1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 #include <linux/mmu_context.h> 73 74 #include <trace/events/power.h> 75 #include <trace/events/sched.h> 76 77 #include "../workqueue_internal.h" 78 79 struct rq; 80 struct cfs_rq; 81 struct rt_rq; 82 struct sched_group; 83 struct cpuidle_state; 84 85 #ifdef CONFIG_PARAVIRT 86 # include <asm/paravirt.h> 87 # include <asm/paravirt_api_clock.h> 88 #endif 89 90 #include <asm/barrier.h> 91 92 #include "cpupri.h" 93 #include "cpudeadline.h" 94 95 /* task_struct::on_rq states: */ 96 #define TASK_ON_RQ_QUEUED 1 97 #define TASK_ON_RQ_MIGRATING 2 98 99 extern __read_mostly int scheduler_running; 100 101 extern unsigned long calc_load_update; 102 extern atomic_long_t calc_load_tasks; 103 104 extern void calc_global_load_tick(struct rq *this_rq); 105 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 106 107 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 108 109 extern int sysctl_sched_rt_period; 110 extern int sysctl_sched_rt_runtime; 111 extern int sched_rr_timeslice; 112 113 /* 114 * Asymmetric CPU capacity bits 115 */ 116 struct asym_cap_data { 117 struct list_head link; 118 struct rcu_head rcu; 119 unsigned long capacity; 120 unsigned long cpus[]; 121 }; 122 123 extern struct list_head asym_cap_list; 124 125 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 126 127 /* 128 * Helpers for converting nanosecond timing to jiffy resolution 129 */ 130 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 131 132 /* 133 * Increase resolution of nice-level calculations for 64-bit architectures. 134 * The extra resolution improves shares distribution and load balancing of 135 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 136 * hierarchies, especially on larger systems. This is not a user-visible change 137 * and does not change the user-interface for setting shares/weights. 138 * 139 * We increase resolution only if we have enough bits to allow this increased 140 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 141 * are pretty high and the returns do not justify the increased costs. 142 * 143 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 144 * increase coverage and consistency always enable it on 64-bit platforms. 145 */ 146 #ifdef CONFIG_64BIT 147 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 149 # define scale_load_down(w) \ 150 ({ \ 151 unsigned long __w = (w); \ 152 \ 153 if (__w) \ 154 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 155 __w; \ 156 }) 157 #else 158 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 159 # define scale_load(w) (w) 160 # define scale_load_down(w) (w) 161 #endif 162 163 /* 164 * Task weight (visible to users) and its load (invisible to users) have 165 * independent resolution, but they should be well calibrated. We use 166 * scale_load() and scale_load_down(w) to convert between them. The 167 * following must be true: 168 * 169 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 170 * 171 */ 172 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 173 174 /* 175 * Single value that decides SCHED_DEADLINE internal math precision. 176 * 10 -> just above 1us 177 * 9 -> just above 0.5us 178 */ 179 #define DL_SCALE 10 180 181 /* 182 * Single value that denotes runtime == period, ie unlimited time. 183 */ 184 #define RUNTIME_INF ((u64)~0ULL) 185 186 static inline int idle_policy(int policy) 187 { 188 return policy == SCHED_IDLE; 189 } 190 191 static inline int normal_policy(int policy) 192 { 193 #ifdef CONFIG_SCHED_CLASS_EXT 194 if (policy == SCHED_EXT) 195 return true; 196 #endif 197 return policy == SCHED_NORMAL; 198 } 199 200 static inline int fair_policy(int policy) 201 { 202 return normal_policy(policy) || policy == SCHED_BATCH; 203 } 204 205 static inline int rt_policy(int policy) 206 { 207 return policy == SCHED_FIFO || policy == SCHED_RR; 208 } 209 210 static inline int dl_policy(int policy) 211 { 212 return policy == SCHED_DEADLINE; 213 } 214 215 static inline bool valid_policy(int policy) 216 { 217 return idle_policy(policy) || fair_policy(policy) || 218 rt_policy(policy) || dl_policy(policy); 219 } 220 221 static inline int task_has_idle_policy(struct task_struct *p) 222 { 223 return idle_policy(p->policy); 224 } 225 226 static inline int task_has_rt_policy(struct task_struct *p) 227 { 228 return rt_policy(p->policy); 229 } 230 231 static inline int task_has_dl_policy(struct task_struct *p) 232 { 233 return dl_policy(p->policy); 234 } 235 236 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 237 238 static inline void update_avg(u64 *avg, u64 sample) 239 { 240 s64 diff = sample - *avg; 241 242 *avg += diff / 8; 243 } 244 245 /* 246 * Shifting a value by an exponent greater *or equal* to the size of said value 247 * is UB; cap at size-1. 248 */ 249 #define shr_bound(val, shift) \ 250 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 251 252 /* 253 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 254 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 255 * maps pretty well onto the shares value used by scheduler and the round-trip 256 * conversions preserve the original value over the entire range. 257 */ 258 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 259 { 260 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 261 } 262 263 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 264 { 265 return clamp_t(unsigned long, 266 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 267 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 268 } 269 270 /* 271 * !! For sched_setattr_nocheck() (kernel) only !! 272 * 273 * This is actually gross. :( 274 * 275 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 276 * tasks, but still be able to sleep. We need this on platforms that cannot 277 * atomically change clock frequency. Remove once fast switching will be 278 * available on such platforms. 279 * 280 * SUGOV stands for SchedUtil GOVernor. 281 */ 282 #define SCHED_FLAG_SUGOV 0x10000000 283 284 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 285 286 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 287 { 288 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 289 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 290 #else 291 return false; 292 #endif 293 } 294 295 /* 296 * Tells if entity @a should preempt entity @b. 297 */ 298 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 299 const struct sched_dl_entity *b) 300 { 301 return dl_entity_is_special(a) || 302 dl_time_before(a->deadline, b->deadline); 303 } 304 305 /* 306 * This is the priority-queue data structure of the RT scheduling class: 307 */ 308 struct rt_prio_array { 309 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 310 struct list_head queue[MAX_RT_PRIO]; 311 }; 312 313 struct rt_bandwidth { 314 /* nests inside the rq lock: */ 315 raw_spinlock_t rt_runtime_lock; 316 ktime_t rt_period; 317 u64 rt_runtime; 318 struct hrtimer rt_period_timer; 319 unsigned int rt_period_active; 320 }; 321 322 static inline int dl_bandwidth_enabled(void) 323 { 324 return sysctl_sched_rt_runtime >= 0; 325 } 326 327 /* 328 * To keep the bandwidth of -deadline tasks under control 329 * we need some place where: 330 * - store the maximum -deadline bandwidth of each cpu; 331 * - cache the fraction of bandwidth that is currently allocated in 332 * each root domain; 333 * 334 * This is all done in the data structure below. It is similar to the 335 * one used for RT-throttling (rt_bandwidth), with the main difference 336 * that, since here we are only interested in admission control, we 337 * do not decrease any runtime while the group "executes", neither we 338 * need a timer to replenish it. 339 * 340 * With respect to SMP, bandwidth is given on a per root domain basis, 341 * meaning that: 342 * - bw (< 100%) is the deadline bandwidth of each CPU; 343 * - total_bw is the currently allocated bandwidth in each root domain; 344 */ 345 struct dl_bw { 346 raw_spinlock_t lock; 347 u64 bw; 348 u64 total_bw; 349 }; 350 351 extern void init_dl_bw(struct dl_bw *dl_b); 352 extern int sched_dl_global_validate(void); 353 extern void sched_dl_do_global(void); 354 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 355 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 356 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 357 extern bool __checkparam_dl(const struct sched_attr *attr); 358 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 359 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 360 extern int dl_bw_deactivate(int cpu); 361 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 362 /* 363 * SCHED_DEADLINE supports servers (nested scheduling) with the following 364 * interface: 365 * 366 * dl_se::rq -- runqueue we belong to. 367 * 368 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 369 * returns NULL. 370 * 371 * dl_server_update() -- called from update_curr_common(), propagates runtime 372 * to the server. 373 * 374 * dl_server_start() -- start the server when it has tasks; it will stop 375 * automatically when there are no more tasks, per 376 * dl_se::server_pick() returning NULL. 377 * 378 * dl_server_stop() -- (force) stop the server; use when updating 379 * parameters. 380 * 381 * dl_server_init() -- initializes the server. 382 * 383 * When started the dl_server will (per dl_defer) schedule a timer for its 384 * zero-laxity point -- that is, unlike regular EDF tasks which run ASAP, a 385 * server will run at the very end of its period. 386 * 387 * This is done such that any runtime from the target class can be accounted 388 * against the server -- through dl_server_update() above -- such that when it 389 * becomes time to run, it might already be out of runtime and get deferred 390 * until the next period. In this case dl_server_timer() will alternate 391 * between defer and replenish but never actually enqueue the server. 392 * 393 * Only when the target class does not manage to exhaust the server's runtime 394 * (there's actualy starvation in the given period), will the dl_server get on 395 * the runqueue. Once queued it will pick tasks from the target class and run 396 * them until either its runtime is exhaused, at which point its back to 397 * dl_server_timer, or until there are no more tasks to run, at which point 398 * the dl_server stops itself. 399 * 400 * By stopping at this point the dl_server retains bandwidth, which, if a new 401 * task wakes up imminently (starting the server again), can be used -- 402 * subject to CBS wakeup rules -- without having to wait for the next period. 403 * 404 * Additionally, because of the dl_defer behaviour the start/stop behaviour is 405 * naturally thottled to once per period, avoiding high context switch 406 * workloads from spamming the hrtimer program/cancel paths. 407 */ 408 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 409 extern void dl_server_start(struct sched_dl_entity *dl_se); 410 extern void dl_server_stop(struct sched_dl_entity *dl_se); 411 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 412 dl_server_pick_f pick_task); 413 extern void sched_init_dl_servers(void); 414 415 extern void dl_server_update_idle_time(struct rq *rq, 416 struct task_struct *p); 417 extern void fair_server_init(struct rq *rq); 418 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 419 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 420 u64 runtime, u64 period, bool init); 421 422 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 423 { 424 return dl_se->dl_server_active; 425 } 426 427 #ifdef CONFIG_CGROUP_SCHED 428 429 extern struct list_head task_groups; 430 431 #ifdef CONFIG_GROUP_SCHED_BANDWIDTH 432 extern const u64 max_bw_quota_period_us; 433 434 /* 435 * default period for group bandwidth. 436 * default: 0.1s, units: microseconds 437 */ 438 static inline u64 default_bw_period_us(void) 439 { 440 return 100000ULL; 441 } 442 #endif /* CONFIG_GROUP_SCHED_BANDWIDTH */ 443 444 struct cfs_bandwidth { 445 #ifdef CONFIG_CFS_BANDWIDTH 446 raw_spinlock_t lock; 447 ktime_t period; 448 u64 quota; 449 u64 runtime; 450 u64 burst; 451 u64 runtime_snap; 452 s64 hierarchical_quota; 453 454 u8 idle; 455 u8 period_active; 456 u8 slack_started; 457 struct hrtimer period_timer; 458 struct hrtimer slack_timer; 459 struct list_head throttled_cfs_rq; 460 461 /* Statistics: */ 462 int nr_periods; 463 int nr_throttled; 464 int nr_burst; 465 u64 throttled_time; 466 u64 burst_time; 467 #endif /* CONFIG_CFS_BANDWIDTH */ 468 }; 469 470 /* Task group related information */ 471 struct task_group { 472 struct cgroup_subsys_state css; 473 474 #ifdef CONFIG_GROUP_SCHED_WEIGHT 475 /* A positive value indicates that this is a SCHED_IDLE group. */ 476 int idle; 477 #endif 478 479 #ifdef CONFIG_FAIR_GROUP_SCHED 480 /* schedulable entities of this group on each CPU */ 481 struct sched_entity **se; 482 /* runqueue "owned" by this group on each CPU */ 483 struct cfs_rq **cfs_rq; 484 unsigned long shares; 485 /* 486 * load_avg can be heavily contended at clock tick time, so put 487 * it in its own cache-line separated from the fields above which 488 * will also be accessed at each tick. 489 */ 490 atomic_long_t load_avg ____cacheline_aligned; 491 #endif /* CONFIG_FAIR_GROUP_SCHED */ 492 493 #ifdef CONFIG_RT_GROUP_SCHED 494 struct sched_rt_entity **rt_se; 495 struct rt_rq **rt_rq; 496 497 struct rt_bandwidth rt_bandwidth; 498 #endif 499 500 struct scx_task_group scx; 501 502 struct rcu_head rcu; 503 struct list_head list; 504 505 struct task_group *parent; 506 struct list_head siblings; 507 struct list_head children; 508 509 #ifdef CONFIG_SCHED_AUTOGROUP 510 struct autogroup *autogroup; 511 #endif 512 513 struct cfs_bandwidth cfs_bandwidth; 514 515 #ifdef CONFIG_UCLAMP_TASK_GROUP 516 /* The two decimal precision [%] value requested from user-space */ 517 unsigned int uclamp_pct[UCLAMP_CNT]; 518 /* Clamp values requested for a task group */ 519 struct uclamp_se uclamp_req[UCLAMP_CNT]; 520 /* Effective clamp values used for a task group */ 521 struct uclamp_se uclamp[UCLAMP_CNT]; 522 #endif 523 524 }; 525 526 #ifdef CONFIG_GROUP_SCHED_WEIGHT 527 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 528 529 /* 530 * A weight of 0 or 1 can cause arithmetics problems. 