xref: /linux/kernel/sched/rt.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	int idle = 0;
22 	int overrun;
23 
24 	raw_spin_lock(&rt_b->rt_runtime_lock);
25 	for (;;) {
26 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 		if (!overrun)
28 			break;
29 
30 		raw_spin_unlock(&rt_b->rt_runtime_lock);
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 		raw_spin_lock(&rt_b->rt_runtime_lock);
33 	}
34 	if (idle)
35 		rt_b->rt_period_active = 0;
36 	raw_spin_unlock(&rt_b->rt_runtime_lock);
37 
38 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40 
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 	rt_b->rt_period = ns_to_ktime(period);
44 	rt_b->rt_runtime = runtime;
45 
46 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 
48 	hrtimer_init(&rt_b->rt_period_timer,
49 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 	rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52 
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	if (!rt_b->rt_period_active) {
60 		rt_b->rt_period_active = 1;
61 		/*
62 		 * SCHED_DEADLINE updates the bandwidth, as a run away
63 		 * RT task with a DL task could hog a CPU. But DL does
64 		 * not reset the period. If a deadline task was running
65 		 * without an RT task running, it can cause RT tasks to
66 		 * throttle when they start up. Kick the timer right away
67 		 * to update the period.
68 		 */
69 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 	}
72 	raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74 
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work *work);
77 #endif
78 
79 void init_rt_rq(struct rt_rq *rt_rq)
80 {
81 	struct rt_prio_array *array;
82 	int i;
83 
84 	array = &rt_rq->active;
85 	for (i = 0; i < MAX_RT_PRIO; i++) {
86 		INIT_LIST_HEAD(array->queue + i);
87 		__clear_bit(i, array->bitmap);
88 	}
89 	/* delimiter for bitsearch: */
90 	__set_bit(MAX_RT_PRIO, array->bitmap);
91 
92 #if defined CONFIG_SMP
93 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
94 	rt_rq->highest_prio.next = MAX_RT_PRIO;
95 	rt_rq->rt_nr_migratory = 0;
96 	rt_rq->overloaded = 0;
97 	plist_head_init(&rt_rq->pushable_tasks);
98 
99 #ifdef HAVE_RT_PUSH_IPI
100 	rt_rq->push_flags = 0;
101 	rt_rq->push_cpu = nr_cpu_ids;
102 	raw_spin_lock_init(&rt_rq->push_lock);
103 	init_irq_work(&rt_rq->push_work, push_irq_work_func);
104 #endif
105 #endif /* CONFIG_SMP */
106 	/* We start is dequeued state, because no RT tasks are queued */
107 	rt_rq->rt_queued = 0;
108 
109 	rt_rq->rt_time = 0;
110 	rt_rq->rt_throttled = 0;
111 	rt_rq->rt_runtime = 0;
112 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113 }
114 
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117 {
118 	hrtimer_cancel(&rt_b->rt_period_timer);
119 }
120 
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122 
123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127 #endif
128 	return container_of(rt_se, struct task_struct, rt);
129 }
130 
131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132 {
133 	return rt_rq->rq;
134 }
135 
136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137 {
138 	return rt_se->rt_rq;
139 }
140 
141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142 {
143 	struct rt_rq *rt_rq = rt_se->rt_rq;
144 
145 	return rt_rq->rq;
146 }
147 
148 void free_rt_sched_group(struct task_group *tg)
149 {
150 	int i;
151 
152 	if (tg->rt_se)
153 		destroy_rt_bandwidth(&tg->rt_bandwidth);
154 
