1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/mutex.h> 7 #include <linux/spinlock.h> 8 #include <linux/stop_machine.h> 9 #include <linux/tick.h> 10 #include <linux/slab.h> 11 12 #include "cpupri.h" 13 #include "cpudeadline.h" 14 #include "cpuacct.h" 15 16 struct rq; 17 18 extern __read_mostly int scheduler_running; 19 20 extern unsigned long calc_load_update; 21 extern atomic_long_t calc_load_tasks; 22 23 extern long calc_load_fold_active(struct rq *this_rq); 24 extern void update_cpu_load_active(struct rq *this_rq); 25 26 /* 27 * Helpers for converting nanosecond timing to jiffy resolution 28 */ 29 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 30 31 /* 32 * Increase resolution of nice-level calculations for 64-bit architectures. 33 * The extra resolution improves shares distribution and load balancing of 34 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 35 * hierarchies, especially on larger systems. This is not a user-visible change 36 * and does not change the user-interface for setting shares/weights. 37 * 38 * We increase resolution only if we have enough bits to allow this increased 39 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 40 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 41 * increased costs. 42 */ 43 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 44 # define SCHED_LOAD_RESOLUTION 10 45 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 46 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 47 #else 48 # define SCHED_LOAD_RESOLUTION 0 49 # define scale_load(w) (w) 50 # define scale_load_down(w) (w) 51 #endif 52 53 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 54 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 55 56 #define NICE_0_LOAD SCHED_LOAD_SCALE 57 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 58 59 /* 60 * Single value that decides SCHED_DEADLINE internal math precision. 61 * 10 -> just above 1us 62 * 9 -> just above 0.5us 63 */ 64 #define DL_SCALE (10) 65 66 /* 67 * These are the 'tuning knobs' of the scheduler: 68 */ 69 70 /* 71 * single value that denotes runtime == period, ie unlimited time. 72 */ 73 #define RUNTIME_INF ((u64)~0ULL) 74 75 static inline int fair_policy(int policy) 76 { 77 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 78 } 79 80 static inline int rt_policy(int policy) 81 { 82 return policy == SCHED_FIFO || policy == SCHED_RR; 83 } 84 85 static inline int dl_policy(int policy) 86 { 87 return policy == SCHED_DEADLINE; 88 } 89 90 static inline int task_has_rt_policy(struct task_struct *p) 91 { 92 return rt_policy(p->policy); 93 } 94 95 static inline int task_has_dl_policy(struct task_struct *p) 96 { 97 return dl_policy(p->policy); 98 } 99 100 static inline bool dl_time_before(u64 a, u64 b) 101 { 102 return (s64)(a - b) < 0; 103 } 104 105 /* 106 * Tells if entity @a should preempt entity @b. 107 */ 108 static inline bool 109 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 110 { 111 return dl_time_before(a->deadline, b->deadline); 112 } 113 114 /* 115 * This is the priority-queue data structure of the RT scheduling class: 116 */ 117 struct rt_prio_array { 118 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 119 struct list_head queue[MAX_RT_PRIO]; 120 }; 121 122 struct rt_bandwidth { 123 /* nests inside the rq lock: */ 124 raw_spinlock_t rt_runtime_lock; 125 ktime_t rt_period; 126 u64 rt_runtime; 127 struct hrtimer rt_period_timer; 128 }; 129 /* 130 * To keep the bandwidth of -deadline tasks and groups under control 131 * we need some place where: 132 * - store the maximum -deadline bandwidth of the system (the group); 133 * - cache the fraction of that bandwidth that is currently allocated. 134 * 135 * This is all done in the data structure below. It is similar to the 136 * one used for RT-throttling (rt_bandwidth), with the main difference 137 * that, since here we are only interested in admission control, we 138 * do not decrease any runtime while the group "executes", neither we 139 * need a timer to replenish it. 140 * 141 * With respect to SMP, the bandwidth is given on a per-CPU basis, 142 * meaning that: 143 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 144 * - dl_total_bw array contains, in the i-eth element, the currently 145 * allocated bandwidth on the i-eth CPU. 146 * Moreover, groups consume bandwidth on each CPU, while tasks only 147 * consume bandwidth on the CPU they're running on. 148 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 149 * that will be shown the next time the proc or cgroup controls will 150 * be red. It on its turn can be changed by writing on its own 151 * control. 152 */ 153 struct dl_bandwidth { 154 raw_spinlock_t dl_runtime_lock; 155 u64 dl_runtime; 156 u64 dl_period; 157 }; 158 159 static inline int dl_bandwidth_enabled(void) 160 { 161 return sysctl_sched_rt_runtime >= 0; 162 } 163 164 extern struct dl_bw *dl_bw_of(int i); 165 166 struct dl_bw { 167 raw_spinlock_t lock; 168 u64 bw, total_bw; 169 }; 170 171 extern struct mutex sched_domains_mutex; 172 173 #ifdef CONFIG_CGROUP_SCHED 174 175 #include <linux/cgroup.h> 176 177 struct cfs_rq; 178 struct rt_rq; 179 180 extern struct list_head task_groups; 181 182 struct cfs_bandwidth { 183 #ifdef CONFIG_CFS_BANDWIDTH 184 raw_spinlock_t lock; 185 ktime_t period; 186 u64 quota, runtime; 187 s64 hierarchal_quota; 188 u64 runtime_expires; 189 190 int idle, timer_active; 191 struct hrtimer period_timer, slack_timer; 192 struct list_head throttled_cfs_rq; 193 194 /* statistics */ 195 int nr_periods, nr_throttled; 