531 * A weight of a cfs_rq is the sum of weights of which entities 532 * are queued on this cfs_rq, so a weight of a entity should not be 533 * too large, so as the shares value of a task group. 534 * (The default weight is 1024 - so there's no practical 535 * limitation from this.) 536 */ 537 #define MIN_SHARES (1UL << 1) 538 #define MAX_SHARES (1UL << 18) 539 #endif 540 541 typedef int (*tg_visitor)(struct task_group *, void *); 542 543 extern int walk_tg_tree_from(struct task_group *from, 544 tg_visitor down, tg_visitor up, void *data); 545 546 /* 547 * Iterate the full tree, calling @down when first entering a node and @up when 548 * leaving it for the final time. 549 * 550 * Caller must hold rcu_lock or sufficient equivalent. 551 */ 552 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 553 { 554 return walk_tg_tree_from(&root_task_group, down, up, data); 555 } 556 557 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 558 { 559 return css ? container_of(css, struct task_group, css) : NULL; 560 } 561 562 extern int tg_nop(struct task_group *tg, void *data); 563 564 #ifdef CONFIG_FAIR_GROUP_SCHED 565 extern void free_fair_sched_group(struct task_group *tg); 566 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 567 extern void online_fair_sched_group(struct task_group *tg); 568 extern void unregister_fair_sched_group(struct task_group *tg); 569 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 570 static inline void free_fair_sched_group(struct task_group *tg) { } 571 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 572 { 573 return 1; 574 } 575 static inline void online_fair_sched_group(struct task_group *tg) { } 576 static inline void unregister_fair_sched_group(struct task_group *tg) { } 577 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 578 579 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 580 struct sched_entity *se, int cpu, 581 struct sched_entity *parent); 582 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 583 584 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 585 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 586 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 587 extern bool cfs_task_bw_constrained(struct task_struct *p); 588 589 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 590 struct sched_rt_entity *rt_se, int cpu, 591 struct sched_rt_entity *parent); 592 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 593 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 594 extern long sched_group_rt_runtime(struct task_group *tg); 595 extern long sched_group_rt_period(struct task_group *tg); 596 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 597 598 extern struct task_group *sched_create_group(struct task_group *parent); 599 extern void sched_online_group(struct task_group *tg, 600 struct task_group *parent); 601 extern void sched_destroy_group(struct task_group *tg); 602 extern void sched_release_group(struct task_group *tg); 603 604 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 605 606 #ifdef CONFIG_FAIR_GROUP_SCHED 607 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 608 609 extern int sched_group_set_idle(struct task_group *tg, long idle); 610 611 extern void set_task_rq_fair(struct sched_entity *se, 612 struct cfs_rq *prev, struct cfs_rq *next); 613 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 614 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 615 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 616 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 617 618 #else /* !CONFIG_CGROUP_SCHED: */ 619 620 struct cfs_bandwidth { }; 621 622 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 623 624 #endif /* !CONFIG_CGROUP_SCHED */ 625 626 extern void unregister_rt_sched_group(struct task_group *tg); 627 extern void free_rt_sched_group(struct task_group *tg); 628 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 629 630 /* 631 * u64_u32_load/u64_u32_store 632 * 633 * Use a copy of a u64 value to protect against data race. This is only 634 * applicable for 32-bits architectures. 635 */ 636 #ifdef CONFIG_64BIT 637 # define u64_u32_load_copy(var, copy) var 638 # define u64_u32_store_copy(var, copy, val) (var = val) 639 #else 640 # define u64_u32_load_copy(var, copy) \ 641 ({ \ 642 u64 __val, __val_copy; \ 643 do { \ 644 __val_copy = copy; \ 645 /* \ 646 * paired with u64_u32_store_copy(), ordering access \ 647 * to var and copy. \ 648 */ \ 649 smp_rmb(); \ 650 __val = var; \ 651 } while (__val != __val_copy); \ 652 __val; \ 653 }) 654 # define u64_u32_store_copy(var, copy, val) \ 655 do { \ 656 typeof(val) __val = (val); \ 657 var = __val; \ 658 /* \ 659 * paired with u64_u32_load_copy(), ordering access to var and \ 660 * copy. \ 661 */ \ 662 smp_wmb(); \ 663 copy = __val; \ 664 } while (0) 665 #endif 666 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 667 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 668 669 struct balance_callback { 670 struct balance_callback *next; 671 void (*func)(struct rq *rq); 672 }; 673 674 /* CFS-related fields in a runqueue */ 675 struct cfs_rq { 676 struct load_weight load; 677 unsigned int nr_queued; 678 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 679 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 680 unsigned int h_nr_idle; /* SCHED_IDLE */ 681 682 s64 avg_vruntime; 683 u64 avg_load; 684 685 u64 min_vruntime; 686 #ifdef CONFIG_SCHED_CORE 687 unsigned int forceidle_seq; 688 u64 min_vruntime_fi; 689 #endif 690 691 struct rb_root_cached tasks_timeline; 692 693 /* 694 * 'curr' points to currently running entity on this cfs_rq. 695 * It is set to NULL otherwise (i.e when none are currently running). 696 */ 697 struct sched_entity *curr; 698 struct sched_entity *next; 699 700 /* 701 * CFS load tracking 702 */ 703 struct sched_avg avg; 704 #ifndef CONFIG_64BIT 705 u64 last_update_time_copy; 706 #endif 707 struct { 708 raw_spinlock_t lock ____cacheline_aligned; 709 int nr; 710 unsigned long load_avg; 711 unsigned long util_avg; 712 unsigned long runnable_avg; 713 } removed; 714 715 #ifdef CONFIG_FAIR_GROUP_SCHED 716 u64 last_update_tg_load_avg; 717 unsigned long tg_load_avg_contrib; 718 long propagate; 719 long prop_runnable_sum; 720 721 /* 722 * h_load = weight * f(tg) 723 * 724 * Where f(tg) is the recursive weight fraction assigned to 725 * this group. 726 */ 727 unsigned long h_load; 728 u64 last_h_load_update; 729 struct sched_entity *h_load_next; 730 #endif /* CONFIG_FAIR_GROUP_SCHED */ 731 732 #ifdef CONFIG_FAIR_GROUP_SCHED 733 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 734 735 /* 736 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 737 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 738 * (like users, containers etc.) 739 * 740 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 741 * This list is used during load balance. 742 */ 743 int on_list; 744 struct list_head leaf_cfs_rq_list; 745 struct task_group *tg; /* group that "owns" this runqueue */ 746 747 /* Locally cached copy of our task_group's idle value */ 748 int idle; 749 750 #ifdef CONFIG_CFS_BANDWIDTH 751 int runtime_enabled; 752 s64 runtime_remaining; 753 754 u64 throttled_pelt_idle; 755 #ifndef CONFIG_64BIT 756 u64 throttled_pelt_idle_copy; 757 #endif 758 u64 throttled_clock; 759 u64 throttled_clock_pelt; 760 u64 throttled_clock_pelt_time; 761 u64 throttled_clock_self; 762 u64 throttled_clock_self_time; 763 bool throttled:1; 764 bool pelt_clock_throttled:1; 765 int throttle_count; 766 struct list_head throttled_list; 767 struct list_head throttled_csd_list; 768 struct list_head throttled_limbo_list; 769 #endif /* CONFIG_CFS_BANDWIDTH */ 770 #endif /* CONFIG_FAIR_GROUP_SCHED */ 771 }; 772 773 #ifdef CONFIG_SCHED_CLASS_EXT 774 /* scx_rq->flags, protected by the rq lock */ 775 enum scx_rq_flags { 776 /* 777 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 778 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 779 * only while the BPF scheduler considers the CPU to be online. 780 */ 781 SCX_RQ_ONLINE = 1 << 0, 782 SCX_RQ_CAN_STOP_TICK = 1 << 1, 783 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 784 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 785 SCX_RQ_BYPASSING = 1 << 4, 786 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 787 788 SCX_RQ_IN_WAKEUP = 1 << 16, 789 SCX_RQ_IN_BALANCE = 1 << 17, 790 }; 791 792 struct scx_rq { 793 struct scx_dispatch_q local_dsq; 794 struct list_head runnable_list; /* runnable tasks on this rq */ 795 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 796 unsigned long ops_qseq; 797 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 798 u32 nr_running; 799 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 800 bool cpu_released; 801 u32 flags; 802 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 803 cpumask_var_t cpus_to_kick; 804 cpumask_var_t cpus_to_kick_if_idle; 805 cpumask_var_t cpus_to_preempt; 806 cpumask_var_t cpus_to_wait; 807 unsigned long pnt_seq; 808 struct balance_callback deferred_bal_cb; 809 struct irq_work deferred_irq_work; 810 struct irq_work kick_cpus_irq_work; 811 }; 812 #endif /* CONFIG_SCHED_CLASS_EXT */ 813 814 static inline int rt_bandwidth_enabled(void) 815 { 816 return sysctl_sched_rt_runtime >= 0; 817 } 818 819 /* RT IPI pull logic requires IRQ_WORK */ 820 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 821 # define HAVE_RT_PUSH_IPI 822 #endif 823 824 /* Real-Time classes' related field in a runqueue: */ 825 struct rt_rq { 826 struct rt_prio_array active; 827 unsigned int rt_nr_running; 828 unsigned int rr_nr_running; 829 struct { 830 int curr; /* highest queued rt task prio */ 831 int next; /* next highest */ 832 } highest_prio; 833 bool overloaded; 834 struct plist_head pushable_tasks; 835 836 int rt_queued; 837 838 #ifdef CONFIG_RT_GROUP_SCHED 839 int rt_throttled; 840 u64 rt_time; /* consumed RT time, goes up in update_curr_rt */ 841 u64 rt_runtime; /* allotted RT time, "slice" from rt_bandwidth, RT sharing/balancing */ 842 /* Nests inside the rq lock: */ 843 raw_spinlock_t rt_runtime_lock; 844 845 unsigned int rt_nr_boosted; 846 847 struct rq *rq; /* this is always top-level rq, cache? */ 848 #endif 849 #ifdef CONFIG_CGROUP_SCHED 850 struct task_group *tg; /* this tg has "this" rt_rq on given CPU for runnable entities */ 851 #endif 852 }; 853 854 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 855 { 856 return rt_rq->rt_queued && rt_rq->rt_nr_running; 857 } 858 859 /* Deadline class' related fields in a runqueue */ 860 struct dl_rq { 861 /* runqueue is an rbtree, ordered by deadline */ 862 struct rb_root_cached root; 863 864 unsigned int dl_nr_running; 865 866 /* 867 * Deadline values of the currently executing and the 868 * earliest ready task on this rq. Caching these facilitates 869 * the decision whether or not a ready but not running task 870 * should migrate somewhere else. 871 */ 872 struct { 873 u64 curr; 874 u64 next; 875 } earliest_dl; 876 877 bool overloaded; 878 879 /* 880 * Tasks on this rq that can be pushed away. They are kept in 881 * an rb-tree, ordered by tasks' deadlines, with caching 882 * of the leftmost (earliest deadline) element. 883 */ 884 struct rb_root_cached pushable_dl_tasks_root; 885 886 /* 887 * "Active utilization" for this runqueue: increased when a 888 * task wakes up (becomes TASK_RUNNING) and decreased when a 889 * task blocks 890 */ 891 u64 running_bw; 892 893 /* 894 * Utilization of the tasks "assigned" to this runqueue (including 895 * the tasks that are in runqueue and the tasks that executed on this 896 * CPU and blocked). Increased when a task moves to this runqueue, and 897 * decreased when the task moves away (migrates, changes scheduling 898 * policy, or terminates). 899 * This is needed to compute the "inactive utilization" for the 900 * runqueue (inactive utilization = this_bw - running_bw). 901 */ 902 u64 this_bw; 903 u64 extra_bw; 904 905 /* 906 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 907 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 908 */ 909 u64 max_bw; 910 911 /* 912 * Inverse of the fraction of CPU utilization that can be reclaimed 913 * by the GRUB algorithm. 914 */ 915 u64 bw_ratio; 916 }; 917 918 #ifdef CONFIG_FAIR_GROUP_SCHED 919 920 /* An entity is a task if it doesn't "own" a runqueue */ 921 #define entity_is_task(se) (!se->my_q) 922 923 static inline void se_update_runnable(struct sched_entity *se) 924 { 925 if (!entity_is_task(se)) 926 se->runnable_weight = se->my_q->h_nr_runnable; 927 } 928 929 static inline long se_runnable(struct sched_entity *se) 930 { 931 if (se->sched_delayed) 932 return false; 933 934 if (entity_is_task(se)) 935 return !!se->on_rq; 936 else 937 return se->runnable_weight; 938 } 939 940 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 941 942 #define entity_is_task(se) 1 943 944 static inline void se_update_runnable(struct sched_entity *se) { } 945 946 static inline long se_runnable(struct sched_entity *se) 947 { 948 if (se->sched_delayed) 949 return false; 950 951 return !!se->on_rq; 952 } 953 954 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 955 956 /* 957 * XXX we want to get rid of these helpers and use the full load resolution. 958 */ 959 static inline long se_weight(struct sched_entity *se) 960 { 961 return scale_load_down(se->load.weight); 962 } 963 964 965 static inline bool sched_asym_prefer(int a, int b) 966 { 967 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 968 } 969 970 struct perf_domain { 971 struct em_perf_domain *em_pd; 972 struct perf_domain *next; 973 struct rcu_head rcu; 974 }; 975 976 /* 977 * We add the notion of a root-domain which will be used to define per-domain 978 * variables. Each exclusive cpuset essentially defines an island domain by 979 * fully partitioning the member CPUs from any other cpuset. Whenever a new 980 * exclusive cpuset is created, we also create and attach a new root-domain 981 * object. 982 * 983 */ 984 struct root_domain { 985 atomic_t refcount; 986 atomic_t rto_count; 987 struct rcu_head rcu; 988 cpumask_var_t span; 989 cpumask_var_t online; 990 991 /* 992 * Indicate pullable load on at least one CPU, e.g: 993 * - More than one runnable task 994 * - Running task is misfit 995 */ 996 bool overloaded; 997 998 /* Indicate one or more CPUs over-utilized (tipping point) */ 999 bool overutilized; 1000 1001 /* 1002 * The bit corresponding to a CPU gets set here if such CPU has more 1003 * than one runnable -deadline task (as it is below for RT tasks). 