1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 72 #include <trace/events/power.h> 73 #include <trace/events/sched.h> 74 75 #include "../workqueue_internal.h" 76 77 #ifdef CONFIG_PARAVIRT 78 # include <asm/paravirt.h> 79 # include <asm/paravirt_api_clock.h> 80 #endif 81 82 #include <asm/barrier.h> 83 84 #include "cpupri.h" 85 #include "cpudeadline.h" 86 87 #ifdef CONFIG_SCHED_DEBUG 88 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) 89 #else 90 # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) 91 #endif 92 93 struct rq; 94 struct cpuidle_state; 95 96 /* task_struct::on_rq states: */ 97 #define TASK_ON_RQ_QUEUED 1 98 #define TASK_ON_RQ_MIGRATING 2 99 100 extern __read_mostly int scheduler_running; 101 102 extern unsigned long calc_load_update; 103 extern atomic_long_t calc_load_tasks; 104 105 extern void calc_global_load_tick(struct rq *this_rq); 106 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 107 108 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 109 110 extern int sysctl_sched_rt_period; 111 extern int sysctl_sched_rt_runtime; 112 extern int sched_rr_timeslice; 113 114 /* 115 * Asymmetric CPU capacity bits 116 */ 117 struct asym_cap_data { 118 struct list_head link; 119 struct rcu_head rcu; 120 unsigned long capacity; 121 unsigned long cpus[]; 122 }; 123 124 extern struct list_head asym_cap_list; 125 126 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 127 128 /* 129 * Helpers for converting nanosecond timing to jiffy resolution 130 */ 131 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 132 133 /* 134 * Increase resolution of nice-level calculations for 64-bit architectures. 135 * The extra resolution improves shares distribution and load balancing of 136 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 137 * hierarchies, especially on larger systems. This is not a user-visible change 138 * and does not change the user-interface for setting shares/weights. 139 * 140 * We increase resolution only if we have enough bits to allow this increased 141 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 142 * are pretty high and the returns do not justify the increased costs. 143 * 144 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 145 * increase coverage and consistency always enable it on 64-bit platforms. 146 */ 147 #ifdef CONFIG_64BIT 148 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 150 # define scale_load_down(w) \ 151 ({ \ 152 unsigned long __w = (w); \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 static inline int fair_policy(int policy) 191 { 192 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 193 } 194 195 static inline int rt_policy(int policy) 196 { 197 return policy == SCHED_FIFO || policy == SCHED_RR; 198 } 199 200 static inline int dl_policy(int policy) 201 { 202 return policy == SCHED_DEADLINE; 203 } 204 static inline bool valid_policy(int policy) 205 { 206 return idle_policy(policy) || fair_policy(policy) || 207 rt_policy(policy) || dl_policy(policy); 208 } 209 210 static inline int task_has_idle_policy(struct task_struct *p) 211 { 212 return idle_policy(p->policy); 213 } 214 215 static inline int task_has_rt_policy(struct task_struct *p) 216 { 217 return rt_policy(p->policy); 218 } 219 220 static inline int task_has_dl_policy(struct task_struct *p) 221 { 222 return dl_policy(p->policy); 223 } 224 225 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 226 227 static inline void update_avg(u64 *avg, u64 sample) 228 { 229 s64 diff = sample - *avg; 230 *avg += diff / 8; 231 } 232 233 /* 234 * Shifting a value by an exponent greater *or equal* to the size of said value 235 * is UB; cap at size-1. 236 */ 237 #define shr_bound(val, shift) \ 238 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 239 240 /* 241 * !! For sched_setattr_nocheck() (kernel) only !! 242 * 243 * This is actually gross. :( 244 * 245 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 246 * tasks, but still be able to sleep. We need this on platforms that cannot 247 * atomically change clock frequency. Remove once fast switching will be 248 * available on such platforms. 249 * 250 * SUGOV stands for SchedUtil GOVernor. 251 */ 252 #define SCHED_FLAG_SUGOV 0x10000000 253 254 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 255 256 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 257 { 258 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 259 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 260 #else 261 return false; 262 #endif 263 } 264 265 /* 266 * Tells if entity @a should preempt entity @b. 267 */ 268 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 269 const struct sched_dl_entity *b) 270 { 271 return dl_entity_is_special(a) || 272 dl_time_before(a->deadline, b->deadline); 273 } 274 275 /* 276 * This is the priority-queue data structure of the RT scheduling class: 277 */ 278 struct rt_prio_array { 279 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 280 struct list_head queue[MAX_RT_PRIO]; 281 }; 282 283 struct rt_bandwidth { 284 /* nests inside the rq lock: */ 285 raw_spinlock_t rt_runtime_lock; 286 ktime_t rt_period; 287 u64 rt_runtime; 288 struct hrtimer rt_period_timer; 289 unsigned int rt_period_active; 290 }; 291 292 static inline int dl_bandwidth_enabled(void) 293 { 294 return sysctl_sched_rt_runtime >= 0; 295 } 296 297 /* 298 * To keep the bandwidth of -deadline tasks under control 299 * we need some place where: 300 * - store the maximum -deadline bandwidth of each cpu; 301 * - cache the fraction of bandwidth that is currently allocated in 302 * each root domain; 303 * 304 * This is all done in the data structure below. It is similar to the 305 * one used for RT-throttling (rt_bandwidth), with the main difference 306 * that, since here we are only interested in admission control, we 307 * do not decrease any runtime while the group "executes", neither we 308 * need a timer to replenish it. 309 * 310 * With respect to SMP, bandwidth is given on a per root domain basis, 311 * meaning that: 312 * - bw (< 100%) is the deadline bandwidth of each CPU; 313 * - total_bw is the currently allocated bandwidth in each root domain; 314 */ 315 struct dl_bw { 316 raw_spinlock_t lock; 317 u64 bw; 318 u64 total_bw; 319 }; 320 321 extern void init_dl_bw(struct dl_bw *dl_b); 322 extern int sched_dl_global_validate(void); 323 extern void sched_dl_do_global(void); 324 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 325 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 326 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 327 extern bool __checkparam_dl(const struct sched_attr *attr); 328 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 329 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 330 extern int dl_bw_check_overflow(int cpu); 331 332 /* 333 * SCHED_DEADLINE supports servers (nested scheduling) with the following 334 * interface: 335 * 336 * dl_se::rq -- runqueue we belong to. 337 * 338 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 339 * server when it runs out of tasks to run. 340 * 341 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 342 * returns NULL. 343 * 344 * dl_server_update() -- called from update_curr_common(), propagates runtime 345 * to the server. 346 * 347 * dl_server_start() 348 * dl_server_stop() -- start/stop the server when it has (no) tasks. 349 * 350 * dl_server_init() -- initializes the server. 351 */ 352 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 353 extern void dl_server_start(struct sched_dl_entity *dl_se); 354 extern void dl_server_stop(struct sched_dl_entity *dl_se); 355 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 356 dl_server_has_tasks_f has_tasks, 357 dl_server_pick_f pick); 358 359 #ifdef CONFIG_CGROUP_SCHED 360 361 struct cfs_rq; 362 struct rt_rq; 363 364 extern struct list_head task_groups; 365 366 struct cfs_bandwidth { 367 #ifdef CONFIG_CFS_BANDWIDTH 368 raw_spinlock_t lock; 369 ktime_t period; 370 u64 quota; 371 u64 runtime; 372 u64 burst; 373 u64 runtime_snap; 374 s64 hierarchical_quota; 375 376 u8 idle; 377 u8 period_active; 378 u8 slack_started; 379 struct hrtimer period_timer; 380 struct hrtimer slack_timer; 381 struct list_head throttled_cfs_rq; 382 383 /* Statistics: */ 384 int nr_periods; 385 int nr_throttled; 386 int nr_burst; 387 u64 throttled_time; 388 u64 burst_time; 389 #endif 390 }; 391 392 /* Task group related information */ 393 struct task_group { 394 struct cgroup_subsys_state css; 395 396 #ifdef CONFIG_FAIR_GROUP_SCHED 397 /* schedulable entities of this group on each CPU */ 398 struct sched_entity **se; 399 /* runqueue "owned" by this group on each CPU */ 400 struct cfs_rq **cfs_rq; 401 unsigned long shares; 402 403 /* A positive value indicates that this is a SCHED_IDLE group. */ 404 int idle; 405 406 #ifdef CONFIG_SMP 407 /* 408 * load_avg can be heavily contended at clock tick time, so put 409 * it in its own cacheline separated from the fields above which 410 * will also be accessed at each tick. 411 */ 412 atomic_long_t load_avg ____cacheline_aligned; 413 #endif 414 #endif 415 416 #ifdef CONFIG_RT_GROUP_SCHED 417 struct sched_rt_entity **rt_se; 418 struct rt_rq **rt_rq; 419 420 struct rt_bandwidth rt_bandwidth; 421 #endif 422 423 struct rcu_head rcu; 424 struct list_head list; 425 426 struct task_group *parent; 427 struct list_head siblings; 428 struct list_head children; 429 430 #ifdef CONFIG_SCHED_AUTOGROUP 431 struct autogroup *autogroup; 432 #endif 433 434 struct cfs_bandwidth cfs_bandwidth; 435 436 #ifdef CONFIG_UCLAMP_TASK_GROUP 437 /* The two decimal precision [%] value requested from user-space */ 438 unsigned int uclamp_pct[UCLAMP_CNT]; 439 /* Clamp values requested for a task group */ 440 struct uclamp_se uclamp_req[UCLAMP_CNT]; 441 /* Effective clamp values used for a task group */ 442 struct uclamp_se uclamp[UCLAMP_CNT]; 443 #endif 444 445 }; 446 447 #ifdef CONFIG_FAIR_GROUP_SCHED 448 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 449 450 /* 451 * A weight of 0 or 1 can cause arithmetics problems. 452 * A weight of a cfs_rq is the sum of weights of which entities 453 * are queued on this cfs_rq, so a weight of a entity should not be 454 * too large, so as the shares value of a task group. 455 * (The default weight is 1024 - so there's no practical 456 * limitation from this.) 457 */ 458 #define MIN_SHARES (1UL << 1) 459 #define MAX_SHARES (1UL << 18) 460 #endif 461 462 typedef int (*tg_visitor)(struct task_group *, void *); 463 464 extern int walk_tg_tree_from(struct task_group *from, 465 tg_visitor down, tg_visitor up, void *data); 466 467 /* 468 * Iterate the full tree, calling @down when first entering a node and @up when 469 * leaving it for the final time. 470 * 471 * Caller must hold rcu_lock or sufficient equivalent. 