1 2 #include <linux/sched.h> 3 #include <linux/mutex.h> 4 #include <linux/spinlock.h> 5 #include <linux/stop_machine.h> 6 7 #include "cpupri.h" 8 9 extern __read_mostly int scheduler_running; 10 11 /* 12 * Convert user-nice values [ -20 ... 0 ... 19 ] 13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], 14 * and back. 15 */ 16 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) 17 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) 18 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) 19 20 /* 21 * 'User priority' is the nice value converted to something we 22 * can work with better when scaling various scheduler parameters, 23 * it's a [ 0 ... 39 ] range. 24 */ 25 #define USER_PRIO(p) ((p)-MAX_RT_PRIO) 26 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) 27 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) 28 29 /* 30 * Helpers for converting nanosecond timing to jiffy resolution 31 */ 32 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 33 34 #define NICE_0_LOAD SCHED_LOAD_SCALE 35 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 36 37 /* 38 * These are the 'tuning knobs' of the scheduler: 39 */ 40 41 /* 42 * single value that denotes runtime == period, ie unlimited time. 43 */ 44 #define RUNTIME_INF ((u64)~0ULL) 45 46 static inline int rt_policy(int policy) 47 { 48 if (policy == SCHED_FIFO || policy == SCHED_RR) 49 return 1; 50 return 0; 51 } 52 53 static inline int task_has_rt_policy(struct task_struct *p) 54 { 55 return rt_policy(p->policy); 56 } 57 58 /* 59 * This is the priority-queue data structure of the RT scheduling class: 60 */ 61 struct rt_prio_array { 62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 63 struct list_head queue[MAX_RT_PRIO]; 64 }; 65 66 struct rt_bandwidth { 67 /* nests inside the rq lock: */ 68 raw_spinlock_t rt_runtime_lock; 69 ktime_t rt_period; 70 u64 rt_runtime; 71 struct hrtimer rt_period_timer; 72 }; 73 74 extern struct mutex sched_domains_mutex; 75 76 #ifdef CONFIG_CGROUP_SCHED 77 78 #include <linux/cgroup.h> 79 80 struct cfs_rq; 81 struct rt_rq; 82 83 static LIST_HEAD(task_groups); 84 85 struct cfs_bandwidth { 86 #ifdef CONFIG_CFS_BANDWIDTH 87 raw_spinlock_t lock; 88 ktime_t period; 89 u64 quota, runtime; 90 s64 hierarchal_quota; 91 u64 runtime_expires; 92 93 int idle, timer_active; 94 struct hrtimer period_timer, slack_timer; 95 struct list_head throttled_cfs_rq; 96 97 /* statistics */ 98 int nr_periods, nr_throttled; 99 u64 throttled_time; 100 #endif 101 }; 102 103 /* task group related information */ 104 struct task_group { 105 struct cgroup_subsys_state css; 106 107 #ifdef CONFIG_FAIR_GROUP_SCHED 108 /* schedulable entities of this group on each cpu */ 109 struct sched_entity **se; 110 /* runqueue "owned" by this group on each cpu */ 111 struct cfs_rq **cfs_rq; 112 unsigned long shares; 113 114 atomic_t load_weight; 115 #endif 116 117 #ifdef CONFIG_RT_GROUP_SCHED 118 struct sched_rt_entity **rt_se; 119 struct rt_rq **rt_rq; 120 121 struct rt_bandwidth rt_bandwidth; 122 #endif 123 124 struct rcu_head rcu; 125 struct list_head list; 126 127 struct task_group *parent; 128 struct list_head siblings; 129 struct list_head children; 130 131 #ifdef CONFIG_SCHED_AUTOGROUP 132 struct autogroup *autogroup; 133 #endif 134 135 struct cfs_bandwidth cfs_bandwidth; 136 }; 137 138 #ifdef CONFIG_FAIR_GROUP_SCHED 139 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 140 141 /* 142 * A weight of 0 or 1 can cause arithmetics problems. 143 * A weight of a cfs_rq is the sum of weights of which entities 144 * are queued on this cfs_rq, so a weight of a entity should not be 145 * too large, so as the shares value of a task group. 146 * (The default weight is 1024 - so there's no practical 147 * limitation from this.) 148 */ 149 #define MIN_SHARES (1UL << 1) 150 #define MAX_SHARES (1UL << 18) 151 #endif 152 153 /* Default task group. 154 * Every task in system belong to this group at bootup. 