xref: /linux/kernel/sched/rt.c (revision fce96cf0443083e37455eff8f78fd240c621dae3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
9 /* More than 4 hours if BW_SHIFT equals 20. */
10 static const u64 max_rt_runtime = MAX_BW;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	int idle = 0;
21 	int overrun;
22 
23 	raw_spin_lock(&rt_b->rt_runtime_lock);
24 	for (;;) {
25 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
26 		if (!overrun)
27 			break;
28 
29 		raw_spin_unlock(&rt_b->rt_runtime_lock);
30 		idle = do_sched_rt_period_timer(rt_b, overrun);
31 		raw_spin_lock(&rt_b->rt_runtime_lock);
32 	}
33 	if (idle)
34 		rt_b->rt_period_active = 0;
35 	raw_spin_unlock(&rt_b->rt_runtime_lock);
36 
37 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
38 }
39 
40 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
41 {
42 	rt_b->rt_period = ns_to_ktime(period);
43 	rt_b->rt_runtime = runtime;
44 
45 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
46 
47 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
48 		     HRTIMER_MODE_REL_HARD);
49 	rt_b->rt_period_timer.function = sched_rt_period_timer;
50 }
51 
52 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
53 {
54 	raw_spin_lock(&rt_b->rt_runtime_lock);
55 	if (!rt_b->rt_period_active) {
56 		rt_b->rt_period_active = 1;
57 		/*
58 		 * SCHED_DEADLINE updates the bandwidth, as a run away
59 		 * RT task with a DL task could hog a CPU. But DL does
60 		 * not reset the period. If a deadline task was running
61 		 * without an RT task running, it can cause RT tasks to
62 		 * throttle when they start up. Kick the timer right away
63 		 * to update the period.
64 		 */
65 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
66 		hrtimer_start_expires(&rt_b->rt_period_timer,
67 				      HRTIMER_MODE_ABS_PINNED_HARD);
68 	}
69 	raw_spin_unlock(&rt_b->rt_runtime_lock);
70 }
71 
72 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
73 {
74 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
75 		return;
76 
77 	do_start_rt_bandwidth(rt_b);
78 }
79 
80 void init_rt_rq(struct rt_rq *rt_rq)
81 {
82 	struct rt_prio_array *array;
83 	int i;
84 
85 	array = &rt_rq->active;
86 	for (i = 0; i < MAX_RT_PRIO; i++) {
87 		INIT_LIST_HEAD(array->queue + i);
88 		__clear_bit(i, array->bitmap);
89 	}
90 	/* delimiter for bitsearch: */
91 	__set_bit(MAX_RT_PRIO, array->bitmap);
92 
93 #if defined CONFIG_SMP
94 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
95 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
96 	rt_rq->rt_nr_migratory = 0;
97 	rt_rq->overloaded = 0;
98 	plist_head_init(&rt_rq->pushable_tasks);
99 #endif /* CONFIG_SMP */
100 	/* We start is dequeued state, because no RT tasks are queued */
101 	rt_rq->rt_queued = 0;
102 
103 	rt_rq->rt_time = 0;
104 	rt_rq->rt_throttled = 0;
105 	rt_rq->rt_runtime = 0;
106 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
107 }
108 
109 #ifdef CONFIG_RT_GROUP_SCHED
110 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
111 {
112 	hrtimer_cancel(&rt_b->rt_period_timer);
113 }
114 
115 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
116 
117 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
118 {
119 #ifdef CONFIG_SCHED_DEBUG
120 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
121 #endif
122 	return container_of(rt_se, struct task_struct, rt);
123 }
124 
125 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
126 {
127 	return rt_rq->rq;
128 }
129 
130 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
131 {
132 	return rt_se->rt_rq;
133 }
134 
135 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
136 {
137 	struct rt_rq *rt_rq = rt_se->rt_rq;
138 
139 	return rt_rq->rq;
140 }
141 
142 void unregister_rt_sched_group(struct task_group *tg)
143 {
144 	if (tg->rt_se)
145 		destroy_rt_bandwidth(&tg->rt_bandwidth);
146 
147 }
148 
149 void free_rt_sched_group(struct task_group *tg)
150 {
151 	int i;
152 
153 	for_each_possible_cpu(i) {
154 		if (tg->rt_rq)
155 			kfree(tg->rt_rq[i]);
156 		if (tg->rt_se)
157 			kfree(tg->rt_se[i]);
158 	}
159 
160 	kfree(tg->rt_rq);
161 	kfree(tg->rt_se);
162 }
163 
164 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
165 		struct sched_rt_entity *rt_se, int cpu,
166 		struct sched_rt_entity *parent)
167 {
168 	struct rq *rq = cpu_rq(cpu);
169 
170 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
171 	rt_rq->rt_nr_boosted = 0;
172 	rt_rq->rq = rq;
173 	rt_rq->tg = tg;
174 
175 	tg->rt_rq[cpu] = rt_rq;
176 	tg->rt_se[cpu] = rt_se;
177 
178 	if (!rt_se)
179 		return;
180 
181 	if (!parent)
182 		rt_se->rt_rq = &rq->rt;
183 	else
184 		rt_se->rt_rq = parent->my_q;
185 
186 	rt_se->my_q = rt_rq;
187 	rt_se->parent = parent;
188 	INIT_LIST_HEAD(&rt_se->run_list);
189 }
190 
191 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
192 {
193 	struct rt_rq *rt_rq;
194 	struct sched_rt_entity *rt_se;
195 	int i;
196 
197 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
198 	if (!tg->rt_rq)
199 		goto err;
200 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
201 	if (!tg->rt_se)
202 		goto err;
203 
204 	init_rt_bandwidth(&tg->rt_bandwidth,
205 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
206 
207 	for_each_possible_cpu(i) {
208 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
209 				     GFP_KERNEL, cpu_to_node(i));
210 		if (!rt_rq)
211 			goto err;
212 
213 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
214 				     GFP_KERNEL, cpu_to_node(i));
215 		if (!rt_se)
216 			goto err_free_rq;
217 
218 		init_rt_rq(rt_rq);
219 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
220 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
221 	}
222 
223 	return 1;
224 
225 err_free_rq:
226 	kfree(rt_rq);
227 err:
228 	return 0;
229 }
230 
231 #else /* CONFIG_RT_GROUP_SCHED */
232 
233 #define rt_entity_is_task(rt_se) (1)
234 
235 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
236 {
237 	return container_of(rt_se, struct task_struct, rt);
238 }
239 
240 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
241 {
242 	return container_of(rt_rq, struct rq, rt);
243 }
244 
245 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
246 {
247 	struct task_struct *p = rt_task_of(rt_se);
248 
249 	return task_rq(p);
250 }
251 
252 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
253 {
254 	struct rq *rq = rq_of_rt_se(rt_se);
255 
256 	return &rq->rt;
257 }
258 
259 void unregister_rt_sched_group(struct task_group *tg) { }
260 
261 void free_rt_sched_group(struct task_group *tg) { }
262 
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265 	return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268 
269 #ifdef CONFIG_SMP
270 
271 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
272 {
273 	/* Try to pull RT tasks here if we lower this rq's prio */
274 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
275 }
276 
277 static inline int rt_overloaded(struct rq *rq)
278 {
279 	return atomic_read(&rq->rd->rto_count);
280 }
281 
282 static inline void rt_set_overload(struct rq *rq)
283 {
284 	if (!rq->online)
285 		return;
286 
287 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
288 	/*
289 	 * Make sure the mask is visible before we set
290 	 * the overload count. That is checked to determine
291 	 * if we should look at the mask. It would be a shame
292 	 * if we looked at the mask, but the mask was not
293 	 * updated yet.
294 	 *
295 	 * Matched by the barrier in pull_rt_task().
296 	 */
297 	smp_wmb();
298 	atomic_inc(&rq->rd->rto_count);
299 }
300 
301 static inline void rt_clear_overload(struct rq *rq)
302 {
303 	if (!rq->online)
304 		return;
305 
306 	/* the order here really doesn't matter */
307 	atomic_dec(&rq->rd->rto_count);
308 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
309 }
310 
311 static void update_rt_migration(struct rt_rq *rt_rq)
312 {
313 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
314 		if (!rt_rq->overloaded) {
315 			rt_set_overload(rq_of_rt_rq(rt_rq));
316 			rt_rq->overloaded = 1;
317 		}
318 	} else if (rt_rq->overloaded) {
319 		rt_clear_overload(rq_of_rt_rq(rt_rq));
320 		rt_rq->overloaded = 0;
321 	}
322 }
323 
324 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
325 {
326 	struct task_struct *p;
327 
328 	if (!rt_entity_is_task(rt_se))
329 		return;
330 
331 	p = rt_task_of(rt_se);
332 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
333 
334 	rt_rq->rt_nr_total++;
335 	if (p->nr_cpus_allowed > 1)
336 		rt_rq->rt_nr_migratory++;
337 
338 	update_rt_migration(rt_rq);
339 }
340 
341 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
342 {
343 	struct task_struct *p;
344 
345 	if (!rt_entity_is_task(rt_se))
346 		return;
347 
348 	p = rt_task_of(rt_se);
349 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
350 
351 	rt_rq->rt_nr_total--;
352 	if (p->nr_cpus_allowed > 1)
353 		rt_rq->rt_nr_migratory--;
354 
355 	update_rt_migration(rt_rq);
356 }
357 
358 static inline int has_pushable_tasks(struct rq *rq)
359 {
360 	return !plist_head_empty(&rq->rt.pushable_tasks);
361 }
362 
363 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
364 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
365 
366 static void push_rt_tasks(struct rq *);
367 static void pull_rt_task(struct rq *);
368 
369 static inline void rt_queue_push_tasks(struct rq *rq)
370 {
371 	if (!has_pushable_tasks(rq))
372 		return;
373 
374 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
375 }
376 
377 static inline void rt_queue_pull_task(struct rq *rq)
378 {
379 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
380 }
381 
382 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
383 {
384 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385 	plist_node_init(&p->pushable_tasks, p->prio);
386 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 
388 	/* Update the highest prio pushable task */
389 	if (p->prio < rq->rt.highest_prio.next)
390 		rq->rt.highest_prio.next = p->prio;
391 }
392 
393 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
394 {
395 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
396 
397 	/* Update the new highest prio pushable task */
398 	if (has_pushable_tasks(rq)) {
399 		p = plist_first_entry(&rq->rt.pushable_tasks,
400 				      struct task_struct, pushable_tasks);
401 		rq->rt.highest_prio.next = p->prio;
402 	} else {
403 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
404 	}
405 }
406 
407 #else
408 
409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412 
413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416 
417 static inline
418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421 
422 static inline
423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426 
427 static inline void rt_queue_push_tasks(struct rq *rq)
428 {
429 }
430 #endif /* CONFIG_SMP */
431 
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
434 
435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 	return rt_se->on_rq;
438 }
439 
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443  * settings.
