xref: /linux/kernel/sched/sched.h (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74 
75 #include "../workqueue_internal.h"
76 
77 struct rq;
78 struct cfs_rq;
79 struct rt_rq;
80 struct sched_group;
81 struct cpuidle_state;
82 
83 #ifdef CONFIG_PARAVIRT
84 # include <asm/paravirt.h>
85 # include <asm/paravirt_api_clock.h>
86 #endif
87 
88 #include <asm/barrier.h>
89 
90 #include "cpupri.h"
91 #include "cpudeadline.h"
92 
93 #ifdef CONFIG_SCHED_DEBUG
94 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
95 #else
96 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
97 #endif
98 
99 /* task_struct::on_rq states: */
100 #define TASK_ON_RQ_QUEUED	1
101 #define TASK_ON_RQ_MIGRATING	2
102 
103 extern __read_mostly int scheduler_running;
104 
105 extern unsigned long calc_load_update;
106 extern atomic_long_t calc_load_tasks;
107 
108 extern void calc_global_load_tick(struct rq *this_rq);
109 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
110 
111 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
112 
113 extern int sysctl_sched_rt_period;
114 extern int sysctl_sched_rt_runtime;
115 extern int sched_rr_timeslice;
116 
117 /*
118  * Asymmetric CPU capacity bits
119  */
120 struct asym_cap_data {
121 	struct list_head link;
122 	struct rcu_head rcu;
123 	unsigned long capacity;
124 	unsigned long cpus[];
125 };
126 
127 extern struct list_head asym_cap_list;
128 
129 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
130 
131 /*
132  * Helpers for converting nanosecond timing to jiffy resolution
133  */
134 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
135 
136 /*
137  * Increase resolution of nice-level calculations for 64-bit architectures.
138  * The extra resolution improves shares distribution and load balancing of
139  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
140  * hierarchies, especially on larger systems. This is not a user-visible change
141  * and does not change the user-interface for setting shares/weights.
142  *
143  * We increase resolution only if we have enough bits to allow this increased
144  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
145  * are pretty high and the returns do not justify the increased costs.
146  *
147  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
148  * increase coverage and consistency always enable it on 64-bit platforms.
149  */
150 #ifdef CONFIG_64BIT
151 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
152 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load_down(w)					\
154 ({								\
155 	unsigned long __w = (w);				\
156 								\
157 	if (__w)						\
158 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
159 	__w;							\
160 })
161 #else
162 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
163 # define scale_load(w)		(w)
164 # define scale_load_down(w)	(w)
165 #endif
166 
167 /*
168  * Task weight (visible to users) and its load (invisible to users) have
169  * independent resolution, but they should be well calibrated. We use
170  * scale_load() and scale_load_down(w) to convert between them. The
171  * following must be true:
172  *
173  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
174  *
175  */
176 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
177 
178 /*
179  * Single value that decides SCHED_DEADLINE internal math precision.
180  * 10 -> just above 1us
181  * 9  -> just above 0.5us
182  */
183 #define DL_SCALE		10
184 
185 /*
186  * Single value that denotes runtime == period, ie unlimited time.
187  */
188 #define RUNTIME_INF		((u64)~0ULL)
189 
190 static inline int idle_policy(int policy)
191 {
192 	return policy == SCHED_IDLE;
193 }
194 
195 static inline int normal_policy(int policy)
196 {
197 #ifdef CONFIG_SCHED_CLASS_EXT
198 	if (policy == SCHED_EXT)
199 		return true;
200 #endif
201 	return policy == SCHED_NORMAL;
202 }
203 
204 static inline int fair_policy(int policy)
205 {
206 	return normal_policy(policy) || policy == SCHED_BATCH;
207 }
208 
209 static inline int rt_policy(int policy)
210 {
211 	return policy == SCHED_FIFO || policy == SCHED_RR;
212 }
213 
214 static inline int dl_policy(int policy)
215 {
216 	return policy == SCHED_DEADLINE;
217 }
218 
219 static inline bool valid_policy(int policy)
220 {
221 	return idle_policy(policy) || fair_policy(policy) ||
222 		rt_policy(policy) || dl_policy(policy);
223 }
224 
225 static inline int task_has_idle_policy(struct task_struct *p)
226 {
227 	return idle_policy(p->policy);
228 }
229 
230 static inline int task_has_rt_policy(struct task_struct *p)
231 {
232 	return rt_policy(p->policy);
233 }
234 
235 static inline int task_has_dl_policy(struct task_struct *p)
236 {
237 	return dl_policy(p->policy);
238 }
239 
240 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
241 
242 static inline void update_avg(u64 *avg, u64 sample)
243 {
244 	s64 diff = sample - *avg;
245 
246 	*avg += diff / 8;
247 }
248 
249 /*
250  * Shifting a value by an exponent greater *or equal* to the size of said value
251  * is UB; cap at size-1.
252  */
253 #define shr_bound(val, shift)							\
254 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
255 
256 /*
257  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
258  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
259  * maps pretty well onto the shares value used by scheduler and the round-trip
260  * conversions preserve the original value over the entire range.
261  */
262 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
263 {
264 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
265 }
266 
267 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
268 {
269 	return clamp_t(unsigned long,
270 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
271 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
272 }
273 
274 /*
275  * !! For sched_setattr_nocheck() (kernel) only !!
276  *
277  * This is actually gross. :(
278  *
279  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
280  * tasks, but still be able to sleep. We need this on platforms that cannot
281  * atomically change clock frequency. Remove once fast switching will be
282  * available on such platforms.
283  *
284  * SUGOV stands for SchedUtil GOVernor.
285  */
286 #define SCHED_FLAG_SUGOV	0x10000000
287 
288 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
289 
290 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
291 {
292 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
293 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
294 #else
295 	return false;
296 #endif
297 }
298 
299 /*
300  * Tells if entity @a should preempt entity @b.
301  */
302 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
303 				     const struct sched_dl_entity *b)
304 {
305 	return dl_entity_is_special(a) ||
306 	       dl_time_before(a->deadline, b->deadline);
307 }
308 
309 /*
310  * This is the priority-queue data structure of the RT scheduling class:
311  */
312 struct rt_prio_array {
313 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
314 	struct list_head queue[MAX_RT_PRIO];
315 };
316 
317 struct rt_bandwidth {
318 	/* nests inside the rq lock: */
319 	raw_spinlock_t		rt_runtime_lock;
320 	ktime_t			rt_period;
321 	u64			rt_runtime;
322 	struct hrtimer		rt_period_timer;
323 	unsigned int		rt_period_active;
324 };
325 
326 static inline int dl_bandwidth_enabled(void)
327 {
328 	return sysctl_sched_rt_runtime >= 0;
329 }
330 
331 /*
332  * To keep the bandwidth of -deadline tasks under control
333  * we need some place where:
334  *  - store the maximum -deadline bandwidth of each cpu;
335  *  - cache the fraction of bandwidth that is currently allocated in
336  *    each root domain;
337  *
338  * This is all done in the data structure below. It is similar to the
339  * one used for RT-throttling (rt_bandwidth), with the main difference
340  * that, since here we are only interested in admission control, we
341  * do not decrease any runtime while the group "executes", neither we
342  * need a timer to replenish it.
343  *
344  * With respect to SMP, bandwidth is given on a per root domain basis,
345  * meaning that:
346  *  - bw (< 100%) is the deadline bandwidth of each CPU;
347  *  - total_bw is the currently allocated bandwidth in each root domain;
348  */
349 struct dl_bw {
350 	raw_spinlock_t		lock;
351 	u64			bw;
352 	u64			total_bw;
353 };
354 
355 extern void init_dl_bw(struct dl_bw *dl_b);
356 extern int  sched_dl_global_validate(void);
357 extern void sched_dl_do_global(void);
358 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
359 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
360 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
361 extern bool __checkparam_dl(const struct sched_attr *attr);
362 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
363 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
364 extern int  dl_bw_check_overflow(int cpu);
365 
366 /*
367  * SCHED_DEADLINE supports servers (nested scheduling) with the following
368  * interface:
369  *
370  *   dl_se::rq -- runqueue we belong to.
371  *
372  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
373  *                                server when it runs out of tasks to run.
374  *
375  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
376  *                           returns NULL.
377  *
378  *   dl_server_update() -- called from update_curr_common(), propagates runtime
379  *                         to the server.
380  *
381  *   dl_server_start()
382  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
383  *
384  *   dl_server_init() -- initializes the server.
385  */
386 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
387 extern void dl_server_start(struct sched_dl_entity *dl_se);
388 extern void dl_server_stop(struct sched_dl_entity *dl_se);
389 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
390 		    dl_server_has_tasks_f has_tasks,
391 		    dl_server_pick_f pick);
392 
393 #ifdef CONFIG_CGROUP_SCHED
394 
395 extern struct list_head task_groups;
396 
397 struct cfs_bandwidth {
398 #ifdef CONFIG_CFS_BANDWIDTH
399 	raw_spinlock_t		lock;
400 	ktime_t			period;
401 	u64			quota;
402 	u64			runtime;
403 	u64			burst;
404 	u64			runtime_snap;
405 	s64			hierarchical_quota;
406 
407 	u8			idle;
408 	u8			period_active;
409 	u8			slack_started;
410 	struct hrtimer		period_timer;
411 	struct hrtimer		slack_timer;
412 	struct list_head	throttled_cfs_rq;
413 
414 	/* Statistics: */
415 	int			nr_periods;
416 	int			nr_throttled;
417 	int			nr_burst;
418 	u64			throttled_time;
419 	u64			burst_time;
420 #endif
421 };
422 
423 /* Task group related information */
424 struct task_group {
425 	struct cgroup_subsys_state css;
426 
427 #ifdef CONFIG_FAIR_GROUP_SCHED
428 	/* schedulable entities of this group on each CPU */
429 	struct sched_entity	**se;
430 	/* runqueue "owned" by this group on each CPU */
431 	struct cfs_rq		**cfs_rq;
432 	unsigned long		shares;
433 
434 	/* A positive value indicates that this is a SCHED_IDLE group. */
435 	int			idle;
436 
437 #ifdef	CONFIG_SMP
438 	/*
439 	 * load_avg can be heavily contended at clock tick time, so put
440 	 * it in its own cache-line separated from the fields above which
441 	 * will also be accessed at each tick.
442 	 */
443 	atomic_long_t		load_avg ____cacheline_aligned;
444 #endif
445 #endif
446 
447 #ifdef CONFIG_RT_GROUP_SCHED
448 	struct sched_rt_entity	**rt_se;
449 	struct rt_rq		**rt_rq;
450 
451 	struct rt_bandwidth	rt_bandwidth;
452 #endif
453 
454 	struct rcu_head		rcu;
455 	struct list_head	list;
456 
457 	struct task_group	*parent;
458 	struct list_head	siblings;
459 	struct list_head	children;
460 
461 #ifdef CONFIG_SCHED_AUTOGROUP
462 	struct autogroup	*autogroup;
463 #endif
464 
465 	struct cfs_bandwidth	cfs_bandwidth;
466 
467 #ifdef CONFIG_UCLAMP_TASK_GROUP
468 	/* The two decimal precision [%] value requested from user-space */
469 	unsigned int		uclamp_pct[UCLAMP_CNT];
470 	/* Clamp values requested for a task group */
471 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
472 	/* Effective clamp values used for a task group */
473 	struct uclamp_se	uclamp[UCLAMP_CNT];
474 #endif
475 
476 };
477 
478 #ifdef CONFIG_FAIR_GROUP_SCHED
479 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
480 
481 /*
482  * A weight of 0 or 1 can cause arithmetics problems.
483  * A weight of a cfs_rq is the sum of weights of which entities
484  * are queued on this cfs_rq, so a weight of a entity should not be
485  * too large, so as the shares value of a task group.
486  * (The default weight is 1024 - so there's no practical
487  *  limitation from this.)
488  */
489 #define MIN_SHARES		(1UL <<  1)
490 #define MAX_SHARES		(1UL << 18)
491 #endif
492 
493 typedef int (*tg_visitor)(struct task_group *, void *);
494 
495 extern int walk_tg_tree_from(struct task_group *from,
496 			     tg_visitor down, tg_visitor up, void *data);
497 
498 /*
499  * Iterate the full tree, calling @down when first entering a node and @up when
500  * leaving it for the final time.
501  *
502  * Caller must hold rcu_lock or sufficient equivalent.
