1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 int sched_rr_timeslice = RR_TIMESLICE; 9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 16 { 17 struct rt_bandwidth *rt_b = 18 container_of(timer, struct rt_bandwidth, rt_period_timer); 19 int idle = 0; 20 int overrun; 21 22 raw_spin_lock(&rt_b->rt_runtime_lock); 23 for (;;) { 24 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 25 if (!overrun) 26 break; 27 28 raw_spin_unlock(&rt_b->rt_runtime_lock); 29 idle = do_sched_rt_period_timer(rt_b, overrun); 30 raw_spin_lock(&rt_b->rt_runtime_lock); 31 } 32 if (idle) 33 rt_b->rt_period_active = 0; 34 raw_spin_unlock(&rt_b->rt_runtime_lock); 35 36 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 37 } 38 39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 40 { 41 rt_b->rt_period = ns_to_ktime(period); 42 rt_b->rt_runtime = runtime; 43 44 raw_spin_lock_init(&rt_b->rt_runtime_lock); 45 46 hrtimer_init(&rt_b->rt_period_timer, 47 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 48 rt_b->rt_period_timer.function = sched_rt_period_timer; 49 } 50 51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 52 { 53 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 54 return; 55 56 raw_spin_lock(&rt_b->rt_runtime_lock); 57 if (!rt_b->rt_period_active) { 58 rt_b->rt_period_active = 1; 59 /* 60 * SCHED_DEADLINE updates the bandwidth, as a run away 61 * RT task with a DL task could hog a CPU. But DL does 62 * not reset the period. If a deadline task was running 63 * without an RT task running, it can cause RT tasks to 64 * throttle when they start up. Kick the timer right away 65 * to update the period. 66 */ 67 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 68 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 69 } 70 raw_spin_unlock(&rt_b->rt_runtime_lock); 71 } 72 73 void init_rt_rq(struct rt_rq *rt_rq) 74 { 75 struct rt_prio_array *array; 76 int i; 77 78 array = &rt_rq->active; 79 for (i = 0; i < MAX_RT_PRIO; i++) { 80 INIT_LIST_HEAD(array->queue + i); 81 __clear_bit(i, array->bitmap); 82 } 83 /* delimiter for bitsearch: */ 84 __set_bit(MAX_RT_PRIO, array->bitmap); 85 86 #if defined CONFIG_SMP 87 rt_rq->highest_prio.curr = MAX_RT_PRIO; 88 rt_rq->highest_prio.next = MAX_RT_PRIO; 89 rt_rq->rt_nr_migratory = 0; 90 rt_rq->overloaded = 0; 91 plist_head_init(&rt_rq->pushable_tasks); 92 #endif /* CONFIG_SMP */ 93 /* We start is dequeued state, because no RT tasks are queued */ 94 rt_rq->rt_queued = 0; 95 96 rt_rq->rt_time = 0; 97 rt_rq->rt_throttled = 0; 98 rt_rq->rt_runtime = 0; 99 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 100 } 101 102 #ifdef CONFIG_RT_GROUP_SCHED 103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 104 { 105 hrtimer_cancel(&rt_b->rt_period_timer); 106 } 107 108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 109 110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 111 { 112 #ifdef CONFIG_SCHED_DEBUG 113 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 114 #endif 115 return container_of(rt_se, struct task_struct, rt); 116 } 117 118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 119 { 120 return rt_rq->rq; 121 } 122 123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 124 { 125 return rt_se->rt_rq; 126 } 127 128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 129 { 130 struct rt_rq *rt_rq = rt_se->rt_rq; 131 132 return rt_rq->rq; 133 } 134 135 void free_rt_sched_group(struct task_group *tg) 136 { 137 int i; 138 139 if (tg->rt_se) 140 destroy_rt_bandwidth(&tg->rt_bandwidth); 141 142 for_each_possible_cpu(i) { 143 if (tg->rt_rq) 144 kfree(tg->rt_rq[i]); 145 if (tg->rt_se) 146 kfree(tg->rt_se[i]); 147 } 148 149 kfree(tg->rt_rq); 150 kfree(tg->rt_se); 151 } 152 153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 154 struct sched_rt_entity *rt_se, int cpu, 155 struct sched_rt_entity *parent) 156 { 157 struct rq *rq = cpu_rq(cpu); 158 159 rt_rq->highest_prio.curr = MAX_RT_PRIO; 160 rt_rq->rt_nr_boosted = 0; 161 rt_rq->rq = rq; 162 rt_rq->tg = tg; 163 164 tg->rt_rq[cpu] = rt_rq; 165 tg->rt_se[cpu] = rt_se; 166 167 if (!rt_se) 168 return; 169 170 if (!parent) 171 rt_se->rt_rq = &rq->rt; 172 else 173 rt_se->rt_rq = parent->my_q; 174 175 rt_se->my_q = rt_rq; 176 rt_se->parent = parent; 177 INIT_LIST_HEAD(&rt_se->run_list); 178 } 179 180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 181 { 182 struct rt_rq *rt_rq; 183 struct sched_rt_entity *rt_se; 184 int i; 185 186 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 187 if (!tg->rt_rq) 188 goto err; 189 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 190 if (!tg->rt_se) 191 goto err; 192 193 init_rt_bandwidth(&tg->rt_bandwidth, 194 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 195 196 for_each_possible_cpu(i) { 197 rt_rq = kzalloc_node(sizeof(struct rt_rq), 198 GFP_KERNEL, cpu_to_node(i)); 199 if (!rt_rq) 200 goto err; 201 202 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 203 GFP_KERNEL, cpu_to_node(i)); 204 if (!rt_se) 205 goto err_free_rq; 206 207 init_rt_rq(rt_rq); 208 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 209 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 210 } 211 212 return 1; 213 214 err_free_rq: 215 kfree(rt_rq); 216 err: 217 return 0; 218 } 219 220 #else /* CONFIG_RT_GROUP_SCHED */ 221 222 #define rt_entity_is_task(rt_se) (1) 223 224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 225 { 226 return container_of(rt_se, struct task_struct, rt); 227 } 228 229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 230 { 231 return container_of(rt_rq, struct rq, rt); 232 } 233 234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 235 { 236 struct task_struct *p = rt_task_of(rt_se); 237 238 return task_rq(p); 239 } 240 241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 242 { 243 struct rq *rq = rq_of_rt_se(rt_se); 244 245 return &rq->rt; 246 } 247 248 void free_rt_sched_group(struct task_group *tg) { } 249 250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 251 { 252 return 1; 253 } 254 #endif /* CONFIG_RT_GROUP_SCHED */ 255 256 #ifdef CONFIG_SMP 257 258 static void pull_rt_task(struct rq *this_rq); 259 260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 261 { 262 /* Try to pull RT tasks here if we lower this rq's prio */ 263 return rq->rt.highest_prio.curr > prev->prio; 264 } 265 266 static inline int rt_overloaded(struct rq *rq) 267 { 268 return atomic_read(&rq->rd->rto_count); 269 } 270 271 static inline void rt_set_overload(struct rq *rq) 272 { 273 if (!rq->online) 274 return; 275 276 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 277 /* 278 * Make sure the mask is visible before we set 279 * the overload count. That is checked to determine 280 * if we should look at the mask. It would be a shame 281 * if we looked at the mask, but the mask was not 282 * updated yet. 283 * 284 * Matched by the barrier in pull_rt_task(). 285 */ 286 smp_wmb(); 287 atomic_inc(&rq->rd->rto_count); 288 } 289 290 static inline void rt_clear_overload(struct rq *rq) 291 { 292 if (!rq->online) 293 return; 294 295 /* the order here really doesn't matter */ 296 atomic_dec(&rq->rd->rto_count); 297 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 298 } 299 300 static void update_rt_migration(struct rt_rq *rt_rq) 301 { 302 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 303 if (!rt_rq->overloaded) { 304 rt_set_overload(rq_of_rt_rq(rt_rq)); 305 rt_rq->overloaded = 1; 306 } 307 } else if (rt_rq->overloaded) { 308 rt_clear_overload(rq_of_rt_rq(rt_rq)); 309 rt_rq->overloaded = 0; 310 } 311 } 312 313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 314 { 315 struct task_struct *p; 316 317 if (!rt_entity_is_task(rt_se)) 318 return; 319 320 p = rt_task_of(rt_se); 321 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 322 323 rt_rq->rt_nr_total++; 324 if (p->nr_cpus_allowed > 1) 325 rt_rq->rt_nr_migratory++; 326 327 update_rt_migration(rt_rq); 328 } 329 330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 331 { 332 struct task_struct *p; 333 334 if (!rt_entity_is_task(rt_se)) 335 return; 336 337 p = rt_task_of(rt_se); 338 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 339 340 rt_rq->rt_nr_total--; 341 if (p->nr_cpus_allowed > 1) 342 rt_rq->rt_nr_migratory--; 343 344 update_rt_migration(rt_rq); 345 } 346 347 static inline int has_pushable_tasks(struct rq *rq) 348 { 349 return !plist_head_empty(&rq->rt.pushable_tasks); 350 } 351 352 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 354 355 static void push_rt_tasks(struct rq *); 356 static void pull_rt_task(struct rq *); 357 358 static inline void rt_queue_push_tasks(struct rq *rq) 359 { 360 if (!has_pushable_tasks(rq)) 361 return; 362 363 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 364 } 365 366 static inline void rt_queue_pull_task(struct rq *rq) 367 { 368 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 369 } 370 371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 372 { 373 