xref: /linux/kernel/sched/sched.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/deadline.h>
6 #include <linux/binfmts.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
13 
14 #include "cpupri.h"
15 #include "cpudeadline.h"
16 #include "cpuacct.h"
17 
18 struct rq;
19 struct cpuidle_state;
20 
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED	1
23 #define TASK_ON_RQ_MIGRATING	2
24 
25 extern __read_mostly int scheduler_running;
26 
27 extern unsigned long calc_load_update;
28 extern atomic_long_t calc_load_tasks;
29 
30 extern void calc_global_load_tick(struct rq *this_rq);
31 extern long calc_load_fold_active(struct rq *this_rq);
32 
33 #ifdef CONFIG_SMP
34 extern void cpu_load_update_active(struct rq *this_rq);
35 #else
36 static inline void cpu_load_update_active(struct rq *this_rq) { }
37 #endif
38 
39 /*
40  * Helpers for converting nanosecond timing to jiffy resolution
41  */
42 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
43 
44 /*
45  * Increase resolution of nice-level calculations for 64-bit architectures.
46  * The extra resolution improves shares distribution and load balancing of
47  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
48  * hierarchies, especially on larger systems. This is not a user-visible change
49  * and does not change the user-interface for setting shares/weights.
50  *
51  * We increase resolution only if we have enough bits to allow this increased
52  * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
53  * pretty high and the returns do not justify the increased costs.
54  *
55  * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
56  * increase coverage and consistency always enable it on 64bit platforms.
57  */
58 #ifdef CONFIG_64BIT
59 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
60 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
61 # define scale_load_down(w)	((w) >> SCHED_FIXEDPOINT_SHIFT)
62 #else
63 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
64 # define scale_load(w)		(w)
65 # define scale_load_down(w)	(w)
66 #endif
67 
68 /*
69  * Task weight (visible to users) and its load (invisible to users) have
70  * independent resolution, but they should be well calibrated. We use
71  * scale_load() and scale_load_down(w) to convert between them. The
72  * following must be true:
73  *
74  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
75  *
76  */
77 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
78 
79 /*
80  * Single value that decides SCHED_DEADLINE internal math precision.
81  * 10 -> just above 1us
82  * 9  -> just above 0.5us
83  */
84 #define DL_SCALE (10)
85 
86 /*
87  * These are the 'tuning knobs' of the scheduler:
88  */
89 
90 /*
91  * single value that denotes runtime == period, ie unlimited time.
92  */
93 #define RUNTIME_INF	((u64)~0ULL)
94 
95 static inline int idle_policy(int policy)
96 {
97 	return policy == SCHED_IDLE;
98 }
99 static inline int fair_policy(int policy)
100 {
101 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
102 }
103 
104 static inline int rt_policy(int policy)
105 {
106 	return policy == SCHED_FIFO || policy == SCHED_RR;
107 }
108 
109 static inline int dl_policy(int policy)
110 {
111 	return policy == SCHED_DEADLINE;
112 }
113 static inline bool valid_policy(int policy)
114 {
115 	return idle_policy(policy) || fair_policy(policy) ||
116 		rt_policy(policy) || dl_policy(policy);
117 }
118 
119 static inline int task_has_rt_policy(struct task_struct *p)
120 {
121 	return rt_policy(p->policy);
122 }
123 
124 static inline int task_has_dl_policy(struct task_struct *p)
125 {
126 	return dl_policy(p->policy);
127 }
128 
129 /*
130  * Tells if entity @a should preempt entity @b.
131  */
132 static inline bool
133 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
134 {
135 	return dl_time_before(a->deadline, b->deadline);
136 }
137 
138 /*
139  * This is the priority-queue data structure of the RT scheduling class:
140  */
141 struct rt_prio_array {
142 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 	struct list_head queue[MAX_RT_PRIO];
144 };
145 
146 struct rt_bandwidth {
147 	/* nests inside the rq lock: */
148 	raw_spinlock_t		rt_runtime_lock;
149 	ktime_t			rt_period;
150 	u64			rt_runtime;
151 	struct hrtimer		rt_period_timer;
152 	unsigned int		rt_period_active;
153 };
154 
155 void __dl_clear_params(struct task_struct *p);
156 
157 /*
158  * To keep the bandwidth of -deadline tasks and groups under control
159  * we need some place where:
160  *  - store the maximum -deadline bandwidth of the system (the group);
161  *  - cache the fraction of that bandwidth that is currently allocated.
162  *
163  * This is all done in the data structure below. It is similar to the
164  * one used for RT-throttling (rt_bandwidth), with the main difference
165  * that, since here we are only interested in admission control, we
166  * do not decrease any runtime while the group "executes", neither we
167  * need a timer to replenish it.
168  *
169  * With respect to SMP, the bandwidth is given on a per-CPU basis,
170  * meaning that:
171  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
172  *  - dl_total_bw array contains, in the i-eth element, the currently
173  *    allocated bandwidth on the i-eth CPU.
174  * Moreover, groups consume bandwidth on each CPU, while tasks only
175  * consume bandwidth on the CPU they're running on.
176  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
177  * that will be shown the next time the proc or cgroup controls will
178  * be red. It on its turn can be changed by writing on its own
179  * control.
180  */
181 struct dl_bandwidth {
182 	raw_spinlock_t dl_runtime_lock;
183 	u64 dl_runtime;
184 	u64 dl_period;
185 };
186 
187 static inline int dl_bandwidth_enabled(void)
188 {
189 	return sysctl_sched_rt_runtime >= 0;
190 }
191 
192 extern struct dl_bw *dl_bw_of(int i);
193 
194 struct dl_bw {
195 	raw_spinlock_t lock;
196 	u64 bw, total_bw;
197 };
198 
199 static inline
200 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
201 {
202 	dl_b->total_bw -= tsk_bw;
203 }
204 
205 static inline
206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
207 {
208 	dl_b->total_bw += tsk_bw;
209 }
210 
211 static inline
212 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
213 {
214 	return dl_b->bw != -1 &&
215 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
216 }
217 
218 extern struct mutex sched_domains_mutex;
219 
220 #ifdef CONFIG_CGROUP_SCHED
221 
222 #include <linux/cgroup.h>
223 
224 struct cfs_rq;
225 struct rt_rq;
226 
227 extern struct list_head task_groups;
228 
229 struct cfs_bandwidth {
230 #ifdef CONFIG_CFS_BANDWIDTH
231 	raw_spinlock_t lock;
232 	ktime_t period;
233 	u64 quota, runtime;
234 	s64 hierarchical_quota;
235 	u64 runtime_expires;
236 
237 	int idle, period_active;
238 	struct hrtimer period_timer, slack_timer;
239 	struct list_head throttled_cfs_rq;
240 
241 	/* statistics */
242 	int nr_periods, nr_throttled;
243 	u64 throttled_time;
244 #endif
245 };
246 
247 /* task group related information */
248 struct task_group {
249 	struct cgroup_subsys_state css;
250 
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 	/* schedulable entities of this group on each cpu */
253 	struct sched_entity **se;
254 	/* runqueue "owned" by this group on each cpu */
255 	struct cfs_rq **cfs_rq;
256 	unsigned long shares;
257 
258 #ifdef	CONFIG_SMP
259 	/*
260 	 * load_avg can be heavily contended at clock tick time, so put
261 	 * it in its own cacheline separated from the fields above which
262 	 * will also be accessed at each tick.