444  *
445  * This check is only important for heterogeneous systems where uclamp_min value
446  * is higher than the capacity of a @cpu. For non-heterogeneous system this
447  * function will always return true.
448  *
449  * The function will return true if the capacity of the @cpu is >= the
450  * uclamp_min and false otherwise.
451  *
452  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453  * > uclamp_max.
454  */
455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 	unsigned int min_cap;
458 	unsigned int max_cap;
459 	unsigned int cpu_cap;
460 
461 	/* Only heterogeneous systems can benefit from this check */
462 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
463 		return true;
464 
465 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467 
468 	cpu_cap = capacity_orig_of(cpu);
469 
470 	return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else
473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 	return true;
476 }
477 #endif
478 
479 #ifdef CONFIG_RT_GROUP_SCHED
480 
481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 	if (!rt_rq->tg)
484 		return RUNTIME_INF;
485 
486 	return rt_rq->rt_runtime;
487 }
488 
489 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
490 {
491 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
492 }
493 
494 typedef struct task_group *rt_rq_iter_t;
495 
496 static inline struct task_group *next_task_group(struct task_group *tg)
497 {
498 	do {
499 		tg = list_entry_rcu(tg->list.next,
500 			typeof(struct task_group), list);
501 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
502 
503 	if (&tg->list == &task_groups)
504 		tg = NULL;
505 
506 	return tg;
507 }
508 
509 #define for_each_rt_rq(rt_rq, iter, rq)					\
510 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
511 		(iter = next_task_group(iter)) &&			\
512 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
513 
514 #define for_each_sched_rt_entity(rt_se) \
515 	for (; rt_se; rt_se = rt_se->parent)
516 
517 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
518 {
519 	return rt_se->my_q;
520 }
521 
522 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
523 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
524 
525 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
526 {
527 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
528 	struct rq *rq = rq_of_rt_rq(rt_rq);
529 	struct sched_rt_entity *rt_se;
530 
531 	int cpu = cpu_of(rq);
532 
533 	rt_se = rt_rq->tg->rt_se[cpu];
534 
535 	if (rt_rq->rt_nr_running) {
536 		if (!rt_se)
537 			enqueue_top_rt_rq(rt_rq);
538 		else if (!on_rt_rq(rt_se))
539 			enqueue_rt_entity(rt_se, 0);
540 
541 		if (rt_rq->highest_prio.curr < curr->prio)
542 			resched_curr(rq);
543 	}
544 }
545 
546 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
547 {
548 	struct sched_rt_entity *rt_se;
549 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
550 
551 	rt_se = rt_rq->tg->rt_se[cpu];
552 
553 	if (!rt_se) {
554 		dequeue_top_rt_rq(rt_rq);
555 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
556 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
557 	}
558 	else if (on_rt_rq(rt_se))
559 		dequeue_rt_entity(rt_se, 0);
560 }
561 
562 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
563 {
564 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
565 }
566 
567 static int rt_se_boosted(struct sched_rt_entity *rt_se)
568 {
569 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
570 	struct task_struct *p;
571 
572 	if (rt_rq)
573 		return !!rt_rq->rt_nr_boosted;
574 
575 	p = rt_task_of(rt_se);
576 	return p->prio != p->normal_prio;
577 }
578 
579 #ifdef CONFIG_SMP
580 static inline const struct cpumask *sched_rt_period_mask(void)
581 {
582 	return this_rq()->rd->span;
583 }
584 #else
585 static inline const struct cpumask *sched_rt_period_mask(void)
586 {
587 	return cpu_online_mask;
588 }
589 #endif
590 
591 static inline
592 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
593 {
594 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
595 }
596 
597 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
598 {
599 	return &rt_rq->tg->rt_bandwidth;
600 }
601 
602 #else /* !CONFIG_RT_GROUP_SCHED */
603 
604 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
605 {
606 	return rt_rq->rt_runtime;
607 }
608 
609 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
610 {
611 	return ktime_to_ns(def_rt_bandwidth.rt_period);
612 }
613 
614 typedef struct rt_rq *rt_rq_iter_t;
615 
616 #define for_each_rt_rq(rt_rq, iter, rq) \
617 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
618 
619 #define for_each_sched_rt_entity(rt_se) \
620 	for (; rt_se; rt_se = NULL)
621 
622 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
623 {
624 	return NULL;
625 }
626 
627 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
628 {
629 	struct rq *rq = rq_of_rt_rq(rt_rq);
630 
631 	if (!rt_rq->rt_nr_running)
632 		return;
633 
634 	enqueue_top_rt_rq(rt_rq);
635 	resched_curr(rq);
636 }
637 
638 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
639 {
640 	dequeue_top_rt_rq(rt_rq);
641 }
642 
643 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
644 {
645 	return rt_rq->rt_throttled;
646 }
647 
648 static inline const struct cpumask *sched_rt_period_mask(void)
649 {
650 	return cpu_online_mask;
651 }
652 
653 static inline
654 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
655 {
656 	return &cpu_rq(cpu)->rt;
657 }
658 
659 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
660 {
661 	return &def_rt_bandwidth;
662 }
663 
664 #endif /* CONFIG_RT_GROUP_SCHED */
665 
666 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
667 {
668 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
669 
670 	return (hrtimer_active(&rt_b->rt_period_timer) ||
671 		rt_rq->rt_time < rt_b->rt_runtime);
672 }
673 
674 #ifdef CONFIG_SMP
675 /*
676  * We ran out of runtime, see if we can borrow some from our neighbours.
677  */
678 static void do_balance_runtime(struct rt_rq *rt_rq)
679 {
680 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
682 	int i, weight;
683 	u64 rt_period;
684 
685 	weight = cpumask_weight(rd->span);
686 
687 	raw_spin_lock(&rt_b->rt_runtime_lock);
688 	rt_period = ktime_to_ns(rt_b->rt_period);
689 	for_each_cpu(i, rd->span) {
690 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
691 		s64 diff;
692 
693 		if (iter == rt_rq)
694 			continue;
695 
696 		raw_spin_lock(&iter->rt_runtime_lock);
697 		/*
698 		 * Either all rqs have inf runtime and there's nothing to steal
699 		 * or __disable_runtime() below sets a specific rq to inf to
700 		 * indicate its been disabled and disallow stealing.
701 		 */
702 		if (iter->rt_runtime == RUNTIME_INF)
703 			goto next;
704 
705 		/*
706 		 * From runqueues with spare time, take 1/n part of their
707 		 * spare time, but no more than our period.
708 		 */
709 		diff = iter->rt_runtime - iter->rt_time;
710 		if (diff > 0) {
711 			diff = div_u64((u64)diff, weight);
712 			if (rt_rq->rt_runtime + diff > rt_period)
713 				diff = rt_period - rt_rq->rt_runtime;
714 			iter->rt_runtime -= diff;
715 			rt_rq->rt_runtime += diff;
716 			if (rt_rq->rt_runtime == rt_period) {
717 				raw_spin_unlock(&iter->rt_runtime_lock);
718 				break;
719 			}
720 		}
721 next:
722 		raw_spin_unlock(&iter->rt_runtime_lock);
723 	}
724 	raw_spin_unlock(&rt_b->rt_runtime_lock);
725 }
726 
727 /*
728  * Ensure this RQ takes back all the runtime it lend to its neighbours.
729  */
730 static void __disable_runtime(struct rq *rq)
731 {
732 	struct root_domain *rd = rq->rd;
733 	rt_rq_iter_t iter;
734 	struct rt_rq *rt_rq;
735 
736 	if (unlikely(!scheduler_running))
737 		return;
738 
739 	for_each_rt_rq(rt_rq, iter, rq) {
740 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
741 		s64 want;
742 		int i;
743 
744 		raw_spin_lock(&rt_b->rt_runtime_lock);
745 		raw_spin_lock(&rt_rq->rt_runtime_lock);
746 		/*
747 		 * Either we're all inf and nobody needs to borrow, or we're
748 		 * already disabled and thus have nothing to do, or we have
749 		 * exactly the right amount of runtime to take out.
750 		 */
751 		if (rt_rq->rt_runtime == RUNTIME_INF ||
752 				rt_rq->rt_runtime == rt_b->rt_runtime)
753 			goto balanced;
754 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
755 
756 		/*
757 		 * Calculate the difference between what we started out with
758 		 * and what we current have, that's the amount of runtime
759 		 * we lend and now have to reclaim.
760 		 */
761 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
762 
763 		/*
764 		 * Greedy reclaim, take back as much as we can.
765 		 */
766 		for_each_cpu(i, rd->span) {
767 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
768 			s64 diff;
769 
770 			/*
771 			 * Can't reclaim from ourselves or disabled runqueues.
772 			 */
773 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
774 				continue;
775 
776 			raw_spin_lock(&iter->rt_runtime_lock);
777 			if (want > 0) {
778 				diff = min_t(s64, iter->rt_runtime, want);
779 				iter->rt_runtime -= diff;
780 				want -= diff;
781 			} else {
782 				iter->rt_runtime -= want;
783 				want -= want;
784 			}
785 			raw_spin_unlock(&iter->rt_runtime_lock);
786 
787 			if (!want)
788 				break;
789 		}
790 
791 		raw_spin_lock(&rt_rq->rt_runtime_lock);
792 		/*
793 		 * We cannot be left wanting - that would mean some runtime
794 		 * leaked out of the system.
795 		 */
796 		BUG_ON(want);
797 balanced:
798 		/*
799 		 * Disable all the borrow logic by pretending we have inf
800 		 * runtime - in which case borrowing doesn't make sense.