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 374 plist_node_init(&p->pushable_tasks, p->prio); 375 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 376 377 /* Update the highest prio pushable task */ 378 if (p->prio < rq->rt.highest_prio.next) 379 rq->rt.highest_prio.next = p->prio; 380 } 381 382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 383 { 384 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 385 386 /* Update the new highest prio pushable task */ 387 if (has_pushable_tasks(rq)) { 388 p = plist_first_entry(&rq->rt.pushable_tasks, 389 struct task_struct, pushable_tasks); 390 rq->rt.highest_prio.next = p->prio; 391 } else 392 rq->rt.highest_prio.next = MAX_RT_PRIO; 393 } 394 395 #else 396 397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 398 { 399 } 400 401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 402 { 403 } 404 405 static inline 406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 407 { 408 } 409 410 static inline 411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 412 { 413 } 414 415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 416 { 417 return false; 418 } 419 420 static inline void pull_rt_task(struct rq *this_rq) 421 { 422 } 423 424 static inline void rt_queue_push_tasks(struct rq *rq) 425 { 426 } 427 #endif /* CONFIG_SMP */ 428 429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 431 432 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 433 { 434 return rt_se->on_rq; 435 } 436 437 #ifdef CONFIG_RT_GROUP_SCHED 438 439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 440 { 441 if (!rt_rq->tg) 442 return RUNTIME_INF; 443 444 return rt_rq->rt_runtime; 445 } 446 447 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 448 { 449 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 450 } 451 452 typedef struct task_group *rt_rq_iter_t; 453 454 static inline struct task_group *next_task_group(struct task_group *tg) 455 { 456 do { 457 tg = list_entry_rcu(tg->list.next, 458 typeof(struct task_group), list); 459 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 460 461 if (&tg->list == &task_groups) 462 tg = NULL; 463 464 return tg; 465 } 466 467 #define for_each_rt_rq(rt_rq, iter, rq) \ 468 for (iter = container_of(&task_groups, typeof(*iter), list); \ 469 (iter = next_task_group(iter)) && \ 470 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 471 472 #define for_each_sched_rt_entity(rt_se) \ 473 for (; rt_se; rt_se = rt_se->parent) 474 475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 476 { 477 return rt_se->my_q; 478 } 479 480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 482 483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 484 { 485 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 486 struct rq *rq = rq_of_rt_rq(rt_rq); 487 struct sched_rt_entity *rt_se; 488 489 int cpu = cpu_of(rq); 490 491 rt_se = rt_rq->tg->rt_se[cpu]; 492 493 if (rt_rq->rt_nr_running) { 494 if (!rt_se) 495 enqueue_top_rt_rq(rt_rq); 496 else if (!on_rt_rq(rt_se)) 497 enqueue_rt_entity(rt_se, 0); 498 499 if (rt_rq->highest_prio.curr < curr->prio) 500 resched_curr(rq); 501 } 502 } 503 504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 505 { 506 struct sched_rt_entity *rt_se; 507 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 508 509 rt_se = rt_rq->tg->rt_se[cpu]; 510 511 if (!rt_se) { 512 dequeue_top_rt_rq(rt_rq); 513 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 514 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 515 } 516 else if (on_rt_rq(rt_se)) 517 dequeue_rt_entity(rt_se, 0); 518 } 519 520 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 521 { 522 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 523 } 524 525 static int rt_se_boosted(struct sched_rt_entity *rt_se) 526 { 527 struct rt_rq *rt_rq = group_rt_rq(rt_se); 528 struct task_struct *p; 529 530 if (rt_rq) 531 return !!rt_rq->rt_nr_boosted; 532 533 p = rt_task_of(rt_se); 534 return p->prio != p->normal_prio; 535 } 536 537 #ifdef CONFIG_SMP 538 static inline const struct cpumask *sched_rt_period_mask(void) 539 { 540 return this_rq()->rd->span; 541 } 542 #else 543 static inline const struct cpumask *sched_rt_period_mask(void) 544 { 545 return cpu_online_mask; 546 } 547 #endif 548 549 static inline 550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 551 { 552 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 553 } 554 555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 556 { 557 return &rt_rq->tg->rt_bandwidth; 558 } 559 560 #else /* !CONFIG_RT_GROUP_SCHED */ 561 562 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 563 { 564 return rt_rq->rt_runtime; 565 } 566 567 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 568 { 569 return ktime_to_ns(def_rt_bandwidth.rt_period); 570 } 571 572 typedef struct rt_rq *rt_rq_iter_t; 573 574 #define for_each_rt_rq(rt_rq, iter, rq) \ 575 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 576 577 #define for_each_sched_rt_entity(rt_se) \ 578 for (; rt_se; rt_se = NULL) 579 580 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 581 { 582 return NULL; 583 } 584 585 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 586 { 587 struct rq *rq = rq_of_rt_rq(rt_rq); 588 589 if (!rt_rq->rt_nr_running) 590 return; 591 592 enqueue_top_rt_rq(rt_rq); 593 resched_curr(rq); 594 } 595 596 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 597 { 598 dequeue_top_rt_rq(rt_rq); 599 } 600 601 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 602 { 603 return rt_rq->rt_throttled; 604 } 605 606 static inline const struct cpumask *sched_rt_period_mask(void) 607 { 608 return cpu_online_mask; 609 } 610 611 static inline 612 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 613 { 614 return &cpu_rq(cpu)->rt; 615 } 616 617 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 618 { 619 return &def_rt_bandwidth; 620 } 621 622 #endif /* CONFIG_RT_GROUP_SCHED */ 623 624 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 625 { 626 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 627 628 return (hrtimer_active(&rt_b->rt_period_timer) || 629 rt_rq->rt_time < rt_b->rt_runtime); 630 } 631 632 #ifdef CONFIG_SMP 633 /* 634 * We ran out of runtime, see if we can borrow some from our neighbours. 635 */ 636 static void do_balance_runtime(struct rt_rq *rt_rq) 637 { 638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 639 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 640 int i, weight; 641 u64 rt_period; 642 643 weight = cpumask_weight(rd->span); 644 645 raw_spin_lock(&rt_b->rt_runtime_lock); 646 rt_period = ktime_to_ns(rt_b->rt_period); 647 for_each_cpu(i, rd->span) { 648 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 649 s64 diff; 650 651 if (iter == rt_rq) 652 continue; 653 654 raw_spin_lock(&iter->rt_runtime_lock); 655 /* 656 * Either all rqs have inf runtime and there's nothing to steal 657 * or __disable_runtime() below sets a specific rq to inf to 658 * indicate its been disabled and disalow stealing. 659 */ 660 if (iter->rt_runtime == RUNTIME_INF) 661 goto next; 662 663 /* 664 * From runqueues with spare time, take 1/n part of their 665 * spare time, but no more than our period. 666 */ 667 diff = iter->rt_runtime - iter->rt_time; 668 if (diff > 0) { 669 diff = div_u64((u64)diff, weight); 670 if (rt_rq->rt_runtime + diff > rt_period) 671 diff = rt_period - rt_rq->rt_runtime; 672 iter->rt_runtime -= diff; 673 rt_rq->rt_runtime += diff; 674 if (rt_rq->rt_runtime == rt_period) { 675 raw_spin_unlock(&iter->rt_runtime_lock); 676 break; 677 } 678 } 679 next: 680 raw_spin_unlock(&iter->rt_runtime_lock); 681 } 682 raw_spin_unlock(&rt_b->rt_runtime_lock); 683 } 684 685 /* 686 * Ensure this RQ takes back all the runtime it lend to its neighbours. 687 */ 688 static void __disable_runtime(struct rq *rq) 689 { 690 struct root_domain *rd = rq->rd; 691 rt_rq_iter_t iter; 692 struct rt_rq *rt_rq; 693 694 if (unlikely(!scheduler_running)) 695 return; 696 697 for_each_rt_rq(rt_rq, iter, rq) { 698 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 699 s64 want; 700 int i; 701 702 raw_spin_lock(&rt_b->rt_runtime_lock); 703 raw_spin_lock(&rt_rq->rt_runtime_lock); 704 /* 705 * Either we're all inf and nobody needs to borrow, or we're 706 * already disabled and thus have nothing to do, or we have 707 * exactly the right amount of runtime to take out. 708 */ 709 if (rt_rq->rt_runtime == RUNTIME_INF || 710 rt_rq->rt_runtime == rt_b->rt_runtime) 711 goto balanced; 712 raw_spin_unlock(&rt_rq->rt_runtime_lock); 713 714 /* 715 * Calculate the difference between what we started out with 716 * and what we current have, that's the amount of runtime 717 * we lend and now have to reclaim. 718 */ 719 want = rt_b->rt_runtime - rt_rq->rt_runtime; 720 721 /* 722 * Greedy reclaim, take back as much as we can. 723 */ 724 for_each_cpu(i, rd->span) { 725 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 726 s64 diff; 727 728 /* 729 * Can't reclaim from ourselves or disabled runqueues. 