1 2 #include <linux/sched.h> 3 #include <linux/sched/sysctl.h> 4 #include <linux/sched/rt.h> 5 #include <linux/sched/deadline.h> 6 #include <linux/binfmts.h> 7 #include <linux/mutex.h> 8 #include <linux/spinlock.h> 9 #include <linux/stop_machine.h> 10 #include <linux/irq_work.h> 11 #include <linux/tick.h> 12 #include <linux/slab.h> 13 14 #include "cpupri.h" 15 #include "cpudeadline.h" 16 #include "cpuacct.h" 17 18 struct rq; 19 struct cpuidle_state; 20 21 /* task_struct::on_rq states: */ 22 #define TASK_ON_RQ_QUEUED 1 23 #define TASK_ON_RQ_MIGRATING 2 24 25 extern __read_mostly int scheduler_running; 26 27 extern unsigned long calc_load_update; 28 extern atomic_long_t calc_load_tasks; 29 30 extern void calc_global_load_tick(struct rq *this_rq); 31 extern long calc_load_fold_active(struct rq *this_rq); 32 33 #ifdef CONFIG_SMP 34 extern void update_cpu_load_active(struct rq *this_rq); 35 #else 36 static inline void update_cpu_load_active(struct rq *this_rq) { } 37 #endif 38 39 /* 40 * Helpers for converting nanosecond timing to jiffy resolution 41 */ 42 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) 43 44 /* 45 * Increase resolution of nice-level calculations for 64-bit architectures. 46 * The extra resolution improves shares distribution and load balancing of 47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 48 * hierarchies, especially on larger systems. This is not a user-visible change 49 * and does not change the user-interface for setting shares/weights. 50 * 51 * We increase resolution only if we have enough bits to allow this increased 52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 54 * increased costs. 55 */ 56 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 57 # define SCHED_LOAD_RESOLUTION 10 58 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 59 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 60 #else 61 # define SCHED_LOAD_RESOLUTION 0 62 # define scale_load(w) (w) 63 # define scale_load_down(w) (w) 64 #endif 65 66 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 67 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 68 69 #define NICE_0_LOAD SCHED_LOAD_SCALE 70 #define NICE_0_SHIFT SCHED_LOAD_SHIFT 71 72 /* 73 * Single value that decides SCHED_DEADLINE internal math precision. 74 * 10 -> just above 1us 75 * 9 -> just above 0.5us 76 */ 77 #define DL_SCALE (10) 78 79 /* 80 * These are the 'tuning knobs' of the scheduler: 81 */ 82 83 /* 84 * single value that denotes runtime == period, ie unlimited time. 85 */ 86 #define RUNTIME_INF ((u64)~0ULL) 87 88 static inline int idle_policy(int policy) 89 { 90 return policy == SCHED_IDLE; 91 } 92 static inline int fair_policy(int policy) 93 { 94 return policy == SCHED_NORMAL || policy == SCHED_BATCH; 95 } 96 97 static inline int rt_policy(int policy) 98 { 99 return policy == SCHED_FIFO || policy == SCHED_RR; 100 } 101 102 static inline int dl_policy(int policy) 103 { 104 return policy == SCHED_DEADLINE; 105 } 106 static inline bool valid_policy(int policy) 107 { 108 return idle_policy(policy) || fair_policy(policy) || 109 rt_policy(policy) || dl_policy(policy); 110 } 111 112 static inline int task_has_rt_policy(struct task_struct *p) 113 { 114 return rt_policy(p->policy); 115 } 116 117 static inline int task_has_dl_policy(struct task_struct *p) 118 { 119 return dl_policy(p->policy); 120 } 121 122 /* 123 * Tells if entity @a should preempt entity @b. 124 */ 125 static inline bool 126 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) 127 { 128 return dl_time_before(a->deadline, b->deadline); 129 } 130 131 /* 132 * This is the priority-queue data structure of the RT scheduling class: 133 */ 134 struct rt_prio_array { 135 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 136 struct list_head queue[MAX_RT_PRIO]; 137 }; 138 139 struct rt_bandwidth { 140 /* nests inside the rq lock: */ 141 raw_spinlock_t rt_runtime_lock; 142 ktime_t rt_period; 143 u64 rt_runtime; 144 struct hrtimer rt_period_timer; 145 unsigned int rt_period_active; 146 }; 147 148 void __dl_clear_params(struct task_struct *p); 149 150 /* 151 * To keep the bandwidth of -deadline tasks and groups under control 152 * we need some place where: 153 * - store the maximum -deadline bandwidth of the system (the group); 154 * - cache the fraction of that bandwidth that is currently allocated. 155 * 156 * This is all done in the data structure below. It is similar to the 157 * one used for RT-throttling (rt_bandwidth), with the main difference 158 * that, since here we are only interested in admission control, we 159 * do not decrease any runtime while the group "executes", neither we 160 * need a timer to replenish it. 161 * 162 * With respect to SMP, the bandwidth is given on a per-CPU basis, 163 * meaning that: 164 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; 165 * - dl_total_bw array contains, in the i-eth element, the currently 166 * allocated bandwidth on the i-eth CPU. 167 * Moreover, groups consume bandwidth on each CPU, while tasks only 168 * consume bandwidth on the CPU they're running on. 169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw 170 * that will be shown the next time the proc or cgroup controls will 171 * be red. It on its turn can be changed by writing on its own 172 * control. 173 */ 174 struct dl_bandwidth { 175 raw_spinlock_t dl_runtime_lock; 176 u64 dl_runtime; 177 u64 dl_period; 178 }; 179 180 static inline int dl_bandwidth_enabled(void) 181 { 182 return sysctl_sched_rt_runtime >= 0; 183 } 184 185 extern struct dl_bw *dl_bw_of(int i); 186 187 struct dl_bw { 188 raw_spinlock_t lock; 189 u64 bw, total_bw; 190 }; 191 192 static inline 193 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) 194 { 195 dl_b->total_bw -= tsk_bw; 196 } 197 198 static inline 199 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) 200 { 201 dl_b->total_bw += tsk_bw; 202 } 203 204 static inline 205 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) 206 { 207 return dl_b->bw != -1 && 208 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; 209 } 210 211 extern struct mutex sched_domains_mutex; 212 213 #ifdef CONFIG_CGROUP_SCHED 214 215 #include <linux/cgroup.h> 216 217 struct cfs_rq; 218 struct rt_rq; 219 220 extern struct list_head task_groups; 221 222 struct cfs_bandwidth { 223 #ifdef CONFIG_CFS_BANDWIDTH 224 raw_spinlock_t lock; 225 ktime_t period; 226 u64 quota, runtime; 227 s64 hierarchical_quota; 228 u64 runtime_expires; 229 230 int idle, period_active; 231 struct hrtimer period_timer, slack_timer; 232 struct list_head throttled_cfs_rq; 233 234 /* statistics */ 235 int nr_periods, nr_throttled; 