196 u64 throttled_time; 197 #endif 198 }; 199 200 /* task group related information */ 201 struct task_group { 202 struct cgroup_subsys_state css; 203 204 #ifdef CONFIG_FAIR_GROUP_SCHED 205 /* schedulable entities of this group on each cpu */ 206 struct sched_entity **se; 207 /* runqueue "owned" by this group on each cpu */ 208 struct cfs_rq **cfs_rq; 209 unsigned long shares; 210 211 #ifdef CONFIG_SMP 212 atomic_long_t load_avg; 213 atomic_t runnable_avg; 214 #endif 215 #endif 216 217 #ifdef CONFIG_RT_GROUP_SCHED 218 struct sched_rt_entity **rt_se; 219 struct rt_rq **rt_rq; 220 221 struct rt_bandwidth rt_bandwidth; 222 #endif 223 224 struct rcu_head rcu; 225 struct list_head list; 226 227 struct task_group *parent; 228 struct list_head siblings; 229 struct list_head children; 230 231 #ifdef CONFIG_SCHED_AUTOGROUP 232 struct autogroup *autogroup; 233 #endif 234 235 struct cfs_bandwidth cfs_bandwidth; 236 }; 237 238 #ifdef CONFIG_FAIR_GROUP_SCHED 239 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 240 241 /* 242 * A weight of 0 or 1 can cause arithmetics problems. 243 * A weight of a cfs_rq is the sum of weights of which entities 244 * are queued on this cfs_rq, so a weight of a entity should not be 245 * too large, so as the shares value of a task group. 246 * (The default weight is 1024 - so there's no practical 247 * limitation from this.) 248 */ 249 #define MIN_SHARES (1UL << 1) 250 #define MAX_SHARES (1UL << 18) 251 #endif 252 253 typedef int (*tg_visitor)(struct task_group *, void *); 254 255 extern int walk_tg_tree_from(struct task_group *from, 256 tg_visitor down, tg_visitor up, void *data); 257 258 /* 259 * Iterate the full tree, calling @down when first entering a node and @up when 260 * leaving it for the final time. 261 * 262 * Caller must hold rcu_lock or sufficient equivalent. 263 */ 264 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 265 { 266 return walk_tg_tree_from(&root_task_group, down, up, data); 267 } 268 269 extern int tg_nop(struct task_group *tg, void *data); 270 271 extern void free_fair_sched_group(struct task_group *tg); 272 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 273 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 274 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 275 struct sched_entity *se, int cpu, 276 struct sched_entity *parent); 277 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 278 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 279 280 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 281 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force); 282 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 283 284 extern void free_rt_sched_group(struct task_group *tg); 285 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 286 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 287 struct sched_rt_entity *rt_se, int cpu, 288 struct sched_rt_entity *parent); 289 290 extern struct task_group *sched_create_group(struct task_group *parent); 291 extern void sched_online_group(struct task_group *tg, 292 struct task_group *parent); 293 extern void sched_destroy_group(struct task_group *tg); 294 extern void sched_offline_group(struct task_group *tg); 295 296 extern void sched_move_task(struct task_struct *tsk); 297 298 #ifdef CONFIG_FAIR_GROUP_SCHED 299 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 300 #endif 301 302 #else /* CONFIG_CGROUP_SCHED */ 303 304 struct cfs_bandwidth { }; 305 306 #endif /* CONFIG_CGROUP_SCHED */ 307 308 /* CFS-related fields in a runqueue */ 309 struct cfs_rq { 310 struct load_weight load; 311 unsigned int nr_running, h_nr_running; 312 313 u64 exec_clock; 314 u64 min_vruntime; 315 #ifndef CONFIG_64BIT 316 u64 min_vruntime_copy; 317 #endif 318 319 struct rb_root tasks_timeline; 320 struct rb_node *rb_leftmost; 321 322 /* 323 * 'curr' points to currently running entity on this cfs_rq. 324 * It is set to NULL otherwise (i.e when none are currently running). 325 */ 326 struct sched_entity *curr, *next, *last, *skip; 327 328 #ifdef CONFIG_SCHED_DEBUG 329 unsigned int nr_spread_over; 330 #endif 331 332 #ifdef CONFIG_SMP 333 /* 334 * CFS Load tracking 335 * Under CFS, load is tracked on a per-entity basis and aggregated up. 336 * This allows for the description of both thread and group usage (in 337 * the FAIR_GROUP_SCHED case). 338 */ 339 unsigned long runnable_load_avg, blocked_load_avg; 340 atomic64_t decay_counter; 341 u64 last_decay; 342 atomic_long_t removed_load; 343 344 #ifdef CONFIG_FAIR_GROUP_SCHED 345 /* Required to track per-cpu representation of a task_group */ 346 u32 tg_runnable_contrib; 347 unsigned long tg_load_contrib; 348 349 /* 350 * h_load = weight * f(tg) 351 * 352 * Where f(tg) is the recursive weight fraction assigned to 353 * this group. 354 */ 355 unsigned long h_load; 356 u64 last_h_load_update; 357 struct sched_entity *h_load_next; 358 #endif /* CONFIG_FAIR_GROUP_SCHED */ 359 #endif /* CONFIG_SMP */ 360 361 #ifdef CONFIG_FAIR_GROUP_SCHED 362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 363 364 /* 365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 367 * (like users, containers etc.) 368 * 369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 370 * list is used during load balance. 