730 */ 731 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 732 continue; 733 734 raw_spin_lock(&iter->rt_runtime_lock); 735 if (want > 0) { 736 diff = min_t(s64, iter->rt_runtime, want); 737 iter->rt_runtime -= diff; 738 want -= diff; 739 } else { 740 iter->rt_runtime -= want; 741 want -= want; 742 } 743 raw_spin_unlock(&iter->rt_runtime_lock); 744 745 if (!want) 746 break; 747 } 748 749 raw_spin_lock(&rt_rq->rt_runtime_lock); 750 /* 751 * We cannot be left wanting - that would mean some runtime 752 * leaked out of the system. 753 */ 754 BUG_ON(want); 755 balanced: 756 /* 757 * Disable all the borrow logic by pretending we have inf 758 * runtime - in which case borrowing doesn't make sense. 759 */ 760 rt_rq->rt_runtime = RUNTIME_INF; 761 rt_rq->rt_throttled = 0; 762 raw_spin_unlock(&rt_rq->rt_runtime_lock); 763 raw_spin_unlock(&rt_b->rt_runtime_lock); 764 765 /* Make rt_rq available for pick_next_task() */ 766 sched_rt_rq_enqueue(rt_rq); 767 } 768 } 769 770 static void __enable_runtime(struct rq *rq) 771 { 772 rt_rq_iter_t iter; 773 struct rt_rq *rt_rq; 774 775 if (unlikely(!scheduler_running)) 776 return; 777 778 /* 779 * Reset each runqueue's bandwidth settings 780 */ 781 for_each_rt_rq(rt_rq, iter, rq) { 782 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 783 784 raw_spin_lock(&rt_b->rt_runtime_lock); 785 raw_spin_lock(&rt_rq->rt_runtime_lock); 786 rt_rq->rt_runtime = rt_b->rt_runtime; 787 rt_rq->rt_time = 0; 788 rt_rq->rt_throttled = 0; 789 raw_spin_unlock(&rt_rq->rt_runtime_lock); 790 raw_spin_unlock(&rt_b->rt_runtime_lock); 791 } 792 } 793 794 static void balance_runtime(struct rt_rq *rt_rq) 795 { 796 if (!sched_feat(RT_RUNTIME_SHARE)) 797 return; 798 799 if (rt_rq->rt_time > rt_rq->rt_runtime) { 800 raw_spin_unlock(&rt_rq->rt_runtime_lock); 801 do_balance_runtime(rt_rq); 802 raw_spin_lock(&rt_rq->rt_runtime_lock); 803 } 804 } 805 #else /* !CONFIG_SMP */ 806 static inline void balance_runtime(struct rt_rq *rt_rq) {} 807 #endif /* CONFIG_SMP */ 808 809 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 810 { 811 int i, idle = 1, throttled = 0; 812 const struct cpumask *span; 813 814 span = sched_rt_period_mask(); 815 #ifdef CONFIG_RT_GROUP_SCHED 816 /* 817 * FIXME: isolated CPUs should really leave the root task group, 818 * whether they are isolcpus or were isolated via cpusets, lest 819 * the timer run on a CPU which does not service all runqueues, 820 * potentially leaving other CPUs indefinitely throttled. If 821 * isolation is really required, the user will turn the throttle 822 * off to kill the perturbations it causes anyway. Meanwhile, 823 * this maintains functionality for boot and/or troubleshooting. 824 */ 825 if (rt_b == &root_task_group.rt_bandwidth) 826 span = cpu_online_mask; 827 #endif 828 for_each_cpu(i, span) { 829 int enqueue = 0; 830 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 831 struct rq *rq = rq_of_rt_rq(rt_rq); 832 int skip; 833 834 /* 835 * When span == cpu_online_mask, taking each rq->lock 836 * can be time-consuming. Try to avoid it when possible. 837 */ 838 raw_spin_lock(&rt_rq->rt_runtime_lock); 839 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 840 rt_rq->rt_runtime = rt_b->rt_runtime; 841 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 842 raw_spin_unlock(&rt_rq->rt_runtime_lock); 843 if (skip) 844 continue; 845 846 raw_spin_lock(&rq->lock); 847 update_rq_clock(rq); 848 849 if (rt_rq->rt_time) { 850 u64 runtime; 851 852 raw_spin_lock(&rt_rq->rt_runtime_lock); 853 if (rt_rq->rt_throttled) 854 balance_runtime(rt_rq); 855 runtime = rt_rq->rt_runtime; 856 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 857 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 858 rt_rq->rt_throttled = 0; 859 enqueue = 1; 860 861 /* 862 * When we're idle and a woken (rt) task is 863 * throttled check_preempt_curr() will set 864 * skip_update and the time between the wakeup 865 * and this unthrottle will get accounted as 866 * 'runtime'. 867 */ 868 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 869 rq_clock_cancel_skipupdate(rq); 870 } 871 if (rt_rq->rt_time || rt_rq->rt_nr_running) 872 idle = 0; 873 raw_spin_unlock(&rt_rq->rt_runtime_lock); 874 } else if (rt_rq->rt_nr_running) { 875 idle = 0; 876 if (!rt_rq_throttled(rt_rq)) 877 enqueue = 1; 878 } 879 if (rt_rq->rt_throttled) 880 throttled = 1; 881 882 if (enqueue) 883 sched_rt_rq_enqueue(rt_rq); 884 raw_spin_unlock(&rq->lock); 885 } 886 887 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 888 return 1; 889 890 return idle; 891 } 892 893 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 894 { 895 #ifdef CONFIG_RT_GROUP_SCHED 896 struct rt_rq *rt_rq = group_rt_rq(rt_se); 897 898 if (rt_rq) 899 return rt_rq->highest_prio.curr; 900 #endif 901 902 return rt_task_of(rt_se)->prio; 903 } 904 905 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 906 { 907 u64 runtime = sched_rt_runtime(rt_rq); 908 909 if (rt_rq->rt_throttled) 910 return rt_rq_throttled(rt_rq); 911 912 if (runtime >= sched_rt_period(rt_rq)) 913 return 0; 914 915 balance_runtime(rt_rq); 916 runtime = sched_rt_runtime(rt_rq); 917 if (runtime == RUNTIME_INF) 918 return 0; 919 920 if (rt_rq->rt_time > runtime) { 921 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 922 923 /* 924 * Don't actually throttle groups that have no runtime assigned 925 * but accrue some time due to boosting. 926 */ 927 if (likely(rt_b->rt_runtime)) { 928 rt_rq->rt_throttled = 1; 929 printk_deferred_once("sched: RT throttling activated\n"); 930 } else { 931 /* 932 * In case we did anyway, make it go away, 933 * replenishment is a joke, since it will replenish us 934 * with exactly 0 ns. 935 */ 936 rt_rq->rt_time = 0; 937 } 938 939 if (rt_rq_throttled(rt_rq)) { 940 sched_rt_rq_dequeue(rt_rq); 941 return 1; 942 } 943 } 944 945 return 0; 946 } 947 948 /* 949 * Update the current task's runtime statistics. Skip current tasks that 950 * are not in our scheduling class. 951 */ 952 static void update_curr_rt(struct rq *rq) 953 { 954 struct task_struct *curr = rq->curr; 955 struct sched_rt_entity *rt_se = &curr->rt; 956 u64 delta_exec; 957 u64 now; 958 959 if (curr->sched_class != &rt_sched_class) 960 return; 961 962 now = rq_clock_task(rq); 963 delta_exec = now - curr->se.exec_start; 964 if (unlikely((s64)delta_exec <= 0)) 965 return; 966 967 schedstat_set(curr->se.statistics.exec_max, 968 max(curr->se.statistics.exec_max, delta_exec)); 969 970 curr->se.sum_exec_runtime += delta_exec; 971 account_group_exec_runtime(curr, delta_exec); 972 973 curr->se.exec_start = now; 974 cgroup_account_cputime(curr, delta_exec); 975 976 sched_rt_avg_update(rq, delta_exec); 977 978 if (!rt_bandwidth_enabled()) 979 return; 980 981 for_each_sched_rt_entity(rt_se) { 982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 983 984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 985 raw_spin_lock(&rt_rq->rt_runtime_lock); 986 rt_rq->rt_time += delta_exec; 987 if (sched_rt_runtime_exceeded(rt_rq)) 988 resched_curr(rq); 989 raw_spin_unlock(&rt_rq->rt_runtime_lock); 990 } 991 } 992 } 993 994 static void 995 dequeue_top_rt_rq(struct rt_rq *rt_rq) 996 { 997 struct rq *rq = rq_of_rt_rq(rt_rq); 998 999 BUG_ON(&rq->rt != rt_rq); 1000 1001 if (!rt_rq->rt_queued) 1002 return; 1003 1004 BUG_ON(!rq->nr_running); 1005 1006 sub_nr_running(rq, rt_rq->rt_nr_running); 1007 rt_rq->rt_queued = 0; 1008 1009 } 1010 1011 static void 1012 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1013 { 1014 struct rq *rq = rq_of_rt_rq(rt_rq); 1015 1016 BUG_ON(&rq->rt != rt_rq); 1017 1018 if (rt_rq->rt_queued) 1019 return; 1020 1021 if (rt_rq_throttled(rt_rq)) 1022 return; 1023 1024 if (rt_rq->rt_nr_running) { 1025 add_nr_running(rq, rt_rq->rt_nr_running); 1026 rt_rq->rt_queued = 1; 1027 } 1028 1029 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1030 cpufreq_update_util(rq, 0); 1031 } 1032 1033 #if defined CONFIG_SMP 1034 1035 static void 1036 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1037 { 1038 struct rq *rq = rq_of_rt_rq(rt_rq); 1039 1040 #ifdef CONFIG_RT_GROUP_SCHED 1041 /* 1042 * Change rq's cpupri only if rt_rq is the top queue. 1043 */ 1044 if (&rq->rt != rt_rq) 1045 return; 1046 #endif 1047 if (rq->online && prio < prev_prio) 1048 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1049 } 1050 1051 static void 1052 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1053 { 1054 struct rq *rq = rq_of_rt_rq(rt_rq); 1055 1056 #ifdef CONFIG_RT_GROUP_SCHED 1057 /* 1058 * Change rq's cpupri only if rt_rq is the top queue. 