503  */
504 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
505 {
506 	return walk_tg_tree_from(&root_task_group, down, up, data);
507 }
508 
509 extern int tg_nop(struct task_group *tg, void *data);
510 
511 #ifdef CONFIG_FAIR_GROUP_SCHED
512 extern void free_fair_sched_group(struct task_group *tg);
513 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
514 extern void online_fair_sched_group(struct task_group *tg);
515 extern void unregister_fair_sched_group(struct task_group *tg);
516 #else
517 static inline void free_fair_sched_group(struct task_group *tg) { }
518 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
519 {
520        return 1;
521 }
522 static inline void online_fair_sched_group(struct task_group *tg) { }
523 static inline void unregister_fair_sched_group(struct task_group *tg) { }
524 #endif
525 
526 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
527 			struct sched_entity *se, int cpu,
528 			struct sched_entity *parent);
529 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
530 
531 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
532 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
533 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
534 extern bool cfs_task_bw_constrained(struct task_struct *p);
535 
536 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
537 		struct sched_rt_entity *rt_se, int cpu,
538 		struct sched_rt_entity *parent);
539 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
540 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
541 extern long sched_group_rt_runtime(struct task_group *tg);
542 extern long sched_group_rt_period(struct task_group *tg);
543 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
544 
545 extern struct task_group *sched_create_group(struct task_group *parent);
546 extern void sched_online_group(struct task_group *tg,
547 			       struct task_group *parent);
548 extern void sched_destroy_group(struct task_group *tg);
549 extern void sched_release_group(struct task_group *tg);
550 
551 extern void sched_move_task(struct task_struct *tsk);
552 
553 #ifdef CONFIG_FAIR_GROUP_SCHED
554 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
555 
556 extern int sched_group_set_idle(struct task_group *tg, long idle);
557 
558 #ifdef CONFIG_SMP
559 extern void set_task_rq_fair(struct sched_entity *se,
560 			     struct cfs_rq *prev, struct cfs_rq *next);
561 #else /* !CONFIG_SMP */
562 static inline void set_task_rq_fair(struct sched_entity *se,
563 			     struct cfs_rq *prev, struct cfs_rq *next) { }
564 #endif /* CONFIG_SMP */
565 #endif /* CONFIG_FAIR_GROUP_SCHED */
566 
567 #else /* CONFIG_CGROUP_SCHED */
568 
569 struct cfs_bandwidth { };
570 
571 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
572 
573 #endif	/* CONFIG_CGROUP_SCHED */
574 
575 extern void unregister_rt_sched_group(struct task_group *tg);
576 extern void free_rt_sched_group(struct task_group *tg);
577 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
578 
579 /*
580  * u64_u32_load/u64_u32_store
581  *
582  * Use a copy of a u64 value to protect against data race. This is only
583  * applicable for 32-bits architectures.
584  */
585 #ifdef CONFIG_64BIT
586 # define u64_u32_load_copy(var, copy)		var
587 # define u64_u32_store_copy(var, copy, val)	(var = val)
588 #else
589 # define u64_u32_load_copy(var, copy)					\
590 ({									\
591 	u64 __val, __val_copy;						\
592 	do {								\
593 		__val_copy = copy;					\
594 		/*							\
595 		 * paired with u64_u32_store_copy(), ordering access	\
596 		 * to var and copy.					\
597 		 */							\
598 		smp_rmb();						\
599 		__val = var;						\
600 	} while (__val != __val_copy);					\
601 	__val;								\
602 })
603 # define u64_u32_store_copy(var, copy, val)				\
604 do {									\
605 	typeof(val) __val = (val);					\
606 	var = __val;							\
607 	/*								\
608 	 * paired with u64_u32_load_copy(), ordering access to var and	\
609 	 * copy.							\
610 	 */								\
611 	smp_wmb();							\
612 	copy = __val;							\
613 } while (0)
614 #endif
615 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
616 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
617 
618 /* CFS-related fields in a runqueue */
619 struct cfs_rq {
620 	struct load_weight	load;
621 	unsigned int		nr_running;
622 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
623 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
624 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
625 
626 	s64			avg_vruntime;
627 	u64			avg_load;
628 
629 	u64			exec_clock;
630 	u64			min_vruntime;
631 #ifdef CONFIG_SCHED_CORE
632 	unsigned int		forceidle_seq;
633 	u64			min_vruntime_fi;
634 #endif
635 
636 #ifndef CONFIG_64BIT
637 	u64			min_vruntime_copy;
638 #endif
639 
640 	struct rb_root_cached	tasks_timeline;
641 
642 	/*
643 	 * 'curr' points to currently running entity on this cfs_rq.
644 	 * It is set to NULL otherwise (i.e when none are currently running).
645 	 */
646 	struct sched_entity	*curr;
647 	struct sched_entity	*next;
648 
649 #ifdef	CONFIG_SCHED_DEBUG
650 	unsigned int		nr_spread_over;
651 #endif
652 
653 #ifdef CONFIG_SMP
654 	/*
655 	 * CFS load tracking
656 	 */
657 	struct sched_avg	avg;
658 #ifndef CONFIG_64BIT
659 	u64			last_update_time_copy;
660 #endif
661 	struct {
662 		raw_spinlock_t	lock ____cacheline_aligned;
663 		int		nr;
664 		unsigned long	load_avg;
665 		unsigned long	util_avg;
666 		unsigned long	runnable_avg;
667 	} removed;
668 
669 #ifdef CONFIG_FAIR_GROUP_SCHED
670 	u64			last_update_tg_load_avg;
671 	unsigned long		tg_load_avg_contrib;
672 	long			propagate;
673 	long			prop_runnable_sum;
674 
675 	/*
676 	 *   h_load = weight * f(tg)
677 	 *
678 	 * Where f(tg) is the recursive weight fraction assigned to
679 	 * this group.
680 	 */
681 	unsigned long		h_load;
682 	u64			last_h_load_update;
683 	struct sched_entity	*h_load_next;
684 #endif /* CONFIG_FAIR_GROUP_SCHED */
685 #endif /* CONFIG_SMP */
686 
687 #ifdef CONFIG_FAIR_GROUP_SCHED
688 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
689 
690 	/*
691 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
692 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
693 	 * (like users, containers etc.)
694 	 *
695 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
696 	 * This list is used during load balance.
697 	 */
698 	int			on_list;
699 	struct list_head	leaf_cfs_rq_list;
700 	struct task_group	*tg;	/* group that "owns" this runqueue */
701 
702 	/* Locally cached copy of our task_group's idle value */
703 	int			idle;
704 
705 #ifdef CONFIG_CFS_BANDWIDTH
706 	int			runtime_enabled;
707 	s64			runtime_remaining;
708 
709 	u64			throttled_pelt_idle;
710 #ifndef CONFIG_64BIT
711 	u64                     throttled_pelt_idle_copy;
712 #endif
713 	u64			throttled_clock;
714 	u64			throttled_clock_pelt;
715 	u64			throttled_clock_pelt_time;
716 	u64			throttled_clock_self;
717 	u64			throttled_clock_self_time;
718 	int			throttled;
719 	int			throttle_count;
720 	struct list_head	throttled_list;
721 	struct list_head	throttled_csd_list;
722 #endif /* CONFIG_CFS_BANDWIDTH */
723 #endif /* CONFIG_FAIR_GROUP_SCHED */
724 };
725 
726 #ifdef CONFIG_SCHED_CLASS_EXT
727 struct scx_rq {
728 	struct scx_dispatch_q	local_dsq;
729 	struct list_head	runnable_list;		/* runnable tasks on this rq */
730 	unsigned long		ops_qseq;
731 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
732 	u32			nr_running;
733 };
734 #endif /* CONFIG_SCHED_CLASS_EXT */
735 
736 static inline int rt_bandwidth_enabled(void)
737 {
738 	return sysctl_sched_rt_runtime >= 0;
739 }
740 
741 /* RT IPI pull logic requires IRQ_WORK */
742 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
743 # define HAVE_RT_PUSH_IPI
744 #endif
745 
746 /* Real-Time classes' related field in a runqueue: */
747 struct rt_rq {
748 	struct rt_prio_array	active;
749 	unsigned int		rt_nr_running;
750 	unsigned int		rr_nr_running;
751 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
752 	struct {
753 		int		curr; /* highest queued rt task prio */
754 #ifdef CONFIG_SMP
755 		int		next; /* next highest */
756 #endif
757 	} highest_prio;
758 #endif
759 #ifdef CONFIG_SMP
760 	bool			overloaded;
761 	struct plist_head	pushable_tasks;
762 
763 #endif /* CONFIG_SMP */
764 	int			rt_queued;
765 
766 	int			rt_throttled;
767 	u64			rt_time;
768 	u64			rt_runtime;
769 	/* Nests inside the rq lock: */
770 	raw_spinlock_t		rt_runtime_lock;
771 
772 #ifdef CONFIG_RT_GROUP_SCHED
773 	unsigned int		rt_nr_boosted;
774 
775 	struct rq		*rq;
776 	struct task_group	*tg;
777 #endif
778 };
779 
780 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
781 {
782 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
783 }
784 
785 /* Deadline class' related fields in a runqueue */
786 struct dl_rq {
787 	/* runqueue is an rbtree, ordered by deadline */
788 	struct rb_root_cached	root;
789 
790 	unsigned int		dl_nr_running;
791 
792 #ifdef CONFIG_SMP
793 	/*
794 	 * Deadline values of the currently executing and the
795 	 * earliest ready task on this rq. Caching these facilitates
796 	 * the decision whether or not a ready but not running task
797 	 * should migrate somewhere else.
798 	 */
799 	struct {
800 		u64		curr;
801 		u64		next;
802 	} earliest_dl;
803 
804 	bool			overloaded;
805 
806 	/*
807 	 * Tasks on this rq that can be pushed away. They are kept in
808 	 * an rb-tree, ordered by tasks' deadlines, with caching
809 	 * of the leftmost (earliest deadline) element.
810 	 */
811 	struct rb_root_cached	pushable_dl_tasks_root;
812 #else
813 	struct dl_bw		dl_bw;
814 #endif
815 	/*
816 	 * "Active utilization" for this runqueue: increased when a
817 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
818 	 * task blocks
819 	 */
820 	u64			running_bw;
821 
822 	/*
823 	 * Utilization of the tasks "assigned" to this runqueue (including
824 	 * the tasks that are in runqueue and the tasks that executed on this
825 	 * CPU and blocked). Increased when a task moves to this runqueue, and
826 	 * decreased when the task moves away (migrates, changes scheduling
827 	 * policy, or terminates).
828 	 * This is needed to compute the "inactive utilization" for the
829 	 * runqueue (inactive utilization = this_bw - running_bw).
830 	 */
831 	u64			this_bw;
832 	u64			extra_bw;
833 
834 	/*
835 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
836 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
837 	 */
838 	u64			max_bw;
839 
840 	/*
841 	 * Inverse of the fraction of CPU utilization that can be reclaimed
842 	 * by the GRUB algorithm.
843 	 */
844 	u64			bw_ratio;
845 };
846 
847 #ifdef CONFIG_FAIR_GROUP_SCHED
848 
849 /* An entity is a task if it doesn't "own" a runqueue */
850 #define entity_is_task(se)	(!se->my_q)
851 
852 static inline void se_update_runnable(struct sched_entity *se)
853 {
854 	if (!entity_is_task(se))
855 		se->runnable_weight = se->my_q->h_nr_running;
856 }
857 
858 static inline long se_runnable(struct sched_entity *se)
859 {
860 	if (entity_is_task(se))
861 		return !!se->on_rq;
862 	else
863 		return se->runnable_weight;
864 }
865 
866 #else /* !CONFIG_FAIR_GROUP_SCHED: */
867 
868 #define entity_is_task(se)	1
869 
870 static inline void se_update_runnable(struct sched_entity *se) { }
871 
872 static inline long se_runnable(struct sched_entity *se)
873 {
874 	return !!se->on_rq;
875 }
876 
877 #endif /* !CONFIG_FAIR_GROUP_SCHED */
878 
879 #ifdef CONFIG_SMP
880 /*
881  * XXX we want to get rid of these helpers and use the full load resolution.
882  */
883 static inline long se_weight(struct sched_entity *se)
884 {
885 	return scale_load_down(se->load.weight);
886 }
887 
888 
889 static inline bool sched_asym_prefer(int a, int b)
890 {
891 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
892 }
893 
894 struct perf_domain {
895 	struct em_perf_domain *em_pd;
896 	struct perf_domain *next;
897 	struct rcu_head rcu;
898 };
899 
900 /*
901  * We add the notion of a root-domain which will be used to define per-domain
902  * variables. Each exclusive cpuset essentially defines an island domain by
903  * fully partitioning the member CPUs from any other cpuset. Whenever a new
904  * exclusive cpuset is created, we also create and attach a new root-domain
905  * object.
906  *
907  */
908 struct root_domain {
909 	atomic_t		refcount;
910 	atomic_t		rto_count;
911 	struct rcu_head		rcu;
912 	cpumask_var_t		span;
913 	cpumask_var_t		online;
914 
915 	/*
916 	 * Indicate pullable load on at least one CPU, e.g:
917 	 * - More than one runnable task
918 	 * - Running task is misfit
919 	 */
920 	bool			overloaded;
921 
922 	/* Indicate one or more CPUs over-utilized (tipping point) */
923 	bool			overutilized;
924 
925 	/*
926 	 * The bit corresponding to a CPU gets set here if such CPU has more
927 	 * than one runnable -deadline task (as it is below for RT tasks).
928 	 */
929 	cpumask_var_t		dlo_mask;
930 	atomic_t		dlo_count;
931 	struct dl_bw		dl_bw;
932 	struct cpudl		cpudl;
933 
934 	/*
935 	 * Indicate whether a root_domain's dl_bw has been checked or
936 	 * updated. It's monotonously increasing value.
937 	 *
938 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
939 	 * that u64 is 'big enough'. So that shouldn't be a concern.