472 */ 473 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 474 { 475 return walk_tg_tree_from(&root_task_group, down, up, data); 476 } 477 478 extern int tg_nop(struct task_group *tg, void *data); 479 480 #ifdef CONFIG_FAIR_GROUP_SCHED 481 extern void free_fair_sched_group(struct task_group *tg); 482 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 483 extern void online_fair_sched_group(struct task_group *tg); 484 extern void unregister_fair_sched_group(struct task_group *tg); 485 #else 486 static inline void free_fair_sched_group(struct task_group *tg) { } 487 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 488 { 489 return 1; 490 } 491 static inline void online_fair_sched_group(struct task_group *tg) { } 492 static inline void unregister_fair_sched_group(struct task_group *tg) { } 493 #endif 494 495 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 496 struct sched_entity *se, int cpu, 497 struct sched_entity *parent); 498 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 499 500 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 501 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 502 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 503 extern bool cfs_task_bw_constrained(struct task_struct *p); 504 505 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 506 struct sched_rt_entity *rt_se, int cpu, 507 struct sched_rt_entity *parent); 508 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 509 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 510 extern long sched_group_rt_runtime(struct task_group *tg); 511 extern long sched_group_rt_period(struct task_group *tg); 512 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 513 514 extern struct task_group *sched_create_group(struct task_group *parent); 515 extern void sched_online_group(struct task_group *tg, 516 struct task_group *parent); 517 extern void sched_destroy_group(struct task_group *tg); 518 extern void sched_release_group(struct task_group *tg); 519 520 extern void sched_move_task(struct task_struct *tsk); 521 522 #ifdef CONFIG_FAIR_GROUP_SCHED 523 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 524 525 extern int sched_group_set_idle(struct task_group *tg, long idle); 526 527 #ifdef CONFIG_SMP 528 extern void set_task_rq_fair(struct sched_entity *se, 529 struct cfs_rq *prev, struct cfs_rq *next); 530 #else /* !CONFIG_SMP */ 531 static inline void set_task_rq_fair(struct sched_entity *se, 532 struct cfs_rq *prev, struct cfs_rq *next) { } 533 #endif /* CONFIG_SMP */ 534 #endif /* CONFIG_FAIR_GROUP_SCHED */ 535 536 #else /* CONFIG_CGROUP_SCHED */ 537 538 struct cfs_bandwidth { }; 539 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 540 541 #endif /* CONFIG_CGROUP_SCHED */ 542 543 extern void unregister_rt_sched_group(struct task_group *tg); 544 extern void free_rt_sched_group(struct task_group *tg); 545 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 546 547 /* 548 * u64_u32_load/u64_u32_store 549 * 550 * Use a copy of a u64 value to protect against data race. This is only 551 * applicable for 32-bits architectures. 552 */ 553 #ifdef CONFIG_64BIT 554 # define u64_u32_load_copy(var, copy) var 555 # define u64_u32_store_copy(var, copy, val) (var = val) 556 #else 557 # define u64_u32_load_copy(var, copy) \ 558 ({ \ 559 u64 __val, __val_copy; \ 560 do { \ 561 __val_copy = copy; \ 562 /* \ 563 * paired with u64_u32_store_copy(), ordering access \ 564 * to var and copy. \ 565 */ \ 566 smp_rmb(); \ 567 __val = var; \ 568 } while (__val != __val_copy); \ 569 __val; \ 570 }) 571 # define u64_u32_store_copy(var, copy, val) \ 572 do { \ 573 typeof(val) __val = (val); \ 574 var = __val; \ 575 /* \ 576 * paired with u64_u32_load_copy(), ordering access to var and \ 577 * copy. \ 578 */ \ 579 smp_wmb(); \ 580 copy = __val; \ 581 } while (0) 582 #endif 583 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 584 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 585 586 /* CFS-related fields in a runqueue */ 587 struct cfs_rq { 588 struct load_weight load; 589 unsigned int nr_running; 590 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */ 591 unsigned int idle_nr_running; /* SCHED_IDLE */ 592 unsigned int idle_h_nr_running; /* SCHED_IDLE */ 593 594 s64 avg_vruntime; 595 u64 avg_load; 596 597 u64 exec_clock; 598 u64 min_vruntime; 599 #ifdef CONFIG_SCHED_CORE 600 unsigned int forceidle_seq; 601 u64 min_vruntime_fi; 602 #endif 603 604 #ifndef CONFIG_64BIT 605 u64 min_vruntime_copy; 606 #endif 607 608 struct rb_root_cached tasks_timeline; 609 610 /* 611 * 'curr' points to currently running entity on this cfs_rq. 612 * It is set to NULL otherwise (i.e when none are currently running). 613 */ 614 struct sched_entity *curr; 615 struct sched_entity *next; 616 617 #ifdef CONFIG_SCHED_DEBUG 618 unsigned int nr_spread_over; 619 #endif 620 621 #ifdef CONFIG_SMP 622 /* 623 * CFS load tracking 624 */ 625 struct sched_avg avg; 626 #ifndef CONFIG_64BIT 627 u64 last_update_time_copy; 628 #endif 629 struct { 630 raw_spinlock_t lock ____cacheline_aligned; 631 int nr; 632 unsigned long load_avg; 633 unsigned long util_avg; 634 unsigned long runnable_avg; 635 } removed; 636 637 #ifdef CONFIG_FAIR_GROUP_SCHED 638 u64 last_update_tg_load_avg; 639 unsigned long tg_load_avg_contrib; 640 long propagate; 641 long prop_runnable_sum; 642 643 /* 644 * h_load = weight * f(tg) 645 * 646 * Where f(tg) is the recursive weight fraction assigned to 647 * this group. 648 */ 649 unsigned long h_load; 650 u64 last_h_load_update; 651 struct sched_entity *h_load_next; 652 #endif /* CONFIG_FAIR_GROUP_SCHED */ 653 #endif /* CONFIG_SMP */ 654 655 #ifdef CONFIG_FAIR_GROUP_SCHED 656 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 657 658 /* 659 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 660 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 661 * (like users, containers etc.) 662 * 663 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 664 * This list is used during load balance. 665 */ 666 int on_list; 667 struct list_head leaf_cfs_rq_list; 668 struct task_group *tg; /* group that "owns" this runqueue */ 669 670 /* Locally cached copy of our task_group's idle value */ 671 int idle; 672 673 #ifdef CONFIG_CFS_BANDWIDTH 674 int runtime_enabled; 675 s64 runtime_remaining; 676 677 u64 throttled_pelt_idle; 678 #ifndef CONFIG_64BIT 679 u64 throttled_pelt_idle_copy; 680 #endif 681 u64 throttled_clock; 682 u64 throttled_clock_pelt; 683 u64 throttled_clock_pelt_time; 684 u64 throttled_clock_self; 685 u64 throttled_clock_self_time; 686 int throttled; 687 int throttle_count; 688 struct list_head throttled_list; 689 struct list_head throttled_csd_list; 690 #endif /* CONFIG_CFS_BANDWIDTH */ 691 #endif /* CONFIG_FAIR_GROUP_SCHED */ 692 }; 693 694 static inline int rt_bandwidth_enabled(void) 695 { 696 return sysctl_sched_rt_runtime >= 0; 697 } 698 699 /* RT IPI pull logic requires IRQ_WORK */ 700 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 701 # define HAVE_RT_PUSH_IPI 702 #endif 703 704 /* Real-Time classes' related field in a runqueue: */ 705 struct rt_rq { 706 struct rt_prio_array active; 707 unsigned int rt_nr_running; 708 unsigned int rr_nr_running; 709 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 710 struct { 711 int curr; /* highest queued rt task prio */ 712 #ifdef CONFIG_SMP 713 int next; /* next highest */ 714 #endif 715 } highest_prio; 716 #endif 717 #ifdef CONFIG_SMP 718 bool overloaded; 719 struct plist_head pushable_tasks; 720 721 #endif /* CONFIG_SMP */ 722 int rt_queued; 723 724 int rt_throttled; 725 u64 rt_time; 726 u64 rt_runtime; 727 /* Nests inside the rq lock: */ 728 raw_spinlock_t rt_runtime_lock; 729 730 #ifdef CONFIG_RT_GROUP_SCHED 731 unsigned int rt_nr_boosted; 732 733 struct rq *rq; 734 struct task_group *tg; 735 #endif 736 }; 737 738 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 739 { 740 return rt_rq->rt_queued && rt_rq->rt_nr_running; 741 } 742 743 /* Deadline class' related fields in a runqueue */ 744 struct dl_rq { 745 /* runqueue is an rbtree, ordered by deadline */ 746 struct rb_root_cached root; 747 748 unsigned int dl_nr_running; 749 750 #ifdef CONFIG_SMP 751 /* 752 * Deadline values of the currently executing and the 753 * earliest ready task on this rq. Caching these facilitates 754 * the decision whether or not a ready but not running task 755 * should migrate somewhere else. 756 */ 757 struct { 758 u64 curr; 759 u64 next; 760 } earliest_dl; 761 762 bool overloaded; 763 764 /* 765 * Tasks on this rq that can be pushed away. They are kept in 766 * an rb-tree, ordered by tasks' deadlines, with caching 767 * of the leftmost (earliest deadline) element. 768 */ 769 struct rb_root_cached pushable_dl_tasks_root; 770 #else 771 struct dl_bw dl_bw; 772 #endif 773 /* 774 * "Active utilization" for this runqueue: increased when a 775 * task wakes up (becomes TASK_RUNNING) and decreased when a 776 * task blocks 777 */ 778 u64 running_bw; 779 780 /* 781 * Utilization of the tasks "assigned" to this runqueue (including 782 * the tasks that are in runqueue and the tasks that executed on this 783 * CPU and blocked). Increased when a task moves to this runqueue, and 784 * decreased when the task moves away (migrates, changes scheduling 785 * policy, or terminates). 786 * This is needed to compute the "inactive utilization" for the 787 * runqueue (inactive utilization = this_bw - running_bw). 788 */ 789 u64 this_bw; 790 u64 extra_bw; 791 792 /* 793 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 794 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 795 */ 796 u64 max_bw; 797 798 /* 799 * Inverse of the fraction of CPU utilization that can be reclaimed 800 * by the GRUB algorithm. 801 */ 802 u64 bw_ratio; 803 }; 804 805 #ifdef CONFIG_FAIR_GROUP_SCHED 806 /* An entity is a task if it doesn't "own" a runqueue */ 807 #define entity_is_task(se) (!se->my_q) 808 809 static inline void se_update_runnable(struct sched_entity *se) 810 { 811 if (!entity_is_task(se)) 812 se->runnable_weight = se->my_q->h_nr_running; 813 } 814 815 static inline long se_runnable(struct sched_entity *se) 816 { 817 if (entity_is_task(se)) 818 return !!se->on_rq; 819 else 820 return se->runnable_weight; 821 } 822 823 #else 824 #define entity_is_task(se) 1 825 826 static inline void se_update_runnable(struct sched_entity *se) {} 827 828 static inline long se_runnable(struct sched_entity *se) 829 { 830 return !!se->on_rq; 831 } 832 #endif 833 834 #ifdef CONFIG_SMP 835 /* 836 * XXX we want to get rid of these helpers and use the full load resolution. 837 */ 838 static inline long se_weight(struct sched_entity *se) 839 { 840 return scale_load_down(se->load.weight); 841 } 842 843 844 static inline bool sched_asym_prefer(int a, int b) 845 { 846 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 847 } 848 849 struct perf_domain { 850 struct em_perf_domain *em_pd; 851 struct perf_domain *next; 852 struct rcu_head rcu; 853 }; 854 855 /* 856 * We add the notion of a root-domain which will be used to define per-domain 857 * variables. Each exclusive cpuset essentially defines an island domain by 858 * fully partitioning the member CPUs from any other cpuset. Whenever a new 859 * exclusive cpuset is created, we also create and attach a new root-domain 860 * object. 861 * 862 */ 863 struct root_domain { 864 atomic_t refcount; 865 atomic_t rto_count; 866 struct rcu_head rcu; 867 cpumask_var_t span; 868 cpumask_var_t online; 869 870 /* 871 * Indicate pullable load on at least one CPU, e.g: 872 * - More than one runnable task 873 * - Running task is misfit 874 */ 875 bool overloaded; 876 877 /* Indicate one or more cpus over-utilized (tipping point) */ 878 bool overutilized; 879 880 /* 881 * The bit corresponding to a CPU gets set here if such CPU has more 882 * than one runnable -deadline task (as it is below for RT tasks). 883 */ 884 cpumask_var_t dlo_mask; 885 atomic_t dlo_count; 886 struct dl_bw dl_bw; 887 struct cpudl cpudl; 888 889 /* 890 * Indicate whether a root_domain's dl_bw has been checked or 891 * updated. It's monotonously increasing value. 892 * 893 * Also, some corner cases, like 'wrap around' is dangerous, but given 894 * that u64 is 'big enough'. So that shouldn't be a concern. 895 */ 896 u64 visit_gen; 897 898 #ifdef HAVE_RT_PUSH_IPI 899 /* 900 * For IPI pull requests, loop across the rto_mask. 901 */ 902 struct irq_work rto_push_work; 903 raw_spinlock_t rto_lock; 904 /* These are only updated and read within rto_lock */ 905 int rto_loop; 906 int rto_cpu; 907 /* These atomics are updated outside of a lock */ 908 atomic_t rto_loop_next; 909 atomic_t rto_loop_start; 910 #endif 911 /* 912 * The "RT overload" flag: it gets set if a CPU has more than 913 * one runnable RT task. 914 */ 915 cpumask_var_t rto_mask; 916 struct cpupri cpupri; 917 918 /* 919 * NULL-terminated list of performance domains intersecting with the 920 * CPUs of the rd. Protected by RCU. 921 */ 922 struct perf_domain __rcu *pd; 923 }; 924 925 extern void init_defrootdomain(void); 926 extern int sched_init_domains(const struct cpumask *cpu_map); 927 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 928 extern void sched_get_rd(struct root_domain *rd); 929 extern void sched_put_rd(struct root_domain *rd); 930 931 static inline int get_rd_overloaded(struct root_domain *rd) 932 { 933 return READ_ONCE(rd->overloaded); 934 } 935 936 static inline void set_rd_overloaded(struct root_domain *rd, int status) 937 { 938 if (get_rd_overloaded(rd) != status) 939 WRITE_ONCE(rd->overloaded, status); 940 } 941 942 #ifdef HAVE_RT_PUSH_IPI 943 extern void rto_push_irq_work_func(struct irq_work *work); 944 #endif 945 #endif /* CONFIG_SMP */ 946 947 #ifdef CONFIG_UCLAMP_TASK 948 /* 949 * struct uclamp_bucket - Utilization clamp bucket 950 * @value: utilization clamp value for tasks on this clamp bucket 951 * @tasks: number of RUNNABLE tasks on this clamp bucket 952 * 953 * Keep track of how many tasks are RUNNABLE for a given utilization 954 * clamp value. 