xref: /linux/kernel/sched/rt.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 int sched_rr_timeslice = RR_TIMESLICE;
9 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
10 
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 
13 struct rt_bandwidth def_rt_bandwidth;
14 
15 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
16 {
17 	struct rt_bandwidth *rt_b =
18 		container_of(timer, struct rt_bandwidth, rt_period_timer);
19 	int idle = 0;
20 	int overrun;
21 
22 	raw_spin_lock(&rt_b->rt_runtime_lock);
23 	for (;;) {
24 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
25 		if (!overrun)
26 			break;
27 
28 		raw_spin_unlock(&rt_b->rt_runtime_lock);
29 		idle = do_sched_rt_period_timer(rt_b, overrun);
30 		raw_spin_lock(&rt_b->rt_runtime_lock);
31 	}
32 	if (idle)
33 		rt_b->rt_period_active = 0;
34 	raw_spin_unlock(&rt_b->rt_runtime_lock);
35 
36 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
37 }
38 
39 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
40 {
41 	rt_b->rt_period = ns_to_ktime(period);
42 	rt_b->rt_runtime = runtime;
43 
44 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
45 
46 	hrtimer_init(&rt_b->rt_period_timer,
47 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
48 	rt_b->rt_period_timer.function = sched_rt_period_timer;
49 }
50 
51 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
52 {
53 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
54 		return;
55 
56 	raw_spin_lock(&rt_b->rt_runtime_lock);
57 	if (!rt_b->rt_period_active) {
58 		rt_b->rt_period_active = 1;
59 		/*
60 		 * SCHED_DEADLINE updates the bandwidth, as a run away
61 		 * RT task with a DL task could hog a CPU. But DL does
62 		 * not reset the period. If a deadline task was running
63 		 * without an RT task running, it can cause RT tasks to
64 		 * throttle when they start up. Kick the timer right away
65 		 * to update the period.
66 		 */
67 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
68 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
69 	}
70 	raw_spin_unlock(&rt_b->rt_runtime_lock);
71 }
72 
73 void init_rt_rq(struct rt_rq *rt_rq)
74 {
75 	struct rt_prio_array *array;
76 	int i;
77 
78 	array = &rt_rq->active;
79 	for (i = 0; i < MAX_RT_PRIO; i++) {
80 		INIT_LIST_HEAD(array->queue + i);
81 		__clear_bit(i, array->bitmap);
82 	}
83 	/* delimiter for bitsearch: */
84 	__set_bit(MAX_RT_PRIO, array->bitmap);
85 
86 #if defined CONFIG_SMP
87 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
88 	rt_rq->highest_prio.next = MAX_RT_PRIO;
89 	rt_rq->rt_nr_migratory = 0;
90 	rt_rq->overloaded = 0;
91 	plist_head_init(&rt_rq->pushable_tasks);
92 #endif /* CONFIG_SMP */
93 	/* We start is dequeued state, because no RT tasks are queued */
94 	rt_rq->rt_queued = 0;
95 
96 	rt_rq->rt_time = 0;
97 	rt_rq->rt_throttled = 0;
98 	rt_rq->rt_runtime = 0;
99 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
100 }
101 
102 #ifdef CONFIG_RT_GROUP_SCHED
103 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
104 {
105 	hrtimer_cancel(&rt_b->rt_period_timer);
106 }
107 
108 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
109 
110 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
111 {
112 #ifdef CONFIG_SCHED_DEBUG
113 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
114 #endif
115 	return container_of(rt_se, struct task_struct, rt);
116 }
117 
118 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
119 {
120 	return rt_rq->rq;
121 }
122 
123 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
124 {
125 	return rt_se->rt_rq;
126 }
127 
128 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
129 {
130 	struct rt_rq *rt_rq = rt_se->rt_rq;
131 
132 	return rt_rq->rq;
133 }
134 
135 void free_rt_sched_group(struct task_group *tg)
136 {
137 	int i;
138 
139 	if (tg->rt_se)
140 		destroy_rt_bandwidth(&tg->rt_bandwidth);
141 
142 	for_each_possible_cpu(i) {
143 		if (tg->rt_rq)
144 			kfree(tg->rt_rq[i]);
145 		if (tg->rt_se)
146 			kfree(tg->rt_se[i]);
147 	}
148 
149 	kfree(tg->rt_rq);
150 	kfree(tg->rt_se);
151 }
152 
153 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
154 		struct sched_rt_entity *rt_se, int cpu,
155 		struct sched_rt_entity *parent)
156 {
157 	struct rq *rq = cpu_rq(cpu);
158 
159 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
160 	rt_rq->rt_nr_boosted = 0;
161 	rt_rq->rq = rq;
162 	rt_rq->tg = tg;
163 
164 	tg->rt_rq[cpu] = rt_rq;
165 	tg->rt_se[cpu] = rt_se;
166 
167 	if (!rt_se)
168 		return;
169 
170 	if (!parent)
171 		rt_se->rt_rq = &rq->rt;
172 	else
173 		rt_se->rt_rq = parent->my_q;
174 
175 	rt_se->my_q = rt_rq;
176 	rt_se->parent = parent;
177 	INIT_LIST_HEAD(&rt_se->run_list);
178 }
179 
180 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
181 {
182 	struct rt_rq *rt_rq;
183 	struct sched_rt_entity *rt_se;
184 	int i;
185 
186 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
187 	if (!tg->rt_rq)
188 		goto err;
189 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
190 	if (!tg->rt_se)
191 		goto err;
192 
193 	init_rt_bandwidth(&tg->rt_bandwidth,
194 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
195 
196 	for_each_possible_cpu(i) {
197 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
198 				     GFP_KERNEL, cpu_to_node(i));
199 		if (!rt_rq)
200 			goto err;
201 
202 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
203 				     GFP_KERNEL, cpu_to_node(i));
204 		if (!rt_se)
205 			goto err_free_rq;
206 
207 		init_rt_rq(rt_rq);
208 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
209 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
210 	}
211 
212 	return 1;
213 
214 err_free_rq:
215 	kfree(rt_rq);
216 err:
217 	return 0;
218 }
219 
220 #else /* CONFIG_RT_GROUP_SCHED */
221 
222 #define rt_entity_is_task(rt_se) (1)
223 
224 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
225 {
226 	return container_of(rt_se, struct task_struct, rt);
227 }
228 
229 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
230 {
231 	return container_of(rt_rq, struct rq, rt);
232 }
233 
234 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
235 {
236 	struct task_struct *p = rt_task_of(rt_se);
237 
238 	return task_rq(p);
239 }
240 
241 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
242 {
243 	struct rq *rq = rq_of_rt_se(rt_se);
244 
245 	return &rq->rt;
246 }
247 
248 void free_rt_sched_group(struct task_group *tg) { }
249 
250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
251 {
252 	return 1;
253 }
254 #endif /* CONFIG_RT_GROUP_SCHED */
255 
256 #ifdef CONFIG_SMP
257 
258 static void pull_rt_task(struct rq *this_rq);
259 
260 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
261 {
262 	/* Try to pull RT tasks here if we lower this rq's prio */
263 	return rq->rt.highest_prio.curr > prev->prio;
264 }
265 
266 static inline int rt_overloaded(struct rq *rq)
267 {
268 	return atomic_read(&rq->rd->rto_count);
269 }
270 
271 static inline void rt_set_overload(struct rq *rq)
272 {
273 	if (!rq->online)
274 		return;
275 
276 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
277 	/*
278 	 * Make sure the mask is visible before we set
279 	 * the overload count. That is checked to determine
280 	 * if we should look at the mask. It would be a shame
281 	 * if we looked at the mask, but the mask was not
282 	 * updated yet.
283 	 *
284 	 * Matched by the barrier in pull_rt_task().