155 */ 156 extern struct task_group root_task_group; 157 158 typedef int (*tg_visitor)(struct task_group *, void *); 159 160 extern int walk_tg_tree_from(struct task_group *from, 161 tg_visitor down, tg_visitor up, void *data); 162 163 /* 164 * Iterate the full tree, calling @down when first entering a node and @up when 165 * leaving it for the final time. 166 * 167 * Caller must hold rcu_lock or sufficient equivalent. 168 */ 169 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 170 { 171 return walk_tg_tree_from(&root_task_group, down, up, data); 172 } 173 174 extern int tg_nop(struct task_group *tg, void *data); 175 176 extern void free_fair_sched_group(struct task_group *tg); 177 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 178 extern void unregister_fair_sched_group(struct task_group *tg, int cpu); 179 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 180 struct sched_entity *se, int cpu, 181 struct sched_entity *parent); 182 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 183 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 184 185 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 186 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 187 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 188 189 extern void free_rt_sched_group(struct task_group *tg); 190 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 191 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 192 struct sched_rt_entity *rt_se, int cpu, 193 struct sched_rt_entity *parent); 194 195 #else /* CONFIG_CGROUP_SCHED */ 196 197 struct cfs_bandwidth { }; 198 199 #endif /* CONFIG_CGROUP_SCHED */ 200 201 /* CFS-related fields in a runqueue */ 202 struct cfs_rq { 203 struct load_weight load; 204 unsigned int nr_running, h_nr_running; 205 206 u64 exec_clock; 207 u64 min_vruntime; 208 #ifndef CONFIG_64BIT 209 u64 min_vruntime_copy; 210 #endif 211 212 struct rb_root tasks_timeline; 213 struct rb_node *rb_leftmost; 214 215 /* 216 * 'curr' points to currently running entity on this cfs_rq. 217 * It is set to NULL otherwise (i.e when none are currently running). 218 */ 219 struct sched_entity *curr, *next, *last, *skip; 220 221 #ifdef CONFIG_SCHED_DEBUG 222 unsigned int nr_spread_over; 223 #endif 224 225 #ifdef CONFIG_FAIR_GROUP_SCHED 226 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 227 228 /* 229 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 230 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 231 * (like users, containers etc.) 232 * 233 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 234 * list is used during load balance. 235 */ 236 int on_list; 237 struct list_head leaf_cfs_rq_list; 238 struct task_group *tg; /* group that "owns" this runqueue */ 239 240 #ifdef CONFIG_SMP 241 /* 242 * h_load = weight * f(tg) 243 * 244 * Where f(tg) is the recursive weight fraction assigned to 245 * this group. 246 */ 247 unsigned long h_load; 248 249 /* 250 * Maintaining per-cpu shares distribution for group scheduling 251 * 252 * load_stamp is the last time we updated the load average 253 * load_last is the last time we updated the load average and saw load 254 * load_unacc_exec_time is currently unaccounted execution time 255 */ 256 u64 load_avg; 257 u64 load_period; 258 u64 load_stamp, load_last, load_unacc_exec_time; 259 260 unsigned long load_contribution; 261 #endif /* CONFIG_SMP */ 262 #ifdef CONFIG_CFS_BANDWIDTH 263 int runtime_enabled; 264 u64 runtime_expires; 265 s64 runtime_remaining; 266 267 u64 throttled_timestamp; 268 int throttled, throttle_count; 269 struct list_head throttled_list; 270 #endif /* CONFIG_CFS_BANDWIDTH */ 271 #endif /* CONFIG_FAIR_GROUP_SCHED */ 272 }; 273 274 static inline int rt_bandwidth_enabled(void) 275 { 276 return sysctl_sched_rt_runtime >= 0; 277 } 278 279 /* Real-Time classes' related field in a runqueue: */ 280 struct rt_rq { 281 struct rt_prio_array active; 282 unsigned int rt_nr_running; 283 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 284 struct { 285 int curr; /* highest queued rt task prio */ 286 #ifdef CONFIG_SMP 287 int next; /* next highest */ 288 #endif 289 } highest_prio; 290 #endif 291 #ifdef CONFIG_SMP 292 unsigned long rt_nr_migratory; 293 unsigned long