263 	 */
264 	atomic_long_t load_avg ____cacheline_aligned;
265 #endif
266 #endif
267 
268 #ifdef CONFIG_RT_GROUP_SCHED
269 	struct sched_rt_entity **rt_se;
270 	struct rt_rq **rt_rq;
271 
272 	struct rt_bandwidth rt_bandwidth;
273 #endif
274 
275 	struct rcu_head rcu;
276 	struct list_head list;
277 
278 	struct task_group *parent;
279 	struct list_head siblings;
280 	struct list_head children;
281 
282 #ifdef CONFIG_SCHED_AUTOGROUP
283 	struct autogroup *autogroup;
284 #endif
285 
286 	struct cfs_bandwidth cfs_bandwidth;
287 };
288 
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
291 
292 /*
293  * A weight of 0 or 1 can cause arithmetics problems.
294  * A weight of a cfs_rq is the sum of weights of which entities
295  * are queued on this cfs_rq, so a weight of a entity should not be
296  * too large, so as the shares value of a task group.
297  * (The default weight is 1024 - so there's no practical
298  *  limitation from this.)
299  */
300 #define MIN_SHARES	(1UL <<  1)
301 #define MAX_SHARES	(1UL << 18)
302 #endif
303 
304 typedef int (*tg_visitor)(struct task_group *, void *);
305 
306 extern int walk_tg_tree_from(struct task_group *from,
307 			     tg_visitor down, tg_visitor up, void *data);
308 
309 /*
310  * Iterate the full tree, calling @down when first entering a node and @up when
311  * leaving it for the final time.
312  *
313  * Caller must hold rcu_lock or sufficient equivalent.
314  */
315 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
316 {
317 	return walk_tg_tree_from(&root_task_group, down, up, data);
318 }
319 
320 extern int tg_nop(struct task_group *tg, void *data);
321 
322 extern void free_fair_sched_group(struct task_group *tg);
323 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
324 extern void unregister_fair_sched_group(struct task_group *tg);
325 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
326 			struct sched_entity *se, int cpu,
327 			struct sched_entity *parent);
328 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
329 
330 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
331 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
332 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
333 
334 extern void free_rt_sched_group(struct task_group *tg);
335 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
336 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
337 		struct sched_rt_entity *rt_se, int cpu,
338 		struct sched_rt_entity *parent);
339 
340 extern struct task_group *sched_create_group(struct task_group *parent);
341 extern void sched_online_group(struct task_group *tg,
342 			       struct task_group *parent);
343 extern void sched_destroy_group(struct task_group *tg);
344 extern void sched_offline_group(struct task_group *tg);
345 
346 extern void sched_move_task(struct task_struct *tsk);
347 
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
350 
351 #ifdef CONFIG_SMP
352 extern void set_task_rq_fair(struct sched_entity *se,
353 			     struct cfs_rq *prev, struct cfs_rq *next);
354 #else /* !CONFIG_SMP */
355 static inline void set_task_rq_fair(struct sched_entity *se,
356 			     struct cfs_rq *prev, struct cfs_rq *next) { }
357 #endif /* CONFIG_SMP */
358 #endif /* CONFIG_FAIR_GROUP_SCHED */
359 
360 #else /* CONFIG_CGROUP_SCHED */
361 
362 struct cfs_bandwidth { };
363 
364 #endif	/* CONFIG_CGROUP_SCHED */
365 
366 /* CFS-related fields in a runqueue */
367 struct cfs_rq {
368 	struct load_weight load;
369 	unsigned int nr_running, h_nr_running;
370 
371 	u64 exec_clock;
372 	u64 min_vruntime;
373 #ifndef CONFIG_64BIT
374 	u64 min_vruntime_copy;
375 #endif
376 
377 	struct rb_root tasks_timeline;
378 	struct rb_node *rb_leftmost;
379 
380 	/*
381 	 * 'curr' points to currently running entity on this cfs_rq.
382 	 * It is set to NULL otherwise (i.e when none are currently running).
383 	 */
384 	struct sched_entity *curr, *next, *last, *skip;
385 
386 #ifdef	CONFIG_SCHED_DEBUG
387 	unsigned int nr_spread_over;
388 #endif
389 
390 #ifdef CONFIG_SMP
391 	/*
392 	 * CFS load tracking
393 	 */
394 	struct sched_avg avg;
395 	u64 runnable_load_sum;
396 	unsigned long runnable_load_avg;
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 	unsigned long tg_load_avg_contrib;
399 #endif
400 	atomic_long_t removed_load_avg, removed_util_avg;
401 #ifndef CONFIG_64BIT
402 	u64 load_last_update_time_copy;
403 #endif
404 
405 #ifdef CONFIG_FAIR_GROUP_SCHED
406 	/*
407 	 *   h_load = weight * f(tg)
408 	 *
409 	 * Where f(tg) is the recursive weight fraction assigned to
410 	 * this group.
411 	 */
412 	unsigned long h_load;
413 	u64 last_h_load_update;
414 	struct sched_entity *h_load_next;
415 #endif /* CONFIG_FAIR_GROUP_SCHED */
416 #endif /* CONFIG_SMP */
417 
418 #ifdef CONFIG_FAIR_GROUP_SCHED
419 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
420 
421 	/*
422 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
423 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
424 	 * (like users, containers etc.)
425 	 *
426 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
427 	 * list is used during load balance.
