1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_CGROUP_SCHED 78 #include <linux/cgroup.h> 79 #include <linux/psi.h> 80 #endif 81 82 #ifdef CONFIG_SCHED_DEBUG 83 # include <linux/static_key.h> 84 #endif 85 86 #ifdef CONFIG_PARAVIRT 87 # include <asm/paravirt.h> 88 # include <asm/paravirt_api_clock.h> 89 #endif 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 #ifdef CONFIG_SCHED_DEBUG 95 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 96 #else 97 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 98 #endif 99 100 struct rq; 101 struct cpuidle_state; 102 103 /* task_struct::on_rq states: */ 104 #define TASK_ON_RQ_QUEUED 1 105 #define TASK_ON_RQ_MIGRATING 2 106 107 extern __read_mostly int scheduler_running; 108 109 extern unsigned long calc_load_update; 110 extern atomic_long_t calc_load_tasks; 111 112 extern unsigned int sysctl_sched_child_runs_first; 113 114 extern void calc_global_load_tick(struct rq *this_rq); 115 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 116 117 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 118 119 extern unsigned int sysctl_sched_rt_period; 120 extern int sysctl_sched_rt_runtime; 121 extern int sched_rr_timeslice; 122 123 /* 124 * Helpers for converting nanosecond timing to jiffy resolution 125 */ 126 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 127 128 /* 129 * Increase resolution of nice-level calculations for 64-bit architectures. 130 * The extra resolution improves shares distribution and load balancing of 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 132 * hierarchies, especially on larger systems. This is not a user-visible change 133 * and does not change the user-interface for setting shares/weights. 134 * 135 * We increase resolution only if we have enough bits to allow this increased 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 137 * are pretty high and the returns do not justify the increased costs. 138 * 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 140 * increase coverage and consistency always enable it on 64-bit platforms. 141 */ 142 #ifdef CONFIG_64BIT 143 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 144 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 145 # define scale_load_down(w) \ 146 ({ \ 147 unsigned long __w = (w); \ 148 if (__w) \ 149 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 150 __w; \ 151 }) 152 #else 153 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 154 # define scale_load(w) (w) 155 # define scale_load_down(w) (w) 156 #endif 157 158 /* 159 * Task weight (visible to users) and its load (invisible to users) have 160 * independent resolution, but they should be well calibrated. We use 161 * scale_load() and scale_load_down(w) to convert between them. The 162 * following must be true: 163 * 164 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 165 * 166 */ 167 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 168 169 /* 170 * Single value that decides SCHED_DEADLINE internal math precision. 171 * 10 -> just above 1us 172 * 9 -> just above 0.5us 173 */ 174 #define DL_SCALE 10 175 176 /* 177 * Single value that denotes runtime == period, ie unlimited time. 178 */ 179 #define RUNTIME_INF ((u64)~0ULL) 180 181 static inline int idle_policy(int policy) 182 { 183 return policy == SCHED_IDLE; 184 } 185 static inline int fair_policy(int policy) 186 { 187 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 188 } 189 190 static inline int rt_policy(int policy) 191 { 192 return policy == SCHED_FIFO || policy == SCHED_RR; 193 } 194 195 static inline int dl_policy(int policy) 196 { 197 return policy == SCHED_DEADLINE; 198 } 199 static inline bool valid_policy(int policy) 200 { 201 return idle_policy(policy) || fair_policy(policy) || 202 rt_policy(policy) || dl_policy(policy); 203 } 204 205 static inline int task_has_idle_policy(struct task_struct *p) 206 { 207 return idle_policy(p->policy); 208 } 209 210 static inline int task_has_rt_policy(struct task_struct *p) 211 { 212 return rt_policy(p->policy); 213 } 214 215 static inline int task_has_dl_policy(struct task_struct *p) 216 { 217 return dl_policy(p->policy); 218 } 219 220 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 221 222 static inline void update_avg(u64 *avg, u64 sample) 223 { 224 s64 diff = sample - *avg; 225 *avg += diff / 8; 226 } 227 228 /* 229 * Shifting a value by an exponent greater *or equal* to the size of said value 230 * is UB; cap at size-1. 231 */ 232 #define shr_bound(val, shift) \ 233 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 234 235 /* 236 * !! For sched_setattr_nocheck() (kernel) only !! 237 * 238 * This is actually gross. :( 239 * 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 241 * tasks, but still be able to sleep. We need this on platforms that cannot 242 * atomically change clock frequency. Remove once fast switching will be 243 * available on such platforms. 244 * 245 * SUGOV stands for SchedUtil GOVernor. 246 */ 247 #define SCHED_FLAG_SUGOV 0x10000000 248 249 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 250 251 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) 252 { 253 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 254 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 255 #else 256 return false; 257 #endif 258 } 259 260 /* 261 * Tells if entity @a should preempt entity @b. 262 */ 263 static inline bool 264 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 265 { 266 return dl_entity_is_special(a) || 267 dl_time_before(a->deadline, b->deadline); 268 } 269 270 /* 271 * This is the priority-queue data structure of the RT scheduling class: 272 */ 273 struct rt_prio_array { 274 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 275 struct list_head queue[MAX_RT_PRIO]; 276 }; 277 278 struct rt_bandwidth { 279 /* nests inside the rq lock: */ 280 raw_spinlock_t rt_runtime_lock; 281 ktime_t rt_period; 282 u64 rt_runtime; 283 struct hrtimer rt_period_timer; 284 unsigned int rt_period_active; 285 }; 286 287 void __dl_clear_params(struct task_struct *p); 288 289 struct dl_bandwidth { 290 raw_spinlock_t dl_runtime_lock; 291 u64 dl_runtime; 292 u64 dl_period; 293 }; 294 295 static inline int dl_bandwidth_enabled(void) 296 { 297 return sysctl_sched_rt_runtime >= 0; 298 } 299 300 /* 301 * To keep the bandwidth of -deadline tasks under control 302 * we need some place where: 303 * - store the maximum -deadline bandwidth of each cpu; 304 * - cache the fraction of bandwidth that is currently allocated in 305 * each root domain; 306 * 307 * This is all done in the data structure below. It is similar to the 308 * one used for RT-throttling (rt_bandwidth), with the main difference 309 * that, since here we are only interested in admission control, we 310 * do not decrease any runtime while the group "executes", neither we 311 * need a timer to replenish it. 312 * 313 * With respect to SMP, bandwidth is given on a per root domain basis, 314 * meaning that: 315 * - bw (< 100%) is the deadline bandwidth of each CPU; 316 * - total_bw is the currently allocated bandwidth in each root domain; 317 */ 318 struct dl_bw { 319 raw_spinlock_t lock; 320 u64 bw; 321 u64 total_bw; 322 }; 323 324 extern void init_dl_bw(struct dl_bw *dl_b); 325 extern int sched_dl_global_validate(void); 326 extern void sched_dl_do_global(void); 327 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 328 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 329 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 330 extern bool __checkparam_dl(const struct sched_attr *attr); 331 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 332 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 333 extern int dl_cpu_busy(int cpu, struct task_struct *p); 334 335 #ifdef CONFIG_CGROUP_SCHED 336 337 struct cfs_rq; 338 struct rt_rq; 339 340 extern struct list_head task_groups; 341 342 struct cfs_bandwidth { 343 #ifdef CONFIG_CFS_BANDWIDTH 344 raw_spinlock_t lock; 345 ktime_t period; 346 u64 quota; 347 u64 runtime; 348 u64 burst; 349 u64 runtime_snap; 350 s64 hierarchical_quota; 351 352 u8 idle; 353 u8 period_active; 354 u8 slack_started; 355 struct hrtimer period_timer; 356 struct hrtimer slack_timer; 357 struct list_head throttled_cfs_rq; 358 359 /* Statistics: */ 360 int nr_periods; 361 int nr_throttled; 362 int nr_burst; 363 u64 throttled_time; 364 u64 burst_time; 365 #endif 366 }; 367 368 /* Task group related information */ 369 struct task_group { 370 struct cgroup_subsys_state css; 371 372 #ifdef CONFIG_FAIR_GROUP_SCHED 373 /* schedulable entities of this group on each CPU */ 374 struct sched_entity **se; 375 /* runqueue "owned" by this group on each CPU */ 376 struct cfs_rq **cfs_rq; 377 unsigned long shares; 378 379 /* A positive value indicates that this is a SCHED_IDLE group. */ 380 int idle; 381 382 #ifdef CONFIG_SMP 383 /* 384 * load_avg can be heavily contended at clock tick time, so put 385 * it in its own cacheline separated from the fields above which 386 * will also be accessed at each tick. 387 */ 388 atomic_long_t load_avg ____cacheline_aligned; 389 #endif 390 #endif 391 392 #ifdef CONFIG_RT_GROUP_SCHED 393 struct sched_rt_entity **rt_se; 394 struct rt_rq **rt_rq; 395 396 struct rt_bandwidth rt_bandwidth; 397 #endif 398 399 struct rcu_head rcu; 400 struct list_head list; 401 402 struct task_group *parent; 403 struct list_head siblings; 404 struct list_head children; 405 406 #ifdef CONFIG_SCHED_AUTOGROUP 407 struct autogroup *autogroup; 408 #endif 409 410 struct cfs_bandwidth cfs_bandwidth; 411 412 #ifdef CONFIG_UCLAMP_TASK_GROUP 413 /* The two decimal precision [%] value requested from user-space */ 414 unsigned int uclamp_pct[UCLAMP_CNT]; 415 /* Clamp values requested for a task group */ 416 struct uclamp_se uclamp_req[UCLAMP_CNT]; 417 /* Effective clamp values used for a task group */ 418 struct uclamp_se uclamp[UCLAMP_CNT]; 419 #endif 420 421 }; 422 423 #ifdef CONFIG_FAIR_GROUP_SCHED 424 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 425 426 /* 427 * A weight of 0 or 1 can cause arithmetics problems. 428 * A weight of a cfs_rq is the sum of weights of which entities 429 * are queued on this cfs_rq, so a weight of a entity should not be 430 * too large, so as the shares value of a task group. 431 * (The default weight is 1024 - so there's no practical 432 * limitation from this.) 433 */ 434 #define MIN_SHARES (1UL << 1) 435 #define MAX_SHARES (1UL << 18) 436 #endif 437 438 typedef int (*tg_visitor)(struct task_group *, void *); 439 440 extern int walk_tg_tree_from(struct task_group *from, 441 tg_visitor down, tg_visitor up, void *data); 442 443 /* 444 * Iterate the full tree, calling @down when first entering a node and @up when 445 * leaving it for the final time. 446 * 447 * Caller must hold rcu_lock or sufficient equivalent. 