155 	for_each_possible_cpu(i) {
156 		if (tg->rt_rq)
157 			kfree(tg->rt_rq[i]);
158 		if (tg->rt_se)
159 			kfree(tg->rt_se[i]);
160 	}
161 
162 	kfree(tg->rt_rq);
163 	kfree(tg->rt_se);
164 }
165 
166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167 		struct sched_rt_entity *rt_se, int cpu,
168 		struct sched_rt_entity *parent)
169 {
170 	struct rq *rq = cpu_rq(cpu);
171 
172 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
173 	rt_rq->rt_nr_boosted = 0;
174 	rt_rq->rq = rq;
175 	rt_rq->tg = tg;
176 
177 	tg->rt_rq[cpu] = rt_rq;
178 	tg->rt_se[cpu] = rt_se;
179 
180 	if (!rt_se)
181 		return;
182 
183 	if (!parent)
184 		rt_se->rt_rq = &rq->rt;
185 	else
186 		rt_se->rt_rq = parent->my_q;
187 
188 	rt_se->my_q = rt_rq;
189 	rt_se->parent = parent;
190 	INIT_LIST_HEAD(&rt_se->run_list);
191 }
192 
193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194 {
195 	struct rt_rq *rt_rq;
196 	struct sched_rt_entity *rt_se;
197 	int i;
198 
199 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200 	if (!tg->rt_rq)
201 		goto err;
202 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203 	if (!tg->rt_se)
204 		goto err;
205 
206 	init_rt_bandwidth(&tg->rt_bandwidth,
207 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208 
209 	for_each_possible_cpu(i) {
210 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
211 				     GFP_KERNEL, cpu_to_node(i));
212 		if (!rt_rq)
213 			goto err;
214 
215 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216 				     GFP_KERNEL, cpu_to_node(i));
217 		if (!rt_se)
218 			goto err_free_rq;
219 
220 		init_rt_rq(rt_rq);
221 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223 	}
224 
225 	return 1;
226 
227 err_free_rq:
228 	kfree(rt_rq);
229 err:
230 	return 0;
231 }
232 
233 #else /* CONFIG_RT_GROUP_SCHED */
234 
235 #define rt_entity_is_task(rt_se) (1)
236 
237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238 {
239 	return container_of(rt_se, struct task_struct, rt);
240 }
241 
242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243 {
244 	return container_of(rt_rq, struct rq, rt);
245 }
246 
247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
248 {
249 	struct task_struct *p = rt_task_of(rt_se);
250 
251 	return task_rq(p);
252 }
253 
254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255 {
256 	struct rq *rq = rq_of_rt_se(rt_se);
257 
258 	return &rq->rt;
259 }
260 
261 void free_rt_sched_group(struct task_group *tg) { }
262 
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265 	return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268 
269 #ifdef CONFIG_SMP
270 
271 static void pull_rt_task(struct rq *this_rq);
272 
273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274 {
275 	/* Try to pull RT tasks here if we lower this rq's prio */
276 	return rq->rt.highest_prio.curr > prev->prio;
277 }
278 
279 static inline int rt_overloaded(struct rq *rq)
280 {
281 	return atomic_read(&rq->rd->rto_count);
282 }
283 
284 static inline void rt_set_overload(struct rq *rq)
285 {
286 	if (!rq->online)
287 		return;
288 
289 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
290 	/*
291 	 * Make sure the mask is visible before we set
292 	 * the overload count. That is checked to determine
293 	 * if we should look at the mask. It would be a shame
294 	 * if we looked at the mask, but the mask was not
295 	 * updated yet.
296 	 *
297 	 * Matched by the barrier in pull_rt_task().