371 */ 372 int on_list; 373 struct list_head leaf_cfs_rq_list; 374 struct task_group *tg; /* group that "owns" this runqueue */ 375 376 #ifdef CONFIG_CFS_BANDWIDTH 377 int runtime_enabled; 378 u64 runtime_expires; 379 s64 runtime_remaining; 380 381 u64 throttled_clock, throttled_clock_task; 382 u64 throttled_clock_task_time; 383 int throttled, throttle_count; 384 struct list_head throttled_list; 385 #endif /* CONFIG_CFS_BANDWIDTH */ 386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 387 }; 388 389 static inline int rt_bandwidth_enabled(void) 390 { 391 return sysctl_sched_rt_runtime >= 0; 392 } 393 394 /* Real-Time classes' related field in a runqueue: */ 395 struct rt_rq { 396 struct rt_prio_array active; 397 unsigned int rt_nr_running; 398 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 399 struct { 400 int curr; /* highest queued rt task prio */ 401 #ifdef CONFIG_SMP 402 int next; /* next highest */ 403 #endif 404 } highest_prio; 405 #endif 406 #ifdef CONFIG_SMP 407 unsigned long rt_nr_migratory; 408 unsigned long rt_nr_total; 409 int overloaded; 410 struct plist_head pushable_tasks; 411 #endif 412 int rt_queued; 413 414 int rt_throttled; 415 u64 rt_time; 416 u64 rt_runtime; 417 /* Nests inside the rq lock: */ 418 raw_spinlock_t rt_runtime_lock; 419 420 #ifdef CONFIG_RT_GROUP_SCHED 421 unsigned long rt_nr_boosted; 422 423 struct rq *rq; 424 struct task_group *tg; 425 #endif 426 }; 427 428 /* Deadline class' related fields in a runqueue */ 429 struct dl_rq { 430 /* runqueue is an rbtree, ordered by deadline */ 431 struct rb_root rb_root; 432 struct rb_node *rb_leftmost; 433 434 unsigned long dl_nr_running; 435 436 #ifdef CONFIG_SMP 437 /* 438 * Deadline values of the currently executing and the 439 * earliest ready task on this rq. Caching these facilitates 440 * the decision wether or not a ready but not running task 441 * should migrate somewhere else. 442 */ 443 struct { 444 u64 curr; 445 u64 next; 446 } earliest_dl; 447 448 unsigned long dl_nr_migratory; 449 int overloaded; 450 451 /* 452 * Tasks on this rq that can be pushed away. They are kept in 453 * an rb-tree, ordered by tasks' deadlines, with caching 454 * of the leftmost (earliest deadline) element. 455 */ 456 struct rb_root pushable_dl_tasks_root; 457 struct rb_node *pushable_dl_tasks_leftmost; 458 #else 459 struct dl_bw dl_bw; 460 #endif 461 }; 462 463 #ifdef CONFIG_SMP 464 465 /* 466 * We add the notion of a root-domain which will be used to define per-domain 467 * variables. Each exclusive cpuset essentially defines an island domain by 468 * fully partitioning the member cpus from any other cpuset. Whenever a new 469 * exclusive cpuset is created, we also create and attach a new root-domain 470 * object. 471 * 472 */ 473 struct root_domain { 474 atomic_t refcount; 475 atomic_t rto_count; 476 struct rcu_head rcu; 477 cpumask_var_t span; 478 cpumask_var_t online; 479 480 /* Indicate more than one runnable task for any CPU */ 481 bool overload; 482 483 /* 484 * The bit corresponding to a CPU gets set here if such CPU has more 485 * than one runnable -deadline task (as it is below for RT tasks). 486 */ 487 cpumask_var_t dlo_mask; 488 atomic_t dlo_count; 489 struct dl_bw dl_bw; 490 struct cpudl cpudl; 491 492 /* 493 * The "RT overload" flag: it gets set if a CPU has more than 494 * one runnable RT task. 495 */ 496 cpumask_var_t rto_mask; 497 struct cpupri cpupri; 498 }; 499 500 extern struct root_domain def_root_domain; 501 502 #endif /* CONFIG_SMP */ 503 504 /* 505 * This is the main, per-CPU runqueue data structure. 506 * 507 * Locking rule: those places that want to lock multiple runqueues 508 * (such as the load balancing or the thread migration code), lock 509 * acquire operations must be ordered by ascending &runqueue. 510 */ 511 struct rq { 512 /* runqueue lock: */ 513 raw_spinlock_t lock; 514 515 /* 516 * nr_running and cpu_load should be in the same cacheline because 517 * remote CPUs use both these fields when doing load calculation. 518 */ 519 unsigned int nr_running; 520 #ifdef CONFIG_NUMA_BALANCING 521 unsigned int nr_numa_running; 522 unsigned int nr_preferred_running; 523 #endif 524 #define CPU_LOAD_IDX_MAX 5 525 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 526 unsigned long last_load_update_tick; 527 #ifdef CONFIG_NO_HZ_COMMON 528 u64 nohz_stamp; 529 unsigned long nohz_flags; 530 #endif 531 #ifdef CONFIG_NO_HZ_FULL 532 unsigned long last_sched_tick; 533 #endif 534 int skip_clock_update; 535 536 /* capture load from *all* tasks on this cpu: */ 537 struct load_weight load; 538 unsigned long nr_load_updates; 539 u64 nr_switches; 540 541 struct cfs_rq cfs; 542 struct rt_rq rt; 543 struct dl_rq dl; 544 545 #ifdef CONFIG_FAIR_GROUP_SCHED 546 /* list of leaf cfs_rq on this cpu: */ 547 struct list_head leaf_cfs_rq_list; 548 549 struct sched_avg avg; 550 #endif /* CONFIG_FAIR_GROUP_SCHED */ 551 552 /* 553 * This is part of a global counter where only the total sum 554 * over all CPUs matters. A task can increase this counter on 555 * one CPU and if it got migrated afterwards it may decrease 556 * it on another CPU. Always updated under the runqueue lock: 557 */ 558 unsigned long nr_uninterruptible; 559 560 struct task_struct *curr, *idle, *stop; 561 unsigned long next_balance; 562 struct mm_struct *prev_mm; 563 564 u64 clock; 565 u64 clock_task; 566 567 atomic_t nr_iowait; 568 569 #ifdef CONFIG_SMP 570 struct root_domain *rd; 571 struct sched_domain *sd; 572 573 unsigned long cpu_capacity; 574 575 unsigned char idle_balance; 576 /* For active balancing */ 577 int post_schedule; 578 int active_balance; 579 int push_cpu; 580 struct cpu_stop_work active_balance_work; 581 /* cpu of this runqueue: */ 582 int cpu; 583 int online; 584 585 struct list_head cfs_tasks; 586 587 u64 rt_avg; 588 u64 age_stamp; 589 u64 idle_stamp; 