448 */ 449 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 450 { 451 return walk_tg_tree_from(&root_task_group, down, up, data); 452 } 453 454 extern int tg_nop(struct task_group *tg, void *data); 455 456 extern void free_fair_sched_group(struct task_group *tg); 457 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 458 extern void online_fair_sched_group(struct task_group *tg); 459 extern void unregister_fair_sched_group(struct task_group *tg); 460 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 461 struct sched_entity *se, int cpu, 462 struct sched_entity *parent); 463 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 464 465 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 466 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 467 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 468 469 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 470 struct sched_rt_entity *rt_se, int cpu, 471 struct sched_rt_entity *parent); 472 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 473 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 474 extern long sched_group_rt_runtime(struct task_group *tg); 475 extern long sched_group_rt_period(struct task_group *tg); 476 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 477 478 extern struct task_group *sched_create_group(struct task_group *parent); 479 extern void sched_online_group(struct task_group *tg, 480 struct task_group *parent); 481 extern void sched_destroy_group(struct task_group *tg); 482 extern void sched_release_group(struct task_group *tg); 483 484 extern void sched_move_task(struct task_struct *tsk); 485 486 #ifdef CONFIG_FAIR_GROUP_SCHED 487 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 488 489 extern int sched_group_set_idle(struct task_group *tg, long idle); 490 491 #ifdef CONFIG_SMP 492 extern void set_task_rq_fair(struct sched_entity *se, 493 struct cfs_rq *prev, struct cfs_rq *next); 494 #else /* !CONFIG_SMP */ 495 static inline void set_task_rq_fair(struct sched_entity *se, 496 struct cfs_rq *prev, struct cfs_rq *next) { } 497 #endif /* CONFIG_SMP */ 498 #endif /* CONFIG_FAIR_GROUP_SCHED */ 499 500 #else /* CONFIG_CGROUP_SCHED */ 501 502 struct cfs_bandwidth { }; 503 504 #endif /* CONFIG_CGROUP_SCHED */ 505 506 extern void unregister_rt_sched_group(struct task_group *tg); 507 extern void free_rt_sched_group(struct task_group *tg); 508 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 509 510 /* 511 * u64_u32_load/u64_u32_store 512 * 513 * Use a copy of a u64 value to protect against data race. This is only 514 * applicable for 32-bits architectures. 515 */ 516 #ifdef CONFIG_64BIT 517 # define u64_u32_load_copy(var, copy) var 518 # define u64_u32_store_copy(var, copy, val) (var = val) 519 #else 520 # define u64_u32_load_copy(var, copy) \ 521 ({ \ 522 u64 __val, __val_copy; \ 523 do { \ 524 __val_copy = copy; \ 525 /* \ 526 * paired with u64_u32_store_copy(), ordering access \ 527 * to var and copy. \ 528 */ \ 529 smp_rmb(); \ 530 __val = var; \ 531 } while (__val != __val_copy); \ 532 __val; \ 533 }) 534 # define u64_u32_store_copy(var, copy, val) \ 535 do { \ 536 typeof(val) __val = (val); \ 537 var = __val; \ 538 /* \ 539 * paired with u64_u32_load_copy(), ordering access to var and \ 540 * copy. \ 541 */ \ 542 smp_wmb(); \ 543 copy = __val; \ 544 } while (0) 545 #endif 546 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 547 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 548 549 /* CFS-related fields in a runqueue */ 550 struct cfs_rq { 551 struct load_weight load; 552 unsigned int nr_running; 553 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 554 unsigned int idle_nr_running; /* SCHED_IDLE */ 555 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 556 557 u64 exec_clock; 558 u64 min_vruntime; 559 #ifdef CONFIG_SCHED_CORE 560 unsigned int forceidle_seq; 561 u64 min_vruntime_fi; 562 #endif 563 564 #ifndef CONFIG_64BIT 565 u64 min_vruntime_copy; 566 #endif 567 568 struct rb_root_cached tasks_timeline; 569 570 /* 571 * 'curr' points to currently running entity on this cfs_rq. 572 * It is set to NULL otherwise (i.e when none are currently running). 573 */ 574 struct sched_entity *curr; 575 struct sched_entity *next; 576 struct sched_entity *last; 577 struct sched_entity *skip; 578 579 #ifdef CONFIG_SCHED_DEBUG 580 unsigned int nr_spread_over; 581 #endif 582 583 #ifdef CONFIG_SMP 584 /* 585 * CFS load tracking 586 */ 587 struct sched_avg avg; 588 #ifndef CONFIG_64BIT 589 u64 last_update_time_copy; 590 #endif 591 struct { 592 raw_spinlock_t lock ____cacheline_aligned; 593 int nr; 594 unsigned long load_avg; 595 unsigned long util_avg; 596 unsigned long runnable_avg; 597 } removed; 598 599 #ifdef CONFIG_FAIR_GROUP_SCHED 600 unsigned long tg_load_avg_contrib; 601 long propagate; 602 long prop_runnable_sum; 603 604 /* 605 * h_load = weight * f(tg) 606 * 607 * Where f(tg) is the recursive weight fraction assigned to 608 * this group. 609 */ 610 unsigned long h_load; 611 u64 last_h_load_update; 612 struct sched_entity *h_load_next; 613 #endif /* CONFIG_FAIR_GROUP_SCHED */ 614 #endif /* CONFIG_SMP */ 615 616 #ifdef CONFIG_FAIR_GROUP_SCHED 617 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 618 619 /* 620 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 621 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 622 * (like users, containers etc.) 623 * 624 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 625 * This list is used during load balance. 626 */ 627 int on_list; 628 struct list_head leaf_cfs_rq_list; 629 struct task_group *tg; /* group that "owns" this runqueue */ 630 631 /* Locally cached copy of our task_group's idle value */ 632 int idle; 633 634 #ifdef CONFIG_CFS_BANDWIDTH 635 int runtime_enabled; 636 s64 runtime_remaining; 637 638 u64 throttled_pelt_idle; 639 #ifndef CONFIG_64BIT 640 u64 throttled_pelt_idle_copy; 641 #endif 642 u64 throttled_clock; 643 u64 throttled_clock_pelt; 644 u64 throttled_clock_pelt_time; 645 int throttled; 646 int throttle_count; 647 struct list_head throttled_list; 648 #endif /* CONFIG_CFS_BANDWIDTH */ 649 #endif /* CONFIG_FAIR_GROUP_SCHED */ 650 }; 651 652 static inline int rt_bandwidth_enabled(void) 653 { 654 return sysctl_sched_rt_runtime >= 0; 655 } 656 657 /* RT IPI pull logic requires IRQ_WORK */ 658 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 659 # define HAVE_RT_PUSH_IPI 660 #endif 661 662 /* Real-Time classes' related field in a runqueue: */ 663 struct rt_rq { 664 struct rt_prio_array active; 665 unsigned int rt_nr_running; 666 unsigned int rr_nr_running; 667 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 668 struct { 669 int curr; /* highest queued rt task prio */ 670 #ifdef CONFIG_SMP 671 int next; /* next highest */ 672 #endif 673 } highest_prio; 674 #endif 675 #ifdef CONFIG_SMP 676 unsigned int rt_nr_migratory; 677 unsigned int rt_nr_total; 678 int overloaded; 679 struct plist_head pushable_tasks; 680 681 #endif /* CONFIG_SMP */ 682 int rt_queued; 683 684 int rt_throttled; 685 u64 rt_time; 686 u64 rt_runtime; 687 /* Nests inside the rq lock: */ 688 raw_spinlock_t rt_runtime_lock; 689 690 #ifdef CONFIG_RT_GROUP_SCHED 691 unsigned int rt_nr_boosted; 692 693 struct rq *rq; 694 struct task_group *tg; 695 #endif 696 }; 697 698 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 699 { 700 return rt_rq->rt_queued && rt_rq->rt_nr_running; 701 } 702 703 /* Deadline class' related fields in a runqueue */ 704 struct dl_rq { 705 /* runqueue is an rbtree, ordered by deadline */ 706 struct rb_root_cached root; 707 708 unsigned int dl_nr_running; 709 710 #ifdef CONFIG_SMP 711 /* 712 * Deadline values of the currently executing and the 713 * earliest ready task on this rq. Caching these facilitates 714 * the decision whether or not a ready but not running task 715 * should migrate somewhere else. 716 */ 717 struct { 718 u64 curr; 719 u64 next; 720 } earliest_dl; 721 722 unsigned int dl_nr_migratory; 723 int overloaded; 724 725 /* 726 * Tasks on this rq that can be pushed away. They are kept in 727 * an rb-tree, ordered by tasks' deadlines, with caching 728 * of the leftmost (earliest deadline) element. 729 */ 730 struct rb_root_cached pushable_dl_tasks_root; 731 #else 732 struct dl_bw dl_bw; 733 #endif 734 /* 735 * "Active utilization" for this runqueue: increased when a 736 * task wakes up (becomes TASK_RUNNING) and decreased when a 737 * task blocks 738 */ 739 u64 running_bw; 740 741 /* 742 * Utilization of the tasks "assigned" to this runqueue (including 743 * the tasks that are in runqueue and the tasks that executed on this 744 * CPU and blocked). Increased when a task moves to this runqueue, and 745 * decreased when the task moves away (migrates, changes scheduling 746 * policy, or terminates). 747 * This is needed to compute the "inactive utilization" for the 748 * runqueue (inactive utilization = this_bw - running_bw). 749 */ 750 u64 this_bw; 751 u64 extra_bw; 752 753 /* 754 * Inverse of the fraction of CPU utilization that can be reclaimed 755 * by the GRUB algorithm. 756 */ 757 u64 bw_ratio; 758 }; 759 760 #ifdef CONFIG_FAIR_GROUP_SCHED 761 /* An entity is a task if it doesn't "own" a runqueue */ 762 #define entity_is_task(se) (!se->my_q) 763 764 static inline void se_update_runnable(struct sched_entity *se) 765 { 766 if (!entity_is_task(se)) 767 se->runnable_weight = se->my_q->h_nr_running; 768 } 769 770 static inline long se_runnable(struct sched_entity *se) 771 { 772 if (entity_is_task(se)) 773 return !!se->on_rq; 774 else 775 return se->runnable_weight; 776 } 777 778 #else 779 #define entity_is_task(se) 1 780 781 static inline void se_update_runnable(struct sched_entity *se) {} 782 783 static inline long se_runnable(struct sched_entity *se) 784 { 785 return !!se->on_rq; 786 } 787 #endif 788 789 #ifdef CONFIG_SMP 790 /* 791 * XXX we want to get rid of these helpers and use the full load resolution. 792 */ 793 static inline long se_weight(struct sched_entity *se) 794 { 795 return scale_load_down(se->load.weight); 796 } 797 798 799 static inline bool sched_asym_prefer(int a, int b) 800 { 801 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 802 } 803 804 struct perf_domain { 805 struct em_perf_domain *em_pd; 806 struct perf_domain *next; 807 struct rcu_head rcu; 808 }; 809 810 /* Scheduling group status flags */ 811 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */ 812 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */ 813 814 /* 815 * We add the notion of a root-domain which will be used to define per-domain 816 * variables. Each exclusive cpuset essentially defines an island domain by 817 * fully partitioning the member CPUs from any other cpuset. Whenever a new 818 * exclusive cpuset is created, we also create and attach a new root-domain 819 * object. 820 * 821 */ 822 struct root_domain { 823 atomic_t refcount; 824 atomic_t rto_count; 825 struct rcu_head rcu; 826 cpumask_var_t span; 827 cpumask_var_t online; 828 829 /* 830 * Indicate pullable load on at least one CPU, e.g: 831 * - More than one runnable task 832 * - Running task is misfit 833 */ 834 int overload; 835 836 /* Indicate one or more cpus over-utilized (tipping point) */ 837 int overutilized; 838 839 /* 840 * The bit corresponding to a CPU gets set here if such CPU has more 841 * than one runnable -deadline task (as it is below for RT tasks). 842 */ 843 cpumask_var_t dlo_mask; 844 atomic_t dlo_count; 845 struct dl_bw dl_bw; 846 struct cpudl cpudl; 847 848 /* 849 * Indicate whether a root_domain's dl_bw has been checked or 850 * updated. It's monotonously increasing value. 851 * 852 * Also, some corner cases, like 'wrap around' is dangerous, but given 853 * that u64 is 'big enough'. So that shouldn't be a concern. 