285 	 */
286 	smp_wmb();
287 	atomic_inc(&rq->rd->rto_count);
288 }
289 
290 static inline void rt_clear_overload(struct rq *rq)
291 {
292 	if (!rq->online)
293 		return;
294 
295 	/* the order here really doesn't matter */
296 	atomic_dec(&rq->rd->rto_count);
297 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
298 }
299 
300 static void update_rt_migration(struct rt_rq *rt_rq)
301 {
302 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
303 		if (!rt_rq->overloaded) {
304 			rt_set_overload(rq_of_rt_rq(rt_rq));
305 			rt_rq->overloaded = 1;
306 		}
307 	} else if (rt_rq->overloaded) {
308 		rt_clear_overload(rq_of_rt_rq(rt_rq));
309 		rt_rq->overloaded = 0;
310 	}
311 }
312 
313 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
314 {
315 	struct task_struct *p;
316 
317 	if (!rt_entity_is_task(rt_se))
318 		return;
319 
320 	p = rt_task_of(rt_se);
321 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
322 
323 	rt_rq->rt_nr_total++;
324 	if (p->nr_cpus_allowed > 1)
325 		rt_rq->rt_nr_migratory++;
326 
327 	update_rt_migration(rt_rq);
328 }
329 
330 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
331 {
332 	struct task_struct *p;
333 
334 	if (!rt_entity_is_task(rt_se))
335 		return;
336 
337 	p = rt_task_of(rt_se);
338 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
339 
340 	rt_rq->rt_nr_total--;
341 	if (p->nr_cpus_allowed > 1)
342 		rt_rq->rt_nr_migratory--;
343 
344 	update_rt_migration(rt_rq);
345 }
346 
347 static inline int has_pushable_tasks(struct rq *rq)
348 {
349 	return !plist_head_empty(&rq->rt.pushable_tasks);
350 }
351 
352 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
353 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
354 
355 static void push_rt_tasks(struct rq *);
356 static void pull_rt_task(struct rq *);
357 
358 static inline void rt_queue_push_tasks(struct rq *rq)
359 {
360 	if (!has_pushable_tasks(rq))
361 		return;
362 
363 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
364 }
365 
366 static inline void rt_queue_pull_task(struct rq *rq)
367 {
368 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
369 }
370 
371 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
372 {
373 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
374 	plist_node_init(&p->pushable_tasks, p->prio);
375 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
376 
377 	/* Update the highest prio pushable task */
378 	if (p->prio < rq->rt.highest_prio.next)
379 		rq->rt.highest_prio.next = p->prio;
380 }
381 
382 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
383 {
384 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385 
386 	/* Update the new highest prio pushable task */
387 	if (has_pushable_tasks(rq)) {
388 		p = plist_first_entry(&rq->rt.pushable_tasks,
389 				      struct task_struct, pushable_tasks);
390 		rq->rt.highest_prio.next = p->prio;
391 	} else
392 		rq->rt.highest_prio.next = MAX_RT_PRIO;
393 }
394 
395 #else
396 
397 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 }
400 
401 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 }
404 
405 static inline
406 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
407 {
408 }
409 
410 static inline
411 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414 
415 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
416 {
417 	return false;
418 }
419 
420 static inline void pull_rt_task(struct rq *this_rq)
421 {
422 }
423 
424 static inline void rt_queue_push_tasks(struct rq *rq)
425 {
426 }
427 #endif /* CONFIG_SMP */
428 
429 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
430 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
431 
432 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
433 {
434 	return rt_se->on_rq;
435 }
436 
437 #ifdef CONFIG_RT_GROUP_SCHED
438 
439 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
440 {
441 	if (!rt_rq->tg)
442 		return RUNTIME_INF;
443 
444 	return rt_rq->rt_runtime;
445 }
446 
447 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
448 {
449 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
450 }
451 
452 typedef struct task_group *rt_rq_iter_t;
453 
454 static inline struct task_group *next_task_group(struct task_group *tg)
455 {
456 	do {
457 		tg = list_entry_rcu(tg->list.next,
458 			typeof(struct task_group), list);
459 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
460 
461 	if (&tg->list == &task_groups)
462 		tg = NULL;
463 
464 	return tg;
465 }
466 
467 #define for_each_rt_rq(rt_rq, iter, rq)					\
468 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
469 		(iter = next_task_group(iter)) &&			\
470 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
471 
472 #define for_each_sched_rt_entity(rt_se) \
473 	for (; rt_se; rt_se = rt_se->parent)
474 
475 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
476 {
477 	return rt_se->my_q;
478 }
479 
480 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
481 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
482 
483 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
484 {
485 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
486 	struct rq *rq = rq_of_rt_rq(rt_rq);
487 	struct sched_rt_entity *rt_se;
488 
489 	int cpu = cpu_of(rq);
490 
491 	rt_se = rt_rq->tg->rt_se[cpu];
492 
493 	if (rt_rq->rt_nr_running) {
494 		if (!rt_se)
495 			enqueue_top_rt_rq(rt_rq);
496 		else if (!on_rt_rq(rt_se))
497 			enqueue_rt_entity(rt_se, 0);
498 
499 		if (rt_rq->highest_prio.curr < curr->prio)
500 			resched_curr(rq);
501 	}
502 }
503 
504 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
505 {
506 	struct sched_rt_entity *rt_se;
507 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
508 
509 	rt_se = rt_rq->tg->rt_se[cpu];
510 
511 	if (!rt_se) {
512 		dequeue_top_rt_rq(rt_rq);
513 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
514 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
515 	}
516 	else if (on_rt_rq(rt_se))
517 		dequeue_rt_entity(rt_se, 0);
518 }
519 
520 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
521 {
522 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
523 }
524 
525 static int rt_se_boosted(struct sched_rt_entity *rt_se)
526 {
527 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
528 	struct task_struct *p;
529 
530 	if (rt_rq)
531 		return !!rt_rq->rt_nr_boosted;
532 
533 	p = rt_task_of(rt_se);
534 	return p->prio != p->normal_prio;
535 }
536 
537 #ifdef CONFIG_SMP
538 static inline const struct cpumask *sched_rt_period_mask(void)
539 {
540 	return this_rq()->rd->span;
541 }
542 #else
543 static inline const struct cpumask *sched_rt_period_mask(void)
544 {
545 	return cpu_online_mask;
546 }
547 #endif
548 
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
551 {
552 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
553 }
554 
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
556 {
557 	return &rt_rq->tg->rt_bandwidth;
558 }
559 
560 #else /* !CONFIG_RT_GROUP_SCHED */
561 
562 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
563 {
564 	return rt_rq->rt_runtime;
565 }
566 
567 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
568 {
569 	return ktime_to_ns(def_rt_bandwidth.rt_period);
570 }
571 
572 typedef struct rt_rq *rt_rq_iter_t;
573 
574 #define for_each_rt_rq(rt_rq, iter, rq) \
575 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
576 
577 #define for_each_sched_rt_entity(rt_se) \
578 	for (; rt_se; rt_se = NULL)
579 
580 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
581 {
582 	return NULL;
583 }
584 
585 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
586 {
587 	struct rq *rq = rq_of_rt_rq(rt_rq);
588 
589 	if (!rt_rq->rt_nr_running)
590 		return;
591 
592 	enqueue_top_rt_rq(rt_rq);
593 	resched_curr(rq);
594 }
595 
596 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598 	dequeue_top_rt_rq(rt_rq);
599 }
600 
601 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
602 {
603 	return rt_rq->rt_throttled;
604 }
605 
606 static inline const struct cpumask *sched_rt_period_mask(void)
607 {
608 	return cpu_online_mask;
609 }
610 
611 static inline
612 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
613 {
614 	return &cpu_rq(cpu)->rt;
615 }
616 
617 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
618 {
619 	return &def_rt_bandwidth;
620 }
621 
622 #endif /* CONFIG_RT_GROUP_SCHED */
623 
624 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
625 {
626 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
627 
628 	return (hrtimer_active(&rt_b->rt_period_timer) ||
629 		rt_rq->rt_time < rt_b->rt_runtime);
630 }
631 
632 #ifdef CONFIG_SMP
633 /*
634  * We ran out of runtime, see if we can borrow some from our neighbours.
635  */
636 static void do_balance_runtime(struct rt_rq *rt_rq)
637 {
638 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
640 	int i, weight;
641 	u64 rt_period;
642 
643 	weight = cpumask_weight(rd->span);
644 
645 	raw_spin_lock(&rt_b->rt_runtime_lock);
646 	rt_period = ktime_to_ns(rt_b->rt_period);
647 	for_each_cpu(i, rd->span) {
648 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
649 		s64 diff;
650 
651 		if (iter == rt_rq)
652 			continue;
653 
654 		raw_spin_lock(&iter->rt_runtime_lock);
655 		/*
656 		 * Either all rqs have inf runtime and there's nothing to steal
657 		 * or __disable_runtime() below sets a specific rq to inf to
658 		 * indicate its been disabled and disalow stealing.
659 		 */
660 		if (iter->rt_runtime == RUNTIME_INF)
661 			goto next;
662 
663 		/*
664 		 * From runqueues with spare time, take 1/n part of their
665 		 * spare time, but no more than our period.
666 		 */
667 		diff = iter->rt_runtime - iter->rt_time;
668 		if (diff > 0) {
669 			diff = div_u64((u64)diff, weight);
670 			if (rt_rq->rt_runtime + diff > rt_period)
671 				diff = rt_period - rt_rq->rt_runtime;
672 			iter->rt_runtime -= diff;
673 			rt_rq->rt_runtime += diff;
674 			if (rt_rq->rt_runtime == rt_period) {
675 				raw_spin_unlock(&iter->rt_runtime_lock);
676 				break;
677 			}
678 		}
679 next:
680 		raw_spin_unlock(&iter->rt_runtime_lock);
681 	}
682 	raw_spin_unlock(&rt_b->rt_runtime_lock);
683 }
684 
685 /*
686  * Ensure this RQ takes back all the runtime it lend to its neighbours.
687  */
688 static void __disable_runtime(struct rq *rq)
689 {
690 	struct root_domain *rd = rq->rd;
691 	rt_rq_iter_t iter;
692 	struct rt_rq *rt_rq;
693 
694 	if (unlikely(!scheduler_running))
695 		return;
696 
697 	for_each_rt_rq(rt_rq, iter, rq) {
698 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
699 		s64 want;
700 		int i;
701 
702 		raw_spin_lock(&rt_b->rt_runtime_lock);
703 		raw_spin_lock(&rt_rq->rt_runtime_lock);
704 		/*
705 		 * Either we're all inf and nobody needs to borrow, or we're
706 		 * already disabled and thus have nothing to do, or we have
707 		 * exactly the right amount of runtime to take out.
708 		 */
709 		if (rt_rq->rt_runtime == RUNTIME_INF ||
710 				rt_rq->rt_runtime == rt_b->rt_runtime)
711 			goto balanced;
712 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
713 
714 		/*
715 		 * Calculate the difference between what we started out with
716 		 * and what we current have, that's the amount of runtime
717 		 * we lend and now have to reclaim.
718 		 */
719 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
720 
721 		/*
722 		 * Greedy reclaim, take back as much as we can.
723 		 */
724 		for_each_cpu(i, rd->span) {
725 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
726 			s64 diff;
727 
728 			/*
729 			 * Can't reclaim from ourselves or disabled runqueues.
730 			 */
731 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
732 				continue;
733 
734 			raw_spin_lock(&iter->rt_runtime_lock);
735 			if (want > 0) {
736 				diff = min_t(s64, iter->rt_runtime, want);
737 				iter->rt_runtime -= diff;
738 				want -= diff;
739 			} else {
740 				iter->rt_runtime -= want;
741 				want -= want;
742 			}
743 			raw_spin_unlock(&iter->rt_runtime_lock);
744 
745 			if (!want)
746 				break;
747 		}
748 
749 		raw_spin_lock(&rt_rq->rt_runtime_lock);
750 		/*
751 		 * We cannot be left wanting - that would mean some runtime
752 		 * leaked out of the system.
