the
584 	 * earliest ready task on this rq. Caching these facilitates
585 	 * the decision wether or not a ready but not running task
586 	 * should migrate somewhere else.
587 	 */
588 	struct {
589 		u64 curr;
590 		u64 next;
591 	} earliest_dl;
592 
593 	unsigned long dl_nr_migratory;
594 	int overloaded;
595 
596 	/*
597 	 * Tasks on this rq that can be pushed away. They are kept in
598 	 * an rb-tree, ordered by tasks' deadlines, with caching
599 	 * of the leftmost (earliest deadline) element.
600 	 */
601 	struct rb_root_cached pushable_dl_tasks_root;
602 #else
603 	struct dl_bw dl_bw;
604 #endif
605 	/*
606 	 * "Active utilization" for this runqueue: increased when a
607 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
608 	 * task blocks
609 	 */
610 	u64 running_bw;
611 
612 	/*
613 	 * Utilization of the tasks "assigned" to this runqueue (including
614 	 * the tasks that are in runqueue and the tasks that executed on this
615 	 * CPU and blocked). Increased when a task moves to this runqueue, and
616 	 * decreased when the task moves away (migrates, changes scheduling
617 	 * policy, or terminates).
618 	 * This is needed to compute the "inactive utilization" for the
619 	 * runqueue (inactive utilization = this_bw - running_bw).
620 	 */
621 	u64 this_bw;
622 	u64 extra_bw;
623 
624 	/*
625 	 * Inverse of the fraction of CPU utilization that can be reclaimed
626 	 * by the GRUB algorithm.
627 	 */
628 	u64 bw_ratio;
629 };
630 
631 #ifdef CONFIG_SMP
632 
633 static inline bool sched_asym_prefer(int a, int b)
634 {
635 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
636 }
637 
638 /*
639  * We add the notion of a root-domain which will be used to define per-domain
640  * variables. Each exclusive cpuset essentially defines an island domain by
641  * fully partitioning the member cpus from any other cpuset. Whenever a new
642  * exclusive cpuset is created, we also create and attach a new root-domain
643  * object.
644  *
645  */
646 struct root_domain {
647 	atomic_t refcount;
648 	atomic_t rto_count;
649 	struct rcu_head rcu;
650 	cpumask_var_t span;
651 	cpumask_var_t online;
652 
653 	/* Indicate more than one runnable task for any CPU */
654 	bool overload;
655 
656 	/*
657 	 * The bit corresponding to a CPU gets set here if such CPU has more
658 	 * than one runnable -deadline task (as it is below for RT tasks).
659 	 */
660 	cpumask_var_t dlo_mask;
661 	atomic_t dlo_count;
662 	struct dl_bw dl_bw;
663 	struct cpudl cpudl;
664 
665 #ifdef HAVE_RT_PUSH_IPI
666 	/*
667 	 * For IPI pull requests, loop across the rto_mask.
668 	 */
669 	struct irq_work rto_push_work;
670 	raw_spinlock_t rto_lock;
671 	/* These are only updated and read within rto_lock */
672 	int rto_loop;
673 	int rto_cpu;
674 	/* These atomics are updated outside of a lock */
675 	atomic_t rto_loop_next;
676 	atomic_t rto_loop_start;
677 #endif
678 	/*
679 	 * The "RT overload" flag: it gets set if a CPU has more than
680 	 * one runnable RT task.
681 	 */
682 	cpumask_var_t rto_mask;
683 	struct cpupri cpupri;
684 
685 	unsigned long max_cpu_capacity;
686 };
687 
688 extern struct root_domain def_root_domain;
689 extern struct mutex sched_domains_mutex;
690 
691 extern void init_defrootdomain(void);
692 extern int sched_init_domains(const struct cpumask *cpu_map);
693 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
694 
695 #ifdef HAVE_RT_PUSH_IPI
696 extern void rto_push_irq_work_func(struct irq_work *work);
697 #endif
698 #endif /* CONFIG_SMP */
699 
700 /*
701  * This is the main, per-CPU runqueue data structure.
702  *
703  * Locking rule: those places that want to lock multiple runqueues
704  * (such as the load balancing or the thread migration code), lock
705  * acquire operations must be ordered by ascending &runqueue.
706  */
707 struct rq {
708 	/* runqueue lock: */
709 	raw_spinlock_t lock;
710 
711 	/*
712 	 * nr_running and cpu_load should be in the same cacheline because
713 	 * remote CPUs use both these fields when doing load calculation.