854 */ 855 u64 visit_gen; 856 857 #ifdef HAVE_RT_PUSH_IPI 858 /* 859 * For IPI pull requests, loop across the rto_mask. 860 */ 861 struct irq_work rto_push_work; 862 raw_spinlock_t rto_lock; 863 /* These are only updated and read within rto_lock */ 864 int rto_loop; 865 int rto_cpu; 866 /* These atomics are updated outside of a lock */ 867 atomic_t rto_loop_next; 868 atomic_t rto_loop_start; 869 #endif 870 /* 871 * The "RT overload" flag: it gets set if a CPU has more than 872 * one runnable RT task. 873 */ 874 cpumask_var_t rto_mask; 875 struct cpupri cpupri; 876 877 unsigned long max_cpu_capacity; 878 879 /* 880 * NULL-terminated list of performance domains intersecting with the 881 * CPUs of the rd. Protected by RCU. 882 */ 883 struct perf_domain __rcu *pd; 884 }; 885 886 extern void init_defrootdomain(void); 887 extern int sched_init_domains(const struct cpumask *cpu_map); 888 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 889 extern void sched_get_rd(struct root_domain *rd); 890 extern void sched_put_rd(struct root_domain *rd); 891 892 #ifdef HAVE_RT_PUSH_IPI 893 extern void rto_push_irq_work_func(struct irq_work *work); 894 #endif 895 #endif /* CONFIG_SMP */ 896 897 #ifdef CONFIG_UCLAMP_TASK 898 /* 899 * struct uclamp_bucket - Utilization clamp bucket 900 * @value: utilization clamp value for tasks on this clamp bucket 901 * @tasks: number of RUNNABLE tasks on this clamp bucket 902 * 903 * Keep track of how many tasks are RUNNABLE for a given utilization 904 * clamp value. 905 */ 906 struct uclamp_bucket { 907 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 908 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 909 }; 910 911 /* 912 * struct uclamp_rq - rq's utilization clamp 913 * @value: currently active clamp values for a rq 914 * @bucket: utilization clamp buckets affecting a rq 915 * 916 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 917 * A clamp value is affecting a rq when there is at least one task RUNNABLE 918 * (or actually running) with that value. 919 * 920 * There are up to UCLAMP_CNT possible different clamp values, currently there 921 * are only two: minimum utilization and maximum utilization. 922 * 923 * All utilization clamping values are MAX aggregated, since: 924 * - for util_min: we want to run the CPU at least at the max of the minimum 925 * utilization required by its currently RUNNABLE tasks. 926 * - for util_max: we want to allow the CPU to run up to the max of the 927 * maximum utilization allowed by its currently RUNNABLE tasks. 928 * 929 * Since on each system we expect only a limited number of different 930 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 931 * the metrics required to compute all the per-rq utilization clamp values. 932 */ 933 struct uclamp_rq { 934 unsigned int value; 935 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 936 }; 937 938 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 939 #endif /* CONFIG_UCLAMP_TASK */ 940 941 struct rq; 942 struct balance_callback { 943 struct balance_callback *next; 944 void (*func)(struct rq *rq); 945 }; 946 947 /* 948 * This is the main, per-CPU runqueue data structure. 949 * 950 * Locking rule: those places that want to lock multiple runqueues 951 * (such as the load balancing or the thread migration code), lock 952 * acquire operations must be ordered by ascending &runqueue. 953 */ 954 struct rq { 955 /* runqueue lock: */ 956 raw_spinlock_t __lock; 957 958 /* 959 * nr_running and cpu_load should be in the same cacheline because 960 * remote CPUs use both these fields when doing load calculation. 961 */ 962 unsigned int nr_running; 963 #ifdef CONFIG_NUMA_BALANCING 964 unsigned int nr_numa_running; 965 unsigned int nr_preferred_running; 966 unsigned int numa_migrate_on; 967 #endif 968 #ifdef CONFIG_NO_HZ_COMMON 969 #ifdef CONFIG_SMP 970 unsigned long last_blocked_load_update_tick; 971 unsigned int has_blocked_load; 972 call_single_data_t nohz_csd; 973 #endif /* CONFIG_SMP */ 974 unsigned int nohz_tick_stopped; 975 atomic_t nohz_flags; 976 #endif /* CONFIG_NO_HZ_COMMON */ 977 978 #ifdef CONFIG_SMP 979 unsigned int ttwu_pending; 980 #endif 981 u64 nr_switches; 982 983 #ifdef CONFIG_UCLAMP_TASK 984 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 985 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 986 unsigned int uclamp_flags; 987 #define UCLAMP_FLAG_IDLE 0x01 988 #endif 989 990 struct cfs_rq cfs; 991 struct rt_rq rt; 992 struct dl_rq dl; 993 994 #ifdef CONFIG_FAIR_GROUP_SCHED 995 /* list of leaf cfs_rq on this CPU: */ 996 struct list_head leaf_cfs_rq_list; 997 struct list_head *tmp_alone_branch; 998 #endif /* CONFIG_FAIR_GROUP_SCHED */ 999 1000 /* 1001 * This is part of a global counter where only the total sum 1002 * over all CPUs matters. A task can increase this counter on 1003 * one CPU and if it got migrated afterwards it may decrease 1004 * it on another CPU. Always updated under the runqueue lock: 1005 */ 1006 unsigned int nr_uninterruptible; 1007 1008 struct task_struct __rcu *curr; 1009 struct task_struct *idle; 1010 struct task_struct *stop; 1011 unsigned long next_balance; 1012 struct mm_struct *prev_mm; 1013 1014 unsigned int clock_update_flags; 1015 u64 clock; 1016 /* Ensure that all clocks are in the same cache line */ 1017 u64 clock_task ____cacheline_aligned; 1018 u64 clock_pelt; 1019 unsigned long lost_idle_time; 1020 u64 clock_pelt_idle; 1021 u64 clock_idle; 1022 #ifndef CONFIG_64BIT 1023 u64 clock_pelt_idle_copy; 1024 u64 clock_idle_copy; 1025 #endif 1026 1027 atomic_t nr_iowait; 1028 1029 #ifdef CONFIG_SCHED_DEBUG 1030 u64 last_seen_need_resched_ns; 1031 int ticks_without_resched; 1032 #endif 1033 1034 #ifdef CONFIG_MEMBARRIER 1035 int membarrier_state; 1036 #endif 1037 1038 #ifdef CONFIG_SMP 1039 struct root_domain *rd; 1040 struct sched_domain __rcu *sd; 1041 1042 unsigned long cpu_capacity; 1043 unsigned long cpu_capacity_orig; 1044 unsigned long cpu_capacity_inverted; 1045 1046 struct balance_callback *balance_callback; 1047 1048 unsigned char nohz_idle_balance; 1049 unsigned char idle_balance; 1050 1051 unsigned long misfit_task_load; 1052 1053 /* For active balancing */ 1054 int active_balance; 1055 int push_cpu; 1056 struct cpu_stop_work active_balance_work; 1057 1058 /* CPU of this runqueue: */ 1059 int cpu; 1060 int online; 1061 1062 struct list_head cfs_tasks; 1063 1064 struct sched_avg avg_rt; 1065 struct sched_avg avg_dl; 1066 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1067 struct sched_avg avg_irq; 1068 #endif 1069 #ifdef CONFIG_SCHED_THERMAL_PRESSURE 1070 struct sched_avg avg_thermal; 1071 #endif 1072 u64 idle_stamp; 1073 u64 avg_idle; 1074 1075 unsigned long wake_stamp; 1076 u64 wake_avg_idle; 1077 1078 /* This is used to determine avg_idle's max value */ 1079 u64 max_idle_balance_cost; 1080 1081 #ifdef CONFIG_HOTPLUG_CPU 1082 struct rcuwait hotplug_wait; 1083 #endif 1084 #endif /* CONFIG_SMP */ 1085 1086 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1087 u64 prev_irq_time; 1088 #endif 1089 #ifdef CONFIG_PARAVIRT 1090 u64 prev_steal_time; 1091 #endif 1092 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1093 u64 prev_steal_time_rq; 1094 #endif 1095 1096 /* calc_load related fields */ 1097 unsigned long calc_load_update; 1098 long calc_load_active; 1099 1100 #ifdef CONFIG_SCHED_HRTICK 1101 #ifdef CONFIG_SMP 1102 call_single_data_t hrtick_csd; 1103 #endif 1104 struct hrtimer hrtick_timer; 1105 ktime_t hrtick_time; 1106 #endif 1107 1108 #ifdef CONFIG_SCHEDSTATS 1109 /* latency stats */ 1110 struct sched_info rq_sched_info; 1111 unsigned long long rq_cpu_time; 1112 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1113 1114 /* sys_sched_yield() stats */ 1115 unsigned int yld_count; 1116 1117 /* schedule() stats */ 1118 unsigned int sched_count; 1119 unsigned int sched_goidle; 1120 1121 /* try_to_wake_up() stats */ 1122 unsigned int ttwu_count; 1123 unsigned int ttwu_local; 1124 #endif 1125 1126 #ifdef CONFIG_CPU_IDLE 1127 /* Must be inspected within a rcu lock section */ 1128 struct cpuidle_state *idle_state; 1129 #endif 1130 1131 #ifdef CONFIG_SMP 1132 unsigned int nr_pinned; 1133 #endif 1134 unsigned int push_busy; 1135 struct cpu_stop_work push_work; 1136 1137 #ifdef CONFIG_SCHED_CORE 1138 /* per rq */ 1139 struct rq *core; 1140 struct task_struct *core_pick; 1141 unsigned int core_enabled; 1142 unsigned int core_sched_seq; 1143 struct rb_root core_tree; 1144 1145 /* shared state -- careful with sched_core_cpu_deactivate() */ 1146 unsigned int core_task_seq; 1147 unsigned int core_pick_seq; 1148 unsigned long core_cookie; 1149 unsigned int core_forceidle_count; 1150 unsigned int core_forceidle_seq; 1151 unsigned int core_forceidle_occupation; 1152 u64 core_forceidle_start; 1153 #endif 1154 1155 /* Scratch cpumask to be temporarily used under rq_lock */ 1156 cpumask_var_t scratch_mask; 1157 }; 1158 1159 #ifdef CONFIG_FAIR_GROUP_SCHED 1160 1161 /* CPU runqueue to which this cfs_rq is attached */ 1162 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1163 { 1164 return cfs_rq->rq; 1165 } 1166 1167 #else 1168 1169 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1170 { 1171 return container_of(cfs_rq, struct rq, cfs); 1172 } 1173 #endif 1174 1175 static inline int cpu_of(struct rq *rq) 1176 { 1177 #ifdef CONFIG_SMP 1178 return rq->cpu; 1179 #else 1180 return 0; 1181 #endif 1182 } 1183 1184 #define MDF_PUSH 0x01 1185 1186 static inline bool is_migration_disabled(struct task_struct *p) 1187 { 1188 #ifdef CONFIG_SMP 1189 return p->migration_disabled; 1190 #else 1191 return false; 1192 #endif 1193 } 1194 1195 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1196 1197 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1198 #define this_rq() this_cpu_ptr(&runqueues) 1199 #define task_rq(p) cpu_rq(task_cpu(p)) 1200 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1201 #define raw_rq() raw_cpu_ptr(&runqueues) 1202 1203 struct sched_group; 1204 #ifdef CONFIG_SCHED_CORE 1205 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1206 1207 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1208 1209 static inline bool sched_core_enabled(struct rq *rq) 1210 { 1211 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1212 } 1213 1214 static inline bool sched_core_disabled(void) 1215 { 1216 return !static_branch_unlikely(&__sched_core_enabled); 1217 } 1218 1219 /* 1220 * Be careful with this function; not for general use. The return value isn't 1221 * stable unless you actually hold a relevant rq->__lock. 1222 */ 1223 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1224 { 1225 if (sched_core_enabled(rq)) 1226 return &rq->core->__lock; 1227 1228 return &rq->__lock; 1229 } 1230 1231 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1232 { 1233 if (rq->core_enabled) 1234 return &rq->core->__lock; 1235 1236 return &rq->__lock; 1237 } 1238 1239 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi); 1240 1241 /* 1242 * Helpers to check if the CPU's core cookie matches with the task's cookie 1243 * when core scheduling is enabled. 1244 * A special case is that the task's cookie always matches with CPU's core 1245 * cookie if the CPU is in an idle core. 1246 */ 1247 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1248 { 1249 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1250 if (!sched_core_enabled(rq)) 1251 return true; 1252 1253 return rq->core->core_cookie == p->core_cookie; 1254 } 1255 1256 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1257 { 1258 bool idle_core = true; 1259 int cpu; 1260 1261 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1262 if (!sched_core_enabled(rq)) 1263 return true; 1264 1265 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1266 if (!available_idle_cpu(cpu)) { 1267 idle_core = false; 1268 break; 1269 } 1270 } 1271 1272 /* 1273 * A CPU in an idle core is always the best choice for tasks with 1274 * cookies. 