428 	 */
429 	int on_list;
430 	struct list_head leaf_cfs_rq_list;
431 	struct task_group *tg;	/* group that "owns" this runqueue */
432 
433 #ifdef CONFIG_CFS_BANDWIDTH
434 	int runtime_enabled;
435 	u64 runtime_expires;
436 	s64 runtime_remaining;
437 
438 	u64 throttled_clock, throttled_clock_task;
439 	u64 throttled_clock_task_time;
440 	int throttled, throttle_count;
441 	struct list_head throttled_list;
442 #endif /* CONFIG_CFS_BANDWIDTH */
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444 };
445 
446 static inline int rt_bandwidth_enabled(void)
447 {
448 	return sysctl_sched_rt_runtime >= 0;
449 }
450 
451 /* RT IPI pull logic requires IRQ_WORK */
452 #ifdef CONFIG_IRQ_WORK
453 # define HAVE_RT_PUSH_IPI
454 #endif
455 
456 /* Real-Time classes' related field in a runqueue: */
457 struct rt_rq {
458 	struct rt_prio_array active;
459 	unsigned int rt_nr_running;
460 	unsigned int rr_nr_running;
461 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 	struct {
463 		int curr; /* highest queued rt task prio */
464 #ifdef CONFIG_SMP
465 		int next; /* next highest */
466 #endif
467 	} highest_prio;
468 #endif
469 #ifdef CONFIG_SMP
470 	unsigned long rt_nr_migratory;
471 	unsigned long rt_nr_total;
472 	int overloaded;
473 	struct plist_head pushable_tasks;
474 #ifdef HAVE_RT_PUSH_IPI
475 	int push_flags;
476 	int push_cpu;
477 	struct irq_work push_work;
478 	raw_spinlock_t push_lock;
479 #endif
480 #endif /* CONFIG_SMP */
481 	int rt_queued;
482 
483 	int rt_throttled;
484 	u64 rt_time;
485 	u64 rt_runtime;
486 	/* Nests inside the rq lock: */
487 	raw_spinlock_t rt_runtime_lock;
488 
489 #ifdef CONFIG_RT_GROUP_SCHED
490 	unsigned long rt_nr_boosted;
491 
492 	struct rq *rq;
493 	struct task_group *tg;
494 #endif
495 };
496 
497 /* Deadline class' related fields in a runqueue */
498 struct dl_rq {
499 	/* runqueue is an rbtree, ordered by deadline */
500 	struct rb_root rb_root;
501 	struct rb_node *rb_leftmost;
502 
503 	unsigned long dl_nr_running;
504 
505 #ifdef CONFIG_SMP
506 	/*
507 	 * Deadline values of the currently executing and the
508 	 * earliest ready task on this rq. Caching these facilitates
509 	 * the decision wether or not a ready but not running task
510 	 * should migrate somewhere else.
511 	 */
512 	struct {
513 		u64 curr;
514 		u64 next;
515 	} earliest_dl;
516 
517 	unsigned long dl_nr_migratory;
518 	int overloaded;
519 
520 	/*
521 	 * Tasks on this rq that can be pushed away. They are kept in
522 	 * an rb-tree, ordered by tasks' deadlines, with caching
523 	 * of the leftmost (earliest deadline) element.
524 	 */
525 	struct rb_root pushable_dl_tasks_root;
526 	struct rb_node *pushable_dl_tasks_leftmost;
527 #else
528 	struct dl_bw dl_bw;
529 #endif
530 };
531 
532 #ifdef CONFIG_SMP
533 
534 /*
535  * We add the notion of a root-domain which will be used to define per-domain
536  * variables. Each exclusive cpuset essentially defines an island domain by
537  * fully partitioning the member cpus from any other cpuset. Whenever a new
538  * exclusive cpuset is created, we also create and attach a new root-domain
539  * object.
540  *
541  */
542 struct root_domain {
543 	atomic_t refcount;
544 	atomic_t rto_count;
545 	struct rcu_head rcu;
546 	cpumask_var_t span;
547 	cpumask_var_t online;
548 
549 	/* Indicate more than one runnable task for any CPU */
550 	bool overload;
551 
552 	/*
553 	 * The bit corresponding to a CPU gets set here if such CPU has more
554 	 * than one runnable -deadline task (as it is below for RT tasks).
555 	 */
556 	cpumask_var_t dlo_mask;
557 	atomic_t dlo_count;
558 	struct dl_bw dl_bw;
559 	struct cpudl cpudl;
560 
561 	/*
562 	 * The "RT overload" flag: it gets set if a CPU has more than
563 	 * one runnable RT task.
564 	 */
565 	cpumask_var_t rto_mask;
566 	struct cpupri cpupri;
567 };
568 
569 extern struct root_domain def_root_domain;
570 
571 #endif /* CONFIG_SMP */
572 
573 /*
574  * This is the main, per-CPU runqueue data structure.
575  *
576  * Locking rule: those places that want to lock multiple runqueues
577  * (such as the load balancing or the thread migration code), lock
578  * acquire operations must be ordered by ascending &runqueue.
579  */
580 struct rq {
581 	/* runqueue lock: */
582 	raw_spinlock_t lock;
583 
584 	/*
585 	 * nr_running and cpu_load should be in the same cacheline because
586 	 * remote CPUs use both these fields when doing load calculation.
587 	 */
588 	unsigned int nr_running;
589 #ifdef CONFIG_NUMA_BALANCING
590 	unsigned int nr_numa_running;
591 	unsigned int nr_preferred_running;
592 #endif
593 	#define CPU_LOAD_IDX_MAX 5
594 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
595 #ifdef CONFIG_NO_HZ_COMMON
596 #ifdef CONFIG_SMP
597 	unsigned long last_load_update_tick;
598 #endif /* CONFIG_SMP */
599 	u64 nohz_stamp;
600 	unsigned long nohz_flags;
601 #endif /* CONFIG_NO_HZ_COMMON */
602 #ifdef CONFIG_NO_HZ_FULL
603 	unsigned long last_sched_tick;
604 #endif
605 	/* capture load from *all* tasks on this cpu: */
606 	struct load_weight load;
607 	unsigned long nr_load_updates;
608 	u64 nr_switches;
609 
610 	struct cfs_rq cfs;
611 	struct rt_rq rt;
612 	struct dl_rq dl;
613 
614 #ifdef CONFIG_FAIR_GROUP_SCHED
615 	/* list of leaf cfs_rq on this cpu: */
616 	struct list_head leaf_cfs_rq_list;
617 #endif /* CONFIG_FAIR_GROUP_SCHED */
618 
619 	/*
620 	 * This is part of a global counter where only the total sum
621 	 * over all CPUs matters. A task can increase this counter on
622 	 * one CPU and if it got migrated afterwards it may decrease
623 	 * it on another CPU. Always updated under the runqueue lock:
624 	 */
625 	unsigned long nr_uninterruptible;
626 
627 	struct task_struct *curr, *idle, *stop;
628 	unsigned long next_balance;
629 	struct mm_struct *prev_mm;
630 
631 	unsigned int clock_skip_update;
632 	u64 clock;
633 	u64 clock_task;
634 
635 	atomic_t nr_iowait;
636 
637 #ifdef CONFIG_SMP
638 	struct root_domain *rd;
639 	struct sched_domain *sd;
640 
641 	unsigned long cpu_capacity;
642 	unsigned long cpu_capacity_orig;
643 
644 	struct callback_head *balance_callback;
645 
646 	unsigned char idle_balance;
647 	/* For active balancing */
648 	int active_balance;
649 	int push_cpu;
650 	struct cpu_stop_work active_balance_work;