236 u64 throttled_time; 237 #endif 238 }; 239 240 /* task group related information */ 241 struct task_group { 242 struct cgroup_subsys_state css; 243 244 #ifdef CONFIG_FAIR_GROUP_SCHED 245 /* schedulable entities of this group on each cpu */ 246 struct sched_entity **se; 247 /* runqueue "owned" by this group on each cpu */ 248 struct cfs_rq **cfs_rq; 249 unsigned long shares; 250 251 #ifdef CONFIG_SMP 252 /* 253 * load_avg can be heavily contended at clock tick time, so put 254 * it in its own cacheline separated from the fields above which 255 * will also be accessed at each tick. 256 */ 257 atomic_long_t load_avg ____cacheline_aligned; 258 #endif 259 #endif 260 261 #ifdef CONFIG_RT_GROUP_SCHED 262 struct sched_rt_entity **rt_se; 263 struct rt_rq **rt_rq; 264 265 struct rt_bandwidth rt_bandwidth; 266 #endif 267 268 struct rcu_head rcu; 269 struct list_head list; 270 271 struct task_group *parent; 272 struct list_head siblings; 273 struct list_head children; 274 275 #ifdef CONFIG_SCHED_AUTOGROUP 276 struct autogroup *autogroup; 277 #endif 278 279 struct cfs_bandwidth cfs_bandwidth; 280 }; 281 282 #ifdef CONFIG_FAIR_GROUP_SCHED 283 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 284 285 /* 286 * A weight of 0 or 1 can cause arithmetics problems. 287 * A weight of a cfs_rq is the sum of weights of which entities 288 * are queued on this cfs_rq, so a weight of a entity should not be 289 * too large, so as the shares value of a task group. 290 * (The default weight is 1024 - so there's no practical 291 * limitation from this.) 292 */ 293 #define MIN_SHARES (1UL << 1) 294 #define MAX_SHARES (1UL << 18) 295 #endif 296 297 typedef int (*tg_visitor)(struct task_group *, void *); 298 299 extern int walk_tg_tree_from(struct task_group *from, 300 tg_visitor down, tg_visitor up, void *data); 301 302 /* 303 * Iterate the full tree, calling @down when first entering a node and @up when 304 * leaving it for the final time. 305 * 306 * Caller must hold rcu_lock or sufficient equivalent. 307 */ 308 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 309 { 310 return walk_tg_tree_from(&root_task_group, down, up, data); 311 } 312 313 extern int tg_nop(struct task_group *tg, void *data); 314 315 extern void free_fair_sched_group(struct task_group *tg); 316 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 317 extern void unregister_fair_sched_group(struct task_group *tg); 318 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 319 struct sched_entity *se, int cpu, 320 struct sched_entity *parent); 321 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 322 323 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 324 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 325 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 326 327 extern void free_rt_sched_group(struct task_group *tg); 328 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 329 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 330 struct sched_rt_entity *rt_se, int cpu, 331 struct sched_rt_entity *parent); 332 333 extern struct task_group *sched_create_group(struct task_group *parent); 334 extern void sched_online_group(struct task_group *tg, 335 struct task_group *parent); 336 extern void sched_destroy_group(struct task_group *tg); 337 extern void sched_offline_group(struct task_group *tg); 338 339 extern void sched_move_task(struct task_struct *tsk); 340 341 #ifdef CONFIG_FAIR_GROUP_SCHED 342 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 343 344 #ifdef CONFIG_SMP 345 extern void set_task_rq_fair(struct sched_entity *se, 346 struct cfs_rq *prev, struct cfs_rq *next); 347 #else /* !CONFIG_SMP */ 348 static inline void set_task_rq_fair(struct sched_entity *se, 349 struct cfs_rq *prev, struct cfs_rq *next) { } 350 #endif /* CONFIG_SMP */ 351 #endif /* CONFIG_FAIR_GROUP_SCHED */ 352 353 #else /* CONFIG_CGROUP_SCHED */ 354 355 struct cfs_bandwidth { }; 356 357 #endif /* CONFIG_CGROUP_SCHED */ 358 359 /* CFS-related fields in a runqueue */ 360 struct cfs_rq { 361 struct load_weight load; 362 unsigned int nr_running, h_nr_running; 363 364 u64 exec_clock; 365 u64 min_vruntime; 366 #ifndef CONFIG_64BIT 367 u64 min_vruntime_copy; 368 #endif 369 370 struct rb_root tasks_timeline; 371 struct rb_node *rb_leftmost; 372 373 /* 374 * 'curr' points to currently running entity on this cfs_rq. 375 * It is set to NULL otherwise (i.e when none are currently running). 376 */ 377 struct sched_entity *curr, *next, *last, *skip; 378 379 #ifdef CONFIG_SCHED_DEBUG 380 unsigned int nr_spread_over; 381 #endif 382 383 #ifdef CONFIG_SMP 384 /* 385 * CFS load tracking 386 */ 387 struct sched_avg avg; 388 u64 runnable_load_sum; 389 unsigned long runnable_load_avg; 390 #ifdef CONFIG_FAIR_GROUP_SCHED 391 unsigned long tg_load_avg_contrib; 392 #endif 393 atomic_long_t removed_load_avg, removed_util_avg; 394 #ifndef CONFIG_64BIT 395 u64 load_last_update_time_copy; 396 #endif 397 398 #ifdef CONFIG_FAIR_GROUP_SCHED 399 /* 400 * h_load = weight * f(tg) 401 * 402 * Where f(tg) is the recursive weight fraction assigned to 403 * this group. 404 */ 405 unsigned long h_load; 406 u64 last_h_load_update; 407 struct sched_entity *h_load_next; 408 #endif /* CONFIG_FAIR_GROUP_SCHED */ 409 #endif /* CONFIG_SMP */ 410 411 #ifdef CONFIG_FAIR_GROUP_SCHED 412 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ 413 414 /* 415 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 416 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 417 * (like users, containers etc.) 418 * 419 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This 420 * list is used during load balance. 