1275 */ 1276 return idle_core || rq->core->core_cookie == p->core_cookie; 1277 } 1278 1279 static inline bool sched_group_cookie_match(struct rq *rq, 1280 struct task_struct *p, 1281 struct sched_group *group) 1282 { 1283 int cpu; 1284 1285 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1286 if (!sched_core_enabled(rq)) 1287 return true; 1288 1289 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1290 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1291 return true; 1292 } 1293 return false; 1294 } 1295 1296 static inline bool sched_core_enqueued(struct task_struct *p) 1297 { 1298 return !RB_EMPTY_NODE(&p->core_node); 1299 } 1300 1301 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1302 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1303 1304 extern void sched_core_get(void); 1305 extern void sched_core_put(void); 1306 1307 #else /* !CONFIG_SCHED_CORE */ 1308 1309 static inline bool sched_core_enabled(struct rq *rq) 1310 { 1311 return false; 1312 } 1313 1314 static inline bool sched_core_disabled(void) 1315 { 1316 return true; 1317 } 1318 1319 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1320 { 1321 return &rq->__lock; 1322 } 1323 1324 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1325 { 1326 return &rq->__lock; 1327 } 1328 1329 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1330 { 1331 return true; 1332 } 1333 1334 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1335 { 1336 return true; 1337 } 1338 1339 static inline bool sched_group_cookie_match(struct rq *rq, 1340 struct task_struct *p, 1341 struct sched_group *group) 1342 { 1343 return true; 1344 } 1345 #endif /* CONFIG_SCHED_CORE */ 1346 1347 static inline void lockdep_assert_rq_held(struct rq *rq) 1348 { 1349 lockdep_assert_held(__rq_lockp(rq)); 1350 } 1351 1352 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1353 extern bool raw_spin_rq_trylock(struct rq *rq); 1354 extern void raw_spin_rq_unlock(struct rq *rq); 1355 1356 static inline void raw_spin_rq_lock(struct rq *rq) 1357 { 1358 raw_spin_rq_lock_nested(rq, 0); 1359 } 1360 1361 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1362 { 1363 local_irq_disable(); 1364 raw_spin_rq_lock(rq); 1365 } 1366 1367 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1368 { 1369 raw_spin_rq_unlock(rq); 1370 local_irq_enable(); 1371 } 1372 1373 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1374 { 1375 unsigned long flags; 1376 local_irq_save(flags); 1377 raw_spin_rq_lock(rq); 1378 return flags; 1379 } 1380 1381 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1382 { 1383 raw_spin_rq_unlock(rq); 1384 local_irq_restore(flags); 1385 } 1386 1387 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1388 do { \ 1389 flags = _raw_spin_rq_lock_irqsave(rq); \ 1390 } while (0) 1391 1392 #ifdef CONFIG_SCHED_SMT 1393 extern void __update_idle_core(struct rq *rq); 1394 1395 static inline void update_idle_core(struct rq *rq) 1396 { 1397 if (static_branch_unlikely(&sched_smt_present)) 1398 __update_idle_core(rq); 1399 } 1400 1401 #else 1402 static inline void update_idle_core(struct rq *rq) { } 1403 #endif 1404 1405 #ifdef CONFIG_FAIR_GROUP_SCHED 1406 static inline struct task_struct *task_of(struct sched_entity *se) 1407 { 1408 SCHED_WARN_ON(!entity_is_task(se)); 1409 return container_of(se, struct task_struct, se); 1410 } 1411 1412 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1413 { 1414 return p->se.cfs_rq; 1415 } 1416 1417 /* runqueue on which this entity is (to be) queued */ 1418 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1419 { 1420 return se->cfs_rq; 1421 } 1422 1423 /* runqueue "owned" by this group */ 1424 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1425 { 1426 return grp->my_q; 1427 } 1428 1429 #else 1430 1431 static inline struct task_struct *task_of(struct sched_entity *se) 1432 { 1433 return container_of(se, struct task_struct, se); 1434 } 1435 1436 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1437 { 1438 return &task_rq(p)->cfs; 1439 } 1440 1441 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 1442 { 1443 struct task_struct *p = task_of(se); 1444 struct rq *rq = task_rq(p); 1445 1446 return &rq->cfs; 1447 } 1448 1449 /* runqueue "owned" by this group */ 1450 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1451 { 1452 return NULL; 1453 } 1454 #endif 1455 1456 extern void update_rq_clock(struct rq *rq); 1457 1458 /* 1459 * rq::clock_update_flags bits 1460 * 1461 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1462 * call to __schedule(). This is an optimisation to avoid 1463 * neighbouring rq clock updates. 1464 * 1465 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1466 * in effect and calls to update_rq_clock() are being ignored. 1467 * 1468 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1469 * made to update_rq_clock() since the last time rq::lock was pinned. 1470 * 1471 * If inside of __schedule(), clock_update_flags will have been 1472 * shifted left (a left shift is a cheap operation for the fast path 1473 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1474 * 1475 * if (rq-clock_update_flags >= RQCF_UPDATED) 1476 * 1477 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1478 * one position though, because the next rq_unpin_lock() will shift it 1479 * back. 1480 */ 1481 #define RQCF_REQ_SKIP 0x01 1482 #define RQCF_ACT_SKIP 0x02 1483 #define RQCF_UPDATED 0x04 1484 1485 static inline void assert_clock_updated(struct rq *rq) 1486 { 1487 /* 1488 * The only reason for not seeing a clock update since the 1489 * last rq_pin_lock() is if we're currently skipping updates. 1490 */ 1491 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1492 } 1493 1494 static inline u64 rq_clock(struct rq *rq) 1495 { 1496 lockdep_assert_rq_held(rq); 1497 assert_clock_updated(rq); 1498 1499 return rq->clock; 1500 } 1501 1502 static inline u64 rq_clock_task(struct rq *rq) 1503 { 1504 lockdep_assert_rq_held(rq); 1505 assert_clock_updated(rq); 1506 1507 return rq->clock_task; 1508 } 1509 1510 /** 1511 * By default the decay is the default pelt decay period. 1512 * The decay shift can change the decay period in 1513 * multiples of 32. 1514 * Decay shift Decay period(ms) 1515 * 0 32 1516 * 1 64 1517 * 2 128 1518 * 3 256 1519 * 4 512 1520 */ 1521 extern int sched_thermal_decay_shift; 1522 1523 static inline u64 rq_clock_thermal(struct rq *rq) 1524 { 1525 return rq_clock_task(rq) >> sched_thermal_decay_shift; 1526 } 1527 1528 static inline void rq_clock_skip_update(struct rq *rq) 1529 { 1530 lockdep_assert_rq_held(rq); 1531 rq->clock_update_flags |= RQCF_REQ_SKIP; 1532 } 1533 1534 /* 1535 * See rt task throttling, which is the only time a skip 1536 * request is canceled. 1537 */ 1538 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1539 { 1540 lockdep_assert_rq_held(rq); 1541 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1542 } 1543 1544 struct rq_flags { 1545 unsigned long flags; 1546 struct pin_cookie cookie; 1547 #ifdef CONFIG_SCHED_DEBUG 1548 /* 1549 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1550 * current pin context is stashed here in case it needs to be 1551 * restored in rq_repin_lock(). 1552 */ 1553 unsigned int clock_update_flags; 1554 #endif 1555 }; 1556 1557 extern struct balance_callback balance_push_callback; 1558 1559 /* 1560 * Lockdep annotation that avoids accidental unlocks; it's like a 1561 * sticky/continuous lockdep_assert_held(). 1562 * 1563 * This avoids code that has access to 'struct rq *rq' (basically everything in 1564 * the scheduler) from accidentally unlocking the rq if they do not also have a 1565 * copy of the (on-stack) 'struct rq_flags rf'. 1566 * 1567 * Also see Documentation/locking/lockdep-design.rst. 1568 */ 1569 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1570 { 1571 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1572 1573 #ifdef CONFIG_SCHED_DEBUG 1574 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1575 rf->clock_update_flags = 0; 1576 #ifdef CONFIG_SMP 1577 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1578 #endif 1579 #endif 1580 } 1581 1582 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1583 { 1584 #ifdef CONFIG_SCHED_DEBUG 1585 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1586 rf->clock_update_flags = RQCF_UPDATED; 1587 #endif 1588 1589 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1590 } 1591 1592 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1593 { 1594 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1595 1596 #ifdef CONFIG_SCHED_DEBUG 1597 /* 1598 * Restore the value we stashed in @rf for this pin context. 1599 */ 1600 rq->clock_update_flags |= rf->clock_update_flags; 1601 #endif 1602 } 1603 1604 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1605 __acquires(rq->lock); 1606 1607 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1608 __acquires(p->pi_lock) 1609 __acquires(rq->lock); 1610 1611 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1612 __releases(rq->lock) 1613 { 1614 rq_unpin_lock(rq, rf); 1615 raw_spin_rq_unlock(rq); 1616 } 1617 1618 static inline void 1619 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1620 __releases(rq->lock) 1621 __releases(p->pi_lock) 1622 { 1623 rq_unpin_lock(rq, rf); 1624 raw_spin_rq_unlock(rq); 1625 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1626 } 1627 1628 static inline void 1629 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1630 __acquires(rq->lock) 1631 { 1632 raw_spin_rq_lock_irqsave(rq, rf->flags); 1633 rq_pin_lock(rq, rf); 1634 } 1635 1636 static inline void 1637 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1638 __acquires(rq->lock) 1639 { 1640 raw_spin_rq_lock_irq(rq); 1641 rq_pin_lock(rq, rf); 1642 } 1643 1644 static inline void 1645 rq_lock(struct rq *rq, struct rq_flags *rf) 1646 __acquires(rq->lock) 1647 { 1648 raw_spin_rq_lock(rq); 1649 rq_pin_lock(rq, rf); 1650 } 1651 1652 static inline void 1653 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1654 __releases(rq->lock) 1655 { 1656 rq_unpin_lock(rq, rf); 1657 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1658 } 1659 1660 static inline void 1661 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1662 __releases(rq->lock) 1663 { 1664 rq_unpin_lock(rq, rf); 1665 raw_spin_rq_unlock_irq(rq); 1666 } 1667 1668 static inline void 1669 rq_unlock(struct rq *rq, struct rq_flags *rf) 1670 __releases(rq->lock) 1671 { 1672 rq_unpin_lock(rq, rf); 1673 raw_spin_rq_unlock(rq); 1674 } 1675 1676 static inline struct rq * 1677 this_rq_lock_irq(struct rq_flags *rf) 1678 __acquires(rq->lock) 1679 { 1680 struct rq *rq; 1681 1682 local_irq_disable(); 1683 rq = this_rq(); 1684 rq_lock(rq, rf); 1685 return rq; 1686 } 1687 1688 #ifdef CONFIG_NUMA 1689 enum numa_topology_type { 1690 NUMA_DIRECT, 1691 NUMA_GLUELESS_MESH, 1692 NUMA_BACKPLANE, 1693 }; 1694 extern enum numa_topology_type sched_numa_topology_type; 1695 extern int sched_max_numa_distance; 1696 extern bool find_numa_distance(int distance); 1697 extern void sched_init_numa(int offline_node); 1698 extern void sched_update_numa(int cpu, bool online); 1699 extern void sched_domains_numa_masks_set(unsigned int cpu); 1700 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1701 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1702 #else 1703 static inline void sched_init_numa(int offline_node) { } 1704 static inline void sched_update_numa(int cpu, bool online) { } 1705 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1706 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1707 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1708 { 1709 return nr_cpu_ids; 1710 } 1711 #endif 1712 1713 #ifdef CONFIG_NUMA_BALANCING 1714 /* The regions in numa_faults array from task_struct */ 1715 enum numa_faults_stats { 1716 NUMA_MEM = 0, 1717 NUMA_CPU, 1718 NUMA_MEMBUF, 1719 NUMA_CPUBUF 1720 }; 1721 extern void sched_setnuma(struct task_struct *p, int node); 1722 extern int migrate_task_to(struct task_struct *p, int cpu); 1723 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1724 int cpu, int scpu); 1725 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1726 #else 1727 static inline void 1728 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1729 { 1730 } 1731 #endif /* CONFIG_NUMA_BALANCING */ 1732 1733 #ifdef CONFIG_SMP 1734 1735 static inline void 1736 queue_balance_callback(struct rq *rq, 1737 struct balance_callback *head, 1738 void (*func)(struct rq *rq)) 1739 { 1740 lockdep_assert_rq_held(rq); 1741 1742 /* 1743 * Don't (re)queue an already queued item; nor queue anything when 1744 * balance_push() is active, see the comment with 1745 * balance_push_callback. 