1004 */ 1005 cpumask_var_t dlo_mask; 1006 atomic_t dlo_count; 1007 struct dl_bw dl_bw; 1008 struct cpudl cpudl; 1009 1010 /* 1011 * Indicate whether a root_domain's dl_bw has been checked or 1012 * updated. It's monotonously increasing value. 1013 * 1014 * Also, some corner cases, like 'wrap around' is dangerous, but given 1015 * that u64 is 'big enough'. So that shouldn't be a concern. 1016 */ 1017 u64 visit_cookie; 1018 1019 #ifdef HAVE_RT_PUSH_IPI 1020 /* 1021 * For IPI pull requests, loop across the rto_mask. 1022 */ 1023 struct irq_work rto_push_work; 1024 raw_spinlock_t rto_lock; 1025 /* These are only updated and read within rto_lock */ 1026 int rto_loop; 1027 int rto_cpu; 1028 /* These atomics are updated outside of a lock */ 1029 atomic_t rto_loop_next; 1030 atomic_t rto_loop_start; 1031 #endif /* HAVE_RT_PUSH_IPI */ 1032 /* 1033 * The "RT overload" flag: it gets set if a CPU has more than 1034 * one runnable RT task. 1035 */ 1036 cpumask_var_t rto_mask; 1037 struct cpupri cpupri; 1038 1039 /* 1040 * NULL-terminated list of performance domains intersecting with the 1041 * CPUs of the rd. Protected by RCU. 1042 */ 1043 struct perf_domain __rcu *pd; 1044 }; 1045 1046 extern void init_defrootdomain(void); 1047 extern int sched_init_domains(const struct cpumask *cpu_map); 1048 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1049 extern void sched_get_rd(struct root_domain *rd); 1050 extern void sched_put_rd(struct root_domain *rd); 1051 1052 static inline int get_rd_overloaded(struct root_domain *rd) 1053 { 1054 return READ_ONCE(rd->overloaded); 1055 } 1056 1057 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1058 { 1059 if (get_rd_overloaded(rd) != status) 1060 WRITE_ONCE(rd->overloaded, status); 1061 } 1062 1063 #ifdef HAVE_RT_PUSH_IPI 1064 extern void rto_push_irq_work_func(struct irq_work *work); 1065 #endif 1066 1067 #ifdef CONFIG_UCLAMP_TASK 1068 /* 1069 * struct uclamp_bucket - Utilization clamp bucket 1070 * @value: utilization clamp value for tasks on this clamp bucket 1071 * @tasks: number of RUNNABLE tasks on this clamp bucket 1072 * 1073 * Keep track of how many tasks are RUNNABLE for a given utilization 1074 * clamp value. 1075 */ 1076 struct uclamp_bucket { 1077 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1078 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1079 }; 1080 1081 /* 1082 * struct uclamp_rq - rq's utilization clamp 1083 * @value: currently active clamp values for a rq 1084 * @bucket: utilization clamp buckets affecting a rq 1085 * 1086 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1087 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1088 * (or actually running) with that value. 1089 * 1090 * There are up to UCLAMP_CNT possible different clamp values, currently there 1091 * are only two: minimum utilization and maximum utilization. 1092 * 1093 * All utilization clamping values are MAX aggregated, since: 1094 * - for util_min: we want to run the CPU at least at the max of the minimum 1095 * utilization required by its currently RUNNABLE tasks. 1096 * - for util_max: we want to allow the CPU to run up to the max of the 1097 * maximum utilization allowed by its currently RUNNABLE tasks. 1098 * 1099 * Since on each system we expect only a limited number of different 1100 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1101 * the metrics required to compute all the per-rq utilization clamp values. 1102 */ 1103 struct uclamp_rq { 1104 unsigned int value; 1105 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1106 }; 1107 1108 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1109 #endif /* CONFIG_UCLAMP_TASK */ 1110 1111 /* 1112 * This is the main, per-CPU runqueue data structure. 1113 * 1114 * Locking rule: those places that want to lock multiple runqueues 1115 * (such as the load balancing or the thread migration code), lock 1116 * acquire operations must be ordered by ascending &runqueue. 1117 */ 1118 struct rq { 1119 /* runqueue lock: */ 1120 raw_spinlock_t __lock; 1121 1122 unsigned int nr_running; 1123 #ifdef CONFIG_NUMA_BALANCING 1124 unsigned int nr_numa_running; 1125 unsigned int nr_preferred_running; 1126 unsigned int numa_migrate_on; 1127 #endif 1128 #ifdef CONFIG_NO_HZ_COMMON 1129 unsigned long last_blocked_load_update_tick; 1130 unsigned int has_blocked_load; 1131 call_single_data_t nohz_csd; 1132 unsigned int nohz_tick_stopped; 1133 atomic_t nohz_flags; 1134 #endif /* CONFIG_NO_HZ_COMMON */ 1135 1136 unsigned int ttwu_pending; 1137 u64 nr_switches; 1138 1139 #ifdef CONFIG_UCLAMP_TASK 1140 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1141 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1142 unsigned int uclamp_flags; 1143 #define UCLAMP_FLAG_IDLE 0x01 1144 #endif 1145 1146 struct cfs_rq cfs; 1147 struct rt_rq rt; 1148 struct dl_rq dl; 1149 #ifdef CONFIG_SCHED_CLASS_EXT 1150 struct scx_rq scx; 1151 #endif 1152 1153 struct sched_dl_entity fair_server; 1154 1155 #ifdef CONFIG_FAIR_GROUP_SCHED 1156 /* list of leaf cfs_rq on this CPU: */ 1157 struct list_head leaf_cfs_rq_list; 1158 struct list_head *tmp_alone_branch; 1159 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1160 1161 /* 1162 * This is part of a global counter where only the total sum 1163 * over all CPUs matters. A task can increase this counter on 1164 * one CPU and if it got migrated afterwards it may decrease 1165 * it on another CPU. Always updated under the runqueue lock: 1166 */ 1167 unsigned long nr_uninterruptible; 1168 1169 #ifdef CONFIG_SCHED_PROXY_EXEC 1170 struct task_struct __rcu *donor; /* Scheduling context */ 1171 struct task_struct __rcu *curr; /* Execution context */ 1172 #else 1173 union { 1174 struct task_struct __rcu *donor; /* Scheduler context */ 1175 struct task_struct __rcu *curr; /* Execution context */ 1176 }; 1177 #endif 1178 struct sched_dl_entity *dl_server; 1179 struct task_struct *idle; 1180 struct task_struct *stop; 1181 unsigned long next_balance; 1182 struct mm_struct *prev_mm; 1183 1184 unsigned int clock_update_flags; 1185 u64 clock; 1186 /* Ensure that all clocks are in the same cache line */ 1187 u64 clock_task ____cacheline_aligned; 1188 u64 clock_pelt; 1189 unsigned long lost_idle_time; 1190 u64 clock_pelt_idle; 1191 u64 clock_idle; 1192 #ifndef CONFIG_64BIT 1193 u64 clock_pelt_idle_copy; 1194 u64 clock_idle_copy; 1195 #endif 1196 1197 atomic_t nr_iowait; 1198 1199 u64 last_seen_need_resched_ns; 1200 int ticks_without_resched; 1201 1202 #ifdef CONFIG_MEMBARRIER 1203 int membarrier_state; 1204 #endif 1205 1206 struct root_domain *rd; 1207 struct sched_domain __rcu *sd; 1208 1209 unsigned long cpu_capacity; 1210 1211 struct balance_callback *balance_callback; 1212 1213 unsigned char nohz_idle_balance; 1214 unsigned char idle_balance; 1215 1216 unsigned long misfit_task_load; 1217 1218 /* For active balancing */ 1219 int active_balance; 1220 int push_cpu; 1221 struct cpu_stop_work active_balance_work; 1222 1223 /* CPU of this runqueue: */ 1224 int cpu; 1225 int online; 1226 1227 struct list_head cfs_tasks; 1228 1229 struct sched_avg avg_rt; 1230 struct sched_avg avg_dl; 1231 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1232 struct sched_avg avg_irq; 1233 #endif 1234 #ifdef CONFIG_SCHED_HW_PRESSURE 1235 struct sched_avg avg_hw; 1236 #endif 1237 u64 idle_stamp; 1238 u64 avg_idle; 1239 1240 /* This is used to determine avg_idle's max value */ 1241 u64 max_idle_balance_cost; 1242 1243 #ifdef CONFIG_HOTPLUG_CPU 1244 struct rcuwait hotplug_wait; 1245 #endif 1246 1247 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1248 u64 prev_irq_time; 1249 u64 psi_irq_time; 1250 #endif 1251 #ifdef CONFIG_PARAVIRT 1252 u64 prev_steal_time; 1253 #endif 1254 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1255 u64 prev_steal_time_rq; 1256 #endif 1257 1258 /* calc_load related fields */ 1259 unsigned long calc_load_update; 1260 long calc_load_active; 1261 1262 #ifdef CONFIG_SCHED_HRTICK 1263 call_single_data_t hrtick_csd; 1264 struct hrtimer hrtick_timer; 1265 ktime_t hrtick_time; 1266 #endif 1267 1268 #ifdef CONFIG_SCHEDSTATS 1269 /* latency stats */ 1270 struct sched_info rq_sched_info; 1271 unsigned long long rq_cpu_time; 1272 1273 /* sys_sched_yield() stats */ 1274 unsigned int yld_count; 1275 1276 /* schedule() stats */ 1277 unsigned int sched_count; 1278 unsigned int sched_goidle; 1279 1280 /* try_to_wake_up() stats */ 1281 unsigned int ttwu_count; 1282 unsigned int ttwu_local; 1283 #endif 1284 1285 #ifdef CONFIG_CPU_IDLE 1286 /* Must be inspected within a RCU lock section */ 1287 struct cpuidle_state *idle_state; 1288 #endif 1289 1290 unsigned int nr_pinned; 1291 unsigned int push_busy; 1292 struct cpu_stop_work push_work; 1293 1294 #ifdef CONFIG_SCHED_CORE 1295 /* per rq */ 1296 struct rq *core; 1297 struct task_struct *core_pick; 1298 struct sched_dl_entity *core_dl_server; 1299 unsigned int core_enabled; 1300 unsigned int core_sched_seq; 1301 struct rb_root core_tree; 1302 1303 /* shared state -- careful with sched_core_cpu_deactivate() */ 1304 unsigned int core_task_seq; 1305 unsigned int core_pick_seq; 1306 unsigned long core_cookie; 1307 unsigned int core_forceidle_count; 1308 unsigned int core_forceidle_seq; 1309 unsigned int core_forceidle_occupation; 1310 u64 core_forceidle_start; 1311 #endif /* CONFIG_SCHED_CORE */ 1312 1313 /* Scratch cpumask to be temporarily used under rq_lock */ 1314 cpumask_var_t scratch_mask; 1315 1316 #ifdef CONFIG_CFS_BANDWIDTH 1317 call_single_data_t cfsb_csd; 1318 struct list_head cfsb_csd_list; 1319 #endif 1320 }; 1321 1322 #ifdef CONFIG_FAIR_GROUP_SCHED 1323 1324 /* CPU runqueue to which this cfs_rq is attached */ 1325 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1326 { 1327 return cfs_rq->rq; 1328 } 1329 1330 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1331 1332 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1333 { 1334 return container_of(cfs_rq, struct rq, cfs); 1335 } 1336 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1337 1338 static inline int cpu_of(struct rq *rq) 1339 { 1340 return rq->cpu; 1341 } 1342 1343 #define MDF_PUSH 0x01 1344 1345 static inline bool is_migration_disabled(struct task_struct *p) 1346 { 1347 return p->migration_disabled; 1348 } 1349 1350 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1351 1352 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1353 #define this_rq() this_cpu_ptr(&runqueues) 1354 #define task_rq(p) cpu_rq(task_cpu(p)) 1355 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1356 #define raw_rq() raw_cpu_ptr(&runqueues) 1357 1358 #ifdef CONFIG_SCHED_PROXY_EXEC 1359 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1360 { 1361 rcu_assign_pointer(rq->donor, t); 1362 } 1363 #else 1364 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1365 { 1366 /* Do nothing */ 1367 } 1368 #endif 1369 1370 #ifdef CONFIG_SCHED_CORE 1371 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1372 1373 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1374 1375 static inline bool sched_core_enabled(struct rq *rq) 1376 { 1377 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1378 } 1379 1380 static inline bool sched_core_disabled(void) 1381 { 1382 return !static_branch_unlikely(&__sched_core_enabled); 1383 } 1384 1385 /* 1386 * Be careful with this function; not for general use. The return value isn't 1387 * stable unless you actually hold a relevant rq->__lock. 1388 */ 1389 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1390 { 1391 if (sched_core_enabled(rq)) 1392 return &rq->core->__lock; 1393 1394 return &rq->__lock; 1395 } 1396 1397 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1398 { 1399 if (rq->core_enabled) 1400 return &rq->core->__lock; 1401 1402 return &rq->__lock; 1403 } 1404 1405 extern bool 1406 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1407 1408 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1409 1410 /* 1411 * Helpers to check if the CPU's core cookie matches with the task's cookie 1412 * when core scheduling is enabled. 1413 * A special case is that the task's cookie always matches with CPU's core 1414 * cookie if the CPU is in an idle core. 1415 */ 1416 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1417 { 1418 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1419 if (!sched_core_enabled(rq)) 1420 return true; 1421 1422 return rq->core->core_cookie == p->core_cookie; 1423 } 1424 1425 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1426 { 1427 bool idle_core = true; 1428 int cpu; 1429 1430 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1431 if (!sched_core_enabled(rq)) 1432 return true; 1433 1434 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1435 if (!available_idle_cpu(cpu)) { 1436 idle_core = false; 1437 break; 1438 } 1439 } 1440 1441 /* 1442 * A CPU in an idle core is always the best choice for tasks with 1443 * cookies. 