1059 */ 1060 if (&rq->rt != rt_rq) 1061 return; 1062 #endif 1063 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1064 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1065 } 1066 1067 #else /* CONFIG_SMP */ 1068 1069 static inline 1070 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1071 static inline 1072 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1073 1074 #endif /* CONFIG_SMP */ 1075 1076 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1077 static void 1078 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1079 { 1080 int prev_prio = rt_rq->highest_prio.curr; 1081 1082 if (prio < prev_prio) 1083 rt_rq->highest_prio.curr = prio; 1084 1085 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1086 } 1087 1088 static void 1089 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1090 { 1091 int prev_prio = rt_rq->highest_prio.curr; 1092 1093 if (rt_rq->rt_nr_running) { 1094 1095 WARN_ON(prio < prev_prio); 1096 1097 /* 1098 * This may have been our highest task, and therefore 1099 * we may have some recomputation to do 1100 */ 1101 if (prio == prev_prio) { 1102 struct rt_prio_array *array = &rt_rq->active; 1103 1104 rt_rq->highest_prio.curr = 1105 sched_find_first_bit(array->bitmap); 1106 } 1107 1108 } else 1109 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1110 1111 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1112 } 1113 1114 #else 1115 1116 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1117 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1118 1119 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1120 1121 #ifdef CONFIG_RT_GROUP_SCHED 1122 1123 static void 1124 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1125 { 1126 if (rt_se_boosted(rt_se)) 1127 rt_rq->rt_nr_boosted++; 1128 1129 if (rt_rq->tg) 1130 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1131 } 1132 1133 static void 1134 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1135 { 1136 if (rt_se_boosted(rt_se)) 1137 rt_rq->rt_nr_boosted--; 1138 1139 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1140 } 1141 1142 #else /* CONFIG_RT_GROUP_SCHED */ 1143 1144 static void 1145 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1146 { 1147 start_rt_bandwidth(&def_rt_bandwidth); 1148 } 1149 1150 static inline 1151 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1152 1153 #endif /* CONFIG_RT_GROUP_SCHED */ 1154 1155 static inline 1156 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1157 { 1158 struct rt_rq *group_rq = group_rt_rq(rt_se); 1159 1160 if (group_rq) 1161 return group_rq->rt_nr_running; 1162 else 1163 return 1; 1164 } 1165 1166 static inline 1167 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1168 { 1169 struct rt_rq *group_rq = group_rt_rq(rt_se); 1170 struct task_struct *tsk; 1171 1172 if (group_rq) 1173 return group_rq->rr_nr_running; 1174 1175 tsk = rt_task_of(rt_se); 1176 1177 return (tsk->policy == SCHED_RR) ? 1 : 0; 1178 } 1179 1180 static inline 1181 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1182 { 1183 int prio = rt_se_prio(rt_se); 1184 1185 WARN_ON(!rt_prio(prio)); 1186 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1187 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1188 1189 inc_rt_prio(rt_rq, prio); 1190 inc_rt_migration(rt_se, rt_rq); 1191 inc_rt_group(rt_se, rt_rq); 1192 } 1193 1194 static inline 1195 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1196 { 1197 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1198 WARN_ON(!rt_rq->rt_nr_running); 1199 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1200 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1201 1202 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1203 dec_rt_migration(rt_se, rt_rq); 1204 dec_rt_group(rt_se, rt_rq); 1205 } 1206 1207 /* 1208 * Change rt_se->run_list location unless SAVE && !MOVE 1209 * 1210 * assumes ENQUEUE/DEQUEUE flags match 1211 */ 1212 static inline bool move_entity(unsigned int flags) 1213 { 1214 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1215 return false; 1216 1217 return true; 1218 } 1219 1220 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1221 { 1222 list_del_init(&rt_se->run_list); 1223 1224 if (list_empty(array->queue + rt_se_prio(rt_se))) 1225 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1226 1227 rt_se->on_list = 0; 1228 } 1229 1230 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1231 { 1232 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1233 struct rt_prio_array *array = &rt_rq->active; 1234 struct rt_rq *group_rq = group_rt_rq(rt_se); 1235 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1236 1237 /* 1238 * Don't enqueue the group if its throttled, or when empty. 1239 * The latter is a consequence of the former when a child group 1240 * get throttled and the current group doesn't have any other 1241 * active members. 1242 */ 1243 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1244 if (rt_se->on_list) 1245 __delist_rt_entity(rt_se, array); 1246 return; 1247 } 1248 1249 if (move_entity(flags)) { 1250 WARN_ON_ONCE(rt_se->on_list); 1251 if (flags & ENQUEUE_HEAD) 1252 list_add(&rt_se->run_list, queue); 1253 else 1254 list_add_tail(&rt_se->run_list, queue); 1255 1256 __set_bit(rt_se_prio(rt_se), array->bitmap); 1257 rt_se->on_list = 1; 1258 } 1259 rt_se->on_rq = 1; 1260 1261 inc_rt_tasks(rt_se, rt_rq); 1262 } 1263 1264 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1265 { 1266 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1267 struct rt_prio_array *array = &rt_rq->active; 1268 1269 if (move_entity(flags)) { 1270 WARN_ON_ONCE(!rt_se->on_list); 1271 __delist_rt_entity(rt_se, array); 1272 } 1273 rt_se->on_rq = 0; 1274 1275 dec_rt_tasks(rt_se, rt_rq); 1276 } 1277 1278 /* 1279 * Because the prio of an upper entry depends on the lower 1280 * entries, we must remove entries top - down. 1281 */ 1282 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1283 { 1284 struct sched_rt_entity *back = NULL; 1285 1286 for_each_sched_rt_entity(rt_se) { 1287 rt_se->back = back; 1288 back = rt_se; 1289 } 1290 1291 dequeue_top_rt_rq(rt_rq_of_se(back)); 1292 1293 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1294 if (on_rt_rq(rt_se)) 1295 __dequeue_rt_entity(rt_se, flags); 1296 } 1297 } 1298 1299 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1300 { 1301 struct rq *rq = rq_of_rt_se(rt_se); 1302 1303 dequeue_rt_stack(rt_se, flags); 1304 for_each_sched_rt_entity(rt_se) 1305 __enqueue_rt_entity(rt_se, flags); 1306 enqueue_top_rt_rq(&rq->rt); 1307 } 1308 1309 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1310 { 1311 struct rq *rq = rq_of_rt_se(rt_se); 1312 1313 dequeue_rt_stack(rt_se, flags); 1314 1315 for_each_sched_rt_entity(rt_se) { 1316 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1317 1318 if (rt_rq && rt_rq->rt_nr_running) 1319 __enqueue_rt_entity(rt_se, flags); 1320 } 1321 enqueue_top_rt_rq(&rq->rt); 1322 } 1323 1324 /* 1325 * Adding/removing a task to/from a priority array: 1326 */ 1327 static void 1328 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1329 { 1330 struct sched_rt_entity *rt_se = &p->rt; 1331 1332 if (flags & ENQUEUE_WAKEUP) 1333 rt_se->timeout = 0; 1334 1335 enqueue_rt_entity(rt_se, flags); 1336 1337 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1338 enqueue_pushable_task(rq, p); 1339 } 1340 1341 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1342 { 1343 struct sched_rt_entity *rt_se = &p->rt; 1344 1345 update_curr_rt(rq); 1346 dequeue_rt_entity(rt_se, flags); 1347 1348 dequeue_pushable_task(rq, p); 1349 } 1350 1351 /* 1352 * Put task to the head or the end of the run list without the overhead of 1353 * dequeue followed by enqueue. 1354 */ 1355 static void 1356 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1357 { 1358 if (on_rt_rq(rt_se)) { 1359 struct rt_prio_array *array = &rt_rq->active; 1360 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1361 1362 if (head) 1363 list_move(&rt_se->run_list, queue); 1364 else 1365 list_move_tail(&rt_se->run_list, queue); 1366 } 1367 } 1368 1369 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1370 { 1371 struct sched_rt_entity *rt_se = &p->rt; 1372 struct rt_rq *rt_rq; 1373 1374 for_each_sched_rt_entity(rt_se) { 1375 rt_rq = rt_rq_of_se(rt_se); 1376 requeue_rt_entity(rt_rq, rt_se, head); 1377 } 1378 } 1379 1380 static void yield_task_rt(struct rq *rq) 1381 { 1382 requeue_task_rt(rq, rq->curr, 0); 1383 } 1384 1385 #ifdef CONFIG_SMP 1386 static int find_lowest_rq(struct task_struct *task); 1387 1388 static int 1389 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1390 { 1391 struct task_struct *curr; 1392 struct rq *rq; 1393 1394 /* For anything but wake ups, just return the task_cpu */ 1395 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1396 goto out; 1397 1398 rq = cpu_rq(cpu); 1399 1400 rcu_read_lock(); 1401 curr = READ_ONCE(rq->curr); /* unlocked access */ 1402 1403 /* 1404 * If the current task on @p's runqueue is an RT task, then 1405 * try to see if we can wake this RT task up on another 1406 * runqueue. Otherwise simply start this RT task 1407 * on its current runqueue. 