955 */ 956 struct uclamp_bucket { 957 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 958 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 959 }; 960 961 /* 962 * struct uclamp_rq - rq's utilization clamp 963 * @value: currently active clamp values for a rq 964 * @bucket: utilization clamp buckets affecting a rq 965 * 966 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 967 * A clamp value is affecting a rq when there is at least one task RUNNABLE 968 * (or actually running) with that value. 969 * 970 * There are up to UCLAMP_CNT possible different clamp values, currently there 971 * are only two: minimum utilization and maximum utilization. 972 * 973 * All utilization clamping values are MAX aggregated, since: 974 * - for util_min: we want to run the CPU at least at the max of the minimum 975 * utilization required by its currently RUNNABLE tasks. 976 * - for util_max: we want to allow the CPU to run up to the max of the 977 * maximum utilization allowed by its currently RUNNABLE tasks. 978 * 979 * Since on each system we expect only a limited number of different 980 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 981 * the metrics required to compute all the per-rq utilization clamp values. 982 */ 983 struct uclamp_rq { 984 unsigned int value; 985 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 986 }; 987 988 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 989 #endif /* CONFIG_UCLAMP_TASK */ 990 991 struct rq; 992 struct balance_callback { 993 struct balance_callback *next; 994 void (*func)(struct rq *rq); 995 }; 996 997 /* 998 * This is the main, per-CPU runqueue data structure. 999 * 1000 * Locking rule: those places that want to lock multiple runqueues 1001 * (such as the load balancing or the thread migration code), lock 1002 * acquire operations must be ordered by ascending &runqueue. 1003 */ 1004 struct rq { 1005 /* runqueue lock: */ 1006 raw_spinlock_t __lock; 1007 1008 unsigned int nr_running; 1009 #ifdef CONFIG_NUMA_BALANCING 1010 unsigned int nr_numa_running; 1011 unsigned int nr_preferred_running; 1012 unsigned int numa_migrate_on; 1013 #endif 1014 #ifdef CONFIG_NO_HZ_COMMON 1015 #ifdef CONFIG_SMP 1016 unsigned long last_blocked_load_update_tick; 1017 unsigned int has_blocked_load; 1018 call_single_data_t nohz_csd; 1019 #endif /* CONFIG_SMP */ 1020 unsigned int nohz_tick_stopped; 1021 atomic_t nohz_flags; 1022 #endif /* CONFIG_NO_HZ_COMMON */ 1023 1024 #ifdef CONFIG_SMP 1025 unsigned int ttwu_pending; 1026 #endif 1027 u64 nr_switches; 1028 1029 #ifdef CONFIG_UCLAMP_TASK 1030 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1031 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1032 unsigned int uclamp_flags; 1033 #define UCLAMP_FLAG_IDLE 0x01 1034 #endif 1035 1036 struct cfs_rq cfs; 1037 struct rt_rq rt; 1038 struct dl_rq dl; 1039 1040 #ifdef CONFIG_FAIR_GROUP_SCHED 1041 /* list of leaf cfs_rq on this CPU: */ 1042 struct list_head leaf_cfs_rq_list; 1043 struct list_head *tmp_alone_branch; 1044 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1045 1046 /* 1047 * This is part of a global counter where only the total sum 1048 * over all CPUs matters. A task can increase this counter on 1049 * one CPU and if it got migrated afterwards it may decrease 1050 * it on another CPU. Always updated under the runqueue lock: 1051 */ 1052 unsigned int nr_uninterruptible; 1053 1054 struct task_struct __rcu *curr; 1055 struct task_struct *idle; 1056 struct task_struct *stop; 1057 unsigned long next_balance; 1058 struct mm_struct *prev_mm; 1059 1060 unsigned int clock_update_flags; 1061 u64 clock; 1062 /* Ensure that all clocks are in the same cache line */ 1063 u64 clock_task ____cacheline_aligned; 1064 u64 clock_pelt; 1065 unsigned long lost_idle_time; 1066 u64 clock_pelt_idle; 1067 u64 clock_idle; 1068 #ifndef CONFIG_64BIT 1069 u64 clock_pelt_idle_copy; 1070 u64 clock_idle_copy; 1071 #endif 1072 1073 atomic_t nr_iowait; 1074 1075 #ifdef CONFIG_SCHED_DEBUG 1076 u64 last_seen_need_resched_ns; 1077 int ticks_without_resched; 1078 #endif 1079 1080 #ifdef CONFIG_MEMBARRIER 1081 int membarrier_state; 1082 #endif 1083 1084 #ifdef CONFIG_SMP 1085 struct root_domain *rd; 1086 struct sched_domain __rcu *sd; 1087 1088 unsigned long cpu_capacity; 1089 1090 struct balance_callback *balance_callback; 1091 1092 unsigned char nohz_idle_balance; 1093 unsigned char idle_balance; 1094 1095 unsigned long misfit_task_load; 1096 1097 /* For active balancing */ 1098 int active_balance; 1099 int push_cpu; 1100 struct cpu_stop_work active_balance_work; 1101 1102 /* CPU of this runqueue: */ 1103 int cpu; 1104 int online; 1105 1106 struct list_head cfs_tasks; 1107 1108 struct sched_avg avg_rt; 1109 struct sched_avg avg_dl; 1110 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1111 struct sched_avg avg_irq; 1112 #endif 1113 #ifdef CONFIG_SCHED_HW_PRESSURE 1114 struct sched_avg avg_hw; 1115 #endif 1116 u64 idle_stamp; 1117 u64 avg_idle; 1118 1119 /* This is used to determine avg_idle's max value */ 1120 u64 max_idle_balance_cost; 1121 1122 #ifdef CONFIG_HOTPLUG_CPU 1123 struct rcuwait hotplug_wait; 1124 #endif 1125 #endif /* CONFIG_SMP */ 1126 1127 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1128 u64 prev_irq_time; 1129 u64 psi_irq_time; 1130 #endif 1131 #ifdef CONFIG_PARAVIRT 1132 u64 prev_steal_time; 1133 #endif 1134 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1135 u64 prev_steal_time_rq; 1136 #endif 1137 1138 /* calc_load related fields */ 1139 unsigned long calc_load_update; 1140 long calc_load_active; 1141 1142 #ifdef CONFIG_SCHED_HRTICK 1143 #ifdef CONFIG_SMP 1144 call_single_data_t hrtick_csd; 1145 #endif 1146 struct hrtimer hrtick_timer; 1147 ktime_t hrtick_time; 1148 #endif 1149 1150 #ifdef CONFIG_SCHEDSTATS 1151 /* latency stats */ 1152 struct sched_info rq_sched_info; 1153 unsigned long long rq_cpu_time; 1154 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 1155 1156 /* sys_sched_yield() stats */ 1157 unsigned int yld_count; 1158 1159 /* schedule() stats */ 1160 unsigned int sched_count; 1161 unsigned int sched_goidle; 1162 1163 /* try_to_wake_up() stats */ 1164 unsigned int ttwu_count; 1165 unsigned int ttwu_local; 1166 #endif 1167 1168 #ifdef CONFIG_CPU_IDLE 1169 /* Must be inspected within a rcu lock section */ 1170 struct cpuidle_state *idle_state; 1171 #endif 1172 1173 #ifdef CONFIG_SMP 1174 unsigned int nr_pinned; 1175 #endif 1176 unsigned int push_busy; 1177 struct cpu_stop_work push_work; 1178 1179 #ifdef CONFIG_SCHED_CORE 1180 /* per rq */ 1181 struct rq *core; 1182 struct task_struct *core_pick; 1183 unsigned int core_enabled; 1184 unsigned int core_sched_seq; 1185 struct rb_root core_tree; 1186 1187 /* shared state -- careful with sched_core_cpu_deactivate() */ 1188 unsigned int core_task_seq; 1189 unsigned int core_pick_seq; 1190 unsigned long core_cookie; 1191 unsigned int core_forceidle_count; 1192 unsigned int core_forceidle_seq; 1193 unsigned int core_forceidle_occupation; 1194 u64 core_forceidle_start; 1195 #endif 1196 1197 /* Scratch cpumask to be temporarily used under rq_lock */ 1198 cpumask_var_t scratch_mask; 1199 1200 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1201 call_single_data_t cfsb_csd; 1202 struct list_head cfsb_csd_list; 1203 #endif 1204 }; 1205 1206 #ifdef CONFIG_FAIR_GROUP_SCHED 1207 1208 /* CPU runqueue to which this cfs_rq is attached */ 1209 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1210 { 1211 return cfs_rq->rq; 1212 } 1213 1214 #else 1215 1216 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1217 { 1218 return container_of(cfs_rq, struct rq, cfs); 1219 } 1220 #endif 1221 1222 static inline int cpu_of(struct rq *rq) 1223 { 1224 #ifdef CONFIG_SMP 1225 return rq->cpu; 1226 #else 1227 return 0; 1228 #endif 1229 } 1230 1231 #define MDF_PUSH 0x01 1232 1233 static inline bool is_migration_disabled(struct task_struct *p) 1234 { 1235 #ifdef CONFIG_SMP 1236 return p->migration_disabled; 1237 #else 1238 return false; 1239 #endif 1240 } 1241 1242 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1243 1244 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1245 #define this_rq() this_cpu_ptr(&runqueues) 1246 #define task_rq(p) cpu_rq(task_cpu(p)) 1247 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1248 #define raw_rq() raw_cpu_ptr(&runqueues) 1249 1250 struct sched_group; 1251 #ifdef CONFIG_SCHED_CORE 1252 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1253 1254 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1255 1256 static inline bool sched_core_enabled(struct rq *rq) 1257 { 1258 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1259 } 1260 1261 static inline bool sched_core_disabled(void) 1262 { 1263 return !static_branch_unlikely(&__sched_core_enabled); 1264 } 1265 1266 /* 1267 * Be careful with this function; not for general use. The return value isn't 1268 * stable unless you actually hold a relevant rq->__lock. 1269 */ 1270 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1271 { 1272 if (sched_core_enabled(rq)) 1273 return &rq->core->__lock; 1274 1275 return &rq->__lock; 1276 } 1277 1278 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1279 { 1280 if (rq->core_enabled) 1281 return &rq->core->__lock; 1282 1283 return &rq->__lock; 1284 } 1285 1286 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 1287 bool fi); 1288 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1289 1290 /* 1291 * Helpers to check if the CPU's core cookie matches with the task's cookie 1292 * when core scheduling is enabled. 1293 * A special case is that the task's cookie always matches with CPU's core 1294 * cookie if the CPU is in an idle core. 1295 */ 1296 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1297 { 1298 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1299 if (!sched_core_enabled(rq)) 1300 return true; 1301 1302 return rq->core->core_cookie == p->core_cookie; 1303 } 1304 1305 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1306 { 1307 bool idle_core = true; 1308 int cpu; 1309 1310 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1311 if (!sched_core_enabled(rq)) 1312 return true; 1313 1314 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1315 if (!available_idle_cpu(cpu)) { 1316 idle_core = false; 1317 break; 1318 } 1319 } 1320 1321 /* 1322 * A CPU in an idle core is always the best choice for tasks with 1323 * cookies. 