753 		 */
754 		BUG_ON(want);
755 balanced:
756 		/*
757 		 * Disable all the borrow logic by pretending we have inf
758 		 * runtime - in which case borrowing doesn't make sense.
759 		 */
760 		rt_rq->rt_runtime = RUNTIME_INF;
761 		rt_rq->rt_throttled = 0;
762 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
763 		raw_spin_unlock(&rt_b->rt_runtime_lock);
764 
765 		/* Make rt_rq available for pick_next_task() */
766 		sched_rt_rq_enqueue(rt_rq);
767 	}
768 }
769 
770 static void __enable_runtime(struct rq *rq)
771 {
772 	rt_rq_iter_t iter;
773 	struct rt_rq *rt_rq;
774 
775 	if (unlikely(!scheduler_running))
776 		return;
777 
778 	/*
779 	 * Reset each runqueue's bandwidth settings
780 	 */
781 	for_each_rt_rq(rt_rq, iter, rq) {
782 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
783 
784 		raw_spin_lock(&rt_b->rt_runtime_lock);
785 		raw_spin_lock(&rt_rq->rt_runtime_lock);
786 		rt_rq->rt_runtime = rt_b->rt_runtime;
787 		rt_rq->rt_time = 0;
788 		rt_rq->rt_throttled = 0;
789 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
790 		raw_spin_unlock(&rt_b->rt_runtime_lock);
791 	}
792 }
793 
794 static void balance_runtime(struct rt_rq *rt_rq)
795 {
796 	if (!sched_feat(RT_RUNTIME_SHARE))
797 		return;
798 
799 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
800 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
801 		do_balance_runtime(rt_rq);
802 		raw_spin_lock(&rt_rq->rt_runtime_lock);
803 	}
804 }
805 #else /* !CONFIG_SMP */
806 static inline void balance_runtime(struct rt_rq *rt_rq) {}
807 #endif /* CONFIG_SMP */
808 
809 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
810 {
811 	int i, idle = 1, throttled = 0;
812 	const struct cpumask *span;
813 
814 	span = sched_rt_period_mask();
815 #ifdef CONFIG_RT_GROUP_SCHED
816 	/*
817 	 * FIXME: isolated CPUs should really leave the root task group,
818 	 * whether they are isolcpus or were isolated via cpusets, lest
819 	 * the timer run on a CPU which does not service all runqueues,
820 	 * potentially leaving other CPUs indefinitely throttled.  If
821 	 * isolation is really required, the user will turn the throttle
822 	 * off to kill the perturbations it causes anyway.  Meanwhile,
823 	 * this maintains functionality for boot and/or troubleshooting.
824 	 */
825 	if (rt_b == &root_task_group.rt_bandwidth)
826 		span = cpu_online_mask;
827 #endif
828 	for_each_cpu(i, span) {
829 		int enqueue = 0;
830 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
831 		struct rq *rq = rq_of_rt_rq(rt_rq);
832 		int skip;
833 
834 		/*
835 		 * When span == cpu_online_mask, taking each rq->lock
836 		 * can be time-consuming. Try to avoid it when possible.
837 		 */
838 		raw_spin_lock(&rt_rq->rt_runtime_lock);
839 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
840 			rt_rq->rt_runtime = rt_b->rt_runtime;
841 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
842 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 		if (skip)
844 			continue;
845 
846 		raw_spin_lock(&rq->lock);
847 		update_rq_clock(rq);
848 
849 		if (rt_rq->rt_time) {
850 			u64 runtime;
851 
852 			raw_spin_lock(&rt_rq->rt_runtime_lock);
853 			if (rt_rq->rt_throttled)
854 				balance_runtime(rt_rq);
855 			runtime = rt_rq->rt_runtime;
856 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
857 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
858 				rt_rq->rt_throttled = 0;
859 				enqueue = 1;
860 
861 				/*
862 				 * When we're idle and a woken (rt) task is
863 				 * throttled check_preempt_curr() will set
864 				 * skip_update and the time between the wakeup
865 				 * and this unthrottle will get accounted as
866 				 * 'runtime'.
867 				 */
868 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
869 					rq_clock_cancel_skipupdate(rq);
870 			}
871 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
872 				idle = 0;
873 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
874 		} else if (rt_rq->rt_nr_running) {
875 			idle = 0;
876 			if (!rt_rq_throttled(rt_rq))
877 				enqueue = 1;
878 		}
879 		if (rt_rq->rt_throttled)
880 			throttled = 1;
881 
882 		if (enqueue)
883 			sched_rt_rq_enqueue(rt_rq);
884 		raw_spin_unlock(&rq->lock);
885 	}
886 
887 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
888 		return 1;
889 
890 	return idle;
891 }
892 
893 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
894 {
895 #ifdef CONFIG_RT_GROUP_SCHED
896 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
897 
898 	if (rt_rq)
899 		return rt_rq->highest_prio.curr;
900 #endif
901 
902 	return rt_task_of(rt_se)->prio;
903 }
904 
905 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
906 {
907 	u64 runtime = sched_rt_runtime(rt_rq);
908 
909 	if (rt_rq->rt_throttled)
910 		return rt_rq_throttled(rt_rq);
911 
912 	if (runtime >= sched_rt_period(rt_rq))
913 		return 0;
914 
915 	balance_runtime(rt_rq);
916 	runtime = sched_rt_runtime(rt_rq);
917 	if (runtime == RUNTIME_INF)
918 		return 0;
919 
920 	if (rt_rq->rt_time > runtime) {
921 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
922 
923 		/*
924 		 * Don't actually throttle groups that have no runtime assigned
925 		 * but accrue some time due to boosting.
926 		 */
927 		if (likely(rt_b->rt_runtime)) {
928 			rt_rq->rt_throttled = 1;
929 			printk_deferred_once("sched: RT throttling activated\n");
930 		} else {
931 			/*
932 			 * In case we did anyway, make it go away,
933 			 * replenishment is a joke, since it will replenish us
934 			 * with exactly 0 ns.
935 			 */
936 			rt_rq->rt_time = 0;
937 		}
938 
939 		if (rt_rq_throttled(rt_rq)) {
940 			sched_rt_rq_dequeue(rt_rq);
941 			return 1;
942 		}
943 	}
944 
945 	return 0;
946 }
947 
948 /*
949  * Update the current task's runtime statistics. Skip current tasks that
950  * are not in our scheduling class.
951  */
952 static void update_curr_rt(struct rq *rq)
953 {
954 	struct task_struct *curr = rq->curr;
955 	struct sched_rt_entity *rt_se = &curr->rt;
956 	u64 delta_exec;
957 	u64 now;
958 
959 	if (curr->sched_class != &rt_sched_class)
960 		return;
961 
962 	now = rq_clock_task(rq);
963 	delta_exec = now - curr->se.exec_start;
964 	if (unlikely((s64)delta_exec <= 0))
965 		return;
966 
967 	schedstat_set(curr->se.statistics.exec_max,
968 		      max(curr->se.statistics.exec_max, delta_exec));
969 
970 	curr->se.sum_exec_runtime += delta_exec;
971 	account_group_exec_runtime(curr, delta_exec);
972 
973 	curr->se.exec_start = now;
974 	cgroup_account_cputime(curr, delta_exec);
975 
976 	sched_rt_avg_update(rq, delta_exec);
977 
978 	if (!rt_bandwidth_enabled())
979 		return;
980 
981 	for_each_sched_rt_entity(rt_se) {
982 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
983 
984 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
985 			raw_spin_lock(&rt_rq->rt_runtime_lock);
986 			rt_rq->rt_time += delta_exec;
987 			if (sched_rt_runtime_exceeded(rt_rq))
988 				resched_curr(rq);
989 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
990 		}
991 	}
992 }
993 
994 static void
995 dequeue_top_rt_rq(struct rt_rq *rt_rq)
996 {
997 	struct rq *rq = rq_of_rt_rq(rt_rq);
998 
999 	BUG_ON(&rq->rt != rt_rq);
1000 
1001 	if (!rt_rq->rt_queued)
1002 		return;
1003 
1004 	BUG_ON(!rq->nr_running);
1005 
1006 	sub_nr_running(rq, rt_rq->rt_nr_running);
1007 	rt_rq->rt_queued = 0;
1008 
1009 }
1010 
1011 static void
1012 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1013 {
1014 	struct rq *rq = rq_of_rt_rq(rt_rq);
1015 
1016 	BUG_ON(&rq->rt != rt_rq);
1017 
1018 	if (rt_rq->rt_queued)
1019 		return;
1020 
1021 	if (rt_rq_throttled(rt_rq))
1022 		return;
1023 
1024 	if (rt_rq->rt_nr_running) {
1025 		add_nr_running(rq, rt_rq->rt_nr_running);
1026 		rt_rq->rt_queued = 1;
1027 	}
1028 
1029 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1030 	cpufreq_update_util(rq, 0);
1031 }
1032 
1033 #if defined CONFIG_SMP
1034 
1035 static void
1036 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1037 {
1038 	struct rq *rq = rq_of_rt_rq(rt_rq);
1039 
1040 #ifdef CONFIG_RT_GROUP_SCHED
1041 	/*
1042 	 * Change rq's cpupri only if rt_rq is the top queue.
1043 	 */
1044 	if (&rq->rt != rt_rq)
1045 		return;
1046 #endif
1047 	if (rq->online && prio < prev_prio)
1048 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1049 }
1050 
1051 static void
1052 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1053 {
1054 	struct rq *rq = rq_of_rt_rq(rt_rq);
1055 
1056 #ifdef CONFIG_RT_GROUP_SCHED
1057 	/*
1058 	 * Change rq's cpupri only if rt_rq is the top queue.