1746 */ 1747 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1748 return; 1749 1750 head->func = func; 1751 head->next = rq->balance_callback; 1752 rq->balance_callback = head; 1753 } 1754 1755 #define rcu_dereference_check_sched_domain(p) \ 1756 rcu_dereference_check((p), \ 1757 lockdep_is_held(&sched_domains_mutex)) 1758 1759 /* 1760 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1761 * See destroy_sched_domains: call_rcu for details. 1762 * 1763 * The domain tree of any CPU may only be accessed from within 1764 * preempt-disabled sections. 1765 */ 1766 #define for_each_domain(cpu, __sd) \ 1767 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1768 __sd; __sd = __sd->parent) 1769 1770 /** 1771 * highest_flag_domain - Return highest sched_domain containing flag. 1772 * @cpu: The CPU whose highest level of sched domain is to 1773 * be returned. 1774 * @flag: The flag to check for the highest sched_domain 1775 * for the given CPU. 1776 * 1777 * Returns the highest sched_domain of a CPU which contains the given flag. 1778 */ 1779 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1780 { 1781 struct sched_domain *sd, *hsd = NULL; 1782 1783 for_each_domain(cpu, sd) { 1784 if (!(sd->flags & flag)) 1785 break; 1786 hsd = sd; 1787 } 1788 1789 return hsd; 1790 } 1791 1792 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1793 { 1794 struct sched_domain *sd; 1795 1796 for_each_domain(cpu, sd) { 1797 if (sd->flags & flag) 1798 break; 1799 } 1800 1801 return sd; 1802 } 1803 1804 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1805 DECLARE_PER_CPU(int, sd_llc_size); 1806 DECLARE_PER_CPU(int, sd_llc_id); 1807 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1808 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1809 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1810 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1811 extern struct static_key_false sched_asym_cpucapacity; 1812 1813 static __always_inline bool sched_asym_cpucap_active(void) 1814 { 1815 return static_branch_unlikely(&sched_asym_cpucapacity); 1816 } 1817 1818 struct sched_group_capacity { 1819 atomic_t ref; 1820 /* 1821 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1822 * for a single CPU. 1823 */ 1824 unsigned long capacity; 1825 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1826 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1827 unsigned long next_update; 1828 int imbalance; /* XXX unrelated to capacity but shared group state */ 1829 1830 #ifdef CONFIG_SCHED_DEBUG 1831 int id; 1832 #endif 1833 1834 unsigned long cpumask[]; /* Balance mask */ 1835 }; 1836 1837 struct sched_group { 1838 struct sched_group *next; /* Must be a circular list */ 1839 atomic_t ref; 1840 1841 unsigned int group_weight; 1842 struct sched_group_capacity *sgc; 1843 int asym_prefer_cpu; /* CPU of highest priority in group */ 1844 int flags; 1845 1846 /* 1847 * The CPUs this group covers. 1848 * 1849 * NOTE: this field is variable length. (Allocated dynamically 1850 * by attaching extra space to the end of the structure, 1851 * depending on how many CPUs the kernel has booted up with) 1852 */ 1853 unsigned long cpumask[]; 1854 }; 1855 1856 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1857 { 1858 return to_cpumask(sg->cpumask); 1859 } 1860 1861 /* 1862 * See build_balance_mask(). 1863 */ 1864 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1865 { 1866 return to_cpumask(sg->sgc->cpumask); 1867 } 1868 1869 extern int group_balance_cpu(struct sched_group *sg); 1870 1871 #ifdef CONFIG_SCHED_DEBUG 1872 void update_sched_domain_debugfs(void); 1873 void dirty_sched_domain_sysctl(int cpu); 1874 #else 1875 static inline void update_sched_domain_debugfs(void) 1876 { 1877 } 1878 static inline void dirty_sched_domain_sysctl(int cpu) 1879 { 1880 } 1881 #endif 1882 1883 extern int sched_update_scaling(void); 1884 1885 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 1886 { 1887 if (!p->user_cpus_ptr) 1888 return cpu_possible_mask; /* &init_task.cpus_mask */ 1889 return p->user_cpus_ptr; 1890 } 1891 #endif /* CONFIG_SMP */ 1892 1893 #include "stats.h" 1894 1895 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1896 1897 extern void __sched_core_account_forceidle(struct rq *rq); 1898 1899 static inline void sched_core_account_forceidle(struct rq *rq) 1900 { 1901 if (schedstat_enabled()) 1902 __sched_core_account_forceidle(rq); 1903 } 1904 1905 extern void __sched_core_tick(struct rq *rq); 1906 1907 static inline void sched_core_tick(struct rq *rq) 1908 { 1909 if (sched_core_enabled(rq) && schedstat_enabled()) 1910 __sched_core_tick(rq); 1911 } 1912 1913 #else 1914 1915 static inline void sched_core_account_forceidle(struct rq *rq) {} 1916 1917 static inline void sched_core_tick(struct rq *rq) {} 1918 1919 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 1920 1921 #ifdef CONFIG_CGROUP_SCHED 1922 1923 /* 1924 * Return the group to which this tasks belongs. 1925 * 1926 * We cannot use task_css() and friends because the cgroup subsystem 1927 * changes that value before the cgroup_subsys::attach() method is called, 1928 * therefore we cannot pin it and might observe the wrong value. 1929 * 1930 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 1931 * core changes this before calling sched_move_task(). 1932 * 1933 * Instead we use a 'copy' which is updated from sched_move_task() while 1934 * holding both task_struct::pi_lock and rq::lock. 1935 */ 1936 static inline struct task_group *task_group(struct task_struct *p) 1937 { 1938 return p->sched_task_group; 1939 } 1940 1941 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 1942 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 1943 { 1944 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 1945 struct task_group *tg = task_group(p); 1946 #endif 1947 1948 #ifdef CONFIG_FAIR_GROUP_SCHED 1949 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 1950 p->se.cfs_rq = tg->cfs_rq[cpu]; 1951 p->se.parent = tg->se[cpu]; 1952 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 1953 #endif 1954 1955 #ifdef CONFIG_RT_GROUP_SCHED 1956 p->rt.rt_rq = tg->rt_rq[cpu]; 1957 p->rt.parent = tg->rt_se[cpu]; 1958 #endif 1959 } 1960 1961 #else /* CONFIG_CGROUP_SCHED */ 1962 1963 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 1964 static inline struct task_group *task_group(struct task_struct *p) 1965 { 1966 return NULL; 1967 } 1968 1969 #endif /* CONFIG_CGROUP_SCHED */ 1970 1971 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 1972 { 1973 set_task_rq(p, cpu); 1974 #ifdef CONFIG_SMP 1975 /* 1976 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 1977 * successfully executed on another CPU. We must ensure that updates of 1978 * per-task data have been completed by this moment. 1979 */ 1980 smp_wmb(); 1981 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 1982 p->wake_cpu = cpu; 1983 #endif 1984 } 1985 1986 /* 1987 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1988 */ 1989 #ifdef CONFIG_SCHED_DEBUG 1990 # define const_debug __read_mostly 1991 #else 1992 # define const_debug const 1993 #endif 1994 1995 #define SCHED_FEAT(name, enabled) \ 1996 __SCHED_FEAT_##name , 1997 1998 enum { 1999 #include "features.h" 2000 __SCHED_FEAT_NR, 2001 }; 2002 2003 #undef SCHED_FEAT 2004 2005 #ifdef CONFIG_SCHED_DEBUG 2006 2007 /* 2008 * To support run-time toggling of sched features, all the translation units 2009 * (but core.c) reference the sysctl_sched_features defined in core.c. 2010 */ 2011 extern const_debug unsigned int sysctl_sched_features; 2012 2013 #ifdef CONFIG_JUMP_LABEL 2014 #define SCHED_FEAT(name, enabled) \ 2015 static __always_inline bool static_branch_##name(struct static_key *key) \ 2016 { \ 2017 return static_key_##enabled(key); \ 2018 } 2019 2020 #include "features.h" 2021 #undef SCHED_FEAT 2022 2023 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2024 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2025 2026 #else /* !CONFIG_JUMP_LABEL */ 2027 2028 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2029 2030 #endif /* CONFIG_JUMP_LABEL */ 2031 2032 #else /* !SCHED_DEBUG */ 2033 2034 /* 2035 * Each translation unit has its own copy of sysctl_sched_features to allow 2036 * constants propagation at compile time and compiler optimization based on 2037 * features default. 2038 */ 2039 #define SCHED_FEAT(name, enabled) \ 2040 (1UL << __SCHED_FEAT_##name) * enabled | 2041 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2042 #include "features.h" 2043 0; 2044 #undef SCHED_FEAT 2045 2046 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2047 2048 #endif /* SCHED_DEBUG */ 2049 2050 extern struct static_key_false sched_numa_balancing; 2051 extern struct static_key_false sched_schedstats; 2052 2053 static inline u64 global_rt_period(void) 2054 { 2055 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2056 } 2057 2058 static inline u64 global_rt_runtime(void) 2059 { 2060 if (sysctl_sched_rt_runtime < 0) 2061 return RUNTIME_INF; 2062 2063 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2064 } 2065 2066 static inline int task_current(struct rq *rq, struct task_struct *p) 2067 { 2068 return rq->curr == p; 2069 } 2070 2071 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2072 { 2073 #ifdef CONFIG_SMP 2074 return p->on_cpu; 2075 #else 2076 return task_current(rq, p); 2077 #endif 2078 } 2079 2080 static inline int task_on_rq_queued(struct task_struct *p) 2081 { 2082 return p->on_rq == TASK_ON_RQ_QUEUED; 2083 } 2084 2085 static inline int task_on_rq_migrating(struct task_struct *p) 2086 { 2087 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2088 } 2089 2090 /* Wake flags. The first three directly map to some SD flag value */ 2091 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2092 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2093 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2094 2095 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2096 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2097 2098 #ifdef CONFIG_SMP 2099 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2100 static_assert(WF_FORK == SD_BALANCE_FORK); 2101 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2102 #endif 2103 2104 /* 2105 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2106 * of tasks with abnormal "nice" values across CPUs the contribution that 2107 * each task makes to its run queue's load is weighted according to its 2108 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2109 * scaled version of the new time slice allocation that they receive on time 2110 * slice expiry etc. 2111 */ 2112 2113 #define WEIGHT_IDLEPRIO 3 2114 #define WMULT_IDLEPRIO 1431655765 2115 2116 extern const int sched_prio_to_weight[40]; 2117 extern const u32 sched_prio_to_wmult[40]; 2118 2119 /* 2120 * {de,en}queue flags: 2121 * 2122 * DEQUEUE_SLEEP - task is no longer runnable 2123 * ENQUEUE_WAKEUP - task just became runnable 2124 * 2125 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2126 * are in a known state which allows modification. Such pairs 2127 * should preserve as much state as possible. 