714 	 */
715 	unsigned int nr_running;
716 #ifdef CONFIG_NUMA_BALANCING
717 	unsigned int nr_numa_running;
718 	unsigned int nr_preferred_running;
719 #endif
720 	#define CPU_LOAD_IDX_MAX 5
721 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
722 #ifdef CONFIG_NO_HZ_COMMON
723 #ifdef CONFIG_SMP
724 	unsigned long last_load_update_tick;
725 #endif /* CONFIG_SMP */
726 	unsigned long nohz_flags;
727 #endif /* CONFIG_NO_HZ_COMMON */
728 #ifdef CONFIG_NO_HZ_FULL
729 	unsigned long last_sched_tick;
730 #endif
731 	/* capture load from *all* tasks on this cpu: */
732 	struct load_weight load;
733 	unsigned long nr_load_updates;
734 	u64 nr_switches;
735 
736 	struct cfs_rq cfs;
737 	struct rt_rq rt;
738 	struct dl_rq dl;
739 
740 #ifdef CONFIG_FAIR_GROUP_SCHED
741 	/* list of leaf cfs_rq on this cpu: */
742 	struct list_head leaf_cfs_rq_list;
743 	struct list_head *tmp_alone_branch;
744 #endif /* CONFIG_FAIR_GROUP_SCHED */
745 
746 	/*
747 	 * This is part of a global counter where only the total sum
748 	 * over all CPUs matters. A task can increase this counter on
749 	 * one CPU and if it got migrated afterwards it may decrease
750 	 * it on another CPU. Always updated under the runqueue lock:
751 	 */
752 	unsigned long nr_uninterruptible;
753 
754 	struct task_struct *curr, *idle, *stop;
755 	unsigned long next_balance;
756 	struct mm_struct *prev_mm;
757 
758 	unsigned int clock_update_flags;
759 	u64 clock;
760 	u64 clock_task;
761 
762 	atomic_t nr_iowait;
763 
764 #ifdef CONFIG_SMP
765 	struct root_domain *rd;
766 	struct sched_domain *sd;
767 
768 	unsigned long cpu_capacity;
769 	unsigned long cpu_capacity_orig;
770 
771 	struct callback_head *balance_callback;
772 
773 	unsigned char idle_balance;
774 	/* For active balancing */
775 	int active_balance;
776 	int push_cpu;
777 	struct cpu_stop_work active_balance_work;
778 	/* cpu of this runqueue: */
779 	int cpu;
780 	int online;
781 
782 	struct list_head cfs_tasks;
783 
784 	u64 rt_avg;
785 	u64 age_stamp;
786 	u64 idle_stamp;
787 	u64 avg_idle;
788 
789 	/* This is used to determine avg_idle's max value */
790 	u64 max_idle_balance_cost;
791 #endif
792 
793 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
794 	u64 prev_irq_time;
795 #endif
796 #ifdef CONFIG_PARAVIRT
797 	u64 prev_steal_time;
798 #endif
799 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
800 	u64 prev_steal_time_rq;
801 #endif
802 
803 	/* calc_load related fields */
804 	unsigned long calc_load_update;
805 	long calc_load_active;
806 
807 #ifdef CONFIG_SCHED_HRTICK
808 #ifdef CONFIG_SMP
809 	int hrtick_csd_pending;
810 	call_single_data_t hrtick_csd;
811 #endif
812 	struct hrtimer hrtick_timer;
813 #endif
814 
815 #ifdef CONFIG_SCHEDSTATS
816 	/* latency stats */
817 	struct sched_info rq_sched_info;
818 	unsigned long long rq_cpu_time;
819 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
820 
821 	/* sys_sched_yield() stats */
822 	unsigned int yld_count;
823 
824 	/* schedule() stats */
825 	unsigned int sched_count;
826 	unsigned int sched_goidle;
827 
828 	/* try_to_wake_up() stats */
829 	unsigned int ttwu_count;
830 	unsigned int ttwu_local;
831 #endif
832 
833 #ifdef CONFIG_SMP
834 	struct llist_head wake_list;
835 #endif
836 
837 #ifdef CONFIG_CPU_IDLE
838 	/* Must be inspected within a rcu lock section */
839 	struct cpuidle_state *idle_state;
840 #endif
841 };
842 
843 static inline int cpu_of(struct rq *rq)
844 {
845 #ifdef CONFIG_SMP
846 	return rq->cpu;
847 #else
848 	return 0;
849 #endif
850 }
851 
852 
853 #ifdef CONFIG_SCHED_SMT
854 
855 extern struct static_key_false sched_smt_present;
856 
857 extern void __update_idle_core(struct rq *rq);
858 
859 static inline void update_idle_core(struct rq *rq)
860 {
861 	if (static_branch_unlikely(&sched_smt_present))
862 		__update_idle_core(rq);
863 }
864 
865 #else
866 static inline void update_idle_core(struct rq *rq) { }
867 #endif
868 
869 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
870 
871 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
872 #define this_rq()		this_cpu_ptr(&runqueues)
873 #define task_rq(p)		cpu_rq(task_cpu(p))
874 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
875 #define raw_rq()		raw_cpu_ptr(&runqueues)
876 
877 static inline u64 __rq_clock_broken(struct rq *rq)
878 {
879 	return READ_ONCE(rq->clock);
880 }
881 
882 /*
883  * rq::clock_update_flags bits
884  *
885  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
886  *  call to __schedule(). This is an optimisation to avoid
887  *  neighbouring rq clock updates.
888  *
889  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
890  *  in effect and calls to update_rq_clock() are being ignored.
891  *
892  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
893  *  made to update_rq_clock() since the last time rq::lock was pinned.
894  *
895  * If inside of __schedule(), clock_update_flags will have been
896  * shifted left (a left shift is a cheap operation for the fast path
897  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
898  *
899  *	if (rq-clock_update_flags >= RQCF_UPDATED)
900  *
901  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
902  * one position though, because the next rq_unpin_lock() will shift it
903  * back.
904  */
905 #define RQCF_REQ_SKIP	0x01
906 #define RQCF_ACT_SKIP	0x02
907 #define RQCF_UPDATED	0x04
908 
909 static inline void assert_clock_updated(struct rq *rq)
910 {
911 	/*
912 	 * The only reason for not seeing a clock update since the
913 	 * last rq_pin_lock() is if we're currently skipping updates.
914 	 */
915 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
916 }
917 
918 static inline u64 rq_clock(struct rq *rq)
919 {
920 	lockdep_assert_held(&rq->lock);
921 	assert_clock_updated(rq);
922 
923 	return rq->clock;
924 }
925 
926 static inline u64 rq_clock_task(struct rq *rq)
927 {
928 	lockdep_assert_held(&rq->lock);
929 	assert_clock_updated(rq);
930 
931 	return rq->clock_task;
932 }
933 
934 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
935 {
936 	lockdep_assert_held(&rq->lock);
937 	if (skip)
938 		rq->clock_update_flags |= RQCF_REQ_SKIP;
939 	else
940 		rq->clock_update_flags &= ~RQCF_REQ_SKIP;
941 }
942 
943 struct rq_flags {
944 	unsigned long flags;
945 	struct pin_cookie cookie;
946 #ifdef CONFIG_SCHED_DEBUG
947 	/*
948 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
949 	 * current pin context is stashed here in case it needs to be
950 	 * restored in rq_repin_lock().