298 	 */
299 	smp_wmb();
300 	atomic_inc(&rq->rd->rto_count);
301 }
302 
303 static inline void rt_clear_overload(struct rq *rq)
304 {
305 	if (!rq->online)
306 		return;
307 
308 	/* the order here really doesn't matter */
309 	atomic_dec(&rq->rd->rto_count);
310 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
311 }
312 
313 static void update_rt_migration(struct rt_rq *rt_rq)
314 {
315 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
316 		if (!rt_rq->overloaded) {
317 			rt_set_overload(rq_of_rt_rq(rt_rq));
318 			rt_rq->overloaded = 1;
319 		}
320 	} else if (rt_rq->overloaded) {
321 		rt_clear_overload(rq_of_rt_rq(rt_rq));
322 		rt_rq->overloaded = 0;
323 	}
324 }
325 
326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327 {
328 	struct task_struct *p;
329 
330 	if (!rt_entity_is_task(rt_se))
331 		return;
332 
333 	p = rt_task_of(rt_se);
334 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335 
336 	rt_rq->rt_nr_total++;
337 	if (tsk_nr_cpus_allowed(p) > 1)
338 		rt_rq->rt_nr_migratory++;
339 
340 	update_rt_migration(rt_rq);
341 }
342 
343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 	struct task_struct *p;
346 
347 	if (!rt_entity_is_task(rt_se))
348 		return;
349 
350 	p = rt_task_of(rt_se);
351 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352 
353 	rt_rq->rt_nr_total--;
354 	if (tsk_nr_cpus_allowed(p) > 1)
355 		rt_rq->rt_nr_migratory--;
356 
357 	update_rt_migration(rt_rq);
358 }
359 
360 static inline int has_pushable_tasks(struct rq *rq)
361 {
362 	return !plist_head_empty(&rq->rt.pushable_tasks);
363 }
364 
365 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
367 
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
370 
371 static inline void queue_push_tasks(struct rq *rq)
372 {
373 	if (!has_pushable_tasks(rq))
374 		return;
375 
376 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 }
378 
379 static inline void queue_pull_task(struct rq *rq)
380 {
381 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 }
383 
384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 	plist_node_init(&p->pushable_tasks, p->prio);
388 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 
390 	/* Update the highest prio pushable task */
391 	if (p->prio < rq->rt.highest_prio.next)
392 		rq->rt.highest_prio.next = p->prio;
393 }
394 
395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396 {
397 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
398 
399 	/* Update the new highest prio pushable task */
400 	if (has_pushable_tasks(rq)) {
401 		p = plist_first_entry(&rq->rt.pushable_tasks,
402 				      struct task_struct, pushable_tasks);
403 		rq->rt.highest_prio.next = p->prio;
404 	} else
405 		rq->rt.highest_prio.next = MAX_RT_PRIO;
406 }
407 
408 #else
409 
410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
411 {
412 }
413 
414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417 
418 static inline
419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420 {
421 }
422 
423 static inline
424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425 {
426 }
427 
428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429 {
430 	return false;
431 }
432 
433 static inline void pull_rt_task(struct rq *this_rq)
434 {
435 }
436 
437 static inline void queue_push_tasks(struct rq *rq)
438 {
439 }
440 #endif /* CONFIG_SMP */
441 
442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444 
445 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446 {
447 	return rt_se->on_rq;
448 }
449 
450 #ifdef CONFIG_RT_GROUP_SCHED
451 
452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
453 {
454 	if (!rt_rq->tg)
455 		return RUNTIME_INF;
456 
457 	return rt_rq->rt_runtime;
458 }
459 
460 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461 {
462 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
463 }
464 
465 typedef struct task_group *rt_rq_iter_t;
466 
467 static inline struct task_group *next_task_group(struct task_group *tg)
468 {
469 	do {
470 		tg = list_entry_rcu(tg->list.next,
471 			typeof(struct task_group), list);
472 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473 
474 	if (&tg->list == &task_groups)
475 		tg = NULL;
476 
477 	return tg;
478 }
479 
480 #define for_each_rt_rq(rt_rq, iter, rq)					\
481 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
482 		(iter = next_task_group(iter)) &&			\
483 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
484 
485 #define for_each_sched_rt_entity(rt_se) \
486 	for (; rt_se; rt_se = rt_se->parent)
487 
488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489 {
490 	return rt_se->my_q;
491 }
492 
493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495 
496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
497 {
498 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