801 		 */
802 		rt_rq->rt_runtime = RUNTIME_INF;
803 		rt_rq->rt_throttled = 0;
804 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
805 		raw_spin_unlock(&rt_b->rt_runtime_lock);
806 
807 		/* Make rt_rq available for pick_next_task() */
808 		sched_rt_rq_enqueue(rt_rq);
809 	}
810 }
811 
812 static void __enable_runtime(struct rq *rq)
813 {
814 	rt_rq_iter_t iter;
815 	struct rt_rq *rt_rq;
816 
817 	if (unlikely(!scheduler_running))
818 		return;
819 
820 	/*
821 	 * Reset each runqueue's bandwidth settings
822 	 */
823 	for_each_rt_rq(rt_rq, iter, rq) {
824 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
825 
826 		raw_spin_lock(&rt_b->rt_runtime_lock);
827 		raw_spin_lock(&rt_rq->rt_runtime_lock);
828 		rt_rq->rt_runtime = rt_b->rt_runtime;
829 		rt_rq->rt_time = 0;
830 		rt_rq->rt_throttled = 0;
831 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
832 		raw_spin_unlock(&rt_b->rt_runtime_lock);
833 	}
834 }
835 
836 static void balance_runtime(struct rt_rq *rt_rq)
837 {
838 	if (!sched_feat(RT_RUNTIME_SHARE))
839 		return;
840 
841 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
842 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 		do_balance_runtime(rt_rq);
844 		raw_spin_lock(&rt_rq->rt_runtime_lock);
845 	}
846 }
847 #else /* !CONFIG_SMP */
848 static inline void balance_runtime(struct rt_rq *rt_rq) {}
849 #endif /* CONFIG_SMP */
850 
851 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
852 {
853 	int i, idle = 1, throttled = 0;
854 	const struct cpumask *span;
855 
856 	span = sched_rt_period_mask();
857 #ifdef CONFIG_RT_GROUP_SCHED
858 	/*
859 	 * FIXME: isolated CPUs should really leave the root task group,
860 	 * whether they are isolcpus or were isolated via cpusets, lest
861 	 * the timer run on a CPU which does not service all runqueues,
862 	 * potentially leaving other CPUs indefinitely throttled.  If
863 	 * isolation is really required, the user will turn the throttle
864 	 * off to kill the perturbations it causes anyway.  Meanwhile,
865 	 * this maintains functionality for boot and/or troubleshooting.
866 	 */
867 	if (rt_b == &root_task_group.rt_bandwidth)
868 		span = cpu_online_mask;
869 #endif
870 	for_each_cpu(i, span) {
871 		int enqueue = 0;
872 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
873 		struct rq *rq = rq_of_rt_rq(rt_rq);
874 		int skip;
875 
876 		/*
877 		 * When span == cpu_online_mask, taking each rq->lock
878 		 * can be time-consuming. Try to avoid it when possible.
879 		 */
880 		raw_spin_lock(&rt_rq->rt_runtime_lock);
881 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
882 			rt_rq->rt_runtime = rt_b->rt_runtime;
883 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
884 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
885 		if (skip)
886 			continue;
887 
888 		raw_spin_rq_lock(rq);
889 		update_rq_clock(rq);
890 
891 		if (rt_rq->rt_time) {
892 			u64 runtime;
893 
894 			raw_spin_lock(&rt_rq->rt_runtime_lock);
895 			if (rt_rq->rt_throttled)
896 				balance_runtime(rt_rq);
897 			runtime = rt_rq->rt_runtime;
898 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
899 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
900 				rt_rq->rt_throttled = 0;
901 				enqueue = 1;
902 
903 				/*
904 				 * When we're idle and a woken (rt) task is
905 				 * throttled check_preempt_curr() will set
906 				 * skip_update and the time between the wakeup
907 				 * and this unthrottle will get accounted as
908 				 * 'runtime'.
909 				 */
910 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
911 					rq_clock_cancel_skipupdate(rq);
912 			}
913 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
914 				idle = 0;
915 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
916 		} else if (rt_rq->rt_nr_running) {
917 			idle = 0;
918 			if (!rt_rq_throttled(rt_rq))
919 				enqueue = 1;
920 		}
921 		if (rt_rq->rt_throttled)
922 			throttled = 1;
923 
924 		if (enqueue)
925 			sched_rt_rq_enqueue(rt_rq);
926 		raw_spin_rq_unlock(rq);
927 	}
928 
929 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
930 		return 1;
931 
932 	return idle;
933 }
934 
935 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
936 {
937 #ifdef CONFIG_RT_GROUP_SCHED
938 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
939 
940 	if (rt_rq)
941 		return rt_rq->highest_prio.curr;
942 #endif
943 
944 	return rt_task_of(rt_se)->prio;
945 }
946 
947 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
948 {
949 	u64 runtime = sched_rt_runtime(rt_rq);
950 
951 	if (rt_rq->rt_throttled)
952 		return rt_rq_throttled(rt_rq);
953 
954 	if (runtime >= sched_rt_period(rt_rq))
955 		return 0;
956 
957 	balance_runtime(rt_rq);
958 	runtime = sched_rt_runtime(rt_rq);
959 	if (runtime == RUNTIME_INF)
960 		return 0;
961 
962 	if (rt_rq->rt_time > runtime) {
963 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
964 
965 		/*
966 		 * Don't actually throttle groups that have no runtime assigned
967 		 * but accrue some time due to boosting.
968 		 */
969 		if (likely(rt_b->rt_runtime)) {
970 			rt_rq->rt_throttled = 1;
971 			printk_deferred_once("sched: RT throttling activated\n");
972 		} else {
973 			/*
974 			 * In case we did anyway, make it go away,
975 			 * replenishment is a joke, since it will replenish us
976 			 * with exactly 0 ns.
977 			 */
978 			rt_rq->rt_time = 0;
979 		}
980 
981 		if (rt_rq_throttled(rt_rq)) {
982 			sched_rt_rq_dequeue(rt_rq);
983 			return 1;
984 		}
985 	}
986 
987 	return 0;
988 }
989 
990 /*
991  * Update the current task's runtime statistics. Skip current tasks that
992  * are not in our scheduling class.
993  */
994 static void update_curr_rt(struct rq *rq)
995 {
996 	struct task_struct *curr = rq->curr;
997 	struct sched_rt_entity *rt_se = &curr->rt;
998 	u64 delta_exec;
999 	u64 now;
1000 
1001 	if (curr->sched_class != &rt_sched_class)
1002 		return;
1003 
1004 	now = rq_clock_task(rq);
1005 	delta_exec = now - curr->se.exec_start;
1006 	if (unlikely((s64)delta_exec <= 0))
1007 		return;
1008 
1009 	schedstat_set(curr->stats.exec_max,
1010 		      max(curr->stats.exec_max, delta_exec));
1011 
1012 	trace_sched_stat_runtime(curr, delta_exec, 0);
1013 
1014 	curr->se.sum_exec_runtime += delta_exec;
1015 	account_group_exec_runtime(curr, delta_exec);
1016 
1017 	curr->se.exec_start = now;
1018 	cgroup_account_cputime(curr, delta_exec);
1019 
1020 	if (!rt_bandwidth_enabled())
1021 		return;
1022 
1023 	for_each_sched_rt_entity(rt_se) {
1024 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1025 		int exceeded;
1026 
1027 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1028 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1029 			rt_rq->rt_time += delta_exec;
1030 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1031 			if (exceeded)
1032 				resched_curr(rq);
1033 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1034 			if (exceeded)
1035 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1036 		}
1037 	}
1038 }
1039 
1040 static void
1041 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1042 {
1043 	struct rq *rq = rq_of_rt_rq(rt_rq);
1044 
1045 	BUG_ON(&rq->rt != rt_rq);
1046 
1047 	if (!rt_rq->rt_queued)
1048 		return;
1049 
1050 	BUG_ON(!rq->nr_running);
1051 
1052 	sub_nr_running(rq, rt_rq->rt_nr_running);
1053 	rt_rq->rt_queued = 0;
1054 
1055 }
1056 
1057 static void
1058 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1059 {
1060 	struct rq *rq = rq_of_rt_rq(rt_rq);
1061 
1062 	BUG_ON(&rq->rt != rt_rq);
1063 
1064 	if (rt_rq->rt_queued)
1065 		return;
1066 
1067 	if (rt_rq_throttled(rt_rq))
1068 		return;
1069 
1070 	if (rt_rq->rt_nr_running) {
1071 		add_nr_running(rq, rt_rq->rt_nr_running);
1072 		rt_rq->rt_queued = 1;
1073 	}
1074 
1075 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1076 	cpufreq_update_util(rq, 0);
1077 }
1078 
1079 #if defined CONFIG_SMP
1080 
1081 static void
1082 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1083 {
1084 	struct rq *rq = rq_of_rt_rq(rt_rq);
1085 
1086 #ifdef CONFIG_RT_GROUP_SCHED
1087 	/*
1088 	 * Change rq's cpupri only if rt_rq is the top queue.
1089 	 */
1090 	if (&rq->rt != rt_rq)
1091 		return;
1092 #endif
1093 	if (rq->online && prio < prev_prio)
1094 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1095 }
1096 
1097 static void
1098 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1099 {
1100 	struct rq *rq = rq_of_rt_rq(rt_rq);
1101 
1102 #ifdef CONFIG_RT_GROUP_SCHED
1103 	/*
1104 	 * Change rq's cpupri only if rt_rq is the top queue.