1444 */ 1445 return idle_core || rq->core->core_cookie == p->core_cookie; 1446 } 1447 1448 static inline bool sched_group_cookie_match(struct rq *rq, 1449 struct task_struct *p, 1450 struct sched_group *group) 1451 { 1452 int cpu; 1453 1454 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1455 if (!sched_core_enabled(rq)) 1456 return true; 1457 1458 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1459 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1460 return true; 1461 } 1462 return false; 1463 } 1464 1465 static inline bool sched_core_enqueued(struct task_struct *p) 1466 { 1467 return !RB_EMPTY_NODE(&p->core_node); 1468 } 1469 1470 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1471 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1472 1473 extern void sched_core_get(void); 1474 extern void sched_core_put(void); 1475 1476 #else /* !CONFIG_SCHED_CORE: */ 1477 1478 static inline bool sched_core_enabled(struct rq *rq) 1479 { 1480 return false; 1481 } 1482 1483 static inline bool sched_core_disabled(void) 1484 { 1485 return true; 1486 } 1487 1488 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1489 { 1490 return &rq->__lock; 1491 } 1492 1493 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1494 { 1495 return &rq->__lock; 1496 } 1497 1498 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1499 { 1500 return true; 1501 } 1502 1503 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1504 { 1505 return true; 1506 } 1507 1508 static inline bool sched_group_cookie_match(struct rq *rq, 1509 struct task_struct *p, 1510 struct sched_group *group) 1511 { 1512 return true; 1513 } 1514 1515 #endif /* !CONFIG_SCHED_CORE */ 1516 1517 #ifdef CONFIG_RT_GROUP_SCHED 1518 # ifdef CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED 1519 DECLARE_STATIC_KEY_FALSE(rt_group_sched); 1520 static inline bool rt_group_sched_enabled(void) 1521 { 1522 return static_branch_unlikely(&rt_group_sched); 1523 } 1524 # else /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED: */ 1525 DECLARE_STATIC_KEY_TRUE(rt_group_sched); 1526 static inline bool rt_group_sched_enabled(void) 1527 { 1528 return static_branch_likely(&rt_group_sched); 1529 } 1530 # endif /* !CONFIG_RT_GROUP_SCHED_DEFAULT_DISABLED */ 1531 #else /* !CONFIG_RT_GROUP_SCHED: */ 1532 # define rt_group_sched_enabled() false 1533 #endif /* !CONFIG_RT_GROUP_SCHED */ 1534 1535 static inline void lockdep_assert_rq_held(struct rq *rq) 1536 { 1537 lockdep_assert_held(__rq_lockp(rq)); 1538 } 1539 1540 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1541 extern bool raw_spin_rq_trylock(struct rq *rq); 1542 extern void raw_spin_rq_unlock(struct rq *rq); 1543 1544 static inline void raw_spin_rq_lock(struct rq *rq) 1545 { 1546 raw_spin_rq_lock_nested(rq, 0); 1547 } 1548 1549 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1550 { 1551 local_irq_disable(); 1552 raw_spin_rq_lock(rq); 1553 } 1554 1555 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1556 { 1557 raw_spin_rq_unlock(rq); 1558 local_irq_enable(); 1559 } 1560 1561 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1562 { 1563 unsigned long flags; 1564 1565 local_irq_save(flags); 1566 raw_spin_rq_lock(rq); 1567 1568 return flags; 1569 } 1570 1571 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1572 { 1573 raw_spin_rq_unlock(rq); 1574 local_irq_restore(flags); 1575 } 1576 1577 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1578 do { \ 1579 flags = _raw_spin_rq_lock_irqsave(rq); \ 1580 } while (0) 1581 1582 #ifdef CONFIG_SCHED_SMT 1583 extern void __update_idle_core(struct rq *rq); 1584 1585 static inline void update_idle_core(struct rq *rq) 1586 { 1587 if (static_branch_unlikely(&sched_smt_present)) 1588 __update_idle_core(rq); 1589 } 1590 1591 #else /* !CONFIG_SCHED_SMT: */ 1592 static inline void update_idle_core(struct rq *rq) { } 1593 #endif /* !CONFIG_SCHED_SMT */ 1594 1595 #ifdef CONFIG_FAIR_GROUP_SCHED 1596 1597 static inline struct task_struct *task_of(struct sched_entity *se) 1598 { 1599 WARN_ON_ONCE(!entity_is_task(se)); 1600 return container_of(se, struct task_struct, se); 1601 } 1602 1603 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1604 { 1605 return p->se.cfs_rq; 1606 } 1607 1608 /* runqueue on which this entity is (to be) queued */ 1609 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1610 { 1611 return se->cfs_rq; 1612 } 1613 1614 /* runqueue "owned" by this group */ 1615 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1616 { 1617 return grp->my_q; 1618 } 1619 1620 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1621 1622 #define task_of(_se) container_of(_se, struct task_struct, se) 1623 1624 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1625 { 1626 return &task_rq(p)->cfs; 1627 } 1628 1629 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1630 { 1631 const struct task_struct *p = task_of(se); 1632 struct rq *rq = task_rq(p); 1633 1634 return &rq->cfs; 1635 } 1636 1637 /* runqueue "owned" by this group */ 1638 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1639 { 1640 return NULL; 1641 } 1642 1643 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1644 1645 extern void update_rq_clock(struct rq *rq); 1646 1647 /* 1648 * rq::clock_update_flags bits 1649 * 1650 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1651 * call to __schedule(). This is an optimisation to avoid 1652 * neighbouring rq clock updates. 1653 * 1654 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1655 * in effect and calls to update_rq_clock() are being ignored. 1656 * 1657 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1658 * made to update_rq_clock() since the last time rq::lock was pinned. 1659 * 1660 * If inside of __schedule(), clock_update_flags will have been 1661 * shifted left (a left shift is a cheap operation for the fast path 1662 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1663 * 1664 * if (rq-clock_update_flags >= RQCF_UPDATED) 1665 * 1666 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1667 * one position though, because the next rq_unpin_lock() will shift it 1668 * back. 1669 */ 1670 #define RQCF_REQ_SKIP 0x01 1671 #define RQCF_ACT_SKIP 0x02 1672 #define RQCF_UPDATED 0x04 1673 1674 static inline void assert_clock_updated(struct rq *rq) 1675 { 1676 /* 1677 * The only reason for not seeing a clock update since the 1678 * last rq_pin_lock() is if we're currently skipping updates. 1679 */ 1680 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1681 } 1682 1683 static inline u64 rq_clock(struct rq *rq) 1684 { 1685 lockdep_assert_rq_held(rq); 1686 assert_clock_updated(rq); 1687 1688 return rq->clock; 1689 } 1690 1691 static inline u64 rq_clock_task(struct rq *rq) 1692 { 1693 lockdep_assert_rq_held(rq); 1694 assert_clock_updated(rq); 1695 1696 return rq->clock_task; 1697 } 1698 1699 static inline void rq_clock_skip_update(struct rq *rq) 1700 { 1701 lockdep_assert_rq_held(rq); 1702 rq->clock_update_flags |= RQCF_REQ_SKIP; 1703 } 1704 1705 /* 1706 * See rt task throttling, which is the only time a skip 1707 * request is canceled. 1708 */ 1709 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1710 { 1711 lockdep_assert_rq_held(rq); 1712 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1713 } 1714 1715 /* 1716 * During cpu offlining and rq wide unthrottling, we can trigger 1717 * an update_rq_clock() for several cfs and rt runqueues (Typically 1718 * when using list_for_each_entry_*) 1719 * rq_clock_start_loop_update() can be called after updating the clock 1720 * once and before iterating over the list to prevent multiple update. 1721 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1722 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1723 */ 1724 static inline void rq_clock_start_loop_update(struct rq *rq) 1725 { 1726 lockdep_assert_rq_held(rq); 1727 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1728 rq->clock_update_flags |= RQCF_ACT_SKIP; 1729 } 1730 1731 static inline void rq_clock_stop_loop_update(struct rq *rq) 1732 { 1733 lockdep_assert_rq_held(rq); 1734 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1735 } 1736 1737 struct rq_flags { 1738 unsigned long flags; 1739 struct pin_cookie cookie; 1740 /* 1741 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1742 * current pin context is stashed here in case it needs to be 1743 * restored in rq_repin_lock(). 1744 */ 1745 unsigned int clock_update_flags; 1746 }; 1747 1748 extern struct balance_callback balance_push_callback; 1749 1750 #ifdef CONFIG_SCHED_CLASS_EXT 1751 extern const struct sched_class ext_sched_class; 1752 1753 DECLARE_STATIC_KEY_FALSE(__scx_enabled); /* SCX BPF scheduler loaded */ 1754 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1755 1756 #define scx_enabled() static_branch_unlikely(&__scx_enabled) 1757 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1758 1759 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1760 { 1761 if (!scx_enabled()) 1762 return; 1763 WRITE_ONCE(rq->scx.clock, clock); 1764 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1765 } 1766 1767 static inline void scx_rq_clock_invalidate(struct rq *rq) 1768 { 1769 if (!scx_enabled()) 1770 return; 1771 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1772 } 1773 1774 #else /* !CONFIG_SCHED_CLASS_EXT: */ 1775 #define scx_enabled() false 1776 #define scx_switched_all() false 1777 1778 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1779 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1780 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1781 1782 /* 1783 * Lockdep annotation that avoids accidental unlocks; it's like a 1784 * sticky/continuous lockdep_assert_held(). 1785 * 1786 * This avoids code that has access to 'struct rq *rq' (basically everything in 1787 * the scheduler) from accidentally unlocking the rq if they do not also have a 1788 * copy of the (on-stack) 'struct rq_flags rf'. 1789 * 1790 * Also see Documentation/locking/lockdep-design.rst. 1791 */ 1792 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1793 { 1794 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1795 1796 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1797 rf->clock_update_flags = 0; 1798 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1799 } 1800 1801 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1802 { 1803 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1804 rf->clock_update_flags = RQCF_UPDATED; 1805 1806 scx_rq_clock_invalidate(rq); 1807 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1808 } 1809 1810 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1811 { 1812 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1813 1814 /* 1815 * Restore the value we stashed in @rf for this pin context. 1816 */ 1817 rq->clock_update_flags |= rf->clock_update_flags; 1818 } 1819 1820 extern 1821 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1822 __acquires(rq->lock); 1823 1824 extern 1825 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1826 __acquires(p->pi_lock) 1827 __acquires(rq->lock); 1828 1829 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1830 __releases(rq->lock) 1831 { 1832 rq_unpin_lock(rq, rf); 1833 raw_spin_rq_unlock(rq); 1834 } 1835 1836 static inline void 1837 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1838 __releases(rq->lock) 1839 __releases(p->pi_lock) 1840 { 1841 rq_unpin_lock(rq, rf); 1842 raw_spin_rq_unlock(rq); 1843 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1844 } 1845 1846 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1847 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1848 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1849 struct rq *rq; struct rq_flags rf) 1850 1851 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1852 __acquires(rq->lock) 1853 { 1854 raw_spin_rq_lock_irqsave(rq, rf->flags); 1855 rq_pin_lock(rq, rf); 1856 } 1857 1858 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1859 __acquires(rq->lock) 1860 { 1861 raw_spin_rq_lock_irq(rq); 1862 rq_pin_lock(rq, rf); 1863 } 1864 1865 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1866 __acquires(rq->lock) 1867 { 1868 raw_spin_rq_lock(rq); 1869 rq_pin_lock(rq, rf); 1870 } 1871 1872 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1873 __releases(rq->lock) 1874 { 1875 rq_unpin_lock(rq, rf); 1876 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1877 } 1878 1879 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1880 __releases(rq->lock) 1881 { 1882 rq_unpin_lock(rq, rf); 1883 raw_spin_rq_unlock_irq(rq); 1884 } 1885 1886 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1887 __releases(rq->lock) 1888 { 1889 rq_unpin_lock(rq, rf); 1890 raw_spin_rq_unlock(rq); 1891 } 1892 1893 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1894 rq_lock(_T->lock, &_T->rf), 1895 rq_unlock(_T->lock, &_T->rf), 1896 struct rq_flags rf) 1897 1898 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1899 rq_lock_irq(_T->lock, &_T->rf), 1900 rq_unlock_irq(_T->lock, &_T->rf), 1901 struct rq_flags rf) 1902 1903 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1904 rq_lock_irqsave(_T->lock, &_T->rf), 1905 rq_unlock_irqrestore(_T->lock, &_T->rf), 1906 struct rq_flags rf) 1907 1908 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1909 __acquires(rq->lock) 1910 { 1911 struct rq *rq; 1912 1913 local_irq_disable(); 1914 rq = this_rq(); 1915 rq_lock(rq, rf); 1916 1917 return rq; 1918 } 1919 1920 #ifdef CONFIG_NUMA 1921 1922 enum numa_topology_type { 1923 NUMA_DIRECT, 1924 NUMA_GLUELESS_MESH, 1925 NUMA_BACKPLANE, 1926 }; 1927 1928 extern enum numa_topology_type sched_numa_topology_type; 1929 extern int sched_max_numa_distance; 1930 extern bool find_numa_distance(int distance); 1931 extern void sched_init_numa(int offline_node); 1932 extern void sched_update_numa(int cpu, bool online); 1933 extern void sched_domains_numa_masks_set(unsigned int cpu); 1934 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1935 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1936 1937 #else /* !CONFIG_NUMA: */ 1938 1939 static inline void sched_init_numa(int offline_node) { } 1940 static inline void sched_update_numa(int cpu, bool online) { } 1941 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1942 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1943 1944 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1945 { 1946 return nr_cpu_ids; 1947 } 1948 1949 #endif /* !CONFIG_NUMA */ 1950 1951 #ifdef CONFIG_NUMA_BALANCING 1952 1953 /* The regions in numa_faults array from task_struct */ 1954 enum numa_faults_stats { 1955 NUMA_MEM = 0, 1956 NUMA_CPU, 1957 NUMA_MEMBUF, 1958 NUMA_CPUBUF 1959 }; 1960 1961 extern void sched_setnuma(struct task_struct *p, int node); 1962 extern int migrate_task_to(struct task_struct *p, int cpu); 1963 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1964 int cpu, int scpu); 1965 extern void init_numa_balancing(u64 clone_flags, struct task_struct *p); 1966 1967 #else /* !CONFIG_NUMA_BALANCING: */ 1968 1969 static inline void 1970 init_numa_balancing(u64 clone_flags, struct task_struct *p) 1971 { 1972 } 1973 1974 #endif /* !CONFIG_NUMA_BALANCING */ 1975 1976 static inline void 1977 queue_balance_callback(struct rq *rq, 1978 struct balance_callback *head, 1979 void (*func)(struct rq *rq)) 1980 { 1981 lockdep_assert_rq_held(rq); 1982 1983 /* 1984 * Don't (re)queue an already queued item; nor queue anything when 1985 * balance_push() is active, see the comment with 1986 * balance_push_callback. 