499 	struct rq *rq = rq_of_rt_rq(rt_rq);
500 	struct sched_rt_entity *rt_se;
501 
502 	int cpu = cpu_of(rq);
503 
504 	rt_se = rt_rq->tg->rt_se[cpu];
505 
506 	if (rt_rq->rt_nr_running) {
507 		if (!rt_se)
508 			enqueue_top_rt_rq(rt_rq);
509 		else if (!on_rt_rq(rt_se))
510 			enqueue_rt_entity(rt_se, 0);
511 
512 		if (rt_rq->highest_prio.curr < curr->prio)
513 			resched_curr(rq);
514 	}
515 }
516 
517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
518 {
519 	struct sched_rt_entity *rt_se;
520 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
521 
522 	rt_se = rt_rq->tg->rt_se[cpu];
523 
524 	if (!rt_se)
525 		dequeue_top_rt_rq(rt_rq);
526 	else if (on_rt_rq(rt_se))
527 		dequeue_rt_entity(rt_se, 0);
528 }
529 
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531 {
532 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533 }
534 
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
536 {
537 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
538 	struct task_struct *p;
539 
540 	if (rt_rq)
541 		return !!rt_rq->rt_nr_boosted;
542 
543 	p = rt_task_of(rt_se);
544 	return p->prio != p->normal_prio;
545 }
546 
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
549 {
550 	return this_rq()->rd->span;
551 }
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555 	return cpu_online_mask;
556 }
557 #endif
558 
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
561 {
562 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563 }
564 
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566 {
567 	return &rt_rq->tg->rt_bandwidth;
568 }
569 
570 #else /* !CONFIG_RT_GROUP_SCHED */
571 
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573 {
574 	return rt_rq->rt_runtime;
575 }
576 
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578 {
579 	return ktime_to_ns(def_rt_bandwidth.rt_period);
580 }
581 
582 typedef struct rt_rq *rt_rq_iter_t;
583 
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586 
587 #define for_each_sched_rt_entity(rt_se) \
588 	for (; rt_se; rt_se = NULL)
589 
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591 {
592 	return NULL;
593 }
594 
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
596 {
597 	struct rq *rq = rq_of_rt_rq(rt_rq);
598 
599 	if (!rt_rq->rt_nr_running)
600 		return;
601 
602 	enqueue_top_rt_rq(rt_rq);
603 	resched_curr(rq);
604 }
605 
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
607 {
608 	dequeue_top_rt_rq(rt_rq);
609 }
610 
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612 {
613 	return rt_rq->rt_throttled;
614 }
615 
616 static inline const struct cpumask *sched_rt_period_mask(void)
617 {
618 	return cpu_online_mask;
619 }
620 
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623 {
624 	return &cpu_rq(cpu)->rt;
625 }
626 
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628 {
629 	return &def_rt_bandwidth;
630 }
631 
632 #endif /* CONFIG_RT_GROUP_SCHED */
633 
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635 {
636 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637 
638 	return (hrtimer_active(&rt_b->rt_period_timer) ||
639 		rt_rq->rt_time < rt_b->rt_runtime);
640 }
641 
642 #ifdef CONFIG_SMP
643 /*
644  * We ran out of runtime, see if we can borrow some from our neighbours.
645  */
646 static void do_balance_runtime(struct rt_rq *rt_rq)
647 {
648 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650 	int i, weight;
651 	u64 rt_period;
652 
653 	weight = cpumask_weight(rd->span);
654 
655 	raw_spin_lock(&rt_b->rt_runtime_lock);
656 	rt_period = ktime_to_ns(rt_b->rt_period);
657 	for_each_cpu(i, rd->span) {
658 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 		s64 diff;
660 
661 		if (iter == rt_rq)
662 			continue;
663 
664 		raw_spin_lock(&iter->rt_runtime_lock);
665 		/*
666 		 * Either all rqs have inf runtime and there's nothing to steal
667 		 * or __disable_runtime() below sets a specific rq to inf to
668 		 * indicate its been disabled and disalow stealing.
669 		 */
670 		if (iter->rt_runtime == RUNTIME_INF)
671 			goto next;
672 
673 		/*
674 		 * From runqueues with spare time, take 1/n part of their
675 		 * spare time, but no more than our period.
676 		 */
677 		diff = iter->rt_runtime - iter->rt_time;
678 		if (diff > 0) {
679 			diff = div_u64((u64)diff, weight);
680 			if (rt_rq->rt_runtime + diff > rt_period)
681 				diff = rt_period - rt_rq->rt_runtime;
682 			iter->rt_runtime -= diff;
683 			rt_rq->rt_runtime += diff;
684 			if (rt_rq->rt_runtime == rt_period) {
685 				raw_spin_unlock(&iter->rt_runtime_lock);
686 				break;
687 			}
688 		}
689 next:
690 		raw_spin_unlock(&iter->rt_runtime_lock);
691 	}
692 	raw_spin_unlock(&rt_b->rt_runtime_lock);
693 }
694 
695 /*
696  * Ensure this RQ takes back all the runtime it lend to its neighbours.