2128 * 2129 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2130 * in the runqueue. 2131 * 2132 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2133 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2134 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2135 * 2136 */ 2137 2138 #define DEQUEUE_SLEEP 0x01 2139 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2140 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2141 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2142 2143 #define ENQUEUE_WAKEUP 0x01 2144 #define ENQUEUE_RESTORE 0x02 2145 #define ENQUEUE_MOVE 0x04 2146 #define ENQUEUE_NOCLOCK 0x08 2147 2148 #define ENQUEUE_HEAD 0x10 2149 #define ENQUEUE_REPLENISH 0x20 2150 #ifdef CONFIG_SMP 2151 #define ENQUEUE_MIGRATED 0x40 2152 #else 2153 #define ENQUEUE_MIGRATED 0x00 2154 #endif 2155 2156 #define RETRY_TASK ((void *)-1UL) 2157 2158 struct affinity_context { 2159 const struct cpumask *new_mask; 2160 struct cpumask *user_mask; 2161 unsigned int flags; 2162 }; 2163 2164 struct sched_class { 2165 2166 #ifdef CONFIG_UCLAMP_TASK 2167 int uclamp_enabled; 2168 #endif 2169 2170 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2171 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2172 void (*yield_task) (struct rq *rq); 2173 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2174 2175 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); 2176 2177 struct task_struct *(*pick_next_task)(struct rq *rq); 2178 2179 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2180 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2181 2182 #ifdef CONFIG_SMP 2183 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2184 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2185 2186 struct task_struct * (*pick_task)(struct rq *rq); 2187 2188 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2189 2190 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2191 2192 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2193 2194 void (*rq_online)(struct rq *rq); 2195 void (*rq_offline)(struct rq *rq); 2196 2197 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2198 #endif 2199 2200 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2201 void (*task_fork)(struct task_struct *p); 2202 void (*task_dead)(struct task_struct *p); 2203 2204 /* 2205 * The switched_from() call is allowed to drop rq->lock, therefore we 2206 * cannot assume the switched_from/switched_to pair is serialized by 2207 * rq->lock. They are however serialized by p->pi_lock. 2208 */ 2209 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2210 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2211 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2212 int oldprio); 2213 2214 unsigned int (*get_rr_interval)(struct rq *rq, 2215 struct task_struct *task); 2216 2217 void (*update_curr)(struct rq *rq); 2218 2219 #ifdef CONFIG_FAIR_GROUP_SCHED 2220 void (*task_change_group)(struct task_struct *p); 2221 #endif 2222 }; 2223 2224 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2225 { 2226 WARN_ON_ONCE(rq->curr != prev); 2227 prev->sched_class->put_prev_task(rq, prev); 2228 } 2229 2230 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2231 { 2232 next->sched_class->set_next_task(rq, next, false); 2233 } 2234 2235 2236 /* 2237 * Helper to define a sched_class instance; each one is placed in a separate 2238 * section which is ordered by the linker script: 2239 * 2240 * include/asm-generic/vmlinux.lds.h 2241 * 2242 * *CAREFUL* they are laid out in *REVERSE* order!!! 2243 * 2244 * Also enforce alignment on the instance, not the type, to guarantee layout. 2245 */ 2246 #define DEFINE_SCHED_CLASS(name) \ 2247 const struct sched_class name##_sched_class \ 2248 __aligned(__alignof__(struct sched_class)) \ 2249 __section("__" #name "_sched_class") 2250 2251 /* Defined in include/asm-generic/vmlinux.lds.h */ 2252 extern struct sched_class __sched_class_highest[]; 2253 extern struct sched_class __sched_class_lowest[]; 2254 2255 #define for_class_range(class, _from, _to) \ 2256 for (class = (_from); class < (_to); class++) 2257 2258 #define for_each_class(class) \ 2259 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2260 2261 #define sched_class_above(_a, _b) ((_a) < (_b)) 2262 2263 extern const struct sched_class stop_sched_class; 2264 extern const struct sched_class dl_sched_class; 2265 extern const struct sched_class rt_sched_class; 2266 extern const struct sched_class fair_sched_class; 2267 extern const struct sched_class idle_sched_class; 2268 2269 static inline bool sched_stop_runnable(struct rq *rq) 2270 { 2271 return rq->stop && task_on_rq_queued(rq->stop); 2272 } 2273 2274 static inline bool sched_dl_runnable(struct rq *rq) 2275 { 2276 return rq->dl.dl_nr_running > 0; 2277 } 2278 2279 static inline bool sched_rt_runnable(struct rq *rq) 2280 { 2281 return rq->rt.rt_queued > 0; 2282 } 2283 2284 static inline bool sched_fair_runnable(struct rq *rq) 2285 { 2286 return rq->cfs.nr_running > 0; 2287 } 2288 2289 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2290 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2291 2292 #define SCA_CHECK 0x01 2293 #define SCA_MIGRATE_DISABLE 0x02 2294 #define SCA_MIGRATE_ENABLE 0x04 2295 #define SCA_USER 0x08 2296 2297 #ifdef CONFIG_SMP 2298 2299 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2300 2301 extern void trigger_load_balance(struct rq *rq); 2302 2303 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2304 2305 static inline struct task_struct *get_push_task(struct rq *rq) 2306 { 2307 struct task_struct *p = rq->curr; 2308 2309 lockdep_assert_rq_held(rq); 2310 2311 if (rq->push_busy) 2312 return NULL; 2313 2314 if (p->nr_cpus_allowed == 1) 2315 return NULL; 2316 2317 if (p->migration_disabled) 2318 return NULL; 2319 2320 rq->push_busy = true; 2321 return get_task_struct(p); 2322 } 2323 2324 extern int push_cpu_stop(void *arg); 2325 2326 #endif 2327 2328 #ifdef CONFIG_CPU_IDLE 2329 static inline void idle_set_state(struct rq *rq, 2330 struct cpuidle_state *idle_state) 2331 { 2332 rq->idle_state = idle_state; 2333 } 2334 2335 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2336 { 2337 SCHED_WARN_ON(!rcu_read_lock_held()); 2338 2339 return rq->idle_state; 2340 } 2341 #else 2342 static inline void idle_set_state(struct rq *rq, 2343 struct cpuidle_state *idle_state) 2344 { 2345 } 2346 2347 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2348 { 2349 return NULL; 2350 } 2351 #endif 2352 2353 extern void schedule_idle(void); 2354 2355 extern void sysrq_sched_debug_show(void); 2356 extern void sched_init_granularity(void); 2357 extern void update_max_interval(void); 2358 2359 extern void init_sched_dl_class(void); 2360 extern void init_sched_rt_class(void); 2361 extern void init_sched_fair_class(void); 2362 2363 extern void reweight_task(struct task_struct *p, int prio); 2364 2365 extern void resched_curr(struct rq *rq); 2366 extern void resched_cpu(int cpu); 2367 2368 extern struct rt_bandwidth def_rt_bandwidth; 2369 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2370 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2371 2372 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 2373 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 2374 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); 2375 2376 #define BW_SHIFT 20 2377 #define BW_UNIT (1 << BW_SHIFT) 2378 #define RATIO_SHIFT 8 2379 #define MAX_BW_BITS (64 - BW_SHIFT) 2380 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2381 unsigned long to_ratio(u64 period, u64 runtime); 2382 2383 extern void init_entity_runnable_average(struct sched_entity *se); 2384 extern void post_init_entity_util_avg(struct task_struct *p); 2385 2386 #ifdef CONFIG_NO_HZ_FULL 2387 extern bool sched_can_stop_tick(struct rq *rq); 2388 extern int __init sched_tick_offload_init(void); 2389 2390 /* 2391 * Tick may be needed by tasks in the runqueue depending on their policy and 2392 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2393 * nohz mode if necessary. 2394 */ 2395 static inline void sched_update_tick_dependency(struct rq *rq) 2396 { 2397 int cpu = cpu_of(rq); 2398 2399 if (!tick_nohz_full_cpu(cpu)) 2400 return; 2401 2402 if (sched_can_stop_tick(rq)) 2403 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2404 else 2405 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2406 } 2407 #else 2408 static inline int sched_tick_offload_init(void) { return 0; } 2409 static inline void sched_update_tick_dependency(struct rq *rq) { } 2410 #endif 2411 2412 static inline void add_nr_running(struct rq *rq, unsigned count) 2413 { 2414 unsigned prev_nr = rq->nr_running; 2415 2416 rq->nr_running = prev_nr + count; 2417 if (trace_sched_update_nr_running_tp_enabled()) { 2418 call_trace_sched_update_nr_running(rq, count); 2419 } 2420 2421 #ifdef CONFIG_SMP 2422 if (prev_nr < 2 && rq->nr_running >= 2) { 2423 if (!READ_ONCE(rq->rd->overload)) 2424 WRITE_ONCE(rq->rd->overload, 1); 2425 } 2426 #endif 2427 2428 sched_update_tick_dependency(rq); 2429 } 2430 2431 static inline void sub_nr_running(struct rq *rq, unsigned count) 2432 { 2433 rq->nr_running -= count; 2434 if (trace_sched_update_nr_running_tp_enabled()) { 2435 call_trace_sched_update_nr_running(rq, -count); 2436 } 2437 2438 /* Check if we still need preemption */ 2439 sched_update_tick_dependency(rq); 2440 } 2441 2442 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2443 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2444 2445 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 2446 2447 #ifdef CONFIG_PREEMPT_RT 2448 #define SCHED_NR_MIGRATE_BREAK 8 2449 #else 2450 #define SCHED_NR_MIGRATE_BREAK 32 2451 #endif 2452 2453 extern const_debug unsigned int sysctl_sched_nr_migrate; 2454 extern const_debug unsigned int sysctl_sched_migration_cost; 2455 2456 #ifdef CONFIG_SCHED_DEBUG 2457 extern unsigned int sysctl_sched_latency; 2458 extern unsigned int sysctl_sched_min_granularity; 2459 extern unsigned int sysctl_sched_idle_min_granularity; 2460 extern unsigned int sysctl_sched_wakeup_granularity; 2461 extern int sysctl_resched_latency_warn_ms; 2462 extern int sysctl_resched_latency_warn_once; 2463 2464 extern unsigned int sysctl_sched_tunable_scaling; 2465 2466 extern unsigned int sysctl_numa_balancing_scan_delay; 2467 extern unsigned int sysctl_numa_balancing_scan_period_min; 2468 extern unsigned int sysctl_numa_balancing_scan_period_max; 2469 extern unsigned int sysctl_numa_balancing_scan_size; 2470 extern unsigned int sysctl_numa_balancing_hot_threshold; 2471 #endif 2472 2473 #ifdef CONFIG_SCHED_HRTICK 2474 2475 /* 2476 * Use hrtick when: 2477 * - enabled by features 2478 * - hrtimer is actually high res 2479 */ 2480 static inline int hrtick_enabled(struct rq *rq) 2481 { 2482 if (!cpu_active(cpu_of(rq))) 2483 return 0; 2484 return hrtimer_is_hres_active(&rq->hrtick_timer); 2485 } 2486 2487 static inline int hrtick_enabled_fair(struct rq *rq) 2488 { 2489 if (!sched_feat(HRTICK)) 2490 return 0; 2491 return hrtick_enabled(rq); 2492 } 2493 2494 static inline int hrtick_enabled_dl(struct rq *rq) 2495 { 2496 if (!sched_feat(HRTICK_DL)) 2497 return 0; 2498 return hrtick_enabled(rq); 2499 } 2500 2501 void hrtick_start(struct rq *rq, u64 delay); 2502 2503 #else 2504 2505 static inline int hrtick_enabled_fair(struct rq *rq) 2506 { 2507 return 0; 2508 } 2509 2510 static inline int hrtick_enabled_dl(struct rq *rq) 2511 { 2512 return 0; 2513 } 2514 2515 static inline int hrtick_enabled(struct rq *rq) 2516 { 2517 return 0; 2518 } 2519 2520 #endif /* CONFIG_SCHED_HRTICK */ 2521 2522 #ifndef arch_scale_freq_tick 2523 static __always_inline 2524 void arch_scale_freq_tick(void) 2525 { 2526 } 2527 #endif 2528 2529 #ifndef arch_scale_freq_capacity 2530 /** 2531 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2532 * @cpu: the CPU in question. 