rt_nr_total; 294 int overloaded; 295 struct plist_head pushable_tasks; 296 #endif 297 int rt_throttled; 298 u64 rt_time; 299 u64 rt_runtime; 300 /* Nests inside the rq lock: */ 301 raw_spinlock_t rt_runtime_lock; 302 303 #ifdef CONFIG_RT_GROUP_SCHED 304 unsigned long rt_nr_boosted; 305 306 struct rq *rq; 307 struct list_head leaf_rt_rq_list; 308 struct task_group *tg; 309 #endif 310 }; 311 312 #ifdef CONFIG_SMP 313 314 /* 315 * We add the notion of a root-domain which will be used to define per-domain 316 * variables. Each exclusive cpuset essentially defines an island domain by 317 * fully partitioning the member cpus from any other cpuset. Whenever a new 318 * exclusive cpuset is created, we also create and attach a new root-domain 319 * object. 320 * 321 */ 322 struct root_domain { 323 atomic_t refcount; 324 atomic_t rto_count; 325 struct rcu_head rcu; 326 cpumask_var_t span; 327 cpumask_var_t online; 328 329 /* 330 * The "RT overload" flag: it gets set if a CPU has more than 331 * one runnable RT task. 332 */ 333 cpumask_var_t rto_mask; 334 struct cpupri cpupri; 335 }; 336 337 extern struct root_domain def_root_domain; 338 339 #endif /* CONFIG_SMP */ 340 341 /* 342 * This is the main, per-CPU runqueue data structure. 343 * 344 * Locking rule: those places that want to lock multiple runqueues 345 * (such as the load balancing or the thread migration code), lock 346 * acquire operations must be ordered by ascending &runqueue. 347 */ 348 struct rq { 349 /* runqueue lock: */ 350 raw_spinlock_t lock; 351 352 /* 353 * nr_running and cpu_load should be in the same cacheline because 354 * remote CPUs use both these fields when doing load calculation. 355 */ 356 unsigned int nr_running; 357 #define CPU_LOAD_IDX_MAX 5 358 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 359 unsigned long last_load_update_tick; 360 #ifdef CONFIG_NO_HZ 361 u64 nohz_stamp; 362 unsigned long nohz_flags; 363 #endif 364 int skip_clock_update; 365 366 /* capture load from *all* tasks on this cpu: */ 367 struct load_weight load; 368 unsigned long nr_load_updates; 369 u64 nr_switches; 370 371 struct cfs_rq cfs; 372 struct rt_rq rt; 373 374 #ifdef CONFIG_FAIR_GROUP_SCHED 375 /* list of leaf cfs_rq on this cpu: */ 376 struct list_head leaf_cfs_rq_list; 377 #endif 378 #ifdef CONFIG_RT_GROUP_SCHED 379 struct list_head leaf_rt_rq_list; 380 #endif 381 382 /* 383 * This is part of a global counter where only the total sum 384 * over all CPUs matters. A task can increase this counter on 385 * one CPU and if it got migrated afterwards it may decrease 386 * it on another CPU. Always updated under the runqueue lock: 387 */ 388 unsigned long nr_uninterruptible; 389 390 struct task_struct *curr, *idle, *stop; 391 unsigned long next_balance; 392 struct mm_struct *prev_mm; 393 394 u64 clock; 395 u64 clock_task; 396 397 atomic_t nr_iowait; 398 399 #ifdef CONFIG_SMP 400 struct root_domain *rd; 401 struct sched_domain *sd; 402 403 unsigned long cpu_power; 404 405 unsigned char idle_balance; 406 /* For active balancing */ 407 int post_schedule; 408 int active_balance; 409 int push_cpu; 410 struct cpu_stop_work active_balance_work; 411 /* cpu of this runqueue: */ 412 int cpu; 413 int online; 414 415 struct list_head cfs_tasks; 416 417 u64 rt_avg; 418 u64 age_stamp; 419 u64 idle_stamp; 420 u64 avg_idle; 421 #endif 422 423 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 424 u64 prev_irq_time; 425 #endif 426 #ifdef CONFIG_PARAVIRT 427 u64 prev_steal_time; 428 #endif 429 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 430 u64 prev_steal_time_rq; 431 #endif 432 433 /* calc_load related fields */ 434 unsigned long calc_load_update; 435 long calc_load_active; 436 437 #ifdef CONFIG_SCHED_HRTICK 438 #ifdef CONFIG_SMP 439 int hrtick_csd_pending; 440 struct call_single_data hrtick_csd; 441 #endif 442 struct hrtimer hrtick_timer; 443 #endif 444 445 #ifdef CONFIG_SCHEDSTATS 446 /* latency stats */ 447 struct sched_info rq_sched_info; 448 unsigned long long rq_cpu_time; 449 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 450 451 /* sys_sched_yield() stats */ 452 unsigned int yld_count; 453 454 /* schedule() stats */ 455 unsigned int sched_count; 456 unsigned int sched_goidle; 457 458 /* try_to_wake_up() stats */ 459 unsigned int ttwu_count; 460 unsigned int ttwu_local; 461 #endif 462 463 #ifdef CONFIG_SMP 464 struct llist_head wake_list; 465 #endif 466 }; 467 468 static inline int cpu_of(struct rq *rq) 469 { 470 #ifdef CONFIG_SMP 471 return rq->cpu; 472 #else 473 return 0; 474 #endif 475 } 476 477 DECLARE_PER_CPU(struct rq, runqueues); 478 479 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 480 #define this_rq() (&__get_cpu_var(runqueues)) 481 #define task_rq(p) cpu_rq(task_cpu(p)) 482 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 483 #define raw_rq() (&__raw_get_cpu_var(runqueues)) 484 485 #ifdef CONFIG_SMP 486 487 #define rcu_dereference_check_sched_domain(p) \ 488 rcu_dereference_check((p), \ 489 lockdep_is_held(&sched_domains_mutex)) 490 491 /* 492 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 493 * See detach_destroy_domains: synchronize_sched for details. 494 * 495 * The domain tree of any CPU may only be accessed from within 496 * preempt-disabled sections. 497 */ 498 #define for_each_domain(cpu, __sd) \ 499 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 500 __sd; __sd = __sd->parent) 501 502 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 503 504 /** 505 * highest_flag_domain - Return highest sched_domain containing flag. 506 * @cpu: The cpu whose highest level of sched domain is to 507 * be returned. 508 * @flag: The flag to check for the highest sched_domain 509 * for the given cpu. 510 * 511 * Returns the highest sched_domain of a cpu which contains the given flag. 512 */ 513 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 514 { 515 struct sched_domain *sd, *hsd = NULL; 516 517 for_each_domain(cpu, sd) { 518 if (!(sd->flags & flag)) 519 break; 520 hsd = sd; 521 } 522 523 return hsd; 524 } 525 526 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 527 DECLARE_PER_CPU(int, sd_llc_id); 528 529 extern int group_balance_cpu(struct sched_group *sg); 530 531 #endif /* CONFIG_SMP */ 532 533 #include "stats.h" 534 #include "auto_group.h" 535 536 #ifdef CONFIG_CGROUP_SCHED 537 538 /* 539 * Return the group to which this tasks belongs. 540 * 541 * We cannot use task_subsys_state() and friends because the cgroup 542 * subsystem changes that value before the cgroup_subsys::attach() method 543 * is called, therefore we cannot pin it and might observe the wrong value. 544 * 545 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 546 * core changes this before calling sched_move_task(). 547 * 548 * Instead we use a 'copy' which is updated from sched_move_task() while 549 * holding both task_struct::pi_lock and rq::lock. 550 */ 551 static inline struct task_group *task_group(struct task_struct *p) 552 { 553 return p->sched_task_group; 554 } 555 556 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 557 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 558 { 559 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 560 struct task_group *tg = task_group(p); 561 #endif 562 563 #ifdef CONFIG_FAIR_GROUP_SCHED 564 p->se.cfs_rq = tg->cfs_rq[cpu]; 565 p->se.parent = tg->se[cpu]; 566 #endif 567 568 #ifdef CONFIG_RT_GROUP_SCHED 569 p->rt.rt_rq = tg->rt_rq[cpu]; 570 p->rt.parent = tg->rt_se[cpu]; 571 #endif 572 } 573 574 #else /* CONFIG_CGROUP_SCHED */ 575 576 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 577 static inline struct task_group *task_group(struct task_struct *p) 578 { 579 return NULL; 580 } 581 582 #endif /* CONFIG_CGROUP_SCHED */ 583 584 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 585 { 586 set_task_rq(p, cpu); 587 #ifdef CONFIG_SMP 588 /* 589 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 590 * successfuly executed on another CPU. We must ensure that updates of 591 * per-task data have been completed by this moment. 