1105 	 */
1106 	if (&rq->rt != rt_rq)
1107 		return;
1108 #endif
1109 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1110 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1111 }
1112 
1113 #else /* CONFIG_SMP */
1114 
1115 static inline
1116 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1117 static inline
1118 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1119 
1120 #endif /* CONFIG_SMP */
1121 
1122 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1123 static void
1124 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1125 {
1126 	int prev_prio = rt_rq->highest_prio.curr;
1127 
1128 	if (prio < prev_prio)
1129 		rt_rq->highest_prio.curr = prio;
1130 
1131 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1132 }
1133 
1134 static void
1135 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1136 {
1137 	int prev_prio = rt_rq->highest_prio.curr;
1138 
1139 	if (rt_rq->rt_nr_running) {
1140 
1141 		WARN_ON(prio < prev_prio);
1142 
1143 		/*
1144 		 * This may have been our highest task, and therefore
1145 		 * we may have some recomputation to do
1146 		 */
1147 		if (prio == prev_prio) {
1148 			struct rt_prio_array *array = &rt_rq->active;
1149 
1150 			rt_rq->highest_prio.curr =
1151 				sched_find_first_bit(array->bitmap);
1152 		}
1153 
1154 	} else {
1155 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1156 	}
1157 
1158 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1159 }
1160 
1161 #else
1162 
1163 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1164 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1165 
1166 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1167 
1168 #ifdef CONFIG_RT_GROUP_SCHED
1169 
1170 static void
1171 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1172 {
1173 	if (rt_se_boosted(rt_se))
1174 		rt_rq->rt_nr_boosted++;
1175 
1176 	if (rt_rq->tg)
1177 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1178 }
1179 
1180 static void
1181 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 {
1183 	if (rt_se_boosted(rt_se))
1184 		rt_rq->rt_nr_boosted--;
1185 
1186 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1187 }
1188 
1189 #else /* CONFIG_RT_GROUP_SCHED */
1190 
1191 static void
1192 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1193 {
1194 	start_rt_bandwidth(&def_rt_bandwidth);
1195 }
1196 
1197 static inline
1198 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1199 
1200 #endif /* CONFIG_RT_GROUP_SCHED */
1201 
1202 static inline
1203 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1204 {
1205 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1206 
1207 	if (group_rq)
1208 		return group_rq->rt_nr_running;
1209 	else
1210 		return 1;
1211 }
1212 
1213 static inline
1214 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1215 {
1216 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1217 	struct task_struct *tsk;
1218 
1219 	if (group_rq)
1220 		return group_rq->rr_nr_running;
1221 
1222 	tsk = rt_task_of(rt_se);
1223 
1224 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1225 }
1226 
1227 static inline
1228 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1229 {
1230 	int prio = rt_se_prio(rt_se);
1231 
1232 	WARN_ON(!rt_prio(prio));
1233 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1234 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1235 
1236 	inc_rt_prio(rt_rq, prio);
1237 	inc_rt_migration(rt_se, rt_rq);
1238 	inc_rt_group(rt_se, rt_rq);
1239 }
1240 
1241 static inline
1242 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1243 {
1244 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1245 	WARN_ON(!rt_rq->rt_nr_running);
1246 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1247 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1248 
1249 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1250 	dec_rt_migration(rt_se, rt_rq);
1251 	dec_rt_group(rt_se, rt_rq);
1252 }
1253 
1254 /*
1255  * Change rt_se->run_list location unless SAVE && !MOVE
1256  *
1257  * assumes ENQUEUE/DEQUEUE flags match
1258  */
1259 static inline bool move_entity(unsigned int flags)
1260 {
1261 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1262 		return false;
1263 
1264 	return true;
1265 }
1266 
1267 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1268 {
1269 	list_del_init(&rt_se->run_list);
1270 
1271 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1272 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1273 
1274 	rt_se->on_list = 0;
1275 }
1276 
1277 static inline struct sched_statistics *
1278 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1279 {
1280 #ifdef CONFIG_RT_GROUP_SCHED
1281 	/* schedstats is not supported for rt group. */
1282 	if (!rt_entity_is_task(rt_se))
1283 		return NULL;
1284 #endif
1285 
1286 	return &rt_task_of(rt_se)->stats;
1287 }
1288 
1289 static inline void
1290 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1291 {
1292 	struct sched_statistics *stats;
1293 	struct task_struct *p = NULL;
1294 
1295 	if (!schedstat_enabled())
1296 		return;
1297 
1298 	if (rt_entity_is_task(rt_se))
1299 		p = rt_task_of(rt_se);
1300 
1301 	stats = __schedstats_from_rt_se(rt_se);
1302 	if (!stats)
1303 		return;
1304 
1305 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1306 }
1307 
1308 static inline void
1309 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1310 {
1311 	struct sched_statistics *stats;
1312 	struct task_struct *p = NULL;
1313 
1314 	if (!schedstat_enabled())
1315 		return;
1316 
1317 	if (rt_entity_is_task(rt_se))
1318 		p = rt_task_of(rt_se);
1319 
1320 	stats = __schedstats_from_rt_se(rt_se);
1321 	if (!stats)
1322 		return;
1323 
1324 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1325 }
1326 
1327 static inline void
1328 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1329 			int flags)
1330 {
1331 	if (!schedstat_enabled())
1332 		return;
1333 
1334 	if (flags & ENQUEUE_WAKEUP)
1335 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1336 }
1337 
1338 static inline void
1339 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1340 {
1341 	struct sched_statistics *stats;
1342 	struct task_struct *p = NULL;
1343 
1344 	if (!schedstat_enabled())
1345 		return;
1346 
1347 	if (rt_entity_is_task(rt_se))
1348 		p = rt_task_of(rt_se);
1349 
1350 	stats = __schedstats_from_rt_se(rt_se);
1351 	if (!stats)
1352 		return;
1353 
1354 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1355 }
1356 
1357 static inline void
1358 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1359 			int flags)
1360 {
1361 	struct task_struct *p = NULL;
1362 
1363 	if (!schedstat_enabled())
1364 		return;
1365 
1366 	if (rt_entity_is_task(rt_se))
1367 		p = rt_task_of(rt_se);
1368 
1369 	if ((flags & DEQUEUE_SLEEP) && p) {
1370 		unsigned int state;
1371 
1372 		state = READ_ONCE(p->__state);
1373 		if (state & TASK_INTERRUPTIBLE)
1374 			__schedstat_set(p->stats.sleep_start,
1375 					rq_clock(rq_of_rt_rq(rt_rq)));
1376 
1377 		if (state & TASK_UNINTERRUPTIBLE)
1378 			__schedstat_set(p->stats.block_start,
1379 					rq_clock(rq_of_rt_rq(rt_rq)));
1380 	}
1381 }
1382 
1383 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1384 {
1385 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1386 	struct rt_prio_array *array = &rt_rq->active;
1387 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1388 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1389 
1390 	/*
1391 	 * Don't enqueue the group if its throttled, or when empty.
1392 	 * The latter is a consequence of the former when a child group
1393 	 * get throttled and the current group doesn't have any other
1394 	 * active members.
1395 	 */
1396 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1397 		if (rt_se->on_list)
1398 			__delist_rt_entity(rt_se, array);
1399 		return;
1400 	}
1401 
1402 	if (move_entity(flags)) {
1403 		WARN_ON_ONCE(rt_se->on_list);
1404 		if (flags & ENQUEUE_HEAD)
1405 			list_add(&rt_se->run_list, queue);
1406 		else
1407 			list_add_tail(&rt_se->run_list, queue);
1408 
1409 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1410 		rt_se->on_list = 1;
1411 	}
1412 	rt_se->on_rq = 1;
1413 
1414 	inc_rt_tasks(rt_se, rt_rq);
1415 }
1416 
1417 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1418 {
1419 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1420 	struct rt_prio_array *array = &rt_rq->active;
1421 
1422 	if (move_entity(flags)) {
1423 		WARN_ON_ONCE(!rt_se->on_list);
1424 		__delist_rt_entity(rt_se, array);
1425 	}
1426 	rt_se->on_rq = 0;
1427 
1428 	dec_rt_tasks(rt_se, rt_rq);
1429 }
1430 
1431 /*
1432  * Because the prio of an upper entry depends on the lower
1433  * entries, we must remove entries top - down.
1434  */
1435 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1436 {
1437 	struct sched_rt_entity *back = NULL;
1438 
1439 	for_each_sched_rt_entity(rt_se) {
1440 		rt_se->back = back;
1441 		back = rt_se;
1442 	}
1443 
1444 	dequeue_top_rt_rq(rt_rq_of_se(back));
1445 
1446 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1447 		if (on_rt_rq(rt_se))
1448 			__dequeue_rt_entity(rt_se, flags);
1449 	}
1450 }
1451 
1452 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1453 {
1454 	struct rq *rq = rq_of_rt_se(rt_se);
1455 
1456 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1457 
1458 	dequeue_rt_stack(rt_se, flags);
1459 	for_each_sched_rt_entity(rt_se)
1460 		__enqueue_rt_entity(rt_se, flags);
1461 	enqueue_top_rt_rq(&rq->rt);
1462 }
1463 
1464 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1465 {
1466 	struct rq *rq = rq_of_rt_se(rt_se);
1467 
1468 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1469 
1470 	dequeue_rt_stack(rt_se, flags);
1471 
1472 	for_each_sched_rt_entity(rt_se) {
1473 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1474 
1475 		if (rt_rq && rt_rq->rt_nr_running)
1476 			__enqueue_rt_entity(rt_se, flags);
1477 	}
1478 	enqueue_top_rt_rq(&rq->rt);
1479 }
1480 
1481 /*
1482  * Adding/removing a task to/from a priority array:
1483  */
1484 static void
1485 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1486 {
1487 	struct sched_rt_entity *rt_se = &p->rt;
1488 
1489 	if (flags & ENQUEUE_WAKEUP)
1490 		rt_se->timeout = 0;
1491 
1492 	check_schedstat_required();
1493 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1494 
1495 	enqueue_rt_entity(rt_se, flags);
1496 
1497 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1498 		enqueue_pushable_task(rq, p);
1499 }
1500 
1501 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1502 {
1503 	struct sched_rt_entity *rt_se = &p->rt;
1504 
1505 	update_curr_rt(rq);
1506 	dequeue_rt_entity(rt_se, flags);
1507 
1508 	dequeue_pushable_task(rq, p);
1509 }
1510 
1511 /*
1512  * Put task to the head or the end of the run list without the overhead of
1513  * dequeue followed by enqueue.
1514  */
1515 static void
1516 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1517 {
1518 	if (on_rt_rq(rt_se)) {
1519 		struct rt_prio_array *array = &rt_rq->active;
1520 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1521 
1522 		if (head)
1523 			list_move(&rt_se->run_list, queue);
1524 		else
1525 			list_move_tail(&rt_se->run_list, queue);
1526 	}
1527 }
1528 
1529 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1530 {
1531 	struct sched_rt_entity *rt_se = &p->rt;
1532 	struct rt_rq *rt_rq;
1533 
1534 	for_each_sched_rt_entity(rt_se) {
1535 		rt_rq = rt_rq_of_se(rt_se);
1536 		requeue_rt_entity(rt_rq, rt_se, head);
1537 	}
1538 }
1539 
1540 static void yield_task_rt(struct rq *rq)
1541 {
1542 	requeue_task_rt(rq, rq->curr, 0);
1543 }
1544 
1545 #ifdef CONFIG_SMP
1546 static int find_lowest_rq(struct task_struct *task);
1547 
1548 static int
1549 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1550 {
1551 	struct task_struct *curr;
1552 	struct rq *rq;
1553 	bool test;
1554 
1555 	/* For anything but wake ups, just return the task_cpu */
1556 	if (!(flags & (WF_TTWU | WF_FORK)))
1557 		goto out;
1558 
1559 	rq = cpu_rq(cpu);
1560 
1561 	rcu_read_lock();
1562 	curr = READ_ONCE(rq->curr); /* unlocked access */
1563 
1564 	/*
1565 	 * If the current task on @p's runqueue is an RT task, then
1566 	 * try to see if we can wake this RT task up on another
1567 	 * runqueue. Otherwise simply start this RT task
1568 	 * on its current runqueue.
1569 	 *
1570 	 * We want to avoid overloading runqueues. If the woken
1571 	 * task is a higher priority, then it will stay on this CPU
1572 	 * and the lower prio task should be moved to another CPU.
1573 	 * Even though this will probably make the lower prio task
1574 	 * lose its cache, we do not want to bounce a higher task
1575 	 * around just because it gave up its CPU, perhaps for a
1576 	 * lock?
1577 	 *
1578 	 * For equal prio tasks, we just let the scheduler sort it out.
1579 	 *
1580 	 * Otherwise, just let it ride on the affined RQ and the
1581 	 * post-schedule router will push the preempted task away
1582 	 *
1583 	 * This test is optimistic, if we get it wrong the load-balancer
1584 	 * will have to sort it out.