940 	 */
941 	u64 visit_gen;
942 
943 #ifdef HAVE_RT_PUSH_IPI
944 	/*
945 	 * For IPI pull requests, loop across the rto_mask.
946 	 */
947 	struct irq_work		rto_push_work;
948 	raw_spinlock_t		rto_lock;
949 	/* These are only updated and read within rto_lock */
950 	int			rto_loop;
951 	int			rto_cpu;
952 	/* These atomics are updated outside of a lock */
953 	atomic_t		rto_loop_next;
954 	atomic_t		rto_loop_start;
955 #endif
956 	/*
957 	 * The "RT overload" flag: it gets set if a CPU has more than
958 	 * one runnable RT task.
959 	 */
960 	cpumask_var_t		rto_mask;
961 	struct cpupri		cpupri;
962 
963 	/*
964 	 * NULL-terminated list of performance domains intersecting with the
965 	 * CPUs of the rd. Protected by RCU.
966 	 */
967 	struct perf_domain __rcu *pd;
968 };
969 
970 extern void init_defrootdomain(void);
971 extern int sched_init_domains(const struct cpumask *cpu_map);
972 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
973 extern void sched_get_rd(struct root_domain *rd);
974 extern void sched_put_rd(struct root_domain *rd);
975 
976 static inline int get_rd_overloaded(struct root_domain *rd)
977 {
978 	return READ_ONCE(rd->overloaded);
979 }
980 
981 static inline void set_rd_overloaded(struct root_domain *rd, int status)
982 {
983 	if (get_rd_overloaded(rd) != status)
984 		WRITE_ONCE(rd->overloaded, status);
985 }
986 
987 #ifdef HAVE_RT_PUSH_IPI
988 extern void rto_push_irq_work_func(struct irq_work *work);
989 #endif
990 #endif /* CONFIG_SMP */
991 
992 #ifdef CONFIG_UCLAMP_TASK
993 /*
994  * struct uclamp_bucket - Utilization clamp bucket
995  * @value: utilization clamp value for tasks on this clamp bucket
996  * @tasks: number of RUNNABLE tasks on this clamp bucket
997  *
998  * Keep track of how many tasks are RUNNABLE for a given utilization
999  * clamp value.
1000  */
1001 struct uclamp_bucket {
1002 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1003 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1004 };
1005 
1006 /*
1007  * struct uclamp_rq - rq's utilization clamp
1008  * @value: currently active clamp values for a rq
1009  * @bucket: utilization clamp buckets affecting a rq
1010  *
1011  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1012  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1013  * (or actually running) with that value.
1014  *
1015  * There are up to UCLAMP_CNT possible different clamp values, currently there
1016  * are only two: minimum utilization and maximum utilization.
1017  *
1018  * All utilization clamping values are MAX aggregated, since:
1019  * - for util_min: we want to run the CPU at least at the max of the minimum
1020  *   utilization required by its currently RUNNABLE tasks.
1021  * - for util_max: we want to allow the CPU to run up to the max of the
1022  *   maximum utilization allowed by its currently RUNNABLE tasks.
1023  *
1024  * Since on each system we expect only a limited number of different
1025  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1026  * the metrics required to compute all the per-rq utilization clamp values.
1027  */
1028 struct uclamp_rq {
1029 	unsigned int value;
1030 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1031 };
1032 
1033 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1034 #endif /* CONFIG_UCLAMP_TASK */
1035 
1036 struct balance_callback {
1037 	struct balance_callback *next;
1038 	void (*func)(struct rq *rq);
1039 };
1040 
1041 /*
1042  * This is the main, per-CPU runqueue data structure.
1043  *
1044  * Locking rule: those places that want to lock multiple runqueues
1045  * (such as the load balancing or the thread migration code), lock
1046  * acquire operations must be ordered by ascending &runqueue.
1047  */
1048 struct rq {
1049 	/* runqueue lock: */
1050 	raw_spinlock_t		__lock;
1051 
1052 	unsigned int		nr_running;
1053 #ifdef CONFIG_NUMA_BALANCING
1054 	unsigned int		nr_numa_running;
1055 	unsigned int		nr_preferred_running;
1056 	unsigned int		numa_migrate_on;
1057 #endif
1058 #ifdef CONFIG_NO_HZ_COMMON
1059 #ifdef CONFIG_SMP
1060 	unsigned long		last_blocked_load_update_tick;
1061 	unsigned int		has_blocked_load;
1062 	call_single_data_t	nohz_csd;
1063 #endif /* CONFIG_SMP */
1064 	unsigned int		nohz_tick_stopped;
1065 	atomic_t		nohz_flags;
1066 #endif /* CONFIG_NO_HZ_COMMON */
1067 
1068 #ifdef CONFIG_SMP
1069 	unsigned int		ttwu_pending;
1070 #endif
1071 	u64			nr_switches;
1072 
1073 #ifdef CONFIG_UCLAMP_TASK
1074 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1075 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1076 	unsigned int		uclamp_flags;
1077 #define UCLAMP_FLAG_IDLE 0x01
1078 #endif
1079 
1080 	struct cfs_rq		cfs;
1081 	struct rt_rq		rt;
1082 	struct dl_rq		dl;
1083 #ifdef CONFIG_SCHED_CLASS_EXT
1084 	struct scx_rq		scx;
1085 #endif
1086 
1087 #ifdef CONFIG_FAIR_GROUP_SCHED
1088 	/* list of leaf cfs_rq on this CPU: */
1089 	struct list_head	leaf_cfs_rq_list;
1090 	struct list_head	*tmp_alone_branch;
1091 #endif /* CONFIG_FAIR_GROUP_SCHED */
1092 
1093 	/*
1094 	 * This is part of a global counter where only the total sum
1095 	 * over all CPUs matters. A task can increase this counter on
1096 	 * one CPU and if it got migrated afterwards it may decrease
1097 	 * it on another CPU. Always updated under the runqueue lock:
1098 	 */
1099 	unsigned int		nr_uninterruptible;
1100 
1101 	struct task_struct __rcu	*curr;
1102 	struct task_struct	*idle;
1103 	struct task_struct	*stop;
1104 	unsigned long		next_balance;
1105 	struct mm_struct	*prev_mm;
1106 
1107 	unsigned int		clock_update_flags;
1108 	u64			clock;
1109 	/* Ensure that all clocks are in the same cache line */
1110 	u64			clock_task ____cacheline_aligned;
1111 	u64			clock_pelt;
1112 	unsigned long		lost_idle_time;
1113 	u64			clock_pelt_idle;
1114 	u64			clock_idle;
1115 #ifndef CONFIG_64BIT
1116 	u64			clock_pelt_idle_copy;
1117 	u64			clock_idle_copy;
1118 #endif
1119 
1120 	atomic_t		nr_iowait;
1121 
1122 #ifdef CONFIG_SCHED_DEBUG
1123 	u64 last_seen_need_resched_ns;
1124 	int ticks_without_resched;
1125 #endif
1126 
1127 #ifdef CONFIG_MEMBARRIER
1128 	int membarrier_state;
1129 #endif
1130 
1131 #ifdef CONFIG_SMP
1132 	struct root_domain		*rd;
1133 	struct sched_domain __rcu	*sd;
1134 
1135 	unsigned long		cpu_capacity;
1136 
1137 	struct balance_callback *balance_callback;
1138 
1139 	unsigned char		nohz_idle_balance;
1140 	unsigned char		idle_balance;
1141 
1142 	unsigned long		misfit_task_load;
1143 
1144 	/* For active balancing */
1145 	int			active_balance;
1146 	int			push_cpu;
1147 	struct cpu_stop_work	active_balance_work;
1148 
1149 	/* CPU of this runqueue: */
1150 	int			cpu;
1151 	int			online;
1152 
1153 	struct list_head cfs_tasks;
1154 
1155 	struct sched_avg	avg_rt;
1156 	struct sched_avg	avg_dl;
1157 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1158 	struct sched_avg	avg_irq;
1159 #endif
1160 #ifdef CONFIG_SCHED_HW_PRESSURE
1161 	struct sched_avg	avg_hw;
1162 #endif
1163 	u64			idle_stamp;
1164 	u64			avg_idle;
1165 
1166 	/* This is used to determine avg_idle's max value */
1167 	u64			max_idle_balance_cost;
1168 
1169 #ifdef CONFIG_HOTPLUG_CPU
1170 	struct rcuwait		hotplug_wait;
1171 #endif
1172 #endif /* CONFIG_SMP */
1173 
1174 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1175 	u64			prev_irq_time;
1176 #endif
1177 #ifdef CONFIG_PARAVIRT
1178 	u64			prev_steal_time;
1179 #endif
1180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1181 	u64			prev_steal_time_rq;
1182 #endif
1183 
1184 	/* calc_load related fields */
1185 	unsigned long		calc_load_update;
1186 	long			calc_load_active;
1187 
1188 #ifdef CONFIG_SCHED_HRTICK
1189 #ifdef CONFIG_SMP
1190 	call_single_data_t	hrtick_csd;
1191 #endif
1192 	struct hrtimer		hrtick_timer;
1193 	ktime_t			hrtick_time;
1194 #endif
1195 
1196 #ifdef CONFIG_SCHEDSTATS
1197 	/* latency stats */
1198 	struct sched_info	rq_sched_info;
1199 	unsigned long long	rq_cpu_time;
1200 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1201 
1202 	/* sys_sched_yield() stats */
1203 	unsigned int		yld_count;
1204 
1205 	/* schedule() stats */
1206 	unsigned int		sched_count;
1207 	unsigned int		sched_goidle;
1208 
1209 	/* try_to_wake_up() stats */
1210 	unsigned int		ttwu_count;
1211 	unsigned int		ttwu_local;
1212 #endif
1213 
1214 #ifdef CONFIG_CPU_IDLE
1215 	/* Must be inspected within a RCU lock section */
1216 	struct cpuidle_state	*idle_state;
1217 #endif
1218 
1219 #ifdef CONFIG_SMP
1220 	unsigned int		nr_pinned;
1221 #endif
1222 	unsigned int		push_busy;
1223 	struct cpu_stop_work	push_work;
1224 
1225 #ifdef CONFIG_SCHED_CORE
1226 	/* per rq */
1227 	struct rq		*core;
1228 	struct task_struct	*core_pick;
1229 	unsigned int		core_enabled;
1230 	unsigned int		core_sched_seq;
1231 	struct rb_root		core_tree;
1232 
1233 	/* shared state -- careful with sched_core_cpu_deactivate() */
1234 	unsigned int		core_task_seq;
1235 	unsigned int		core_pick_seq;
1236 	unsigned long		core_cookie;
1237 	unsigned int		core_forceidle_count;
1238 	unsigned int		core_forceidle_seq;
1239 	unsigned int		core_forceidle_occupation;
1240 	u64			core_forceidle_start;
1241 #endif
1242 
1243 	/* Scratch cpumask to be temporarily used under rq_lock */
1244 	cpumask_var_t		scratch_mask;
1245 
1246 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1247 	call_single_data_t	cfsb_csd;
1248 	struct list_head	cfsb_csd_list;
1249 #endif
1250 };
1251 
1252 #ifdef CONFIG_FAIR_GROUP_SCHED
1253 
1254 /* CPU runqueue to which this cfs_rq is attached */
1255 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1256 {
1257 	return cfs_rq->rq;
1258 }
1259 
1260 #else
1261 
1262 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1263 {
1264 	return container_of(cfs_rq, struct rq, cfs);
1265 }
1266 #endif
1267 
1268 static inline int cpu_of(struct rq *rq)
1269 {
1270 #ifdef CONFIG_SMP
1271 	return rq->cpu;
1272 #else
1273 	return 0;
1274 #endif
1275 }
1276 
1277 #define MDF_PUSH		0x01
1278 
1279 static inline bool is_migration_disabled(struct task_struct *p)
1280 {
1281 #ifdef CONFIG_SMP
1282 	return p->migration_disabled;
1283 #else
1284 	return false;
1285 #endif
1286 }
1287 
1288 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1289 
1290 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1291 #define this_rq()		this_cpu_ptr(&runqueues)
1292 #define task_rq(p)		cpu_rq(task_cpu(p))
1293 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1294 #define raw_rq()		raw_cpu_ptr(&runqueues)
1295 
1296 #ifdef CONFIG_SCHED_CORE
1297 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1298 
1299 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1300 
1301 static inline bool sched_core_enabled(struct rq *rq)
1302 {
1303 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1304 }
1305 
1306 static inline bool sched_core_disabled(void)
1307 {
1308 	return !static_branch_unlikely(&__sched_core_enabled);
1309 }
1310 
1311 /*
1312  * Be careful with this function; not for general use. The return value isn't
1313  * stable unless you actually hold a relevant rq->__lock.
1314  */
1315 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1316 {
1317 	if (sched_core_enabled(rq))
1318 		return &rq->core->__lock;
1319 
1320 	return &rq->__lock;
1321 }
1322 
1323 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1324 {
1325 	if (rq->core_enabled)
1326 		return &rq->core->__lock;
1327 
1328 	return &rq->__lock;
1329 }
1330 
1331 extern bool
1332 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1333 
1334 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1335 
1336 /*
1337  * Helpers to check if the CPU's core cookie matches with the task's cookie
1338  * when core scheduling is enabled.