592 */ 593 smp_wmb(); 594 task_thread_info(p)->cpu = cpu; 595 #endif 596 } 597 598 /* 599 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 600 */ 601 #ifdef CONFIG_SCHED_DEBUG 602 # include <linux/static_key.h> 603 # define const_debug __read_mostly 604 #else 605 # define const_debug const 606 #endif 607 608 extern const_debug unsigned int sysctl_sched_features; 609 610 #define SCHED_FEAT(name, enabled) \ 611 __SCHED_FEAT_##name , 612 613 enum { 614 #include "features.h" 615 __SCHED_FEAT_NR, 616 }; 617 618 #undef SCHED_FEAT 619 620 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 621 static __always_inline bool static_branch__true(struct static_key *key) 622 { 623 return static_key_true(key); /* Not out of line branch. */ 624 } 625 626 static __always_inline bool static_branch__false(struct static_key *key) 627 { 628 return static_key_false(key); /* Out of line branch. */ 629 } 630 631 #define SCHED_FEAT(name, enabled) \ 632 static __always_inline bool static_branch_##name(struct static_key *key) \ 633 { \ 634 return static_branch__##enabled(key); \ 635 } 636 637 #include "features.h" 638 639 #undef SCHED_FEAT 640 641 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 642 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 643 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 644 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 645 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 646 647 static inline u64 global_rt_period(void) 648 { 649 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 650 } 651 652 static inline u64 global_rt_runtime(void) 653 { 654 if (sysctl_sched_rt_runtime < 0) 655 return RUNTIME_INF; 656 657 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 658 } 659 660 661 662 static inline int task_current(struct rq *rq, struct task_struct *p) 663 { 664 return rq->curr == p; 665 } 666 667 static inline int task_running(struct rq *rq, struct task_struct *p) 668 { 669 #ifdef CONFIG_SMP 670 return p->on_cpu; 671 #else 672 return task_current(rq, p); 673 #endif 674 } 675 676 677 #ifndef prepare_arch_switch 678 # define prepare_arch_switch(next) do { } while (0) 679 #endif 680 #ifndef finish_arch_switch 681 # define finish_arch_switch(prev) do { } while (0) 682 #endif 683 #ifndef finish_arch_post_lock_switch 684 # define finish_arch_post_lock_switch() do { } while (0) 685 #endif 686 687 #ifndef __ARCH_WANT_UNLOCKED_CTXSW 688 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 689 { 690 #ifdef CONFIG_SMP 691 /* 692 * We can optimise this out completely for !SMP, because the 693 * SMP rebalancing from interrupt is the only thing that cares 694 * here. 695 */ 696 next->on_cpu = 1; 697 #endif 698 } 699 700 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 701 { 702 #ifdef CONFIG_SMP 703 /* 704 * After ->on_cpu is cleared, the task can be moved to a different CPU. 705 * We must ensure this doesn't happen until the switch is completely 706 * finished. 707 */ 708 smp_wmb(); 709 prev->on_cpu = 0; 710 #endif 711 #ifdef CONFIG_DEBUG_SPINLOCK 712 /* this is a valid case when another task releases the spinlock */ 713 rq->lock.owner = current; 714 #endif 715 /* 716 * If we are tracking spinlock dependencies then we have to 717 * fix up the runqueue lock - which gets 'carried over' from 718 * prev into current: 719 */ 720 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 721 722 raw_spin_unlock_irq(&rq->lock); 723 } 724 725 #else /* __ARCH_WANT_UNLOCKED_CTXSW */ 726 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 727 { 728 #ifdef CONFIG_SMP 729 /* 730 * We can optimise this out completely for !SMP, because the 731 * SMP rebalancing from interrupt is the only thing that cares 732 * here. 733 */ 734 next->on_cpu = 1; 735 #endif 736 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 737 raw_spin_unlock_irq(&rq->lock); 738 #else 739 raw_spin_unlock(&rq->lock); 740 #endif 741 } 742 743 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 744 { 745 #ifdef CONFIG_SMP 746 /* 747 * After ->on_cpu is cleared, the task can be moved to a different CPU. 748 * We must ensure this doesn't happen until the switch is completely 749 * finished. 