1987 */ 1988 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1989 return; 1990 1991 head->func = func; 1992 head->next = rq->balance_callback; 1993 rq->balance_callback = head; 1994 } 1995 1996 #define rcu_dereference_check_sched_domain(p) \ 1997 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1998 1999 /* 2000 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 2001 * See destroy_sched_domains: call_rcu for details. 2002 * 2003 * The domain tree of any CPU may only be accessed from within 2004 * preempt-disabled sections. 2005 */ 2006 #define for_each_domain(cpu, __sd) \ 2007 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 2008 __sd; __sd = __sd->parent) 2009 2010 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 2011 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 2012 static const unsigned int SD_SHARED_CHILD_MASK = 2013 #include <linux/sched/sd_flags.h> 2014 0; 2015 #undef SD_FLAG 2016 2017 /** 2018 * highest_flag_domain - Return highest sched_domain containing flag. 2019 * @cpu: The CPU whose highest level of sched domain is to 2020 * be returned. 2021 * @flag: The flag to check for the highest sched_domain 2022 * for the given CPU. 2023 * 2024 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 2025 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 2026 */ 2027 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 2028 { 2029 struct sched_domain *sd, *hsd = NULL; 2030 2031 for_each_domain(cpu, sd) { 2032 if (sd->flags & flag) { 2033 hsd = sd; 2034 continue; 2035 } 2036 2037 /* 2038 * Stop the search if @flag is known to be shared at lower 2039 * levels. It will not be found further up. 2040 */ 2041 if (flag & SD_SHARED_CHILD_MASK) 2042 break; 2043 } 2044 2045 return hsd; 2046 } 2047 2048 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2049 { 2050 struct sched_domain *sd; 2051 2052 for_each_domain(cpu, sd) { 2053 if (sd->flags & flag) 2054 break; 2055 } 2056 2057 return sd; 2058 } 2059 2060 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2061 DECLARE_PER_CPU(int, sd_llc_size); 2062 DECLARE_PER_CPU(int, sd_llc_id); 2063 DECLARE_PER_CPU(int, sd_share_id); 2064 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2065 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2066 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2067 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2068 2069 extern struct static_key_false sched_asym_cpucapacity; 2070 extern struct static_key_false sched_cluster_active; 2071 2072 static __always_inline bool sched_asym_cpucap_active(void) 2073 { 2074 return static_branch_unlikely(&sched_asym_cpucapacity); 2075 } 2076 2077 struct sched_group_capacity { 2078 atomic_t ref; 2079 /* 2080 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2081 * for a single CPU. 2082 */ 2083 unsigned long capacity; 2084 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2085 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2086 unsigned long next_update; 2087 int imbalance; /* XXX unrelated to capacity but shared group state */ 2088 2089 int id; 2090 2091 unsigned long cpumask[]; /* Balance mask */ 2092 }; 2093 2094 struct sched_group { 2095 struct sched_group *next; /* Must be a circular list */ 2096 atomic_t ref; 2097 2098 unsigned int group_weight; 2099 unsigned int cores; 2100 struct sched_group_capacity *sgc; 2101 int asym_prefer_cpu; /* CPU of highest priority in group */ 2102 int flags; 2103 2104 /* 2105 * The CPUs this group covers. 2106 * 2107 * NOTE: this field is variable length. (Allocated dynamically 2108 * by attaching extra space to the end of the structure, 2109 * depending on how many CPUs the kernel has booted up with) 2110 */ 2111 unsigned long cpumask[]; 2112 }; 2113 2114 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2115 { 2116 return to_cpumask(sg->cpumask); 2117 } 2118 2119 /* 2120 * See build_balance_mask(). 2121 */ 2122 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2123 { 2124 return to_cpumask(sg->sgc->cpumask); 2125 } 2126 2127 extern int group_balance_cpu(struct sched_group *sg); 2128 2129 extern void update_sched_domain_debugfs(void); 2130 extern void dirty_sched_domain_sysctl(int cpu); 2131 2132 extern int sched_update_scaling(void); 2133 2134 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2135 { 2136 if (!p->user_cpus_ptr) 2137 return cpu_possible_mask; /* &init_task.cpus_mask */ 2138 return p->user_cpus_ptr; 2139 } 2140 2141 #ifdef CONFIG_CGROUP_SCHED 2142 2143 /* 2144 * Return the group to which this tasks belongs. 2145 * 2146 * We cannot use task_css() and friends because the cgroup subsystem 2147 * changes that value before the cgroup_subsys::attach() method is called, 2148 * therefore we cannot pin it and might observe the wrong value. 2149 * 2150 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2151 * core changes this before calling sched_move_task(). 2152 * 2153 * Instead we use a 'copy' which is updated from sched_move_task() while 2154 * holding both task_struct::pi_lock and rq::lock. 2155 */ 2156 static inline struct task_group *task_group(struct task_struct *p) 2157 { 2158 return p->sched_task_group; 2159 } 2160 2161 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2162 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2163 { 2164 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2165 struct task_group *tg = task_group(p); 2166 #endif 2167 2168 #ifdef CONFIG_FAIR_GROUP_SCHED 2169 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2170 p->se.cfs_rq = tg->cfs_rq[cpu]; 2171 p->se.parent = tg->se[cpu]; 2172 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2173 #endif 2174 2175 #ifdef CONFIG_RT_GROUP_SCHED 2176 /* 2177 * p->rt.rt_rq is NULL initially and it is easier to assign 2178 * root_task_group's rt_rq than switching in rt_rq_of_se() 2179 * Clobbers tg(!) 2180 */ 2181 if (!rt_group_sched_enabled()) 2182 tg = &root_task_group; 2183 p->rt.rt_rq = tg->rt_rq[cpu]; 2184 p->rt.parent = tg->rt_se[cpu]; 2185 #endif /* CONFIG_RT_GROUP_SCHED */ 2186 } 2187 2188 #else /* !CONFIG_CGROUP_SCHED: */ 2189 2190 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2191 2192 static inline struct task_group *task_group(struct task_struct *p) 2193 { 2194 return NULL; 2195 } 2196 2197 #endif /* !CONFIG_CGROUP_SCHED */ 2198 2199 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2200 { 2201 set_task_rq(p, cpu); 2202 #ifdef CONFIG_SMP 2203 /* 2204 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2205 * successfully executed on another CPU. We must ensure that updates of 2206 * per-task data have been completed by this moment. 2207 */ 2208 smp_wmb(); 2209 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2210 p->wake_cpu = cpu; 2211 #endif /* CONFIG_SMP */ 2212 } 2213 2214 /* 2215 * Tunables: 2216 */ 2217 2218 #define SCHED_FEAT(name, enabled) \ 2219 __SCHED_FEAT_##name , 2220 2221 enum { 2222 #include "features.h" 2223 __SCHED_FEAT_NR, 2224 }; 2225 2226 #undef SCHED_FEAT 2227 2228 /* 2229 * To support run-time toggling of sched features, all the translation units 2230 * (but core.c) reference the sysctl_sched_features defined in core.c. 2231 */ 2232 extern __read_mostly unsigned int sysctl_sched_features; 2233 2234 #ifdef CONFIG_JUMP_LABEL 2235 2236 #define SCHED_FEAT(name, enabled) \ 2237 static __always_inline bool static_branch_##name(struct static_key *key) \ 2238 { \ 2239 return static_key_##enabled(key); \ 2240 } 2241 2242 #include "features.h" 2243 #undef SCHED_FEAT 2244 2245 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2246 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2247 2248 #else /* !CONFIG_JUMP_LABEL: */ 2249 2250 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2251 2252 #endif /* !CONFIG_JUMP_LABEL */ 2253 2254 extern struct static_key_false sched_numa_balancing; 2255 extern struct static_key_false sched_schedstats; 2256 2257 static inline u64 global_rt_period(void) 2258 { 2259 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2260 } 2261 2262 static inline u64 global_rt_runtime(void) 2263 { 2264 if (sysctl_sched_rt_runtime < 0) 2265 return RUNTIME_INF; 2266 2267 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2268 } 2269 2270 /* 2271 * Is p the current execution context? 2272 */ 2273 static inline int task_current(struct rq *rq, struct task_struct *p) 2274 { 2275 return rq->curr == p; 2276 } 2277 2278 /* 2279 * Is p the current scheduling context? 2280 * 2281 * Note that it might be the current execution context at the same time if 2282 * rq->curr == rq->donor == p. 2283 */ 2284 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2285 { 2286 return rq->donor == p; 2287 } 2288 2289 static inline bool task_is_blocked(struct task_struct *p) 2290 { 2291 if (!sched_proxy_exec()) 2292 return false; 2293 2294 return !!p->blocked_on; 2295 } 2296 2297 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2298 { 2299 return p->on_cpu; 2300 } 2301 2302 static inline int task_on_rq_queued(struct task_struct *p) 2303 { 2304 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2305 } 2306 2307 static inline int task_on_rq_migrating(struct task_struct *p) 2308 { 2309 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2310 } 2311 2312 /* Wake flags. The first three directly map to some SD flag value */ 2313 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2314 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2315 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2316 2317 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2318 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2319 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2320 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2321 2322 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2323 static_assert(WF_FORK == SD_BALANCE_FORK); 2324 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2325 2326 /* 2327 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2328 * of tasks with abnormal "nice" values across CPUs the contribution that 2329 * each task makes to its run queue's load is weighted according to its 2330 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2331 * scaled version of the new time slice allocation that they receive on time 2332 * slice expiry etc. 2333 */ 2334 2335 #define WEIGHT_IDLEPRIO 3 2336 #define WMULT_IDLEPRIO 1431655765 2337 2338 extern const int sched_prio_to_weight[40]; 2339 extern const u32 sched_prio_to_wmult[40]; 2340 2341 /* 2342 * {de,en}queue flags: 2343 * 2344 * DEQUEUE_SLEEP - task is no longer runnable 2345 * ENQUEUE_WAKEUP - task just became runnable 2346 * 2347 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2348 * are in a known state which allows modification. Such pairs 2349 * should preserve as much state as possible. 2350 * 2351 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2352 * in the runqueue. 2353 * 2354 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2355 * 2356 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2357 * 2358 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2359 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2360 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2361 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2362 * 2363 */ 2364 2365 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2366 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2367 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2368 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2369 #define DEQUEUE_SPECIAL 0x10 2370 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2371 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2372 #define DEQUEUE_THROTTLE 0x800 2373 2374 #define ENQUEUE_WAKEUP 0x01 2375 #define ENQUEUE_RESTORE 0x02 2376 #define ENQUEUE_MOVE 0x04 2377 #define ENQUEUE_NOCLOCK 0x08 2378 2379 #define ENQUEUE_HEAD 0x10 2380 #define ENQUEUE_REPLENISH 0x20 2381 #define ENQUEUE_MIGRATED 0x40 2382 #define ENQUEUE_INITIAL 0x80 2383 #define ENQUEUE_MIGRATING 0x100 2384 #define ENQUEUE_DELAYED 0x200 2385 #define ENQUEUE_RQ_SELECTED 0x400 2386 2387 #define RETRY_TASK ((void *)-1UL) 2388 2389 struct affinity_context { 2390 const struct cpumask *new_mask; 2391 struct cpumask *user_mask; 2392 unsigned int flags; 2393 }; 2394 2395 extern s64 update_curr_common(struct rq *rq); 2396 2397 struct sched_class { 2398 2399 #ifdef CONFIG_UCLAMP_TASK 2400 int uclamp_enabled; 2401 #endif 2402 2403 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2404 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2405 void (*yield_task) (struct rq *rq); 2406 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2407 2408 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2409 2410 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2411 struct task_struct *(*pick_task)(struct rq *rq); 2412 /* 2413 * Optional! When implemented pick_next_task() should be equivalent to: 2414 * 2415 * next = pick_task(); 2416 * if (next) { 2417 * put_prev_task(prev); 2418 * set_next_task_first(next); 2419 * } 2420 */ 2421 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2422 2423 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2424 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2425 2426 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2427 2428 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2429 2430 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2431 2432 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2433 2434 void (*rq_online)(struct rq *rq); 2435 void (*rq_offline)(struct rq *rq); 2436 2437 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2438 2439 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2440 void (*task_fork)(struct task_struct *p); 2441 void (*task_dead)(struct task_struct *p); 2442 2443 /* 2444 * The switched_from() call is allowed to drop rq->lock, therefore we 2445 * cannot assume the switched_from/switched_to pair is serialized by 2446 * rq->lock. They are however serialized by p->pi_lock. 2447 */ 2448 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2449 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2450 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2451 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2452 const struct load_weight *lw); 2453 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2454 int oldprio); 2455 2456 unsigned int (*get_rr_interval)(struct rq *rq, 2457 struct task_struct *task); 2458 2459 void (*update_curr)(struct rq *rq); 2460 2461 #ifdef CONFIG_FAIR_GROUP_SCHED 2462 void (*task_change_group)(struct task_struct *p); 2463 #endif 2464 2465 #ifdef CONFIG_SCHED_CORE 2466 int (*task_is_throttled)(struct task_struct *p, int cpu); 2467 #endif 2468 }; 2469 2470 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2471 { 2472 WARN_ON_ONCE(rq->donor != prev); 2473 prev->sched_class->put_prev_task(rq, prev, NULL); 2474 } 2475 2476 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2477 { 2478 next->sched_class->set_next_task(rq, next, false); 2479 } 2480 2481 static inline void 2482 __put_prev_set_next_dl_server(struct rq *rq, 2483 struct task_struct *prev, 2484 struct task_struct *next) 2485 { 2486 prev->dl_server = NULL; 2487 next->dl_server = rq->dl_server; 2488 rq->dl_server = NULL; 2489 } 2490 2491 static inline void put_prev_set_next_task(struct rq *rq, 2492 struct task_struct *prev, 2493 struct task_struct *next) 2494 { 2495 WARN_ON_ONCE(rq->donor != prev); 2496 2497 __put_prev_set_next_dl_server(rq, prev, next); 2498 2499 if (next == prev) 2500 return; 2501 2502 prev->sched_class->put_prev_task(rq, prev, next); 2503 next->sched_class->set_next_task(rq, next, true); 2504 } 2505 2506 /* 2507 * Helper to define a sched_class instance; each one is placed in a separate 2508 * section which is ordered by the linker script: 2509 * 2510 * include/asm-generic/vmlinux.lds.h 2511 * 2512 * *CAREFUL* they are laid out in *REVERSE* order!!! 