951 	 */
952 	unsigned int clock_update_flags;
953 #endif
954 };
955 
956 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
957 {
958 	rf->cookie = lockdep_pin_lock(&rq->lock);
959 
960 #ifdef CONFIG_SCHED_DEBUG
961 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
962 	rf->clock_update_flags = 0;
963 #endif
964 }
965 
966 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
967 {
968 #ifdef CONFIG_SCHED_DEBUG
969 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
970 		rf->clock_update_flags = RQCF_UPDATED;
971 #endif
972 
973 	lockdep_unpin_lock(&rq->lock, rf->cookie);
974 }
975 
976 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
977 {
978 	lockdep_repin_lock(&rq->lock, rf->cookie);
979 
980 #ifdef CONFIG_SCHED_DEBUG
981 	/*
982 	 * Restore the value we stashed in @rf for this pin context.
983 	 */
984 	rq->clock_update_flags |= rf->clock_update_flags;
985 #endif
986 }
987 
988 #ifdef CONFIG_NUMA
989 enum numa_topology_type {
990 	NUMA_DIRECT,
991 	NUMA_GLUELESS_MESH,
992 	NUMA_BACKPLANE,
993 };
994 extern enum numa_topology_type sched_numa_topology_type;
995 extern int sched_max_numa_distance;
996 extern bool find_numa_distance(int distance);
997 #endif
998 
999 #ifdef CONFIG_NUMA
1000 extern void sched_init_numa(void);
1001 extern void sched_domains_numa_masks_set(unsigned int cpu);
1002 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1003 #else
1004 static inline void sched_init_numa(void) { }
1005 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1006 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1007 #endif
1008 
1009 #ifdef CONFIG_NUMA_BALANCING
1010 /* The regions in numa_faults array from task_struct */
1011 enum numa_faults_stats {
1012 	NUMA_MEM = 0,
1013 	NUMA_CPU,
1014 	NUMA_MEMBUF,
1015 	NUMA_CPUBUF
1016 };
1017 extern void sched_setnuma(struct task_struct *p, int node);
1018 extern int migrate_task_to(struct task_struct *p, int cpu);
1019 extern int migrate_swap(struct task_struct *, struct task_struct *);
1020 #endif /* CONFIG_NUMA_BALANCING */
1021 
1022 #ifdef CONFIG_SMP
1023 
1024 static inline void
1025 queue_balance_callback(struct rq *rq,
1026 		       struct callback_head *head,
1027 		       void (*func)(struct rq *rq))
1028 {
1029 	lockdep_assert_held(&rq->lock);
1030 
1031 	if (unlikely(head->next))
1032 		return;
1033 
1034 	head->func = (void (*)(struct callback_head *))func;
1035 	head->next = rq->balance_callback;
1036 	rq->balance_callback = head;
1037 }
1038 
1039 extern void sched_ttwu_pending(void);
1040 
1041 #define rcu_dereference_check_sched_domain(p) \
1042 	rcu_dereference_check((p), \
1043 			      lockdep_is_held(&sched_domains_mutex))
1044 
1045 /*
1046  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1047  * See detach_destroy_domains: synchronize_sched for details.
1048  *
1049  * The domain tree of any CPU may only be accessed from within
1050  * preempt-disabled sections.
1051  */
1052 #define for_each_domain(cpu, __sd) \
1053 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1054 			__sd; __sd = __sd->parent)
1055 
1056 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1057 
1058 /**
1059  * highest_flag_domain - Return highest sched_domain containing flag.
1060  * @cpu:	The cpu whose highest level of sched domain is to
1061  *		be returned.
1062  * @flag:	The flag to check for the highest sched_domain
1063  *		for the given cpu.
1064  *
1065  * Returns the highest sched_domain of a cpu which contains the given flag.
1066  */
1067 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1068 {
1069 	struct sched_domain *sd, *hsd = NULL;
1070 
1071 	for_each_domain(cpu, sd) {
1072 		if (!(sd->flags & flag))
1073 			break;
1074 		hsd = sd;
1075 	}
1076 
1077 	return hsd;
1078 }
1079 
1080 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1081 {
1082 	struct sched_domain *sd;
1083 
1084 	for_each_domain(cpu, sd) {
1085 		if (sd->flags & flag)
1086 			break;
1087 	}
1088 
1089 	return sd;
1090 }
1091 
1092 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1093 DECLARE_PER_CPU(int, sd_llc_size);
1094 DECLARE_PER_CPU(int, sd_llc_id);
1095 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1096 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1097 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1098 
1099 struct sched_group_capacity {
1100 	atomic_t ref;
1101 	/*
1102 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1103 	 * for a single CPU.
1104 	 */
1105 	unsigned long capacity;
1106 	unsigned long min_capacity; /* Min per-CPU capacity in group */
1107 	unsigned long next_update;
1108 	int imbalance; /* XXX unrelated to capacity but shared group state */
1109 
1110 #ifdef CONFIG_SCHED_DEBUG
1111 	int id;
1112 #endif
1113 
1114 	unsigned long cpumask[0]; /* balance mask */
1115 };
1116 
1117 struct sched_group {
1118 	struct sched_group *next;	/* Must be a circular list */
1119 	atomic_t ref;
1120 
1121 	unsigned int group_weight;
1122 	struct sched_group_capacity *sgc;
1123 	int asym_prefer_cpu;		/* cpu of highest priority in group */
1124 
1125 	/*
1126 	 * The CPUs this group covers.
1127 	 *
1128 	 * NOTE: this field is variable length. (Allocated dynamically
1129 	 * by attaching extra space to the end of the structure,
1130 	 * depending on how many CPUs the kernel has booted up with)
1131 	 */
1132 	unsigned long cpumask[0];
1133 };
1134 
1135 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1136 {
1137 	return to_cpumask(sg->cpumask);
1138 }
1139 
1140 /*
1141  * See build_balance_mask().