1585 	 *
1586 	 * We take into account the capacity of the CPU to ensure it fits the
1587 	 * requirement of the task - which is only important on heterogeneous
1588 	 * systems like big.LITTLE.
1589 	 */
1590 	test = curr &&
1591 	       unlikely(rt_task(curr)) &&
1592 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1593 
1594 	if (test || !rt_task_fits_capacity(p, cpu)) {
1595 		int target = find_lowest_rq(p);
1596 
1597 		/*
1598 		 * Bail out if we were forcing a migration to find a better
1599 		 * fitting CPU but our search failed.
1600 		 */
1601 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1602 			goto out_unlock;
1603 
1604 		/*
1605 		 * Don't bother moving it if the destination CPU is
1606 		 * not running a lower priority task.
1607 		 */
1608 		if (target != -1 &&
1609 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1610 			cpu = target;
1611 	}
1612 
1613 out_unlock:
1614 	rcu_read_unlock();
1615 
1616 out:
1617 	return cpu;
1618 }
1619 
1620 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1621 {
1622 	/*
1623 	 * Current can't be migrated, useless to reschedule,
1624 	 * let's hope p can move out.
1625 	 */
1626 	if (rq->curr->nr_cpus_allowed == 1 ||
1627 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1628 		return;
1629 
1630 	/*
1631 	 * p is migratable, so let's not schedule it and
1632 	 * see if it is pushed or pulled somewhere else.
1633 	 */
1634 	if (p->nr_cpus_allowed != 1 &&
1635 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1636 		return;
1637 
1638 	/*
1639 	 * There appear to be other CPUs that can accept
1640 	 * the current task but none can run 'p', so lets reschedule
1641 	 * to try and push the current task away:
1642 	 */
1643 	requeue_task_rt(rq, p, 1);
1644 	resched_curr(rq);
1645 }
1646 
1647 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1648 {
1649 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1650 		/*
1651 		 * This is OK, because current is on_cpu, which avoids it being
1652 		 * picked for load-balance and preemption/IRQs are still
1653 		 * disabled avoiding further scheduler activity on it and we've
1654 		 * not yet started the picking loop.
1655 		 */
1656 		rq_unpin_lock(rq, rf);
1657 		pull_rt_task(rq);
1658 		rq_repin_lock(rq, rf);
1659 	}
1660 
1661 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1662 }
1663 #endif /* CONFIG_SMP */
1664 
1665 /*
1666  * Preempt the current task with a newly woken task if needed:
1667  */
1668 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1669 {
1670 	if (p->prio < rq->curr->prio) {
1671 		resched_curr(rq);
1672 		return;
1673 	}
1674 
1675 #ifdef CONFIG_SMP
1676 	/*
1677 	 * If:
1678 	 *
1679 	 * - the newly woken task is of equal priority to the current task
1680 	 * - the newly woken task is non-migratable while current is migratable
1681 	 * - current will be preempted on the next reschedule
1682 	 *
1683 	 * we should check to see if current can readily move to a different
1684 	 * cpu.  If so, we will reschedule to allow the push logic to try
1685 	 * to move current somewhere else, making room for our non-migratable
1686 	 * task.
1687 	 */
1688 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1689 		check_preempt_equal_prio(rq, p);
1690 #endif
1691 }
1692 
1693 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1694 {
1695 	struct sched_rt_entity *rt_se = &p->rt;
1696 	struct rt_rq *rt_rq = &rq->rt;
1697 
1698 	p->se.exec_start = rq_clock_task(rq);
1699 	if (on_rt_rq(&p->rt))
1700 		update_stats_wait_end_rt(rt_rq, rt_se);
1701 
1702 	/* The running task is never eligible for pushing */
1703 	dequeue_pushable_task(rq, p);
1704 
1705 	if (!first)
1706 		return;
1707 
1708 	/*
1709 	 * If prev task was rt, put_prev_task() has already updated the
1710 	 * utilization. We only care of the case where we start to schedule a
1711 	 * rt task
1712 	 */
1713 	if (rq->curr->sched_class != &rt_sched_class)
1714 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1715 
1716 	rt_queue_push_tasks(rq);
1717 }
1718 
1719 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1720 {
1721 	struct rt_prio_array *array = &rt_rq->active;
1722 	struct sched_rt_entity *next = NULL;
1723 	struct list_head *queue;
1724 	int idx;
1725 
1726 	idx = sched_find_first_bit(array->bitmap);
1727 	BUG_ON(idx >= MAX_RT_PRIO);
1728 
1729 	queue = array->queue + idx;
1730 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1731 
1732 	return next;
1733 }
1734 
1735 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1736 {
1737 	struct sched_rt_entity *rt_se;
1738 	struct rt_rq *rt_rq  = &rq->rt;
1739 
1740 	do {
1741 		rt_se = pick_next_rt_entity(rt_rq);
1742 		BUG_ON(!rt_se);
1743 		rt_rq = group_rt_rq(rt_se);
1744 	} while (rt_rq);
1745 
1746 	return rt_task_of(rt_se);
1747 }
1748 
1749 static struct task_struct *pick_task_rt(struct rq *rq)
1750 {
1751 	struct task_struct *p;
1752 
1753 	if (!sched_rt_runnable(rq))
1754 		return NULL;
1755 
1756 	p = _pick_next_task_rt(rq);
1757 
1758 	return p;
1759 }
1760 
1761 static struct task_struct *pick_next_task_rt(struct rq *rq)
1762 {
1763 	struct task_struct *p = pick_task_rt(rq);
1764 
1765 	if (p)
1766 		set_next_task_rt(rq, p, true);
1767 
1768 	return p;
1769 }
1770 
1771 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1772 {
1773 	struct sched_rt_entity *rt_se = &p->rt;
1774 	struct rt_rq *rt_rq = &rq->rt;
1775 
1776 	if (on_rt_rq(&p->rt))
1777 		update_stats_wait_start_rt(rt_rq, rt_se);
1778 
1779 	update_curr_rt(rq);
1780 
1781 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1782 
1783 	/*
1784 	 * The previous task needs to be made eligible for pushing
1785 	 * if it is still active
1786 	 */
1787 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1788 		enqueue_pushable_task(rq, p);
1789 }
1790 
1791 #ifdef CONFIG_SMP
1792 
1793 /* Only try algorithms three times */
1794 #define RT_MAX_TRIES 3
1795 
1796 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1797 {
1798 	if (!task_running(rq, p) &&
1799 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1800 		return 1;
1801 
1802 	return 0;
1803 }
1804 
1805 /*
1806  * Return the highest pushable rq's task, which is suitable to be executed
1807  * on the CPU, NULL otherwise
1808  */
1809 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1810 {
1811 	struct plist_head *head = &rq->rt.pushable_tasks;
1812 	struct task_struct *p;
1813 
1814 	if (!has_pushable_tasks(rq))
1815 		return NULL;
1816 
1817 	plist_for_each_entry(p, head, pushable_tasks) {
1818 		if (pick_rt_task(rq, p, cpu))
1819 			return p;
1820 	}
1821 
1822 	return NULL;
1823 }
1824 
1825 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1826 
1827 static int find_lowest_rq(struct task_struct *task)
1828 {
1829 	struct sched_domain *sd;
1830 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1831 	int this_cpu = smp_processor_id();
1832 	int cpu      = task_cpu(task);
1833 	int ret;
1834 
1835 	/* Make sure the mask is initialized first */
1836 	if (unlikely(!lowest_mask))
1837 		return -1;
1838 
1839 	if (task->nr_cpus_allowed == 1)
1840 		return -1; /* No other targets possible */
1841 
1842 	/*
1843 	 * If we're on asym system ensure we consider the different capacities
1844 	 * of the CPUs when searching for the lowest_mask.
1845 	 */
1846 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1847 
1848 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1849 					  task, lowest_mask,
1850 					  rt_task_fits_capacity);
1851 	} else {
1852 
1853 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1854 				  task, lowest_mask);
1855 	}
1856 
1857 	if (!ret)
1858 		return -1; /* No targets found */
1859 
1860 	/*
1861 	 * At this point we have built a mask of CPUs representing the
1862 	 * lowest priority tasks in the system.  Now we want to elect
1863 	 * the best one based on our affinity and topology.
1864 	 *
1865 	 * We prioritize the last CPU that the task executed on since
1866 	 * it is most likely cache-hot in that location.
1867 	 */
1868 	if (cpumask_test_cpu(cpu, lowest_mask))
1869 		return cpu;
1870 
1871 	/*
1872 	 * Otherwise, we consult the sched_domains span maps to figure
1873 	 * out which CPU is logically closest to our hot cache data.
1874 	 */
1875 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1876 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1877 
1878 	rcu_read_lock();
1879 	for_each_domain(cpu, sd) {
1880 		if (sd->flags & SD_WAKE_AFFINE) {
1881 			int best_cpu;
1882 
1883 			/*
1884 			 * "this_cpu" is cheaper to preempt than a
1885 			 * remote processor.
1886 			 */
1887 			if (this_cpu != -1 &&
1888 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1889 				rcu_read_unlock();
1890 				return this_cpu;
1891 			}
1892 
1893 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1894 							      sched_domain_span(sd));
1895 			if (best_cpu < nr_cpu_ids) {
1896 				rcu_read_unlock();
1897 				return best_cpu;
1898 			}
1899 		}
1900 	}
1901 	rcu_read_unlock();
1902 
1903 	/*
1904 	 * And finally, if there were no matches within the domains
1905 	 * just give the caller *something* to work with from the compatible
1906 	 * locations.
1907 	 */
1908 	if (this_cpu != -1)
1909 		return this_cpu;
1910 
1911 	cpu = cpumask_any_distribute(lowest_mask);
1912 	if (cpu < nr_cpu_ids)
1913 		return cpu;
1914 
1915 	return -1;
1916 }
1917 
1918 /* Will lock the rq it finds */
1919 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1920 {
1921 	struct rq *lowest_rq = NULL;
1922 	int tries;
1923 	int cpu;
1924 
1925 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1926 		cpu = find_lowest_rq(task);
1927 
1928 		if ((cpu == -1) || (cpu == rq->cpu))
1929 			break;
1930 
1931 		lowest_rq = cpu_rq(cpu);
1932 
1933 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1934 			/*
1935 			 * Target rq has tasks of equal or higher priority,
1936 			 * retrying does not release any lock and is unlikely
1937 			 * to yield a different result.
1938 			 */
1939 			lowest_rq = NULL;
1940 			break;
1941 		}
1942 
1943 		/* if the prio of this runqueue changed, try again */
1944 		if (double_lock_balance(rq, lowest_rq)) {
1945 			/*
1946 			 * We had to unlock the run queue. In
1947 			 * the mean time, task could have
1948 			 * migrated already or had its affinity changed.