590 u64 avg_idle; 591 592 /* This is used to determine avg_idle's max value */ 593 u64 max_idle_balance_cost; 594 #endif 595 596 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 597 u64 prev_irq_time; 598 #endif 599 #ifdef CONFIG_PARAVIRT 600 u64 prev_steal_time; 601 #endif 602 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 603 u64 prev_steal_time_rq; 604 #endif 605 606 /* calc_load related fields */ 607 unsigned long calc_load_update; 608 long calc_load_active; 609 610 #ifdef CONFIG_SCHED_HRTICK 611 #ifdef CONFIG_SMP 612 int hrtick_csd_pending; 613 struct call_single_data hrtick_csd; 614 #endif 615 struct hrtimer hrtick_timer; 616 #endif 617 618 #ifdef CONFIG_SCHEDSTATS 619 /* latency stats */ 620 struct sched_info rq_sched_info; 621 unsigned long long rq_cpu_time; 622 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 623 624 /* sys_sched_yield() stats */ 625 unsigned int yld_count; 626 627 /* schedule() stats */ 628 unsigned int sched_count; 629 unsigned int sched_goidle; 630 631 /* try_to_wake_up() stats */ 632 unsigned int ttwu_count; 633 unsigned int ttwu_local; 634 #endif 635 636 #ifdef CONFIG_SMP 637 struct llist_head wake_list; 638 #endif 639 }; 640 641 static inline int cpu_of(struct rq *rq) 642 { 643 #ifdef CONFIG_SMP 644 return rq->cpu; 645 #else 646 return 0; 647 #endif 648 } 649 650 DECLARE_PER_CPU(struct rq, runqueues); 651 652 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 653 #define this_rq() (&__get_cpu_var(runqueues)) 654 #define task_rq(p) cpu_rq(task_cpu(p)) 655 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 656 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 657 658 static inline u64 rq_clock(struct rq *rq) 659 { 660 return rq->clock; 661 } 662 663 static inline u64 rq_clock_task(struct rq *rq) 664 { 665 return rq->clock_task; 666 } 667 668 #ifdef CONFIG_NUMA_BALANCING 669 extern void sched_setnuma(struct task_struct *p, int node); 670 extern int migrate_task_to(struct task_struct *p, int cpu); 671 extern int migrate_swap(struct task_struct *, struct task_struct *); 672 #endif /* CONFIG_NUMA_BALANCING */ 673 674 #ifdef CONFIG_SMP 675 676 extern void sched_ttwu_pending(void); 677 678 #define rcu_dereference_check_sched_domain(p) \ 679 rcu_dereference_check((p), \ 680 lockdep_is_held(&sched_domains_mutex)) 681 682 /* 683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 684 * See detach_destroy_domains: synchronize_sched for details. 685 * 686 * The domain tree of any CPU may only be accessed from within 687 * preempt-disabled sections. 688 */ 689 #define for_each_domain(cpu, __sd) \ 690 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 691 __sd; __sd = __sd->parent) 692 693 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 694 695 /** 696 * highest_flag_domain - Return highest sched_domain containing flag. 697 * @cpu: The cpu whose highest level of sched domain is to 698 * be returned. 699 * @flag: The flag to check for the highest sched_domain 700 * for the given cpu. 701 * 702 * Returns the highest sched_domain of a cpu which contains the given flag. 703 */ 704 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 705 { 706 struct sched_domain *sd, *hsd = NULL; 707 708 for_each_domain(cpu, sd) { 709 if (!(sd->flags & flag)) 710 break; 711 hsd = sd; 712 } 713 714 return hsd; 715 } 716 717 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 718 { 719 struct sched_domain *sd; 720 721 for_each_domain(cpu, sd) { 722 if (sd->flags & flag) 723 break; 724 } 725 726 return sd; 727 } 728 729 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 730 DECLARE_PER_CPU(int, sd_llc_size); 731 DECLARE_PER_CPU(int, sd_llc_id); 732 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 733 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 734 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 735 736 struct sched_group_capacity { 737 atomic_t ref; 738 /* 739 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity 740 * for a single CPU. 741 */ 742 unsigned int capacity, capacity_orig; 743 unsigned long next_update; 744 int imbalance; /* XXX unrelated to capacity but shared group state */ 745 /* 746 * Number of busy cpus in this group. 747 */ 748 atomic_t nr_busy_cpus; 749 750 unsigned long cpumask[0]; /* iteration mask */ 751 }; 752 753 struct sched_group { 754 struct sched_group *next; /* Must be a circular list */ 755 atomic_t ref; 756 757 unsigned int group_weight; 758 struct sched_group_capacity *sgc; 759 760 /* 761 * The CPUs this group covers. 762 * 763 * NOTE: this field is variable length. (Allocated dynamically 764 * by attaching extra space to the end of the structure, 765 * depending on how many CPUs the kernel has booted up with) 766 */ 767 unsigned long cpumask[0]; 768 }; 769 770 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 771 { 772 return to_cpumask(sg->cpumask); 773 } 774 775 /* 776 * cpumask masking which cpus in the group are allowed to iterate up the domain 777 * tree. 778 */ 779 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 780 { 781 return to_cpumask(sg->sgc->cpumask); 782 } 783 784 /** 785 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 786 * @group: The group whose first cpu is to be returned. 787 */ 788 static inline unsigned int group_first_cpu(struct sched_group *group) 789 { 790 return cpumask_first(sched_group_cpus(group)); 791 } 792 793 extern int group_balance_cpu(struct sched_group *sg); 794 795 #else 796 797 static inline void sched_ttwu_pending(void) { } 798 799 #endif /* CONFIG_SMP */ 800 801 #include "stats.h" 802 #include "auto_group.h" 803 804 #ifdef CONFIG_CGROUP_SCHED 805 806 /* 807 * Return the group to which this tasks belongs. 