421 */ 422 int on_list; 423 struct list_head leaf_cfs_rq_list; 424 struct task_group *tg; /* group that "owns" this runqueue */ 425 426 #ifdef CONFIG_CFS_BANDWIDTH 427 int runtime_enabled; 428 u64 runtime_expires; 429 s64 runtime_remaining; 430 431 u64 throttled_clock, throttled_clock_task; 432 u64 throttled_clock_task_time; 433 int throttled, throttle_count; 434 struct list_head throttled_list; 435 #endif /* CONFIG_CFS_BANDWIDTH */ 436 #endif /* CONFIG_FAIR_GROUP_SCHED */ 437 }; 438 439 static inline int rt_bandwidth_enabled(void) 440 { 441 return sysctl_sched_rt_runtime >= 0; 442 } 443 444 /* RT IPI pull logic requires IRQ_WORK */ 445 #ifdef CONFIG_IRQ_WORK 446 # define HAVE_RT_PUSH_IPI 447 #endif 448 449 /* Real-Time classes' related field in a runqueue: */ 450 struct rt_rq { 451 struct rt_prio_array active; 452 unsigned int rt_nr_running; 453 unsigned int rr_nr_running; 454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 455 struct { 456 int curr; /* highest queued rt task prio */ 457 #ifdef CONFIG_SMP 458 int next; /* next highest */ 459 #endif 460 } highest_prio; 461 #endif 462 #ifdef CONFIG_SMP 463 unsigned long rt_nr_migratory; 464 unsigned long rt_nr_total; 465 int overloaded; 466 struct plist_head pushable_tasks; 467 #ifdef HAVE_RT_PUSH_IPI 468 int push_flags; 469 int push_cpu; 470 struct irq_work push_work; 471 raw_spinlock_t push_lock; 472 #endif 473 #endif /* CONFIG_SMP */ 474 int rt_queued; 475 476 int rt_throttled; 477 u64 rt_time; 478 u64 rt_runtime; 479 /* Nests inside the rq lock: */ 480 raw_spinlock_t rt_runtime_lock; 481 482 #ifdef CONFIG_RT_GROUP_SCHED 483 unsigned long rt_nr_boosted; 484 485 struct rq *rq; 486 struct task_group *tg; 487 #endif 488 }; 489 490 /* Deadline class' related fields in a runqueue */ 491 struct dl_rq { 492 /* runqueue is an rbtree, ordered by deadline */ 493 struct rb_root rb_root; 494 struct rb_node *rb_leftmost; 495 496 unsigned long dl_nr_running; 497 498 #ifdef CONFIG_SMP 499 /* 500 * Deadline values of the currently executing and the 501 * earliest ready task on this rq. Caching these facilitates 502 * the decision wether or not a ready but not running task 503 * should migrate somewhere else. 504 */ 505 struct { 506 u64 curr; 507 u64 next; 508 } earliest_dl; 509 510 unsigned long dl_nr_migratory; 511 int overloaded; 512 513 /* 514 * Tasks on this rq that can be pushed away. They are kept in 515 * an rb-tree, ordered by tasks' deadlines, with caching 516 * of the leftmost (earliest deadline) element. 517 */ 518 struct rb_root pushable_dl_tasks_root; 519 struct rb_node *pushable_dl_tasks_leftmost; 520 #else 521 struct dl_bw dl_bw; 522 #endif 523 }; 524 525 #ifdef CONFIG_SMP 526 527 /* 528 * We add the notion of a root-domain which will be used to define per-domain 529 * variables. Each exclusive cpuset essentially defines an island domain by 530 * fully partitioning the member cpus from any other cpuset. Whenever a new 531 * exclusive cpuset is created, we also create and attach a new root-domain 532 * object. 533 * 534 */ 535 struct root_domain { 536 atomic_t refcount; 537 atomic_t rto_count; 538 struct rcu_head rcu; 539 cpumask_var_t span; 540 cpumask_var_t online; 541 542 /* Indicate more than one runnable task for any CPU */ 543 bool overload; 544 545 /* 546 * The bit corresponding to a CPU gets set here if such CPU has more 547 * than one runnable -deadline task (as it is below for RT tasks). 548 */ 549 cpumask_var_t dlo_mask; 550 atomic_t dlo_count; 551 struct dl_bw dl_bw; 552 struct cpudl cpudl; 553 554 /* 555 * The "RT overload" flag: it gets set if a CPU has more than 556 * one runnable RT task. 557 */ 558 cpumask_var_t rto_mask; 559 struct cpupri cpupri; 560 }; 561 562 extern struct root_domain def_root_domain; 563 564 #endif /* CONFIG_SMP */ 565 566 /* 567 * This is the main, per-CPU runqueue data structure. 568 * 569 * Locking rule: those places that want to lock multiple runqueues 570 * (such as the load balancing or the thread migration code), lock 571 * acquire operations must be ordered by ascending &runqueue. 572 */ 573 struct rq { 574 /* runqueue lock: */ 575 raw_spinlock_t lock; 576 577 /* 578 * nr_running and cpu_load should be in the same cacheline because 579 * remote CPUs use both these fields when doing load calculation. 580 */ 581 unsigned int nr_running; 582 #ifdef CONFIG_NUMA_BALANCING 583 unsigned int nr_numa_running; 584 unsigned int nr_preferred_running; 585 #endif 586 #define CPU_LOAD_IDX_MAX 5 587 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; 588 unsigned long last_load_update_tick; 589 #ifdef CONFIG_NO_HZ_COMMON 590 u64 nohz_stamp; 591 unsigned long nohz_flags; 592 #endif 593 #ifdef CONFIG_NO_HZ_FULL 594 unsigned long last_sched_tick; 595 #endif 596 /* capture load from *all* tasks on this cpu: */ 597 struct load_weight load; 598 unsigned long nr_load_updates; 599 u64 nr_switches; 600 601 struct cfs_rq cfs; 602 struct rt_rq rt; 603 struct dl_rq dl; 604 605 #ifdef CONFIG_FAIR_GROUP_SCHED 606 /* list of leaf cfs_rq on this cpu: */ 607 struct list_head leaf_cfs_rq_list; 608 #endif /* CONFIG_FAIR_GROUP_SCHED */ 609 610 /* 611 * This is part of a global counter where only the total sum 612 * over all CPUs matters. A task can increase this counter on 613 * one CPU and if it got migrated afterwards it may decrease 614 * it on another CPU. Always updated under the runqueue lock: 615 */ 616 unsigned long nr_uninterruptible; 617 618 struct task_struct *curr, *idle, *stop; 619 unsigned long next_balance; 620 struct mm_struct *prev_mm; 621 622 unsigned int clock_skip_update; 623 u64 clock; 624 u64 clock_task; 625 626 atomic_t nr_iowait; 627 628 #ifdef CONFIG_SMP 629 struct root_domain *rd; 630 struct sched_domain *sd; 631 632 unsigned long cpu_capacity; 633 unsigned long cpu_capacity_orig; 634 635 struct callback_head *balance_callback; 636 637 unsigned char idle_balance; 638 /* For active balancing */ 639 int active_balance; 640 int push_cpu; 641 struct cpu_stop_work active_balance_work; 642 /* cpu of this runqueue: */ 643 int cpu; 644 int online; 645 646 struct list_head cfs_tasks; 647 648 u64 rt_avg; 649 u64 age_stamp; 650 u64 idle_stamp; 651 u64 avg_idle; 652 653 /* This is used to determine avg_idle's max value */ 654 u64 max_idle_balance_cost; 655 #endif 656 657 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 658 u64 prev_irq_time; 659 #endif 660 #ifdef CONFIG_PARAVIRT 661 u64 prev_steal_time; 662 #endif 663 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 664 u64 prev_steal_time_rq; 665 #endif 666 667 /* calc_load related fields */ 668 unsigned long calc_load_update; 669 long calc_load_active; 670 671 #ifdef CONFIG_SCHED_HRTICK 672 #ifdef CONFIG_SMP 673 int hrtick_csd_pending; 674 struct call_single_data hrtick_csd; 675 #endif 676 struct hrtimer hrtick_timer; 677 #endif 678 679 #ifdef CONFIG_SCHEDSTATS 680 /* latency stats */ 681 struct sched_info rq_sched_info; 682 unsigned long long rq_cpu_time; 683 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ 684 685 /* sys_sched_yield() stats */ 686 unsigned int yld_count; 687 688 /* schedule() stats */ 689 unsigned int sched_count; 690 unsigned int sched_goidle; 691 692 /* try_to_wake_up() stats */ 693 unsigned int ttwu_count; 694 unsigned int ttwu_local; 695 #endif 696 697 #ifdef CONFIG_SMP 698 struct llist_head wake_list; 699 #endif 700 701 #ifdef CONFIG_CPU_IDLE 702 /* Must be inspected within a rcu lock section */ 703 struct cpuidle_state *idle_state; 704 #endif 705 }; 706 707 static inline int cpu_of(struct rq *rq) 708 { 709 #ifdef CONFIG_SMP 710 return rq->cpu; 711 #else 712 return 0; 713 #endif 714 } 715 716 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 717 718 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 719 #define this_rq() this_cpu_ptr(&runqueues) 720 #define task_rq(p) cpu_rq(task_cpu(p)) 721 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 722 #define raw_rq() raw_cpu_ptr(&runqueues) 723 724 static inline u64 __rq_clock_broken(struct rq *rq) 725 { 726 return READ_ONCE(rq->clock); 727 } 728 729 static inline u64 rq_clock(struct rq *rq) 730 { 731 lockdep_assert_held(&rq->lock); 732 return rq->clock; 733 } 734 735 static inline u64 rq_clock_task(struct rq *rq) 736 { 737 lockdep_assert_held(&rq->lock); 738 return rq->clock_task; 739 } 740 741 #define RQCF_REQ_SKIP 0x01 742 #define RQCF_ACT_SKIP 0x02 743 744 static inline void rq_clock_skip_update(struct rq *rq, bool skip) 745 { 746 lockdep_assert_held(&rq->lock); 747 if (skip) 748 rq->clock_skip_update |= RQCF_REQ_SKIP; 749 else 750 rq->clock_skip_update &= ~RQCF_REQ_SKIP; 751 } 752 753 #ifdef CONFIG_NUMA 754 enum numa_topology_type { 755 NUMA_DIRECT, 756 NUMA_GLUELESS_MESH, 757 NUMA_BACKPLANE, 758 }; 759 extern enum numa_topology_type sched_numa_topology_type; 760 extern int sched_max_numa_distance; 761 extern bool find_numa_distance(int distance); 762 #endif 763 764 #ifdef CONFIG_NUMA_BALANCING 765 /* The regions in numa_faults array from task_struct */ 766 enum numa_faults_stats { 767 NUMA_MEM = 0, 768 NUMA_CPU, 769 NUMA_MEMBUF, 770 NUMA_CPUBUF 771 }; 772 extern void sched_setnuma(struct task_struct *p, int node); 773 extern int migrate_task_to(struct task_struct *p, int cpu); 774 extern int migrate_swap(struct task_struct *, struct task_struct *); 775 #endif /* CONFIG_NUMA_BALANCING */ 776 777 #ifdef CONFIG_SMP 778 779 static inline void 780 queue_balance_callback(struct rq *rq, 781 struct callback_head *head, 782 void (*func)(struct rq *rq)) 783 { 784 lockdep_assert_held(&rq->lock); 785 786 if (unlikely(head->next)) 787 return; 788 789 head->func = (void (*)(struct callback_head *))func; 790 head->next = rq->balance_callback; 791 rq->balance_callback = head; 792 } 793 794 extern void sched_ttwu_pending(void); 795 796 #define rcu_dereference_check_sched_domain(p) \ 797 rcu_dereference_check((p), \ 798 lockdep_is_held(&sched_domains_mutex)) 799 800 /* 801 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 802 * See detach_destroy_domains: synchronize_sched for details. 803 * 804 * The domain tree of any CPU may only be accessed from within 805 * preempt-disabled sections. 806 */ 807 #define for_each_domain(cpu, __sd) \ 808 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 809 __sd; __sd = __sd->parent) 810 811 #define for_each_lower_domain(sd) for (; sd; sd = sd->child) 812 813 /** 814 * highest_flag_domain - Return highest sched_domain containing flag. 815 * @cpu: The cpu whose highest level of sched domain is to 816 * be returned. 817 * @flag: The flag to check for the highest sched_domain 818 * for the given cpu. 819 * 820 * Returns the highest sched_domain of a cpu which contains the given flag. 821 */ 822 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 823 { 824 struct sched_domain *sd, *hsd = NULL; 825 826 for_each_domain(cpu, sd) { 827 if (!(sd->flags & flag)) 828 break; 829 hsd = sd; 830 } 831 832 return hsd; 833 } 834 835 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 836 { 837 struct sched_domain *sd; 838 839 for_each_domain(cpu, sd) { 840 if (sd->flags & flag) 841 break; 842 } 843 844 return sd; 845 } 846 847 DECLARE_PER_CPU(struct sched_domain *, sd_llc); 848 DECLARE_PER_CPU(int, sd_llc_size); 849 DECLARE_PER_CPU(int, sd_llc_id); 850 DECLARE_PER_CPU(struct sched_domain *, sd_numa); 851 DECLARE_PER_CPU(struct sched_domain *, sd_busy); 852 DECLARE_PER_CPU(struct sched_domain *, sd_asym); 853 854 struct sched_group_capacity { 855 atomic_t ref; 856 /* 857 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity 858 * for a single CPU. 859 */ 860 unsigned int capacity; 861 unsigned long next_update; 862 int imbalance; /* XXX unrelated to capacity but shared group state */ 863 /* 864 * Number of busy cpus in this group. 865 */ 866 atomic_t nr_busy_cpus; 867 868 unsigned long cpumask[0]; /* iteration mask */ 869 }; 870 871 struct sched_group { 872 struct sched_group *next; /* Must be a circular list */ 873 atomic_t ref; 874 875 unsigned int group_weight; 876 struct sched_group_capacity *sgc; 877 878 /* 879 * The CPUs this group covers. 880 * 881 * NOTE: this field is variable length. (Allocated dynamically 882 * by attaching extra space to the end of the structure, 883 * depending on how many CPUs the kernel has booted up with) 884 */ 885 unsigned long cpumask[0]; 886 }; 887 888 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 889 { 890 return to_cpumask(sg->cpumask); 891 } 892 893 /* 894 * cpumask masking which cpus in the group are allowed to iterate up the domain 895 * tree. 896 */ 897 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 898 { 899 return to_cpumask(sg->sgc->cpumask); 900 } 901 902 /** 903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 904 * @group: The group whose first cpu is to be returned. 905 */ 906 static inline unsigned int group_first_cpu(struct sched_group *group) 907 { 908 return cpumask_first(sched_group_cpus(group)); 909 } 910 911 extern int group_balance_cpu(struct sched_group *sg); 912 913 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) 914 void register_sched_domain_sysctl(void); 915 void unregister_sched_domain_sysctl(void); 916 #else 917 static inline void register_sched_domain_sysctl(void) 918 { 919 } 920 static inline void unregister_sched_domain_sysctl(void) 921 { 922 } 923 #endif 924 925 #else 926 927 static inline void sched_ttwu_pending(void) { } 928 929 #endif /* CONFIG_SMP */ 930 931 #include "stats.h" 932 #include "auto_group.h" 933 934 #ifdef CONFIG_CGROUP_SCHED 935 936 /* 937 * Return the group to which this tasks belongs. 938 * 939 * We cannot use task_css() and friends because the cgroup subsystem 940 * changes that value before the cgroup_subsys::attach() method is called, 941 * therefore we cannot pin it and might observe the wrong value. 942 * 943 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 944 * core changes this before calling sched_move_task(). 