1949 			 * Also make sure that it wasn't scheduled on its rq.
1950 			 */
1951 			if (unlikely(task_rq(task) != rq ||
1952 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1953 				     task_running(rq, task) ||
1954 				     !rt_task(task) ||
1955 				     !task_on_rq_queued(task))) {
1956 
1957 				double_unlock_balance(rq, lowest_rq);
1958 				lowest_rq = NULL;
1959 				break;
1960 			}
1961 		}
1962 
1963 		/* If this rq is still suitable use it. */
1964 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1965 			break;
1966 
1967 		/* try again */
1968 		double_unlock_balance(rq, lowest_rq);
1969 		lowest_rq = NULL;
1970 	}
1971 
1972 	return lowest_rq;
1973 }
1974 
1975 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1976 {
1977 	struct task_struct *p;
1978 
1979 	if (!has_pushable_tasks(rq))
1980 		return NULL;
1981 
1982 	p = plist_first_entry(&rq->rt.pushable_tasks,
1983 			      struct task_struct, pushable_tasks);
1984 
1985 	BUG_ON(rq->cpu != task_cpu(p));
1986 	BUG_ON(task_current(rq, p));
1987 	BUG_ON(p->nr_cpus_allowed <= 1);
1988 
1989 	BUG_ON(!task_on_rq_queued(p));
1990 	BUG_ON(!rt_task(p));
1991 
1992 	return p;
1993 }
1994 
1995 /*
1996  * If the current CPU has more than one RT task, see if the non
1997  * running task can migrate over to a CPU that is running a task
1998  * of lesser priority.
1999  */
2000 static int push_rt_task(struct rq *rq, bool pull)
2001 {
2002 	struct task_struct *next_task;
2003 	struct rq *lowest_rq;
2004 	int ret = 0;
2005 
2006 	if (!rq->rt.overloaded)
2007 		return 0;
2008 
2009 	next_task = pick_next_pushable_task(rq);
2010 	if (!next_task)
2011 		return 0;
2012 
2013 retry:
2014 	/*
2015 	 * It's possible that the next_task slipped in of
2016 	 * higher priority than current. If that's the case
2017 	 * just reschedule current.
2018 	 */
2019 	if (unlikely(next_task->prio < rq->curr->prio)) {
2020 		resched_curr(rq);
2021 		return 0;
2022 	}
2023 
2024 	if (is_migration_disabled(next_task)) {
2025 		struct task_struct *push_task = NULL;
2026 		int cpu;
2027 
2028 		if (!pull || rq->push_busy)
2029 			return 0;
2030 
2031 		/*
2032 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2033 		 * make sense. Per the above priority check, curr has to
2034 		 * be of higher priority than next_task, so no need to
2035 		 * reschedule when bailing out.
2036 		 *
2037 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2038 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2039 		 */
2040 		if (rq->curr->sched_class != &rt_sched_class)
2041 			return 0;
2042 
2043 		cpu = find_lowest_rq(rq->curr);
2044 		if (cpu == -1 || cpu == rq->cpu)
2045 			return 0;
2046 
2047 		/*
2048 		 * Given we found a CPU with lower priority than @next_task,
2049 		 * therefore it should be running. However we cannot migrate it
2050 		 * to this other CPU, instead attempt to push the current
2051 		 * running task on this CPU away.
2052 		 */
2053 		push_task = get_push_task(rq);
2054 		if (push_task) {
2055 			raw_spin_rq_unlock(rq);
2056 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2057 					    push_task, &rq->push_work);
2058 			raw_spin_rq_lock(rq);
2059 		}
2060 
2061 		return 0;
2062 	}
2063 
2064 	if (WARN_ON(next_task == rq->curr))
2065 		return 0;
2066 
2067 	/* We might release rq lock */
2068 	get_task_struct(next_task);
2069 
2070 	/* find_lock_lowest_rq locks the rq if found */
2071 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2072 	if (!lowest_rq) {
2073 		struct task_struct *task;
2074 		/*
2075 		 * find_lock_lowest_rq releases rq->lock
2076 		 * so it is possible that next_task has migrated.
2077 		 *
2078 		 * We need to make sure that the task is still on the same
2079 		 * run-queue and is also still the next task eligible for
2080 		 * pushing.
2081 		 */
2082 		task = pick_next_pushable_task(rq);
2083 		if (task == next_task) {
2084 			/*
2085 			 * The task hasn't migrated, and is still the next
2086 			 * eligible task, but we failed to find a run-queue
2087 			 * to push it to.  Do not retry in this case, since
2088 			 * other CPUs will pull from us when ready.
2089 			 */
2090 			goto out;
2091 		}
2092 
2093 		if (!task)
2094 			/* No more tasks, just exit */
2095 			goto out;
2096 
2097 		/*
2098 		 * Something has shifted, try again.
2099 		 */
2100 		put_task_struct(next_task);
2101 		next_task = task;
2102 		goto retry;
2103 	}
2104 
2105 	deactivate_task(rq, next_task, 0);
2106 	set_task_cpu(next_task, lowest_rq->cpu);
2107 	activate_task(lowest_rq, next_task, 0);
2108 	resched_curr(lowest_rq);
2109 	ret = 1;
2110 
2111 	double_unlock_balance(rq, lowest_rq);
2112 out:
2113 	put_task_struct(next_task);
2114 
2115 	return ret;
2116 }
2117 
2118 static void push_rt_tasks(struct rq *rq)
2119 {
2120 	/* push_rt_task will return true if it moved an RT */
2121 	while (push_rt_task(rq, false))
2122 		;
2123 }
2124 
2125 #ifdef HAVE_RT_PUSH_IPI
2126 
2127 /*
2128  * When a high priority task schedules out from a CPU and a lower priority
2129  * task is scheduled in, a check is made to see if there's any RT tasks
2130  * on other CPUs that are waiting to run because a higher priority RT task
2131  * is currently running on its CPU. In this case, the CPU with multiple RT
2132  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2133  * up that may be able to run one of its non-running queued RT tasks.
2134  *
2135  * All CPUs with overloaded RT tasks need to be notified as there is currently
2136  * no way to know which of these CPUs have the highest priority task waiting
2137  * to run. Instead of trying to take a spinlock on each of these CPUs,
2138  * which has shown to cause large latency when done on machines with many
2139  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2140  * RT tasks waiting to run.
2141  *
2142  * Just sending an IPI to each of the CPUs is also an issue, as on large
2143  * count CPU machines, this can cause an IPI storm on a CPU, especially
2144  * if its the only CPU with multiple RT tasks queued, and a large number
2145  * of CPUs scheduling a lower priority task at the same time.
2146  *
2147  * Each root domain has its own irq work function that can iterate over
2148  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2149  * task must be checked if there's one or many CPUs that are lowering
2150  * their priority, there's a single irq work iterator that will try to
2151  * push off RT tasks that are waiting to run.
2152  *
2153  * When a CPU schedules a lower priority task, it will kick off the
2154  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2155  * As it only takes the first CPU that schedules a lower priority task
2156  * to start the process, the rto_start variable is incremented and if
2157  * the atomic result is one, then that CPU will try to take the rto_lock.
2158  * This prevents high contention on the lock as the process handles all
2159  * CPUs scheduling lower priority tasks.
2160  *
2161  * All CPUs that are scheduling a lower priority task will increment the
2162  * rt_loop_next variable. This will make sure that the irq work iterator
2163  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2164  * priority task, even if the iterator is in the middle of a scan. Incrementing
2165  * the rt_loop_next will cause the iterator to perform another scan.
2166  *
2167  */
2168 static int rto_next_cpu(struct root_domain *rd)
2169 {
2170 	int next;
2171 	int cpu;
2172 
2173 	/*
2174 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2175 	 * rt_next_cpu() will simply return the first CPU found in
2176 	 * the rto_mask.
2177 	 *
2178 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2179 	 * will return the next CPU found in the rto_mask.
2180 	 *
2181 	 * If there are no more CPUs left in the rto_mask, then a check is made
2182 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2183 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2184 	 * without any locking.
2185 	 */
2186 	for (;;) {
2187 
2188 		/* When rto_cpu is -1 this acts like cpumask_first() */
2189 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2190 
2191 		rd->rto_cpu = cpu;
2192 
2193 		if (cpu < nr_cpu_ids)
2194 			return cpu;
2195 
2196 		rd->rto_cpu = -1;
2197 
2198 		/*
2199 		 * ACQUIRE ensures we see the @rto_mask changes
2200 		 * made prior to the @next value observed.
2201 		 *
2202 		 * Matches WMB in rt_set_overload().
2203 		 */
2204 		next = atomic_read_acquire(&rd->rto_loop_next);
2205 
2206 		if (rd->rto_loop == next)
2207 			break;
2208 
2209 		rd->rto_loop = next;
2210 	}
2211 
2212 	return -1;
2213 }
2214 
2215 static inline bool rto_start_trylock(atomic_t *v)
2216 {
2217 	return !atomic_cmpxchg_acquire(v, 0, 1);
2218 }
2219 
2220 static inline void rto_start_unlock(atomic_t *v)
2221 {
2222 	atomic_set_release(v, 0);
2223 }
2224 
2225 static void tell_cpu_to_push(struct rq *rq)
2226 {
2227 	int cpu = -1;
2228 
2229 	/* Keep the loop going if the IPI is currently active */
2230 	atomic_inc(&rq->rd->rto_loop_next);
2231 
2232 	/* Only one CPU can initiate a loop at a time */
2233 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2234 		return;
2235 
2236 	raw_spin_lock(&rq->rd->rto_lock);
2237 
2238 	/*
2239 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2240 	 * then the IPI is still running and will continue due to the
2241 	 * update to loop_next, and nothing needs to be done here.
2242 	 * Otherwise it is finishing up and an ipi needs to be sent.
2243 	 */
2244 	if (rq->rd->rto_cpu < 0)
2245 		cpu = rto_next_cpu(rq->rd);
2246 
2247 	raw_spin_unlock(&rq->rd->rto_lock);
2248 
2249 	rto_start_unlock(&rq->rd->rto_loop_start);
2250 
2251 	if (cpu >= 0) {
2252 		/* Make sure the rd does not get freed while pushing */
2253 		sched_get_rd(rq->rd);
2254 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2255 	}
2256 }
2257 
2258 /* Called from hardirq context */
2259 void rto_push_irq_work_func(struct irq_work *work)
2260 {
2261 	struct root_domain *rd =
2262 		container_of(work, struct root_domain, rto_push_work);
2263 	struct rq *rq;
2264 	int cpu;
2265 
2266 	rq = this_rq();
2267 
2268 	/*
2269 	 * We do not need to grab the lock to check for has_pushable_tasks.
2270 	 * When it gets updated, a check is made if a push is possible.