750 */ 751 smp_wmb(); 752 prev->on_cpu = 0; 753 #endif 754 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW 755 local_irq_enable(); 756 #endif 757 } 758 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ 759 760 761 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 762 { 763 lw->weight += inc; 764 lw->inv_weight = 0; 765 } 766 767 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 768 { 769 lw->weight -= dec; 770 lw->inv_weight = 0; 771 } 772 773 static inline void update_load_set(struct load_weight *lw, unsigned long w) 774 { 775 lw->weight = w; 776 lw->inv_weight = 0; 777 } 778 779 /* 780 * To aid in avoiding the subversion of "niceness" due to uneven distribution 781 * of tasks with abnormal "nice" values across CPUs the contribution that 782 * each task makes to its run queue's load is weighted according to its 783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 784 * scaled version of the new time slice allocation that they receive on time 785 * slice expiry etc. 786 */ 787 788 #define WEIGHT_IDLEPRIO 3 789 #define WMULT_IDLEPRIO 1431655765 790 791 /* 792 * Nice levels are multiplicative, with a gentle 10% change for every 793 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 794 * nice 1, it will get ~10% less CPU time than another CPU-bound task 795 * that remained on nice 0. 796 * 797 * The "10% effect" is relative and cumulative: from _any_ nice level, 798 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 799 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 800 * If a task goes up by ~10% and another task goes down by ~10% then 801 * the relative distance between them is ~25%.) 802 */ 803 static const int prio_to_weight[40] = { 804 /* -20 */ 88761, 71755, 56483, 46273, 36291, 805 /* -15 */ 29154, 23254, 18705, 14949, 11916, 806 /* -10 */ 9548, 7620, 6100, 4904, 3906, 807 /* -5 */ 3121, 2501, 1991, 1586, 1277, 808 /* 0 */ 1024, 820, 655, 526, 423, 809 /* 5 */ 335, 272, 215, 172, 137, 810 /* 10 */ 110, 87, 70, 56, 45, 811 /* 15 */ 36, 29, 23, 18, 15, 812 }; 813 814 /* 815 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. 816 * 817 * In cases where the weight does not change often, we can use the 818 * precalculated inverse to speed up arithmetics by turning divisions 819 * into multiplications: 820 */ 821 static const u32 prio_to_wmult[40] = { 822 /* -20 */ 48388, 59856, 76040, 92818, 118348, 823 /* -15 */ 147320, 184698, 229616, 287308, 360437, 824 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 825 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 826 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 827 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 828 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 829 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 830 }; 831 832 /* Time spent by the tasks of the cpu accounting group executing in ... */ 833 enum cpuacct_stat_index { 834 CPUACCT_STAT_USER, /* ... user mode */ 835 CPUACCT_STAT_SYSTEM, /* ... kernel mode */ 836 837 CPUACCT_STAT_NSTATS, 838 }; 839 840 841 #define sched_class_highest (&stop_sched_class) 842 #define for_each_class(class) \ 843 for (class = sched_class_highest; class; class = class->next) 844 845 extern const struct sched_class stop_sched_class; 846 extern const struct sched_class rt_sched_class; 847 extern const struct sched_class fair_sched_class; 848 extern const struct sched_class idle_sched_class; 849 850 851 #ifdef CONFIG_SMP 852 853 extern void trigger_load_balance(struct rq *rq, int cpu); 854 extern void idle_balance(int this_cpu, struct rq *this_rq); 855 856 #else /* CONFIG_SMP */ 857 858 static inline void idle_balance(int cpu, struct rq *rq) 859 { 860 } 861 862 #endif 863 864 extern void sysrq_sched_debug_show(void); 865 extern void sched_init_granularity(void); 866 extern void update_max_interval(void); 867 extern void update_group_power(struct sched_domain *sd, int cpu); 868 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu); 869 extern void init_sched_rt_class(void); 870 extern void init_sched_fair_class(void); 871 872 extern void resched_task(struct task_struct *p); 873 extern void