1142  */
1143 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1144 {
1145 	return to_cpumask(sg->sgc->cpumask);
1146 }
1147 
1148 /**
1149  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1150  * @group: The group whose first cpu is to be returned.
1151  */
1152 static inline unsigned int group_first_cpu(struct sched_group *group)
1153 {
1154 	return cpumask_first(sched_group_span(group));
1155 }
1156 
1157 extern int group_balance_cpu(struct sched_group *sg);
1158 
1159 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1160 void register_sched_domain_sysctl(void);
1161 void dirty_sched_domain_sysctl(int cpu);
1162 void unregister_sched_domain_sysctl(void);
1163 #else
1164 static inline void register_sched_domain_sysctl(void)
1165 {
1166 }
1167 static inline void dirty_sched_domain_sysctl(int cpu)
1168 {
1169 }
1170 static inline void unregister_sched_domain_sysctl(void)
1171 {
1172 }
1173 #endif
1174 
1175 #else
1176 
1177 static inline void sched_ttwu_pending(void) { }
1178 
1179 #endif /* CONFIG_SMP */
1180 
1181 #include "stats.h"
1182 #include "autogroup.h"
1183 
1184 #ifdef CONFIG_CGROUP_SCHED
1185 
1186 /*
1187  * Return the group to which this tasks belongs.
1188  *
1189  * We cannot use task_css() and friends because the cgroup subsystem
1190  * changes that value before the cgroup_subsys::attach() method is called,
1191  * therefore we cannot pin it and might observe the wrong value.
1192  *
1193  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1194  * core changes this before calling sched_move_task().
1195  *
1196  * Instead we use a 'copy' which is updated from sched_move_task() while
1197  * holding both task_struct::pi_lock and rq::lock.
1198  */
1199 static inline struct task_group *task_group(struct task_struct *p)
1200 {
1201 	return p->sched_task_group;
1202 }
1203 
1204 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1205 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1206 {
1207 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1208 	struct task_group *tg = task_group(p);
1209 #endif
1210 
1211 #ifdef CONFIG_FAIR_GROUP_SCHED
1212 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1213 	p->se.cfs_rq = tg->cfs_rq[cpu];
1214 	p->se.parent = tg->se[cpu];
1215 #endif
1216 
1217 #ifdef CONFIG_RT_GROUP_SCHED
1218 	p->rt.rt_rq  = tg->rt_rq[cpu];
1219 	p->rt.parent = tg->rt_se[cpu];
1220 #endif
1221 }
1222 
1223 #else /* CONFIG_CGROUP_SCHED */
1224 
1225 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1226 static inline struct task_group *task_group(struct task_struct *p)
1227 {
1228 	return NULL;
1229 }
1230 
1231 #endif /* CONFIG_CGROUP_SCHED */
1232 
1233 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1234 {
1235 	set_task_rq(p, cpu);
1236 #ifdef CONFIG_SMP
1237 	/*
1238 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1239 	 * successfuly executed on another CPU. We must ensure that updates of
1240 	 * per-task data have been completed by this moment.
1241 	 */
1242 	smp_wmb();
1243 #ifdef CONFIG_THREAD_INFO_IN_TASK
1244 	p->cpu = cpu;
1245 #else
1246 	task_thread_info(p)->cpu = cpu;
1247 #endif
1248 	p->wake_cpu = cpu;
1249 #endif
1250 }
1251 
1252 /*
1253  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1254  */
1255 #ifdef CONFIG_SCHED_DEBUG
1256 # include <linux/static_key.h>
1257 # define const_debug __read_mostly
1258 #else
1259 # define const_debug const
1260 #endif
1261 
1262 #define SCHED_FEAT(name, enabled)	\
1263 	__SCHED_FEAT_##name ,
1264 
1265 enum {
1266 #include "features.h"
1267 	__SCHED_FEAT_NR,
1268 };
1269 
1270 #undef SCHED_FEAT
1271 
1272 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1273 
1274 /*
1275  * To support run-time toggling of sched features, all the translation units
1276  * (but core.c) reference the sysctl_sched_features defined in core.c.
1277  */
1278 extern const_debug unsigned int sysctl_sched_features;
1279 
1280 #define SCHED_FEAT(name, enabled)					\
1281 static __always_inline bool static_branch_##name(struct static_key *key) \
1282 {									\
1283 	return static_key_##enabled(key);				\
1284 }
1285 
1286 #include "features.h"
1287 #undef SCHED_FEAT
1288 
1289 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1290 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1291 
1292 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1293 
1294 /*
1295  * Each translation unit has its own copy of sysctl_sched_features to allow
1296  * constants propagation at compile time and compiler optimization based on
1297  * features default.
1298  */
1299 #define SCHED_FEAT(name, enabled)	\
1300 	(1UL << __SCHED_FEAT_##name) * enabled |
1301 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1302 #include "features.h"
1303 	0;
1304 #undef SCHED_FEAT
1305 
1306 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1307 
1308 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1309 
1310 extern struct static_key_false sched_numa_balancing;
1311 extern struct static_key_false sched_schedstats;
1312 
1313 static inline u64 global_rt_period(void)
1314 {
1315 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1316 }
1317 
1318 static inline u64 global_rt_runtime(void)
1319 {
1320 	if (sysctl_sched_rt_runtime < 0)
1321 		return RUNTIME_INF;
1322 
1323 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1324 }
1325 
1326 static inline int task_current(struct rq *rq, struct task_struct *p)
1327 {
1328 	return rq->curr == p;
1329 }
1330 
1331 static inline int task_running(struct rq *rq, struct task_struct *p)
1332 {
1333 #ifdef CONFIG_SMP
1334 	return p->on_cpu;
1335 #else
1336 	return task_current(rq, p);
1337 #endif
1338 }
1339 
1340 static inline int task_on_rq_queued(struct task_struct *p)
1341 {
1342 	return p->on_rq == TASK_ON_RQ_QUEUED;
1343 }
1344 
1345 static inline int task_on_rq_migrating(struct task_struct *p)
1346 {
1347 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1348 }
1349 
1350 #ifndef prepare_arch_switch
1351 # define prepare_arch_switch(next)	do { } while (0)
1352 #endif
1353 #ifndef finish_arch_post_lock_switch
1354 # define finish_arch_post_lock_switch()	do { } while (0)
1355 #endif
1356 
1357 /*
1358  * wake flags
1359  */
1360 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1361 #define WF_FORK		0x02		/* child wakeup after fork */
1362 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1363 
1364 /*
1365  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1366  * of tasks with abnormal "nice" values across CPUs the contribution that
1367  * each task makes to its run queue's load is weighted according to its
1368  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1369  * scaled version of the new time slice allocation that they receive on time
1370  * slice expiry etc.