1408 * 1409 * We want to avoid overloading runqueues. If the woken 1410 * task is a higher priority, then it will stay on this CPU 1411 * and the lower prio task should be moved to another CPU. 1412 * Even though this will probably make the lower prio task 1413 * lose its cache, we do not want to bounce a higher task 1414 * around just because it gave up its CPU, perhaps for a 1415 * lock? 1416 * 1417 * For equal prio tasks, we just let the scheduler sort it out. 1418 * 1419 * Otherwise, just let it ride on the affined RQ and the 1420 * post-schedule router will push the preempted task away 1421 * 1422 * This test is optimistic, if we get it wrong the load-balancer 1423 * will have to sort it out. 1424 */ 1425 if (curr && unlikely(rt_task(curr)) && 1426 (curr->nr_cpus_allowed < 2 || 1427 curr->prio <= p->prio)) { 1428 int target = find_lowest_rq(p); 1429 1430 /* 1431 * Don't bother moving it if the destination CPU is 1432 * not running a lower priority task. 1433 */ 1434 if (target != -1 && 1435 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1436 cpu = target; 1437 } 1438 rcu_read_unlock(); 1439 1440 out: 1441 return cpu; 1442 } 1443 1444 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1445 { 1446 /* 1447 * Current can't be migrated, useless to reschedule, 1448 * let's hope p can move out. 1449 */ 1450 if (rq->curr->nr_cpus_allowed == 1 || 1451 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1452 return; 1453 1454 /* 1455 * p is migratable, so let's not schedule it and 1456 * see if it is pushed or pulled somewhere else. 1457 */ 1458 if (p->nr_cpus_allowed != 1 1459 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1460 return; 1461 1462 /* 1463 * There appear to be other CPUs that can accept 1464 * the current task but none can run 'p', so lets reschedule 1465 * to try and push the current task away: 1466 */ 1467 requeue_task_rt(rq, p, 1); 1468 resched_curr(rq); 1469 } 1470 1471 #endif /* CONFIG_SMP */ 1472 1473 /* 1474 * Preempt the current task with a newly woken task if needed: 1475 */ 1476 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1477 { 1478 if (p->prio < rq->curr->prio) { 1479 resched_curr(rq); 1480 return; 1481 } 1482 1483 #ifdef CONFIG_SMP 1484 /* 1485 * If: 1486 * 1487 * - the newly woken task is of equal priority to the current task 1488 * - the newly woken task is non-migratable while current is migratable 1489 * - current will be preempted on the next reschedule 1490 * 1491 * we should check to see if current can readily move to a different 1492 * cpu. If so, we will reschedule to allow the push logic to try 1493 * to move current somewhere else, making room for our non-migratable 1494 * task. 1495 */ 1496 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1497 check_preempt_equal_prio(rq, p); 1498 #endif 1499 } 1500 1501 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1502 struct rt_rq *rt_rq) 1503 { 1504 struct rt_prio_array *array = &rt_rq->active; 1505 struct sched_rt_entity *next = NULL; 1506 struct list_head *queue; 1507 int idx; 1508 1509 idx = sched_find_first_bit(array->bitmap); 1510 BUG_ON(idx >= MAX_RT_PRIO); 1511 1512 queue = array->queue + idx; 1513 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1514 1515 return next; 1516 } 1517 1518 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1519 { 1520 struct sched_rt_entity *rt_se; 1521 struct task_struct *p; 1522 struct rt_rq *rt_rq = &rq->rt; 1523 1524 do { 1525 rt_se = pick_next_rt_entity(rq, rt_rq); 1526 BUG_ON(!rt_se); 1527 rt_rq = group_rt_rq(rt_se); 1528 } while (rt_rq); 1529 1530 p = rt_task_of(rt_se); 1531 p->se.exec_start = rq_clock_task(rq); 1532 1533 return p; 1534 } 1535 1536 static struct task_struct * 1537 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1538 { 1539 struct task_struct *p; 1540 struct rt_rq *rt_rq = &rq->rt; 1541 1542 if (need_pull_rt_task(rq, prev)) { 1543 /* 1544 * This is OK, because current is on_cpu, which avoids it being 1545 * picked for load-balance and preemption/IRQs are still 1546 * disabled avoiding further scheduler activity on it and we're 1547 * being very careful to re-start the picking loop. 1548 */ 1549 rq_unpin_lock(rq, rf); 1550 pull_rt_task(rq); 1551 rq_repin_lock(rq, rf); 1552 /* 1553 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1554 * means a dl or stop task can slip in, in which case we need 1555 * to re-start task selection. 1556 */ 1557 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1558 rq->dl.dl_nr_running)) 1559 return RETRY_TASK; 1560 } 1561 1562 /* 1563 * We may dequeue prev's rt_rq in put_prev_task(). 1564 * So, we update time before rt_nr_running check. 1565 */ 1566 if (prev->sched_class == &rt_sched_class) 1567 update_curr_rt(rq); 1568 1569 if (!rt_rq->rt_queued) 1570 return NULL; 1571 1572 put_prev_task(rq, prev); 1573 1574 p = _pick_next_task_rt(rq); 1575 1576 /* The running task is never eligible for pushing */ 1577 dequeue_pushable_task(rq, p); 1578 1579 rt_queue_push_tasks(rq); 1580 1581 return p; 1582 } 1583 1584 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1585 { 1586 update_curr_rt(rq); 1587 1588 /* 1589 * The previous task needs to be made eligible for pushing 1590 * if it is still active 1591 */ 1592 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1593 enqueue_pushable_task(rq, p); 1594 } 1595 1596 #ifdef CONFIG_SMP 1597 1598 /* Only try algorithms three times */ 1599 #define RT_MAX_TRIES 3 1600 1601 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1602 { 1603 if (!task_running(rq, p) && 1604 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1605 return 1; 1606 1607 return 0; 1608 } 1609 1610 /* 1611 * Return the highest pushable rq's task, which is suitable to be executed 1612 * on the CPU, NULL otherwise 1613 */ 1614 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1615 { 1616 struct plist_head *head = &rq->rt.pushable_tasks; 1617 struct task_struct *p; 1618 1619 if (!has_pushable_tasks(rq)) 1620 return NULL; 1621 1622 plist_for_each_entry(p, head, pushable_tasks) { 1623 if (pick_rt_task(rq, p, cpu)) 1624 return p; 1625 } 1626 1627 return NULL; 1628 } 1629 1630 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1631 1632 static int find_lowest_rq(struct task_struct *task) 1633 { 1634 struct sched_domain *sd; 1635 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1636 int this_cpu = smp_processor_id(); 1637 int cpu = task_cpu(task); 1638 1639 /* Make sure the mask is initialized first */ 1640 if (unlikely(!lowest_mask)) 1641 return -1; 1642 1643 if (task->nr_cpus_allowed == 1) 1644 return -1; /* No other targets possible */ 1645 1646 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1647 return -1; /* No targets found */ 1648 1649 /* 1650 * At this point we have built a mask of CPUs representing the 1651 * lowest priority tasks in the system. Now we want to elect 1652 * the best one based on our affinity and topology. 1653 * 1654 * We prioritize the last CPU that the task executed on since 1655 * it is most likely cache-hot in that location. 1656 */ 1657 if (cpumask_test_cpu(cpu, lowest_mask)) 1658 return cpu; 1659 1660 /* 1661 * Otherwise, we consult the sched_domains span maps to figure 1662 * out which CPU is logically closest to our hot cache data. 1663 */ 1664 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1665 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1666 1667 rcu_read_lock(); 1668 for_each_domain(cpu, sd) { 1669 if (sd->flags & SD_WAKE_AFFINE) { 1670 int best_cpu; 1671 1672 /* 1673 * "this_cpu" is cheaper to preempt than a 1674 * remote processor. 1675 */ 1676 if (this_cpu != -1 && 1677 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1678 rcu_read_unlock(); 1679 return this_cpu; 1680 } 1681 1682 best_cpu = cpumask_first_and(lowest_mask, 1683 sched_domain_span(sd)); 1684 if (best_cpu < nr_cpu_ids) { 1685 rcu_read_unlock(); 1686 return best_cpu; 1687 } 1688 } 1689 } 1690 rcu_read_unlock(); 1691 1692 /* 1693 * And finally, if there were no matches within the domains 1694 * just give the caller *something* to work with from the compatible 1695 * locations. 1696 */ 1697 if (this_cpu != -1) 1698 return this_cpu; 1699 1700 cpu = cpumask_any(lowest_mask); 1701 if (cpu < nr_cpu_ids) 1702 return cpu; 1703 1704 return -1; 1705 } 1706 1707 /* Will lock the rq it finds */ 1708 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1709 { 1710 struct rq *lowest_rq = NULL; 1711 int tries; 1712 int cpu; 1713 1714 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1715 cpu = find_lowest_rq(task); 1716 1717 if ((cpu == -1) || (cpu == rq->cpu)) 1718 break; 1719 1720 lowest_rq = cpu_rq(cpu); 1721 1722 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1723 /* 1724 * Target rq has tasks of equal or higher priority, 1725 * retrying does not release any lock and is unlikely 1726 * to yield a different result. 1727 */ 1728 lowest_rq = NULL; 1729 break; 1730 } 1731 1732 /* if the prio of this runqueue changed, try again */ 1733 if (double_lock_balance(rq, lowest_rq)) { 1734 /* 1735 * We had to unlock the run queue. In 1736 * the mean time, task could have 1737 * migrated already or had its affinity changed. 