1059 	 */
1060 	if (&rq->rt != rt_rq)
1061 		return;
1062 #endif
1063 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1064 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1065 }
1066 
1067 #else /* CONFIG_SMP */
1068 
1069 static inline
1070 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1071 static inline
1072 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073 
1074 #endif /* CONFIG_SMP */
1075 
1076 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1077 static void
1078 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1079 {
1080 	int prev_prio = rt_rq->highest_prio.curr;
1081 
1082 	if (prio < prev_prio)
1083 		rt_rq->highest_prio.curr = prio;
1084 
1085 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1086 }
1087 
1088 static void
1089 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1090 {
1091 	int prev_prio = rt_rq->highest_prio.curr;
1092 
1093 	if (rt_rq->rt_nr_running) {
1094 
1095 		WARN_ON(prio < prev_prio);
1096 
1097 		/*
1098 		 * This may have been our highest task, and therefore
1099 		 * we may have some recomputation to do
1100 		 */
1101 		if (prio == prev_prio) {
1102 			struct rt_prio_array *array = &rt_rq->active;
1103 
1104 			rt_rq->highest_prio.curr =
1105 				sched_find_first_bit(array->bitmap);
1106 		}
1107 
1108 	} else
1109 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1110 
1111 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1112 }
1113 
1114 #else
1115 
1116 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1117 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118 
1119 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1120 
1121 #ifdef CONFIG_RT_GROUP_SCHED
1122 
1123 static void
1124 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125 {
1126 	if (rt_se_boosted(rt_se))
1127 		rt_rq->rt_nr_boosted++;
1128 
1129 	if (rt_rq->tg)
1130 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1131 }
1132 
1133 static void
1134 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135 {
1136 	if (rt_se_boosted(rt_se))
1137 		rt_rq->rt_nr_boosted--;
1138 
1139 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1140 }
1141 
1142 #else /* CONFIG_RT_GROUP_SCHED */
1143 
1144 static void
1145 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146 {
1147 	start_rt_bandwidth(&def_rt_bandwidth);
1148 }
1149 
1150 static inline
1151 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1152 
1153 #endif /* CONFIG_RT_GROUP_SCHED */
1154 
1155 static inline
1156 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1157 {
1158 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1159 
1160 	if (group_rq)
1161 		return group_rq->rt_nr_running;
1162 	else
1163 		return 1;
1164 }
1165 
1166 static inline
1167 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1168 {
1169 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1170 	struct task_struct *tsk;
1171 
1172 	if (group_rq)
1173 		return group_rq->rr_nr_running;
1174 
1175 	tsk = rt_task_of(rt_se);
1176 
1177 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1178 }
1179 
1180 static inline
1181 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182 {
1183 	int prio = rt_se_prio(rt_se);
1184 
1185 	WARN_ON(!rt_prio(prio));
1186 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1187 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1188 
1189 	inc_rt_prio(rt_rq, prio);
1190 	inc_rt_migration(rt_se, rt_rq);
1191 	inc_rt_group(rt_se, rt_rq);
1192 }
1193 
1194 static inline
1195 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1198 	WARN_ON(!rt_rq->rt_nr_running);
1199 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1200 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1201 
1202 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1203 	dec_rt_migration(rt_se, rt_rq);
1204 	dec_rt_group(rt_se, rt_rq);
1205 }
1206 
1207 /*
1208  * Change rt_se->run_list location unless SAVE && !MOVE
1209  *
1210  * assumes ENQUEUE/DEQUEUE flags match
1211  */
1212 static inline bool move_entity(unsigned int flags)
1213 {
1214 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1215 		return false;
1216 
1217 	return true;
1218 }
1219 
1220 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1221 {
1222 	list_del_init(&rt_se->run_list);
1223 
1224 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1225 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1226 
1227 	rt_se->on_list = 0;
1228 }
1229 
1230 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1231 {
1232 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1233 	struct rt_prio_array *array = &rt_rq->active;
1234 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1235 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1236 
1237 	/*
1238 	 * Don't enqueue the group if its throttled, or when empty.
1239 	 * The latter is a consequence of the former when a child group
1240 	 * get throttled and the current group doesn't have any other
1241 	 * active members.
1242 	 */
1243 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1244 		if (rt_se->on_list)
1245 			__delist_rt_entity(rt_se, array);
1246 		return;
1247 	}
1248 
1249 	if (move_entity(flags)) {
1250 		WARN_ON_ONCE(rt_se->on_list);
1251 		if (flags & ENQUEUE_HEAD)
1252 			list_add(&rt_se->run_list, queue);
1253 		else
1254 			list_add_tail(&rt_se->run_list, queue);
1255 
1256 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1257 		rt_se->on_list = 1;
1258 	}
1259 	rt_se->on_rq = 1;
1260 
1261 	inc_rt_tasks(rt_se, rt_rq);
1262 }
1263 
1264 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1265 {
1266 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1267 	struct rt_prio_array *array = &rt_rq->active;
1268 
1269 	if (move_entity(flags)) {
1270 		WARN_ON_ONCE(!rt_se->on_list);
1271 		__delist_rt_entity(rt_se, array);
1272 	}
1273 	rt_se->on_rq = 0;
1274 
1275 	dec_rt_tasks(rt_se, rt_rq);
1276 }
1277 
1278 /*
1279  * Because the prio of an upper entry depends on the lower
1280  * entries, we must remove entries top - down.
1281  */
1282 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1283 {
1284 	struct sched_rt_entity *back = NULL;
1285 
1286 	for_each_sched_rt_entity(rt_se) {
1287 		rt_se->back = back;
1288 		back = rt_se;
1289 	}
1290 
1291 	dequeue_top_rt_rq(rt_rq_of_se(back));
1292 
1293 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1294 		if (on_rt_rq(rt_se))
1295 			__dequeue_rt_entity(rt_se, flags);
1296 	}
1297 }
1298 
1299 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300 {
1301 	struct rq *rq = rq_of_rt_se(rt_se);
1302 
1303 	dequeue_rt_stack(rt_se, flags);
1304 	for_each_sched_rt_entity(rt_se)
1305 		__enqueue_rt_entity(rt_se, flags);
1306 	enqueue_top_rt_rq(&rq->rt);
1307 }
1308 
1309 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1310 {
1311 	struct rq *rq = rq_of_rt_se(rt_se);
1312 
1313 	dequeue_rt_stack(rt_se, flags);
1314 
1315 	for_each_sched_rt_entity(rt_se) {
1316 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1317 
1318 		if (rt_rq && rt_rq->rt_nr_running)
1319 			__enqueue_rt_entity(rt_se, flags);
1320 	}
1321 	enqueue_top_rt_rq(&rq->rt);
1322 }
1323 
1324 /*
1325  * Adding/removing a task to/from a priority array:
1326  */
1327 static void
1328 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1329 {
1330 	struct sched_rt_entity *rt_se = &p->rt;
1331 
1332 	if (flags & ENQUEUE_WAKEUP)
1333 		rt_se->timeout = 0;
1334 
1335 	enqueue_rt_entity(rt_se, flags);
1336 
1337 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1338 		enqueue_pushable_task(rq, p);
1339 }
1340 
1341 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1342 {
1343 	struct sched_rt_entity *rt_se = &p->rt;
1344 
1345 	update_curr_rt(rq);
1346 	dequeue_rt_entity(rt_se, flags);
1347 
1348 	dequeue_pushable_task(rq, p);
1349 }
1350 
1351 /*
1352  * Put task to the head or the end of the run list without the overhead of
1353  * dequeue followed by enqueue.
1354  */
1355 static void
1356 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1357 {
1358 	if (on_rt_rq(rt_se)) {
1359 		struct rt_prio_array *array = &rt_rq->active;
1360 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1361 
1362 		if (head)
1363 			list_move(&rt_se->run_list, queue);
1364 		else
1365 			list_move_tail(&rt_se->run_list, queue);
1366 	}
1367 }
1368 
1369 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1370 {
1371 	struct sched_rt_entity *rt_se = &p->rt;
1372 	struct rt_rq *rt_rq;
1373 
1374 	for_each_sched_rt_entity(rt_se) {
1375 		rt_rq = rt_rq_of_se(rt_se);
1376 		requeue_rt_entity(rt_rq, rt_se, head);
1377 	}
1378 }
1379 
1380 static void yield_task_rt(struct rq *rq)
1381 {
1382 	requeue_task_rt(rq, rq->curr, 0);
1383 }
1384 
1385 #ifdef CONFIG_SMP
1386 static int find_lowest_rq(struct task_struct *task);
1387 
1388 static int
1389 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1390 {
1391 	struct task_struct *curr;
1392 	struct rq *rq;
1393 
1394 	/* For anything but wake ups, just return the task_cpu */
1395 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1396 		goto out;
1397 
1398 	rq = cpu_rq(cpu);
1399 
1400 	rcu_read_lock();
1401 	curr = READ_ONCE(rq->curr); /* unlocked access */
1402 
1403 	/*
1404 	 * If the current task on @p's runqueue is an RT task, then
1405 	 * try to see if we can wake this RT task up on another
1406 	 * runqueue. Otherwise simply start this RT task
1407 	 * on its current runqueue.
1408 	 *
1409 	 * We want to avoid overloading runqueues. If the woken
1410 	 * task is a higher priority, then it will stay on this CPU
1411 	 * and the lower prio task should be moved to another CPU.
1412 	 * Even though this will probably make the lower prio task
1413 	 * lose its cache, we do not want to bounce a higher task
1414 	 * around just because it gave up its CPU, perhaps for a
1415 	 * lock?
1416 	 *
1417 	 * For equal prio tasks, we just let the scheduler sort it out.
1418 	 *
1419 	 * Otherwise, just let it ride on the affined RQ and the
1420 	 * post-schedule router will push the preempted task away
1421 	 *
1422 	 * This test is optimistic, if we get it wrong the load-balancer
1423 	 * will have to sort it out.