2533 * 2534 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2535 * 2536 * f_curr 2537 * ------ * SCHED_CAPACITY_SCALE 2538 * f_max 2539 */ 2540 static __always_inline 2541 unsigned long arch_scale_freq_capacity(int cpu) 2542 { 2543 return SCHED_CAPACITY_SCALE; 2544 } 2545 #endif 2546 2547 #ifdef CONFIG_SCHED_DEBUG 2548 /* 2549 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2550 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2551 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2552 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2553 */ 2554 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2555 { 2556 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2557 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2558 #ifdef CONFIG_SMP 2559 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2560 #endif 2561 } 2562 #else 2563 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2564 #endif 2565 2566 #ifdef CONFIG_SMP 2567 2568 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2569 { 2570 #ifdef CONFIG_SCHED_CORE 2571 /* 2572 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2573 * order by core-id first and cpu-id second. 2574 * 2575 * Notably: 2576 * 2577 * double_rq_lock(0,3); will take core-0, core-1 lock 2578 * double_rq_lock(1,2); will take core-1, core-0 lock 2579 * 2580 * when only cpu-id is considered. 2581 */ 2582 if (rq1->core->cpu < rq2->core->cpu) 2583 return true; 2584 if (rq1->core->cpu > rq2->core->cpu) 2585 return false; 2586 2587 /* 2588 * __sched_core_flip() relies on SMT having cpu-id lock order. 2589 */ 2590 #endif 2591 return rq1->cpu < rq2->cpu; 2592 } 2593 2594 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2595 2596 #ifdef CONFIG_PREEMPTION 2597 2598 /* 2599 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2600 * way at the expense of forcing extra atomic operations in all 2601 * invocations. This assures that the double_lock is acquired using the 2602 * same underlying policy as the spinlock_t on this architecture, which 2603 * reduces latency compared to the unfair variant below. However, it 2604 * also adds more overhead and therefore may reduce throughput. 2605 */ 2606 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2607 __releases(this_rq->lock) 2608 __acquires(busiest->lock) 2609 __acquires(this_rq->lock) 2610 { 2611 raw_spin_rq_unlock(this_rq); 2612 double_rq_lock(this_rq, busiest); 2613 2614 return 1; 2615 } 2616 2617 #else 2618 /* 2619 * Unfair double_lock_balance: Optimizes throughput at the expense of 2620 * latency by eliminating extra atomic operations when the locks are 2621 * already in proper order on entry. This favors lower CPU-ids and will 2622 * grant the double lock to lower CPUs over higher ids under contention, 2623 * regardless of entry order into the function. 2624 */ 2625 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2626 __releases(this_rq->lock) 2627 __acquires(busiest->lock) 2628 __acquires(this_rq->lock) 2629 { 2630 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2631 likely(raw_spin_rq_trylock(busiest))) { 2632 double_rq_clock_clear_update(this_rq, busiest); 2633 return 0; 2634 } 2635 2636 if (rq_order_less(this_rq, busiest)) { 2637 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2638 double_rq_clock_clear_update(this_rq, busiest); 2639 return 0; 2640 } 2641 2642 raw_spin_rq_unlock(this_rq); 2643 double_rq_lock(this_rq, busiest); 2644 2645 return 1; 2646 } 2647 2648 #endif /* CONFIG_PREEMPTION */ 2649 2650 /* 2651 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2652 */ 2653 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2654 { 2655 lockdep_assert_irqs_disabled(); 2656 2657 return _double_lock_balance(this_rq, busiest); 2658 } 2659 2660 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2661 __releases(busiest->lock) 2662 { 2663 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2664 raw_spin_rq_unlock(busiest); 2665 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2666 } 2667 2668 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2669 { 2670 if (l1 > l2) 2671 swap(l1, l2); 2672 2673 spin_lock(l1); 2674 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2675 } 2676 2677 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2678 { 2679 if (l1 > l2) 2680 swap(l1, l2); 2681 2682 spin_lock_irq(l1); 2683 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2684 } 2685 2686 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2687 { 2688 if (l1 > l2) 2689 swap(l1, l2); 2690 2691 raw_spin_lock(l1); 2692 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2693 } 2694 2695 /* 2696 * double_rq_unlock - safely unlock two runqueues 2697 * 2698 * Note this does not restore interrupts like task_rq_unlock, 2699 * you need to do so manually after calling. 2700 */ 2701 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2702 __releases(rq1->lock) 2703 __releases(rq2->lock) 2704 { 2705 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2706 raw_spin_rq_unlock(rq2); 2707 else 2708 __release(rq2->lock); 2709 raw_spin_rq_unlock(rq1); 2710 } 2711 2712 extern void set_rq_online (struct rq *rq); 2713 extern void set_rq_offline(struct rq *rq); 2714 extern bool sched_smp_initialized; 2715 2716 #else /* CONFIG_SMP */ 2717 2718 /* 2719 * double_rq_lock - safely lock two runqueues 2720 * 2721 * Note this does not disable interrupts like task_rq_lock, 2722 * you need to do so manually before calling. 2723 */ 2724 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2725 __acquires(rq1->lock) 2726 __acquires(rq2->lock) 2727 { 2728 WARN_ON_ONCE(!irqs_disabled()); 2729 WARN_ON_ONCE(rq1 != rq2); 2730 raw_spin_rq_lock(rq1); 2731 __acquire(rq2->lock); /* Fake it out ;) */ 2732 double_rq_clock_clear_update(rq1, rq2); 2733 } 2734 2735 /* 2736 * double_rq_unlock - safely unlock two runqueues 2737 * 2738 * Note this does not restore interrupts like task_rq_unlock, 2739 * you need to do so manually after calling. 2740 */ 2741 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2742 __releases(rq1->lock) 2743 __releases(rq2->lock) 2744 { 2745 WARN_ON_ONCE(rq1 != rq2); 2746 raw_spin_rq_unlock(rq1); 2747 __release(rq2->lock); 2748 } 2749 2750 #endif 2751 2752 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2753 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2754 2755 #ifdef CONFIG_SCHED_DEBUG 2756 extern bool sched_debug_verbose; 2757 2758 extern void print_cfs_stats(struct seq_file *m, int cpu); 2759 extern void print_rt_stats(struct seq_file *m, int cpu); 2760 extern void print_dl_stats(struct seq_file *m, int cpu); 2761 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2762 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2763 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2764 2765 extern void resched_latency_warn(int cpu, u64 latency); 2766 #ifdef CONFIG_NUMA_BALANCING 2767 extern void 2768 show_numa_stats(struct task_struct *p, struct seq_file *m); 2769 extern void 2770 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2771 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2772 #endif /* CONFIG_NUMA_BALANCING */ 2773 #else 2774 static inline void resched_latency_warn(int cpu, u64 latency) {} 2775 #endif /* CONFIG_SCHED_DEBUG */ 2776 2777 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2778 extern void init_rt_rq(struct rt_rq *rt_rq); 2779 extern void init_dl_rq(struct dl_rq *dl_rq); 2780 2781 extern void cfs_bandwidth_usage_inc(void); 2782 extern void cfs_bandwidth_usage_dec(void); 2783 2784 #ifdef CONFIG_NO_HZ_COMMON 2785 #define NOHZ_BALANCE_KICK_BIT 0 2786 #define NOHZ_STATS_KICK_BIT 1 2787 #define NOHZ_NEWILB_KICK_BIT 2 2788 #define NOHZ_NEXT_KICK_BIT 3 2789 2790 /* Run rebalance_domains() */ 2791 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2792 /* Update blocked load */ 2793 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2794 /* Update blocked load when entering idle */ 2795 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2796 /* Update nohz.next_balance */ 2797 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2798 2799 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2800 2801 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2802 2803 extern void nohz_balance_exit_idle(struct rq *rq); 2804 #else 2805 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2806 #endif 2807 2808 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2809 extern void nohz_run_idle_balance(int cpu); 2810 #else 2811 static inline void nohz_run_idle_balance(int cpu) { } 2812 #endif 2813 2814 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2815 struct irqtime { 2816 u64 total; 2817 u64 tick_delta; 2818 u64 irq_start_time; 2819 struct u64_stats_sync sync; 2820 }; 2821 2822 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2823 2824 /* 2825 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2826 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2827 * and never move forward. 2828 */ 2829 static inline u64 irq_time_read(int cpu) 2830 { 2831 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2832 unsigned int seq; 2833 u64 total; 2834 2835 do { 2836 seq = __u64_stats_fetch_begin(&irqtime->sync); 2837 total = irqtime->total; 2838 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2839 2840 return total; 2841 } 2842 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2843 2844 #ifdef CONFIG_CPU_FREQ 2845 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2846 2847 /** 2848 * cpufreq_update_util - Take a note about CPU utilization changes. 2849 * @rq: Runqueue to carry out the update for. 2850 * @flags: Update reason flags. 2851 * 2852 * This function is called by the scheduler on the CPU whose utilization is 2853 * being updated. 2854 * 2855 * It can only be called from RCU-sched read-side critical sections. 2856 * 2857 * The way cpufreq is currently arranged requires it to evaluate the CPU 2858 * performance state (frequency/voltage) on a regular basis to prevent it from 2859 * being stuck in a completely inadequate performance level for too long. 2860 * That is not guaranteed to happen if the updates are only triggered from CFS 2861 * and DL, though, because they may not be coming in if only RT tasks are 2862 * active all the time (or there are RT tasks only). 2863 * 2864 * As a workaround for that issue, this function is called periodically by the 2865 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2866 * but that really is a band-aid. Going forward it should be replaced with 2867 * solutions targeted more specifically at RT tasks. 2868 */ 2869 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2870 { 2871 struct update_util_data *data; 2872 2873 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2874 cpu_of(rq))); 2875 if (data) 2876 data->func(data, rq_clock(rq), flags); 2877 } 2878 #else 2879 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2880 #endif /* CONFIG_CPU_FREQ */ 2881 2882 #ifdef arch_scale_freq_capacity 2883 # ifndef arch_scale_freq_invariant 2884 # define arch_scale_freq_invariant() true 2885 # endif 2886 #else 2887 # define arch_scale_freq_invariant() false 2888 #endif 2889 2890 #ifdef CONFIG_SMP 2891 static inline unsigned long capacity_orig_of(int cpu) 2892 { 2893 return cpu_rq(cpu)->cpu_capacity_orig; 2894 } 2895 2896 /* 2897 * Returns inverted capacity if the CPU is in capacity inversion state. 