1371  */
1372 
1373 #define WEIGHT_IDLEPRIO                3
1374 #define WMULT_IDLEPRIO         1431655765
1375 
1376 extern const int sched_prio_to_weight[40];
1377 extern const u32 sched_prio_to_wmult[40];
1378 
1379 /*
1380  * {de,en}queue flags:
1381  *
1382  * DEQUEUE_SLEEP  - task is no longer runnable
1383  * ENQUEUE_WAKEUP - task just became runnable
1384  *
1385  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1386  *                are in a known state which allows modification. Such pairs
1387  *                should preserve as much state as possible.
1388  *
1389  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1390  *        in the runqueue.
1391  *
1392  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1393  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1394  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1395  *
1396  */
1397 
1398 #define DEQUEUE_SLEEP		0x01
1399 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1400 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1401 #define DEQUEUE_NOCLOCK		0x08 /* matches ENQUEUE_NOCLOCK */
1402 
1403 #define ENQUEUE_WAKEUP		0x01
1404 #define ENQUEUE_RESTORE		0x02
1405 #define ENQUEUE_MOVE		0x04
1406 #define ENQUEUE_NOCLOCK		0x08
1407 
1408 #define ENQUEUE_HEAD		0x10
1409 #define ENQUEUE_REPLENISH	0x20
1410 #ifdef CONFIG_SMP
1411 #define ENQUEUE_MIGRATED	0x40
1412 #else
1413 #define ENQUEUE_MIGRATED	0x00
1414 #endif
1415 
1416 #define RETRY_TASK		((void *)-1UL)
1417 
1418 struct sched_class {
1419 	const struct sched_class *next;
1420 
1421 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1422 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1423 	void (*yield_task) (struct rq *rq);
1424 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1425 
1426 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1427 
1428 	/*
1429 	 * It is the responsibility of the pick_next_task() method that will
1430 	 * return the next task to call put_prev_task() on the @prev task or
1431 	 * something equivalent.
1432 	 *
1433 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1434 	 * tasks.
1435 	 */
1436 	struct task_struct * (*pick_next_task) (struct rq *rq,
1437 						struct task_struct *prev,
1438 						struct rq_flags *rf);
1439 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1440 
1441 #ifdef CONFIG_SMP
1442 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1443 	void (*migrate_task_rq)(struct task_struct *p);
1444 
1445 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1446 
1447 	void (*set_cpus_allowed)(struct task_struct *p,
1448 				 const struct cpumask *newmask);
1449 
1450 	void (*rq_online)(struct rq *rq);
1451 	void (*rq_offline)(struct rq *rq);
1452 #endif
1453 
1454 	void (*set_curr_task) (struct rq *rq);
1455 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1456 	void (*task_fork) (struct task_struct *p);
1457 	void (*task_dead) (struct task_struct *p);
1458 
1459 	/*
1460 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1461 	 * cannot assume the switched_from/switched_to pair is serliazed by
1462 	 * rq->lock. They are however serialized by p->pi_lock.
1463 	 */
1464 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1465 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1466 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1467 			     int oldprio);
1468 
1469 	unsigned int (*get_rr_interval) (struct rq *rq,
1470 					 struct task_struct *task);
1471 
1472 	void (*update_curr) (struct rq *rq);
1473 
1474 #define TASK_SET_GROUP  0
1475 #define TASK_MOVE_GROUP	1
1476 
1477 #ifdef CONFIG_FAIR_GROUP_SCHED
1478 	void (*task_change_group) (struct task_struct *p, int type);
1479 #endif
1480 };
1481 
1482 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1483 {
1484 	prev->sched_class->put_prev_task(rq, prev);
1485 }
1486 
1487 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1488 {
1489 	curr->sched_class->set_curr_task(rq);
1490 }
1491 
1492 #ifdef CONFIG_SMP
1493 #define sched_class_highest (&stop_sched_class)
1494 #else
1495 #define sched_class_highest (&dl_sched_class)
1496 #endif
1497 #define for_each_class(class) \
1498    for (class = sched_class_highest; class; class = class->next)
1499 
1500 extern const struct sched_class stop_sched_class;
1501 extern const struct sched_class dl_sched_class;
1502 extern const struct sched_class rt_sched_class;
1503 extern const struct sched_class fair_sched_class;
1504 extern const struct sched_class idle_sched_class;
1505 
1506 
1507 #ifdef CONFIG_SMP
1508 
1509 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1510 
1511 extern void trigger_load_balance(struct rq *rq);
1512 
1513 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1514 
1515 #endif
1516 
1517 #ifdef CONFIG_CPU_IDLE
1518 static inline void idle_set_state(struct rq *rq,
1519 				  struct cpuidle_state *idle_state)
1520 {
1521 	rq->idle_state = idle_state;
1522 }
1523 
1524 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1525 {
1526 	SCHED_WARN_ON(!rcu_read_lock_held());
1527 	return rq->idle_state;
1528 }
1529 #else
1530 static inline void idle_set_state(struct rq *rq,
1531 				  struct cpuidle_state *idle_state)
1532 {
1533 }
1534 
1535 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1536 {
1537 	return NULL;
1538 }
1539 #endif
1540 
1541 extern void schedule_idle(void);
1542 
1543 extern void sysrq_sched_debug_show(void);
1544 extern void sched_init_granularity(void);
1545 extern void update_max_interval(void);
1546 
1547 extern void init_sched_dl_class(void);
1548 extern void init_sched_rt_class(void);
1549 extern void init_sched_fair_class(void);
1550 
1551 extern void reweight_task(struct task_struct *p, int prio);
1552 
1553 extern void resched_curr(struct rq *rq);
1554 extern void resched_cpu(int cpu);
1555 
1556 extern struct rt_bandwidth def_rt_bandwidth;
1557 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1558 
1559 extern struct dl_bandwidth def_dl_bandwidth;
1560 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1561 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1562 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1563 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1564 
1565 #define BW_SHIFT	20
1566 #define BW_UNIT		(1 << BW_SHIFT)
1567 #define RATIO_SHIFT	8
1568 unsigned long to_ratio(u64 period, u64 runtime);
1569 
1570 extern void init_entity_runnable_average(struct sched_entity *se);
1571 extern void post_init_entity_util_avg(struct sched_entity *se);
1572 
1573 #ifdef CONFIG_NO_HZ_FULL
1574 extern bool sched_can_stop_tick(struct rq *rq);
1575 
1576 /*
1577  * Tick may be needed by tasks in the runqueue depending on their policy and
1578  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1579  * nohz mode if necessary.