1339  * A special case is that the task's cookie always matches with CPU's core
1340  * cookie if the CPU is in an idle core.
1341  */
1342 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1343 {
1344 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1345 	if (!sched_core_enabled(rq))
1346 		return true;
1347 
1348 	return rq->core->core_cookie == p->core_cookie;
1349 }
1350 
1351 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1352 {
1353 	bool idle_core = true;
1354 	int cpu;
1355 
1356 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1357 	if (!sched_core_enabled(rq))
1358 		return true;
1359 
1360 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1361 		if (!available_idle_cpu(cpu)) {
1362 			idle_core = false;
1363 			break;
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * A CPU in an idle core is always the best choice for tasks with
1369 	 * cookies.
1370 	 */
1371 	return idle_core || rq->core->core_cookie == p->core_cookie;
1372 }
1373 
1374 static inline bool sched_group_cookie_match(struct rq *rq,
1375 					    struct task_struct *p,
1376 					    struct sched_group *group)
1377 {
1378 	int cpu;
1379 
1380 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1381 	if (!sched_core_enabled(rq))
1382 		return true;
1383 
1384 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1385 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1386 			return true;
1387 	}
1388 	return false;
1389 }
1390 
1391 static inline bool sched_core_enqueued(struct task_struct *p)
1392 {
1393 	return !RB_EMPTY_NODE(&p->core_node);
1394 }
1395 
1396 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1397 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1398 
1399 extern void sched_core_get(void);
1400 extern void sched_core_put(void);
1401 
1402 #else /* !CONFIG_SCHED_CORE: */
1403 
1404 static inline bool sched_core_enabled(struct rq *rq)
1405 {
1406 	return false;
1407 }
1408 
1409 static inline bool sched_core_disabled(void)
1410 {
1411 	return true;
1412 }
1413 
1414 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1415 {
1416 	return &rq->__lock;
1417 }
1418 
1419 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1420 {
1421 	return &rq->__lock;
1422 }
1423 
1424 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1425 {
1426 	return true;
1427 }
1428 
1429 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1430 {
1431 	return true;
1432 }
1433 
1434 static inline bool sched_group_cookie_match(struct rq *rq,
1435 					    struct task_struct *p,
1436 					    struct sched_group *group)
1437 {
1438 	return true;
1439 }
1440 
1441 #endif /* !CONFIG_SCHED_CORE */
1442 
1443 static inline void lockdep_assert_rq_held(struct rq *rq)
1444 {
1445 	lockdep_assert_held(__rq_lockp(rq));
1446 }
1447 
1448 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1449 extern bool raw_spin_rq_trylock(struct rq *rq);
1450 extern void raw_spin_rq_unlock(struct rq *rq);
1451 
1452 static inline void raw_spin_rq_lock(struct rq *rq)
1453 {
1454 	raw_spin_rq_lock_nested(rq, 0);
1455 }
1456 
1457 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1458 {
1459 	local_irq_disable();
1460 	raw_spin_rq_lock(rq);
1461 }
1462 
1463 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1464 {
1465 	raw_spin_rq_unlock(rq);
1466 	local_irq_enable();
1467 }
1468 
1469 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1470 {
1471 	unsigned long flags;
1472 
1473 	local_irq_save(flags);
1474 	raw_spin_rq_lock(rq);
1475 
1476 	return flags;
1477 }
1478 
1479 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1480 {
1481 	raw_spin_rq_unlock(rq);
1482 	local_irq_restore(flags);
1483 }
1484 
1485 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1486 do {						\
1487 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1488 } while (0)
1489 
1490 #ifdef CONFIG_SCHED_SMT
1491 extern void __update_idle_core(struct rq *rq);
1492 
1493 static inline void update_idle_core(struct rq *rq)
1494 {
1495 	if (static_branch_unlikely(&sched_smt_present))
1496 		__update_idle_core(rq);
1497 }
1498 
1499 #else
1500 static inline void update_idle_core(struct rq *rq) { }
1501 #endif
1502 
1503 #ifdef CONFIG_FAIR_GROUP_SCHED
1504 
1505 static inline struct task_struct *task_of(struct sched_entity *se)
1506 {
1507 	SCHED_WARN_ON(!entity_is_task(se));
1508 	return container_of(se, struct task_struct, se);
1509 }
1510 
1511 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1512 {
1513 	return p->se.cfs_rq;
1514 }
1515 
1516 /* runqueue on which this entity is (to be) queued */
1517 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1518 {
1519 	return se->cfs_rq;
1520 }
1521 
1522 /* runqueue "owned" by this group */
1523 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1524 {
1525 	return grp->my_q;
1526 }
1527 
1528 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1529 
1530 #define task_of(_se)		container_of(_se, struct task_struct, se)
1531 
1532 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1533 {
1534 	return &task_rq(p)->cfs;
1535 }
1536 
1537 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1538 {
1539 	const struct task_struct *p = task_of(se);
1540 	struct rq *rq = task_rq(p);
1541 
1542 	return &rq->cfs;
1543 }
1544 
1545 /* runqueue "owned" by this group */
1546 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1547 {
1548 	return NULL;
1549 }
1550 
1551 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1552 
1553 extern void update_rq_clock(struct rq *rq);
1554 
1555 /*
1556  * rq::clock_update_flags bits
1557  *
1558  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1559  *  call to __schedule(). This is an optimisation to avoid
1560  *  neighbouring rq clock updates.
1561  *
1562  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1563  *  in effect and calls to update_rq_clock() are being ignored.
1564  *
1565  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1566  *  made to update_rq_clock() since the last time rq::lock was pinned.
1567  *
1568  * If inside of __schedule(), clock_update_flags will have been
1569  * shifted left (a left shift is a cheap operation for the fast path
1570  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1571  *
1572  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1573  *
1574  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1575  * one position though, because the next rq_unpin_lock() will shift it
1576  * back.
1577  */
1578 #define RQCF_REQ_SKIP		0x01
1579 #define RQCF_ACT_SKIP		0x02
1580 #define RQCF_UPDATED		0x04
1581 
1582 static inline void assert_clock_updated(struct rq *rq)
1583 {
1584 	/*
1585 	 * The only reason for not seeing a clock update since the
1586 	 * last rq_pin_lock() is if we're currently skipping updates.
1587 	 */
1588 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1589 }
1590 
1591 static inline u64 rq_clock(struct rq *rq)
1592 {
1593 	lockdep_assert_rq_held(rq);
1594 	assert_clock_updated(rq);
1595 
1596 	return rq->clock;
1597 }
1598 
1599 static inline u64 rq_clock_task(struct rq *rq)
1600 {
1601 	lockdep_assert_rq_held(rq);
1602 	assert_clock_updated(rq);
1603 
1604 	return rq->clock_task;
1605 }
1606 
1607 static inline void rq_clock_skip_update(struct rq *rq)
1608 {
1609 	lockdep_assert_rq_held(rq);
1610 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1611 }
1612 
1613 /*
1614  * See rt task throttling, which is the only time a skip
1615  * request is canceled.
1616  */
1617 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1618 {
1619 	lockdep_assert_rq_held(rq);
1620 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1621 }
1622 
1623 /*
1624  * During cpu offlining and rq wide unthrottling, we can trigger
1625  * an update_rq_clock() for several cfs and rt runqueues (Typically
1626  * when using list_for_each_entry_*)
1627  * rq_clock_start_loop_update() can be called after updating the clock
1628  * once and before iterating over the list to prevent multiple update.
1629  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1630  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1631  */
1632 static inline void rq_clock_start_loop_update(struct rq *rq)
1633 {
1634 	lockdep_assert_rq_held(rq);
1635 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1636 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1637 }
1638 
1639 static inline void rq_clock_stop_loop_update(struct rq *rq)
1640 {
1641 	lockdep_assert_rq_held(rq);
1642 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1643 }
1644 
1645 struct rq_flags {
1646 	unsigned long flags;
1647 	struct pin_cookie cookie;
1648 #ifdef CONFIG_SCHED_DEBUG
1649 	/*
1650 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1651 	 * current pin context is stashed here in case it needs to be
1652 	 * restored in rq_repin_lock().
1653 	 */
1654 	unsigned int clock_update_flags;
1655 #endif
1656 };
1657 
1658 extern struct balance_callback balance_push_callback;
1659 
1660 /*
1661  * Lockdep annotation that avoids accidental unlocks; it's like a
1662  * sticky/continuous lockdep_assert_held().
1663  *
1664  * This avoids code that has access to 'struct rq *rq' (basically everything in
1665  * the scheduler) from accidentally unlocking the rq if they do not also have a
1666  * copy of the (on-stack) 'struct rq_flags rf'.
1667  *
1668  * Also see Documentation/locking/lockdep-design.rst.
1669  */
1670 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1671 {
1672 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1673 
1674 #ifdef CONFIG_SCHED_DEBUG
1675 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1676 	rf->clock_update_flags = 0;
1677 # ifdef CONFIG_SMP
1678 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1679 # endif
1680 #endif
1681 }
1682 
1683 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1684 {
1685 #ifdef CONFIG_SCHED_DEBUG
1686 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1687 		rf->clock_update_flags = RQCF_UPDATED;
1688 #endif
1689 
1690 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1691 }
1692 
1693 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1694 {
1695 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1696 
1697 #ifdef CONFIG_SCHED_DEBUG
1698 	/*
1699 	 * Restore the value we stashed in @rf for this pin context.
1700 	 */
1701 	rq->clock_update_flags |= rf->clock_update_flags;
1702 #endif
1703 }
1704 
1705 extern
1706 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1707 	__acquires(rq->lock);
1708 
1709 extern
1710 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1711 	__acquires(p->pi_lock)
1712 	__acquires(rq->lock);
1713 
1714 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1715 	__releases(rq->lock)
1716 {
1717 	rq_unpin_lock(rq, rf);
1718 	raw_spin_rq_unlock(rq);
1719 }
1720 
1721 static inline void
1722 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1723 	__releases(rq->lock)
1724 	__releases(p->pi_lock)
1725 {
1726 	rq_unpin_lock(rq, rf);
1727 	raw_spin_rq_unlock(rq);
1728 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1729 }
1730 
1731 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1732 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1733 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1734 		    struct rq *rq; struct rq_flags rf)
1735 
1736 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1737 	__acquires(rq->lock)
1738 {
1739 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1740 	rq_pin_lock(rq, rf);
1741 }
1742 
1743 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1744 	__acquires(rq->lock)
1745 {
1746 	raw_spin_rq_lock_irq(rq);
1747 	rq_pin_lock(rq, rf);
1748 }
1749 
1750 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1751 	__acquires(rq->lock)
1752 {
1753 	raw_spin_rq_lock(rq);
1754 	rq_pin_lock(rq, rf);
1755 }
1756 
1757 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1758 	__releases(rq->lock)
1759 {
1760 	rq_unpin_lock(rq, rf);
1761 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1762 }
1763 
1764 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1765 	__releases(rq->lock)
1766 {
1767 	rq_unpin_lock(rq, rf);
1768 	raw_spin_rq_unlock_irq(rq);
1769 }
1770 
1771 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1772 	__releases(rq->lock)
1773 {
1774 	rq_unpin_lock(rq, rf);
1775 	raw_spin_rq_unlock(rq);
1776 }
1777 
1778 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1779 		    rq_lock(_T->lock, &_T->rf),
1780 		    rq_unlock(_T->lock, &_T->rf),
1781 		    struct rq_flags rf)
1782 
1783 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1784 		    rq_lock_irq(_T->lock, &_T->rf),
1785 		    rq_unlock_irq(_T->lock, &_T->rf),
1786 		    struct rq_flags rf)
1787 
1788 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1789 		    rq_lock_irqsave(_T->lock, &_T->rf),
1790 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1791 		    struct rq_flags rf)
1792 
1793 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1794 	__acquires(rq->lock)
1795 {
1796 	struct rq *rq;
1797 
1798 	local_irq_disable();
1799 	rq = this_rq();
1800 	rq_lock(rq, rf);
1801 
1802 	return rq;
1803 }
1804 
1805 #ifdef CONFIG_NUMA
1806 
1807 enum numa_topology_type {
1808 	NUMA_DIRECT,
1809 	NUMA_GLUELESS_MESH,
1810 	NUMA_BACKPLANE,
1811 };
1812 
1813 extern enum numa_topology_type sched_numa_topology_type;
1814 extern int sched_max_numa_distance;
1815 extern bool find_numa_distance(int distance);
1816 extern void sched_init_numa(int offline_node);
1817 extern void sched_update_numa(int cpu, bool online);
1818 extern void sched_domains_numa_masks_set(unsigned int cpu);
1819 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1820 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1821 
1822 #else /* !CONFIG_NUMA: */
1823 
1824 static inline void sched_init_numa(int offline_node) { }
1825 static inline void sched_update_numa(int cpu, bool online) { }
1826 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1827 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1828 
1829 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1830 {
1831 	return nr_cpu_ids;
1832 }
1833 
1834 #endif /* !CONFIG_NUMA */
1835 
1836 #ifdef CONFIG_NUMA_BALANCING
1837 
1838 /* The regions in numa_faults array from task_struct */
1839 enum numa_faults_stats {
1840 	NUMA_MEM = 0,
1841 	NUMA_CPU,
1842 	NUMA_MEMBUF,
1843 	NUMA_CPUBUF
1844 };
1845 
1846 extern void sched_setnuma(struct task_struct *p, int node);
1847 extern int migrate_task_to(struct task_struct *p, int cpu);
1848 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1849 			int cpu, int scpu);
1850 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1851 
1852 #else /* !CONFIG_NUMA_BALANCING: */
1853 
1854 static inline void
1855 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1856 {
1857 }
1858 
1859 #endif /* !CONFIG_NUMA_BALANCING */
1860 
1861 #ifdef CONFIG_SMP
1862 
1863 static inline void
1864 queue_balance_callback(struct rq *rq,
1865 		       struct balance_callback *head,
1866 		       void (*func)(struct rq *rq))
1867 {
1868 	lockdep_assert_rq_held(rq);
1869 
1870 	/*
1871 	 * Don't (re)queue an already queued item; nor queue anything when
1872 	 * balance_push() is active, see the comment with
1873 	 * balance_push_callback.