1424 	 */
1425 	if (curr && unlikely(rt_task(curr)) &&
1426 	    (curr->nr_cpus_allowed < 2 ||
1427 	     curr->prio <= p->prio)) {
1428 		int target = find_lowest_rq(p);
1429 
1430 		/*
1431 		 * Don't bother moving it if the destination CPU is
1432 		 * not running a lower priority task.
1433 		 */
1434 		if (target != -1 &&
1435 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1436 			cpu = target;
1437 	}
1438 	rcu_read_unlock();
1439 
1440 out:
1441 	return cpu;
1442 }
1443 
1444 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1445 {
1446 	/*
1447 	 * Current can't be migrated, useless to reschedule,
1448 	 * let's hope p can move out.
1449 	 */
1450 	if (rq->curr->nr_cpus_allowed == 1 ||
1451 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1452 		return;
1453 
1454 	/*
1455 	 * p is migratable, so let's not schedule it and
1456 	 * see if it is pushed or pulled somewhere else.
1457 	 */
1458 	if (p->nr_cpus_allowed != 1
1459 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1460 		return;
1461 
1462 	/*
1463 	 * There appear to be other CPUs that can accept
1464 	 * the current task but none can run 'p', so lets reschedule
1465 	 * to try and push the current task away:
1466 	 */
1467 	requeue_task_rt(rq, p, 1);
1468 	resched_curr(rq);
1469 }
1470 
1471 #endif /* CONFIG_SMP */
1472 
1473 /*
1474  * Preempt the current task with a newly woken task if needed:
1475  */
1476 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1477 {
1478 	if (p->prio < rq->curr->prio) {
1479 		resched_curr(rq);
1480 		return;
1481 	}
1482 
1483 #ifdef CONFIG_SMP
1484 	/*
1485 	 * If:
1486 	 *
1487 	 * - the newly woken task is of equal priority to the current task
1488 	 * - the newly woken task is non-migratable while current is migratable
1489 	 * - current will be preempted on the next reschedule
1490 	 *
1491 	 * we should check to see if current can readily move to a different
1492 	 * cpu.  If so, we will reschedule to allow the push logic to try
1493 	 * to move current somewhere else, making room for our non-migratable
1494 	 * task.
1495 	 */
1496 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1497 		check_preempt_equal_prio(rq, p);
1498 #endif
1499 }
1500 
1501 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1502 						   struct rt_rq *rt_rq)
1503 {
1504 	struct rt_prio_array *array = &rt_rq->active;
1505 	struct sched_rt_entity *next = NULL;
1506 	struct list_head *queue;
1507 	int idx;
1508 
1509 	idx = sched_find_first_bit(array->bitmap);
1510 	BUG_ON(idx >= MAX_RT_PRIO);
1511 
1512 	queue = array->queue + idx;
1513 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1514 
1515 	return next;
1516 }
1517 
1518 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1519 {
1520 	struct sched_rt_entity *rt_se;
1521 	struct task_struct *p;
1522 	struct rt_rq *rt_rq  = &rq->rt;
1523 
1524 	do {
1525 		rt_se = pick_next_rt_entity(rq, rt_rq);
1526 		BUG_ON(!rt_se);
1527 		rt_rq = group_rt_rq(rt_se);
1528 	} while (rt_rq);
1529 
1530 	p = rt_task_of(rt_se);
1531 	p->se.exec_start = rq_clock_task(rq);
1532 
1533 	return p;
1534 }
1535 
1536 static struct task_struct *
1537 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1538 {
1539 	struct task_struct *p;
1540 	struct rt_rq *rt_rq = &rq->rt;
1541 
1542 	if (need_pull_rt_task(rq, prev)) {
1543 		/*
1544 		 * This is OK, because current is on_cpu, which avoids it being
1545 		 * picked for load-balance and preemption/IRQs are still
1546 		 * disabled avoiding further scheduler activity on it and we're
1547 		 * being very careful to re-start the picking loop.
1548 		 */
1549 		rq_unpin_lock(rq, rf);
1550 		pull_rt_task(rq);
1551 		rq_repin_lock(rq, rf);
1552 		/*
1553 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1554 		 * means a dl or stop task can slip in, in which case we need
1555 		 * to re-start task selection.
1556 		 */
1557 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1558 			     rq->dl.dl_nr_running))
1559 			return RETRY_TASK;
1560 	}
1561 
1562 	/*
1563 	 * We may dequeue prev's rt_rq in put_prev_task().
1564 	 * So, we update time before rt_nr_running check.
1565 	 */
1566 	if (prev->sched_class == &rt_sched_class)
1567 		update_curr_rt(rq);
1568 
1569 	if (!rt_rq->rt_queued)
1570 		return NULL;
1571 
1572 	put_prev_task(rq, prev);
1573 
1574 	p = _pick_next_task_rt(rq);
1575 
1576 	/* The running task is never eligible for pushing */
1577 	dequeue_pushable_task(rq, p);
1578 
1579 	rt_queue_push_tasks(rq);
1580 
1581 	return p;
1582 }
1583 
1584 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1585 {
1586 	update_curr_rt(rq);
1587 
1588 	/*
1589 	 * The previous task needs to be made eligible for pushing
1590 	 * if it is still active
1591 	 */
1592 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1593 		enqueue_pushable_task(rq, p);
1594 }
1595 
1596 #ifdef CONFIG_SMP
1597 
1598 /* Only try algorithms three times */
1599 #define RT_MAX_TRIES 3
1600 
1601 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1602 {
1603 	if (!task_running(rq, p) &&
1604 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1605 		return 1;
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Return the highest pushable rq's task, which is suitable to be executed
1612  * on the CPU, NULL otherwise
1613  */
1614 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1615 {
1616 	struct plist_head *head = &rq->rt.pushable_tasks;
1617 	struct task_struct *p;
1618 
1619 	if (!has_pushable_tasks(rq))
1620 		return NULL;
1621 
1622 	plist_for_each_entry(p, head, pushable_tasks) {
1623 		if (pick_rt_task(rq, p, cpu))
1624 			return p;
1625 	}
1626 
1627 	return NULL;
1628 }
1629 
1630 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1631 
1632 static int find_lowest_rq(struct task_struct *task)
1633 {
1634 	struct sched_domain *sd;
1635 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1636 	int this_cpu = smp_processor_id();
1637 	int cpu      = task_cpu(task);
1638 
1639 	/* Make sure the mask is initialized first */
1640 	if (unlikely(!lowest_mask))
1641 		return -1;
1642 
1643 	if (task->nr_cpus_allowed == 1)
1644 		return -1; /* No other targets possible */
1645 
1646 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1647 		return -1; /* No targets found */
1648 
1649 	/*
1650 	 * At this point we have built a mask of CPUs representing the
1651 	 * lowest priority tasks in the system.  Now we want to elect
1652 	 * the best one based on our affinity and topology.
1653 	 *
1654 	 * We prioritize the last CPU that the task executed on since
1655 	 * it is most likely cache-hot in that location.
1656 	 */
1657 	if (cpumask_test_cpu(cpu, lowest_mask))
1658 		return cpu;
1659 
1660 	/*
1661 	 * Otherwise, we consult the sched_domains span maps to figure
1662 	 * out which CPU is logically closest to our hot cache data.
1663 	 */
1664 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1665 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1666 
1667 	rcu_read_lock();
1668 	for_each_domain(cpu, sd) {
1669 		if (sd->flags & SD_WAKE_AFFINE) {
1670 			int best_cpu;
1671 
1672 			/*
1673 			 * "this_cpu" is cheaper to preempt than a
1674 			 * remote processor.
1675 			 */
1676 			if (this_cpu != -1 &&
1677 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1678 				rcu_read_unlock();
1679 				return this_cpu;
1680 			}
1681 
1682 			best_cpu = cpumask_first_and(lowest_mask,
1683 						     sched_domain_span(sd));
1684 			if (best_cpu < nr_cpu_ids) {
1685 				rcu_read_unlock();
1686 				return best_cpu;
1687 			}
1688 		}
1689 	}
1690 	rcu_read_unlock();
1691 
1692 	/*
1693 	 * And finally, if there were no matches within the domains
1694 	 * just give the caller *something* to work with from the compatible
1695 	 * locations.
1696 	 */
1697 	if (this_cpu != -1)
1698 		return this_cpu;
1699 
1700 	cpu = cpumask_any(lowest_mask);
1701 	if (cpu < nr_cpu_ids)
1702 		return cpu;
1703 
1704 	return -1;
1705 }
1706 
1707 /* Will lock the rq it finds */
1708 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709 {
1710 	struct rq *lowest_rq = NULL;
1711 	int tries;
1712 	int cpu;
1713 
1714 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715 		cpu = find_lowest_rq(task);
1716 
1717 		if ((cpu == -1) || (cpu == rq->cpu))
1718 			break;
1719 
1720 		lowest_rq = cpu_rq(cpu);
1721 
1722 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723 			/*
1724 			 * Target rq has tasks of equal or higher priority,
1725 			 * retrying does not release any lock and is unlikely
1726 			 * to yield a different result.
1727 			 */
1728 			lowest_rq = NULL;
1729 			break;
1730 		}
1731 
1732 		/* if the prio of this runqueue changed, try again */
1733 		if (double_lock_balance(rq, lowest_rq)) {
1734 			/*
1735 			 * We had to unlock the run queue. In
1736 			 * the mean time, task could have
1737 			 * migrated already or had its affinity changed.
1738 			 * Also make sure that it wasn't scheduled on its rq.