697  */
698 static void __disable_runtime(struct rq *rq)
699 {
700 	struct root_domain *rd = rq->rd;
701 	rt_rq_iter_t iter;
702 	struct rt_rq *rt_rq;
703 
704 	if (unlikely(!scheduler_running))
705 		return;
706 
707 	for_each_rt_rq(rt_rq, iter, rq) {
708 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709 		s64 want;
710 		int i;
711 
712 		raw_spin_lock(&rt_b->rt_runtime_lock);
713 		raw_spin_lock(&rt_rq->rt_runtime_lock);
714 		/*
715 		 * Either we're all inf and nobody needs to borrow, or we're
716 		 * already disabled and thus have nothing to do, or we have
717 		 * exactly the right amount of runtime to take out.
718 		 */
719 		if (rt_rq->rt_runtime == RUNTIME_INF ||
720 				rt_rq->rt_runtime == rt_b->rt_runtime)
721 			goto balanced;
722 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
723 
724 		/*
725 		 * Calculate the difference between what we started out with
726 		 * and what we current have, that's the amount of runtime
727 		 * we lend and now have to reclaim.
728 		 */
729 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
730 
731 		/*
732 		 * Greedy reclaim, take back as much as we can.
733 		 */
734 		for_each_cpu(i, rd->span) {
735 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736 			s64 diff;
737 
738 			/*
739 			 * Can't reclaim from ourselves or disabled runqueues.
740 			 */
741 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742 				continue;
743 
744 			raw_spin_lock(&iter->rt_runtime_lock);
745 			if (want > 0) {
746 				diff = min_t(s64, iter->rt_runtime, want);
747 				iter->rt_runtime -= diff;
748 				want -= diff;
749 			} else {
750 				iter->rt_runtime -= want;
751 				want -= want;
752 			}
753 			raw_spin_unlock(&iter->rt_runtime_lock);
754 
755 			if (!want)
756 				break;
757 		}
758 
759 		raw_spin_lock(&rt_rq->rt_runtime_lock);
760 		/*
761 		 * We cannot be left wanting - that would mean some runtime
762 		 * leaked out of the system.
763 		 */
764 		BUG_ON(want);
765 balanced:
766 		/*
767 		 * Disable all the borrow logic by pretending we have inf
768 		 * runtime - in which case borrowing doesn't make sense.
769 		 */
770 		rt_rq->rt_runtime = RUNTIME_INF;
771 		rt_rq->rt_throttled = 0;
772 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 		raw_spin_unlock(&rt_b->rt_runtime_lock);
774 
775 		/* Make rt_rq available for pick_next_task() */
776 		sched_rt_rq_enqueue(rt_rq);
777 	}
778 }
779 
780 static void __enable_runtime(struct rq *rq)
781 {
782 	rt_rq_iter_t iter;
783 	struct rt_rq *rt_rq;
784 
785 	if (unlikely(!scheduler_running))
786 		return;
787 
788 	/*
789 	 * Reset each runqueue's bandwidth settings
790 	 */
791 	for_each_rt_rq(rt_rq, iter, rq) {
792 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793 
794 		raw_spin_lock(&rt_b->rt_runtime_lock);
795 		raw_spin_lock(&rt_rq->rt_runtime_lock);
796 		rt_rq->rt_runtime = rt_b->rt_runtime;
797 		rt_rq->rt_time = 0;
798 		rt_rq->rt_throttled = 0;
799 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 		raw_spin_unlock(&rt_b->rt_runtime_lock);
801 	}
802 }
803 
804 static void balance_runtime(struct rt_rq *rt_rq)
805 {
806 	if (!sched_feat(RT_RUNTIME_SHARE))
807 		return;
808 
809 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
810 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 		do_balance_runtime(rt_rq);
812 		raw_spin_lock(&rt_rq->rt_runtime_lock);
813 	}
814 }
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
818 
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820 {
821 	int i, idle = 1, throttled = 0;
822 	const struct cpumask *span;
823 
824 	span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
826 	/*
827 	 * FIXME: isolated CPUs should really leave the root task group,
828 	 * whether they are isolcpus or were isolated via cpusets, lest
829 	 * the timer run on a CPU which does not service all runqueues,
830 	 * potentially leaving other CPUs indefinitely throttled.  If
831 	 * isolation is really required, the user will turn the throttle
832 	 * off to kill the perturbations it causes anyway.  Meanwhile,
833 	 * this maintains functionality for boot and/or troubleshooting.