808 * 809 * We cannot use task_css() and friends because the cgroup subsystem 810 * changes that value before the cgroup_subsys::attach() method is called, 811 * therefore we cannot pin it and might observe the wrong value. 812 * 813 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 814 * core changes this before calling sched_move_task(). 815 * 816 * Instead we use a 'copy' which is updated from sched_move_task() while 817 * holding both task_struct::pi_lock and rq::lock. 818 */ 819 static inline struct task_group *task_group(struct task_struct *p) 820 { 821 return p->sched_task_group; 822 } 823 824 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 825 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 826 { 827 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 828 struct task_group *tg = task_group(p); 829 #endif 830 831 #ifdef CONFIG_FAIR_GROUP_SCHED 832 p->se.cfs_rq = tg->cfs_rq[cpu]; 833 p->se.parent = tg->se[cpu]; 834 #endif 835 836 #ifdef CONFIG_RT_GROUP_SCHED 837 p->rt.rt_rq = tg->rt_rq[cpu]; 838 p->rt.parent = tg->rt_se[cpu]; 839 #endif 840 } 841 842 #else /* CONFIG_CGROUP_SCHED */ 843 844 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 845 static inline struct task_group *task_group(struct task_struct *p) 846 { 847 return NULL; 848 } 849 850 #endif /* CONFIG_CGROUP_SCHED */ 851 852 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 853 { 854 set_task_rq(p, cpu); 855 #ifdef CONFIG_SMP 856 /* 857 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 858 * successfuly executed on another CPU. We must ensure that updates of 859 * per-task data have been completed by this moment. 860 */ 861 smp_wmb(); 862 task_thread_info(p)->cpu = cpu; 863 p->wake_cpu = cpu; 864 #endif 865 } 866 867 /* 868 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 869 */ 870 #ifdef CONFIG_SCHED_DEBUG 871 # include <linux/static_key.h> 872 # define const_debug __read_mostly 873 #else 874 # define const_debug const 875 #endif 876 877 extern const_debug unsigned int sysctl_sched_features; 878 879 #define SCHED_FEAT(name, enabled) \ 880 __SCHED_FEAT_##name , 881 882 enum { 883 #include "features.h" 884 __SCHED_FEAT_NR, 885 }; 886 887 #undef SCHED_FEAT 888 889 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 890 #define SCHED_FEAT(name, enabled) \ 891 static __always_inline bool static_branch_##name(struct static_key *key) \ 892 { \ 893 return static_key_##enabled(key); \ 894 } 895 896 #include "features.h" 897 898 #undef SCHED_FEAT 899 900 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 901 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 902 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 903 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 904 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 905 906 #ifdef CONFIG_NUMA_BALANCING 907 #define sched_feat_numa(x) sched_feat(x) 908 #ifdef CONFIG_SCHED_DEBUG 909 #define numabalancing_enabled sched_feat_numa(NUMA) 910 #else 911 extern bool numabalancing_enabled; 912 #endif /* CONFIG_SCHED_DEBUG */ 913 #else 914 #define sched_feat_numa(x) (0) 915 #define numabalancing_enabled (0) 916 #endif /* CONFIG_NUMA_BALANCING */ 917 918 static inline u64 global_rt_period(void) 919 { 920 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 921 } 922 923 static inline u64 global_rt_runtime(void) 924 { 925 if (sysctl_sched_rt_runtime < 0) 926 return RUNTIME_INF; 927 928 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 929 } 930 931 static inline int task_current(struct rq *rq, struct task_struct *p) 932 { 933 return rq->curr == p; 934 } 935 936 static inline int task_running(struct rq *rq, struct task_struct *p) 937 { 938 #ifdef CONFIG_SMP 939 return p->on_cpu; 940 #else 941 return task_current(rq, p); 942 #endif 943 } 944 945 946 #ifndef prepare_arch_switch 947 # define prepare_arch_switch(next) do { } while (0) 948 #endif 949 #ifndef finish_arch_switch 950 # define finish_arch_switch(prev) do { } while (0) 951 #endif 952 #ifndef finish_arch_post_lock_switch 953 # define finish_arch_post_lock_switch() do { } while (0) 954 #endif 955 956 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 957 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 958 { 959 #ifdef CONFIG_SMP 960 /* 961 * We can optimise this out completely for !SMP, because the 962 * SMP rebalancing from interrupt is the only thing that cares 963 * here. 964 */ 965 next->on_cpu = 1; 966 #endif 967 } 968 969 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 970 { 971 #ifdef CONFIG_SMP 972 /* 973 * After ->on_cpu is cleared, the task can be moved to a different CPU. 974 * We must ensure this doesn't happen until the switch is completely 975 * finished. 976 */ 977 smp_wmb(); 978 prev->on_cpu = 0; 979 #endif 980 #ifdef CONFIG_DEBUG_SPINLOCK 981 /* this is a valid case when another task releases the spinlock */ 982 rq->lock.owner = current; 983 #endif 984 /* 985 * If we are tracking spinlock dependencies then we have to 986 * fix up the runqueue lock - which gets 'carried over' from 987 * prev into current: 988 */ 989 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 990 991 raw_spin_unlock_irq(&rq->lock); 992 } 993 994 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 995 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 996 { 997 #ifdef CONFIG_SMP 998 /* 999 * We can optimise this out completely for !SMP, because the 1000 * SMP rebalancing from interrupt is the only thing that cares 1001 * here. 1002 */ 1003 next->on_cpu = 1; 1004 #endif 1005 raw_spin_unlock(&rq->lock); 1006 } 1007 1008 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1009 { 1010 #ifdef CONFIG_SMP 1011 /* 1012 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1013 * We must ensure this doesn't happen until the switch is completely 1014 * finished. 