1874 	 */
1875 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1876 		return;
1877 
1878 	head->func = func;
1879 	head->next = rq->balance_callback;
1880 	rq->balance_callback = head;
1881 }
1882 
1883 #define rcu_dereference_check_sched_domain(p) \
1884 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1885 
1886 /*
1887  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1888  * See destroy_sched_domains: call_rcu for details.
1889  *
1890  * The domain tree of any CPU may only be accessed from within
1891  * preempt-disabled sections.
1892  */
1893 #define for_each_domain(cpu, __sd) \
1894 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1895 			__sd; __sd = __sd->parent)
1896 
1897 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1898 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1899 static const unsigned int SD_SHARED_CHILD_MASK =
1900 #include <linux/sched/sd_flags.h>
1901 0;
1902 #undef SD_FLAG
1903 
1904 /**
1905  * highest_flag_domain - Return highest sched_domain containing flag.
1906  * @cpu:	The CPU whose highest level of sched domain is to
1907  *		be returned.
1908  * @flag:	The flag to check for the highest sched_domain
1909  *		for the given CPU.
1910  *
1911  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1912  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1913  */
1914 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1915 {
1916 	struct sched_domain *sd, *hsd = NULL;
1917 
1918 	for_each_domain(cpu, sd) {
1919 		if (sd->flags & flag) {
1920 			hsd = sd;
1921 			continue;
1922 		}
1923 
1924 		/*
1925 		 * Stop the search if @flag is known to be shared at lower
1926 		 * levels. It will not be found further up.
1927 		 */
1928 		if (flag & SD_SHARED_CHILD_MASK)
1929 			break;
1930 	}
1931 
1932 	return hsd;
1933 }
1934 
1935 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1936 {
1937 	struct sched_domain *sd;
1938 
1939 	for_each_domain(cpu, sd) {
1940 		if (sd->flags & flag)
1941 			break;
1942 	}
1943 
1944 	return sd;
1945 }
1946 
1947 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1948 DECLARE_PER_CPU(int, sd_llc_size);
1949 DECLARE_PER_CPU(int, sd_llc_id);
1950 DECLARE_PER_CPU(int, sd_share_id);
1951 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1952 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1953 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1954 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1955 
1956 extern struct static_key_false sched_asym_cpucapacity;
1957 extern struct static_key_false sched_cluster_active;
1958 
1959 static __always_inline bool sched_asym_cpucap_active(void)
1960 {
1961 	return static_branch_unlikely(&sched_asym_cpucapacity);
1962 }
1963 
1964 struct sched_group_capacity {
1965 	atomic_t		ref;
1966 	/*
1967 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1968 	 * for a single CPU.
1969 	 */
1970 	unsigned long		capacity;
1971 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1972 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1973 	unsigned long		next_update;
1974 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1975 
1976 #ifdef CONFIG_SCHED_DEBUG
1977 	int			id;
1978 #endif
1979 
1980 	unsigned long		cpumask[];		/* Balance mask */
1981 };
1982 
1983 struct sched_group {
1984 	struct sched_group	*next;			/* Must be a circular list */
1985 	atomic_t		ref;
1986 
1987 	unsigned int		group_weight;
1988 	unsigned int		cores;
1989 	struct sched_group_capacity *sgc;
1990 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1991 	int			flags;
1992 
1993 	/*
1994 	 * The CPUs this group covers.
1995 	 *
1996 	 * NOTE: this field is variable length. (Allocated dynamically
1997 	 * by attaching extra space to the end of the structure,
1998 	 * depending on how many CPUs the kernel has booted up with)
1999 	 */
2000 	unsigned long		cpumask[];
2001 };
2002 
2003 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2004 {
2005 	return to_cpumask(sg->cpumask);
2006 }
2007 
2008 /*
2009  * See build_balance_mask().
2010  */
2011 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2012 {
2013 	return to_cpumask(sg->sgc->cpumask);
2014 }
2015 
2016 extern int group_balance_cpu(struct sched_group *sg);
2017 
2018 #ifdef CONFIG_SCHED_DEBUG
2019 extern void update_sched_domain_debugfs(void);
2020 extern void dirty_sched_domain_sysctl(int cpu);
2021 #else
2022 static inline void update_sched_domain_debugfs(void) { }
2023 static inline void dirty_sched_domain_sysctl(int cpu) { }
2024 #endif
2025 
2026 extern int sched_update_scaling(void);
2027 
2028 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2029 {
2030 	if (!p->user_cpus_ptr)
2031 		return cpu_possible_mask; /* &init_task.cpus_mask */
2032 	return p->user_cpus_ptr;
2033 }
2034 
2035 #endif /* CONFIG_SMP */
2036 
2037 #include "stats.h"
2038 
2039 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
2040 
2041 extern void __sched_core_account_forceidle(struct rq *rq);
2042 
2043 static inline void sched_core_account_forceidle(struct rq *rq)
2044 {
2045 	if (schedstat_enabled())
2046 		__sched_core_account_forceidle(rq);
2047 }
2048 
2049 extern void __sched_core_tick(struct rq *rq);
2050 
2051 static inline void sched_core_tick(struct rq *rq)
2052 {
2053 	if (sched_core_enabled(rq) && schedstat_enabled())
2054 		__sched_core_tick(rq);
2055 }
2056 
2057 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
2058 
2059 static inline void sched_core_account_forceidle(struct rq *rq) { }
2060 
2061 static inline void sched_core_tick(struct rq *rq) { }
2062 
2063 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
2064 
2065 #ifdef CONFIG_CGROUP_SCHED
2066 
2067 /*
2068  * Return the group to which this tasks belongs.
2069  *
2070  * We cannot use task_css() and friends because the cgroup subsystem
2071  * changes that value before the cgroup_subsys::attach() method is called,
2072  * therefore we cannot pin it and might observe the wrong value.
2073  *
2074  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2075  * core changes this before calling sched_move_task().
2076  *
2077  * Instead we use a 'copy' which is updated from sched_move_task() while
2078  * holding both task_struct::pi_lock and rq::lock.
2079  */
2080 static inline struct task_group *task_group(struct task_struct *p)
2081 {
2082 	return p->sched_task_group;
2083 }
2084 
2085 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2086 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2087 {
2088 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2089 	struct task_group *tg = task_group(p);
2090 #endif
2091 
2092 #ifdef CONFIG_FAIR_GROUP_SCHED
2093 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2094 	p->se.cfs_rq = tg->cfs_rq[cpu];
2095 	p->se.parent = tg->se[cpu];
2096 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2097 #endif
2098 
2099 #ifdef CONFIG_RT_GROUP_SCHED
2100 	p->rt.rt_rq  = tg->rt_rq[cpu];
2101 	p->rt.parent = tg->rt_se[cpu];
2102 #endif
2103 }
2104 
2105 #else /* !CONFIG_CGROUP_SCHED: */
2106 
2107 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2108 
2109 static inline struct task_group *task_group(struct task_struct *p)
2110 {
2111 	return NULL;
2112 }
2113 
2114 #endif /* !CONFIG_CGROUP_SCHED */
2115 
2116 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2117 {
2118 	set_task_rq(p, cpu);
2119 #ifdef CONFIG_SMP
2120 	/*
2121 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2122 	 * successfully executed on another CPU. We must ensure that updates of
2123 	 * per-task data have been completed by this moment.
2124 	 */
2125 	smp_wmb();
2126 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2127 	p->wake_cpu = cpu;
2128 #endif
2129 }
2130 
2131 /*
2132  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2133  */
2134 #ifdef CONFIG_SCHED_DEBUG
2135 # define const_debug __read_mostly
2136 #else
2137 # define const_debug const
2138 #endif
2139 
2140 #define SCHED_FEAT(name, enabled)	\
2141 	__SCHED_FEAT_##name ,
2142 
2143 enum {
2144 #include "features.h"
2145 	__SCHED_FEAT_NR,
2146 };
2147 
2148 #undef SCHED_FEAT
2149 
2150 #ifdef CONFIG_SCHED_DEBUG
2151 
2152 /*
2153  * To support run-time toggling of sched features, all the translation units
2154  * (but core.c) reference the sysctl_sched_features defined in core.c.
2155  */
2156 extern const_debug unsigned int sysctl_sched_features;
2157 
2158 #ifdef CONFIG_JUMP_LABEL
2159 
2160 #define SCHED_FEAT(name, enabled)					\
2161 static __always_inline bool static_branch_##name(struct static_key *key) \
2162 {									\
2163 	return static_key_##enabled(key);				\
2164 }
2165 
2166 #include "features.h"
2167 #undef SCHED_FEAT
2168 
2169 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2170 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2171 
2172 #else /* !CONFIG_JUMP_LABEL: */
2173 
2174 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2175 
2176 #endif /* !CONFIG_JUMP_LABEL */
2177 
2178 #else /* !SCHED_DEBUG: */
2179 
2180 /*
2181  * Each translation unit has its own copy of sysctl_sched_features to allow
2182  * constants propagation at compile time and compiler optimization based on
2183  * features default.
2184  */
2185 #define SCHED_FEAT(name, enabled)	\
2186 	(1UL << __SCHED_FEAT_##name) * enabled |
2187 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2188 #include "features.h"
2189 	0;
2190 #undef SCHED_FEAT
2191 
2192 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2193 
2194 #endif /* !SCHED_DEBUG */
2195 
2196 extern struct static_key_false sched_numa_balancing;
2197 extern struct static_key_false sched_schedstats;
2198 
2199 static inline u64 global_rt_period(void)
2200 {
2201 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2202 }
2203 
2204 static inline u64 global_rt_runtime(void)
2205 {
2206 	if (sysctl_sched_rt_runtime < 0)
2207 		return RUNTIME_INF;
2208 
2209 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2210 }
2211 
2212 static inline int task_current(struct rq *rq, struct task_struct *p)
2213 {
2214 	return rq->curr == p;
2215 }
2216 
2217 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2218 {
2219 #ifdef CONFIG_SMP
2220 	return p->on_cpu;
2221 #else
2222 	return task_current(rq, p);
2223 #endif
2224 }
2225 
2226 static inline int task_on_rq_queued(struct task_struct *p)
2227 {
2228 	return p->on_rq == TASK_ON_RQ_QUEUED;
2229 }
2230 
2231 static inline int task_on_rq_migrating(struct task_struct *p)
2232 {
2233 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2234 }
2235 
2236 /* Wake flags. The first three directly map to some SD flag value */
2237 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2238 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2239 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2240 
2241 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2242 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2243 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2244 
2245 #ifdef CONFIG_SMP
2246 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2247 static_assert(WF_FORK == SD_BALANCE_FORK);
2248 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2249 #endif
2250 
2251 /*
2252  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2253  * of tasks with abnormal "nice" values across CPUs the contribution that
2254  * each task makes to its run queue's load is weighted according to its
2255  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2256  * scaled version of the new time slice allocation that they receive on time
2257  * slice expiry etc.
2258  */
2259 
2260 #define WEIGHT_IDLEPRIO		3
2261 #define WMULT_IDLEPRIO		1431655765
2262 
2263 extern const int		sched_prio_to_weight[40];
2264 extern const u32		sched_prio_to_wmult[40];
2265 
2266 /*
2267  * {de,en}queue flags:
2268  *
2269  * DEQUEUE_SLEEP  - task is no longer runnable
2270  * ENQUEUE_WAKEUP - task just became runnable
2271  *
2272  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2273  *                are in a known state which allows modification. Such pairs
2274  *                should preserve as much state as possible.
2275  *
2276  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2277  *        in the runqueue.