834 	 */
835 	if (rt_b == &root_task_group.rt_bandwidth)
836 		span = cpu_online_mask;
837 #endif
838 	for_each_cpu(i, span) {
839 		int enqueue = 0;
840 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841 		struct rq *rq = rq_of_rt_rq(rt_rq);
842 
843 		raw_spin_lock(&rq->lock);
844 		if (rt_rq->rt_time) {
845 			u64 runtime;
846 
847 			raw_spin_lock(&rt_rq->rt_runtime_lock);
848 			if (rt_rq->rt_throttled)
849 				balance_runtime(rt_rq);
850 			runtime = rt_rq->rt_runtime;
851 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 				rt_rq->rt_throttled = 0;
854 				enqueue = 1;
855 
856 				/*
857 				 * When we're idle and a woken (rt) task is
858 				 * throttled check_preempt_curr() will set
859 				 * skip_update and the time between the wakeup
860 				 * and this unthrottle will get accounted as
861 				 * 'runtime'.
862 				 */
863 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864 					rq_clock_skip_update(rq, false);
865 			}
866 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 				idle = 0;
868 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
869 		} else if (rt_rq->rt_nr_running) {
870 			idle = 0;
871 			if (!rt_rq_throttled(rt_rq))
872 				enqueue = 1;
873 		}
874 		if (rt_rq->rt_throttled)
875 			throttled = 1;
876 
877 		if (enqueue)
878 			sched_rt_rq_enqueue(rt_rq);
879 		raw_spin_unlock(&rq->lock);
880 	}
881 
882 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 		return 1;
884 
885 	return idle;
886 }
887 
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889 {
890 #ifdef CONFIG_RT_GROUP_SCHED
891 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
892 
893 	if (rt_rq)
894 		return rt_rq->highest_prio.curr;
895 #endif
896 
897 	return rt_task_of(rt_se)->prio;
898 }
899 
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
901 {
902 	u64 runtime = sched_rt_runtime(rt_rq);
903 
904 	if (rt_rq->rt_throttled)
905 		return rt_rq_throttled(rt_rq);
906 
907 	if (runtime >= sched_rt_period(rt_rq))
908 		return 0;
909 
910 	balance_runtime(rt_rq);
911 	runtime = sched_rt_runtime(rt_rq);
912 	if (runtime == RUNTIME_INF)
913 		return 0;
914 
915 	if (rt_rq->rt_time > runtime) {
916 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917 
918 		/*
919 		 * Don't actually throttle groups that have no runtime assigned
920 		 * but accrue some time due to boosting.
921 		 */
922 		if (likely(rt_b->rt_runtime)) {
923 			rt_rq->rt_throttled = 1;
924 			printk_deferred_once("sched: RT throttling activated\n");
925 		} else {
926 			/*
927 			 * In case we did anyway, make it go away,
928 			 * replenishment is a joke, since it will replenish us
929 			 * with exactly 0 ns.
930 			 */
931 			rt_rq->rt_time = 0;
932 		}
933 
934 		if (rt_rq_throttled(rt_rq)) {
935 			sched_rt_rq_dequeue(rt_rq);
936 			return 1;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
943 /*
944  * Update the current task's runtime statistics. Skip current tasks that
945  * are not in our scheduling class.