1015 */ 1016 smp_wmb(); 1017 prev->on_cpu = 0; 1018 #endif 1019 local_irq_enable(); 1020 } 1021 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 1022 1023 /* 1024 * wake flags 1025 */ 1026 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1027 #define WF_FORK 0x02 /* child wakeup after fork */ 1028 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1029 1030 /* 1031 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1032 * of tasks with abnormal "nice" values across CPUs the contribution that 1033 * each task makes to its run queue's load is weighted according to its 1034 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1035 * scaled version of the new time slice allocation that they receive on time 1036 * slice expiry etc. 1037 */ 1038 1039 #define WEIGHT_IDLEPRIO 3 1040 #define WMULT_IDLEPRIO 1431655765 1041 1042 /* 1043 * Nice levels are multiplicative, with a gentle 10% change for every 1044 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 1045 * nice 1, it will get ~10% less CPU time than another CPU-bound task 1046 * that remained on nice 0. 1047 * 1048 * The "10% effect" is relative and cumulative: from _any_ nice level, 1049 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 1050 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 1051 * If a task goes up by ~10% and another task goes down by ~10% then 1052 * the relative distance between them is ~25%.) 1053 */ 1054 static const int prio_to_weight[40] = { 1055 /* -20 */ 88761, 71755, 56483, 46273, 36291, 1056 /* -15 */ 29154, 23254, 18705, 14949, 11916, 1057 /* -10 */ 9548, 7620, 6100, 4904, 3906, 1058 /* -5 */ 3121, 2501, 1991, 1586, 1277, 1059 /* 0 */ 1024, 820, 655, 526, 423, 1060 /* 5 */ 335, 272, 215, 172, 137, 1061 /* 10 */ 110, 87, 70, 56, 45, 1062 /* 15 */ 36, 29, 23, 18, 15, 1063 }; 1064 1065 /* 1066 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 1067 * 1068 * In cases where the weight does not change often, we can use the 1069 * precalculated inverse to speed up arithmetics by turning divisions 1070 * into multiplications: 1071 */ 1072 static const u32 prio_to_wmult[40] = { 1073 /* -20 */ 48388, 59856, 76040, 92818, 118348, 1074 /* -15 */ 147320, 184698, 229616, 287308, 360437, 1075 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 1076 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 1077 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 1078 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 1079 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 1080 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 1081 }; 1082 1083 #define ENQUEUE_WAKEUP 1 1084 #define ENQUEUE_HEAD 2 1085 #ifdef CONFIG_SMP 1086 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1087 #else 1088 #define ENQUEUE_WAKING 0 1089 #endif 1090 #define ENQUEUE_REPLENISH 8 1091 1092 #define DEQUEUE_SLEEP 1 1093 1094 #define RETRY_TASK ((void *)-1UL) 1095 1096 struct sched_class { 1097 const struct sched_class *next; 1098 1099 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1100 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1101 void (*yield_task) (struct rq *rq); 1102 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1103 1104 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1105 1106 /* 1107 * It is the responsibility of the pick_next_task() method that will 1108 * return the next task to call put_prev_task() on the @prev task or 1109 * something equivalent. 1110 * 1111 * May return RETRY_TASK when it finds a higher prio class has runnable 1112 * tasks. 1113 */ 1114 struct task_struct * (*pick_next_task) (struct rq *rq, 1115 struct task_struct *prev); 1116 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1117 1118 #ifdef CONFIG_SMP 1119 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1120 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1121 1122 void (*post_schedule) (struct rq *this_rq); 1123 void (*task_waking) (struct task_struct *task); 1124 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1125 1126 void (*set_cpus_allowed)(struct task_struct *p, 1127 const struct cpumask *newmask); 1128 1129 void (*rq_online)(struct rq *rq); 1130 void (*rq_offline)(struct rq *rq); 1131 #endif 1132 1133 void (*set_curr_task) (struct rq *rq); 1134 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1135 void (*task_fork) (struct task_struct *p); 1136 void (*task_dead) (struct task_struct *p); 1137 1138 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1139 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1140 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1141 int oldprio); 1142 1143 unsigned int (*get_rr_interval) (struct rq *rq, 1144 struct task_struct *task); 1145 1146 #ifdef CONFIG_FAIR_GROUP_SCHED 1147 void (*task_move_group) (struct task_struct *p, int on_rq); 1148 #endif 1149 }; 1150 1151 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1152 { 1153 prev->sched_class->put_prev_task(rq, prev); 1154 } 1155 1156 #define sched_class_highest (&stop_sched_class) 1157 #define for_each_class(class) \ 1158 for (class = sched_class_highest; class; class = class->next) 1159 1160 extern const struct sched_class stop_sched_class; 1161 