2278  *
2279  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2280  *
2281  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2282  *
2283  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2284  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2285  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2286  *
2287  */
2288 
2289 #define DEQUEUE_SLEEP		0x01
2290 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2291 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2292 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2293 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2294 
2295 #define ENQUEUE_WAKEUP		0x01
2296 #define ENQUEUE_RESTORE		0x02
2297 #define ENQUEUE_MOVE		0x04
2298 #define ENQUEUE_NOCLOCK		0x08
2299 
2300 #define ENQUEUE_HEAD		0x10
2301 #define ENQUEUE_REPLENISH	0x20
2302 #ifdef CONFIG_SMP
2303 #define ENQUEUE_MIGRATED	0x40
2304 #else
2305 #define ENQUEUE_MIGRATED	0x00
2306 #endif
2307 #define ENQUEUE_INITIAL		0x80
2308 #define ENQUEUE_MIGRATING	0x100
2309 
2310 #define RETRY_TASK		((void *)-1UL)
2311 
2312 struct affinity_context {
2313 	const struct cpumask	*new_mask;
2314 	struct cpumask		*user_mask;
2315 	unsigned int		flags;
2316 };
2317 
2318 extern s64 update_curr_common(struct rq *rq);
2319 
2320 struct sched_class {
2321 
2322 #ifdef CONFIG_UCLAMP_TASK
2323 	int uclamp_enabled;
2324 #endif
2325 
2326 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2327 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2328 	void (*yield_task)   (struct rq *rq);
2329 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2330 
2331 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2332 
2333 	struct task_struct *(*pick_next_task)(struct rq *rq);
2334 
2335 	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2336 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2337 
2338 #ifdef CONFIG_SMP
2339 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2340 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2341 
2342 	struct task_struct * (*pick_task)(struct rq *rq);
2343 
2344 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2345 
2346 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2347 
2348 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2349 
2350 	void (*rq_online)(struct rq *rq);
2351 	void (*rq_offline)(struct rq *rq);
2352 
2353 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2354 #endif
2355 
2356 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2357 	void (*task_fork)(struct task_struct *p);
2358 	void (*task_dead)(struct task_struct *p);
2359 
2360 	/*
2361 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2362 	 * cannot assume the switched_from/switched_to pair is serialized by
2363 	 * rq->lock. They are however serialized by p->pi_lock.
2364 	 */
2365 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2366 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2367 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2368 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2369 			      int newprio);
2370 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2371 			      int oldprio);
2372 
2373 	unsigned int (*get_rr_interval)(struct rq *rq,
2374 					struct task_struct *task);
2375 
2376 	void (*update_curr)(struct rq *rq);
2377 
2378 #ifdef CONFIG_FAIR_GROUP_SCHED
2379 	void (*task_change_group)(struct task_struct *p);
2380 #endif
2381 
2382 #ifdef CONFIG_SCHED_CORE
2383 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2384 #endif
2385 };
2386 
2387 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2388 {
2389 	WARN_ON_ONCE(rq->curr != prev);
2390 	prev->sched_class->put_prev_task(rq, prev);
2391 }
2392 
2393 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2394 {
2395 	next->sched_class->set_next_task(rq, next, false);
2396 }
2397 
2398 
2399 /*
2400  * Helper to define a sched_class instance; each one is placed in a separate
2401  * section which is ordered by the linker script:
2402  *
2403  *   include/asm-generic/vmlinux.lds.h
2404  *
2405  * *CAREFUL* they are laid out in *REVERSE* order!!!
2406  *
2407  * Also enforce alignment on the instance, not the type, to guarantee layout.
2408  */
2409 #define DEFINE_SCHED_CLASS(name) \
2410 const struct sched_class name##_sched_class \
2411 	__aligned(__alignof__(struct sched_class)) \
2412 	__section("__" #name "_sched_class")
2413 
2414 /* Defined in include/asm-generic/vmlinux.lds.h */
2415 extern struct sched_class __sched_class_highest[];
2416 extern struct sched_class __sched_class_lowest[];
2417 
2418 #define for_class_range(class, _from, _to) \
2419 	for (class = (_from); class < (_to); class++)
2420 
2421 #define for_each_class(class) \
2422 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2423 
2424 #define sched_class_above(_a, _b)	((_a) < (_b))
2425 
2426 extern const struct sched_class stop_sched_class;
2427 extern const struct sched_class dl_sched_class;
2428 extern const struct sched_class rt_sched_class;
2429 extern const struct sched_class fair_sched_class;
2430 extern const struct sched_class idle_sched_class;
2431 
2432 static inline bool sched_stop_runnable(struct rq *rq)
2433 {
2434 	return rq->stop && task_on_rq_queued(rq->stop);
2435 }
2436 
2437 static inline bool sched_dl_runnable(struct rq *rq)
2438 {
2439 	return rq->dl.dl_nr_running > 0;
2440 }
2441 
2442 static inline bool sched_rt_runnable(struct rq *rq)
2443 {
2444 	return rq->rt.rt_queued > 0;
2445 }
2446 
2447 static inline bool sched_fair_runnable(struct rq *rq)
2448 {
2449 	return rq->cfs.nr_running > 0;
2450 }
2451 
2452 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2453 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2454 
2455 #define SCA_CHECK		0x01
2456 #define SCA_MIGRATE_DISABLE	0x02
2457 #define SCA_MIGRATE_ENABLE	0x04
2458 #define SCA_USER		0x08
2459 
2460 #ifdef CONFIG_SMP
2461 
2462 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2463 
2464 extern void sched_balance_trigger(struct rq *rq);
2465 
2466 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2467 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2468 
2469 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2470 {
2471 	/*
2472 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2473 	 */
2474 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2475 
2476 	return kmalloc_node(size, GFP_KERNEL, node);
2477 }
2478 
2479 static inline struct task_struct *get_push_task(struct rq *rq)
2480 {
2481 	struct task_struct *p = rq->curr;
2482 
2483 	lockdep_assert_rq_held(rq);
2484 
2485 	if (rq->push_busy)
2486 		return NULL;
2487 
2488 	if (p->nr_cpus_allowed == 1)
2489 		return NULL;
2490 
2491 	if (p->migration_disabled)
2492 		return NULL;
2493 
2494 	rq->push_busy = true;
2495 	return get_task_struct(p);
2496 }
2497 
2498 extern int push_cpu_stop(void *arg);
2499 
2500 #else /* !CONFIG_SMP: */
2501 
2502 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2503 					 struct affinity_context *ctx)
2504 {
2505 	return set_cpus_allowed_ptr(p, ctx->new_mask);
2506 }
2507 
2508 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2509 {
2510 	return NULL;
2511 }
2512 
2513 #endif /* !CONFIG_SMP */
2514 
2515 #ifdef CONFIG_CPU_IDLE
2516 
2517 static inline void idle_set_state(struct rq *rq,
2518 				  struct cpuidle_state *idle_state)
2519 {
2520 	rq->idle_state = idle_state;
2521 }
2522 
2523 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2524 {
2525 	SCHED_WARN_ON(!rcu_read_lock_held());
2526 
2527 	return rq->idle_state;
2528 }
2529 
2530 #else /* !CONFIG_CPU_IDLE: */
2531 
2532 static inline void idle_set_state(struct rq *rq,
2533 				  struct cpuidle_state *idle_state)
2534 {
2535 }
2536 
2537 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2538 {
2539 	return NULL;
2540 }
2541 
2542 #endif /* !CONFIG_CPU_IDLE */
2543 
2544 extern void schedule_idle(void);
2545 asmlinkage void schedule_user(void);
2546 
2547 extern void sysrq_sched_debug_show(void);
2548 extern void sched_init_granularity(void);
2549 extern void update_max_interval(void);
2550 
2551 extern void init_sched_dl_class(void);
2552 extern void init_sched_rt_class(void);
2553 extern void init_sched_fair_class(void);
2554 
2555 extern void resched_curr(struct rq *rq);
2556 extern void resched_cpu(int cpu);
2557 
2558 extern struct rt_bandwidth def_rt_bandwidth;
2559 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2560 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2561 
2562 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2563 
2564 #define BW_SHIFT		20
2565 #define BW_UNIT			(1 << BW_SHIFT)
2566 #define RATIO_SHIFT		8
2567 #define MAX_BW_BITS		(64 - BW_SHIFT)
2568 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2569 
2570 extern unsigned long to_ratio(u64 period, u64 runtime);
2571 
2572 extern void init_entity_runnable_average(struct sched_entity *se);
2573 extern void post_init_entity_util_avg(struct task_struct *p);
2574 
2575 #ifdef CONFIG_NO_HZ_FULL
2576 extern bool sched_can_stop_tick(struct rq *rq);
2577 extern int __init sched_tick_offload_init(void);
2578 
2579 /*
2580  * Tick may be needed by tasks in the runqueue depending on their policy and
2581  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2582  * nohz mode if necessary.
2583  */
2584 static inline void sched_update_tick_dependency(struct rq *rq)
2585 {
2586 	int cpu = cpu_of(rq);
2587 
2588 	if (!tick_nohz_full_cpu(cpu))
2589 		return;
2590 
2591 	if (sched_can_stop_tick(rq))
2592 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2593 	else
2594 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2595 }
2596 #else /* !CONFIG_NO_HZ_FULL: */
2597 static inline int sched_tick_offload_init(void) { return 0; }
2598 static inline void sched_update_tick_dependency(struct rq *rq) { }
2599 #endif /* !CONFIG_NO_HZ_FULL */
2600 
2601 static inline void add_nr_running(struct rq *rq, unsigned count)
2602 {
2603 	unsigned prev_nr = rq->nr_running;
2604 
2605 	rq->nr_running = prev_nr + count;
2606 	if (trace_sched_update_nr_running_tp_enabled()) {
2607 		call_trace_sched_update_nr_running(rq, count);
2608 	}
2609 
2610 #ifdef CONFIG_SMP
2611 	if (prev_nr < 2 && rq->nr_running >= 2)
2612 		set_rd_overloaded(rq->rd, 1);
2613 #endif
2614 
2615 	sched_update_tick_dependency(rq);
2616 }
2617 
2618 static inline void sub_nr_running(struct rq *rq, unsigned count)
2619 {
2620 	rq->nr_running -= count;
2621 	if (trace_sched_update_nr_running_tp_enabled()) {
2622 		call_trace_sched_update_nr_running(rq, -count);
2623 	}
2624 
2625 	/* Check if we still need preemption */
2626 	sched_update_tick_dependency(rq);
2627 }
2628 
2629 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2630 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2631 
2632 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2633 
2634 #ifdef CONFIG_PREEMPT_RT
2635 # define SCHED_NR_MIGRATE_BREAK 8
2636 #else
2637 # define SCHED_NR_MIGRATE_BREAK 32
2638 #endif
2639 
2640 extern const_debug unsigned int sysctl_sched_nr_migrate;
2641 extern const_debug unsigned int sysctl_sched_migration_cost;
2642 
2643 extern unsigned int sysctl_sched_base_slice;
2644 
2645 #ifdef CONFIG_SCHED_DEBUG
2646 extern int sysctl_resched_latency_warn_ms;
2647 extern int sysctl_resched_latency_warn_once;
2648 
2649 extern unsigned int sysctl_sched_tunable_scaling;
2650 
2651 extern unsigned int sysctl_numa_balancing_scan_delay;
2652 extern unsigned int sysctl_numa_balancing_scan_period_min;
2653 extern unsigned int sysctl_numa_balancing_scan_period_max;
2654 extern unsigned int sysctl_numa_balancing_scan_size;
2655 extern unsigned int sysctl_numa_balancing_hot_threshold;
2656 #endif
2657 
2658 #ifdef CONFIG_SCHED_HRTICK
2659 
2660 /*
2661  * Use hrtick when:
2662  *  - enabled by features
2663  *  - hrtimer is actually high res
2664  */
2665 static inline int hrtick_enabled(struct rq *rq)
2666 {
2667 	if (!cpu_active(cpu_of(rq)))
2668 		return 0;
2669 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2670 }
2671 
2672 static inline int hrtick_enabled_fair(struct rq *rq)
2673 {
2674 	if (!sched_feat(HRTICK))
2675 		return 0;
2676 	return hrtick_enabled(rq);
2677 }
2678 
2679 static inline int hrtick_enabled_dl(struct rq *rq)
2680 {
2681 	if (!sched_feat(HRTICK_DL))
2682 		return 0;
2683 	return hrtick_enabled(rq);
2684 }
2685 
2686 extern void hrtick_start(struct rq *rq, u64 delay);
2687 
2688 #else /* !CONFIG_SCHED_HRTICK: */
2689 
2690 static inline int hrtick_enabled_fair(struct rq *rq)
2691 {
2692 	return 0;
2693 }
2694 
2695 static inline int hrtick_enabled_dl(struct rq *rq)
2696 {
2697 	return 0;
2698 }
2699 
2700 static inline int hrtick_enabled(struct rq *rq)
2701 {
2702 	return 0;
2703 }
2704 
2705 #endif /* !CONFIG_SCHED_HRTICK */
2706 
2707 #ifndef arch_scale_freq_tick
2708 static __always_inline void arch_scale_freq_tick(void) { }
2709 #endif
2710 
2711 #ifndef arch_scale_freq_capacity
2712 /**
2713  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2714  * @cpu: the CPU in question.