1738 * Also make sure that it wasn't scheduled on its rq. 1739 */ 1740 if (unlikely(task_rq(task) != rq || 1741 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1742 task_running(rq, task) || 1743 !rt_task(task) || 1744 !task_on_rq_queued(task))) { 1745 1746 double_unlock_balance(rq, lowest_rq); 1747 lowest_rq = NULL; 1748 break; 1749 } 1750 } 1751 1752 /* If this rq is still suitable use it. */ 1753 if (lowest_rq->rt.highest_prio.curr > task->prio) 1754 break; 1755 1756 /* try again */ 1757 double_unlock_balance(rq, lowest_rq); 1758 lowest_rq = NULL; 1759 } 1760 1761 return lowest_rq; 1762 } 1763 1764 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1765 { 1766 struct task_struct *p; 1767 1768 if (!has_pushable_tasks(rq)) 1769 return NULL; 1770 1771 p = plist_first_entry(&rq->rt.pushable_tasks, 1772 struct task_struct, pushable_tasks); 1773 1774 BUG_ON(rq->cpu != task_cpu(p)); 1775 BUG_ON(task_current(rq, p)); 1776 BUG_ON(p->nr_cpus_allowed <= 1); 1777 1778 BUG_ON(!task_on_rq_queued(p)); 1779 BUG_ON(!rt_task(p)); 1780 1781 return p; 1782 } 1783 1784 /* 1785 * If the current CPU has more than one RT task, see if the non 1786 * running task can migrate over to a CPU that is running a task 1787 * of lesser priority. 1788 */ 1789 static int push_rt_task(struct rq *rq) 1790 { 1791 struct task_struct *next_task; 1792 struct rq *lowest_rq; 1793 int ret = 0; 1794 1795 if (!rq->rt.overloaded) 1796 return 0; 1797 1798 next_task = pick_next_pushable_task(rq); 1799 if (!next_task) 1800 return 0; 1801 1802 retry: 1803 if (unlikely(next_task == rq->curr)) { 1804 WARN_ON(1); 1805 return 0; 1806 } 1807 1808 /* 1809 * It's possible that the next_task slipped in of 1810 * higher priority than current. If that's the case 1811 * just reschedule current. 1812 */ 1813 if (unlikely(next_task->prio < rq->curr->prio)) { 1814 resched_curr(rq); 1815 return 0; 1816 } 1817 1818 /* We might release rq lock */ 1819 get_task_struct(next_task); 1820 1821 /* find_lock_lowest_rq locks the rq if found */ 1822 lowest_rq = find_lock_lowest_rq(next_task, rq); 1823 if (!lowest_rq) { 1824 struct task_struct *task; 1825 /* 1826 * find_lock_lowest_rq releases rq->lock 1827 * so it is possible that next_task has migrated. 1828 * 1829 * We need to make sure that the task is still on the same 1830 * run-queue and is also still the next task eligible for 1831 * pushing. 1832 */ 1833 task = pick_next_pushable_task(rq); 1834 if (task == next_task) { 1835 /* 1836 * The task hasn't migrated, and is still the next 1837 * eligible task, but we failed to find a run-queue 1838 * to push it to. Do not retry in this case, since 1839 * other CPUs will pull from us when ready. 1840 */ 1841 goto out; 1842 } 1843 1844 if (!task) 1845 /* No more tasks, just exit */ 1846 goto out; 1847 1848 /* 1849 * Something has shifted, try again. 1850 */ 1851 put_task_struct(next_task); 1852 next_task = task; 1853 goto retry; 1854 } 1855 1856 deactivate_task(rq, next_task, 0); 1857 set_task_cpu(next_task, lowest_rq->cpu); 1858 activate_task(lowest_rq, next_task, 0); 1859 ret = 1; 1860 1861 resched_curr(lowest_rq); 1862 1863 double_unlock_balance(rq, lowest_rq); 1864 1865 out: 1866 put_task_struct(next_task); 1867 1868 return ret; 1869 } 1870 1871 static void push_rt_tasks(struct rq *rq) 1872 { 1873 /* push_rt_task will return true if it moved an RT */ 1874 while (push_rt_task(rq)) 1875 ; 1876 } 1877 1878 #ifdef HAVE_RT_PUSH_IPI 1879 1880 /* 1881 * When a high priority task schedules out from a CPU and a lower priority 1882 * task is scheduled in, a check is made to see if there's any RT tasks 1883 * on other CPUs that are waiting to run because a higher priority RT task 1884 * is currently running on its CPU. In this case, the CPU with multiple RT 1885 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1886 * up that may be able to run one of its non-running queued RT tasks. 1887 * 1888 * All CPUs with overloaded RT tasks need to be notified as there is currently 1889 * no way to know which of these CPUs have the highest priority task waiting 1890 * to run. Instead of trying to take a spinlock on each of these CPUs, 1891 * which has shown to cause large latency when done on machines with many 1892 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1893 * RT tasks waiting to run. 1894 * 1895 * Just sending an IPI to each of the CPUs is also an issue, as on large 1896 * count CPU machines, this can cause an IPI storm on a CPU, especially 1897 * if its the only CPU with multiple RT tasks queued, and a large number 1898 * of CPUs scheduling a lower priority task at the same time. 1899 * 1900 * Each root domain has its own irq work function that can iterate over 1901 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1902 * tassk must be checked if there's one or many CPUs that are lowering 1903 * their priority, there's a single irq work iterator that will try to 1904 * push off RT tasks that are waiting to run. 1905 * 1906 * When a CPU schedules a lower priority task, it will kick off the 1907 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1908 * As it only takes the first CPU that schedules a lower priority task 1909 * to start the process, the rto_start variable is incremented and if 1910 * the atomic result is one, then that CPU will try to take the rto_lock. 1911 * This prevents high contention on the lock as the process handles all 1912 * CPUs scheduling lower priority tasks. 1913 * 1914 * All CPUs that are scheduling a lower priority task will increment the 1915 * rt_loop_next variable. This will make sure that the irq work iterator 1916 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1917 * priority task, even if the iterator is in the middle of a scan. Incrementing 1918 * the rt_loop_next will cause the iterator to perform another scan. 1919 * 1920 */ 1921 static int rto_next_cpu(struct root_domain *rd) 1922 { 1923 int next; 1924 int cpu; 1925 1926 /* 1927 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1928 * rt_next_cpu() will simply return the first CPU found in 1929 * the rto_mask. 1930 * 1931 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 1932 * will return the next CPU found in the rto_mask. 1933 * 1934 * If there are no more CPUs left in the rto_mask, then a check is made 1935 * against rto_loop and rto_loop_next. rto_loop is only updated with 1936 * the rto_lock held, but any CPU may increment the rto_loop_next 1937 * without any locking. 1938 */ 1939 for (;;) { 1940 1941 /* When rto_cpu is -1 this acts like cpumask_first() */ 1942 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1943 1944 rd->rto_cpu = cpu; 1945 1946 if (cpu < nr_cpu_ids) 1947 return cpu; 1948 1949 rd->rto_cpu = -1; 1950 1951 /* 1952 * ACQUIRE ensures we see the @rto_mask changes 1953 * made prior to the @next value observed. 1954 * 1955 * Matches WMB in rt_set_overload(). 1956 */ 1957 next = atomic_read_acquire(&rd->rto_loop_next); 1958 1959 if (rd->rto_loop == next) 1960 break; 1961 1962 rd->rto_loop = next; 1963 } 1964 1965 return -1; 1966 } 1967 1968 static inline bool rto_start_trylock(atomic_t *v) 1969 { 1970 return !atomic_cmpxchg_acquire(v, 0, 1); 1971 } 1972 1973 static inline void rto_start_unlock(atomic_t *v) 1974 { 1975 atomic_set_release(v, 0); 1976 } 1977 1978 static void tell_cpu_to_push(struct rq *rq) 1979 { 1980 int cpu = -1; 1981 1982 /* Keep the loop going if the IPI is currently active */ 1983 atomic_inc(&rq->rd->rto_loop_next); 1984 1985 /* Only one CPU can initiate a loop at a time */ 1986 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1987 return; 1988 1989 raw_spin_lock(&rq->rd->rto_lock); 1990 1991 /* 1992 * The rto_cpu is updated under the lock, if it has a valid CPU 1993 * then the IPI is still running and will continue due to the 1994 * update to loop_next, and nothing needs to be done here. 1995 * Otherwise it is finishing up and an ipi needs to be sent. 1996 */ 1997 if (rq->rd->rto_cpu < 0) 1998 cpu = rto_next_cpu(rq->rd); 1999 2000 raw_spin_unlock(&rq->rd->rto_lock); 2001 2002 rto_start_unlock(&rq->rd->rto_loop_start); 2003 2004 if (cpu >= 0) { 2005 /* Make sure the rd does not get freed while pushing */ 2006 sched_get_rd(rq->rd); 2007 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2008 } 2009 } 2010 2011 /* Called from hardirq context */ 2012 void rto_push_irq_work_func(struct irq_work *work) 2013 { 2014 struct root_domain *rd = 2015 container_of(work, struct root_domain, rto_push_work); 2016 struct rq *rq; 2017 int cpu; 2018 2019 rq = this_rq(); 2020 2021 /* 2022 * We do not need to grab the lock to check for has_pushable_tasks. 2023 * When it gets updated, a check is made if a push is possible. 