extern const struct sched_class dl_sched_class; 1162 extern const struct sched_class rt_sched_class; 1163 extern const struct sched_class fair_sched_class; 1164 extern const struct sched_class idle_sched_class; 1165 1166 1167 #ifdef CONFIG_SMP 1168 1169 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1170 1171 extern void trigger_load_balance(struct rq *rq); 1172 1173 extern void idle_enter_fair(struct rq *this_rq); 1174 extern void idle_exit_fair(struct rq *this_rq); 1175 1176 #else 1177 1178 static inline void idle_enter_fair(struct rq *rq) { } 1179 static inline void idle_exit_fair(struct rq *rq) { } 1180 1181 #endif 1182 1183 extern void sysrq_sched_debug_show(void); 1184 extern void sched_init_granularity(void); 1185 extern void update_max_interval(void); 1186 1187 extern void init_sched_dl_class(void); 1188 extern void init_sched_rt_class(void); 1189 extern void init_sched_fair_class(void); 1190 extern void init_sched_dl_class(void); 1191 1192 extern void resched_curr(struct rq *rq); 1193 extern void resched_cpu(int cpu); 1194 1195 extern struct rt_bandwidth def_rt_bandwidth; 1196 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1197 1198 extern struct dl_bandwidth def_dl_bandwidth; 1199 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1200 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1201 1202 unsigned long to_ratio(u64 period, u64 runtime); 1203 1204 extern void update_idle_cpu_load(struct rq *this_rq); 1205 1206 extern void init_task_runnable_average(struct task_struct *p); 1207 1208 static inline void add_nr_running(struct rq *rq, unsigned count) 1209 { 1210 unsigned prev_nr = rq->nr_running; 1211 1212 rq->nr_running = prev_nr + count; 1213 1214 if (prev_nr < 2 && rq->nr_running >= 2) { 1215 #ifdef CONFIG_SMP 1216 if (!rq->rd->overload) 1217 rq->rd->overload = true; 1218 #endif 1219 1220 #ifdef CONFIG_NO_HZ_FULL 1221 if (tick_nohz_full_cpu(rq->cpu)) { 1222 /* 1223 * Tick is needed if more than one task runs on a CPU. 1224 * Send the target an IPI to kick it out of nohz mode. 1225 * 1226 * We assume that IPI implies full memory barrier and the 1227 * new value of rq->nr_running is visible on reception 1228 * from the target. 1229 */ 1230 tick_nohz_full_kick_cpu(rq->cpu); 1231 } 1232 #endif 1233 } 1234 } 1235 1236 static inline void sub_nr_running(struct rq *rq, unsigned count) 1237 { 1238 rq->nr_running -= count; 1239 } 1240 1241 static inline void rq_last_tick_reset(struct rq *rq) 1242 { 1243 #ifdef CONFIG_NO_HZ_FULL 1244 rq->last_sched_tick = jiffies; 1245 #endif 1246 } 1247 1248 extern void update_rq_clock(struct rq *rq); 1249 1250 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1251 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1252 1253 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1254 1255 extern const_debug unsigned int sysctl_sched_time_avg; 1256 extern const_debug unsigned int sysctl_sched_nr_migrate; 1257 extern const_debug unsigned int sysctl_sched_migration_cost; 1258 1259 static inline u64 sched_avg_period(void) 1260 { 1261 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1262 } 1263 1264 #ifdef CONFIG_SCHED_HRTICK 1265 1266 /* 1267 * Use hrtick when: 1268 * - enabled by features 1269 * - hrtimer is actually high res 1270 */ 1271 static inline int hrtick_enabled(struct rq *rq) 1272 { 1273 if (!sched_feat(HRTICK)) 1274 return 0; 1275 if (!cpu_active(cpu_of(rq))) 1276 return 0; 1277 return hrtimer_is_hres_active(&rq->hrtick_timer); 1278 } 1279 1280 void hrtick_start(struct rq *rq, u64 delay); 1281 1282 #else 1283 1284 static inline int hrtick_enabled(struct rq *rq) 1285 { 1286 return 0; 1287 } 1288 1289 #endif /* CONFIG_SCHED_HRTICK */ 1290 1291 #ifdef CONFIG_SMP 1292 extern void sched_avg_update(struct rq *rq); 1293 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1294 { 1295 rq->rt_avg += rt_delta; 1296 sched_avg_update(rq); 1297 } 1298 #else 1299 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1300 static inline void sched_avg_update(struct rq *rq) { } 1301 #endif 1302 1303 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 1304 1305 #ifdef CONFIG_SMP 1306 #ifdef CONFIG_PREEMPT 1307 1308 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1309 1310 /* 1311 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1312 * way at the expense of forcing extra atomic operations in all 1313 * invocations. This assures that the double_lock is acquired using the 1314 * same underlying policy as the spinlock_t on this architecture, which 1315 * reduces latency compared to the unfair variant below. However, it 1316 * also adds more overhead and therefore may reduce throughput. 1317 */ 1318 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1319 __releases(this_rq->lock) 1320 __acquires(busiest->lock) 1321 __acquires(this_rq->lock) 1322 { 1323 raw_spin_unlock(&this_rq->lock); 1324 double_rq_lock(this_rq, busiest); 1325 1326 return 1; 1327 } 1328 1329 #else 1330 /* 1331 * Unfair double_lock_balance: Optimizes throughput at the expense of 1332 * latency by eliminating extra atomic operations when the locks are 1333 * already in proper order on entry. This favors lower cpu-ids and will 1334 * grant the double lock to lower cpus over higher ids under contention, 1335 * regardless of entry order into the function. 