1739 			 */
1740 			if (unlikely(task_rq(task) != rq ||
1741 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1742 				     task_running(rq, task) ||
1743 				     !rt_task(task) ||
1744 				     !task_on_rq_queued(task))) {
1745 
1746 				double_unlock_balance(rq, lowest_rq);
1747 				lowest_rq = NULL;
1748 				break;
1749 			}
1750 		}
1751 
1752 		/* If this rq is still suitable use it. */
1753 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1754 			break;
1755 
1756 		/* try again */
1757 		double_unlock_balance(rq, lowest_rq);
1758 		lowest_rq = NULL;
1759 	}
1760 
1761 	return lowest_rq;
1762 }
1763 
1764 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765 {
1766 	struct task_struct *p;
1767 
1768 	if (!has_pushable_tasks(rq))
1769 		return NULL;
1770 
1771 	p = plist_first_entry(&rq->rt.pushable_tasks,
1772 			      struct task_struct, pushable_tasks);
1773 
1774 	BUG_ON(rq->cpu != task_cpu(p));
1775 	BUG_ON(task_current(rq, p));
1776 	BUG_ON(p->nr_cpus_allowed <= 1);
1777 
1778 	BUG_ON(!task_on_rq_queued(p));
1779 	BUG_ON(!rt_task(p));
1780 
1781 	return p;
1782 }
1783 
1784 /*
1785  * If the current CPU has more than one RT task, see if the non
1786  * running task can migrate over to a CPU that is running a task
1787  * of lesser priority.
1788  */
1789 static int push_rt_task(struct rq *rq)
1790 {
1791 	struct task_struct *next_task;
1792 	struct rq *lowest_rq;
1793 	int ret = 0;
1794 
1795 	if (!rq->rt.overloaded)
1796 		return 0;
1797 
1798 	next_task = pick_next_pushable_task(rq);
1799 	if (!next_task)
1800 		return 0;
1801 
1802 retry:
1803 	if (unlikely(next_task == rq->curr)) {
1804 		WARN_ON(1);
1805 		return 0;
1806 	}
1807 
1808 	/*
1809 	 * It's possible that the next_task slipped in of
1810 	 * higher priority than current. If that's the case
1811 	 * just reschedule current.
1812 	 */
1813 	if (unlikely(next_task->prio < rq->curr->prio)) {
1814 		resched_curr(rq);
1815 		return 0;
1816 	}
1817 
1818 	/* We might release rq lock */
1819 	get_task_struct(next_task);
1820 
1821 	/* find_lock_lowest_rq locks the rq if found */
1822 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1823 	if (!lowest_rq) {
1824 		struct task_struct *task;
1825 		/*
1826 		 * find_lock_lowest_rq releases rq->lock
1827 		 * so it is possible that next_task has migrated.
1828 		 *
1829 		 * We need to make sure that the task is still on the same
1830 		 * run-queue and is also still the next task eligible for
1831 		 * pushing.
1832 		 */
1833 		task = pick_next_pushable_task(rq);
1834 		if (task == next_task) {
1835 			/*
1836 			 * The task hasn't migrated, and is still the next
1837 			 * eligible task, but we failed to find a run-queue
1838 			 * to push it to.  Do not retry in this case, since
1839 			 * other CPUs will pull from us when ready.
1840 			 */
1841 			goto out;
1842 		}
1843 
1844 		if (!task)
1845 			/* No more tasks, just exit */
1846 			goto out;
1847 
1848 		/*
1849 		 * Something has shifted, try again.
1850 		 */
1851 		put_task_struct(next_task);
1852 		next_task = task;
1853 		goto retry;
1854 	}
1855 
1856 	deactivate_task(rq, next_task, 0);
1857 	set_task_cpu(next_task, lowest_rq->cpu);
1858 	activate_task(lowest_rq, next_task, 0);
1859 	ret = 1;
1860 
1861 	resched_curr(lowest_rq);
1862 
1863 	double_unlock_balance(rq, lowest_rq);
1864 
1865 out:
1866 	put_task_struct(next_task);
1867 
1868 	return ret;
1869 }
1870 
1871 static void push_rt_tasks(struct rq *rq)
1872 {
1873 	/* push_rt_task will return true if it moved an RT */
1874 	while (push_rt_task(rq))
1875 		;
1876 }
1877 
1878 #ifdef HAVE_RT_PUSH_IPI
1879 
1880 /*
1881  * When a high priority task schedules out from a CPU and a lower priority
1882  * task is scheduled in, a check is made to see if there's any RT tasks
1883  * on other CPUs that are waiting to run because a higher priority RT task
1884  * is currently running on its CPU. In this case, the CPU with multiple RT
1885  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1886  * up that may be able to run one of its non-running queued RT tasks.
1887  *
1888  * All CPUs with overloaded RT tasks need to be notified as there is currently
1889  * no way to know which of these CPUs have the highest priority task waiting
1890  * to run. Instead of trying to take a spinlock on each of these CPUs,
1891  * which has shown to cause large latency when done on machines with many
1892  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1893  * RT tasks waiting to run.
1894  *
1895  * Just sending an IPI to each of the CPUs is also an issue, as on large
1896  * count CPU machines, this can cause an IPI storm on a CPU, especially
1897  * if its the only CPU with multiple RT tasks queued, and a large number
1898  * of CPUs scheduling a lower priority task at the same time.
1899  *
1900  * Each root domain has its own irq work function that can iterate over
1901  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1902  * tassk must be checked if there's one or many CPUs that are lowering
1903  * their priority, there's a single irq work iterator that will try to
1904  * push off RT tasks that are waiting to run.
1905  *
1906  * When a CPU schedules a lower priority task, it will kick off the
1907  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1908  * As it only takes the first CPU that schedules a lower priority task
1909  * to start the process, the rto_start variable is incremented and if
1910  * the atomic result is one, then that CPU will try to take the rto_lock.
1911  * This prevents high contention on the lock as the process handles all
1912  * CPUs scheduling lower priority tasks.
1913  *
1914  * All CPUs that are scheduling a lower priority task will increment the
1915  * rt_loop_next variable. This will make sure that the irq work iterator
1916  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1917  * priority task, even if the iterator is in the middle of a scan. Incrementing
1918  * the rt_loop_next will cause the iterator to perform another scan.
1919  *
1920  */
1921 static int rto_next_cpu(struct root_domain *rd)
1922 {
1923 	int next;
1924 	int cpu;
1925 
1926 	/*
1927 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1928 	 * rt_next_cpu() will simply return the first CPU found in
1929 	 * the rto_mask.
1930 	 *
1931 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1932 	 * will return the next CPU found in the rto_mask.
1933 	 *
1934 	 * If there are no more CPUs left in the rto_mask, then a check is made
1935 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1936 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1937 	 * without any locking.
1938 	 */
1939 	for (;;) {
1940 
1941 		/* When rto_cpu is -1 this acts like cpumask_first() */
1942 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1943 
1944 		rd->rto_cpu = cpu;
1945 
1946 		if (cpu < nr_cpu_ids)
1947 			return cpu;
1948 
1949 		rd->rto_cpu = -1;
1950 
1951 		/*
1952 		 * ACQUIRE ensures we see the @rto_mask changes
1953 		 * made prior to the @next value observed.
1954 		 *
1955 		 * Matches WMB in rt_set_overload().
1956 		 */
1957 		next = atomic_read_acquire(&rd->rto_loop_next);
1958 
1959 		if (rd->rto_loop == next)
1960 			break;
1961 
1962 		rd->rto_loop = next;
1963 	}
1964 
1965 	return -1;
1966 }
1967 
1968 static inline bool rto_start_trylock(atomic_t *v)
1969 {
1970 	return !atomic_cmpxchg_acquire(v, 0, 1);
1971 }
1972 
1973 static inline void rto_start_unlock(atomic_t *v)
1974 {
1975 	atomic_set_release(v, 0);
1976 }
1977 
1978 static void tell_cpu_to_push(struct rq *rq)
1979 {
1980 	int cpu = -1;
1981 
1982 	/* Keep the loop going if the IPI is currently active */
1983 	atomic_inc(&rq->rd->rto_loop_next);
1984 
1985 	/* Only one CPU can initiate a loop at a time */
1986 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
1987 		return;
1988 
1989 	raw_spin_lock(&rq->rd->rto_lock);
1990 
1991 	/*
1992 	 * The rto_cpu is updated under the lock, if it has a valid CPU
1993 	 * then the IPI is still running and will continue due to the
1994 	 * update to loop_next, and nothing needs to be done here.
1995 	 * Otherwise it is finishing up and an ipi needs to be sent.
1996 	 */
1997 	if (rq->rd->rto_cpu < 0)
1998 		cpu = rto_next_cpu(rq->rd);
1999 
2000 	raw_spin_unlock(&rq->rd->rto_lock);
2001 
2002 	rto_start_unlock(&rq->rd->rto_loop_start);
2003 
2004 	if (cpu >= 0) {
2005 		/* Make sure the rd does not get freed while pushing */
2006 		sched_get_rd(rq->rd);
2007 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2008 	}
2009 }
2010 
2011 /* Called from hardirq context */
2012 void rto_push_irq_work_func(struct irq_work *work)
2013 {
2014 	struct root_domain *rd =
2015 		container_of(work, struct root_domain, rto_push_work);
2016 	struct rq *rq;
2017 	int cpu;
2018 
2019 	rq = this_rq();
2020 
2021 	/*
2022 	 * We do not need to grab the lock to check for has_pushable_tasks.
2023 	 * When it gets updated, a check is made if a push is possible.
2024 	 */
2025 	if (has_pushable_tasks(rq)) {
2026 		raw_spin_lock(&rq->lock);
2027 		push_rt_tasks(rq);
2028 		raw_spin_unlock(&rq->lock);
2029 	}
2030 
2031 	raw_spin_lock(&rd->rto_lock);
2032 
2033 	/* Pass the IPI to the next rt overloaded queue */
2034 	cpu = rto_next_cpu(rd);
2035 
2036 	raw_spin_unlock(&rd->rto_lock);
2037 
2038 	if (cpu < 0) {
2039 		sched_put_rd(rd);
2040 		return;
2041 	}
2042 
2043 	/* Try the next RT overloaded CPU */
2044 	irq_work_queue_on(&rd->rto_push_work, cpu);
2045 }
2046 #endif /* HAVE_RT_PUSH_IPI */
2047 
2048 static void pull_rt_task(struct rq *this_rq)
2049 {
2050 	int this_cpu = this_rq->cpu, cpu;
2051 	bool resched = false;
2052 	struct task_struct *p;
2053 	struct rq *src_rq;
2054 	int rt_overload_count = rt_overloaded(this_rq);
2055 
2056 	if (likely(!rt_overload_count))
2057 		return;
2058 
2059 	/*
2060 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2061 	 * see overloaded we must also see the rto_mask bit.