651 	/* cpu of this runqueue: */
652 	int cpu;
653 	int online;
654 
655 	struct list_head cfs_tasks;
656 
657 	u64 rt_avg;
658 	u64 age_stamp;
659 	u64 idle_stamp;
660 	u64 avg_idle;
661 
662 	/* This is used to determine avg_idle's max value */
663 	u64 max_idle_balance_cost;
664 #endif
665 
666 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
667 	u64 prev_irq_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT
670 	u64 prev_steal_time;
671 #endif
672 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
673 	u64 prev_steal_time_rq;
674 #endif
675 
676 	/* calc_load related fields */
677 	unsigned long calc_load_update;
678 	long calc_load_active;
679 
680 #ifdef CONFIG_SCHED_HRTICK
681 #ifdef CONFIG_SMP
682 	int hrtick_csd_pending;
683 	struct call_single_data hrtick_csd;
684 #endif
685 	struct hrtimer hrtick_timer;
686 #endif
687 
688 #ifdef CONFIG_SCHEDSTATS
689 	/* latency stats */
690 	struct sched_info rq_sched_info;
691 	unsigned long long rq_cpu_time;
692 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
693 
694 	/* sys_sched_yield() stats */
695 	unsigned int yld_count;
696 
697 	/* schedule() stats */
698 	unsigned int sched_count;
699 	unsigned int sched_goidle;
700 
701 	/* try_to_wake_up() stats */
702 	unsigned int ttwu_count;
703 	unsigned int ttwu_local;
704 #endif
705 
706 #ifdef CONFIG_SMP
707 	struct llist_head wake_list;
708 #endif
709 
710 #ifdef CONFIG_CPU_IDLE
711 	/* Must be inspected within a rcu lock section */
712 	struct cpuidle_state *idle_state;
713 #endif
714 };
715 
716 static inline int cpu_of(struct rq *rq)
717 {
718 #ifdef CONFIG_SMP
719 	return rq->cpu;
720 #else
721 	return 0;
722 #endif
723 }
724 
725 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
726 
727 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
728 #define this_rq()		this_cpu_ptr(&runqueues)
729 #define task_rq(p)		cpu_rq(task_cpu(p))
730 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
731 #define raw_rq()		raw_cpu_ptr(&runqueues)
732 
733 static inline u64 __rq_clock_broken(struct rq *rq)
734 {
735 	return READ_ONCE(rq->clock);
736 }
737 
738 static inline u64 rq_clock(struct rq *rq)
739 {
740 	lockdep_assert_held(&rq->lock);
741 	return rq->clock;
742 }
743 
744 static inline u64 rq_clock_task(struct rq *rq)
745 {
746 	lockdep_assert_held(&rq->lock);
747 	return rq->clock_task;
748 }
749 
750 #define RQCF_REQ_SKIP	0x01
751 #define RQCF_ACT_SKIP	0x02
752 
753 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
754 {
755 	lockdep_assert_held(&rq->lock);
756 	if (skip)
757 		rq->clock_skip_update |= RQCF_REQ_SKIP;
758 	else
759 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
760 }
761 
762 #ifdef CONFIG_NUMA
763 enum numa_topology_type {
764 	NUMA_DIRECT,
765 	NUMA_GLUELESS_MESH,
766 	NUMA_BACKPLANE,
767 };
768 extern enum numa_topology_type sched_numa_topology_type;
769 extern int sched_max_numa_distance;
770 extern bool find_numa_distance(int distance);
771 #endif
772 
773 #ifdef CONFIG_NUMA_BALANCING
774 /* The regions in numa_faults array from task_struct */
775 enum numa_faults_stats {
776 	NUMA_MEM = 0,
777 	NUMA_CPU,
778 	NUMA_MEMBUF,
779 	NUMA_CPUBUF
780 };
781 extern void sched_setnuma(struct task_struct *p, int node);
782 extern int migrate_task_to(struct task_struct *p, int cpu);
783 extern int migrate_swap(struct task_struct *, struct task_struct *);
784 #endif /* CONFIG_NUMA_BALANCING */
785 
786 #ifdef CONFIG_SMP
787 
788 static inline void
789 queue_balance_callback(struct rq *rq,
790 		       struct callback_head *head,
791 		       void (*func)(struct rq *rq))
792 {
793 	lockdep_assert_held(&rq->lock);
794 
795 	if (unlikely(head->next))
796 		return;
797 
798 	head->func = (void (*)(struct callback_head *))func;
799 	head->next = rq->balance_callback;
800 	rq->balance_callback = head;
801 }
802 
803 extern void sched_ttwu_pending(void);
804 
805 #define rcu_dereference_check_sched_domain(p) \
806 	rcu_dereference_check((p), \
807 			      lockdep_is_held(&sched_domains_mutex))
808 
809 /*
810  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
811  * See detach_destroy_domains: synchronize_sched for details.
812  *
813  * The domain tree of any CPU may only be accessed from within
814  * preempt-disabled sections.
815  */
816 #define for_each_domain(cpu, __sd) \
817 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
818 			__sd; __sd = __sd->parent)
819 
820 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
821 
822 /**
823  * highest_flag_domain - Return highest sched_domain containing flag.
824  * @cpu:	The cpu whose highest level of sched domain is to
825  *		be returned.
826  * @flag:	The flag to check for the highest sched_domain
827  *		for the given cpu.
828  *
829  * Returns the highest sched_domain of a cpu which contains the given flag.
830  */
831 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
832 {
833 	struct sched_domain *sd, *hsd = NULL;
834 
835 	for_each_domain(cpu, sd) {
836 		if (!(sd->flags & flag))
837 			break;
838 		hsd = sd;
839 	}
840 
841 	return hsd;
842 }
843 
844 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
845 {
846 	struct sched_domain *sd;
847 
848 	for_each_domain(cpu, sd) {
849 		if (sd->flags & flag)
850 			break;
851 	}
852 
853 	return sd;
854 }
855 
856 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
857 DECLARE_PER_CPU(int, sd_llc_size);
858 DECLARE_PER_CPU(int, sd_llc_id);
859 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
860 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
861 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
862 
863 struct sched_group_capacity {
864 	atomic_t ref;
865 	/*
866 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
867 	 * for a single CPU.
868 	 */
869 	unsigned int capacity;
870 	unsigned long next_update;
871 	int imbalance; /* XXX unrelated to capacity but shared group state */
872 	/*
873 	 * Number of busy cpus in this group.
874 	 */
875 	atomic_t nr_busy_cpus;
876 
877 	unsigned long cpumask[0]; /* iteration mask */
878 };
879 
880 struct sched_group {
881 	struct sched_group *next;	/* Must be a circular list */
882 	atomic_t ref;
883 
884 	unsigned int group_weight;
885 	struct sched_group_capacity *sgc;
886 
887 	/*
888 	 * The CPUs this group covers.