945 * 946 * Instead we use a 'copy' which is updated from sched_move_task() while 947 * holding both task_struct::pi_lock and rq::lock. 948 */ 949 static inline struct task_group *task_group(struct task_struct *p) 950 { 951 return p->sched_task_group; 952 } 953 954 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 955 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 956 { 957 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 958 struct task_group *tg = task_group(p); 959 #endif 960 961 #ifdef CONFIG_FAIR_GROUP_SCHED 962 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 963 p->se.cfs_rq = tg->cfs_rq[cpu]; 964 p->se.parent = tg->se[cpu]; 965 #endif 966 967 #ifdef CONFIG_RT_GROUP_SCHED 968 p->rt.rt_rq = tg->rt_rq[cpu]; 969 p->rt.parent = tg->rt_se[cpu]; 970 #endif 971 } 972 973 #else /* CONFIG_CGROUP_SCHED */ 974 975 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 976 static inline struct task_group *task_group(struct task_struct *p) 977 { 978 return NULL; 979 } 980 981 #endif /* CONFIG_CGROUP_SCHED */ 982 983 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 984 { 985 set_task_rq(p, cpu); 986 #ifdef CONFIG_SMP 987 /* 988 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 989 * successfuly executed on another CPU. We must ensure that updates of 990 * per-task data have been completed by this moment. 991 */ 992 smp_wmb(); 993 task_thread_info(p)->cpu = cpu; 994 p->wake_cpu = cpu; 995 #endif 996 } 997 998 /* 999 * Tunables that become constants when CONFIG_SCHED_DEBUG is off: 1000 */ 1001 #ifdef CONFIG_SCHED_DEBUG 1002 # include <linux/static_key.h> 1003 # define const_debug __read_mostly 1004 #else 1005 # define const_debug const 1006 #endif 1007 1008 extern const_debug unsigned int sysctl_sched_features; 1009 1010 #define SCHED_FEAT(name, enabled) \ 1011 __SCHED_FEAT_##name , 1012 1013 enum { 1014 #include "features.h" 1015 __SCHED_FEAT_NR, 1016 }; 1017 1018 #undef SCHED_FEAT 1019 1020 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) 1021 #define SCHED_FEAT(name, enabled) \ 1022 static __always_inline bool static_branch_##name(struct static_key *key) \ 1023 { \ 1024 return static_key_##enabled(key); \ 1025 } 1026 1027 #include "features.h" 1028 1029 #undef SCHED_FEAT 1030 1031 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 1032 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 1033 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ 1034 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 1035 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ 1036 1037 extern struct static_key_false sched_numa_balancing; 1038 extern struct static_key_false sched_schedstats; 1039 1040 static inline u64 global_rt_period(void) 1041 { 1042 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 1043 } 1044 1045 static inline u64 global_rt_runtime(void) 1046 { 1047 if (sysctl_sched_rt_runtime < 0) 1048 return RUNTIME_INF; 1049 1050 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 1051 } 1052 1053 static inline int task_current(struct rq *rq, struct task_struct *p) 1054 { 1055 return rq->curr == p; 1056 } 1057 1058 static inline int task_running(struct rq *rq, struct task_struct *p) 1059 { 1060 #ifdef CONFIG_SMP 1061 return p->on_cpu; 1062 #else 1063 return task_current(rq, p); 1064 #endif 1065 } 1066 1067 static inline int task_on_rq_queued(struct task_struct *p) 1068 { 1069 return p->on_rq == TASK_ON_RQ_QUEUED; 1070 } 1071 1072 static inline int task_on_rq_migrating(struct task_struct *p) 1073 { 1074 return p->on_rq == TASK_ON_RQ_MIGRATING; 1075 } 1076 1077 #ifndef prepare_arch_switch 1078 # define prepare_arch_switch(next) do { } while (0) 1079 #endif 1080 #ifndef finish_arch_post_lock_switch 1081 # define finish_arch_post_lock_switch() do { } while (0) 1082 #endif 1083 1084 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) 1085 { 1086 #ifdef CONFIG_SMP 1087 /* 1088 * We can optimise this out completely for !SMP, because the 1089 * SMP rebalancing from interrupt is the only thing that cares 1090 * here. 1091 */ 1092 next->on_cpu = 1; 1093 #endif 1094 } 1095 1096 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) 1097 { 1098 #ifdef CONFIG_SMP 1099 /* 1100 * After ->on_cpu is cleared, the task can be moved to a different CPU. 1101 * We must ensure this doesn't happen until the switch is completely 1102 * finished. 1103 * 1104 * In particular, the load of prev->state in finish_task_switch() must 1105 * happen before this. 1106 * 1107 * Pairs with the smp_cond_acquire() in try_to_wake_up(). 1108 */ 1109 smp_store_release(&prev->on_cpu, 0); 1110 #endif 1111 #ifdef CONFIG_DEBUG_SPINLOCK 1112 /* this is a valid case when another task releases the spinlock */ 1113 rq->lock.owner = current; 1114 #endif 1115 /* 1116 * If we are tracking spinlock dependencies then we have to 1117 * fix up the runqueue lock - which gets 'carried over' from 1118 * prev into current: 1119 */ 1120 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); 1121 1122 raw_spin_unlock_irq(&rq->lock); 1123 } 1124 1125 /* 1126 * wake flags 1127 */ 1128 #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */ 1129 #define WF_FORK 0x02 /* child wakeup after fork */ 1130 #define WF_MIGRATED 0x4 /* internal use, task got migrated */ 1131 1132 /* 1133 * To aid in avoiding the subversion of "niceness" due to uneven distribution 1134 * of tasks with abnormal "nice" values across CPUs the contribution that 1135 * each task makes to its run queue's load is weighted according to its 1136 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 1137 * scaled version of the new time slice allocation that they receive on time 1138 * slice expiry etc. 1139 */ 1140 1141 #define WEIGHT_IDLEPRIO 3 1142 #define WMULT_IDLEPRIO 1431655765 1143 1144 extern const int sched_prio_to_weight[40]; 1145 extern const u32 sched_prio_to_wmult[40]; 1146 1147 /* 1148 * {de,en}queue flags: 1149 * 1150 * DEQUEUE_SLEEP - task is no longer runnable 1151 * ENQUEUE_WAKEUP - task just became runnable 1152 * 1153 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 1154 * are in a known state which allows modification. Such pairs 1155 * should preserve as much state as possible. 1156 * 1157 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 1158 * in the runqueue. 1159 * 1160 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 1161 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 1162 * ENQUEUE_WAKING - sched_class::task_waking was called 1163 * 1164 */ 1165 1166 #define DEQUEUE_SLEEP 0x01 1167 #define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */ 1168 #define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */ 1169 1170 #define ENQUEUE_WAKEUP 0x01 1171 #define ENQUEUE_RESTORE 0x02 1172 #define ENQUEUE_MOVE 0x04 1173 1174 #define ENQUEUE_HEAD 0x08 1175 #define ENQUEUE_REPLENISH 0x10 1176 #ifdef CONFIG_SMP 1177 #define ENQUEUE_WAKING 0x20 1178 #else 1179 #define ENQUEUE_WAKING 0x00 1180 #endif 1181 1182 #define RETRY_TASK ((void *)-1UL) 1183 1184 struct sched_class { 1185 const struct sched_class *next; 1186 1187 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1188 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1189 void (*yield_task) (struct rq *rq); 1190 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1191 1192 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1193 1194 /* 1195 * It is the responsibility of the pick_next_task() method that will 1196 * return the next task to call put_prev_task() on the @prev task or 1197 * something equivalent. 