2024 */ 2025 if (has_pushable_tasks(rq)) { 2026 raw_spin_lock(&rq->lock); 2027 push_rt_tasks(rq); 2028 raw_spin_unlock(&rq->lock); 2029 } 2030 2031 raw_spin_lock(&rd->rto_lock); 2032 2033 /* Pass the IPI to the next rt overloaded queue */ 2034 cpu = rto_next_cpu(rd); 2035 2036 raw_spin_unlock(&rd->rto_lock); 2037 2038 if (cpu < 0) { 2039 sched_put_rd(rd); 2040 return; 2041 } 2042 2043 /* Try the next RT overloaded CPU */ 2044 irq_work_queue_on(&rd->rto_push_work, cpu); 2045 } 2046 #endif /* HAVE_RT_PUSH_IPI */ 2047 2048 static void pull_rt_task(struct rq *this_rq) 2049 { 2050 int this_cpu = this_rq->cpu, cpu; 2051 bool resched = false; 2052 struct task_struct *p; 2053 struct rq *src_rq; 2054 int rt_overload_count = rt_overloaded(this_rq); 2055 2056 if (likely(!rt_overload_count)) 2057 return; 2058 2059 /* 2060 * Match the barrier from rt_set_overloaded; this guarantees that if we 2061 * see overloaded we must also see the rto_mask bit. 2062 */ 2063 smp_rmb(); 2064 2065 /* If we are the only overloaded CPU do nothing */ 2066 if (rt_overload_count == 1 && 2067 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2068 return; 2069 2070 #ifdef HAVE_RT_PUSH_IPI 2071 if (sched_feat(RT_PUSH_IPI)) { 2072 tell_cpu_to_push(this_rq); 2073 return; 2074 } 2075 #endif 2076 2077 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2078 if (this_cpu == cpu) 2079 continue; 2080 2081 src_rq = cpu_rq(cpu); 2082 2083 /* 2084 * Don't bother taking the src_rq->lock if the next highest 2085 * task is known to be lower-priority than our current task. 2086 * This may look racy, but if this value is about to go 2087 * logically higher, the src_rq will push this task away. 2088 * And if its going logically lower, we do not care 2089 */ 2090 if (src_rq->rt.highest_prio.next >= 2091 this_rq->rt.highest_prio.curr) 2092 continue; 2093 2094 /* 2095 * We can potentially drop this_rq's lock in 2096 * double_lock_balance, and another CPU could 2097 * alter this_rq 2098 */ 2099 double_lock_balance(this_rq, src_rq); 2100 2101 /* 2102 * We can pull only a task, which is pushable 2103 * on its rq, and no others. 2104 */ 2105 p = pick_highest_pushable_task(src_rq, this_cpu); 2106 2107 /* 2108 * Do we have an RT task that preempts 2109 * the to-be-scheduled task? 2110 */ 2111 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2112 WARN_ON(p == src_rq->curr); 2113 WARN_ON(!task_on_rq_queued(p)); 2114 2115 /* 2116 * There's a chance that p is higher in priority 2117 * than what's currently running on its CPU. 2118 * This is just that p is wakeing up and hasn't 2119 * had a chance to schedule. We only pull 2120 * p if it is lower in priority than the 2121 * current task on the run queue 2122 */ 2123 if (p->prio < src_rq->curr->prio) 2124 goto skip; 2125 2126 resched = true; 2127 2128 deactivate_task(src_rq, p, 0); 2129 set_task_cpu(p, this_cpu); 2130 activate_task(this_rq, p, 0); 2131 /* 2132 * We continue with the search, just in 2133 * case there's an even higher prio task 2134 * in another runqueue. (low likelihood 2135 * but possible) 2136 */ 2137 } 2138 skip: 2139 double_unlock_balance(this_rq, src_rq); 2140 } 2141 2142 if (resched) 2143 resched_curr(this_rq); 2144 } 2145 2146 /* 2147 * If we are not running and we are not going to reschedule soon, we should 2148 * try to push tasks away now 2149 */ 2150 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2151 { 2152 if (!task_running(rq, p) && 2153 !test_tsk_need_resched(rq->curr) && 2154 p->nr_cpus_allowed > 1 && 2155 (dl_task(rq->curr) || rt_task(rq->curr)) && 2156 (rq->curr->nr_cpus_allowed < 2 || 2157 rq->curr->prio <= p->prio)) 2158 push_rt_tasks(rq); 2159 } 2160 2161 /* Assumes rq->lock is held */ 2162 static void rq_online_rt(struct rq *rq) 2163 { 2164 if (rq->rt.overloaded) 2165 rt_set_overload(rq); 2166 2167 __enable_runtime(rq); 2168 2169 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2170 } 2171 2172 /* Assumes rq->lock is held */ 2173 static void rq_offline_rt(struct rq *rq) 2174 { 2175 if (rq->rt.overloaded) 2176 rt_clear_overload(rq); 2177 2178 __disable_runtime(rq); 2179 2180 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2181 } 2182 2183 /* 2184 * When switch from the rt queue, we bring ourselves to a position 2185 * that we might want to pull RT tasks from other runqueues. 2186 */ 2187 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2188 { 2189 /* 2190 * If there are other RT tasks then we will reschedule 2191 * and the scheduling of the other RT tasks will handle 2192 * the balancing. But if we are the last RT task 2193 * we may need to handle the pulling of RT tasks 2194 * now. 2195 */ 2196 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2197 return; 2198 2199 rt_queue_pull_task(rq); 2200 } 2201 2202 void __init init_sched_rt_class(void) 2203 { 2204 unsigned int i; 2205 2206 for_each_possible_cpu(i) { 2207 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2208 GFP_KERNEL, cpu_to_node(i)); 2209 } 2210 } 2211 #endif /* CONFIG_SMP */ 2212 2213 /* 2214 * When switching a task to RT, we may overload the runqueue 2215 * with RT tasks. In this case we try to push them off to 2216 * other runqueues. 2217 */ 2218 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2219 { 2220 /* 2221 * If we are already running, then there's nothing 2222 * that needs to be done. But if we are not running 2223 * we may need to preempt the current running task. 2224 * If that current running task is also an RT task 2225 * then see if we can move to another run queue. 2226 */ 2227 if (task_on_rq_queued(p) && rq->curr != p) { 2228 #ifdef CONFIG_SMP 2229 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2230 rt_queue_push_tasks(rq); 2231 #endif /* CONFIG_SMP */ 2232 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2233 resched_curr(rq); 2234 } 2235 } 2236 2237 /* 2238 * Priority of the task has changed. This may cause 2239 * us to initiate a push or pull. 2240 */ 2241 static void 2242 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2243 { 2244 if (!task_on_rq_queued(p)) 2245 return; 2246 2247 if (rq->curr == p) { 2248 #ifdef CONFIG_SMP 2249 /* 2250 * If our priority decreases while running, we 2251 * may need to pull tasks to this runqueue. 2252 */ 2253 if (oldprio < p->prio) 2254 rt_queue_pull_task(rq); 2255 2256 /* 2257 * If there's a higher priority task waiting to run 2258 * then reschedule. 2259 */ 2260 if (p->prio > rq->rt.highest_prio.curr) 2261 resched_curr(rq); 2262 #else 2263 /* For UP simply resched on drop of prio */ 2264 if (oldprio < p->prio) 2265 resched_curr(rq); 2266 #endif /* CONFIG_SMP */ 2267 } else { 2268 /* 2269 * This task is not running, but if it is 2270 * greater than the current running task 2271 * then reschedule. 2272 */ 2273 if (p->prio < rq->curr->prio) 2274 resched_curr(rq); 2275 } 2276 } 2277 2278 #ifdef CONFIG_POSIX_TIMERS 2279 static void watchdog(struct rq *rq, struct task_struct *p) 2280 { 2281 unsigned long soft, hard; 2282 2283 /* max may change after cur was read, this will be fixed next tick */ 2284 soft = task_rlimit(p, RLIMIT_RTTIME); 2285 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2286 2287 if (soft != RLIM_INFINITY) { 2288 unsigned long next; 2289 2290 if (p->rt.watchdog_stamp != jiffies) { 2291 p->rt.timeout++; 2292 p->rt.watchdog_stamp = jiffies; 2293 } 2294 2295 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2296 if (p->rt.timeout > next) 2297 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2298 } 2299 } 2300 #else 2301 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2302 #endif 2303 2304 /* 2305 * scheduler tick hitting a task of our scheduling class. 2306 * 2307 * NOTE: This function can be called remotely by the tick offload that 2308 * goes along full dynticks. Therefore no local assumption can be made 2309 * and everything must be accessed through the @rq and @curr passed in 2310 * parameters. 2311 */ 2312 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2313 { 2314 struct sched_rt_entity *rt_se = &p->rt; 2315 2316 update_curr_rt(rq); 2317 2318 watchdog(rq, p); 2319 2320 /* 2321 * RR tasks need a special form of timeslice management. 2322 * FIFO tasks have no timeslices. 2323 */ 2324 if (p->policy != SCHED_RR) 2325 return; 2326 2327 if (--p->rt.time_slice) 2328 return; 2329 2330 p->rt.time_slice = sched_rr_timeslice; 2331 2332 /* 2333 * Requeue to the end of queue if we (and all of our ancestors) are not 2334 * the only element on the queue 2335 */ 2336 for_each_sched_rt_entity(rt_se) { 2337 if (rt_se->run_list.prev != rt_se->run_list.next) { 2338 requeue_task_rt(rq, p, 0); 2339 resched_curr(rq); 2340 return; 2341 } 2342 } 2343 } 2344 2345 static void set_curr_task_rt(struct rq *rq) 2346 { 2347 struct task_struct *p = rq->curr; 2348 2349 p->se.exec_start = rq_clock_task(rq); 2350 2351 /* The running task is never eligible for pushing */ 2352 dequeue_pushable_task(rq, p); 2353 } 2354 2355 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2356 { 2357 /* 2358 * Time slice is 0 for SCHED_FIFO tasks 2359 */ 2360 if (task->policy == SCHED_RR) 2361 return sched_rr_timeslice; 2362 else 2363 return 0; 2364 } 2365 2366 const struct sched_class rt_sched_class = { 2367 .next = &fair_sched_class, 2368 .enqueue_task = enqueue_task_rt, 2369 .dequeue_task = dequeue_task_rt, 2370 .yield_task = yield_task_rt, 2371 2372 .check_preempt_curr = check_preempt_curr_rt, 2373 2374 .pick_next_task = pick_next_task_rt, 2375 .put_prev_task = put_prev_task_rt, 2376 2377 #ifdef CONFIG_SMP 2378 .select_task_rq = select_task_rq_rt, 2379 2380 .set_cpus_allowed = set_cpus_allowed_common, 2381 .rq_online = rq_online_rt, 2382 .rq_offline = rq_offline_rt, 2383 .task_woken = task_woken_rt, 2384 .switched_from = switched_from_rt, 2385 #endif 2386 2387 .set_curr_task = set_curr_task_rt, 2388 .task_tick = task_tick_rt, 2389 2390 .get_rr_interval = get_rr_interval_rt, 2391 2392 .prio_changed = prio_changed_rt, 2393 .switched_to = switched_to_rt, 2394 2395 .update_curr = update_curr_rt, 2396 }; 2397 2398 #ifdef CONFIG_RT_GROUP_SCHED 2399 /* 2400 * Ensure that the real time constraints are schedulable. 