1580  */
1581 static inline void sched_update_tick_dependency(struct rq *rq)
1582 {
1583 	int cpu;
1584 
1585 	if (!tick_nohz_full_enabled())
1586 		return;
1587 
1588 	cpu = cpu_of(rq);
1589 
1590 	if (!tick_nohz_full_cpu(cpu))
1591 		return;
1592 
1593 	if (sched_can_stop_tick(rq))
1594 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1595 	else
1596 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1597 }
1598 #else
1599 static inline void sched_update_tick_dependency(struct rq *rq) { }
1600 #endif
1601 
1602 static inline void add_nr_running(struct rq *rq, unsigned count)
1603 {
1604 	unsigned prev_nr = rq->nr_running;
1605 
1606 	rq->nr_running = prev_nr + count;
1607 
1608 	if (prev_nr < 2 && rq->nr_running >= 2) {
1609 #ifdef CONFIG_SMP
1610 		if (!rq->rd->overload)
1611 			rq->rd->overload = true;
1612 #endif
1613 	}
1614 
1615 	sched_update_tick_dependency(rq);
1616 }
1617 
1618 static inline void sub_nr_running(struct rq *rq, unsigned count)
1619 {
1620 	rq->nr_running -= count;
1621 	/* Check if we still need preemption */
1622 	sched_update_tick_dependency(rq);
1623 }
1624 
1625 static inline void rq_last_tick_reset(struct rq *rq)
1626 {
1627 #ifdef CONFIG_NO_HZ_FULL
1628 	rq->last_sched_tick = jiffies;
1629 #endif
1630 }
1631 
1632 extern void update_rq_clock(struct rq *rq);
1633 
1634 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1635 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1636 
1637 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1638 
1639 extern const_debug unsigned int sysctl_sched_time_avg;
1640 extern const_debug unsigned int sysctl_sched_nr_migrate;
1641 extern const_debug unsigned int sysctl_sched_migration_cost;
1642 
1643 static inline u64 sched_avg_period(void)
1644 {
1645 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1646 }
1647 
1648 #ifdef CONFIG_SCHED_HRTICK
1649 
1650 /*
1651  * Use hrtick when:
1652  *  - enabled by features
1653  *  - hrtimer is actually high res
1654  */
1655 static inline int hrtick_enabled(struct rq *rq)
1656 {
1657 	if (!sched_feat(HRTICK))
1658 		return 0;
1659 	if (!cpu_active(cpu_of(rq)))
1660 		return 0;
1661 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1662 }
1663 
1664 void hrtick_start(struct rq *rq, u64 delay);
1665 
1666 #else
1667 
1668 static inline int hrtick_enabled(struct rq *rq)
1669 {
1670 	return 0;
1671 }
1672 
1673 #endif /* CONFIG_SCHED_HRTICK */
1674 
1675 #ifndef arch_scale_freq_capacity
1676 static __always_inline
1677 unsigned long arch_scale_freq_capacity(int cpu)
1678 {
1679 	return SCHED_CAPACITY_SCALE;
1680 }
1681 #endif
1682 
1683 #ifdef CONFIG_SMP
1684 extern void sched_avg_update(struct rq *rq);
1685 
1686 #ifndef arch_scale_cpu_capacity
1687 static __always_inline
1688 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1689 {
1690 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1691 		return sd->smt_gain / sd->span_weight;
1692 
1693 	return SCHED_CAPACITY_SCALE;
1694 }
1695 #endif
1696 
1697 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1698 {
1699 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
1700 	sched_avg_update(rq);
1701 }
1702 #else
1703 #ifndef arch_scale_cpu_capacity
1704 static __always_inline
1705 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1706 {
1707 	return SCHED_CAPACITY_SCALE;
1708 }
1709 #endif
1710 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1711 static inline void sched_avg_update(struct rq *rq) { }
1712 #endif
1713 
1714 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1715 	__acquires(rq->lock);
1716 
1717 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1718 	__acquires(p->pi_lock)
1719 	__acquires(rq->lock);
1720 
1721 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1722 	__releases(rq->lock)
1723 {
1724 	rq_unpin_lock(rq, rf);
1725 	raw_spin_unlock(&rq->lock);
1726 }
1727 
1728 static inline void
1729 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1730 	__releases(rq->lock)
1731 	__releases(p->pi_lock)
1732 {
1733 	rq_unpin_lock(rq, rf);
1734 	raw_spin_unlock(&rq->lock);
1735 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1736 }
1737 
1738 static inline void
1739 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1740 	__acquires(rq->lock)
1741 {
1742 	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1743 	rq_pin_lock(rq, rf);
1744 }
1745 
1746 static inline void
1747 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1748 	__acquires(rq->lock)
1749 {
1750 	raw_spin_lock_irq(&rq->lock);
1751 	rq_pin_lock(rq, rf);
1752 }
1753 
1754 static inline void
1755 rq_lock(struct rq *rq, struct rq_flags *rf)
1756 	__acquires(rq->lock)
1757 {
1758 	raw_spin_lock(&rq->lock);
1759 	rq_pin_lock(rq, rf);
1760 }
1761 
1762 static inline void
1763 rq_relock(struct rq *rq, struct rq_flags *rf)
1764 	__acquires(rq->lock)
1765 {
1766 	raw_spin_lock(&rq->lock);
1767 	rq_repin_lock(rq, rf);
1768 }
1769 
1770 static inline void
1771 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1772 	__releases(rq->lock)
1773 {
1774 	rq_unpin_lock(rq, rf);