1198 * 1199 * May return RETRY_TASK when it finds a higher prio class has runnable 1200 * tasks. 1201 */ 1202 struct task_struct * (*pick_next_task) (struct rq *rq, 1203 struct task_struct *prev); 1204 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1205 1206 #ifdef CONFIG_SMP 1207 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); 1208 void (*migrate_task_rq)(struct task_struct *p); 1209 1210 void (*task_waking) (struct task_struct *task); 1211 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1212 1213 void (*set_cpus_allowed)(struct task_struct *p, 1214 const struct cpumask *newmask); 1215 1216 void (*rq_online)(struct rq *rq); 1217 void (*rq_offline)(struct rq *rq); 1218 #endif 1219 1220 void (*set_curr_task) (struct rq *rq); 1221 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1222 void (*task_fork) (struct task_struct *p); 1223 void (*task_dead) (struct task_struct *p); 1224 1225 /* 1226 * The switched_from() call is allowed to drop rq->lock, therefore we 1227 * cannot assume the switched_from/switched_to pair is serliazed by 1228 * rq->lock. They are however serialized by p->pi_lock. 1229 */ 1230 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1231 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1232 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1233 int oldprio); 1234 1235 unsigned int (*get_rr_interval) (struct rq *rq, 1236 struct task_struct *task); 1237 1238 void (*update_curr) (struct rq *rq); 1239 1240 #ifdef CONFIG_FAIR_GROUP_SCHED 1241 void (*task_move_group) (struct task_struct *p); 1242 #endif 1243 }; 1244 1245 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 1246 { 1247 prev->sched_class->put_prev_task(rq, prev); 1248 } 1249 1250 #define sched_class_highest (&stop_sched_class) 1251 #define for_each_class(class) \ 1252 for (class = sched_class_highest; class; class = class->next) 1253 1254 extern const struct sched_class stop_sched_class; 1255 extern const struct sched_class dl_sched_class; 1256 extern const struct sched_class rt_sched_class; 1257 extern const struct sched_class fair_sched_class; 1258 extern const struct sched_class idle_sched_class; 1259 1260 1261 #ifdef CONFIG_SMP 1262 1263 extern void update_group_capacity(struct sched_domain *sd, int cpu); 1264 1265 extern void trigger_load_balance(struct rq *rq); 1266 1267 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); 1268 1269 #endif 1270 1271 #ifdef CONFIG_CPU_IDLE 1272 static inline void idle_set_state(struct rq *rq, 1273 struct cpuidle_state *idle_state) 1274 { 1275 rq->idle_state = idle_state; 1276 } 1277 1278 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1279 { 1280 WARN_ON(!rcu_read_lock_held()); 1281 return rq->idle_state; 1282 } 1283 #else 1284 static inline void idle_set_state(struct rq *rq, 1285 struct cpuidle_state *idle_state) 1286 { 1287 } 1288 1289 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 1290 { 1291 return NULL; 1292 } 1293 #endif 1294 1295 extern void sysrq_sched_debug_show(void); 1296 extern void sched_init_granularity(void); 1297 extern void update_max_interval(void); 1298 1299 extern void init_sched_dl_class(void); 1300 extern void init_sched_rt_class(void); 1301 extern void init_sched_fair_class(void); 1302 1303 extern void resched_curr(struct rq *rq); 1304 extern void resched_cpu(int cpu); 1305 1306 extern struct rt_bandwidth def_rt_bandwidth; 1307 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 1308 1309 extern struct dl_bandwidth def_dl_bandwidth; 1310 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); 1311 extern void init_dl_task_timer(struct sched_dl_entity *dl_se); 1312 1313 unsigned long to_ratio(u64 period, u64 runtime); 1314 1315 extern void init_entity_runnable_average(struct sched_entity *se); 1316 1317 #ifdef CONFIG_NO_HZ_FULL 1318 extern bool sched_can_stop_tick(struct rq *rq); 1319 1320 /* 1321 * Tick may be needed by tasks in the runqueue depending on their policy and 1322 * requirements. If tick is needed, lets send the target an IPI to kick it out of 1323 * nohz mode if necessary. 1324 */ 1325 static inline void sched_update_tick_dependency(struct rq *rq) 1326 { 1327 int cpu; 1328 1329 if (!tick_nohz_full_enabled()) 1330 return; 1331 1332 cpu = cpu_of(rq); 1333 1334 if (!tick_nohz_full_cpu(cpu)) 1335 return; 1336 1337 if (sched_can_stop_tick(rq)) 1338 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 1339 else 1340 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 1341 } 1342 #else 1343 static inline void sched_update_tick_dependency(struct rq *rq) { } 1344 #endif 1345 1346 static inline void add_nr_running(struct rq *rq, unsigned count) 1347 { 1348 unsigned prev_nr = rq->nr_running; 1349 1350 rq->nr_running = prev_nr + count; 1351 1352 if (prev_nr < 2 && rq->nr_running >= 2) { 1353 #ifdef CONFIG_SMP 1354 if (!rq->rd->overload) 1355 rq->rd->overload = true; 1356 #endif 1357 } 1358 1359 sched_update_tick_dependency(rq); 1360 } 1361 1362 static inline void sub_nr_running(struct rq *rq, unsigned count) 1363 { 1364 rq->nr_running -= count; 1365 /* Check if we still need preemption */ 1366 sched_update_tick_dependency(rq); 1367 } 1368 1369 static inline void rq_last_tick_reset(struct rq *rq) 1370 { 1371 #ifdef CONFIG_NO_HZ_FULL 1372 rq->last_sched_tick = jiffies; 1373 #endif 1374 } 1375 1376 extern void update_rq_clock(struct rq *rq); 1377 1378 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 1379 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 1380 1381 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); 1382 1383 extern const_debug unsigned int sysctl_sched_time_avg; 1384 extern const_debug unsigned int sysctl_sched_nr_migrate; 1385 extern const_debug unsigned int sysctl_sched_migration_cost; 1386 1387 static inline u64 sched_avg_period(void) 1388 { 1389 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; 1390 } 1391 1392 #ifdef CONFIG_SCHED_HRTICK 1393 1394 /* 1395 * Use hrtick when: 1396 * - enabled by features 1397 * - hrtimer is actually high res 1398 */ 1399 static inline int hrtick_enabled(struct rq *rq) 1400 { 1401 if (!sched_feat(HRTICK)) 1402 return 0; 1403 if (!cpu_active(cpu_of(rq))) 1404 return 0; 1405 return hrtimer_is_hres_active(&rq->hrtick_timer); 1406 } 1407 1408 void hrtick_start(struct rq *rq, u64 delay); 1409 1410 #else 1411 1412 static inline int hrtick_enabled(struct rq *rq) 1413 { 1414 return 0; 1415 } 1416 1417 #endif /* CONFIG_SCHED_HRTICK */ 1418 1419 #ifdef CONFIG_SMP 1420 extern void sched_avg_update(struct rq *rq); 1421 1422 #ifndef arch_scale_freq_capacity 1423 static __always_inline 1424 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 1425 { 1426 return SCHED_CAPACITY_SCALE; 1427 } 1428 #endif 1429 1430 #ifndef arch_scale_cpu_capacity 1431 static __always_inline 1432 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 1433 { 1434 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 1435 return sd->smt_gain / sd->span_weight; 1436 1437 return SCHED_CAPACITY_SCALE; 1438 } 1439 #endif 1440 1441 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) 1442 { 1443 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq)); 1444 sched_avg_update(rq); 1445 } 1446 #else 1447 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { } 1448 static inline void sched_avg_update(struct rq *rq) { } 1449 #endif 1450 1451 /* 1452 * __task_rq_lock - lock the rq @p resides on. 1453 */ 1454 static inline struct rq *__task_rq_lock(struct task_struct *p) 1455 __acquires(rq->lock) 1456 { 1457 struct rq *rq; 1458 1459 lockdep_assert_held(&p->pi_lock); 1460 1461 for (;;) { 1462 rq = task_rq(p); 1463 raw_spin_lock(&rq->lock); 1464 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 1465 lockdep_pin_lock(&rq->lock); 1466 return rq; 1467 } 1468 raw_spin_unlock(&rq->lock); 1469 1470 while (unlikely(task_on_rq_migrating(p))) 1471 cpu_relax(); 1472 } 1473 } 1474 1475 /* 1476 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 1477 */ 1478 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) 1479 __acquires(p->pi_lock) 1480 __acquires(rq->lock) 1481 { 1482 struct rq *rq; 1483 1484 for (;;) { 1485 raw_spin_lock_irqsave(&p->pi_lock, *flags); 1486 rq = task_rq(p); 1487 raw_spin_lock(&rq->lock); 1488 /* 1489 * move_queued_task() task_rq_lock() 1490 * 1491 * ACQUIRE (rq->lock) 1492 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 1493 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 1494 * [S] ->cpu = new_cpu [L] task_rq() 1495 * [L] ->on_rq 1496 * RELEASE (rq->lock) 1497 * 1498 * If we observe the old cpu in task_rq_lock, the acquire of 1499 * the old rq->lock will fully serialize against the stores. 1500 * 1501 * If we observe the new cpu in task_rq_lock, the acquire will 1502 * pair with the WMB to ensure we must then also see migrating. 1503 */ 1504 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 1505 lockdep_pin_lock(&rq->lock); 1506 return rq; 1507 } 1508 raw_spin_unlock(&rq->lock); 1509 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 1510 1511 while (unlikely(task_on_rq_migrating(p))) 1512 cpu_relax(); 1513 } 1514 } 1515 1516 static inline void __task_rq_unlock(struct rq *rq) 1517 __releases(rq->lock) 1518 { 1519 lockdep_unpin_lock(&rq->lock); 1520 raw_spin_unlock(&rq->lock); 1521 } 1522 1523 static inline void 1524 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags) 1525 __releases(rq->lock) 1526 __releases(p->pi_lock) 1527 { 1528 lockdep_unpin_lock(&rq->lock); 1529 raw_spin_unlock(&rq->lock); 1530 raw_spin_unlock_irqrestore(&p->pi_lock, *flags); 1531 } 1532 1533 #ifdef CONFIG_SMP 1534 #ifdef CONFIG_PREEMPT 1535 1536 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); 1537 1538 /* 1539 * fair double_lock_balance: Safely acquires both rq->locks in a fair 1540 * way at the expense of forcing extra atomic operations in all 1541 * invocations. This assures that the double_lock is acquired using the 1542 * same underlying policy as the spinlock_t on this architecture, which 1543 * reduces latency compared to the unfair variant below. However, it 1544 * also adds more overhead and therefore may reduce throughput. 1545 */ 1546 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1547 __releases(this_rq->lock) 1548 __acquires(busiest->lock) 1549 __acquires(this_rq->lock) 1550 { 1551 raw_spin_unlock(&this_rq->lock); 1552 double_rq_lock(this_rq, busiest); 1553 1554 return 1; 1555 } 1556 1557 #else 1558 /* 1559 * Unfair double_lock_balance: Optimizes throughput at the expense of 1560 * latency by eliminating extra atomic operations when the locks are 1561 * already in proper order on entry. This favors lower cpu-ids and will 1562 * grant the double lock to lower cpus over higher ids under contention, 1563 * regardless of entry order into the function. 1564 */ 1565 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 1566 __releases(this_rq->lock) 1567 __acquires(busiest->lock) 1568 __acquires(this_rq->lock) 1569 { 1570 int ret = 0; 1571 1572 if (unlikely(!raw_spin_trylock(&busiest->lock))) { 1573 if (busiest < this_rq) { 1574 raw_spin_unlock(&this_rq->lock); 1575 raw_spin_lock(&busiest->lock); 1576 raw_spin_lock_nested(&this_rq->lock, 1577 SINGLE_DEPTH_NESTING); 1578 ret = 1; 1579 } else 1580 raw_spin_lock_nested(&busiest->lock, 1581 SINGLE_DEPTH_NESTING); 1582 } 1583 return ret; 1584 } 1585 1586 #endif /* CONFIG_PREEMPT */ 1587 1588 /* 1589 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 1590 */ 1591 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 1592 { 1593 if (unlikely(!irqs_disabled())) { 1594 /* printk() doesn't work good under rq->lock */ 1595 raw_spin_unlock(&this_rq->lock); 1596 BUG_ON(1); 1597 } 1598 1599 return _double_lock_balance(this_rq, busiest); 1600 } 1601 1602 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 1603 __releases(busiest->lock) 1604 { 1605 raw_spin_unlock(&busiest->lock); 1606 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); 1607 } 1608 1609 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 1610 { 1611 if (l1 > l2) 1612 swap(l1, l2); 1613 1614 spin_lock(l1); 1615 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1616 } 1617 1618 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 1619 { 1620 if (l1 > l2) 1621 swap(l1, l2); 1622 1623 spin_lock_irq(l1); 1624 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1625 } 1626 1627 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 1628 { 1629 if (l1 > l2) 1630 swap(l1, l2); 1631 1632 raw_spin_lock(l1); 1633 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 1634 } 1635 1636 /* 1637 * double_rq_lock - safely lock two runqueues 1638 * 1639 * Note this does not disable interrupts like task_rq_lock, 1640 * you need to do so manually before calling. 