889 	 *
890 	 * NOTE: this field is variable length. (Allocated dynamically
891 	 * by attaching extra space to the end of the structure,
892 	 * depending on how many CPUs the kernel has booted up with)
893 	 */
894 	unsigned long cpumask[0];
895 };
896 
897 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
898 {
899 	return to_cpumask(sg->cpumask);
900 }
901 
902 /*
903  * cpumask masking which cpus in the group are allowed to iterate up the domain
904  * tree.
905  */
906 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
907 {
908 	return to_cpumask(sg->sgc->cpumask);
909 }
910 
911 /**
912  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
913  * @group: The group whose first cpu is to be returned.
914  */
915 static inline unsigned int group_first_cpu(struct sched_group *group)
916 {
917 	return cpumask_first(sched_group_cpus(group));
918 }
919 
920 extern int group_balance_cpu(struct sched_group *sg);
921 
922 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
923 void register_sched_domain_sysctl(void);
924 void unregister_sched_domain_sysctl(void);
925 #else
926 static inline void register_sched_domain_sysctl(void)
927 {
928 }
929 static inline void unregister_sched_domain_sysctl(void)
930 {
931 }
932 #endif
933 
934 #else
935 
936 static inline void sched_ttwu_pending(void) { }
937 
938 #endif /* CONFIG_SMP */
939 
940 #include "stats.h"
941 #include "auto_group.h"
942 
943 #ifdef CONFIG_CGROUP_SCHED
944 
945 /*
946  * Return the group to which this tasks belongs.
947  *
948  * We cannot use task_css() and friends because the cgroup subsystem
949  * changes that value before the cgroup_subsys::attach() method is called,
950  * therefore we cannot pin it and might observe the wrong value.
951  *
952  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
953  * core changes this before calling sched_move_task().
954  *
955  * Instead we use a 'copy' which is updated from sched_move_task() while
956  * holding both task_struct::pi_lock and rq::lock.
957  */
958 static inline struct task_group *task_group(struct task_struct *p)
959 {
960 	return p->sched_task_group;
961 }
962 
963 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
964 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
965 {
966 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
967 	struct task_group *tg = task_group(p);
968 #endif
969 
970 #ifdef CONFIG_FAIR_GROUP_SCHED
971 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
972 	p->se.cfs_rq = tg->cfs_rq[cpu];
973 	p->se.parent = tg->se[cpu];
974 #endif
975 
976 #ifdef CONFIG_RT_GROUP_SCHED
977 	p->rt.rt_rq  = tg->rt_rq[cpu];
978 	p->rt.parent = tg->rt_se[cpu];
979 #endif
980 }
981 
982 #else /* CONFIG_CGROUP_SCHED */
983 
984 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
985 static inline struct task_group *task_group(struct task_struct *p)
986 {
987 	return NULL;
988 }
989 
990 #endif /* CONFIG_CGROUP_SCHED */
991 
992 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
993 {
994 	set_task_rq(p, cpu);
995 #ifdef CONFIG_SMP
996 	/*
997 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
998 	 * successfuly executed on another CPU. We must ensure that updates of
999 	 * per-task data have been completed by this moment.
1000 	 */
1001 	smp_wmb();
1002 	task_thread_info(p)->cpu = cpu;
1003 	p->wake_cpu = cpu;
1004 #endif
1005 }
1006 
1007 /*
1008  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1009  */
1010 #ifdef CONFIG_SCHED_DEBUG
1011 # include <linux/static_key.h>
1012 # define const_debug __read_mostly
1013 #else
1014 # define const_debug const
1015 #endif
1016 
1017 extern const_debug unsigned int sysctl_sched_features;
1018 
1019 #define SCHED_FEAT(name, enabled)	\
1020 	__SCHED_FEAT_##name ,
1021 
1022 enum {
1023 #include "features.h"
1024 	__SCHED_FEAT_NR,
1025 };
1026 
1027 #undef SCHED_FEAT
1028 
1029 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1030 #define SCHED_FEAT(name, enabled)					\
1031 static __always_inline bool static_branch_##name(struct static_key *key) \
1032 {									\
1033 	return static_key_##enabled(key);				\
1034 }
1035 
1036 #include "features.h"
1037 
1038 #undef SCHED_FEAT
1039 
1040 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1041 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1042 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1043 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1044 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1045 
1046 extern struct static_key_false sched_numa_balancing;
1047 extern struct static_key_false sched_schedstats;
1048 
1049 static inline u64 global_rt_period(void)
1050 {
1051 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1052 }
1053 
1054 static inline u64 global_rt_runtime(void)
1055 {
1056 	if (sysctl_sched_rt_runtime < 0)
1057 		return RUNTIME_INF;
1058 
1059 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1060 }
1061 
1062 static inline int task_current(struct rq *rq, struct task_struct *p)
1063 {
1064 	return rq->curr == p;
1065 }
1066 
1067 static inline int task_running(struct rq *rq, struct task_struct *p)
1068 {
1069 #ifdef CONFIG_SMP
1070 	return p->on_cpu;
1071 #else
1072 	return task_current(rq, p);
1073 #endif
1074 }
1075 
1076 static inline int task_on_rq_queued(struct task_struct *p)
1077 {
1078 	return p->on_rq == TASK_ON_RQ_QUEUED;
1079 }
1080 
1081 static inline int task_on_rq_migrating(struct task_struct *p)
1082 {
1083 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1084 }
1085 
1086 #ifndef prepare_arch_switch
1087 # define prepare_arch_switch(next)	do { } while (0)
1088 #endif
1089 #ifndef finish_arch_post_lock_switch
1090 # define finish_arch_post_lock_switch()	do { } while (0)
1091 #endif
1092 
1093 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1094 {
1095 #ifdef CONFIG_SMP
1096 	/*
1097 	 * We can optimise this out completely for !SMP, because the
1098 	 * SMP rebalancing from interrupt is the only thing that cares
1099 	 * here.
1100 	 */
1101 	next->on_cpu = 1;
1102 #endif
1103 }
1104 
1105 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1106 {
1107 #ifdef CONFIG_SMP
1108 	/*
1109 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1110 	 * We must ensure this doesn't happen until the switch is completely
1111 	 * finished.
1112 	 *
1113 	 * In particular, the load of prev->state in finish_task_switch() must
1114 	 * happen before this.
1115 	 *
1116 	 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1117 	 */
1118 	smp_store_release(&prev->on_cpu, 0);
1119 #endif
1120 #ifdef CONFIG_DEBUG_SPINLOCK
1121 	/* this is a valid case when another task releases the spinlock */
1122 	rq->lock.owner = current;
1123 #endif
1124 	/*
1125 	 * If we are tracking spinlock dependencies then we have to
1126 	 * fix up the runqueue lock - which gets 'carried over' from
1127 	 * prev into current:
1128 	 */
1129 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1130 
1131 	raw_spin_unlock_irq(&rq->lock);
1132 }
1133 
1134 /*
1135  * wake flags
1136  */
1137 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1138 #define WF_FORK		0x02		/* child wakeup after fork */
1139 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1140 
1141 /*
1142  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1143  * of tasks with abnormal "nice" values across CPUs the contribution that
1144  * each task makes to its run queue's load is weighted according to its
1145  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1146  * scaled version of the new time slice allocation that they receive on time
1147  * slice expiry etc.