2513 * 2514 * Also enforce alignment on the instance, not the type, to guarantee layout. 2515 */ 2516 #define DEFINE_SCHED_CLASS(name) \ 2517 const struct sched_class name##_sched_class \ 2518 __aligned(__alignof__(struct sched_class)) \ 2519 __section("__" #name "_sched_class") 2520 2521 /* Defined in include/asm-generic/vmlinux.lds.h */ 2522 extern struct sched_class __sched_class_highest[]; 2523 extern struct sched_class __sched_class_lowest[]; 2524 2525 extern const struct sched_class stop_sched_class; 2526 extern const struct sched_class dl_sched_class; 2527 extern const struct sched_class rt_sched_class; 2528 extern const struct sched_class fair_sched_class; 2529 extern const struct sched_class idle_sched_class; 2530 2531 /* 2532 * Iterate only active classes. SCX can take over all fair tasks or be 2533 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2534 */ 2535 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2536 { 2537 class++; 2538 #ifdef CONFIG_SCHED_CLASS_EXT 2539 if (scx_switched_all() && class == &fair_sched_class) 2540 class++; 2541 if (!scx_enabled() && class == &ext_sched_class) 2542 class++; 2543 #endif 2544 return class; 2545 } 2546 2547 #define for_class_range(class, _from, _to) \ 2548 for (class = (_from); class < (_to); class++) 2549 2550 #define for_each_class(class) \ 2551 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2552 2553 #define for_active_class_range(class, _from, _to) \ 2554 for (class = (_from); class != (_to); class = next_active_class(class)) 2555 2556 #define for_each_active_class(class) \ 2557 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2558 2559 #define sched_class_above(_a, _b) ((_a) < (_b)) 2560 2561 static inline bool sched_stop_runnable(struct rq *rq) 2562 { 2563 return rq->stop && task_on_rq_queued(rq->stop); 2564 } 2565 2566 static inline bool sched_dl_runnable(struct rq *rq) 2567 { 2568 return rq->dl.dl_nr_running > 0; 2569 } 2570 2571 static inline bool sched_rt_runnable(struct rq *rq) 2572 { 2573 return rq->rt.rt_queued > 0; 2574 } 2575 2576 static inline bool sched_fair_runnable(struct rq *rq) 2577 { 2578 return rq->cfs.nr_queued > 0; 2579 } 2580 2581 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2582 extern struct task_struct *pick_task_idle(struct rq *rq); 2583 2584 #define SCA_CHECK 0x01 2585 #define SCA_MIGRATE_DISABLE 0x02 2586 #define SCA_MIGRATE_ENABLE 0x04 2587 #define SCA_USER 0x08 2588 2589 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2590 2591 extern void sched_balance_trigger(struct rq *rq); 2592 2593 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2594 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2595 2596 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2597 { 2598 /* When not in the task's cpumask, no point in looking further. */ 2599 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2600 return false; 2601 2602 /* Can @cpu run a user thread? */ 2603 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2604 return false; 2605 2606 return true; 2607 } 2608 2609 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2610 { 2611 /* 2612 * See do_set_cpus_allowed() above for the rcu_head usage. 2613 */ 2614 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2615 2616 return kmalloc_node(size, GFP_KERNEL, node); 2617 } 2618 2619 static inline struct task_struct *get_push_task(struct rq *rq) 2620 { 2621 struct task_struct *p = rq->donor; 2622 2623 lockdep_assert_rq_held(rq); 2624 2625 if (rq->push_busy) 2626 return NULL; 2627 2628 if (p->nr_cpus_allowed == 1) 2629 return NULL; 2630 2631 if (p->migration_disabled) 2632 return NULL; 2633 2634 rq->push_busy = true; 2635 return get_task_struct(p); 2636 } 2637 2638 extern int push_cpu_stop(void *arg); 2639 2640 #ifdef CONFIG_CPU_IDLE 2641 2642 static inline void idle_set_state(struct rq *rq, 2643 struct cpuidle_state *idle_state) 2644 { 2645 rq->idle_state = idle_state; 2646 } 2647 2648 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2649 { 2650 WARN_ON_ONCE(!rcu_read_lock_held()); 2651 2652 return rq->idle_state; 2653 } 2654 2655 #else /* !CONFIG_CPU_IDLE: */ 2656 2657 static inline void idle_set_state(struct rq *rq, 2658 struct cpuidle_state *idle_state) 2659 { 2660 } 2661 2662 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2663 { 2664 return NULL; 2665 } 2666 2667 #endif /* !CONFIG_CPU_IDLE */ 2668 2669 extern void schedule_idle(void); 2670 asmlinkage void schedule_user(void); 2671 2672 extern void sysrq_sched_debug_show(void); 2673 extern void sched_init_granularity(void); 2674 extern void update_max_interval(void); 2675 2676 extern void init_sched_dl_class(void); 2677 extern void init_sched_rt_class(void); 2678 extern void init_sched_fair_class(void); 2679 2680 extern void resched_curr(struct rq *rq); 2681 extern void resched_curr_lazy(struct rq *rq); 2682 extern void resched_cpu(int cpu); 2683 2684 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2685 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2686 2687 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2688 2689 extern void init_cfs_throttle_work(struct task_struct *p); 2690 2691 #define BW_SHIFT 20 2692 #define BW_UNIT (1 << BW_SHIFT) 2693 #define RATIO_SHIFT 8 2694 #define MAX_BW_BITS (64 - BW_SHIFT) 2695 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2696 2697 extern unsigned long to_ratio(u64 period, u64 runtime); 2698 2699 extern void init_entity_runnable_average(struct sched_entity *se); 2700 extern void post_init_entity_util_avg(struct task_struct *p); 2701 2702 #ifdef CONFIG_NO_HZ_FULL 2703 extern bool sched_can_stop_tick(struct rq *rq); 2704 extern int __init sched_tick_offload_init(void); 2705 2706 /* 2707 * Tick may be needed by tasks in the runqueue depending on their policy and 2708 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2709 * nohz mode if necessary. 2710 */ 2711 static inline void sched_update_tick_dependency(struct rq *rq) 2712 { 2713 int cpu = cpu_of(rq); 2714 2715 if (!tick_nohz_full_cpu(cpu)) 2716 return; 2717 2718 if (sched_can_stop_tick(rq)) 2719 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2720 else 2721 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2722 } 2723 #else /* !CONFIG_NO_HZ_FULL: */ 2724 static inline int sched_tick_offload_init(void) { return 0; } 2725 static inline void sched_update_tick_dependency(struct rq *rq) { } 2726 #endif /* !CONFIG_NO_HZ_FULL */ 2727 2728 static inline void add_nr_running(struct rq *rq, unsigned count) 2729 { 2730 unsigned prev_nr = rq->nr_running; 2731 2732 rq->nr_running = prev_nr + count; 2733 if (trace_sched_update_nr_running_tp_enabled()) { 2734 call_trace_sched_update_nr_running(rq, count); 2735 } 2736 2737 if (prev_nr < 2 && rq->nr_running >= 2) 2738 set_rd_overloaded(rq->rd, 1); 2739 2740 sched_update_tick_dependency(rq); 2741 } 2742 2743 static inline void sub_nr_running(struct rq *rq, unsigned count) 2744 { 2745 rq->nr_running -= count; 2746 if (trace_sched_update_nr_running_tp_enabled()) { 2747 call_trace_sched_update_nr_running(rq, -count); 2748 } 2749 2750 /* Check if we still need preemption */ 2751 sched_update_tick_dependency(rq); 2752 } 2753 2754 static inline void __block_task(struct rq *rq, struct task_struct *p) 2755 { 2756 if (p->sched_contributes_to_load) 2757 rq->nr_uninterruptible++; 2758 2759 if (p->in_iowait) { 2760 atomic_inc(&rq->nr_iowait); 2761 delayacct_blkio_start(); 2762 } 2763 2764 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2765 2766 /* 2767 * The moment this write goes through, ttwu() can swoop in and migrate 2768 * this task, rendering our rq->__lock ineffective. 2769 * 2770 * __schedule() try_to_wake_up() 2771 * LOCK rq->__lock LOCK p->pi_lock 2772 * pick_next_task() 2773 * pick_next_task_fair() 2774 * pick_next_entity() 2775 * dequeue_entities() 2776 * __block_task() 2777 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2778 * break; 2779 * 2780 * ACQUIRE (after ctrl-dep) 2781 * 2782 * cpu = select_task_rq(); 2783 * set_task_cpu(p, cpu); 2784 * ttwu_queue() 2785 * ttwu_do_activate() 2786 * LOCK rq->__lock 2787 * activate_task() 2788 * STORE p->on_rq = 1 2789 * UNLOCK rq->__lock 2790 * 2791 * Callers must ensure to not reference @p after this -- we no longer 2792 * own it. 2793 */ 2794 smp_store_release(&p->on_rq, 0); 2795 } 2796 2797 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2798 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2799 2800 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2801 2802 #ifdef CONFIG_PREEMPT_RT 2803 # define SCHED_NR_MIGRATE_BREAK 8 2804 #else 2805 # define SCHED_NR_MIGRATE_BREAK 32 2806 #endif 2807 2808 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2809 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2810 2811 extern unsigned int sysctl_sched_base_slice; 2812 2813 extern int sysctl_resched_latency_warn_ms; 2814 extern int sysctl_resched_latency_warn_once; 2815 2816 extern unsigned int sysctl_sched_tunable_scaling; 2817 2818 extern unsigned int sysctl_numa_balancing_scan_delay; 2819 extern unsigned int sysctl_numa_balancing_scan_period_min; 2820 extern unsigned int sysctl_numa_balancing_scan_period_max; 2821 extern unsigned int sysctl_numa_balancing_scan_size; 2822 extern unsigned int sysctl_numa_balancing_hot_threshold; 2823 2824 #ifdef CONFIG_SCHED_HRTICK 2825 2826 /* 2827 * Use hrtick when: 2828 * - enabled by features 2829 * - hrtimer is actually high res 2830 */ 2831 static inline int hrtick_enabled(struct rq *rq) 2832 { 2833 if (!cpu_active(cpu_of(rq))) 2834 return 0; 2835 return hrtimer_is_hres_active(&rq->hrtick_timer); 2836 } 2837 2838 static inline int hrtick_enabled_fair(struct rq *rq) 2839 { 2840 if (!sched_feat(HRTICK)) 2841 return 0; 2842 return hrtick_enabled(rq); 2843 } 2844 2845 static inline int hrtick_enabled_dl(struct rq *rq) 2846 { 2847 if (!sched_feat(HRTICK_DL)) 2848 return 0; 2849 return hrtick_enabled(rq); 2850 } 2851 2852 extern void hrtick_start(struct rq *rq, u64 delay); 2853 2854 #else /* !CONFIG_SCHED_HRTICK: */ 2855 2856 static inline int hrtick_enabled_fair(struct rq *rq) 2857 { 2858 return 0; 2859 } 2860 2861 static inline int hrtick_enabled_dl(struct rq *rq) 2862 { 2863 return 0; 2864 } 2865 2866 static inline int hrtick_enabled(struct rq *rq) 2867 { 2868 return 0; 2869 } 2870 2871 #endif /* !CONFIG_SCHED_HRTICK */ 2872 2873 #ifndef arch_scale_freq_tick 2874 static __always_inline void arch_scale_freq_tick(void) { } 2875 #endif 2876 2877 #ifndef arch_scale_freq_capacity 2878 /** 2879 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2880 * @cpu: the CPU in question. 2881 * 2882 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2883 * 2884 * f_curr 2885 * ------ * SCHED_CAPACITY_SCALE 2886 * f_max 2887 */ 2888 static __always_inline 2889 unsigned long arch_scale_freq_capacity(int cpu) 2890 { 2891 return SCHED_CAPACITY_SCALE; 2892 } 2893 #endif 2894 2895 /* 2896 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2897 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2898 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2899 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2900 */ 2901 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2902 { 2903 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2904 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2905 } 2906 2907 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2908 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2909 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2910 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2911 _lock; return _t; } 2912 2913 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2914 { 2915 #ifdef CONFIG_SCHED_CORE 2916 /* 2917 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2918 * order by core-id first and cpu-id second. 2919 * 2920 * Notably: 2921 * 2922 * double_rq_lock(0,3); will take core-0, core-1 lock 2923 * double_rq_lock(1,2); will take core-1, core-0 lock 2924 * 2925 * when only cpu-id is considered. 2926 */ 2927 if (rq1->core->cpu < rq2->core->cpu) 2928 return true; 2929 if (rq1->core->cpu > rq2->core->cpu) 2930 return false; 2931 2932 /* 2933 * __sched_core_flip() relies on SMT having cpu-id lock order. 2934 */ 2935 #endif /* CONFIG_SCHED_CORE */ 2936 return rq1->cpu < rq2->cpu; 2937 } 2938 2939 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2940 2941 #ifdef CONFIG_PREEMPTION 2942 2943 /* 2944 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2945 * way at the expense of forcing extra atomic operations in all 2946 * invocations. This assures that the double_lock is acquired using the 2947 * same underlying policy as the spinlock_t on this architecture, which 2948 * reduces latency compared to the unfair variant below. However, it 2949 * also adds more overhead and therefore may reduce throughput. 