2715  *
2716  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2717  *
2718  *     f_curr
2719  *     ------ * SCHED_CAPACITY_SCALE
2720  *     f_max
2721  */
2722 static __always_inline
2723 unsigned long arch_scale_freq_capacity(int cpu)
2724 {
2725 	return SCHED_CAPACITY_SCALE;
2726 }
2727 #endif
2728 
2729 #ifdef CONFIG_SCHED_DEBUG
2730 /*
2731  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2732  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2733  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2734  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2735  */
2736 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2737 {
2738 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2739 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2740 #ifdef CONFIG_SMP
2741 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2742 #endif
2743 }
2744 #else
2745 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2746 #endif
2747 
2748 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2749 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2750 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2751 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2752   _lock; return _t; }
2753 
2754 #ifdef CONFIG_SMP
2755 
2756 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2757 {
2758 #ifdef CONFIG_SCHED_CORE
2759 	/*
2760 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2761 	 * order by core-id first and cpu-id second.
2762 	 *
2763 	 * Notably:
2764 	 *
2765 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2766 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2767 	 *
2768 	 * when only cpu-id is considered.
2769 	 */
2770 	if (rq1->core->cpu < rq2->core->cpu)
2771 		return true;
2772 	if (rq1->core->cpu > rq2->core->cpu)
2773 		return false;
2774 
2775 	/*
2776 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2777 	 */
2778 #endif
2779 	return rq1->cpu < rq2->cpu;
2780 }
2781 
2782 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2783 
2784 #ifdef CONFIG_PREEMPTION
2785 
2786 /*
2787  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2788  * way at the expense of forcing extra atomic operations in all
2789  * invocations.  This assures that the double_lock is acquired using the
2790  * same underlying policy as the spinlock_t on this architecture, which
2791  * reduces latency compared to the unfair variant below.  However, it
2792  * also adds more overhead and therefore may reduce throughput.
2793  */
2794 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2795 	__releases(this_rq->lock)
2796 	__acquires(busiest->lock)
2797 	__acquires(this_rq->lock)
2798 {
2799 	raw_spin_rq_unlock(this_rq);
2800 	double_rq_lock(this_rq, busiest);
2801 
2802 	return 1;
2803 }
2804 
2805 #else /* !CONFIG_PREEMPTION: */
2806 /*
2807  * Unfair double_lock_balance: Optimizes throughput at the expense of
2808  * latency by eliminating extra atomic operations when the locks are
2809  * already in proper order on entry.  This favors lower CPU-ids and will
2810  * grant the double lock to lower CPUs over higher ids under contention,
2811  * regardless of entry order into the function.
2812  */
2813 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2814 	__releases(this_rq->lock)
2815 	__acquires(busiest->lock)
2816 	__acquires(this_rq->lock)
2817 {
2818 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2819 	    likely(raw_spin_rq_trylock(busiest))) {
2820 		double_rq_clock_clear_update(this_rq, busiest);
2821 		return 0;
2822 	}
2823 
2824 	if (rq_order_less(this_rq, busiest)) {
2825 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2826 		double_rq_clock_clear_update(this_rq, busiest);
2827 		return 0;
2828 	}
2829 
2830 	raw_spin_rq_unlock(this_rq);
2831 	double_rq_lock(this_rq, busiest);
2832 
2833 	return 1;
2834 }
2835 
2836 #endif /* !CONFIG_PREEMPTION */
2837 
2838 /*
2839  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2840  */
2841 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2842 {
2843 	lockdep_assert_irqs_disabled();
2844 
2845 	return _double_lock_balance(this_rq, busiest);
2846 }
2847 
2848 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2849 	__releases(busiest->lock)
2850 {
2851 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2852 		raw_spin_rq_unlock(busiest);
2853 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2854 }
2855 
2856 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2857 {
2858 	if (l1 > l2)
2859 		swap(l1, l2);
2860 
2861 	spin_lock(l1);
2862 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2863 }
2864 
2865 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2866 {
2867 	if (l1 > l2)
2868 		swap(l1, l2);
2869 
2870 	spin_lock_irq(l1);
2871 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2872 }
2873 
2874 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2875 {
2876 	if (l1 > l2)
2877 		swap(l1, l2);
2878 
2879 	raw_spin_lock(l1);
2880 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2881 }
2882 
2883 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2884 {
2885 	raw_spin_unlock(l1);
2886 	raw_spin_unlock(l2);
2887 }
2888 
2889 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2890 		    double_raw_lock(_T->lock, _T->lock2),
2891 		    double_raw_unlock(_T->lock, _T->lock2))
2892 
2893 /*
2894  * double_rq_unlock - safely unlock two runqueues
2895  *
2896  * Note this does not restore interrupts like task_rq_unlock,
2897  * you need to do so manually after calling.
2898  */
2899 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2900 	__releases(rq1->lock)
2901 	__releases(rq2->lock)
2902 {
2903 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2904 		raw_spin_rq_unlock(rq2);
2905 	else
2906 		__release(rq2->lock);
2907 	raw_spin_rq_unlock(rq1);
2908 }
2909 
2910 extern void set_rq_online (struct rq *rq);
2911 extern void set_rq_offline(struct rq *rq);
2912 
2913 extern bool sched_smp_initialized;
2914 
2915 #else /* !CONFIG_SMP: */
2916 
2917 /*
2918  * double_rq_lock - safely lock two runqueues
2919  *
2920  * Note this does not disable interrupts like task_rq_lock,
2921  * you need to do so manually before calling.
2922  */
2923 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2924 	__acquires(rq1->lock)
2925 	__acquires(rq2->lock)
2926 {
2927 	WARN_ON_ONCE(!irqs_disabled());
2928 	WARN_ON_ONCE(rq1 != rq2);
2929 	raw_spin_rq_lock(rq1);
2930 	__acquire(rq2->lock);	/* Fake it out ;) */
2931 	double_rq_clock_clear_update(rq1, rq2);
2932 }
2933 
2934 /*
2935  * double_rq_unlock - safely unlock two runqueues
2936  *
2937  * Note this does not restore interrupts like task_rq_unlock,
2938  * you need to do so manually after calling.
2939  */
2940 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2941 	__releases(rq1->lock)
2942 	__releases(rq2->lock)
2943 {
2944 	WARN_ON_ONCE(rq1 != rq2);
2945 	raw_spin_rq_unlock(rq1);
2946 	__release(rq2->lock);
2947 }
2948 
2949 #endif /* !CONFIG_SMP */
2950 
2951 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2952 		    double_rq_lock(_T->lock, _T->lock2),
2953 		    double_rq_unlock(_T->lock, _T->lock2))
2954 
2955 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2956 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2957 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2958 
2959 #ifdef	CONFIG_SCHED_DEBUG
2960 extern bool sched_debug_verbose;
2961 
2962 extern void print_cfs_stats(struct seq_file *m, int cpu);
2963 extern void print_rt_stats(struct seq_file *m, int cpu);
2964 extern void print_dl_stats(struct seq_file *m, int cpu);
2965 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2966 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2967 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2968 
2969 extern void resched_latency_warn(int cpu, u64 latency);
2970 # ifdef CONFIG_NUMA_BALANCING
2971 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
2972 extern void
2973 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2974 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2975 # endif /* CONFIG_NUMA_BALANCING */
2976 #else /* !CONFIG_SCHED_DEBUG: */
2977 static inline void resched_latency_warn(int cpu, u64 latency) { }
2978 #endif /* !CONFIG_SCHED_DEBUG */
2979 
2980 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2981 extern void init_rt_rq(struct rt_rq *rt_rq);
2982 extern void init_dl_rq(struct dl_rq *dl_rq);
2983 
2984 extern void cfs_bandwidth_usage_inc(void);
2985 extern void cfs_bandwidth_usage_dec(void);
2986 
2987 #ifdef CONFIG_NO_HZ_COMMON
2988 
2989 #define NOHZ_BALANCE_KICK_BIT	0
2990 #define NOHZ_STATS_KICK_BIT	1
2991 #define NOHZ_NEWILB_KICK_BIT	2
2992 #define NOHZ_NEXT_KICK_BIT	3
2993 
2994 /* Run sched_balance_domains() */
2995 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2996 /* Update blocked load */
2997 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2998 /* Update blocked load when entering idle */
2999 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3000 /* Update nohz.next_balance */
3001 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3002 
3003 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3004 
3005 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3006 
3007 extern void nohz_balance_exit_idle(struct rq *rq);
3008 #else /* !CONFIG_NO_HZ_COMMON: */
3009 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3010 #endif /* !CONFIG_NO_HZ_COMMON */
3011 
3012 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3013 extern void nohz_run_idle_balance(int cpu);
3014 #else
3015 static inline void nohz_run_idle_balance(int cpu) { }
3016 #endif
3017 
3018 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3019 
3020 struct irqtime {
3021 	u64			total;
3022 	u64			tick_delta;
3023 	u64			irq_start_time;
3024 	struct u64_stats_sync	sync;
3025 };
3026 
3027 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3028 
3029 /*
3030  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3031  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3032  * and never move forward.
3033  */
3034 static inline u64 irq_time_read(int cpu)
3035 {
3036 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3037 	unsigned int seq;
3038 	u64 total;
3039 
3040 	do {
3041 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3042 		total = irqtime->total;
3043 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3044 
3045 	return total;
3046 }
3047 
3048 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3049 
3050 #ifdef CONFIG_CPU_FREQ
3051 
3052 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3053 
3054 /**
3055  * cpufreq_update_util - Take a note about CPU utilization changes.
3056  * @rq: Runqueue to carry out the update for.
3057  * @flags: Update reason flags.
3058  *
3059  * This function is called by the scheduler on the CPU whose utilization is
3060  * being updated.
3061  *
3062  * It can only be called from RCU-sched read-side critical sections.
3063  *
3064  * The way cpufreq is currently arranged requires it to evaluate the CPU
3065  * performance state (frequency/voltage) on a regular basis to prevent it from
3066  * being stuck in a completely inadequate performance level for too long.
3067  * That is not guaranteed to happen if the updates are only triggered from CFS
3068  * and DL, though, because they may not be coming in if only RT tasks are
3069  * active all the time (or there are RT tasks only).
3070  *
3071  * As a workaround for that issue, this function is called periodically by the
3072  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3073  * but that really is a band-aid.  Going forward it should be replaced with
3074  * solutions targeted more specifically at RT tasks.
3075  */
3076 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3077 {
3078 	struct update_util_data *data;
3079 
3080 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3081 						  cpu_of(rq)));
3082 	if (data)
3083 		data->func(data, rq_clock(rq), flags);
3084 }
3085 #else /* !CONFIG_CPU_FREQ: */
3086 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3087 #endif /* !CONFIG_CPU_FREQ */
3088 
3089 #ifdef arch_scale_freq_capacity
3090 # ifndef arch_scale_freq_invariant
3091 #  define arch_scale_freq_invariant()	true
3092 # endif
3093 #else
3094 # define arch_scale_freq_invariant()	false
3095 #endif
3096 
3097 #ifdef CONFIG_SMP
3098 
3099 bool update_other_load_avgs(struct rq *rq);
3100 
3101 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3102 				 unsigned long *min,
3103 				 unsigned long *max);
3104 
3105 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3106 				 unsigned long min,
3107 				 unsigned long max);
3108 
3109 
3110 /*
3111  * Verify the fitness of task @p to run on @cpu taking into account the
3112  * CPU original capacity and the runtime/deadline ratio of the task.
3113  *
3114  * The function will return true if the original capacity of @cpu is
3115  * greater than or equal to task's deadline density right shifted by
3116  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3117  */
3118 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3119 {
3120 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3121 
3122 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3123 }
3124 
3125 static inline unsigned long cpu_bw_dl(struct rq *rq)
3126 {
3127 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3128 }
3129 
3130 static inline unsigned long cpu_util_dl(struct rq *rq)
3131 {
3132 	return READ_ONCE(rq->avg_dl.util_avg);
3133 }
3134 
3135 
3136 extern unsigned long cpu_util_cfs(int cpu);
3137 extern unsigned long cpu_util_cfs_boost(int cpu);
3138 
3139 static inline unsigned long cpu_util_rt(struct rq *rq)
3140 {
3141 	return READ_ONCE(rq->avg_rt.util_avg);
3142 }
3143 
3144 #else /* !CONFIG_SMP */
3145 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3146 #endif /* CONFIG_SMP */
3147 
3148 #ifdef CONFIG_UCLAMP_TASK
3149 
3150 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3151 
3152 static inline unsigned long uclamp_rq_get(struct rq *rq,
3153 					  enum uclamp_id clamp_id)
3154 {
3155 	return READ_ONCE(rq->uclamp[clamp_id].value);
3156 }
3157 
3158 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3159 				 unsigned int value)
3160 {
3161 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3162 }
3163 
3164 static inline bool uclamp_rq_is_idle(struct rq *rq)
3165 {
3166 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3167 }
3168 
3169 /* Is the rq being capped/throttled by uclamp_max? */
3170 static inline bool uclamp_rq_is_capped(struct rq *rq)
3171 {
3172 	unsigned long rq_util;
3173 	unsigned long max_util;
3174 
3175 	if (!static_branch_likely(&sched_uclamp_used))
3176 		return false;
3177 
3178 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3179 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3180 
3181 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3182 }
3183 
3184 /*
3185  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3186  * by default in the fast path and only gets turned on once userspace performs
3187  * an operation that requires it.
3188  *
3189  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3190  * hence is active.