2898 * 0 otherwise. 2899 * 2900 * Capacity inversion detection only considers thermal impact where actual 2901 * performance points (OPPs) gets dropped. 2902 * 2903 * Capacity inversion state happens when another performance domain that has 2904 * equal or lower capacity_orig_of() becomes effectively larger than the perf 2905 * domain this CPU belongs to due to thermal pressure throttling it hard. 2906 * 2907 * See comment in update_cpu_capacity(). 2908 */ 2909 static inline unsigned long cpu_in_capacity_inversion(int cpu) 2910 { 2911 return cpu_rq(cpu)->cpu_capacity_inverted; 2912 } 2913 2914 /** 2915 * enum cpu_util_type - CPU utilization type 2916 * @FREQUENCY_UTIL: Utilization used to select frequency 2917 * @ENERGY_UTIL: Utilization used during energy calculation 2918 * 2919 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time 2920 * need to be aggregated differently depending on the usage made of them. This 2921 * enum is used within effective_cpu_util() to differentiate the types of 2922 * utilization expected by the callers, and adjust the aggregation accordingly. 2923 */ 2924 enum cpu_util_type { 2925 FREQUENCY_UTIL, 2926 ENERGY_UTIL, 2927 }; 2928 2929 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 2930 enum cpu_util_type type, 2931 struct task_struct *p); 2932 2933 /* 2934 * Verify the fitness of task @p to run on @cpu taking into account the 2935 * CPU original capacity and the runtime/deadline ratio of the task. 2936 * 2937 * The function will return true if the original capacity of @cpu is 2938 * greater than or equal to task's deadline density right shifted by 2939 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 2940 */ 2941 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 2942 { 2943 unsigned long cap = arch_scale_cpu_capacity(cpu); 2944 2945 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 2946 } 2947 2948 static inline unsigned long cpu_bw_dl(struct rq *rq) 2949 { 2950 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 2951 } 2952 2953 static inline unsigned long cpu_util_dl(struct rq *rq) 2954 { 2955 return READ_ONCE(rq->avg_dl.util_avg); 2956 } 2957 2958 /** 2959 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. 2960 * @cpu: the CPU to get the utilization for. 2961 * 2962 * The unit of the return value must be the same as the one of CPU capacity 2963 * so that CPU utilization can be compared with CPU capacity. 2964 * 2965 * CPU utilization is the sum of running time of runnable tasks plus the 2966 * recent utilization of currently non-runnable tasks on that CPU. 2967 * It represents the amount of CPU capacity currently used by CFS tasks in 2968 * the range [0..max CPU capacity] with max CPU capacity being the CPU 2969 * capacity at f_max. 2970 * 2971 * The estimated CPU utilization is defined as the maximum between CPU 2972 * utilization and sum of the estimated utilization of the currently 2973 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 2974 * previously-executed tasks, which helps better deduce how busy a CPU will 2975 * be when a long-sleeping task wakes up. The contribution to CPU utilization 2976 * of such a task would be significantly decayed at this point of time. 2977 * 2978 * CPU utilization can be higher than the current CPU capacity 2979 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 2980 * of rounding errors as well as task migrations or wakeups of new tasks. 2981 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 2982 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 2983 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 2984 * capacity. CPU utilization is allowed to overshoot current CPU capacity 2985 * though since this is useful for predicting the CPU capacity required 2986 * after task migrations (scheduler-driven DVFS). 2987 * 2988 * Return: (Estimated) utilization for the specified CPU. 2989 */ 2990 static inline unsigned long cpu_util_cfs(int cpu) 2991 { 2992 struct cfs_rq *cfs_rq; 2993 unsigned long util; 2994 2995 cfs_rq = &cpu_rq(cpu)->cfs; 2996 util = READ_ONCE(cfs_rq->avg.util_avg); 2997 2998 if (sched_feat(UTIL_EST)) { 2999 util = max_t(unsigned long, util, 3000 READ_ONCE(cfs_rq->avg.util_est.enqueued)); 3001 } 3002 3003 return min(util, capacity_orig_of(cpu)); 3004 } 3005 3006 static inline unsigned long cpu_util_rt(struct rq *rq) 3007 { 3008 return READ_ONCE(rq->avg_rt.util_avg); 3009 } 3010 #endif 3011 3012 #ifdef CONFIG_UCLAMP_TASK 3013 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3014 3015 static inline unsigned long uclamp_rq_get(struct rq *rq, 3016 enum uclamp_id clamp_id) 3017 { 3018 return READ_ONCE(rq->uclamp[clamp_id].value); 3019 } 3020 3021 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3022 unsigned int value) 3023 { 3024 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3025 } 3026 3027 static inline bool uclamp_rq_is_idle(struct rq *rq) 3028 { 3029 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3030 } 3031 3032 /** 3033 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values. 3034 * @rq: The rq to clamp against. Must not be NULL. 3035 * @util: The util value to clamp. 3036 * @p: The task to clamp against. Can be NULL if you want to clamp 3037 * against @rq only. 3038 * 3039 * Clamps the passed @util to the max(@rq, @p) effective uclamp values. 3040 * 3041 * If sched_uclamp_used static key is disabled, then just return the util 3042 * without any clamping since uclamp aggregation at the rq level in the fast 3043 * path is disabled, rendering this operation a NOP. 3044 * 3045 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It 3046 * will return the correct effective uclamp value of the task even if the 3047 * static key is disabled. 3048 */ 3049 static __always_inline 3050 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3051 struct task_struct *p) 3052 { 3053 unsigned long min_util = 0; 3054 unsigned long max_util = 0; 3055 3056 if (!static_branch_likely(&sched_uclamp_used)) 3057 return util; 3058 3059 if (p) { 3060 min_util = uclamp_eff_value(p, UCLAMP_MIN); 3061 max_util = uclamp_eff_value(p, UCLAMP_MAX); 3062 3063 /* 3064 * Ignore last runnable task's max clamp, as this task will 3065 * reset it. Similarly, no need to read the rq's min clamp. 3066 */ 3067 if (uclamp_rq_is_idle(rq)) 3068 goto out; 3069 } 3070 3071 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN)); 3072 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX)); 3073 out: 3074 /* 3075 * Since CPU's {min,max}_util clamps are MAX aggregated considering 3076 * RUNNABLE tasks with _different_ clamps, we can end up with an 3077 * inversion. Fix it now when the clamps are applied. 3078 */ 3079 if (unlikely(min_util >= max_util)) 3080 return min_util; 3081 3082 return clamp(util, min_util, max_util); 3083 } 3084 3085 /* Is the rq being capped/throttled by uclamp_max? */ 3086 static inline bool uclamp_rq_is_capped(struct rq *rq) 3087 { 3088 unsigned long rq_util; 3089 unsigned long max_util; 3090 3091 if (!static_branch_likely(&sched_uclamp_used)) 3092 return false; 3093 3094 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3095 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3096 3097 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3098 } 3099 3100 /* 3101 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3102 * by default in the fast path and only gets turned on once userspace performs 3103 * an operation that requires it. 3104 * 3105 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3106 * hence is active. 3107 */ 3108 static inline bool uclamp_is_used(void) 3109 { 3110 return static_branch_likely(&sched_uclamp_used); 3111 } 3112 #else /* CONFIG_UCLAMP_TASK */ 3113 static inline unsigned long uclamp_eff_value(struct task_struct *p, 3114 enum uclamp_id clamp_id) 3115 { 3116 if (clamp_id == UCLAMP_MIN) 3117 return 0; 3118 3119 return SCHED_CAPACITY_SCALE; 3120 } 3121 3122 static inline 3123 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, 3124 struct task_struct *p) 3125 { 3126 return util; 3127 } 3128 3129 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3130 3131 static inline bool uclamp_is_used(void) 3132 { 3133 return false; 3134 } 3135 3136 static inline unsigned long uclamp_rq_get(struct rq *rq, 3137 enum uclamp_id clamp_id) 3138 { 3139 if (clamp_id == UCLAMP_MIN) 3140 return 0; 3141 3142 return SCHED_CAPACITY_SCALE; 3143 } 3144 3145 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3146 unsigned int value) 3147 { 3148 } 3149 3150 static inline bool uclamp_rq_is_idle(struct rq *rq) 3151 { 3152 return false; 3153 } 3154 #endif /* CONFIG_UCLAMP_TASK */ 3155 3156 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3157 static inline unsigned long cpu_util_irq(struct rq *rq) 3158 { 3159 return rq->avg_irq.util_avg; 3160 } 3161 3162 static inline 3163 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3164 { 3165 util *= (max - irq); 3166 util /= max; 3167 3168 return util; 3169 3170 } 3171 #else 3172 static inline unsigned long cpu_util_irq(struct rq *rq) 3173 { 3174 return 0; 3175 } 3176 3177 static inline 3178 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3179 { 3180 return util; 3181 } 3182 #endif 3183 3184 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3185 3186 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3187 3188 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3189 3190 static inline bool sched_energy_enabled(void) 3191 { 3192 return static_branch_unlikely(&sched_energy_present); 3193 } 3194 3195 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3196 3197 #define perf_domain_span(pd) NULL 3198 static inline bool sched_energy_enabled(void) { return false; } 3199 3200 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3201 3202 #ifdef CONFIG_MEMBARRIER 3203 /* 3204 * The scheduler provides memory barriers required by membarrier between: 3205 * - prior user-space memory accesses and store to rq->membarrier_state, 3206 * - store to rq->membarrier_state and following user-space memory accesses. 3207 * In the same way it provides those guarantees around store to rq->curr. 3208 */ 3209 static inline void membarrier_switch_mm(struct rq *rq, 3210 struct mm_struct *prev_mm, 3211 struct mm_struct *next_mm) 3212 { 3213 int membarrier_state; 3214 3215 if (prev_mm == next_mm) 3216 return; 3217 3218 membarrier_state = atomic_read(&next_mm->membarrier_state); 3219 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3220 return; 3221 3222 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3223 } 3224 #else 3225 static inline void membarrier_switch_mm(struct rq *rq, 3226 struct mm_struct *prev_mm, 3227 struct mm_struct *next_mm) 3228 { 3229 } 3230 #endif 3231 3232 #ifdef CONFIG_SMP 3233 static inline bool is_per_cpu_kthread(struct task_struct *p) 3234 { 3235 if (!(p->flags & PF_KTHREAD)) 3236 return false; 3237 3238 if (p->nr_cpus_allowed != 1) 3239 return false; 3240 3241 return true; 3242 } 3243 #endif 3244 3245 extern void swake_up_all_locked(struct swait_queue_head *q); 3246 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3247 3248 #ifdef CONFIG_PREEMPT_DYNAMIC 3249 extern int preempt_dynamic_mode; 3250 extern int sched_dynamic_mode(const char *str); 3251 extern void sched_dynamic_update(int mode); 3252 #endif 3253 3254 static inline void update_current_exec_runtime(struct task_struct *curr, 3255 u64 now, u64 delta_exec) 3256 { 3257 curr->se.sum_exec_runtime += delta_exec; 3258 account_group_exec_runtime(curr, delta_exec); 3259 3260 curr->se.exec_start = now; 3261 cgroup_account_cputime(curr, delta_exec); 3262 } 3263 3264 #endif /* _KERNEL_SCHED_SCHED_H */ 3265