2950 */ 2951 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2952 __releases(this_rq->lock) 2953 __acquires(busiest->lock) 2954 __acquires(this_rq->lock) 2955 { 2956 raw_spin_rq_unlock(this_rq); 2957 double_rq_lock(this_rq, busiest); 2958 2959 return 1; 2960 } 2961 2962 #else /* !CONFIG_PREEMPTION: */ 2963 /* 2964 * Unfair double_lock_balance: Optimizes throughput at the expense of 2965 * latency by eliminating extra atomic operations when the locks are 2966 * already in proper order on entry. This favors lower CPU-ids and will 2967 * grant the double lock to lower CPUs over higher ids under contention, 2968 * regardless of entry order into the function. 2969 */ 2970 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2971 __releases(this_rq->lock) 2972 __acquires(busiest->lock) 2973 __acquires(this_rq->lock) 2974 { 2975 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2976 likely(raw_spin_rq_trylock(busiest))) { 2977 double_rq_clock_clear_update(this_rq, busiest); 2978 return 0; 2979 } 2980 2981 if (rq_order_less(this_rq, busiest)) { 2982 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2983 double_rq_clock_clear_update(this_rq, busiest); 2984 return 0; 2985 } 2986 2987 raw_spin_rq_unlock(this_rq); 2988 double_rq_lock(this_rq, busiest); 2989 2990 return 1; 2991 } 2992 2993 #endif /* !CONFIG_PREEMPTION */ 2994 2995 /* 2996 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2997 */ 2998 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2999 { 3000 lockdep_assert_irqs_disabled(); 3001 3002 return _double_lock_balance(this_rq, busiest); 3003 } 3004 3005 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3006 __releases(busiest->lock) 3007 { 3008 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3009 raw_spin_rq_unlock(busiest); 3010 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3011 } 3012 3013 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3014 { 3015 if (l1 > l2) 3016 swap(l1, l2); 3017 3018 spin_lock(l1); 3019 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3020 } 3021 3022 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3023 { 3024 if (l1 > l2) 3025 swap(l1, l2); 3026 3027 spin_lock_irq(l1); 3028 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3029 } 3030 3031 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3032 { 3033 if (l1 > l2) 3034 swap(l1, l2); 3035 3036 raw_spin_lock(l1); 3037 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3038 } 3039 3040 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3041 { 3042 raw_spin_unlock(l1); 3043 raw_spin_unlock(l2); 3044 } 3045 3046 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3047 double_raw_lock(_T->lock, _T->lock2), 3048 double_raw_unlock(_T->lock, _T->lock2)) 3049 3050 /* 3051 * double_rq_unlock - safely unlock two runqueues 3052 * 3053 * Note this does not restore interrupts like task_rq_unlock, 3054 * you need to do so manually after calling. 3055 */ 3056 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3057 __releases(rq1->lock) 3058 __releases(rq2->lock) 3059 { 3060 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3061 raw_spin_rq_unlock(rq2); 3062 else 3063 __release(rq2->lock); 3064 raw_spin_rq_unlock(rq1); 3065 } 3066 3067 extern void set_rq_online (struct rq *rq); 3068 extern void set_rq_offline(struct rq *rq); 3069 3070 extern bool sched_smp_initialized; 3071 3072 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3073 double_rq_lock(_T->lock, _T->lock2), 3074 double_rq_unlock(_T->lock, _T->lock2)) 3075 3076 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3077 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3078 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3079 3080 extern bool sched_debug_verbose; 3081 3082 extern void print_cfs_stats(struct seq_file *m, int cpu); 3083 extern void print_rt_stats(struct seq_file *m, int cpu); 3084 extern void print_dl_stats(struct seq_file *m, int cpu); 3085 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3086 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3087 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3088 3089 extern void resched_latency_warn(int cpu, u64 latency); 3090 3091 #ifdef CONFIG_NUMA_BALANCING 3092 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3093 extern void 3094 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3095 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3096 #endif /* CONFIG_NUMA_BALANCING */ 3097 3098 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3099 extern void init_rt_rq(struct rt_rq *rt_rq); 3100 extern void init_dl_rq(struct dl_rq *dl_rq); 3101 3102 extern void cfs_bandwidth_usage_inc(void); 3103 extern void cfs_bandwidth_usage_dec(void); 3104 3105 #ifdef CONFIG_NO_HZ_COMMON 3106 3107 #define NOHZ_BALANCE_KICK_BIT 0 3108 #define NOHZ_STATS_KICK_BIT 1 3109 #define NOHZ_NEWILB_KICK_BIT 2 3110 #define NOHZ_NEXT_KICK_BIT 3 3111 3112 /* Run sched_balance_domains() */ 3113 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3114 /* Update blocked load */ 3115 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3116 /* Update blocked load when entering idle */ 3117 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3118 /* Update nohz.next_balance */ 3119 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3120 3121 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3122 3123 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3124 3125 extern void nohz_balance_exit_idle(struct rq *rq); 3126 #else /* !CONFIG_NO_HZ_COMMON: */ 3127 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3128 #endif /* !CONFIG_NO_HZ_COMMON */ 3129 3130 #ifdef CONFIG_NO_HZ_COMMON 3131 extern void nohz_run_idle_balance(int cpu); 3132 #else 3133 static inline void nohz_run_idle_balance(int cpu) { } 3134 #endif 3135 3136 #include "stats.h" 3137 3138 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3139 3140 extern void __sched_core_account_forceidle(struct rq *rq); 3141 3142 static inline void sched_core_account_forceidle(struct rq *rq) 3143 { 3144 if (schedstat_enabled()) 3145 __sched_core_account_forceidle(rq); 3146 } 3147 3148 extern void __sched_core_tick(struct rq *rq); 3149 3150 static inline void sched_core_tick(struct rq *rq) 3151 { 3152 if (sched_core_enabled(rq) && schedstat_enabled()) 3153 __sched_core_tick(rq); 3154 } 3155 3156 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3157 3158 static inline void sched_core_account_forceidle(struct rq *rq) { } 3159 3160 static inline void sched_core_tick(struct rq *rq) { } 3161 3162 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3163 3164 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3165 3166 struct irqtime { 3167 u64 total; 3168 u64 tick_delta; 3169 u64 irq_start_time; 3170 struct u64_stats_sync sync; 3171 }; 3172 3173 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3174 extern int sched_clock_irqtime; 3175 3176 static inline int irqtime_enabled(void) 3177 { 3178 return sched_clock_irqtime; 3179 } 3180 3181 /* 3182 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3183 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3184 * and never move forward. 3185 */ 3186 static inline u64 irq_time_read(int cpu) 3187 { 3188 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3189 unsigned int seq; 3190 u64 total; 3191 3192 do { 3193 seq = __u64_stats_fetch_begin(&irqtime->sync); 3194 total = irqtime->total; 3195 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3196 3197 return total; 3198 } 3199 3200 #else /* !CONFIG_IRQ_TIME_ACCOUNTING: */ 3201 3202 static inline int irqtime_enabled(void) 3203 { 3204 return 0; 3205 } 3206 3207 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */ 3208 3209 #ifdef CONFIG_CPU_FREQ 3210 3211 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3212 3213 /** 3214 * cpufreq_update_util - Take a note about CPU utilization changes. 3215 * @rq: Runqueue to carry out the update for. 3216 * @flags: Update reason flags. 3217 * 3218 * This function is called by the scheduler on the CPU whose utilization is 3219 * being updated. 3220 * 3221 * It can only be called from RCU-sched read-side critical sections. 3222 * 3223 * The way cpufreq is currently arranged requires it to evaluate the CPU 3224 * performance state (frequency/voltage) on a regular basis to prevent it from 3225 * being stuck in a completely inadequate performance level for too long. 3226 * That is not guaranteed to happen if the updates are only triggered from CFS 3227 * and DL, though, because they may not be coming in if only RT tasks are 3228 * active all the time (or there are RT tasks only). 3229 * 3230 * As a workaround for that issue, this function is called periodically by the 3231 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3232 * but that really is a band-aid. Going forward it should be replaced with 3233 * solutions targeted more specifically at RT tasks. 3234 */ 3235 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3236 { 3237 struct update_util_data *data; 3238 3239 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3240 cpu_of(rq))); 3241 if (data) 3242 data->func(data, rq_clock(rq), flags); 3243 } 3244 #else /* !CONFIG_CPU_FREQ: */ 3245 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3246 #endif /* !CONFIG_CPU_FREQ */ 3247 3248 #ifdef arch_scale_freq_capacity 3249 # ifndef arch_scale_freq_invariant 3250 # define arch_scale_freq_invariant() true 3251 # endif 3252 #else 3253 # define arch_scale_freq_invariant() false 3254 #endif 3255 3256 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3257 unsigned long *min, 3258 unsigned long *max); 3259 3260 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3261 unsigned long min, 3262 unsigned long max); 3263 3264 3265 /* 3266 * Verify the fitness of task @p to run on @cpu taking into account the 3267 * CPU original capacity and the runtime/deadline ratio of the task. 3268 * 3269 * The function will return true if the original capacity of @cpu is 3270 * greater than or equal to task's deadline density right shifted by 3271 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3272 */ 3273 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3274 { 3275 unsigned long cap = arch_scale_cpu_capacity(cpu); 3276 3277 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3278 } 3279 3280 static inline unsigned long cpu_bw_dl(struct rq *rq) 3281 { 3282 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3283 } 3284 3285 static inline unsigned long cpu_util_dl(struct rq *rq) 3286 { 3287 return READ_ONCE(rq->avg_dl.util_avg); 3288 } 3289 3290 3291 extern unsigned long cpu_util_cfs(int cpu); 3292 extern unsigned long cpu_util_cfs_boost(int cpu); 3293 3294 static inline unsigned long cpu_util_rt(struct rq *rq) 3295 { 3296 return READ_ONCE(rq->avg_rt.util_avg); 3297 } 3298 3299 #ifdef CONFIG_UCLAMP_TASK 3300 3301 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3302 3303 /* 3304 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3305 * by default in the fast path and only gets turned on once userspace performs 3306 * an operation that requires it. 3307 * 3308 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3309 * hence is active. 3310 */ 3311 static inline bool uclamp_is_used(void) 3312 { 3313 return static_branch_likely(&sched_uclamp_used); 3314 } 3315 3316 /* 3317 * Enabling static branches would get the cpus_read_lock(), 3318 * check whether uclamp_is_used before enable it to avoid always 3319 * calling cpus_read_lock(). Because we never disable this 3320 * static key once enable it. 3321 */ 3322 static inline void sched_uclamp_enable(void) 3323 { 3324 if (!uclamp_is_used()) 3325 static_branch_enable(&sched_uclamp_used); 3326 } 3327 3328 static inline unsigned long uclamp_rq_get(struct rq *rq, 3329 enum uclamp_id clamp_id) 3330 { 3331 return READ_ONCE(rq->uclamp[clamp_id].value); 3332 } 3333 3334 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3335 unsigned int value) 3336 { 3337 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3338 } 3339 3340 static inline bool uclamp_rq_is_idle(struct rq *rq) 3341 { 3342 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3343 } 3344 3345 /* Is the rq being capped/throttled by uclamp_max? */ 3346 static inline bool uclamp_rq_is_capped(struct rq *rq) 3347 { 3348 unsigned long rq_util; 3349 unsigned long max_util; 3350 3351 if (!uclamp_is_used()) 3352 return false; 3353 3354 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3355 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3356 3357 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3358 } 3359 3360 #define for_each_clamp_id(clamp_id) \ 3361 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3362 3363 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3364 3365 3366 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3367 { 3368 if (clamp_id == UCLAMP_MIN) 3369 return 0; 3370 return SCHED_CAPACITY_SCALE; 3371 } 3372 3373 /* Integer rounded range for each bucket */ 3374 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3375 3376 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3377 { 3378 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3379 } 3380 3381 static inline void 3382 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3383 { 3384 uc_se->value = value; 3385 uc_se->bucket_id = uclamp_bucket_id(value); 3386 uc_se->user_defined = user_defined; 3387 } 3388 3389 #else /* !CONFIG_UCLAMP_TASK: */ 3390 3391 static inline unsigned long 3392 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3393 { 3394 if (clamp_id == UCLAMP_MIN) 3395 return 0; 3396 3397 return SCHED_CAPACITY_SCALE; 3398 } 3399 3400 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3401 3402 static inline bool uclamp_is_used(void) 3403 { 3404 return false; 3405 } 3406 3407 static inline void sched_uclamp_enable(void) {} 3408 3409 static inline unsigned long 3410 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3411 { 3412 if (clamp_id == UCLAMP_MIN) 3413 return 0; 3414 3415 return SCHED_CAPACITY_SCALE; 3416 } 3417 3418 static inline void 3419 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3420 { 3421 } 3422 3423 static inline bool uclamp_rq_is_idle(struct rq *rq) 3424 { 3425 return false; 3426 } 3427 3428 #endif /* !CONFIG_UCLAMP_TASK */ 3429 3430 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3431 3432 static inline unsigned long cpu_util_irq(struct rq *rq) 3433 { 3434 return READ_ONCE(rq->avg_irq.util_avg); 3435 } 3436 3437 static inline 3438 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3439 { 3440 util *= (max - irq); 3441 util /= max; 3442 3443 return util; 3444 3445 } 3446 3447 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3448 3449 static inline unsigned long cpu_util_irq(struct rq *rq) 3450 { 3451 return 0; 3452 } 3453 3454 static inline 3455 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3456 { 3457 return util; 3458 } 3459 3460 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3461 3462 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3463 3464 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3465 3466 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3467 3468 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3469 3470 static inline bool sched_energy_enabled(void) 3471 { 3472 return static_branch_unlikely(&sched_energy_present); 3473 } 3474 3475 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 3476 3477 #define perf_domain_span(pd) NULL 3478 3479 static inline bool sched_energy_enabled(void) { return false; } 3480 3481 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3482 3483 #ifdef CONFIG_MEMBARRIER 3484 3485 /* 3486 * The scheduler provides memory barriers required by membarrier between: 3487 * - prior user-space memory accesses and store to rq->membarrier_state, 3488 * - store to rq->membarrier_state and following user-space memory accesses. 