1775 	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1776 }
1777 
1778 static inline void
1779 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1780 	__releases(rq->lock)
1781 {
1782 	rq_unpin_lock(rq, rf);
1783 	raw_spin_unlock_irq(&rq->lock);
1784 }
1785 
1786 static inline void
1787 rq_unlock(struct rq *rq, struct rq_flags *rf)
1788 	__releases(rq->lock)
1789 {
1790 	rq_unpin_lock(rq, rf);
1791 	raw_spin_unlock(&rq->lock);
1792 }
1793 
1794 #ifdef CONFIG_SMP
1795 #ifdef CONFIG_PREEMPT
1796 
1797 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1798 
1799 /*
1800  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1801  * way at the expense of forcing extra atomic operations in all
1802  * invocations.  This assures that the double_lock is acquired using the
1803  * same underlying policy as the spinlock_t on this architecture, which
1804  * reduces latency compared to the unfair variant below.  However, it
1805  * also adds more overhead and therefore may reduce throughput.
1806  */
1807 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1808 	__releases(this_rq->lock)
1809 	__acquires(busiest->lock)
1810 	__acquires(this_rq->lock)
1811 {
1812 	raw_spin_unlock(&this_rq->lock);
1813 	double_rq_lock(this_rq, busiest);
1814 
1815 	return 1;
1816 }
1817 
1818 #else
1819 /*
1820  * Unfair double_lock_balance: Optimizes throughput at the expense of
1821  * latency by eliminating extra atomic operations when the locks are
1822  * already in proper order on entry.  This favors lower cpu-ids and will
1823  * grant the double lock to lower cpus over higher ids under contention,
1824  * regardless of entry order into the function.
1825  */
1826 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1827 	__releases(this_rq->lock)
1828 	__acquires(busiest->lock)
1829 	__acquires(this_rq->lock)
1830 {
1831 	int ret = 0;
1832 
1833 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1834 		if (busiest < this_rq) {
1835 			raw_spin_unlock(&this_rq->lock);
1836 			raw_spin_lock(&busiest->lock);
1837 			raw_spin_lock_nested(&this_rq->lock,
1838 					      SINGLE_DEPTH_NESTING);
1839 			ret = 1;
1840 		} else
1841 			raw_spin_lock_nested(&busiest->lock,
1842 					      SINGLE_DEPTH_NESTING);
1843 	}
1844 	return ret;
1845 }
1846 
1847 #endif /* CONFIG_PREEMPT */
1848 
1849 /*
1850  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1851  */
1852 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1853 {
1854 	if (unlikely(!irqs_disabled())) {
1855 		/* printk() doesn't work good under rq->lock */
1856 		raw_spin_unlock(&this_rq->lock);
1857 		BUG_ON(1);
1858 	}
1859 
1860 	return _double_lock_balance(this_rq, busiest);
1861 }
1862 
1863 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1864 	__releases(busiest->lock)
1865 {
1866 	raw_spin_unlock(&busiest->lock);
1867 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1868 }
1869 
1870 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1871 {
1872 	if (l1 > l2)
1873 		swap(l1, l2);
1874 
1875 	spin_lock(l1);
1876 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1877 }
1878 
1879 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1880 {
1881 	if (l1 > l2)
1882 		swap(l1, l2);
1883 
1884 	spin_lock_irq(l1);
1885 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1886 }
1887 
1888 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1889 {
1890 	if (l1 > l2)
1891 		swap(l1, l2);
1892 
1893 	raw_spin_lock(l1);
1894 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1895 }
1896 
1897 /*
1898  * double_rq_lock - safely lock two runqueues
1899  *
1900  * Note this does not disable interrupts like task_rq_lock,
1901  * you need to do so manually before calling.
1902  */
1903 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1904 	__acquires(rq1->lock)
1905 	__acquires(rq2->lock)
1906 {
1907 	BUG_ON(!irqs_disabled());
1908 	if (rq1 == rq2) {
1909 		raw_spin_lock(&rq1->lock);
1910 		__acquire(rq2->lock);	/* Fake it out ;) */
1911 	} else {
1912 		if (rq1 < rq2) {
1913 			raw_spin_lock(&rq1->lock);
1914 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1915 		} else {
1916 			raw_spin_lock(&rq2->lock);
1917 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1918 		}
1919 	}
1920 }
1921 
1922 /*
1923  * double_rq_unlock - safely unlock two runqueues
1924  *
1925  * Note this does not restore interrupts like task_rq_unlock,
1926  * you need to do so manually after calling.
1927  */
1928 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1929 	__releases(rq1->lock)
1930 	__releases(rq2->lock)
1931 {
1932 	raw_spin_unlock(&rq1->lock);
1933 	if (rq1 != rq2)
1934 		raw_spin_unlock(&rq2->lock);
1935 	else
1936 		__release(rq2->lock);
1937 }
1938 
1939 extern void set_rq_online (struct rq *rq);
1940 extern void set_rq_offline(struct rq *rq);
1941 extern bool sched_smp_initialized;
1942 
1943 #else /* CONFIG_SMP */
1944 
1945 /*
1946  * double_rq_lock - safely lock two runqueues
1947  *
1948  * Note this does not disable interrupts like task_rq_lock,
1949  * you need to do so manually before calling.