2271 	 */
2272 	if (has_pushable_tasks(rq)) {
2273 		raw_spin_rq_lock(rq);
2274 		while (push_rt_task(rq, true))
2275 			;
2276 		raw_spin_rq_unlock(rq);
2277 	}
2278 
2279 	raw_spin_lock(&rd->rto_lock);
2280 
2281 	/* Pass the IPI to the next rt overloaded queue */
2282 	cpu = rto_next_cpu(rd);
2283 
2284 	raw_spin_unlock(&rd->rto_lock);
2285 
2286 	if (cpu < 0) {
2287 		sched_put_rd(rd);
2288 		return;
2289 	}
2290 
2291 	/* Try the next RT overloaded CPU */
2292 	irq_work_queue_on(&rd->rto_push_work, cpu);
2293 }
2294 #endif /* HAVE_RT_PUSH_IPI */
2295 
2296 static void pull_rt_task(struct rq *this_rq)
2297 {
2298 	int this_cpu = this_rq->cpu, cpu;
2299 	bool resched = false;
2300 	struct task_struct *p, *push_task;
2301 	struct rq *src_rq;
2302 	int rt_overload_count = rt_overloaded(this_rq);
2303 
2304 	if (likely(!rt_overload_count))
2305 		return;
2306 
2307 	/*
2308 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2309 	 * see overloaded we must also see the rto_mask bit.
2310 	 */
2311 	smp_rmb();
2312 
2313 	/* If we are the only overloaded CPU do nothing */
2314 	if (rt_overload_count == 1 &&
2315 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2316 		return;
2317 
2318 #ifdef HAVE_RT_PUSH_IPI
2319 	if (sched_feat(RT_PUSH_IPI)) {
2320 		tell_cpu_to_push(this_rq);
2321 		return;
2322 	}
2323 #endif
2324 
2325 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2326 		if (this_cpu == cpu)
2327 			continue;
2328 
2329 		src_rq = cpu_rq(cpu);
2330 
2331 		/*
2332 		 * Don't bother taking the src_rq->lock if the next highest
2333 		 * task is known to be lower-priority than our current task.
2334 		 * This may look racy, but if this value is about to go
2335 		 * logically higher, the src_rq will push this task away.
2336 		 * And if its going logically lower, we do not care
2337 		 */
2338 		if (src_rq->rt.highest_prio.next >=
2339 		    this_rq->rt.highest_prio.curr)
2340 			continue;
2341 
2342 		/*
2343 		 * We can potentially drop this_rq's lock in
2344 		 * double_lock_balance, and another CPU could
2345 		 * alter this_rq
2346 		 */
2347 		push_task = NULL;
2348 		double_lock_balance(this_rq, src_rq);
2349 
2350 		/*
2351 		 * We can pull only a task, which is pushable
2352 		 * on its rq, and no others.
2353 		 */
2354 		p = pick_highest_pushable_task(src_rq, this_cpu);
2355 
2356 		/*
2357 		 * Do we have an RT task that preempts
2358 		 * the to-be-scheduled task?
2359 		 */
2360 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2361 			WARN_ON(p == src_rq->curr);
2362 			WARN_ON(!task_on_rq_queued(p));
2363 
2364 			/*
2365 			 * There's a chance that p is higher in priority
2366 			 * than what's currently running on its CPU.
2367 			 * This is just that p is waking up and hasn't
2368 			 * had a chance to schedule. We only pull
2369 			 * p if it is lower in priority than the
2370 			 * current task on the run queue
2371 			 */
2372 			if (p->prio < src_rq->curr->prio)
2373 				goto skip;
2374 
2375 			if (is_migration_disabled(p)) {
2376 				push_task = get_push_task(src_rq);
2377 			} else {
2378 				deactivate_task(src_rq, p, 0);
2379 				set_task_cpu(p, this_cpu);
2380 				activate_task(this_rq, p, 0);
2381 				resched = true;
2382 			}
2383 			/*
2384 			 * We continue with the search, just in
2385 			 * case there's an even higher prio task
2386 			 * in another runqueue. (low likelihood
2387 			 * but possible)
2388 			 */
2389 		}
2390 skip:
2391 		double_unlock_balance(this_rq, src_rq);
2392 
2393 		if (push_task) {
2394 			raw_spin_rq_unlock(this_rq);
2395 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2396 					    push_task, &src_rq->push_work);
2397 			raw_spin_rq_lock(this_rq);
2398 		}
2399 	}
2400 
2401 	if (resched)
2402 		resched_curr(this_rq);
2403 }
2404 
2405 /*
2406  * If we are not running and we are not going to reschedule soon, we should
2407  * try to push tasks away now
2408  */
2409 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2410 {
2411 	bool need_to_push = !task_running(rq, p) &&
2412 			    !test_tsk_need_resched(rq->curr) &&
2413 			    p->nr_cpus_allowed > 1 &&
2414 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2415 			    (rq->curr->nr_cpus_allowed < 2 ||
2416 			     rq->curr->prio <= p->prio);
2417 
2418 	if (need_to_push)
2419 		push_rt_tasks(rq);
2420 }
2421 
2422 /* Assumes rq->lock is held */
2423 static void rq_online_rt(struct rq *rq)
2424 {
2425 	if (rq->rt.overloaded)
2426 		rt_set_overload(rq);
2427 
2428 	__enable_runtime(rq);
2429 
2430 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2431 }
2432 
2433 /* Assumes rq->lock is held */
2434 static void rq_offline_rt(struct rq *rq)
2435 {
2436 	if (rq->rt.overloaded)
2437 		rt_clear_overload(rq);
2438 
2439 	__disable_runtime(rq);
2440 
2441 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2442 }
2443 
2444 /*
2445  * When switch from the rt queue, we bring ourselves to a position
2446  * that we might want to pull RT tasks from other runqueues.
2447  */
2448 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2449 {
2450 	/*
2451 	 * If there are other RT tasks then we will reschedule
2452 	 * and the scheduling of the other RT tasks will handle
2453 	 * the balancing. But if we are the last RT task
2454 	 * we may need to handle the pulling of RT tasks
2455 	 * now.
2456 	 */
2457 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2458 		return;
2459 
2460 	rt_queue_pull_task(rq);
2461 }
2462 
2463 void __init init_sched_rt_class(void)
2464 {
2465 	unsigned int i;
2466 
2467 	for_each_possible_cpu(i) {
2468 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2469 					GFP_KERNEL, cpu_to_node(i));
2470 	}
2471 }
2472 #endif /* CONFIG_SMP */
2473 
2474 /*
2475  * When switching a task to RT, we may overload the runqueue
2476  * with RT tasks. In this case we try to push them off to
2477  * other runqueues.
2478  */
2479 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2480 {
2481 	/*
2482 	 * If we are running, update the avg_rt tracking, as the running time
2483 	 * will now on be accounted into the latter.
2484 	 */
2485 	if (task_current(rq, p)) {
2486 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2487 		return;
2488 	}
2489 
2490 	/*
2491 	 * If we are not running we may need to preempt the current
2492 	 * running task. If that current running task is also an RT task
2493 	 * then see if we can move to another run queue.
2494 	 */
2495 	if (task_on_rq_queued(p)) {
2496 #ifdef CONFIG_SMP
2497 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2498 			rt_queue_push_tasks(rq);
2499 #endif /* CONFIG_SMP */
2500 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2501 			resched_curr(rq);
2502 	}
2503 }
2504 
2505 /*
2506  * Priority of the task has changed. This may cause
2507  * us to initiate a push or pull.
2508  */
2509 static void
2510 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2511 {
2512 	if (!task_on_rq_queued(p))
2513 		return;
2514 
2515 	if (task_current(rq, p)) {
2516 #ifdef CONFIG_SMP
2517 		/*
2518 		 * If our priority decreases while running, we
2519 		 * may need to pull tasks to this runqueue.
2520 		 */
2521 		if (oldprio < p->prio)
2522 			rt_queue_pull_task(rq);
2523 
2524 		/*
2525 		 * If there's a higher priority task waiting to run
2526 		 * then reschedule.
2527 		 */
2528 		if (p->prio > rq->rt.highest_prio.curr)
2529 			resched_curr(rq);
2530 #else
2531 		/* For UP simply resched on drop of prio */
2532 		if (oldprio < p->prio)
2533 			resched_curr(rq);
2534 #endif /* CONFIG_SMP */
2535 	} else {
2536 		/*
2537 		 * This task is not running, but if it is
2538 		 * greater than the current running task
2539 		 * then reschedule.
2540 		 */
2541 		if (p->prio < rq->curr->prio)
2542 			resched_curr(rq);
2543 	}
2544 }
2545 
2546 #ifdef CONFIG_POSIX_TIMERS
2547 static void watchdog(struct rq *rq, struct task_struct *p)
2548 {
2549 	unsigned long soft, hard;
2550 
2551 	/* max may change after cur was read, this will be fixed next tick */
2552 	soft = task_rlimit(p, RLIMIT_RTTIME);
2553 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2554 
2555 	if (soft != RLIM_INFINITY) {
2556 		unsigned long next;
2557 
2558 		if (p->rt.watchdog_stamp != jiffies) {
2559 			p->rt.timeout++;
2560 			p->rt.watchdog_stamp = jiffies;
2561 		}
2562 
2563 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2564 		if (p->rt.timeout > next) {
2565 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2566 						    p->se.sum_exec_runtime);
2567 		}
2568 	}
2569 }
2570 #else
2571 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2572 #endif
2573 
2574 /*
2575  * scheduler tick hitting a task of our scheduling class.
2576  *
2577  * NOTE: This function can be called remotely by the tick offload that
2578  * goes along full dynticks. Therefore no local assumption can be made
2579  * and everything must be accessed through the @rq and @curr passed in
2580  * parameters.
2581  */
2582 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2583 {
2584 	struct sched_rt_entity *rt_se = &p->rt;
2585 
2586 	update_curr_rt(rq);
2587 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2588 
2589 	watchdog(rq, p);
2590 
2591 	/*
2592 	 * RR tasks need a special form of timeslice management.
2593 	 * FIFO tasks have no timeslices.