1324 */ 1325 return idle_core || rq->core->core_cookie == p->core_cookie; 1326 } 1327 1328 static inline bool sched_group_cookie_match(struct rq *rq, 1329 struct task_struct *p, 1330 struct sched_group *group) 1331 { 1332 int cpu; 1333 1334 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1335 if (!sched_core_enabled(rq)) 1336 return true; 1337 1338 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1339 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1340 return true; 1341 } 1342 return false; 1343 } 1344 1345 static inline bool sched_core_enqueued(struct task_struct *p) 1346 { 1347 return !RB_EMPTY_NODE(&p->core_node); 1348 } 1349 1350 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1351 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1352 1353 extern void sched_core_get(void); 1354 extern void sched_core_put(void); 1355 1356 #else /* !CONFIG_SCHED_CORE */ 1357 1358 static inline bool sched_core_enabled(struct rq *rq) 1359 { 1360 return false; 1361 } 1362 1363 static inline bool sched_core_disabled(void) 1364 { 1365 return true; 1366 } 1367 1368 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1369 { 1370 return &rq->__lock; 1371 } 1372 1373 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1374 { 1375 return &rq->__lock; 1376 } 1377 1378 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1379 { 1380 return true; 1381 } 1382 1383 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1384 { 1385 return true; 1386 } 1387 1388 static inline bool sched_group_cookie_match(struct rq *rq, 1389 struct task_struct *p, 1390 struct sched_group *group) 1391 { 1392 return true; 1393 } 1394 #endif /* CONFIG_SCHED_CORE */ 1395 1396 static inline void lockdep_assert_rq_held(struct rq *rq) 1397 { 1398 lockdep_assert_held(__rq_lockp(rq)); 1399 } 1400 1401 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1402 extern bool raw_spin_rq_trylock(struct rq *rq); 1403 extern void raw_spin_rq_unlock(struct rq *rq); 1404 1405 static inline void raw_spin_rq_lock(struct rq *rq) 1406 { 1407 raw_spin_rq_lock_nested(rq, 0); 1408 } 1409 1410 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1411 { 1412 local_irq_disable(); 1413 raw_spin_rq_lock(rq); 1414 } 1415 1416 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1417 { 1418 raw_spin_rq_unlock(rq); 1419 local_irq_enable(); 1420 } 1421 1422 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1423 { 1424 unsigned long flags; 1425 local_irq_save(flags); 1426 raw_spin_rq_lock(rq); 1427 return flags; 1428 } 1429 1430 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1431 { 1432 raw_spin_rq_unlock(rq); 1433 local_irq_restore(flags); 1434 } 1435 1436 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1437 do { \ 1438 flags = _raw_spin_rq_lock_irqsave(rq); \ 1439 } while (0) 1440 1441 #ifdef CONFIG_SCHED_SMT 1442 extern void __update_idle_core(struct rq *rq); 1443 1444 static inline void update_idle_core(struct rq *rq) 1445 { 1446 if (static_branch_unlikely(&sched_smt_present)) 1447 __update_idle_core(rq); 1448 } 1449 1450 #else 1451 static inline void update_idle_core(struct rq *rq) { } 1452 #endif 1453 1454 #ifdef CONFIG_FAIR_GROUP_SCHED 1455 static inline struct task_struct *task_of(struct sched_entity *se) 1456 { 1457 SCHED_WARN_ON(!entity_is_task(se)); 1458 return container_of(se, struct task_struct, se); 1459 } 1460 1461 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1462 { 1463 return p->se.cfs_rq; 1464 } 1465 1466 /* runqueue on which this entity is (to be) queued */ 1467 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1468 { 1469 return se->cfs_rq; 1470 } 1471 1472 /* runqueue "owned" by this group */ 1473 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1474 { 1475 return grp->my_q; 1476 } 1477 1478 #else 1479 1480 #define task_of(_se) container_of(_se, struct task_struct, se) 1481 1482 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1483 { 1484 return &task_rq(p)->cfs; 1485 } 1486 1487 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1488 { 1489 const struct task_struct *p = task_of(se); 1490 struct rq *rq = task_rq(p); 1491 1492 return &rq->cfs; 1493 } 1494 1495 /* runqueue "owned" by this group */ 1496 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1497 { 1498 return NULL; 1499 } 1500 #endif 1501 1502 extern void update_rq_clock(struct rq *rq); 1503 1504 /* 1505 * rq::clock_update_flags bits 1506 * 1507 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1508 * call to __schedule(). This is an optimisation to avoid 1509 * neighbouring rq clock updates. 1510 * 1511 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1512 * in effect and calls to update_rq_clock() are being ignored. 1513 * 1514 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1515 * made to update_rq_clock() since the last time rq::lock was pinned. 1516 * 1517 * If inside of __schedule(), clock_update_flags will have been 1518 * shifted left (a left shift is a cheap operation for the fast path 1519 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1520 * 1521 * if (rq-clock_update_flags >= RQCF_UPDATED) 1522 * 1523 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1524 * one position though, because the next rq_unpin_lock() will shift it 1525 * back. 1526 */ 1527 #define RQCF_REQ_SKIP 0x01 1528 #define RQCF_ACT_SKIP 0x02 1529 #define RQCF_UPDATED 0x04 1530 1531 static inline void assert_clock_updated(struct rq *rq) 1532 { 1533 /* 1534 * The only reason for not seeing a clock update since the 1535 * last rq_pin_lock() is if we're currently skipping updates. 1536 */ 1537 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); 1538 } 1539 1540 static inline u64 rq_clock(struct rq *rq) 1541 { 1542 lockdep_assert_rq_held(rq); 1543 assert_clock_updated(rq); 1544 1545 return rq->clock; 1546 } 1547 1548 static inline u64 rq_clock_task(struct rq *rq) 1549 { 1550 lockdep_assert_rq_held(rq); 1551 assert_clock_updated(rq); 1552 1553 return rq->clock_task; 1554 } 1555 1556 static inline void rq_clock_skip_update(struct rq *rq) 1557 { 1558 lockdep_assert_rq_held(rq); 1559 rq->clock_update_flags |= RQCF_REQ_SKIP; 1560 } 1561 1562 /* 1563 * See rt task throttling, which is the only time a skip 1564 * request is canceled. 1565 */ 1566 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1567 { 1568 lockdep_assert_rq_held(rq); 1569 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1570 } 1571 1572 /* 1573 * During cpu offlining and rq wide unthrottling, we can trigger 1574 * an update_rq_clock() for several cfs and rt runqueues (Typically 1575 * when using list_for_each_entry_*) 1576 * rq_clock_start_loop_update() can be called after updating the clock 1577 * once and before iterating over the list to prevent multiple update. 1578 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1579 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1580 */ 1581 static inline void rq_clock_start_loop_update(struct rq *rq) 1582 { 1583 lockdep_assert_rq_held(rq); 1584 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); 1585 rq->clock_update_flags |= RQCF_ACT_SKIP; 1586 } 1587 1588 static inline void rq_clock_stop_loop_update(struct rq *rq) 1589 { 1590 lockdep_assert_rq_held(rq); 1591 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1592 } 1593 1594 struct rq_flags { 1595 unsigned long flags; 1596 struct pin_cookie cookie; 1597 #ifdef CONFIG_SCHED_DEBUG 1598 /* 1599 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1600 * current pin context is stashed here in case it needs to be 1601 * restored in rq_repin_lock(). 1602 */ 1603 unsigned int clock_update_flags; 1604 #endif 1605 }; 1606 1607 extern struct balance_callback balance_push_callback; 1608 1609 /* 1610 * Lockdep annotation that avoids accidental unlocks; it's like a 1611 * sticky/continuous lockdep_assert_held(). 1612 * 1613 * This avoids code that has access to 'struct rq *rq' (basically everything in 1614 * the scheduler) from accidentally unlocking the rq if they do not also have a 1615 * copy of the (on-stack) 'struct rq_flags rf'. 1616 * 1617 * Also see Documentation/locking/lockdep-design.rst. 1618 */ 1619 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1620 { 1621 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1622 1623 #ifdef CONFIG_SCHED_DEBUG 1624 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1625 rf->clock_update_flags = 0; 1626 #ifdef CONFIG_SMP 1627 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1628 #endif 1629 #endif 1630 } 1631 1632 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1633 { 1634 #ifdef CONFIG_SCHED_DEBUG 1635 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1636 rf->clock_update_flags = RQCF_UPDATED; 1637 #endif 1638 1639 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1640 } 1641 1642 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1643 { 1644 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1645 1646 #ifdef CONFIG_SCHED_DEBUG 1647 /* 1648 * Restore the value we stashed in @rf for this pin context. 1649 */ 1650 rq->clock_update_flags |= rf->clock_update_flags; 1651 #endif 1652 } 1653 1654 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1655 __acquires(rq->lock); 1656 1657 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1658 __acquires(p->pi_lock) 1659 __acquires(rq->lock); 1660 1661 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1662 __releases(rq->lock) 1663 { 1664 rq_unpin_lock(rq, rf); 1665 raw_spin_rq_unlock(rq); 1666 } 1667 1668 static inline void 1669 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1670 __releases(rq->lock) 1671 __releases(p->pi_lock) 1672 { 1673 rq_unpin_lock(rq, rf); 1674 raw_spin_rq_unlock(rq); 1675 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1676 } 1677 1678 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1679 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1680 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1681 struct rq *rq; struct rq_flags rf) 1682 1683 static inline void 1684 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1685 __acquires(rq->lock) 1686 { 1687 raw_spin_rq_lock_irqsave(rq, rf->flags); 1688 rq_pin_lock(rq, rf); 1689 } 1690 1691 static inline void 1692 rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1693 __acquires(rq->lock) 1694 { 1695 raw_spin_rq_lock_irq(rq); 1696 rq_pin_lock(rq, rf); 1697 } 1698 1699 static inline void 1700 rq_lock(struct rq *rq, struct rq_flags *rf) 1701 __acquires(rq->lock) 1702 { 1703 raw_spin_rq_lock(rq); 1704 rq_pin_lock(rq, rf); 1705 } 1706 1707 static inline void 1708 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1709 __releases(rq->lock) 1710 { 1711 rq_unpin_lock(rq, rf); 1712 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1713 } 1714 1715 static inline void 1716 rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1717 __releases(rq->lock) 1718 { 1719 rq_unpin_lock(rq, rf); 1720 raw_spin_rq_unlock_irq(rq); 1721 } 1722 1723 static inline void 1724 rq_unlock(struct rq *rq, struct rq_flags *rf) 1725 __releases(rq->lock) 1726 { 1727 rq_unpin_lock(rq, rf); 1728 raw_spin_rq_unlock(rq); 1729 } 1730 1731 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1732 rq_lock(_T->lock, &_T->rf), 1733 rq_unlock(_T->lock, &_T->rf), 1734 struct rq_flags rf) 1735 1736 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1737 rq_lock_irq(_T->lock, &_T->rf), 1738 rq_unlock_irq(_T->lock, &_T->rf), 1739 struct rq_flags rf) 1740 1741 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1742 rq_lock_irqsave(_T->lock, &_T->rf), 1743 rq_unlock_irqrestore(_T->lock, &_T->rf), 1744 struct rq_flags rf) 1745 1746 static inline struct rq * 1747 this_rq_lock_irq(struct rq_flags *rf) 1748 __acquires(rq->lock) 1749 { 1750 struct rq *rq; 1751 1752 local_irq_disable(); 1753 rq = this_rq(); 1754 rq_lock(rq, rf); 1755 return rq; 1756 } 1757 1758 #ifdef CONFIG_NUMA 1759 enum numa_topology_type { 1760 NUMA_DIRECT, 1761 NUMA_GLUELESS_MESH, 1762 NUMA_BACKPLANE, 1763 }; 1764 extern enum numa_topology_type sched_numa_topology_type; 1765 extern int sched_max_numa_distance; 1766 extern bool find_numa_distance(int distance); 1767 extern void sched_init_numa(int offline_node); 1768 extern void sched_update_numa(int cpu, bool online); 1769 extern void sched_domains_numa_masks_set(unsigned int cpu); 1770 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1771 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1772 #else 1773 static inline void sched_init_numa(int offline_node) { } 1774 static inline void sched_update_numa(int cpu, bool online) { } 1775 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1776 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1777 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1778 { 1779 return nr_cpu_ids; 1780 } 1781 #endif 1782 1783 #ifdef CONFIG_NUMA_BALANCING 1784 /* The regions in numa_faults array from task_struct */ 1785 enum numa_faults_stats { 1786 NUMA_MEM = 0, 1787 NUMA_CPU, 1788 NUMA_MEMBUF, 1789 NUMA_CPUBUF 1790 }; 1791 extern void sched_setnuma(struct task_struct *p, int node); 1792 extern int migrate_task_to(struct task_struct *p, int cpu); 1793 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1794 int cpu, int scpu); 1795 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1796 #else 1797 static inline void 1798 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1799 { 1800 } 1801 #endif /* CONFIG_NUMA_BALANCING */ 1802 1803 #ifdef CONFIG_SMP 1804 1805 static inline void 1806 queue_balance_callback(struct rq *rq, 1807 struct balance_callback *head, 1808 void (*func)(struct rq *rq)) 1809 { 1810 lockdep_assert_rq_held(rq); 1811 1812 /* 1813 * Don't (re)queue an already queued item; nor queue anything when 1814 * balance_push() is active, see the comment with 1815 * balance_push_callback. 