resched_cpu(int cpu); 874 875 extern struct rt_bandwidth def_rt_bandwidth; 876 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 877 878 extern void update_idle_cpu_load(struct rq *this_rq); 879 880 #ifdef CONFIG_CGROUP_CPUACCT 881 #include <linux/cgroup.h> 882 /* track cpu usage of a group of tasks and its child groups */ 883 struct cpuacct { 884 struct cgroup_subsys_state css; 885 /* cpuusage holds pointer to a u64-type object on every cpu */ 886 u64 __percpu *cpuusage; 887 struct kernel_cpustat __percpu *cpustat; 888 }; 889 890 /* return cpu accounting group corresponding to this container */ 891 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) 892 { 893 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), 894 struct cpuacct, css); 895 } 896 897 /* return cpu accounting group to which this task belongs */ 898 static inline struct cpuacct *task_ca(struct task_struct *tsk) 899 { 900 return container_of(task_subsys_state(tsk, cpuacct_subsys_id), 901 struct cpuacct, css); 902 } 903 904 static inline struct cpuacct *parent_ca(struct cpuacct *ca) 905 { 906 if (!ca || !ca->css.cgroup->parent) 907 return NULL; 908 return cgroup_ca(ca->css.cgroup->parent); 909 } 910 911 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime); 912 #else 913 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} 914 #endif 915 916 static inline void inc_nr_running(struct rq *rq) 917 { 918 rq->nr_running++; 919 } 920 921 static inline void dec_nr_running(struct rq *rq) 922 { 923 rq->nr_running--; 924 } 925 926 extern void update_rq_clock(struct rq *rq); 927 928 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 929 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 930 931 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 932 933 extern const_debug unsigned int sysctl_sched_time_avg; 934 extern const_debug unsigned int sysctl_sched_nr_migrate; 935 extern const_debug unsigned int sysctl_sched_migration_cost; 936 937 static inline u64 sched_avg_period(void) 938 { 939 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 940 } 941 942 #ifdef CONFIG_SCHED_HRTICK 943 944 /* 945 * Use hrtick when: 946 * - enabled by features 947 * - hrtimer is actually high res 948 */ 949 static inline int hrtick_enabled(struct rq *rq) 950 { 951 if (!sched_feat(HRTICK)) 952 return 0; 953 if (!cpu_active(cpu_of(rq))) 954 return 0; 955 return hrtimer_is_hres_active(&rq->hrtick_timer); 956 } 957 958 void hrtick_start(struct rq *rq, u64 delay); 959 960 #else 961 962 static inline int hrtick_enabled(struct rq *rq) 963 { 964 return 0; 965 } 966 967 #endif /* CONFIG_SCHED_HRTICK */ 968 969 #ifdef CONFIG_SMP 970 extern void sched_avg_update(struct rq *rq); 971 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 972 { 973 rq->rt_avg += rt_delta; 974 sched_avg_update(rq); 975 } 976 #else 977 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 978 static inline void sched_avg_update(struct rq *rq) { } 979 #endif 980 981 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period); 982 983 #ifdef CONFIG_SMP 984 #ifdef CONFIG_PREEMPT 985 986 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 987 988 /* 989 * fair double_lock_balance: Safely acquires both rq->locks in a fair 990 * way at the expense of forcing extra atomic operations in all 991 * invocations. This assures that the double_lock is acquired using the 992 * same underlying policy as the spinlock_t on this architecture, which 993 * reduces latency compared to the unfair variant below. However, it 994 * also adds more overhead and therefore may reduce throughput. 995 */ 996 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 997 __releases(this_rq->lock) 998 __acquires(busiest->lock) 999 __acquires(this_rq->lock) 1000 { 1001 raw_spin_unlock(&this_rq->lock); 1002 double_rq_lock(this_rq, busiest); 1003 1004 return 1; 1005 } 1006 1007 #else 1008 /* 1009 * Unfair double_lock_balance: Optimizes throughput at the expense of 1010 * latency by eliminating extra atomic operations when the locks are 1011 * already in proper order on entry. This favors lower cpu-ids and will 1012 * grant the double lock to lower cpus over higher ids under contention, 1013 * regardless of entry order into the function. 