2594 	 */
2595 	if (p->policy != SCHED_RR)
2596 		return;
2597 
2598 	if (--p->rt.time_slice)
2599 		return;
2600 
2601 	p->rt.time_slice = sched_rr_timeslice;
2602 
2603 	/*
2604 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2605 	 * the only element on the queue
2606 	 */
2607 	for_each_sched_rt_entity(rt_se) {
2608 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2609 			requeue_task_rt(rq, p, 0);
2610 			resched_curr(rq);
2611 			return;
2612 		}
2613 	}
2614 }
2615 
2616 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2617 {
2618 	/*
2619 	 * Time slice is 0 for SCHED_FIFO tasks
2620 	 */
2621 	if (task->policy == SCHED_RR)
2622 		return sched_rr_timeslice;
2623 	else
2624 		return 0;
2625 }
2626 
2627 DEFINE_SCHED_CLASS(rt) = {
2628 
2629 	.enqueue_task		= enqueue_task_rt,
2630 	.dequeue_task		= dequeue_task_rt,
2631 	.yield_task		= yield_task_rt,
2632 
2633 	.check_preempt_curr	= check_preempt_curr_rt,
2634 
2635 	.pick_next_task		= pick_next_task_rt,
2636 	.put_prev_task		= put_prev_task_rt,
2637 	.set_next_task          = set_next_task_rt,
2638 
2639 #ifdef CONFIG_SMP
2640 	.balance		= balance_rt,
2641 	.pick_task		= pick_task_rt,
2642 	.select_task_rq		= select_task_rq_rt,
2643 	.set_cpus_allowed       = set_cpus_allowed_common,
2644 	.rq_online              = rq_online_rt,
2645 	.rq_offline             = rq_offline_rt,
2646 	.task_woken		= task_woken_rt,
2647 	.switched_from		= switched_from_rt,
2648 	.find_lock_rq		= find_lock_lowest_rq,
2649 #endif
2650 
2651 	.task_tick		= task_tick_rt,
2652 
2653 	.get_rr_interval	= get_rr_interval_rt,
2654 
2655 	.prio_changed		= prio_changed_rt,
2656 	.switched_to		= switched_to_rt,
2657 
2658 	.update_curr		= update_curr_rt,
2659 
2660 #ifdef CONFIG_UCLAMP_TASK
2661 	.uclamp_enabled		= 1,
2662 #endif
2663 };
2664 
2665 #ifdef CONFIG_RT_GROUP_SCHED
2666 /*
2667  * Ensure that the real time constraints are schedulable.
2668  */
2669 static DEFINE_MUTEX(rt_constraints_mutex);
2670 
2671 static inline int tg_has_rt_tasks(struct task_group *tg)
2672 {
2673 	struct task_struct *task;
2674 	struct css_task_iter it;
2675 	int ret = 0;
2676 
2677 	/*
2678 	 * Autogroups do not have RT tasks; see autogroup_create().
2679 	 */
2680 	if (task_group_is_autogroup(tg))
2681 		return 0;
2682 
2683 	css_task_iter_start(&tg->css, 0, &it);
2684 	while (!ret && (task = css_task_iter_next(&it)))
2685 		ret |= rt_task(task);
2686 	css_task_iter_end(&it);
2687 
2688 	return ret;
2689 }
2690 
2691 struct rt_schedulable_data {
2692 	struct task_group *tg;
2693 	u64 rt_period;
2694 	u64 rt_runtime;
2695 };
2696 
2697 static int tg_rt_schedulable(struct task_group *tg, void *data)
2698 {
2699 	struct rt_schedulable_data *d = data;
2700 	struct task_group *child;
2701 	unsigned long total, sum = 0;
2702 	u64 period, runtime;
2703 
2704 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2705 	runtime = tg->rt_bandwidth.rt_runtime;
2706 
2707 	if (tg == d->tg) {
2708 		period = d->rt_period;
2709 		runtime = d->rt_runtime;
2710 	}
2711 
2712 	/*
2713 	 * Cannot have more runtime than the period.
2714 	 */
2715 	if (runtime > period && runtime != RUNTIME_INF)
2716 		return -EINVAL;
2717 
2718 	/*
2719 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2720 	 */
2721 	if (rt_bandwidth_enabled() && !runtime &&
2722 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2723 		return -EBUSY;
2724 
2725 	total = to_ratio(period, runtime);
2726 
2727 	/*
2728 	 * Nobody can have more than the global setting allows.
2729 	 */
2730 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2731 		return -EINVAL;
2732 
2733 	/*
2734 	 * The sum of our children's runtime should not exceed our own.
2735 	 */
2736 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2737 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2738 		runtime = child->rt_bandwidth.rt_runtime;
2739 
2740 		if (child == d->tg) {
2741 			period = d->rt_period;
2742 			runtime = d->rt_runtime;
2743 		}
2744 
2745 		sum += to_ratio(period, runtime);
2746 	}
2747 
2748 	if (sum > total)
2749 		return -EINVAL;
2750 
2751 	return 0;
2752 }
2753 
2754 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2755 {
2756 	int ret;
2757 
2758 	struct rt_schedulable_data data = {
2759 		.tg = tg,
2760 		.rt_period = period,
2761 		.rt_runtime = runtime,
2762 	};
2763 
2764 	rcu_read_lock();
2765 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2766 	rcu_read_unlock();
2767 
2768 	return ret;
2769 }
2770 
2771 static int tg_set_rt_bandwidth(struct task_group *tg,
2772 		u64 rt_period, u64 rt_runtime)
2773 {
2774 	int i, err = 0;
2775 
2776 	/*
2777 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2778 	 * kernel creating (and or operating) RT threads.
2779 	 */
2780 	if (tg == &root_task_group && rt_runtime == 0)
2781 		return -EINVAL;
2782 
2783 	/* No period doesn't make any sense. */
2784 	if (rt_period == 0)
2785 		return -EINVAL;
2786 
2787 	/*
2788 	 * Bound quota to defend quota against overflow during bandwidth shift.
2789 	 */
2790 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2791 		return -EINVAL;
2792 
2793 	mutex_lock(&rt_constraints_mutex);
2794 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2795 	if (err)
2796 		goto unlock;
2797 
2798 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2799 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2800 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2801 
2802 	for_each_possible_cpu(i) {
2803 		struct rt_rq *rt_rq = tg->rt_rq[i];
2804 
2805 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2806 		rt_rq->rt_runtime = rt_runtime;
2807 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2808 	}
2809 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2810 unlock:
2811 	mutex_unlock(&rt_constraints_mutex);
2812 
2813 	return err;
2814 }
2815 
2816 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2817 {
2818 	u64 rt_runtime, rt_period;
2819 
2820 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2821 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2822 	if (rt_runtime_us < 0)
2823 		rt_runtime = RUNTIME_INF;
2824 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2825 		return -EINVAL;
2826 
2827 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2828 }
2829 
2830 long sched_group_rt_runtime(struct task_group *tg)
2831 {
2832 	u64 rt_runtime_us;
2833 
2834 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2835 		return -1;
2836 
2837 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2838 	do_div(rt_runtime_us, NSEC_PER_USEC);
2839 	return rt_runtime_us;
2840 }
2841 
2842 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2843 {
2844 	u64 rt_runtime, rt_period;
2845 
2846 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2847 		return -EINVAL;
2848 
2849 	rt_period = rt_period_us * NSEC_PER_USEC;
2850 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2851 
2852 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853 }
2854 
2855 long sched_group_rt_period(struct task_group *tg)
2856 {
2857 	u64 rt_period_us;
2858 
2859 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2860 	do_div(rt_period_us, NSEC_PER_USEC);
2861 	return rt_period_us;
2862 }
2863 
2864 static int sched_rt_global_constraints(void)
2865 {
2866 	int ret = 0;
2867 
2868 	mutex_lock(&rt_constraints_mutex);
2869 	ret = __rt_schedulable(NULL, 0, 0);
2870 	mutex_unlock(&rt_constraints_mutex);
2871 
2872 	return ret;
2873 }
2874 
2875 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2876 {
2877 	/* Don't accept realtime tasks when there is no way for them to run */
2878 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2879 		return 0;
2880 
2881 	return 1;
2882 }
2883 
2884 #else /* !CONFIG_RT_GROUP_SCHED */
2885 static int sched_rt_global_constraints(void)
2886 {
2887 	unsigned long flags;
2888 	int i;
2889 
2890 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2891 	for_each_possible_cpu(i) {
2892 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2893 
2894 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2895 		rt_rq->rt_runtime = global_rt_runtime();
2896 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2897 	}
2898 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2899 
2900 	return 0;
2901 }
2902 #endif /* CONFIG_RT_GROUP_SCHED */
2903 
2904 static int sched_rt_global_validate(void)
2905 {
2906 	if (sysctl_sched_rt_period <= 0)
2907 		return -EINVAL;
2908 
2909 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2910 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2911 		 ((u64)sysctl_sched_rt_runtime *
2912 			NSEC_PER_USEC > max_rt_runtime)))
2913 		return -EINVAL;
2914 
2915 	return 0;
2916 }
2917 
2918 static void sched_rt_do_global(void)
2919 {
2920 	unsigned long flags;
2921 
2922 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2923 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2924 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2925 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2926 }
2927 
2928 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2929 		size_t *lenp, loff_t *ppos)
2930 {
2931 	int old_period, old_runtime;
2932 	static DEFINE_MUTEX(mutex);
2933 	int ret;
2934 
2935 	mutex_lock(&mutex);
2936 	old_period = sysctl_sched_rt_period;
2937 	old_runtime = sysctl_sched_rt_runtime;
2938 
2939 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2940 
2941 	if (!ret && write) {
2942 		ret = sched_rt_global_validate();
2943 		if (ret)
2944 			goto undo;
2945 
2946 		ret = sched_dl_global_validate();
2947 		if (ret)
2948 			goto undo;
2949 
2950 		ret = sched_rt_global_constraints();
2951 		if (ret)
2952 			goto undo;
2953 
2954 		sched_rt_do_global();
2955 		sched_dl_do_global();
2956 	}
2957 	if (0) {
2958 undo:
2959 		sysctl_sched_rt_period = old_period;
2960 		sysctl_sched_rt_runtime = old_runtime;
2961 	}
2962 	mutex_unlock(&mutex);
2963 
2964 	return ret;
2965 }
2966 
2967 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2968 		size_t *lenp, loff_t *ppos)
2969 {
2970 	int ret;
2971 	static DEFINE_MUTEX(mutex);
2972 
2973 	mutex_lock(&mutex);
2974 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2975 	/*
2976 	 * Make sure that internally we keep jiffies.
2977 	 * Also, writing zero resets the timeslice to default:
2978 	 */
2979 	if (!ret && write) {
2980 		sched_rr_timeslice =
2981 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2982 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2983 	}
2984 	mutex_unlock(&mutex);
2985 
2986 	return ret;
2987 }
2988 
2989 #ifdef CONFIG_SCHED_DEBUG
2990 void print_rt_stats(struct seq_file *m, int cpu)
2991 {
2992 	rt_rq_iter_t iter;
2993 	struct rt_rq *rt_rq;
2994 
2995 	rcu_read_lock();
2996 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2997 		print_rt_rq(m, cpu, rt_rq);
2998 	rcu_read_unlock();
2999 }
3000 #endif /* CONFIG_SCHED_DEBUG */
3001