1816 */ 1817 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1818 return; 1819 1820 head->func = func; 1821 head->next = rq->balance_callback; 1822 rq->balance_callback = head; 1823 } 1824 1825 #define rcu_dereference_check_sched_domain(p) \ 1826 rcu_dereference_check((p), \ 1827 lockdep_is_held(&sched_domains_mutex)) 1828 1829 /* 1830 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1831 * See destroy_sched_domains: call_rcu for details. 1832 * 1833 * The domain tree of any CPU may only be accessed from within 1834 * preempt-disabled sections. 1835 */ 1836 #define for_each_domain(cpu, __sd) \ 1837 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1838 __sd; __sd = __sd->parent) 1839 1840 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1841 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1842 static const unsigned int SD_SHARED_CHILD_MASK = 1843 #include <linux/sched/sd_flags.h> 1844 0; 1845 #undef SD_FLAG 1846 1847 /** 1848 * highest_flag_domain - Return highest sched_domain containing flag. 1849 * @cpu: The CPU whose highest level of sched domain is to 1850 * be returned. 1851 * @flag: The flag to check for the highest sched_domain 1852 * for the given CPU. 1853 * 1854 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1855 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1856 */ 1857 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1858 { 1859 struct sched_domain *sd, *hsd = NULL; 1860 1861 for_each_domain(cpu, sd) { 1862 if (sd->flags & flag) { 1863 hsd = sd; 1864 continue; 1865 } 1866 1867 /* 1868 * Stop the search if @flag is known to be shared at lower 1869 * levels. It will not be found further up. 1870 */ 1871 if (flag & SD_SHARED_CHILD_MASK) 1872 break; 1873 } 1874 1875 return hsd; 1876 } 1877 1878 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 1879 { 1880 struct sched_domain *sd; 1881 1882 for_each_domain(cpu, sd) { 1883 if (sd->flags & flag) 1884 break; 1885 } 1886 1887 return sd; 1888 } 1889 1890 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 1891 DECLARE_PER_CPU(int, sd_llc_size); 1892 DECLARE_PER_CPU(int, sd_llc_id); 1893 DECLARE_PER_CPU(int, sd_share_id); 1894 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 1895 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 1896 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 1897 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 1898 extern struct static_key_false sched_asym_cpucapacity; 1899 extern struct static_key_false sched_cluster_active; 1900 1901 static __always_inline bool sched_asym_cpucap_active(void) 1902 { 1903 return static_branch_unlikely(&sched_asym_cpucapacity); 1904 } 1905 1906 struct sched_group_capacity { 1907 atomic_t ref; 1908 /* 1909 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 1910 * for a single CPU. 1911 */ 1912 unsigned long capacity; 1913 unsigned long min_capacity; /* Min per-CPU capacity in group */ 1914 unsigned long max_capacity; /* Max per-CPU capacity in group */ 1915 unsigned long next_update; 1916 int imbalance; /* XXX unrelated to capacity but shared group state */ 1917 1918 #ifdef CONFIG_SCHED_DEBUG 1919 int id; 1920 #endif 1921 1922 unsigned long cpumask[]; /* Balance mask */ 1923 }; 1924 1925 struct sched_group { 1926 struct sched_group *next; /* Must be a circular list */ 1927 atomic_t ref; 1928 1929 unsigned int group_weight; 1930 unsigned int cores; 1931 struct sched_group_capacity *sgc; 1932 int asym_prefer_cpu; /* CPU of highest priority in group */ 1933 int flags; 1934 1935 /* 1936 * The CPUs this group covers. 1937 * 1938 * NOTE: this field is variable length. (Allocated dynamically 1939 * by attaching extra space to the end of the structure, 1940 * depending on how many CPUs the kernel has booted up with) 1941 */ 1942 unsigned long cpumask[]; 1943 }; 1944 1945 static inline struct cpumask *sched_group_span(struct sched_group *sg) 1946 { 1947 return to_cpumask(sg->cpumask); 1948 } 1949 1950 /* 1951 * See build_balance_mask(). 1952 */ 1953 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 1954 { 1955 return to_cpumask(sg->sgc->cpumask); 1956 } 1957 1958 extern int group_balance_cpu(struct sched_group *sg); 1959 1960 #ifdef CONFIG_SCHED_DEBUG 1961 void update_sched_domain_debugfs(void); 1962 void dirty_sched_domain_sysctl(int cpu); 1963 #else 1964 static inline void update_sched_domain_debugfs(void) 1965 { 1966 } 1967 static inline void dirty_sched_domain_sysctl(int cpu) 1968 { 1969 } 1970 #endif 1971 1972 extern int sched_update_scaling(void); 1973 1974 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 1975 { 1976 if (!p->user_cpus_ptr) 1977 return cpu_possible_mask; /* &init_task.cpus_mask */ 1978 return p->user_cpus_ptr; 1979 } 1980 #endif /* CONFIG_SMP */ 1981 1982 #include "stats.h" 1983 1984 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 1985 1986 extern void __sched_core_account_forceidle(struct rq *rq); 1987 1988 static inline void sched_core_account_forceidle(struct rq *rq) 1989 { 1990 if (schedstat_enabled()) 1991 __sched_core_account_forceidle(rq); 1992 } 1993 1994 extern void __sched_core_tick(struct rq *rq); 1995 1996 static inline void sched_core_tick(struct rq *rq) 1997 { 1998 if (sched_core_enabled(rq) && schedstat_enabled()) 1999 __sched_core_tick(rq); 2000 } 2001 2002 #else 2003 2004 static inline void sched_core_account_forceidle(struct rq *rq) {} 2005 2006 static inline void sched_core_tick(struct rq *rq) {} 2007 2008 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */ 2009 2010 #ifdef CONFIG_CGROUP_SCHED 2011 2012 /* 2013 * Return the group to which this tasks belongs. 2014 * 2015 * We cannot use task_css() and friends because the cgroup subsystem 2016 * changes that value before the cgroup_subsys::attach() method is called, 2017 * therefore we cannot pin it and might observe the wrong value. 2018 * 2019 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2020 * core changes this before calling sched_move_task(). 2021 * 2022 * Instead we use a 'copy' which is updated from sched_move_task() while 2023 * holding both task_struct::pi_lock and rq::lock. 2024 */ 2025 static inline struct task_group *task_group(struct task_struct *p) 2026 { 2027 return p->sched_task_group; 2028 } 2029 2030 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2031 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2032 { 2033 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2034 struct task_group *tg = task_group(p); 2035 #endif 2036 2037 #ifdef CONFIG_FAIR_GROUP_SCHED 2038 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2039 p->se.cfs_rq = tg->cfs_rq[cpu]; 2040 p->se.parent = tg->se[cpu]; 2041 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2042 #endif 2043 2044 #ifdef CONFIG_RT_GROUP_SCHED 2045 p->rt.rt_rq = tg->rt_rq[cpu]; 2046 p->rt.parent = tg->rt_se[cpu]; 2047 #endif 2048 } 2049 2050 #else /* CONFIG_CGROUP_SCHED */ 2051 2052 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2053 static inline struct task_group *task_group(struct task_struct *p) 2054 { 2055 return NULL; 2056 } 2057 2058 #endif /* CONFIG_CGROUP_SCHED */ 2059 2060 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2061 { 2062 set_task_rq(p, cpu); 2063 #ifdef CONFIG_SMP 2064 /* 2065 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2066 * successfully executed on another CPU. We must ensure that updates of 2067 * per-task data have been completed by this moment. 2068 */ 2069 smp_wmb(); 2070 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2071 p->wake_cpu = cpu; 2072 #endif 2073 } 2074 2075 /* 2076 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 2077 */ 2078 #ifdef CONFIG_SCHED_DEBUG 2079 # define const_debug __read_mostly 2080 #else 2081 # define const_debug const 2082 #endif 2083 2084 #define SCHED_FEAT(name, enabled) \ 2085 __SCHED_FEAT_##name , 2086 2087 enum { 2088 #include "features.h" 2089 __SCHED_FEAT_NR, 2090 }; 2091 2092 #undef SCHED_FEAT 2093 2094 #ifdef CONFIG_SCHED_DEBUG 2095 2096 /* 2097 * To support run-time toggling of sched features, all the translation units 2098 * (but core.c) reference the sysctl_sched_features defined in core.c. 2099 */ 2100 extern const_debug unsigned int sysctl_sched_features; 2101 2102 #ifdef CONFIG_JUMP_LABEL 2103 #define SCHED_FEAT(name, enabled) \ 2104 static __always_inline bool static_branch_##name(struct static_key *key) \ 2105 { \ 2106 return static_key_##enabled(key); \ 2107 } 2108 2109 #include "features.h" 2110 #undef SCHED_FEAT 2111 2112 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2113 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2114 2115 #else /* !CONFIG_JUMP_LABEL */ 2116 2117 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2118 2119 #endif /* CONFIG_JUMP_LABEL */ 2120 2121 #else /* !SCHED_DEBUG */ 2122 2123 /* 2124 * Each translation unit has its own copy of sysctl_sched_features to allow 2125 * constants propagation at compile time and compiler optimization based on 2126 * features default. 2127 */ 2128 #define SCHED_FEAT(name, enabled) \ 2129 (1UL << __SCHED_FEAT_##name) * enabled | 2130 static const_debug __maybe_unused unsigned int sysctl_sched_features = 2131 #include "features.h" 2132 0; 2133 #undef SCHED_FEAT 2134 2135 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2136 2137 #endif /* SCHED_DEBUG */ 2138 2139 extern struct static_key_false sched_numa_balancing; 2140 extern struct static_key_false sched_schedstats; 2141 2142 static inline u64 global_rt_period(void) 2143 { 2144 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2145 } 2146 2147 static inline u64 global_rt_runtime(void) 2148 { 2149 if (sysctl_sched_rt_runtime < 0) 2150 return RUNTIME_INF; 2151 2152 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2153 } 2154 2155 static inline int task_current(struct rq *rq, struct task_struct *p) 2156 { 2157 return rq->curr == p; 2158 } 2159 2160 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2161 { 2162 #ifdef CONFIG_SMP 2163 return p->on_cpu; 2164 #else 2165 return task_current(rq, p); 2166 #endif 2167 } 2168 2169 static inline int task_on_rq_queued(struct task_struct *p) 2170 { 2171 return p->on_rq == TASK_ON_RQ_QUEUED; 2172 } 2173 2174 static inline int task_on_rq_migrating(struct task_struct *p) 2175 { 2176 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2177 } 2178 2179 /* Wake flags. The first three directly map to some SD flag value */ 2180 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2181 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2182 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2183 2184 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2185 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2186 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2187 2188 #ifdef CONFIG_SMP 2189 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2190 static_assert(WF_FORK == SD_BALANCE_FORK); 2191 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2192 #endif 2193 2194 /* 2195 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2196 * of tasks with abnormal "nice" values across CPUs the contribution that 2197 * each task makes to its run queue's load is weighted according to its 2198 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2199 * scaled version of the new time slice allocation that they receive on time 2200 * slice expiry etc. 2201 */ 2202 2203 #define WEIGHT_IDLEPRIO 3 2204 #define WMULT_IDLEPRIO 1431655765 2205 2206 extern const int sched_prio_to_weight[40]; 2207 extern const u32 sched_prio_to_wmult[40]; 2208 2209 /* 2210 * {de,en}queue flags: 2211 * 2212 * DEQUEUE_SLEEP - task is no longer runnable 2213 * ENQUEUE_WAKEUP - task just became runnable 2214 * 2215 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2216 * are in a known state which allows modification. Such pairs 2217 * should preserve as much state as possible. 2218 * 2219 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2220 * in the runqueue. 