3489 * In the same way it provides those guarantees around store to rq->curr. 3490 */ 3491 static inline void membarrier_switch_mm(struct rq *rq, 3492 struct mm_struct *prev_mm, 3493 struct mm_struct *next_mm) 3494 { 3495 int membarrier_state; 3496 3497 if (prev_mm == next_mm) 3498 return; 3499 3500 membarrier_state = atomic_read(&next_mm->membarrier_state); 3501 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3502 return; 3503 3504 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3505 } 3506 3507 #else /* !CONFIG_MEMBARRIER: */ 3508 3509 static inline void membarrier_switch_mm(struct rq *rq, 3510 struct mm_struct *prev_mm, 3511 struct mm_struct *next_mm) 3512 { 3513 } 3514 3515 #endif /* !CONFIG_MEMBARRIER */ 3516 3517 static inline bool is_per_cpu_kthread(struct task_struct *p) 3518 { 3519 if (!(p->flags & PF_KTHREAD)) 3520 return false; 3521 3522 if (p->nr_cpus_allowed != 1) 3523 return false; 3524 3525 return true; 3526 } 3527 3528 extern void swake_up_all_locked(struct swait_queue_head *q); 3529 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3530 3531 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3532 3533 #ifdef CONFIG_PREEMPT_DYNAMIC 3534 extern int preempt_dynamic_mode; 3535 extern int sched_dynamic_mode(const char *str); 3536 extern void sched_dynamic_update(int mode); 3537 #endif 3538 extern const char *preempt_modes[]; 3539 3540 #ifdef CONFIG_SCHED_MM_CID 3541 3542 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3543 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3544 3545 extern raw_spinlock_t cid_lock; 3546 extern int use_cid_lock; 3547 3548 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3549 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3550 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3551 extern void init_sched_mm_cid(struct task_struct *t); 3552 3553 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3554 { 3555 if (cid < 0) 3556 return; 3557 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3558 } 3559 3560 /* 3561 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3562 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3563 * be held to transition to other states. 3564 * 3565 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3566 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3567 */ 3568 static inline void mm_cid_put_lazy(struct task_struct *t) 3569 { 3570 struct mm_struct *mm = t->mm; 3571 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3572 int cid; 3573 3574 lockdep_assert_irqs_disabled(); 3575 cid = __this_cpu_read(pcpu_cid->cid); 3576 if (!mm_cid_is_lazy_put(cid) || 3577 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3578 return; 3579 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3580 } 3581 3582 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3583 { 3584 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3585 int cid, res; 3586 3587 lockdep_assert_irqs_disabled(); 3588 cid = __this_cpu_read(pcpu_cid->cid); 3589 for (;;) { 3590 if (mm_cid_is_unset(cid)) 3591 return MM_CID_UNSET; 3592 /* 3593 * Attempt transition from valid or lazy-put to unset. 3594 */ 3595 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3596 if (res == cid) 3597 break; 3598 cid = res; 3599 } 3600 return cid; 3601 } 3602 3603 static inline void mm_cid_put(struct mm_struct *mm) 3604 { 3605 int cid; 3606 3607 lockdep_assert_irqs_disabled(); 3608 cid = mm_cid_pcpu_unset(mm); 3609 if (cid == MM_CID_UNSET) 3610 return; 3611 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3612 } 3613 3614 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3615 { 3616 struct cpumask *cidmask = mm_cidmask(mm); 3617 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3618 int cid, max_nr_cid, allowed_max_nr_cid; 3619 3620 /* 3621 * After shrinking the number of threads or reducing the number 3622 * of allowed cpus, reduce the value of max_nr_cid so expansion 3623 * of cid allocation will preserve cache locality if the number 3624 * of threads or allowed cpus increase again. 3625 */ 3626 max_nr_cid = atomic_read(&mm->max_nr_cid); 3627 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3628 atomic_read(&mm->mm_users))), 3629 max_nr_cid > allowed_max_nr_cid) { 3630 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3631 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3632 max_nr_cid = allowed_max_nr_cid; 3633 break; 3634 } 3635 } 3636 /* Try to re-use recent cid. This improves cache locality. */ 3637 cid = __this_cpu_read(pcpu_cid->recent_cid); 3638 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3639 !cpumask_test_and_set_cpu(cid, cidmask)) 3640 return cid; 3641 /* 3642 * Expand cid allocation if the maximum number of concurrency 3643 * IDs allocated (max_nr_cid) is below the number cpus allowed 3644 * and number of threads. Expanding cid allocation as much as 3645 * possible improves cache locality. 3646 */ 3647 cid = max_nr_cid; 3648 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3649 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3650 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3651 continue; 3652 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3653 return cid; 3654 } 3655 /* 3656 * Find the first available concurrency id. 3657 * Retry finding first zero bit if the mask is temporarily 3658 * filled. This only happens during concurrent remote-clear 3659 * which owns a cid without holding a rq lock. 3660 */ 3661 for (;;) { 3662 cid = cpumask_first_zero(cidmask); 3663 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3664 break; 3665 cpu_relax(); 3666 } 3667 if (cpumask_test_and_set_cpu(cid, cidmask)) 3668 return -1; 3669 3670 return cid; 3671 } 3672 3673 /* 3674 * Save a snapshot of the current runqueue time of this cpu 3675 * with the per-cpu cid value, allowing to estimate how recently it was used. 3676 */ 3677 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3678 { 3679 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3680 3681 lockdep_assert_rq_held(rq); 3682 WRITE_ONCE(pcpu_cid->time, rq->clock); 3683 } 3684 3685 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3686 struct mm_struct *mm) 3687 { 3688 int cid; 3689 3690 /* 3691 * All allocations (even those using the cid_lock) are lock-free. If 3692 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3693 * guarantee forward progress. 3694 */ 3695 if (!READ_ONCE(use_cid_lock)) { 3696 cid = __mm_cid_try_get(t, mm); 3697 if (cid >= 0) 3698 goto end; 3699 raw_spin_lock(&cid_lock); 3700 } else { 3701 raw_spin_lock(&cid_lock); 3702 cid = __mm_cid_try_get(t, mm); 3703 if (cid >= 0) 3704 goto unlock; 3705 } 3706 3707 /* 3708 * cid concurrently allocated. Retry while forcing following 3709 * allocations to use the cid_lock to ensure forward progress. 3710 */ 3711 WRITE_ONCE(use_cid_lock, 1); 3712 /* 3713 * Set use_cid_lock before allocation. Only care about program order 3714 * because this is only required for forward progress. 3715 */ 3716 barrier(); 3717 /* 3718 * Retry until it succeeds. It is guaranteed to eventually succeed once 3719 * all newcoming allocations observe the use_cid_lock flag set. 3720 */ 3721 do { 3722 cid = __mm_cid_try_get(t, mm); 3723 cpu_relax(); 3724 } while (cid < 0); 3725 /* 3726 * Allocate before clearing use_cid_lock. Only care about 3727 * program order because this is for forward progress. 3728 */ 3729 barrier(); 3730 WRITE_ONCE(use_cid_lock, 0); 3731 unlock: 3732 raw_spin_unlock(&cid_lock); 3733 end: 3734 mm_cid_snapshot_time(rq, mm); 3735 3736 return cid; 3737 } 3738 3739 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3740 struct mm_struct *mm) 3741 { 3742 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3743 struct cpumask *cpumask; 3744 int cid; 3745 3746 lockdep_assert_rq_held(rq); 3747 cpumask = mm_cidmask(mm); 3748 cid = __this_cpu_read(pcpu_cid->cid); 3749 if (mm_cid_is_valid(cid)) { 3750 mm_cid_snapshot_time(rq, mm); 3751 return cid; 3752 } 3753 if (mm_cid_is_lazy_put(cid)) { 3754 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3755 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3756 } 3757 cid = __mm_cid_get(rq, t, mm); 3758 __this_cpu_write(pcpu_cid->cid, cid); 3759 __this_cpu_write(pcpu_cid->recent_cid, cid); 3760 3761 return cid; 3762 } 3763 3764 static inline void switch_mm_cid(struct rq *rq, 3765 struct task_struct *prev, 3766 struct task_struct *next) 3767 { 3768 /* 3769 * Provide a memory barrier between rq->curr store and load of 3770 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3771 * 3772 * Should be adapted if context_switch() is modified. 3773 */ 3774 if (!next->mm) { // to kernel 3775 /* 3776 * user -> kernel transition does not guarantee a barrier, but 3777 * we can use the fact that it performs an atomic operation in 3778 * mmgrab(). 3779 */ 3780 if (prev->mm) // from user 3781 smp_mb__after_mmgrab(); 3782 /* 3783 * kernel -> kernel transition does not change rq->curr->mm 3784 * state. It stays NULL. 3785 */ 3786 } else { // to user 3787 /* 3788 * kernel -> user transition does not provide a barrier 3789 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3790 * Provide it here. 3791 */ 3792 if (!prev->mm) { // from kernel 3793 smp_mb(); 3794 } else { // from user 3795 /* 3796 * user->user transition relies on an implicit 3797 * memory barrier in switch_mm() when 3798 * current->mm changes. If the architecture 3799 * switch_mm() does not have an implicit memory 3800 * barrier, it is emitted here. If current->mm 3801 * is unchanged, no barrier is needed. 3802 */ 3803 smp_mb__after_switch_mm(); 3804 } 3805 } 3806 if (prev->mm_cid_active) { 3807 mm_cid_snapshot_time(rq, prev->mm); 3808 mm_cid_put_lazy(prev); 3809 prev->mm_cid = -1; 3810 } 3811 if (next->mm_cid_active) 3812 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3813 } 3814 3815 #else /* !CONFIG_SCHED_MM_CID: */ 3816 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3817 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3818 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3819 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3820 static inline void init_sched_mm_cid(struct task_struct *t) { } 3821 #endif /* !CONFIG_SCHED_MM_CID */ 3822 3823 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3824 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3825 static inline 3826 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3827 { 3828 lockdep_assert_rq_held(src_rq); 3829 lockdep_assert_rq_held(dst_rq); 3830 3831 deactivate_task(src_rq, task, 0); 3832 set_task_cpu(task, dst_rq->cpu); 3833 activate_task(dst_rq, task, 0); 3834 } 3835 3836 static inline 3837 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3838 { 3839 if (!task_on_cpu(rq, p) && 3840 cpumask_test_cpu(cpu, &p->cpus_mask)) 3841 return true; 3842 3843 return false; 3844 } 3845 3846 #ifdef CONFIG_RT_MUTEXES 3847 3848 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3849 { 3850 if (pi_task) 3851 prio = min(prio, pi_task->prio); 3852 3853 return prio; 3854 } 3855 3856 static inline int rt_effective_prio(struct task_struct *p, int prio) 3857 { 3858 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3859 3860 return __rt_effective_prio(pi_task, prio); 3861 } 3862 3863 #else /* !CONFIG_RT_MUTEXES: */ 3864 3865 static inline int rt_effective_prio(struct task_struct *p, int prio) 3866 { 3867 return prio; 3868 } 3869 3870 #endif /* !CONFIG_RT_MUTEXES */ 3871 3872 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3873 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3874 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3875 extern void set_load_weight(struct task_struct *p, bool update_load); 3876 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3877 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3878 3879 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3880 const struct sched_class *prev_class); 3881 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3882 const struct sched_class *prev_class, 3883 int oldprio); 3884 3885 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3886 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3887 3888 #ifdef CONFIG_SCHED_CLASS_EXT 3889 /* 3890 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3891 * and establish invariants. 3892 */ 3893 struct sched_enq_and_set_ctx { 3894 struct task_struct *p; 3895 int queue_flags; 3896 bool queued; 3897 bool running; 3898 }; 3899 3900 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3901 struct sched_enq_and_set_ctx *ctx); 3902 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3903 3904 #endif /* CONFIG_SCHED_CLASS_EXT */ 3905 3906 #include "ext.h" 3907 3908 #endif /* _KERNEL_SCHED_SCHED_H */ 3909