1336 */ 1337 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1338 __releases(this_rq->lock) 1339 __acquires(busiest->lock) 1340 __acquires(this_rq->lock) 1341 { 1342 int ret = 0; 1343 1344 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1345 if (busiest < this_rq) { 1346 raw_spin_unlock(&this_rq->lock); 1347 raw_spin_lock(&busiest->lock); 1348 raw_spin_lock_nested(&this_rq->lock, 1349 SINGLE_DEPTH_NESTING); 1350 ret = 1; 1351 } else 1352 raw_spin_lock_nested(&busiest->lock, 1353 SINGLE_DEPTH_NESTING); 1354 } 1355 return ret; 1356 } 1357 1358 #endif /* CONFIG_PREEMPT */ 1359 1360 /* 1361 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1362 */ 1363 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1364 { 1365 if (unlikely(!irqs_disabled())) { 1366 /* printk() doesn't work good under rq->lock */ 1367 raw_spin_unlock(&this_rq->lock); 1368 BUG_ON(1); 1369 } 1370 1371 return _double_lock_balance(this_rq, busiest); 1372 } 1373 1374 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1375 __releases(busiest->lock) 1376 { 1377 raw_spin_unlock(&busiest->lock); 1378 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1379 } 1380 1381 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1382 { 1383 if (l1 > l2) 1384 swap(l1, l2); 1385 1386 spin_lock(l1); 1387 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1388 } 1389 1390 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1391 { 1392 if (l1 > l2) 1393 swap(l1, l2); 1394 1395 spin_lock_irq(l1); 1396 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1397 } 1398 1399 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1400 { 1401 if (l1 > l2) 1402 swap(l1, l2); 1403 1404 raw_spin_lock(l1); 1405 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1406 } 1407 1408 /* 1409 * double_rq_lock - safely lock two runqueues 1410 * 1411 * Note this does not disable interrupts like task_rq_lock, 1412 * you need to do so manually before calling. 1413 */ 1414 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1415 __acquires(rq1->lock) 1416 __acquires(rq2->lock) 1417 { 1418 BUG_ON(!irqs_disabled()); 1419 if (rq1 == rq2) { 1420 raw_spin_lock(&rq1->lock); 1421 __acquire(rq2->lock); /* Fake it out ;) */ 1422 } else { 1423 if (rq1 < rq2) { 1424 raw_spin_lock(&rq1->lock); 1425 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1426 } else { 1427 raw_spin_lock(&rq2->lock); 1428 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1429 } 1430 } 1431 } 1432 1433 /* 1434 * double_rq_unlock - safely unlock two runqueues 1435 * 1436 * Note this does not restore interrupts like task_rq_unlock, 1437 * you need to do so manually after calling. 1438 */ 1439 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1440 __releases(rq1->lock) 1441 __releases(rq2->lock) 1442 { 1443 raw_spin_unlock(&rq1->lock); 1444 if (rq1 != rq2) 1445 raw_spin_unlock(&rq2->lock); 1446 else 1447 __release(rq2->lock); 1448 } 1449 1450 #else /* CONFIG_SMP */ 1451 1452 /* 1453 * double_rq_lock - safely lock two runqueues 1454 * 1455 * Note this does not disable interrupts like task_rq_lock, 1456 * you need to do so manually before calling. 1457 */ 1458 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1459 __acquires(rq1->lock) 1460 __acquires(rq2->lock) 1461 { 1462 BUG_ON(!irqs_disabled()); 1463 BUG_ON(rq1 != rq2); 1464 raw_spin_lock(&rq1->lock); 1465 __acquire(rq2->lock); /* Fake it out ;) */ 1466 } 1467 1468 /* 1469 * double_rq_unlock - safely unlock two runqueues 1470 * 1471 * Note this does not restore interrupts like task_rq_unlock, 1472 * you need to do so manually after calling. 1473 */ 1474 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1475 __releases(rq1->lock) 1476 __releases(rq2->lock) 1477 { 1478 BUG_ON(rq1 != rq2); 1479 raw_spin_unlock(&rq1->lock); 1480 __release(rq2->lock); 1481 } 1482 1483 #endif 1484 1485 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1486 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1487 extern void print_cfs_stats(struct seq_file *m, int cpu); 1488 extern void print_rt_stats(struct seq_file *m, int cpu); 1489 1490 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1491 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1492 extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); 1493 1494 extern void cfs_bandwidth_usage_inc(void); 1495 extern void cfs_bandwidth_usage_dec(void); 1496 1497 #ifdef CONFIG_NO_HZ_COMMON 1498 enum rq_nohz_flag_bits { 1499 NOHZ_TICK_STOPPED, 1500 NOHZ_BALANCE_KICK, 1501 }; 1502 1503 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1504 #endif 1505 1506 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1507 1508 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1509 DECLARE_PER_CPU(u64, cpu_softirq_time); 1510 1511 #ifndef CONFIG_64BIT 1512 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1513 1514 static inline void irq_time_write_begin(void) 1515 { 1516 __this_cpu_inc(irq_time_seq.sequence); 1517 smp_wmb(); 1518 } 1519 1520 static inline void irq_time_write_end(void) 1521 { 1522 smp_wmb(); 1523 __this_cpu_inc(irq_time_seq.sequence); 1524 } 1525 1526 static inline u64 irq_time_read(int cpu) 1527 { 1528 u64 irq_time; 1529 unsigned seq; 1530 1531 do { 1532 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1533 irq_time = per_cpu(cpu_softirq_time, cpu) + 1534 per_cpu(cpu_hardirq_time, cpu); 1535 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1536 1537 return irq_time; 1538 } 1539 #else /* CONFIG_64BIT */ 1540 static inline void irq_time_write_begin(void) 1541 { 1542 } 1543 1544 static inline void irq_time_write_end(void) 1545 { 1546 } 1547 1548 static inline u64 irq_time_read(int cpu) 1549 { 1550 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1551 } 1552 #endif /* CONFIG_64BIT */ 1553 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1554