2221 * 2222 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2223 * 2224 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2225 * 2226 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2227 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2228 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2229 * 2230 */ 2231 2232 #define DEQUEUE_SLEEP 0x01 2233 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2234 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2235 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2236 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2237 2238 #define ENQUEUE_WAKEUP 0x01 2239 #define ENQUEUE_RESTORE 0x02 2240 #define ENQUEUE_MOVE 0x04 2241 #define ENQUEUE_NOCLOCK 0x08 2242 2243 #define ENQUEUE_HEAD 0x10 2244 #define ENQUEUE_REPLENISH 0x20 2245 #ifdef CONFIG_SMP 2246 #define ENQUEUE_MIGRATED 0x40 2247 #else 2248 #define ENQUEUE_MIGRATED 0x00 2249 #endif 2250 #define ENQUEUE_INITIAL 0x80 2251 #define ENQUEUE_MIGRATING 0x100 2252 2253 #define RETRY_TASK ((void *)-1UL) 2254 2255 struct affinity_context { 2256 const struct cpumask *new_mask; 2257 struct cpumask *user_mask; 2258 unsigned int flags; 2259 }; 2260 2261 extern s64 update_curr_common(struct rq *rq); 2262 2263 struct sched_class { 2264 2265 #ifdef CONFIG_UCLAMP_TASK 2266 int uclamp_enabled; 2267 #endif 2268 2269 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2270 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2271 void (*yield_task) (struct rq *rq); 2272 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2273 2274 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2275 2276 struct task_struct *(*pick_next_task)(struct rq *rq); 2277 2278 void (*put_prev_task)(struct rq *rq, struct task_struct *p); 2279 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2280 2281 #ifdef CONFIG_SMP 2282 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2283 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2284 2285 struct task_struct * (*pick_task)(struct rq *rq); 2286 2287 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2288 2289 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2290 2291 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2292 2293 void (*rq_online)(struct rq *rq); 2294 void (*rq_offline)(struct rq *rq); 2295 2296 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2297 #endif 2298 2299 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2300 void (*task_fork)(struct task_struct *p); 2301 void (*task_dead)(struct task_struct *p); 2302 2303 /* 2304 * The switched_from() call is allowed to drop rq->lock, therefore we 2305 * cannot assume the switched_from/switched_to pair is serialized by 2306 * rq->lock. They are however serialized by p->pi_lock. 2307 */ 2308 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2309 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2310 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2311 int oldprio); 2312 2313 unsigned int (*get_rr_interval)(struct rq *rq, 2314 struct task_struct *task); 2315 2316 void (*update_curr)(struct rq *rq); 2317 2318 #ifdef CONFIG_FAIR_GROUP_SCHED 2319 void (*task_change_group)(struct task_struct *p); 2320 #endif 2321 2322 #ifdef CONFIG_SCHED_CORE 2323 int (*task_is_throttled)(struct task_struct *p, int cpu); 2324 #endif 2325 }; 2326 2327 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2328 { 2329 WARN_ON_ONCE(rq->curr != prev); 2330 prev->sched_class->put_prev_task(rq, prev); 2331 } 2332 2333 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2334 { 2335 next->sched_class->set_next_task(rq, next, false); 2336 } 2337 2338 2339 /* 2340 * Helper to define a sched_class instance; each one is placed in a separate 2341 * section which is ordered by the linker script: 2342 * 2343 * include/asm-generic/vmlinux.lds.h 2344 * 2345 * *CAREFUL* they are laid out in *REVERSE* order!!! 2346 * 2347 * Also enforce alignment on the instance, not the type, to guarantee layout. 2348 */ 2349 #define DEFINE_SCHED_CLASS(name) \ 2350 const struct sched_class name##_sched_class \ 2351 __aligned(__alignof__(struct sched_class)) \ 2352 __section("__" #name "_sched_class") 2353 2354 /* Defined in include/asm-generic/vmlinux.lds.h */ 2355 extern struct sched_class __sched_class_highest[]; 2356 extern struct sched_class __sched_class_lowest[]; 2357 2358 #define for_class_range(class, _from, _to) \ 2359 for (class = (_from); class < (_to); class++) 2360 2361 #define for_each_class(class) \ 2362 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2363 2364 #define sched_class_above(_a, _b) ((_a) < (_b)) 2365 2366 extern const struct sched_class stop_sched_class; 2367 extern const struct sched_class dl_sched_class; 2368 extern const struct sched_class rt_sched_class; 2369 extern const struct sched_class fair_sched_class; 2370 extern const struct sched_class idle_sched_class; 2371 2372 static inline bool sched_stop_runnable(struct rq *rq) 2373 { 2374 return rq->stop && task_on_rq_queued(rq->stop); 2375 } 2376 2377 static inline bool sched_dl_runnable(struct rq *rq) 2378 { 2379 return rq->dl.dl_nr_running > 0; 2380 } 2381 2382 static inline bool sched_rt_runnable(struct rq *rq) 2383 { 2384 return rq->rt.rt_queued > 0; 2385 } 2386 2387 static inline bool sched_fair_runnable(struct rq *rq) 2388 { 2389 return rq->cfs.nr_running > 0; 2390 } 2391 2392 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2393 extern struct task_struct *pick_next_task_idle(struct rq *rq); 2394 2395 #define SCA_CHECK 0x01 2396 #define SCA_MIGRATE_DISABLE 0x02 2397 #define SCA_MIGRATE_ENABLE 0x04 2398 #define SCA_USER 0x08 2399 2400 #ifdef CONFIG_SMP 2401 2402 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2403 2404 extern void sched_balance_trigger(struct rq *rq); 2405 2406 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2407 2408 static inline struct task_struct *get_push_task(struct rq *rq) 2409 { 2410 struct task_struct *p = rq->curr; 2411 2412 lockdep_assert_rq_held(rq); 2413 2414 if (rq->push_busy) 2415 return NULL; 2416 2417 if (p->nr_cpus_allowed == 1) 2418 return NULL; 2419 2420 if (p->migration_disabled) 2421 return NULL; 2422 2423 rq->push_busy = true; 2424 return get_task_struct(p); 2425 } 2426 2427 extern int push_cpu_stop(void *arg); 2428 2429 #endif 2430 2431 #ifdef CONFIG_CPU_IDLE 2432 static inline void idle_set_state(struct rq *rq, 2433 struct cpuidle_state *idle_state) 2434 { 2435 rq->idle_state = idle_state; 2436 } 2437 2438 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2439 { 2440 SCHED_WARN_ON(!rcu_read_lock_held()); 2441 2442 return rq->idle_state; 2443 } 2444 #else 2445 static inline void idle_set_state(struct rq *rq, 2446 struct cpuidle_state *idle_state) 2447 { 2448 } 2449 2450 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2451 { 2452 return NULL; 2453 } 2454 #endif 2455 2456 extern void schedule_idle(void); 2457 asmlinkage void schedule_user(void); 2458 2459 extern void sysrq_sched_debug_show(void); 2460 extern void sched_init_granularity(void); 2461 extern void update_max_interval(void); 2462 2463 extern void init_sched_dl_class(void); 2464 extern void init_sched_rt_class(void); 2465 extern void init_sched_fair_class(void); 2466 2467 extern void reweight_task(struct task_struct *p, int prio); 2468 2469 extern void resched_curr(struct rq *rq); 2470 extern void resched_cpu(int cpu); 2471 2472 extern struct rt_bandwidth def_rt_bandwidth; 2473 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2474 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2475 2476 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2477 2478 #define BW_SHIFT 20 2479 #define BW_UNIT (1 << BW_SHIFT) 2480 #define RATIO_SHIFT 8 2481 #define MAX_BW_BITS (64 - BW_SHIFT) 2482 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2483 unsigned long to_ratio(u64 period, u64 runtime); 2484 2485 extern void init_entity_runnable_average(struct sched_entity *se); 2486 extern void post_init_entity_util_avg(struct task_struct *p); 2487 2488 #ifdef CONFIG_NO_HZ_FULL 2489 extern bool sched_can_stop_tick(struct rq *rq); 2490 extern int __init sched_tick_offload_init(void); 2491 2492 /* 2493 * Tick may be needed by tasks in the runqueue depending on their policy and 2494 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2495 * nohz mode if necessary. 2496 */ 2497 static inline void sched_update_tick_dependency(struct rq *rq) 2498 { 2499 int cpu = cpu_of(rq); 2500 2501 if (!tick_nohz_full_cpu(cpu)) 2502 return; 2503 2504 if (sched_can_stop_tick(rq)) 2505 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2506 else 2507 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2508 } 2509 #else 2510 static inline int sched_tick_offload_init(void) { return 0; } 2511 static inline void sched_update_tick_dependency(struct rq *rq) { } 2512 #endif 2513 2514 static inline void add_nr_running(struct rq *rq, unsigned count) 2515 { 2516 unsigned prev_nr = rq->nr_running; 2517 2518 rq->nr_running = prev_nr + count; 2519 if (trace_sched_update_nr_running_tp_enabled()) { 2520 call_trace_sched_update_nr_running(rq, count); 2521 } 2522 2523 #ifdef CONFIG_SMP 2524 if (prev_nr < 2 && rq->nr_running >= 2) 2525 set_rd_overloaded(rq->rd, 1); 2526 #endif 2527 2528 sched_update_tick_dependency(rq); 2529 } 2530 2531 static inline void sub_nr_running(struct rq *rq, unsigned count) 2532 { 2533 rq->nr_running -= count; 2534 if (trace_sched_update_nr_running_tp_enabled()) { 2535 call_trace_sched_update_nr_running(rq, -count); 2536 } 2537 2538 /* Check if we still need preemption */ 2539 sched_update_tick_dependency(rq); 2540 } 2541 2542 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2543 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2544 2545 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2546 2547 #ifdef CONFIG_PREEMPT_RT 2548 #define SCHED_NR_MIGRATE_BREAK 8 2549 #else 2550 #define SCHED_NR_MIGRATE_BREAK 32 2551 #endif 2552 2553 extern const_debug unsigned int sysctl_sched_nr_migrate; 2554 extern const_debug unsigned int sysctl_sched_migration_cost; 2555 2556 extern unsigned int sysctl_sched_base_slice; 2557 2558 #ifdef CONFIG_SCHED_DEBUG 2559 extern int sysctl_resched_latency_warn_ms; 2560 extern int sysctl_resched_latency_warn_once; 2561 2562 extern unsigned int sysctl_sched_tunable_scaling; 2563 2564 extern unsigned int sysctl_numa_balancing_scan_delay; 2565 extern unsigned int sysctl_numa_balancing_scan_period_min; 2566 extern unsigned int sysctl_numa_balancing_scan_period_max; 2567 extern unsigned int sysctl_numa_balancing_scan_size; 2568 extern unsigned int sysctl_numa_balancing_hot_threshold; 2569 #endif 2570 2571 #ifdef CONFIG_SCHED_HRTICK 2572 2573 /* 2574 * Use hrtick when: 2575 * - enabled by features 2576 * - hrtimer is actually high res 2577 */ 2578 static inline int hrtick_enabled(struct rq *rq) 2579 { 2580 if (!cpu_active(cpu_of(rq))) 2581 return 0; 2582 return hrtimer_is_hres_active(&rq->hrtick_timer); 2583 } 2584 2585 static inline int hrtick_enabled_fair(struct rq *rq) 2586 { 2587 if (!sched_feat(HRTICK)) 2588 return 0; 2589 return hrtick_enabled(rq); 2590 } 2591 2592 static inline int hrtick_enabled_dl(struct rq *rq) 2593 { 2594 if (!sched_feat(HRTICK_DL)) 2595 return 0; 2596 return hrtick_enabled(rq); 2597 } 2598 2599 void hrtick_start(struct rq *rq, u64 delay); 2600 2601 #else 2602 2603 static inline int hrtick_enabled_fair(struct rq *rq) 2604 { 2605 return 0; 2606 } 2607 2608 static inline int hrtick_enabled_dl(struct rq *rq) 2609 { 2610 return 0; 2611 } 2612 2613 static inline int hrtick_enabled(struct rq *rq) 2614 { 2615 return 0; 2616 } 2617 2618 #endif /* CONFIG_SCHED_HRTICK */ 2619 2620 #ifndef arch_scale_freq_tick 2621 static __always_inline 2622 void arch_scale_freq_tick(void) 2623 { 2624 } 2625 #endif 2626 2627 #ifndef arch_scale_freq_capacity 2628 /** 2629 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2630 * @cpu: the CPU in question. 2631 * 2632 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2633 * 2634 * f_curr 2635 * ------ * SCHED_CAPACITY_SCALE 2636 * f_max 2637 */ 2638 static __always_inline 2639 unsigned long arch_scale_freq_capacity(int cpu) 2640 { 2641 return SCHED_CAPACITY_SCALE; 2642 } 2643 #endif 2644 2645 #ifdef CONFIG_SCHED_DEBUG 2646 /* 2647 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2648 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2649 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2650 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2651 */ 2652 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2653 { 2654 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2655 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2656 #ifdef CONFIG_SMP 2657 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2658 #endif 2659 } 2660 #else 2661 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} 2662 #endif 2663 2664 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2665 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2666 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2667 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2668 _lock; return _t; } 2669 2670 #ifdef CONFIG_SMP 2671 2672 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2673 { 2674 #ifdef CONFIG_SCHED_CORE 2675 /* 2676 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2677 * order by core-id first and cpu-id second. 