1950  */
1951 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1952 	__acquires(rq1->lock)
1953 	__acquires(rq2->lock)
1954 {
1955 	BUG_ON(!irqs_disabled());
1956 	BUG_ON(rq1 != rq2);
1957 	raw_spin_lock(&rq1->lock);
1958 	__acquire(rq2->lock);	/* Fake it out ;) */
1959 }
1960 
1961 /*
1962  * double_rq_unlock - safely unlock two runqueues
1963  *
1964  * Note this does not restore interrupts like task_rq_unlock,
1965  * you need to do so manually after calling.
1966  */
1967 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1968 	__releases(rq1->lock)
1969 	__releases(rq2->lock)
1970 {
1971 	BUG_ON(rq1 != rq2);
1972 	raw_spin_unlock(&rq1->lock);
1973 	__release(rq2->lock);
1974 }
1975 
1976 #endif
1977 
1978 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1979 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1980 
1981 #ifdef	CONFIG_SCHED_DEBUG
1982 extern bool sched_debug_enabled;
1983 
1984 extern void print_cfs_stats(struct seq_file *m, int cpu);
1985 extern void print_rt_stats(struct seq_file *m, int cpu);
1986 extern void print_dl_stats(struct seq_file *m, int cpu);
1987 extern void
1988 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1989 #ifdef CONFIG_NUMA_BALANCING
1990 extern void
1991 show_numa_stats(struct task_struct *p, struct seq_file *m);
1992 extern void
1993 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1994 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1995 #endif /* CONFIG_NUMA_BALANCING */
1996 #endif /* CONFIG_SCHED_DEBUG */
1997 
1998 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1999 extern void init_rt_rq(struct rt_rq *rt_rq);
2000 extern void init_dl_rq(struct dl_rq *dl_rq);
2001 
2002 extern void cfs_bandwidth_usage_inc(void);
2003 extern void cfs_bandwidth_usage_dec(void);
2004 
2005 #ifdef CONFIG_NO_HZ_COMMON
2006 enum rq_nohz_flag_bits {
2007 	NOHZ_TICK_STOPPED,
2008 	NOHZ_BALANCE_KICK,
2009 };
2010 
2011 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2012 
2013 extern void nohz_balance_exit_idle(unsigned int cpu);
2014 #else
2015 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
2016 #endif
2017 
2018 
2019 #ifdef CONFIG_SMP
2020 static inline
2021 void __dl_update(struct dl_bw *dl_b, s64 bw)
2022 {
2023 	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2024 	int i;
2025 
2026 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2027 			 "sched RCU must be held");
2028 	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2029 		struct rq *rq = cpu_rq(i);
2030 
2031 		rq->dl.extra_bw += bw;
2032 	}
2033 }
2034 #else
2035 static inline
2036 void __dl_update(struct dl_bw *dl_b, s64 bw)
2037 {
2038 	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2039 
2040 	dl->extra_bw += bw;
2041 }
2042 #endif
2043 
2044 
2045 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2046 struct irqtime {
2047 	u64			total;
2048 	u64			tick_delta;
2049 	u64			irq_start_time;
2050 	struct u64_stats_sync	sync;
2051 };
2052 
2053 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2054 
2055 /*
2056  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2057  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2058  * and never move forward.
2059  */
2060 static inline u64 irq_time_read(int cpu)
2061 {
2062 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2063 	unsigned int seq;
2064 	u64 total;
2065 
2066 	do {
2067 		seq = __u64_stats_fetch_begin(&irqtime->sync);
2068 		total = irqtime->total;
2069 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2070 
2071 	return total;
2072 }
2073 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2074 
2075 #ifdef CONFIG_CPU_FREQ
2076 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2077 
2078 /**
2079  * cpufreq_update_util - Take a note about CPU utilization changes.
2080  * @rq: Runqueue to carry out the update for.
2081  * @flags: Update reason flags.
2082  *
2083  * This function is called by the scheduler on the CPU whose utilization is
2084  * being updated.
2085  *
2086  * It can only be called from RCU-sched read-side critical sections.
2087  *
2088  * The way cpufreq is currently arranged requires it to evaluate the CPU
2089  * performance state (frequency/voltage) on a regular basis to prevent it from
2090  * being stuck in a completely inadequate performance level for too long.
2091  * That is not guaranteed to happen if the updates are only triggered from CFS
2092  * and DL, though, because they may not be coming in if only RT tasks are
2093  * active all the time (or there are RT tasks only).
2094  *
2095  * As a workaround for that issue, this function is called periodically by the
2096  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2097  * but that really is a band-aid.  Going forward it should be replaced with
2098  * solutions targeted more specifically at RT tasks.
2099  */
2100 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2101 {
2102 	struct update_util_data *data;
2103 
2104 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2105 						  cpu_of(rq)));
2106 	if (data)
2107 		data->func(data, rq_clock(rq), flags);
2108 }
2109 #else
2110 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2111 #endif /* CONFIG_CPU_FREQ */
2112 
2113 #ifdef arch_scale_freq_capacity
2114 #ifndef arch_scale_freq_invariant
2115 #define arch_scale_freq_invariant()	(true)
2116 #endif
2117 #else /* arch_scale_freq_capacity */
2118 #define arch_scale_freq_invariant()	(false)
2119 #endif
2120 
2121 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2122 
2123 static inline unsigned long cpu_util_dl(struct rq *rq)
2124 {
2125 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2126 }
2127 
2128 static inline unsigned long cpu_util_cfs(struct rq *rq)
2129 {
2130 	return rq->cfs.avg.util_avg;
2131 }
2132 
2133 #endif
2134