2062 	 */
2063 	smp_rmb();
2064 
2065 	/* If we are the only overloaded CPU do nothing */
2066 	if (rt_overload_count == 1 &&
2067 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2068 		return;
2069 
2070 #ifdef HAVE_RT_PUSH_IPI
2071 	if (sched_feat(RT_PUSH_IPI)) {
2072 		tell_cpu_to_push(this_rq);
2073 		return;
2074 	}
2075 #endif
2076 
2077 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2078 		if (this_cpu == cpu)
2079 			continue;
2080 
2081 		src_rq = cpu_rq(cpu);
2082 
2083 		/*
2084 		 * Don't bother taking the src_rq->lock if the next highest
2085 		 * task is known to be lower-priority than our current task.
2086 		 * This may look racy, but if this value is about to go
2087 		 * logically higher, the src_rq will push this task away.
2088 		 * And if its going logically lower, we do not care
2089 		 */
2090 		if (src_rq->rt.highest_prio.next >=
2091 		    this_rq->rt.highest_prio.curr)
2092 			continue;
2093 
2094 		/*
2095 		 * We can potentially drop this_rq's lock in
2096 		 * double_lock_balance, and another CPU could
2097 		 * alter this_rq
2098 		 */
2099 		double_lock_balance(this_rq, src_rq);
2100 
2101 		/*
2102 		 * We can pull only a task, which is pushable
2103 		 * on its rq, and no others.
2104 		 */
2105 		p = pick_highest_pushable_task(src_rq, this_cpu);
2106 
2107 		/*
2108 		 * Do we have an RT task that preempts
2109 		 * the to-be-scheduled task?
2110 		 */
2111 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2112 			WARN_ON(p == src_rq->curr);
2113 			WARN_ON(!task_on_rq_queued(p));
2114 
2115 			/*
2116 			 * There's a chance that p is higher in priority
2117 			 * than what's currently running on its CPU.
2118 			 * This is just that p is wakeing up and hasn't
2119 			 * had a chance to schedule. We only pull
2120 			 * p if it is lower in priority than the
2121 			 * current task on the run queue
2122 			 */
2123 			if (p->prio < src_rq->curr->prio)
2124 				goto skip;
2125 
2126 			resched = true;
2127 
2128 			deactivate_task(src_rq, p, 0);
2129 			set_task_cpu(p, this_cpu);
2130 			activate_task(this_rq, p, 0);
2131 			/*
2132 			 * We continue with the search, just in
2133 			 * case there's an even higher prio task
2134 			 * in another runqueue. (low likelihood
2135 			 * but possible)
2136 			 */
2137 		}
2138 skip:
2139 		double_unlock_balance(this_rq, src_rq);
2140 	}
2141 
2142 	if (resched)
2143 		resched_curr(this_rq);
2144 }
2145 
2146 /*
2147  * If we are not running and we are not going to reschedule soon, we should
2148  * try to push tasks away now
2149  */
2150 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2151 {
2152 	if (!task_running(rq, p) &&
2153 	    !test_tsk_need_resched(rq->curr) &&
2154 	    p->nr_cpus_allowed > 1 &&
2155 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2156 	    (rq->curr->nr_cpus_allowed < 2 ||
2157 	     rq->curr->prio <= p->prio))
2158 		push_rt_tasks(rq);
2159 }
2160 
2161 /* Assumes rq->lock is held */
2162 static void rq_online_rt(struct rq *rq)
2163 {
2164 	if (rq->rt.overloaded)
2165 		rt_set_overload(rq);
2166 
2167 	__enable_runtime(rq);
2168 
2169 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2170 }
2171 
2172 /* Assumes rq->lock is held */
2173 static void rq_offline_rt(struct rq *rq)
2174 {
2175 	if (rq->rt.overloaded)
2176 		rt_clear_overload(rq);
2177 
2178 	__disable_runtime(rq);
2179 
2180 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2181 }
2182 
2183 /*
2184  * When switch from the rt queue, we bring ourselves to a position
2185  * that we might want to pull RT tasks from other runqueues.
2186  */
2187 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2188 {
2189 	/*
2190 	 * If there are other RT tasks then we will reschedule
2191 	 * and the scheduling of the other RT tasks will handle
2192 	 * the balancing. But if we are the last RT task
2193 	 * we may need to handle the pulling of RT tasks
2194 	 * now.
2195 	 */
2196 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2197 		return;
2198 
2199 	rt_queue_pull_task(rq);
2200 }
2201 
2202 void __init init_sched_rt_class(void)
2203 {
2204 	unsigned int i;
2205 
2206 	for_each_possible_cpu(i) {
2207 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2208 					GFP_KERNEL, cpu_to_node(i));
2209 	}
2210 }
2211 #endif /* CONFIG_SMP */
2212 
2213 /*
2214  * When switching a task to RT, we may overload the runqueue
2215  * with RT tasks. In this case we try to push them off to
2216  * other runqueues.
2217  */
2218 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2219 {
2220 	/*
2221 	 * If we are already running, then there's nothing
2222 	 * that needs to be done. But if we are not running
2223 	 * we may need to preempt the current running task.
2224 	 * If that current running task is also an RT task
2225 	 * then see if we can move to another run queue.
2226 	 */
2227 	if (task_on_rq_queued(p) && rq->curr != p) {
2228 #ifdef CONFIG_SMP
2229 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2230 			rt_queue_push_tasks(rq);
2231 #endif /* CONFIG_SMP */
2232 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2233 			resched_curr(rq);
2234 	}
2235 }
2236 
2237 /*
2238  * Priority of the task has changed. This may cause
2239  * us to initiate a push or pull.
2240  */
2241 static void
2242 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2243 {
2244 	if (!task_on_rq_queued(p))
2245 		return;
2246 
2247 	if (rq->curr == p) {
2248 #ifdef CONFIG_SMP
2249 		/*
2250 		 * If our priority decreases while running, we
2251 		 * may need to pull tasks to this runqueue.
2252 		 */
2253 		if (oldprio < p->prio)
2254 			rt_queue_pull_task(rq);
2255 
2256 		/*
2257 		 * If there's a higher priority task waiting to run
2258 		 * then reschedule.
2259 		 */
2260 		if (p->prio > rq->rt.highest_prio.curr)
2261 			resched_curr(rq);
2262 #else
2263 		/* For UP simply resched on drop of prio */
2264 		if (oldprio < p->prio)
2265 			resched_curr(rq);
2266 #endif /* CONFIG_SMP */
2267 	} else {
2268 		/*
2269 		 * This task is not running, but if it is
2270 		 * greater than the current running task
2271 		 * then reschedule.
2272 		 */
2273 		if (p->prio < rq->curr->prio)
2274 			resched_curr(rq);
2275 	}
2276 }
2277 
2278 #ifdef CONFIG_POSIX_TIMERS
2279 static void watchdog(struct rq *rq, struct task_struct *p)
2280 {
2281 	unsigned long soft, hard;
2282 
2283 	/* max may change after cur was read, this will be fixed next tick */
2284 	soft = task_rlimit(p, RLIMIT_RTTIME);
2285 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2286 
2287 	if (soft != RLIM_INFINITY) {
2288 		unsigned long next;
2289 
2290 		if (p->rt.watchdog_stamp != jiffies) {
2291 			p->rt.timeout++;
2292 			p->rt.watchdog_stamp = jiffies;
2293 		}
2294 
2295 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2296 		if (p->rt.timeout > next)
2297 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2298 	}
2299 }
2300 #else
2301 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2302 #endif
2303 
2304 /*
2305  * scheduler tick hitting a task of our scheduling class.
2306  *
2307  * NOTE: This function can be called remotely by the tick offload that
2308  * goes along full dynticks. Therefore no local assumption can be made
2309  * and everything must be accessed through the @rq and @curr passed in
2310  * parameters.
2311  */
2312 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2313 {
2314 	struct sched_rt_entity *rt_se = &p->rt;
2315 
2316 	update_curr_rt(rq);
2317 
2318 	watchdog(rq, p);
2319 
2320 	/*
2321 	 * RR tasks need a special form of timeslice management.
2322 	 * FIFO tasks have no timeslices.
2323 	 */
2324 	if (p->policy != SCHED_RR)
2325 		return;
2326 
2327 	if (--p->rt.time_slice)
2328 		return;
2329 
2330 	p->rt.time_slice = sched_rr_timeslice;
2331 
2332 	/*
2333 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2334 	 * the only element on the queue
2335 	 */
2336 	for_each_sched_rt_entity(rt_se) {
2337 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2338 			requeue_task_rt(rq, p, 0);
2339 			resched_curr(rq);
2340 			return;
2341 		}
2342 	}
2343 }
2344 
2345 static void set_curr_task_rt(struct rq *rq)
2346 {
2347 	struct task_struct *p = rq->curr;
2348 
2349 	p->se.exec_start = rq_clock_task(rq);
2350 
2351 	/* The running task is never eligible for pushing */
2352 	dequeue_pushable_task(rq, p);
2353 }
2354 
2355 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2356 {
2357 	/*
2358 	 * Time slice is 0 for SCHED_FIFO tasks
2359 	 */
2360 	if (task->policy == SCHED_RR)
2361 		return sched_rr_timeslice;
2362 	else
2363 		return 0;
2364 }
2365 
2366 const struct sched_class rt_sched_class = {
2367 	.next			= &fair_sched_class,
2368 	.enqueue_task		= enqueue_task_rt,
2369 	.dequeue_task		= dequeue_task_rt,
2370 	.yield_task		= yield_task_rt,
2371 
2372 	.check_preempt_curr	= check_preempt_curr_rt,
2373 
2374 	.pick_next_task		= pick_next_task_rt,
2375 	.put_prev_task		= put_prev_task_rt,
2376 
2377 #ifdef CONFIG_SMP
2378 	.select_task_rq		= select_task_rq_rt,
2379 
2380 	.set_cpus_allowed       = set_cpus_allowed_common,
2381 	.rq_online              = rq_online_rt,
2382 	.rq_offline             = rq_offline_rt,
2383 	.task_woken		= task_woken_rt,
2384 	.switched_from		= switched_from_rt,
2385 #endif
2386 
2387 	.set_curr_task          = set_curr_task_rt,
2388 	.task_tick		= task_tick_rt,
2389 
2390 	.get_rr_interval	= get_rr_interval_rt,
2391 
2392 	.prio_changed		= prio_changed_rt,
2393 	.switched_to		= switched_to_rt,
2394 
2395 	.update_curr		= update_curr_rt,
2396 };
2397 
2398 #ifdef CONFIG_RT_GROUP_SCHED
2399 /*
2400  * Ensure that the real time constraints are schedulable.