2401 */ 2402 static DEFINE_MUTEX(rt_constraints_mutex); 2403 2404 /* Must be called with tasklist_lock held */ 2405 static inline int tg_has_rt_tasks(struct task_group *tg) 2406 { 2407 struct task_struct *g, *p; 2408 2409 /* 2410 * Autogroups do not have RT tasks; see autogroup_create(). 2411 */ 2412 if (task_group_is_autogroup(tg)) 2413 return 0; 2414 2415 for_each_process_thread(g, p) { 2416 if (rt_task(p) && task_group(p) == tg) 2417 return 1; 2418 } 2419 2420 return 0; 2421 } 2422 2423 struct rt_schedulable_data { 2424 struct task_group *tg; 2425 u64 rt_period; 2426 u64 rt_runtime; 2427 }; 2428 2429 static int tg_rt_schedulable(struct task_group *tg, void *data) 2430 { 2431 struct rt_schedulable_data *d = data; 2432 struct task_group *child; 2433 unsigned long total, sum = 0; 2434 u64 period, runtime; 2435 2436 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2437 runtime = tg->rt_bandwidth.rt_runtime; 2438 2439 if (tg == d->tg) { 2440 period = d->rt_period; 2441 runtime = d->rt_runtime; 2442 } 2443 2444 /* 2445 * Cannot have more runtime than the period. 2446 */ 2447 if (runtime > period && runtime != RUNTIME_INF) 2448 return -EINVAL; 2449 2450 /* 2451 * Ensure we don't starve existing RT tasks. 2452 */ 2453 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2454 return -EBUSY; 2455 2456 total = to_ratio(period, runtime); 2457 2458 /* 2459 * Nobody can have more than the global setting allows. 2460 */ 2461 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2462 return -EINVAL; 2463 2464 /* 2465 * The sum of our children's runtime should not exceed our own. 2466 */ 2467 list_for_each_entry_rcu(child, &tg->children, siblings) { 2468 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2469 runtime = child->rt_bandwidth.rt_runtime; 2470 2471 if (child == d->tg) { 2472 period = d->rt_period; 2473 runtime = d->rt_runtime; 2474 } 2475 2476 sum += to_ratio(period, runtime); 2477 } 2478 2479 if (sum > total) 2480 return -EINVAL; 2481 2482 return 0; 2483 } 2484 2485 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2486 { 2487 int ret; 2488 2489 struct rt_schedulable_data data = { 2490 .tg = tg, 2491 .rt_period = period, 2492 .rt_runtime = runtime, 2493 }; 2494 2495 rcu_read_lock(); 2496 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2497 rcu_read_unlock(); 2498 2499 return ret; 2500 } 2501 2502 static int tg_set_rt_bandwidth(struct task_group *tg, 2503 u64 rt_period, u64 rt_runtime) 2504 { 2505 int i, err = 0; 2506 2507 /* 2508 * Disallowing the root group RT runtime is BAD, it would disallow the 2509 * kernel creating (and or operating) RT threads. 2510 */ 2511 if (tg == &root_task_group && rt_runtime == 0) 2512 return -EINVAL; 2513 2514 /* No period doesn't make any sense. */ 2515 if (rt_period == 0) 2516 return -EINVAL; 2517 2518 mutex_lock(&rt_constraints_mutex); 2519 read_lock(&tasklist_lock); 2520 err = __rt_schedulable(tg, rt_period, rt_runtime); 2521 if (err) 2522 goto unlock; 2523 2524 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2525 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2526 tg->rt_bandwidth.rt_runtime = rt_runtime; 2527 2528 for_each_possible_cpu(i) { 2529 struct rt_rq *rt_rq = tg->rt_rq[i]; 2530 2531 raw_spin_lock(&rt_rq->rt_runtime_lock); 2532 rt_rq->rt_runtime = rt_runtime; 2533 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2534 } 2535 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2536 unlock: 2537 read_unlock(&tasklist_lock); 2538 mutex_unlock(&rt_constraints_mutex); 2539 2540 return err; 2541 } 2542 2543 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2544 { 2545 u64 rt_runtime, rt_period; 2546 2547 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2548 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2549 if (rt_runtime_us < 0) 2550 rt_runtime = RUNTIME_INF; 2551 2552 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2553 } 2554 2555 long sched_group_rt_runtime(struct task_group *tg) 2556 { 2557 u64 rt_runtime_us; 2558 2559 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2560 return -1; 2561 2562 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2563 do_div(rt_runtime_us, NSEC_PER_USEC); 2564 return rt_runtime_us; 2565 } 2566 2567 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2568 { 2569 u64 rt_runtime, rt_period; 2570 2571 rt_period = rt_period_us * NSEC_PER_USEC; 2572 rt_runtime = tg->rt_bandwidth.rt_runtime; 2573 2574 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2575 } 2576 2577 long sched_group_rt_period(struct task_group *tg) 2578 { 2579 u64 rt_period_us; 2580 2581 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2582 do_div(rt_period_us, NSEC_PER_USEC); 2583 return rt_period_us; 2584 } 2585 2586 static int sched_rt_global_constraints(void) 2587 { 2588 int ret = 0; 2589 2590 mutex_lock(&rt_constraints_mutex); 2591 read_lock(&tasklist_lock); 2592 ret = __rt_schedulable(NULL, 0, 0); 2593 read_unlock(&tasklist_lock); 2594 mutex_unlock(&rt_constraints_mutex); 2595 2596 return ret; 2597 } 2598 2599 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2600 { 2601 /* Don't accept realtime tasks when there is no way for them to run */ 2602 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2603 return 0; 2604 2605 return 1; 2606 } 2607 2608 #else /* !CONFIG_RT_GROUP_SCHED */ 2609 static int sched_rt_global_constraints(void) 2610 { 2611 unsigned long flags; 2612 int i; 2613 2614 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2615 for_each_possible_cpu(i) { 2616 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2617 2618 raw_spin_lock(&rt_rq->rt_runtime_lock); 2619 rt_rq->rt_runtime = global_rt_runtime(); 2620 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2621 } 2622 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2623 2624 return 0; 2625 } 2626 #endif /* CONFIG_RT_GROUP_SCHED */ 2627 2628 static int sched_rt_global_validate(void) 2629 { 2630 if (sysctl_sched_rt_period <= 0) 2631 return -EINVAL; 2632 2633 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2634 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2635 return -EINVAL; 2636 2637 return 0; 2638 } 2639 2640 static void sched_rt_do_global(void) 2641 { 2642 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2643 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2644 } 2645 2646 int sched_rt_handler(struct ctl_table *table, int write, 2647 void __user *buffer, size_t *lenp, 2648 loff_t *ppos) 2649 { 2650 int old_period, old_runtime; 2651 static DEFINE_MUTEX(mutex); 2652 int ret; 2653 2654 mutex_lock(&mutex); 2655 old_period = sysctl_sched_rt_period; 2656 old_runtime = sysctl_sched_rt_runtime; 2657 2658 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2659 2660 if (!ret && write) { 2661 ret = sched_rt_global_validate(); 2662 if (ret) 2663 goto undo; 2664 2665 ret = sched_dl_global_validate(); 2666 if (ret) 2667 goto undo; 2668 2669 ret = sched_rt_global_constraints(); 2670 if (ret) 2671 goto undo; 2672 2673 sched_rt_do_global(); 2674 sched_dl_do_global(); 2675 } 2676 if (0) { 2677 undo: 2678 sysctl_sched_rt_period = old_period; 2679 sysctl_sched_rt_runtime = old_runtime; 2680 } 2681 mutex_unlock(&mutex); 2682 2683 return ret; 2684 } 2685 2686 int sched_rr_handler(struct ctl_table *table, int write, 2687 void __user *buffer, size_t *lenp, 2688 loff_t *ppos) 2689 { 2690 int ret; 2691 static DEFINE_MUTEX(mutex); 2692 2693 mutex_lock(&mutex); 2694 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2695 /* 2696 * Make sure that internally we keep jiffies. 2697 * Also, writing zero resets the timeslice to default: 2698 */ 2699 if (!ret && write) { 2700 sched_rr_timeslice = 2701 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2702 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2703 } 2704 mutex_unlock(&mutex); 2705 2706 return ret; 2707 } 2708 2709 #ifdef CONFIG_SCHED_DEBUG 2710 void print_rt_stats(struct seq_file *m, int cpu) 2711 { 2712 rt_rq_iter_t iter; 2713 struct rt_rq *rt_rq; 2714 2715 rcu_read_lock(); 2716 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2717 print_rt_rq(m, cpu, rt_rq); 2718 rcu_read_unlock(); 2719 } 2720 #endif /* CONFIG_SCHED_DEBUG */ 2721