946  */
947 static void update_curr_rt(struct rq *rq)
948 {
949 	struct task_struct *curr = rq->curr;
950 	struct sched_rt_entity *rt_se = &curr->rt;
951 	u64 delta_exec;
952 
953 	if (curr->sched_class != &rt_sched_class)
954 		return;
955 
956 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
957 	if (unlikely((s64)delta_exec <= 0))
958 		return;
959 
960 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
961 	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
962 
963 	schedstat_set(curr->se.statistics.exec_max,
964 		      max(curr->se.statistics.exec_max, delta_exec));
965 
966 	curr->se.sum_exec_runtime += delta_exec;
967 	account_group_exec_runtime(curr, delta_exec);
968 
969 	curr->se.exec_start = rq_clock_task(rq);
970 	cpuacct_charge(curr, delta_exec);
971 
972 	sched_rt_avg_update(rq, delta_exec);
973 
974 	if (!rt_bandwidth_enabled())
975 		return;
976 
977 	for_each_sched_rt_entity(rt_se) {
978 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
979 
980 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
981 			raw_spin_lock(&rt_rq->rt_runtime_lock);
982 			rt_rq->rt_time += delta_exec;
983 			if (sched_rt_runtime_exceeded(rt_rq))
984 				resched_curr(rq);
985 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
986 		}
987 	}
988 }
989 
990 static void
991 dequeue_top_rt_rq(struct rt_rq *rt_rq)
992 {
993 	struct rq *rq = rq_of_rt_rq(rt_rq);
994 
995 	BUG_ON(&rq->rt != rt_rq);
996 
997 	if (!rt_rq->rt_queued)
998 		return;
999 
1000 	BUG_ON(!rq->nr_running);
1001 
1002 	sub_nr_running(rq, rt_rq->rt_nr_running);
1003 	rt_rq->rt_queued = 0;
1004 }
1005 
1006 static void
1007 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1008 {
1009 	struct rq *rq = rq_of_rt_rq(rt_rq);
1010 
1011 	BUG_ON(&rq->rt != rt_rq);
1012 
1013 	if (rt_rq->rt_queued)
1014 		return;
1015 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1016 		return;
1017 
1018 	add_nr_running(rq, rt_rq->rt_nr_running);
1019 	rt_rq->rt_queued = 1;
1020 }
1021 
1022 #if defined CONFIG_SMP
1023 
1024 static void
1025 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1026 {
1027 	struct rq *rq = rq_of_rt_rq(rt_rq);
1028 
1029 #ifdef CONFIG_RT_GROUP_SCHED
1030 	/*
1031 	 * Change rq's cpupri only if rt_rq is the top queue.
1032 	 */
1033 	if (&rq->rt != rt_rq)
1034 		return;
1035 #endif
1036 	if (rq->online && prio < prev_prio)
1037 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1038 }
1039 
1040 static void
1041 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1042 {
1043 	struct rq *rq = rq_of_rt_rq(rt_rq);
1044 
1045 #ifdef CONFIG_RT_GROUP_SCHED
1046 	/*
1047 	 * Change rq's cpupri only if rt_rq is the top queue.
1048 	 */
1049 	if (&rq->rt != rt_rq)
1050 		return;
1051 #endif
1052 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1053 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1054 }
1055 
1056 #else /* CONFIG_SMP */
1057 
1058 static inline
1059 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1060 static inline
1061 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1062 
1063 #endif /* CONFIG_SMP */
1064 
1065 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1066 static void
1067 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1068 {
1069 	int prev_prio = rt_rq->highest_prio.curr;
1070 
1071 	if (prio < prev_prio)
1072 		rt_rq->highest_prio.curr = prio;
1073 
1074 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1075 }
1076 
1077 static void
1078 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1079 {
1080 	int prev_prio = rt_rq->highest_prio.curr;
1081 
1082 	if (rt_rq->rt_nr_running) {
1083 
1084 		WARN_ON(prio < prev_prio);
1085 
1086 		/*
1087 		 * This may have been our highest task, and therefore
1088 		 * we may have some recomputation to do
1089 		 */
1090 		if (prio == prev_prio) {
1091 			struct rt_prio_array *array = &rt_rq->active;
1092 
1093 			rt_rq->highest_prio.curr =
1094 				sched_find_first_bit(array->bitmap);
1095 		}
1096 
1097 	} else
1098 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1099 
1100 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1101 }
1102 
1103 #else
1104 
1105 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1106 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107 
1108 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1109 
1110 #ifdef CONFIG_RT_GROUP_SCHED
1111 
1112 static void
1113 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1114 {
1115 	if (rt_se_boosted(rt_se))
1116 		rt_rq->rt_nr_boosted++;
1117 
1118 	if (rt_rq->tg)
1119 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1120 }