1148  */
1149 
1150 #define WEIGHT_IDLEPRIO                3
1151 #define WMULT_IDLEPRIO         1431655765
1152 
1153 extern const int sched_prio_to_weight[40];
1154 extern const u32 sched_prio_to_wmult[40];
1155 
1156 /*
1157  * {de,en}queue flags:
1158  *
1159  * DEQUEUE_SLEEP  - task is no longer runnable
1160  * ENQUEUE_WAKEUP - task just became runnable
1161  *
1162  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1163  *                are in a known state which allows modification. Such pairs
1164  *                should preserve as much state as possible.
1165  *
1166  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1167  *        in the runqueue.
1168  *
1169  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1170  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1171  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1172  *
1173  */
1174 
1175 #define DEQUEUE_SLEEP		0x01
1176 #define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1177 #define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
1178 
1179 #define ENQUEUE_WAKEUP		0x01
1180 #define ENQUEUE_RESTORE		0x02
1181 #define ENQUEUE_MOVE		0x04
1182 
1183 #define ENQUEUE_HEAD		0x08
1184 #define ENQUEUE_REPLENISH	0x10
1185 #ifdef CONFIG_SMP
1186 #define ENQUEUE_MIGRATED	0x20
1187 #else
1188 #define ENQUEUE_MIGRATED	0x00
1189 #endif
1190 
1191 #define RETRY_TASK		((void *)-1UL)
1192 
1193 struct sched_class {
1194 	const struct sched_class *next;
1195 
1196 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1197 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1198 	void (*yield_task) (struct rq *rq);
1199 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1200 
1201 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1202 
1203 	/*
1204 	 * It is the responsibility of the pick_next_task() method that will
1205 	 * return the next task to call put_prev_task() on the @prev task or
1206 	 * something equivalent.
1207 	 *
1208 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1209 	 * tasks.
1210 	 */
1211 	struct task_struct * (*pick_next_task) (struct rq *rq,
1212 						struct task_struct *prev,
1213 						struct pin_cookie cookie);
1214 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1215 
1216 #ifdef CONFIG_SMP
1217 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1218 	void (*migrate_task_rq)(struct task_struct *p);
1219 
1220 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1221 
1222 	void (*set_cpus_allowed)(struct task_struct *p,
1223 				 const struct cpumask *newmask);
1224 
1225 	void (*rq_online)(struct rq *rq);
1226 	void (*rq_offline)(struct rq *rq);
1227 #endif
1228 
1229 	void (*set_curr_task) (struct rq *rq);
1230 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1231 	void (*task_fork) (struct task_struct *p);
1232 	void (*task_dead) (struct task_struct *p);
1233 
1234 	/*
1235 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1236 	 * cannot assume the switched_from/switched_to pair is serliazed by
1237 	 * rq->lock. They are however serialized by p->pi_lock.
1238 	 */
1239 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1240 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1241 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1242 			     int oldprio);
1243 
1244 	unsigned int (*get_rr_interval) (struct rq *rq,
1245 					 struct task_struct *task);
1246 
1247 	void (*update_curr) (struct rq *rq);
1248 
1249 #ifdef CONFIG_FAIR_GROUP_SCHED
1250 	void (*task_move_group) (struct task_struct *p);
1251 #endif
1252 };
1253 
1254 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1255 {
1256 	prev->sched_class->put_prev_task(rq, prev);
1257 }
1258 
1259 #define sched_class_highest (&stop_sched_class)
1260 #define for_each_class(class) \
1261    for (class = sched_class_highest; class; class = class->next)
1262 
1263 extern const struct sched_class stop_sched_class;
1264 extern const struct sched_class dl_sched_class;
1265 extern const struct sched_class rt_sched_class;
1266 extern const struct sched_class fair_sched_class;
1267 extern const struct sched_class idle_sched_class;
1268 
1269 
1270 #ifdef CONFIG_SMP
1271 
1272 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1273 
1274 extern void trigger_load_balance(struct rq *rq);
1275 
1276 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1277 
1278 #endif
1279 
1280 #ifdef CONFIG_CPU_IDLE
1281 static inline void idle_set_state(struct rq *rq,
1282 				  struct cpuidle_state *idle_state)
1283 {
1284 	rq->idle_state = idle_state;
1285 }
1286 
1287 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1288 {
1289 	WARN_ON(!rcu_read_lock_held());
1290 	return rq->idle_state;
1291 }
1292 #else
1293 static inline void idle_set_state(struct rq *rq,
1294 				  struct cpuidle_state *idle_state)
1295 {
1296 }
1297 
1298 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1299 {
1300 	return NULL;
1301 }
1302 #endif
1303 
1304 extern void sysrq_sched_debug_show(void);
1305 extern void sched_init_granularity(void);
1306 extern void update_max_interval(void);
1307 
1308 extern void init_sched_dl_class(void);
1309 extern void init_sched_rt_class(void);
1310 extern void init_sched_fair_class(void);
1311 
1312 extern void resched_curr(struct rq *rq);
1313 extern void resched_cpu(int cpu);
1314 
1315 extern struct rt_bandwidth def_rt_bandwidth;
1316 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1317 
1318 extern struct dl_bandwidth def_dl_bandwidth;
1319 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1320 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1321 
1322 unsigned long to_ratio(u64 period, u64 runtime);
1323 
1324 extern void init_entity_runnable_average(struct sched_entity *se);
1325 extern void post_init_entity_util_avg(struct sched_entity *se);
1326 
1327 #ifdef CONFIG_NO_HZ_FULL
1328 extern bool sched_can_stop_tick(struct rq *rq);
1329 
1330 /*
1331  * Tick may be needed by tasks in the runqueue depending on their policy and
1332  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1333  * nohz mode if necessary.