1014 */ 1015 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1016 __releases(this_rq->lock) 1017 __acquires(busiest->lock) 1018 __acquires(this_rq->lock) 1019 { 1020 int ret = 0; 1021 1022 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1023 if (busiest < this_rq) { 1024 raw_spin_unlock(&this_rq->lock); 1025 raw_spin_lock(&busiest->lock); 1026 raw_spin_lock_nested(&this_rq->lock, 1027 SINGLE_DEPTH_NESTING); 1028 ret = 1; 1029 } else 1030 raw_spin_lock_nested(&busiest->lock, 1031 SINGLE_DEPTH_NESTING); 1032 } 1033 return ret; 1034 } 1035 1036 #endif /* CONFIG_PREEMPT */ 1037 1038 /* 1039 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1040 */ 1041 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1042 { 1043 if (unlikely(!irqs_disabled())) { 1044 /* printk() doesn't work good under rq->lock */ 1045 raw_spin_unlock(&this_rq->lock); 1046 BUG_ON(1); 1047 } 1048 1049 return _double_lock_balance(this_rq, busiest); 1050 } 1051 1052 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1053 __releases(busiest->lock) 1054 { 1055 raw_spin_unlock(&busiest->lock); 1056 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1057 } 1058 1059 /* 1060 * double_rq_lock - safely lock two runqueues 1061 * 1062 * Note this does not disable interrupts like task_rq_lock, 1063 * you need to do so manually before calling. 1064 */ 1065 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1066 __acquires(rq1->lock) 1067 __acquires(rq2->lock) 1068 { 1069 BUG_ON(!irqs_disabled()); 1070 if (rq1 == rq2) { 1071 raw_spin_lock(&rq1->lock); 1072 __acquire(rq2->lock); /* Fake it out ;) */ 1073 } else { 1074 if (rq1 < rq2) { 1075 raw_spin_lock(&rq1->lock); 1076 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1077 } else { 1078 raw_spin_lock(&rq2->lock); 1079 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1080 } 1081 } 1082 } 1083 1084 /* 1085 * double_rq_unlock - safely unlock two runqueues 1086 * 1087 * Note this does not restore interrupts like task_rq_unlock, 1088 * you need to do so manually after calling. 1089 */ 1090 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1091 __releases(rq1->lock) 1092 __releases(rq2->lock) 1093 { 1094 raw_spin_unlock(&rq1->lock); 1095 if (rq1 != rq2) 1096 raw_spin_unlock(&rq2->lock); 1097 else 1098 __release(rq2->lock); 1099 } 1100 1101 #else /* CONFIG_SMP */ 1102 1103 /* 1104 * double_rq_lock - safely lock two runqueues 1105 * 1106 * Note this does not disable interrupts like task_rq_lock, 1107 * you need to do so manually before calling. 1108 */ 1109 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1110 __acquires(rq1->lock) 1111 __acquires(rq2->lock) 1112 { 1113 BUG_ON(!irqs_disabled()); 1114 BUG_ON(rq1 != rq2); 1115 raw_spin_lock(&rq1->lock); 1116 __acquire(rq2->lock); /* Fake it out ;) */ 1117 } 1118 1119 /* 1120 * double_rq_unlock - safely unlock two runqueues 1121 * 1122 * Note this does not restore interrupts like task_rq_unlock, 1123 * you need to do so manually after calling. 1124 */ 1125 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1126 __releases(rq1->lock) 1127 __releases(rq2->lock) 1128 { 1129 BUG_ON(rq1 != rq2); 1130 raw_spin_unlock(&rq1->lock); 1131 __release(rq2->lock); 1132 } 1133 1134 #endif 1135 1136 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1137 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1138 extern void print_cfs_stats(struct seq_file *m, int cpu); 1139 extern void print_rt_stats(struct seq_file *m, int cpu); 1140 1141 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1142 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); 1143 extern void unthrottle_offline_cfs_rqs(struct rq *rq); 1144 1145 extern void account_cfs_bandwidth_used(int enabled, int was_enabled); 1146 1147 #ifdef CONFIG_NO_HZ 1148 enum rq_nohz_flag_bits { 1149 NOHZ_TICK_STOPPED, 1150 NOHZ_BALANCE_KICK, 1151 NOHZ_IDLE, 1152 }; 1153 1154 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1155 #endif 1156