2401  */
2402 static DEFINE_MUTEX(rt_constraints_mutex);
2403 
2404 /* Must be called with tasklist_lock held */
2405 static inline int tg_has_rt_tasks(struct task_group *tg)
2406 {
2407 	struct task_struct *g, *p;
2408 
2409 	/*
2410 	 * Autogroups do not have RT tasks; see autogroup_create().
2411 	 */
2412 	if (task_group_is_autogroup(tg))
2413 		return 0;
2414 
2415 	for_each_process_thread(g, p) {
2416 		if (rt_task(p) && task_group(p) == tg)
2417 			return 1;
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 struct rt_schedulable_data {
2424 	struct task_group *tg;
2425 	u64 rt_period;
2426 	u64 rt_runtime;
2427 };
2428 
2429 static int tg_rt_schedulable(struct task_group *tg, void *data)
2430 {
2431 	struct rt_schedulable_data *d = data;
2432 	struct task_group *child;
2433 	unsigned long total, sum = 0;
2434 	u64 period, runtime;
2435 
2436 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2437 	runtime = tg->rt_bandwidth.rt_runtime;
2438 
2439 	if (tg == d->tg) {
2440 		period = d->rt_period;
2441 		runtime = d->rt_runtime;
2442 	}
2443 
2444 	/*
2445 	 * Cannot have more runtime than the period.
2446 	 */
2447 	if (runtime > period && runtime != RUNTIME_INF)
2448 		return -EINVAL;
2449 
2450 	/*
2451 	 * Ensure we don't starve existing RT tasks.
2452 	 */
2453 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2454 		return -EBUSY;
2455 
2456 	total = to_ratio(period, runtime);
2457 
2458 	/*
2459 	 * Nobody can have more than the global setting allows.
2460 	 */
2461 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2462 		return -EINVAL;
2463 
2464 	/*
2465 	 * The sum of our children's runtime should not exceed our own.
2466 	 */
2467 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2468 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2469 		runtime = child->rt_bandwidth.rt_runtime;
2470 
2471 		if (child == d->tg) {
2472 			period = d->rt_period;
2473 			runtime = d->rt_runtime;
2474 		}
2475 
2476 		sum += to_ratio(period, runtime);
2477 	}
2478 
2479 	if (sum > total)
2480 		return -EINVAL;
2481 
2482 	return 0;
2483 }
2484 
2485 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2486 {
2487 	int ret;
2488 
2489 	struct rt_schedulable_data data = {
2490 		.tg = tg,
2491 		.rt_period = period,
2492 		.rt_runtime = runtime,
2493 	};
2494 
2495 	rcu_read_lock();
2496 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2497 	rcu_read_unlock();
2498 
2499 	return ret;
2500 }
2501 
2502 static int tg_set_rt_bandwidth(struct task_group *tg,
2503 		u64 rt_period, u64 rt_runtime)
2504 {
2505 	int i, err = 0;
2506 
2507 	/*
2508 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2509 	 * kernel creating (and or operating) RT threads.
2510 	 */
2511 	if (tg == &root_task_group && rt_runtime == 0)
2512 		return -EINVAL;
2513 
2514 	/* No period doesn't make any sense. */
2515 	if (rt_period == 0)
2516 		return -EINVAL;
2517 
2518 	mutex_lock(&rt_constraints_mutex);
2519 	read_lock(&tasklist_lock);
2520 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2521 	if (err)
2522 		goto unlock;
2523 
2524 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2525 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2526 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2527 
2528 	for_each_possible_cpu(i) {
2529 		struct rt_rq *rt_rq = tg->rt_rq[i];
2530 
2531 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2532 		rt_rq->rt_runtime = rt_runtime;
2533 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2534 	}
2535 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2536 unlock:
2537 	read_unlock(&tasklist_lock);
2538 	mutex_unlock(&rt_constraints_mutex);
2539 
2540 	return err;
2541 }
2542 
2543 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2544 {
2545 	u64 rt_runtime, rt_period;
2546 
2547 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2548 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2549 	if (rt_runtime_us < 0)
2550 		rt_runtime = RUNTIME_INF;
2551 
2552 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2553 }
2554 
2555 long sched_group_rt_runtime(struct task_group *tg)
2556 {
2557 	u64 rt_runtime_us;
2558 
2559 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2560 		return -1;
2561 
2562 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2563 	do_div(rt_runtime_us, NSEC_PER_USEC);
2564 	return rt_runtime_us;
2565 }
2566 
2567 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2568 {
2569 	u64 rt_runtime, rt_period;
2570 
2571 	rt_period = rt_period_us * NSEC_PER_USEC;
2572 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2573 
2574 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2575 }
2576 
2577 long sched_group_rt_period(struct task_group *tg)
2578 {
2579 	u64 rt_period_us;
2580 
2581 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2582 	do_div(rt_period_us, NSEC_PER_USEC);
2583 	return rt_period_us;
2584 }
2585 
2586 static int sched_rt_global_constraints(void)
2587 {
2588 	int ret = 0;
2589 
2590 	mutex_lock(&rt_constraints_mutex);
2591 	read_lock(&tasklist_lock);
2592 	ret = __rt_schedulable(NULL, 0, 0);
2593 	read_unlock(&tasklist_lock);
2594 	mutex_unlock(&rt_constraints_mutex);
2595 
2596 	return ret;
2597 }
2598 
2599 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2600 {
2601 	/* Don't accept realtime tasks when there is no way for them to run */
2602 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2603 		return 0;
2604 
2605 	return 1;
2606 }
2607 
2608 #else /* !CONFIG_RT_GROUP_SCHED */
2609 static int sched_rt_global_constraints(void)
2610 {
2611 	unsigned long flags;
2612 	int i;
2613 
2614 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2615 	for_each_possible_cpu(i) {
2616 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2617 
2618 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2619 		rt_rq->rt_runtime = global_rt_runtime();
2620 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2621 	}
2622 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2623 
2624 	return 0;
2625 }
2626 #endif /* CONFIG_RT_GROUP_SCHED */
2627 
2628 static int sched_rt_global_validate(void)
2629 {
2630 	if (sysctl_sched_rt_period <= 0)
2631 		return -EINVAL;
2632 
2633 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2634 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2635 		return -EINVAL;
2636 
2637 	return 0;
2638 }
2639 
2640 static void sched_rt_do_global(void)
2641 {
2642 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2643 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2644 }
2645 
2646 int sched_rt_handler(struct ctl_table *table, int write,
2647 		void __user *buffer, size_t *lenp,
2648 		loff_t *ppos)
2649 {
2650 	int old_period, old_runtime;
2651 	static DEFINE_MUTEX(mutex);
2652 	int ret;
2653 
2654 	mutex_lock(&mutex);
2655 	old_period = sysctl_sched_rt_period;
2656 	old_runtime = sysctl_sched_rt_runtime;
2657 
2658 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2659 
2660 	if (!ret && write) {
2661 		ret = sched_rt_global_validate();
2662 		if (ret)
2663 			goto undo;
2664 
2665 		ret = sched_dl_global_validate();
2666 		if (ret)
2667 			goto undo;
2668 
2669 		ret = sched_rt_global_constraints();
2670 		if (ret)
2671 			goto undo;
2672 
2673 		sched_rt_do_global();
2674 		sched_dl_do_global();
2675 	}
2676 	if (0) {
2677 undo:
2678 		sysctl_sched_rt_period = old_period;
2679 		sysctl_sched_rt_runtime = old_runtime;
2680 	}
2681 	mutex_unlock(&mutex);
2682 
2683 	return ret;
2684 }
2685 
2686 int sched_rr_handler(struct ctl_table *table, int write,
2687 		void __user *buffer, size_t *lenp,
2688 		loff_t *ppos)
2689 {
2690 	int ret;
2691 	static DEFINE_MUTEX(mutex);
2692 
2693 	mutex_lock(&mutex);
2694 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2695 	/*
2696 	 * Make sure that internally we keep jiffies.
2697 	 * Also, writing zero resets the timeslice to default:
2698 	 */
2699 	if (!ret && write) {
2700 		sched_rr_timeslice =
2701 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2702 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2703 	}
2704 	mutex_unlock(&mutex);
2705 
2706 	return ret;
2707 }
2708 
2709 #ifdef CONFIG_SCHED_DEBUG
2710 void print_rt_stats(struct seq_file *m, int cpu)
2711 {
2712 	rt_rq_iter_t iter;
2713 	struct rt_rq *rt_rq;
2714 
2715 	rcu_read_lock();
2716 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2717 		print_rt_rq(m, cpu, rt_rq);
2718 	rcu_read_unlock();
2719 }
2720 #endif /* CONFIG_SCHED_DEBUG */
2721