1334  */
1335 static inline void sched_update_tick_dependency(struct rq *rq)
1336 {
1337 	int cpu;
1338 
1339 	if (!tick_nohz_full_enabled())
1340 		return;
1341 
1342 	cpu = cpu_of(rq);
1343 
1344 	if (!tick_nohz_full_cpu(cpu))
1345 		return;
1346 
1347 	if (sched_can_stop_tick(rq))
1348 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1349 	else
1350 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1351 }
1352 #else
1353 static inline void sched_update_tick_dependency(struct rq *rq) { }
1354 #endif
1355 
1356 static inline void add_nr_running(struct rq *rq, unsigned count)
1357 {
1358 	unsigned prev_nr = rq->nr_running;
1359 
1360 	rq->nr_running = prev_nr + count;
1361 
1362 	if (prev_nr < 2 && rq->nr_running >= 2) {
1363 #ifdef CONFIG_SMP
1364 		if (!rq->rd->overload)
1365 			rq->rd->overload = true;
1366 #endif
1367 	}
1368 
1369 	sched_update_tick_dependency(rq);
1370 }
1371 
1372 static inline void sub_nr_running(struct rq *rq, unsigned count)
1373 {
1374 	rq->nr_running -= count;
1375 	/* Check if we still need preemption */
1376 	sched_update_tick_dependency(rq);
1377 }
1378 
1379 static inline void rq_last_tick_reset(struct rq *rq)
1380 {
1381 #ifdef CONFIG_NO_HZ_FULL
1382 	rq->last_sched_tick = jiffies;
1383 #endif
1384 }
1385 
1386 extern void update_rq_clock(struct rq *rq);
1387 
1388 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1389 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1390 
1391 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1392 
1393 extern const_debug unsigned int sysctl_sched_time_avg;
1394 extern const_debug unsigned int sysctl_sched_nr_migrate;
1395 extern const_debug unsigned int sysctl_sched_migration_cost;
1396 
1397 static inline u64 sched_avg_period(void)
1398 {
1399 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1400 }
1401 
1402 #ifdef CONFIG_SCHED_HRTICK
1403 
1404 /*
1405  * Use hrtick when:
1406  *  - enabled by features
1407  *  - hrtimer is actually high res
1408  */
1409 static inline int hrtick_enabled(struct rq *rq)
1410 {
1411 	if (!sched_feat(HRTICK))
1412 		return 0;
1413 	if (!cpu_active(cpu_of(rq)))
1414 		return 0;
1415 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1416 }
1417 
1418 void hrtick_start(struct rq *rq, u64 delay);
1419 
1420 #else
1421 
1422 static inline int hrtick_enabled(struct rq *rq)
1423 {
1424 	return 0;
1425 }
1426 
1427 #endif /* CONFIG_SCHED_HRTICK */
1428 
1429 #ifdef CONFIG_SMP
1430 extern void sched_avg_update(struct rq *rq);
1431 
1432 #ifndef arch_scale_freq_capacity
1433 static __always_inline
1434 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1435 {
1436 	return SCHED_CAPACITY_SCALE;
1437 }
1438 #endif
1439 
1440 #ifndef arch_scale_cpu_capacity
1441 static __always_inline
1442 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1443 {
1444 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1445 		return sd->smt_gain / sd->span_weight;
1446 
1447 	return SCHED_CAPACITY_SCALE;
1448 }
1449 #endif
1450 
1451 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1452 {
1453 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1454 	sched_avg_update(rq);
1455 }
1456 #else
1457 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1458 static inline void sched_avg_update(struct rq *rq) { }
1459 #endif
1460 
1461 struct rq_flags {
1462 	unsigned long flags;
1463 	struct pin_cookie cookie;
1464 };
1465 
1466 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1467 	__acquires(rq->lock);
1468 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1469 	__acquires(p->pi_lock)
1470 	__acquires(rq->lock);
1471 
1472 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1473 	__releases(rq->lock)
1474 {
1475 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1476 	raw_spin_unlock(&rq->lock);
1477 }
1478 
1479 static inline void
1480 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1481 	__releases(rq->lock)
1482 	__releases(p->pi_lock)
1483 {
1484 	lockdep_unpin_lock(&rq->lock, rf->cookie);
1485 	raw_spin_unlock(&rq->lock);
1486 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1487 }
1488 
1489 #ifdef CONFIG_SMP
1490 #ifdef CONFIG_PREEMPT
1491 
1492 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1493 
1494 /*
1495  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1496  * way at the expense of forcing extra atomic operations in all
1497  * invocations.  This assures that the double_lock is acquired using the
1498  * same underlying policy as the spinlock_t on this architecture, which
1499  * reduces latency compared to the unfair variant below.  However, it
1500  * also adds more overhead and therefore may reduce throughput.
1501  */
1502 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1503 	__releases(this_rq->lock)
1504 	__acquires(busiest->lock)
1505 	__acquires(this_rq->lock)
1506 {
1507 	raw_spin_unlock(&this_rq->lock);
1508 	double_rq_lock(this_rq, busiest);
1509 
1510 	return 1;
1511 }
1512 
1513 #else
1514 /*
1515  * Unfair double_lock_balance: Optimizes throughput at the expense of
1516  * latency by eliminating extra atomic operations when the locks are
1517  * already in proper order on entry.  This favors lower cpu-ids and will
1518  * grant the double lock to lower cpus over higher ids under contention,
1519  * regardless of entry order into the function.
1520  */
1521 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1522 	__releases(this_rq->lock)
1523 	__acquires(busiest->lock)
1524 	__acquires(this_rq->lock)
1525 {
1526 	int ret = 0;
1527 
1528 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1529 		if (busiest < this_rq) {
1530 			raw_spin_unlock(&this_rq->lock);
1531 			raw_spin_lock(&busiest->lock);
1532 			raw_spin_lock_nested(&this_rq->lock,
1533 					      SINGLE_DEPTH_NESTING);
1534 			ret = 1;
1535 		} else
1536 			raw_spin_lock_nested(&busiest->lock,
1537 					      SINGLE_DEPTH_NESTING);
1538 	}
1539 	return ret;
1540 }
1541 
1542 #endif /* CONFIG_PREEMPT */
1543 
1544 /*
1545  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1546  */
1547 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1548 {
1549 	if (unlikely(!irqs_disabled())) {
1550 		/* printk() doesn't work good under rq->lock */
1551 		raw_spin_unlock(&this_rq->lock);
1552 		BUG_ON(1);
1553 	}
1554 
1555 	return _double_lock_balance(this_rq, busiest);
1556 }
1557 
1558 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1559 	__releases(busiest->lock)
1560 {
1561 	raw_spin_unlock(&busiest->lock);
1562 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1563 }
1564 
1565 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1566 {
1567 	if (l1 > l2)
1568 		swap(l1, l2);
1569 
1570 	spin_lock(l1);
1571 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1572 }
1573 
1574 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1575 {
1576 	if (l1 > l2)
1577 		swap(l1, l2);
1578 
1579 	spin_lock_irq(l1);
1580 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1581 }
1582 
1583 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1584 {
1585 	if (l1 > l2)
1586 		swap(l1, l2);
1587 
1588 	raw_spin_lock(l1);
1589 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1590 }
1591 
1592 /*
1593  * double_rq_lock - safely lock two runqueues
1594  *
1595  * Note this does not disable interrupts like task_rq_lock,
1596  * you need to do so manually before calling.