1641 */ 1642 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1643 __acquires(rq1->lock) 1644 __acquires(rq2->lock) 1645 { 1646 BUG_ON(!irqs_disabled()); 1647 if (rq1 == rq2) { 1648 raw_spin_lock(&rq1->lock); 1649 __acquire(rq2->lock); /* Fake it out ;) */ 1650 } else { 1651 if (rq1 < rq2) { 1652 raw_spin_lock(&rq1->lock); 1653 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); 1654 } else { 1655 raw_spin_lock(&rq2->lock); 1656 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); 1657 } 1658 } 1659 } 1660 1661 /* 1662 * double_rq_unlock - safely unlock two runqueues 1663 * 1664 * Note this does not restore interrupts like task_rq_unlock, 1665 * you need to do so manually after calling. 1666 */ 1667 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1668 __releases(rq1->lock) 1669 __releases(rq2->lock) 1670 { 1671 raw_spin_unlock(&rq1->lock); 1672 if (rq1 != rq2) 1673 raw_spin_unlock(&rq2->lock); 1674 else 1675 __release(rq2->lock); 1676 } 1677 1678 #else /* CONFIG_SMP */ 1679 1680 /* 1681 * double_rq_lock - safely lock two runqueues 1682 * 1683 * Note this does not disable interrupts like task_rq_lock, 1684 * you need to do so manually before calling. 1685 */ 1686 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 1687 __acquires(rq1->lock) 1688 __acquires(rq2->lock) 1689 { 1690 BUG_ON(!irqs_disabled()); 1691 BUG_ON(rq1 != rq2); 1692 raw_spin_lock(&rq1->lock); 1693 __acquire(rq2->lock); /* Fake it out ;) */ 1694 } 1695 1696 /* 1697 * double_rq_unlock - safely unlock two runqueues 1698 * 1699 * Note this does not restore interrupts like task_rq_unlock, 1700 * you need to do so manually after calling. 1701 */ 1702 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 1703 __releases(rq1->lock) 1704 __releases(rq2->lock) 1705 { 1706 BUG_ON(rq1 != rq2); 1707 raw_spin_unlock(&rq1->lock); 1708 __release(rq2->lock); 1709 } 1710 1711 #endif 1712 1713 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 1714 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 1715 1716 #ifdef CONFIG_SCHED_DEBUG 1717 extern void print_cfs_stats(struct seq_file *m, int cpu); 1718 extern void print_rt_stats(struct seq_file *m, int cpu); 1719 extern void print_dl_stats(struct seq_file *m, int cpu); 1720 extern void 1721 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 1722 1723 #ifdef CONFIG_NUMA_BALANCING 1724 extern void 1725 show_numa_stats(struct task_struct *p, struct seq_file *m); 1726 extern void 1727 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 1728 unsigned long tpf, unsigned long gsf, unsigned long gpf); 1729 #endif /* CONFIG_NUMA_BALANCING */ 1730 #endif /* CONFIG_SCHED_DEBUG */ 1731 1732 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 1733 extern void init_rt_rq(struct rt_rq *rt_rq); 1734 extern void init_dl_rq(struct dl_rq *dl_rq); 1735 1736 extern void cfs_bandwidth_usage_inc(void); 1737 extern void cfs_bandwidth_usage_dec(void); 1738 1739 #ifdef CONFIG_NO_HZ_COMMON 1740 enum rq_nohz_flag_bits { 1741 NOHZ_TICK_STOPPED, 1742 NOHZ_BALANCE_KICK, 1743 }; 1744 1745 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 1746 #endif 1747 1748 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1749 1750 DECLARE_PER_CPU(u64, cpu_hardirq_time); 1751 DECLARE_PER_CPU(u64, cpu_softirq_time); 1752 1753 #ifndef CONFIG_64BIT 1754 DECLARE_PER_CPU(seqcount_t, irq_time_seq); 1755 1756 static inline void irq_time_write_begin(void) 1757 { 1758 __this_cpu_inc(irq_time_seq.sequence); 1759 smp_wmb(); 1760 } 1761 1762 static inline void irq_time_write_end(void) 1763 { 1764 smp_wmb(); 1765 __this_cpu_inc(irq_time_seq.sequence); 1766 } 1767 1768 static inline u64 irq_time_read(int cpu) 1769 { 1770 u64 irq_time; 1771 unsigned seq; 1772 1773 do { 1774 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); 1775 irq_time = per_cpu(cpu_softirq_time, cpu) + 1776 per_cpu(cpu_hardirq_time, cpu); 1777 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); 1778 1779 return irq_time; 1780 } 1781 #else /* CONFIG_64BIT */ 1782 static inline void irq_time_write_begin(void) 1783 { 1784 } 1785 1786 static inline void irq_time_write_end(void) 1787 { 1788 } 1789 1790 static inline u64 irq_time_read(int cpu) 1791 { 1792 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); 1793 } 1794 #endif /* CONFIG_64BIT */ 1795 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1796 1797 #ifdef CONFIG_CPU_FREQ 1798 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); 1799 1800 /** 1801 * cpufreq_update_util - Take a note about CPU utilization changes. 1802 * @time: Current time. 1803 * @util: Current utilization. 1804 * @max: Utilization ceiling. 1805 * 1806 * This function is called by the scheduler on every invocation of 1807 * update_load_avg() on the CPU whose utilization is being updated. 1808 * 1809 * It can only be called from RCU-sched read-side critical sections. 1810 */ 1811 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) 1812 { 1813 struct update_util_data *data; 1814 1815 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data)); 1816 if (data) 1817 data->func(data, time, util, max); 1818 } 1819 1820 /** 1821 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed. 1822 * @time: Current time. 1823 * 1824 * The way cpufreq is currently arranged requires it to evaluate the CPU 1825 * performance state (frequency/voltage) on a regular basis to prevent it from 1826 * being stuck in a completely inadequate performance level for too long. 1827 * That is not guaranteed to happen if the updates are only triggered from CFS, 1828 * though, because they may not be coming in if RT or deadline tasks are active 1829 * all the time (or there are RT and DL tasks only). 1830 * 1831 * As a workaround for that issue, this function is called by the RT and DL 1832 * sched classes to trigger extra cpufreq updates to prevent it from stalling, 1833 * but that really is a band-aid. Going forward it should be replaced with 1834 * solutions targeted more specifically at RT and DL tasks. 1835 */ 1836 static inline void cpufreq_trigger_update(u64 time) 1837 { 1838 cpufreq_update_util(time, ULONG_MAX, 0); 1839 } 1840 #else 1841 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {} 1842 static inline void cpufreq_trigger_update(u64 time) {} 1843 #endif /* CONFIG_CPU_FREQ */ 1844 1845 static inline void account_reset_rq(struct rq *rq) 1846 { 1847 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1848 rq->prev_irq_time = 0; 1849 #endif 1850 #ifdef CONFIG_PARAVIRT 1851 rq->prev_steal_time = 0; 1852 #endif 1853 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1854 rq->prev_steal_time_rq = 0; 1855 #endif 1856 } 1857