3191  */
3192 static inline bool uclamp_is_used(void)
3193 {
3194 	return static_branch_likely(&sched_uclamp_used);
3195 }
3196 
3197 #define for_each_clamp_id(clamp_id) \
3198 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3199 
3200 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3201 
3202 
3203 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3204 {
3205 	if (clamp_id == UCLAMP_MIN)
3206 		return 0;
3207 	return SCHED_CAPACITY_SCALE;
3208 }
3209 
3210 /* Integer rounded range for each bucket */
3211 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3212 
3213 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3214 {
3215 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3216 }
3217 
3218 static inline void
3219 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3220 {
3221 	uc_se->value = value;
3222 	uc_se->bucket_id = uclamp_bucket_id(value);
3223 	uc_se->user_defined = user_defined;
3224 }
3225 
3226 #else /* !CONFIG_UCLAMP_TASK: */
3227 
3228 static inline unsigned long
3229 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3230 {
3231 	if (clamp_id == UCLAMP_MIN)
3232 		return 0;
3233 
3234 	return SCHED_CAPACITY_SCALE;
3235 }
3236 
3237 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3238 
3239 static inline bool uclamp_is_used(void)
3240 {
3241 	return false;
3242 }
3243 
3244 static inline unsigned long
3245 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3246 {
3247 	if (clamp_id == UCLAMP_MIN)
3248 		return 0;
3249 
3250 	return SCHED_CAPACITY_SCALE;
3251 }
3252 
3253 static inline void
3254 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3255 {
3256 }
3257 
3258 static inline bool uclamp_rq_is_idle(struct rq *rq)
3259 {
3260 	return false;
3261 }
3262 
3263 #endif /* !CONFIG_UCLAMP_TASK */
3264 
3265 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3266 
3267 static inline unsigned long cpu_util_irq(struct rq *rq)
3268 {
3269 	return READ_ONCE(rq->avg_irq.util_avg);
3270 }
3271 
3272 static inline
3273 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3274 {
3275 	util *= (max - irq);
3276 	util /= max;
3277 
3278 	return util;
3279 
3280 }
3281 
3282 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3283 
3284 static inline unsigned long cpu_util_irq(struct rq *rq)
3285 {
3286 	return 0;
3287 }
3288 
3289 static inline
3290 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3291 {
3292 	return util;
3293 }
3294 
3295 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3296 
3297 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3298 
3299 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3300 
3301 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3302 
3303 static inline bool sched_energy_enabled(void)
3304 {
3305 	return static_branch_unlikely(&sched_energy_present);
3306 }
3307 
3308 extern struct cpufreq_governor schedutil_gov;
3309 
3310 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3311 
3312 #define perf_domain_span(pd) NULL
3313 
3314 static inline bool sched_energy_enabled(void) { return false; }
3315 
3316 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3317 
3318 #ifdef CONFIG_MEMBARRIER
3319 
3320 /*
3321  * The scheduler provides memory barriers required by membarrier between:
3322  * - prior user-space memory accesses and store to rq->membarrier_state,
3323  * - store to rq->membarrier_state and following user-space memory accesses.
3324  * In the same way it provides those guarantees around store to rq->curr.
3325  */
3326 static inline void membarrier_switch_mm(struct rq *rq,
3327 					struct mm_struct *prev_mm,
3328 					struct mm_struct *next_mm)
3329 {
3330 	int membarrier_state;
3331 
3332 	if (prev_mm == next_mm)
3333 		return;
3334 
3335 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3336 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3337 		return;
3338 
3339 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3340 }
3341 
3342 #else /* !CONFIG_MEMBARRIER :*/
3343 
3344 static inline void membarrier_switch_mm(struct rq *rq,
3345 					struct mm_struct *prev_mm,
3346 					struct mm_struct *next_mm)
3347 {
3348 }
3349 
3350 #endif /* !CONFIG_MEMBARRIER */
3351 
3352 #ifdef CONFIG_SMP
3353 static inline bool is_per_cpu_kthread(struct task_struct *p)
3354 {
3355 	if (!(p->flags & PF_KTHREAD))
3356 		return false;
3357 
3358 	if (p->nr_cpus_allowed != 1)
3359 		return false;
3360 
3361 	return true;
3362 }
3363 #endif
3364 
3365 extern void swake_up_all_locked(struct swait_queue_head *q);
3366 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3367 
3368 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3369 
3370 #ifdef CONFIG_PREEMPT_DYNAMIC
3371 extern int preempt_dynamic_mode;
3372 extern int sched_dynamic_mode(const char *str);
3373 extern void sched_dynamic_update(int mode);
3374 #endif
3375 
3376 #ifdef CONFIG_SCHED_MM_CID
3377 
3378 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3379 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3380 
3381 extern raw_spinlock_t cid_lock;
3382 extern int use_cid_lock;
3383 
3384 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3385 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3386 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3387 extern void init_sched_mm_cid(struct task_struct *t);
3388 
3389 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3390 {
3391 	if (cid < 0)
3392 		return;
3393 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3394 }
3395 
3396 /*
3397  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3398  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3399  * be held to transition to other states.
3400  *
3401  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3402  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3403  */
3404 static inline void mm_cid_put_lazy(struct task_struct *t)
3405 {
3406 	struct mm_struct *mm = t->mm;
3407 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3408 	int cid;
3409 
3410 	lockdep_assert_irqs_disabled();
3411 	cid = __this_cpu_read(pcpu_cid->cid);
3412 	if (!mm_cid_is_lazy_put(cid) ||
3413 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3414 		return;
3415 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3416 }
3417 
3418 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3419 {
3420 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3421 	int cid, res;
3422 
3423 	lockdep_assert_irqs_disabled();
3424 	cid = __this_cpu_read(pcpu_cid->cid);
3425 	for (;;) {
3426 		if (mm_cid_is_unset(cid))
3427 			return MM_CID_UNSET;
3428 		/*
3429 		 * Attempt transition from valid or lazy-put to unset.
3430 		 */
3431 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3432 		if (res == cid)
3433 			break;
3434 		cid = res;
3435 	}
3436 	return cid;
3437 }
3438 
3439 static inline void mm_cid_put(struct mm_struct *mm)
3440 {
3441 	int cid;
3442 
3443 	lockdep_assert_irqs_disabled();
3444 	cid = mm_cid_pcpu_unset(mm);
3445 	if (cid == MM_CID_UNSET)
3446 		return;
3447 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3448 }
3449 
3450 static inline int __mm_cid_try_get(struct mm_struct *mm)
3451 {
3452 	struct cpumask *cpumask;
3453 	int cid;
3454 
3455 	cpumask = mm_cidmask(mm);
3456 	/*
3457 	 * Retry finding first zero bit if the mask is temporarily
3458 	 * filled. This only happens during concurrent remote-clear
3459 	 * which owns a cid without holding a rq lock.
3460 	 */
3461 	for (;;) {
3462 		cid = cpumask_first_zero(cpumask);
3463 		if (cid < nr_cpu_ids)
3464 			break;
3465 		cpu_relax();
3466 	}
3467 	if (cpumask_test_and_set_cpu(cid, cpumask))
3468 		return -1;
3469 
3470 	return cid;
3471 }
3472 
3473 /*
3474  * Save a snapshot of the current runqueue time of this cpu
3475  * with the per-cpu cid value, allowing to estimate how recently it was used.
3476  */
3477 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3478 {
3479 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3480 
3481 	lockdep_assert_rq_held(rq);
3482 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3483 }
3484 
3485 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3486 {
3487 	int cid;
3488 
3489 	/*
3490 	 * All allocations (even those using the cid_lock) are lock-free. If
3491 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3492 	 * guarantee forward progress.
3493 	 */
3494 	if (!READ_ONCE(use_cid_lock)) {
3495 		cid = __mm_cid_try_get(mm);
3496 		if (cid >= 0)
3497 			goto end;
3498 		raw_spin_lock(&cid_lock);
3499 	} else {
3500 		raw_spin_lock(&cid_lock);
3501 		cid = __mm_cid_try_get(mm);
3502 		if (cid >= 0)
3503 			goto unlock;
3504 	}
3505 
3506 	/*
3507 	 * cid concurrently allocated. Retry while forcing following
3508 	 * allocations to use the cid_lock to ensure forward progress.
3509 	 */
3510 	WRITE_ONCE(use_cid_lock, 1);
3511 	/*
3512 	 * Set use_cid_lock before allocation. Only care about program order
3513 	 * because this is only required for forward progress.
3514 	 */
3515 	barrier();
3516 	/*
3517 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3518 	 * all newcoming allocations observe the use_cid_lock flag set.
3519 	 */
3520 	do {
3521 		cid = __mm_cid_try_get(mm);
3522 		cpu_relax();
3523 	} while (cid < 0);
3524 	/*
3525 	 * Allocate before clearing use_cid_lock. Only care about
3526 	 * program order because this is for forward progress.
3527 	 */
3528 	barrier();
3529 	WRITE_ONCE(use_cid_lock, 0);
3530 unlock:
3531 	raw_spin_unlock(&cid_lock);
3532 end:
3533 	mm_cid_snapshot_time(rq, mm);
3534 
3535 	return cid;
3536 }
3537 
3538 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3539 {
3540 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3541 	struct cpumask *cpumask;
3542 	int cid;
3543 
3544 	lockdep_assert_rq_held(rq);
3545 	cpumask = mm_cidmask(mm);
3546 	cid = __this_cpu_read(pcpu_cid->cid);
3547 	if (mm_cid_is_valid(cid)) {
3548 		mm_cid_snapshot_time(rq, mm);
3549 		return cid;
3550 	}
3551 	if (mm_cid_is_lazy_put(cid)) {
3552 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3553 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3554 	}
3555 	cid = __mm_cid_get(rq, mm);
3556 	__this_cpu_write(pcpu_cid->cid, cid);
3557 
3558 	return cid;
3559 }
3560 
3561 static inline void switch_mm_cid(struct rq *rq,
3562 				 struct task_struct *prev,
3563 				 struct task_struct *next)
3564 {
3565 	/*
3566 	 * Provide a memory barrier between rq->curr store and load of
3567 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3568 	 *
3569 	 * Should be adapted if context_switch() is modified.
3570 	 */
3571 	if (!next->mm) {                                // to kernel
3572 		/*
3573 		 * user -> kernel transition does not guarantee a barrier, but
3574 		 * we can use the fact that it performs an atomic operation in
3575 		 * mmgrab().
3576 		 */
3577 		if (prev->mm)                           // from user
3578 			smp_mb__after_mmgrab();
3579 		/*
3580 		 * kernel -> kernel transition does not change rq->curr->mm
3581 		 * state. It stays NULL.
3582 		 */
3583 	} else {                                        // to user
3584 		/*
3585 		 * kernel -> user transition does not provide a barrier
3586 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3587 		 * Provide it here.
3588 		 */
3589 		if (!prev->mm) {                        // from kernel
3590 			smp_mb();
3591 		} else {				// from user
3592 			/*
3593 			 * user->user transition relies on an implicit
3594 			 * memory barrier in switch_mm() when
3595 			 * current->mm changes. If the architecture
3596 			 * switch_mm() does not have an implicit memory
3597 			 * barrier, it is emitted here.  If current->mm
3598 			 * is unchanged, no barrier is needed.
3599 			 */
3600 			smp_mb__after_switch_mm();
3601 		}
3602 	}
3603 	if (prev->mm_cid_active) {
3604 		mm_cid_snapshot_time(rq, prev->mm);
3605 		mm_cid_put_lazy(prev);
3606 		prev->mm_cid = -1;
3607 	}
3608 	if (next->mm_cid_active)
3609 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3610 }
3611 
3612 #else /* !CONFIG_SCHED_MM_CID: */
3613 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3614 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3615 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3616 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3617 static inline void init_sched_mm_cid(struct task_struct *t) { }
3618 #endif /* !CONFIG_SCHED_MM_CID */
3619 
3620 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3621 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3622 
3623 #ifdef CONFIG_RT_MUTEXES
3624 
3625 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3626 {
3627 	if (pi_task)
3628 		prio = min(prio, pi_task->prio);
3629 
3630 	return prio;
3631 }
3632 
3633 static inline int rt_effective_prio(struct task_struct *p, int prio)
3634 {
3635 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3636 
3637 	return __rt_effective_prio(pi_task, prio);
3638 }
3639 
3640 #else /* !CONFIG_RT_MUTEXES: */
3641 
3642 static inline int rt_effective_prio(struct task_struct *p, int prio)
3643 {
3644 	return prio;
3645 }
3646 
3647 #endif /* !CONFIG_RT_MUTEXES */
3648 
3649 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3650 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3651 extern void __setscheduler_prio(struct task_struct *p, int prio);
3652 extern void set_load_weight(struct task_struct *p, bool update_load);
3653 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3654 extern void dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3655 
3656 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3657 				 const struct sched_class *prev_class);
3658 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3659 				const struct sched_class *prev_class,
3660 				int oldprio);
3661 
3662 #ifdef CONFIG_SMP
3663 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3664 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3665 #else
3666 
3667 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3668 {
3669 	return NULL;
3670 }
3671 
3672 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3673 {
3674 }
3675 
3676 #endif
3677 
3678 #include "ext.h"
3679 
3680 #endif /* _KERNEL_SCHED_SCHED_H */
3681