1597  */
1598 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1599 	__acquires(rq1->lock)
1600 	__acquires(rq2->lock)
1601 {
1602 	BUG_ON(!irqs_disabled());
1603 	if (rq1 == rq2) {
1604 		raw_spin_lock(&rq1->lock);
1605 		__acquire(rq2->lock);	/* Fake it out ;) */
1606 	} else {
1607 		if (rq1 < rq2) {
1608 			raw_spin_lock(&rq1->lock);
1609 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1610 		} else {
1611 			raw_spin_lock(&rq2->lock);
1612 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1613 		}
1614 	}
1615 }
1616 
1617 /*
1618  * double_rq_unlock - safely unlock two runqueues
1619  *
1620  * Note this does not restore interrupts like task_rq_unlock,
1621  * you need to do so manually after calling.
1622  */
1623 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1624 	__releases(rq1->lock)
1625 	__releases(rq2->lock)
1626 {
1627 	raw_spin_unlock(&rq1->lock);
1628 	if (rq1 != rq2)
1629 		raw_spin_unlock(&rq2->lock);
1630 	else
1631 		__release(rq2->lock);
1632 }
1633 
1634 #else /* CONFIG_SMP */
1635 
1636 /*
1637  * double_rq_lock - safely lock two runqueues
1638  *
1639  * Note this does not disable interrupts like task_rq_lock,
1640  * you need to do so manually before calling.
1641  */
1642 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643 	__acquires(rq1->lock)
1644 	__acquires(rq2->lock)
1645 {
1646 	BUG_ON(!irqs_disabled());
1647 	BUG_ON(rq1 != rq2);
1648 	raw_spin_lock(&rq1->lock);
1649 	__acquire(rq2->lock);	/* Fake it out ;) */
1650 }
1651 
1652 /*
1653  * double_rq_unlock - safely unlock two runqueues
1654  *
1655  * Note this does not restore interrupts like task_rq_unlock,
1656  * you need to do so manually after calling.
1657  */
1658 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1659 	__releases(rq1->lock)
1660 	__releases(rq2->lock)
1661 {
1662 	BUG_ON(rq1 != rq2);
1663 	raw_spin_unlock(&rq1->lock);
1664 	__release(rq2->lock);
1665 }
1666 
1667 #endif
1668 
1669 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1670 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1671 
1672 #ifdef	CONFIG_SCHED_DEBUG
1673 extern void print_cfs_stats(struct seq_file *m, int cpu);
1674 extern void print_rt_stats(struct seq_file *m, int cpu);
1675 extern void print_dl_stats(struct seq_file *m, int cpu);
1676 extern void
1677 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1678 
1679 #ifdef CONFIG_NUMA_BALANCING
1680 extern void
1681 show_numa_stats(struct task_struct *p, struct seq_file *m);
1682 extern void
1683 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1684 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1685 #endif /* CONFIG_NUMA_BALANCING */
1686 #endif /* CONFIG_SCHED_DEBUG */
1687 
1688 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1689 extern void init_rt_rq(struct rt_rq *rt_rq);
1690 extern void init_dl_rq(struct dl_rq *dl_rq);
1691 
1692 extern void cfs_bandwidth_usage_inc(void);
1693 extern void cfs_bandwidth_usage_dec(void);
1694 
1695 #ifdef CONFIG_NO_HZ_COMMON
1696 enum rq_nohz_flag_bits {
1697 	NOHZ_TICK_STOPPED,
1698 	NOHZ_BALANCE_KICK,
1699 };
1700 
1701 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1702 
1703 extern void nohz_balance_exit_idle(unsigned int cpu);
1704 #else
1705 static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1706 #endif
1707 
1708 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1709 
1710 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1711 DECLARE_PER_CPU(u64, cpu_softirq_time);
1712 
1713 #ifndef CONFIG_64BIT
1714 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1715 
1716 static inline void irq_time_write_begin(void)
1717 {
1718 	__this_cpu_inc(irq_time_seq.sequence);
1719 	smp_wmb();
1720 }
1721 
1722 static inline void irq_time_write_end(void)
1723 {
1724 	smp_wmb();
1725 	__this_cpu_inc(irq_time_seq.sequence);
1726 }
1727 
1728 static inline u64 irq_time_read(int cpu)
1729 {
1730 	u64 irq_time;
1731 	unsigned seq;
1732 
1733 	do {
1734 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1735 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1736 			   per_cpu(cpu_hardirq_time, cpu);
1737 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1738 
1739 	return irq_time;
1740 }
1741 #else /* CONFIG_64BIT */
1742 static inline void irq_time_write_begin(void)
1743 {
1744 }
1745 
1746 static inline void irq_time_write_end(void)
1747 {
1748 }
1749 
1750 static inline u64 irq_time_read(int cpu)
1751 {
1752 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1753 }
1754 #endif /* CONFIG_64BIT */
1755 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1756 
1757 #ifdef CONFIG_CPU_FREQ
1758 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1759 
1760 /**
1761  * cpufreq_update_util - Take a note about CPU utilization changes.
1762  * @time: Current time.
1763  * @util: Current utilization.
1764  * @max: Utilization ceiling.
1765  *
1766  * This function is called by the scheduler on every invocation of
1767  * update_load_avg() on the CPU whose utilization is being updated.
1768  *
1769  * It can only be called from RCU-sched read-side critical sections.
1770  */
1771 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1772 {
1773        struct update_util_data *data;
1774 
1775        data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1776        if (data)
1777                data->func(data, time, util, max);
1778 }
1779 
1780 /**
1781  * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1782  * @time: Current time.
1783  *
1784  * The way cpufreq is currently arranged requires it to evaluate the CPU
1785  * performance state (frequency/voltage) on a regular basis to prevent it from
1786  * being stuck in a completely inadequate performance level for too long.
1787  * That is not guaranteed to happen if the updates are only triggered from CFS,
1788  * though, because they may not be coming in if RT or deadline tasks are active
1789  * all the time (or there are RT and DL tasks only).
1790  *
1791  * As a workaround for that issue, this function is called by the RT and DL
1792  * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1793  * but that really is a band-aid.  Going forward it should be replaced with
1794  * solutions targeted more specifically at RT and DL tasks.
1795  */
1796 static inline void cpufreq_trigger_update(u64 time)
1797 {
1798 	cpufreq_update_util(time, ULONG_MAX, 0);
1799 }
1800 #else
1801 static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1802 static inline void cpufreq_trigger_update(u64 time) {}
1803 #endif /* CONFIG_CPU_FREQ */
1804 
1805 #ifdef arch_scale_freq_capacity
1806 #ifndef arch_scale_freq_invariant
1807 #define arch_scale_freq_invariant()	(true)
1808 #endif
1809 #else /* arch_scale_freq_capacity */
1810 #define arch_scale_freq_invariant()	(false)
1811 #endif
1812 
1813 static inline void account_reset_rq(struct rq *rq)
1814 {
1815 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1816 	rq->prev_irq_time = 0;
1817 #endif
1818 #ifdef CONFIG_PARAVIRT
1819 	rq->prev_steal_time = 0;
1820 #endif
1821 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1822 	rq->prev_steal_time_rq = 0;
1823 #endif
1824 }
1825