2678 * 2679 * Notably: 2680 * 2681 * double_rq_lock(0,3); will take core-0, core-1 lock 2682 * double_rq_lock(1,2); will take core-1, core-0 lock 2683 * 2684 * when only cpu-id is considered. 2685 */ 2686 if (rq1->core->cpu < rq2->core->cpu) 2687 return true; 2688 if (rq1->core->cpu > rq2->core->cpu) 2689 return false; 2690 2691 /* 2692 * __sched_core_flip() relies on SMT having cpu-id lock order. 2693 */ 2694 #endif 2695 return rq1->cpu < rq2->cpu; 2696 } 2697 2698 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2699 2700 #ifdef CONFIG_PREEMPTION 2701 2702 /* 2703 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2704 * way at the expense of forcing extra atomic operations in all 2705 * invocations. This assures that the double_lock is acquired using the 2706 * same underlying policy as the spinlock_t on this architecture, which 2707 * reduces latency compared to the unfair variant below. However, it 2708 * also adds more overhead and therefore may reduce throughput. 2709 */ 2710 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2711 __releases(this_rq->lock) 2712 __acquires(busiest->lock) 2713 __acquires(this_rq->lock) 2714 { 2715 raw_spin_rq_unlock(this_rq); 2716 double_rq_lock(this_rq, busiest); 2717 2718 return 1; 2719 } 2720 2721 #else 2722 /* 2723 * Unfair double_lock_balance: Optimizes throughput at the expense of 2724 * latency by eliminating extra atomic operations when the locks are 2725 * already in proper order on entry. This favors lower CPU-ids and will 2726 * grant the double lock to lower CPUs over higher ids under contention, 2727 * regardless of entry order into the function. 2728 */ 2729 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2730 __releases(this_rq->lock) 2731 __acquires(busiest->lock) 2732 __acquires(this_rq->lock) 2733 { 2734 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2735 likely(raw_spin_rq_trylock(busiest))) { 2736 double_rq_clock_clear_update(this_rq, busiest); 2737 return 0; 2738 } 2739 2740 if (rq_order_less(this_rq, busiest)) { 2741 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2742 double_rq_clock_clear_update(this_rq, busiest); 2743 return 0; 2744 } 2745 2746 raw_spin_rq_unlock(this_rq); 2747 double_rq_lock(this_rq, busiest); 2748 2749 return 1; 2750 } 2751 2752 #endif /* CONFIG_PREEMPTION */ 2753 2754 /* 2755 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2756 */ 2757 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2758 { 2759 lockdep_assert_irqs_disabled(); 2760 2761 return _double_lock_balance(this_rq, busiest); 2762 } 2763 2764 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 2765 __releases(busiest->lock) 2766 { 2767 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 2768 raw_spin_rq_unlock(busiest); 2769 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 2770 } 2771 2772 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 2773 { 2774 if (l1 > l2) 2775 swap(l1, l2); 2776 2777 spin_lock(l1); 2778 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2779 } 2780 2781 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 2782 { 2783 if (l1 > l2) 2784 swap(l1, l2); 2785 2786 spin_lock_irq(l1); 2787 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2788 } 2789 2790 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2791 { 2792 if (l1 > l2) 2793 swap(l1, l2); 2794 2795 raw_spin_lock(l1); 2796 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 2797 } 2798 2799 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 2800 { 2801 raw_spin_unlock(l1); 2802 raw_spin_unlock(l2); 2803 } 2804 2805 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 2806 double_raw_lock(_T->lock, _T->lock2), 2807 double_raw_unlock(_T->lock, _T->lock2)) 2808 2809 /* 2810 * double_rq_unlock - safely unlock two runqueues 2811 * 2812 * Note this does not restore interrupts like task_rq_unlock, 2813 * you need to do so manually after calling. 2814 */ 2815 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2816 __releases(rq1->lock) 2817 __releases(rq2->lock) 2818 { 2819 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 2820 raw_spin_rq_unlock(rq2); 2821 else 2822 __release(rq2->lock); 2823 raw_spin_rq_unlock(rq1); 2824 } 2825 2826 extern void set_rq_online (struct rq *rq); 2827 extern void set_rq_offline(struct rq *rq); 2828 extern bool sched_smp_initialized; 2829 2830 #else /* CONFIG_SMP */ 2831 2832 /* 2833 * double_rq_lock - safely lock two runqueues 2834 * 2835 * Note this does not disable interrupts like task_rq_lock, 2836 * you need to do so manually before calling. 2837 */ 2838 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 2839 __acquires(rq1->lock) 2840 __acquires(rq2->lock) 2841 { 2842 WARN_ON_ONCE(!irqs_disabled()); 2843 WARN_ON_ONCE(rq1 != rq2); 2844 raw_spin_rq_lock(rq1); 2845 __acquire(rq2->lock); /* Fake it out ;) */ 2846 double_rq_clock_clear_update(rq1, rq2); 2847 } 2848 2849 /* 2850 * double_rq_unlock - safely unlock two runqueues 2851 * 2852 * Note this does not restore interrupts like task_rq_unlock, 2853 * you need to do so manually after calling. 2854 */ 2855 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 2856 __releases(rq1->lock) 2857 __releases(rq2->lock) 2858 { 2859 WARN_ON_ONCE(rq1 != rq2); 2860 raw_spin_rq_unlock(rq1); 2861 __release(rq2->lock); 2862 } 2863 2864 #endif 2865 2866 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 2867 double_rq_lock(_T->lock, _T->lock2), 2868 double_rq_unlock(_T->lock, _T->lock2)) 2869 2870 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 2871 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 2872 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 2873 2874 #ifdef CONFIG_SCHED_DEBUG 2875 extern bool sched_debug_verbose; 2876 2877 extern void print_cfs_stats(struct seq_file *m, int cpu); 2878 extern void print_rt_stats(struct seq_file *m, int cpu); 2879 extern void print_dl_stats(struct seq_file *m, int cpu); 2880 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 2881 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2882 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 2883 2884 extern void resched_latency_warn(int cpu, u64 latency); 2885 #ifdef CONFIG_NUMA_BALANCING 2886 extern void 2887 show_numa_stats(struct task_struct *p, struct seq_file *m); 2888 extern void 2889 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 2890 unsigned long tpf, unsigned long gsf, unsigned long gpf); 2891 #endif /* CONFIG_NUMA_BALANCING */ 2892 #else 2893 static inline void resched_latency_warn(int cpu, u64 latency) {} 2894 #endif /* CONFIG_SCHED_DEBUG */ 2895 2896 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 2897 extern void init_rt_rq(struct rt_rq *rt_rq); 2898 extern void init_dl_rq(struct dl_rq *dl_rq); 2899 2900 extern void cfs_bandwidth_usage_inc(void); 2901 extern void cfs_bandwidth_usage_dec(void); 2902 2903 #ifdef CONFIG_NO_HZ_COMMON 2904 #define NOHZ_BALANCE_KICK_BIT 0 2905 #define NOHZ_STATS_KICK_BIT 1 2906 #define NOHZ_NEWILB_KICK_BIT 2 2907 #define NOHZ_NEXT_KICK_BIT 3 2908 2909 /* Run sched_balance_domains() */ 2910 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 2911 /* Update blocked load */ 2912 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 2913 /* Update blocked load when entering idle */ 2914 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 2915 /* Update nohz.next_balance */ 2916 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 2917 2918 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 2919 2920 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 2921 2922 extern void nohz_balance_exit_idle(struct rq *rq); 2923 #else 2924 static inline void nohz_balance_exit_idle(struct rq *rq) { } 2925 #endif 2926 2927 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 2928 extern void nohz_run_idle_balance(int cpu); 2929 #else 2930 static inline void nohz_run_idle_balance(int cpu) { } 2931 #endif 2932 2933 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2934 struct irqtime { 2935 u64 total; 2936 u64 tick_delta; 2937 u64 irq_start_time; 2938 struct u64_stats_sync sync; 2939 }; 2940 2941 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 2942 2943 /* 2944 * Returns the irqtime minus the softirq time computed by ksoftirqd. 2945 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 2946 * and never move forward. 2947 */ 2948 static inline u64 irq_time_read(int cpu) 2949 { 2950 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 2951 unsigned int seq; 2952 u64 total; 2953 2954 do { 2955 seq = __u64_stats_fetch_begin(&irqtime->sync); 2956 total = irqtime->total; 2957 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 2958 2959 return total; 2960 } 2961 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 2962 2963 #ifdef CONFIG_CPU_FREQ 2964 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 2965 2966 /** 2967 * cpufreq_update_util - Take a note about CPU utilization changes. 2968 * @rq: Runqueue to carry out the update for. 2969 * @flags: Update reason flags. 2970 * 2971 * This function is called by the scheduler on the CPU whose utilization is 2972 * being updated. 2973 * 2974 * It can only be called from RCU-sched read-side critical sections. 2975 * 2976 * The way cpufreq is currently arranged requires it to evaluate the CPU 2977 * performance state (frequency/voltage) on a regular basis to prevent it from 2978 * being stuck in a completely inadequate performance level for too long. 2979 * That is not guaranteed to happen if the updates are only triggered from CFS 2980 * and DL, though, because they may not be coming in if only RT tasks are 2981 * active all the time (or there are RT tasks only). 2982 * 2983 * As a workaround for that issue, this function is called periodically by the 2984 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 2985 * but that really is a band-aid. Going forward it should be replaced with 2986 * solutions targeted more specifically at RT tasks. 2987 */ 2988 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 2989 { 2990 struct update_util_data *data; 2991 2992 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 2993 cpu_of(rq))); 2994 if (data) 2995 data->func(data, rq_clock(rq), flags); 2996 } 2997 #else 2998 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} 2999 #endif /* CONFIG_CPU_FREQ */ 3000 3001 #ifdef arch_scale_freq_capacity 3002 # ifndef arch_scale_freq_invariant 3003 # define arch_scale_freq_invariant() true 3004 # endif 3005 #else 3006 # define arch_scale_freq_invariant() false 3007 #endif 3008 3009 #ifdef CONFIG_SMP 3010 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3011 unsigned long *min, 3012 unsigned long *max); 3013 3014 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3015 unsigned long min, 3016 unsigned long max); 3017 3018 3019 /* 3020 * Verify the fitness of task @p to run on @cpu taking into account the 3021 * CPU original capacity and the runtime/deadline ratio of the task. 3022 * 3023 * The function will return true if the original capacity of @cpu is 3024 * greater than or equal to task's deadline density right shifted by 3025 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3026 */ 3027 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3028 { 3029 unsigned long cap = arch_scale_cpu_capacity(cpu); 3030 3031 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3032 } 3033 3034 static inline unsigned long cpu_bw_dl(struct rq *rq) 3035 { 3036 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3037 } 3038 3039 static inline unsigned long cpu_util_dl(struct rq *rq) 3040 { 3041 return READ_ONCE(rq->avg_dl.util_avg); 3042 } 3043 3044 3045 extern unsigned long cpu_util_cfs(int cpu); 3046 extern unsigned long cpu_util_cfs_boost(int cpu); 3047 3048 static inline unsigned long cpu_util_rt(struct rq *rq) 3049 { 3050 return READ_ONCE(rq->avg_rt.util_avg); 3051 } 3052 #endif 3053 3054 #ifdef CONFIG_UCLAMP_TASK 3055 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3056 3057 static inline unsigned long uclamp_rq_get(struct rq *rq, 3058 enum uclamp_id clamp_id) 3059 { 3060 return READ_ONCE(rq->uclamp[clamp_id].value); 3061 } 3062 3063 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3064 unsigned int value) 3065 { 3066 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3067 } 3068 3069 static inline bool uclamp_rq_is_idle(struct rq *rq) 3070 { 3071 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3072 } 3073 3074 /* Is the rq being capped/throttled by uclamp_max? */ 3075 static inline bool uclamp_rq_is_capped(struct rq *rq) 3076 { 3077 unsigned long rq_util; 3078 unsigned long max_util; 3079 3080 if (!static_branch_likely(&sched_uclamp_used)) 3081 return false; 3082 3083 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3084 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3085 3086 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3087 } 3088 3089 /* 3090 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3091 * by default in the fast path and only gets turned on once userspace performs 3092 * an operation that requires it. 3093 * 3094 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3095 * hence is active. 3096 */ 3097 static inline bool uclamp_is_used(void) 3098 { 3099 return static_branch_likely(&sched_uclamp_used); 3100 } 3101 #else /* CONFIG_UCLAMP_TASK */ 3102 static inline unsigned long uclamp_eff_value(struct task_struct *p, 3103 enum uclamp_id clamp_id) 3104 { 3105 if (clamp_id == UCLAMP_MIN) 3106 return 0; 3107 3108 return SCHED_CAPACITY_SCALE; 3109 } 3110 3111 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3112 3113 static inline bool uclamp_is_used(void) 3114 { 3115 return false; 3116 } 3117 3118 static inline unsigned long uclamp_rq_get(struct rq *rq, 3119 enum uclamp_id clamp_id) 3120 { 3121 if (clamp_id == UCLAMP_MIN) 3122 return 0; 3123 3124 return SCHED_CAPACITY_SCALE; 3125 } 3126 3127 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3128 unsigned int value) 3129 { 3130 } 3131 3132 static inline bool uclamp_rq_is_idle(struct rq *rq) 3133 { 3134 return false; 3135 } 3136 #endif /* CONFIG_UCLAMP_TASK */ 3137 3138 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3139 static inline unsigned long cpu_util_irq(struct rq *rq) 3140 { 3141 return READ_ONCE(rq->avg_irq.util_avg); 3142 } 3143 3144 static inline 3145 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3146 { 3147 util *= (max - irq); 3148 util /= max; 3149 3150 return util; 3151 3152 } 3153 #else 3154 static inline unsigned long cpu_util_irq(struct rq *rq) 3155 { 3156 return 0; 3157 } 3158 3159 static inline 3160 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3161 { 3162 return util; 3163 } 3164 #endif 3165 3166 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3167 3168 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3169 3170 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3171 3172 static inline bool sched_energy_enabled(void) 3173 { 3174 return static_branch_unlikely(&sched_energy_present); 3175 } 3176 3177 extern struct cpufreq_governor schedutil_gov; 3178 3179 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3180 3181 #define perf_domain_span(pd) NULL 3182 static inline bool sched_energy_enabled(void) { return false; } 3183 3184 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3185 3186 #ifdef CONFIG_MEMBARRIER 3187 /* 3188 * The scheduler provides memory barriers required by membarrier between: 3189 * - prior user-space memory accesses and store to rq->membarrier_state, 3190 * - store to rq->membarrier_state and following user-space memory accesses. 3191 * In the same way it provides those guarantees around store to rq->curr. 3192 */ 3193 static inline void membarrier_switch_mm(struct rq *rq, 3194 struct mm_struct *prev_mm, 3195 struct mm_struct *next_mm) 3196 { 3197 int membarrier_state; 3198 3199 if (prev_mm == next_mm) 3200 return; 3201 3202 membarrier_state = atomic_read(&next_mm->membarrier_state); 3203 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3204 return; 3205 3206 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3207 } 3208 #else 3209 static inline void membarrier_switch_mm(struct rq *rq, 3210 struct mm_struct *prev_mm, 3211 struct mm_struct *next_mm) 3212 { 3213 } 3214 #endif 3215 3216 #ifdef CONFIG_SMP 3217 static inline bool is_per_cpu_kthread(struct task_struct *p) 3218 { 3219 if (!(p->flags & PF_KTHREAD)) 3220 return false; 3221 3222 if (p->nr_cpus_allowed != 1) 3223 return false; 3224 3225 return true; 3226 } 3227 #endif 3228 3229 extern void swake_up_all_locked(struct swait_queue_head *q); 3230 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3231 3232 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3233 3234 #ifdef CONFIG_PREEMPT_DYNAMIC 3235 extern int preempt_dynamic_mode; 3236 extern int sched_dynamic_mode(const char *str); 3237 extern void sched_dynamic_update(int mode); 3238 #endif 3239 3240 #ifdef CONFIG_SCHED_MM_CID 3241 3242 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3243 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3244 3245 extern raw_spinlock_t cid_lock; 3246 extern int use_cid_lock; 3247 3248 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3249 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3250 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3251 extern void init_sched_mm_cid(struct task_struct *t); 3252 3253 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3254 { 3255 if (cid < 0) 3256 return; 3257 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3258 } 3259 3260 /* 3261 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3262 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3263 * be held to transition to other states. 3264 * 3265 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3266 * consistent across cpus, which prevents use of this_cpu_cmpxchg. 3267 */ 3268 static inline void mm_cid_put_lazy(struct task_struct *t) 3269 { 3270 struct mm_struct *mm = t->mm; 3271 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3272 int cid; 3273 3274 lockdep_assert_irqs_disabled(); 3275 cid = __this_cpu_read(pcpu_cid->cid); 3276 if (!mm_cid_is_lazy_put(cid) || 3277 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3278 return; 3279 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3280 } 3281 3282 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3283 { 3284 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3285 int cid, res; 3286 3287 lockdep_assert_irqs_disabled(); 3288 cid = __this_cpu_read(pcpu_cid->cid); 3289 for (;;) { 3290 if (mm_cid_is_unset(cid)) 3291 return MM_CID_UNSET; 3292 /* 3293 * Attempt transition from valid or lazy-put to unset. 3294 */ 3295 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3296 if (res == cid) 3297 break; 3298 cid = res; 3299 } 3300 return cid; 3301 } 3302 3303 static inline void mm_cid_put(struct mm_struct *mm) 3304 { 3305 int cid; 3306 3307 lockdep_assert_irqs_disabled(); 3308 cid = mm_cid_pcpu_unset(mm); 3309 if (cid == MM_CID_UNSET) 3310 return; 3311 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3312 } 3313 3314 static inline int __mm_cid_try_get(struct mm_struct *mm) 3315 { 3316 struct cpumask *cpumask; 3317 int cid; 3318 3319 cpumask = mm_cidmask(mm); 3320 /* 3321 * Retry finding first zero bit if the mask is temporarily 3322 * filled. This only happens during concurrent remote-clear 3323 * which owns a cid without holding a rq lock. 3324 */ 3325 for (;;) { 3326 cid = cpumask_first_zero(cpumask); 3327 if (cid < nr_cpu_ids) 3328 break; 3329 cpu_relax(); 3330 } 3331 if (cpumask_test_and_set_cpu(cid, cpumask)) 3332 return -1; 3333 return cid; 3334 } 3335 3336 /* 3337 * Save a snapshot of the current runqueue time of this cpu 3338 * with the per-cpu cid value, allowing to estimate how recently it was used. 3339 */ 3340 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3341 { 3342 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3343 3344 lockdep_assert_rq_held(rq); 3345 WRITE_ONCE(pcpu_cid->time, rq->clock); 3346 } 3347 3348 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm) 3349 { 3350 int cid; 3351 3352 /* 3353 * All allocations (even those using the cid_lock) are lock-free. If 3354 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3355 * guarantee forward progress. 3356 */ 3357 if (!READ_ONCE(use_cid_lock)) { 3358 cid = __mm_cid_try_get(mm); 3359 if (cid >= 0) 3360 goto end; 3361 raw_spin_lock(&cid_lock); 3362 } else { 3363 raw_spin_lock(&cid_lock); 3364 cid = __mm_cid_try_get(mm); 3365 if (cid >= 0) 3366 goto unlock; 3367 } 3368 3369 /* 3370 * cid concurrently allocated. Retry while forcing following 3371 * allocations to use the cid_lock to ensure forward progress. 3372 */ 3373 WRITE_ONCE(use_cid_lock, 1); 3374 /* 3375 * Set use_cid_lock before allocation. Only care about program order 3376 * because this is only required for forward progress. 3377 */ 3378 barrier(); 3379 /* 3380 * Retry until it succeeds. It is guaranteed to eventually succeed once 3381 * all newcoming allocations observe the use_cid_lock flag set. 3382 */ 3383 do { 3384 cid = __mm_cid_try_get(mm); 3385 cpu_relax(); 3386 } while (cid < 0); 3387 /* 3388 * Allocate before clearing use_cid_lock. Only care about 3389 * program order because this is for forward progress. 3390 */ 3391 barrier(); 3392 WRITE_ONCE(use_cid_lock, 0); 3393 unlock: 3394 raw_spin_unlock(&cid_lock); 3395 end: 3396 mm_cid_snapshot_time(rq, mm); 3397 return cid; 3398 } 3399 3400 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm) 3401 { 3402 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3403 struct cpumask *cpumask; 3404 int cid; 3405 3406 lockdep_assert_rq_held(rq); 3407 cpumask = mm_cidmask(mm); 3408 cid = __this_cpu_read(pcpu_cid->cid); 3409 if (mm_cid_is_valid(cid)) { 3410 mm_cid_snapshot_time(rq, mm); 3411 return cid; 3412 } 3413 if (mm_cid_is_lazy_put(cid)) { 3414 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3415 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3416 } 3417 cid = __mm_cid_get(rq, mm); 3418 __this_cpu_write(pcpu_cid->cid, cid); 3419 return cid; 3420 } 3421 3422 static inline void switch_mm_cid(struct rq *rq, 3423 struct task_struct *prev, 3424 struct task_struct *next) 3425 { 3426 /* 3427 * Provide a memory barrier between rq->curr store and load of 3428 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3429 * 3430 * Should be adapted if context_switch() is modified. 3431 */ 3432 if (!next->mm) { // to kernel 3433 /* 3434 * user -> kernel transition does not guarantee a barrier, but 3435 * we can use the fact that it performs an atomic operation in 3436 * mmgrab(). 3437 */ 3438 if (prev->mm) // from user 3439 smp_mb__after_mmgrab(); 3440 /* 3441 * kernel -> kernel transition does not change rq->curr->mm 3442 * state. It stays NULL. 3443 */ 3444 } else { // to user 3445 /* 3446 * kernel -> user transition does not provide a barrier 3447 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3448 * Provide it here. 3449 */ 3450 if (!prev->mm) { // from kernel 3451 smp_mb(); 3452 } else { // from user 3453 /* 3454 * user->user transition relies on an implicit 3455 * memory barrier in switch_mm() when 3456 * current->mm changes. If the architecture 3457 * switch_mm() does not have an implicit memory 3458 * barrier, it is emitted here. If current->mm 3459 * is unchanged, no barrier is needed. 3460 */ 3461 smp_mb__after_switch_mm(); 3462 } 3463 } 3464 if (prev->mm_cid_active) { 3465 mm_cid_snapshot_time(rq, prev->mm); 3466 mm_cid_put_lazy(prev); 3467 prev->mm_cid = -1; 3468 } 3469 if (next->mm_cid_active) 3470 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm); 3471 } 3472 3473 #else 3474 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3475 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3476 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3477 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3478 static inline void init_sched_mm_cid(struct task_struct *t) { } 3479 #endif 3480 3481 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3482 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3483 3484 #endif /* _KERNEL_SCHED_SCHED_H */ 3485