1121 
1122 static void
1123 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125 	if (rt_se_boosted(rt_se))
1126 		rt_rq->rt_nr_boosted--;
1127 
1128 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1129 }
1130 
1131 #else /* CONFIG_RT_GROUP_SCHED */
1132 
1133 static void
1134 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135 {
1136 	start_rt_bandwidth(&def_rt_bandwidth);
1137 }
1138 
1139 static inline
1140 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1141 
1142 #endif /* CONFIG_RT_GROUP_SCHED */
1143 
1144 static inline
1145 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1146 {
1147 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1148 
1149 	if (group_rq)
1150 		return group_rq->rt_nr_running;
1151 	else
1152 		return 1;
1153 }
1154 
1155 static inline
1156 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1157 {
1158 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1159 	struct task_struct *tsk;
1160 
1161 	if (group_rq)
1162 		return group_rq->rr_nr_running;
1163 
1164 	tsk = rt_task_of(rt_se);
1165 
1166 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1167 }
1168 
1169 static inline
1170 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1171 {
1172 	int prio = rt_se_prio(rt_se);
1173 
1174 	WARN_ON(!rt_prio(prio));
1175 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1176 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1177 
1178 	inc_rt_prio(rt_rq, prio);
1179 	inc_rt_migration(rt_se, rt_rq);
1180 	inc_rt_group(rt_se, rt_rq);
1181 }
1182 
1183 static inline
1184 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185 {
1186 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1187 	WARN_ON(!rt_rq->rt_nr_running);
1188 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1189 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1190 
1191 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1192 	dec_rt_migration(rt_se, rt_rq);
1193 	dec_rt_group(rt_se, rt_rq);
1194 }
1195 
1196 /*
1197  * Change rt_se->run_list location unless SAVE && !MOVE
1198  *
1199  * assumes ENQUEUE/DEQUEUE flags match
1200  */
1201 static inline bool move_entity(unsigned int flags)
1202 {
1203 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1204 		return false;
1205 
1206 	return true;
1207 }
1208 
1209 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1210 {
1211 	list_del_init(&rt_se->run_list);
1212 
1213 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1214 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1215 
1216 	rt_se->on_list = 0;
1217 }
1218 
1219 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1220 {
1221 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1222 	struct rt_prio_array *array = &rt_rq->active;
1223 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1224 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1225 
1226 	/*
1227 	 * Don't enqueue the group if its throttled, or when empty.
1228 	 * The latter is a consequence of the former when a child group
1229 	 * get throttled and the current group doesn't have any other
1230 	 * active members.
1231 	 */
1232 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1233 		if (rt_se->on_list)
1234 			__delist_rt_entity(rt_se, array);
1235 		return;
1236 	}
1237 
1238 	if (move_entity(flags)) {
1239 		WARN_ON_ONCE(rt_se->on_list);
1240 		if (flags & ENQUEUE_HEAD)
1241 			list_add(&rt_se->run_list, queue);
1242 		else
1243 			list_add_tail(&rt_se->run_list, queue);
1244 
1245 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1246 		rt_se->on_list = 1;
1247 	}
1248 	rt_se->on_rq = 1;
1249 
1250 	inc_rt_tasks(rt_se, rt_rq);
1251 }
1252 
1253 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1254 {
1255 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1256 	struct rt_prio_array *array = &rt_rq->active;
1257 
1258 	if (move_entity(flags)) {
1259 		WARN_ON_ONCE(!rt_se->on_list);
1260 		__delist_rt_entity(rt_se, array);
1261 	}
1262 	rt_se->on_rq = 0;
1263 
1264 	dec_rt_tasks(rt_se, rt_rq);
1265 }
1266 
1267 /*
1268  * Because the prio of an upper entry depends on the lower
1269  * entries, we must remove entries top - down.
1270  */
1271 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1272 {
1273 	struct sched_rt_entity *back = NULL;
1274 
1275 	for_each_sched_rt_entity(rt_se) {
1276 		rt_se->back = back;
1277 		back = rt_se;
1278 	}
1279 
1280 	dequeue_top_rt_rq(rt_rq_of_se(back));
1281 
1282 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1283 		if (on_rt_rq(rt_se))
1284 			__dequeue_rt_entity(rt_se, flags);
1285 	}
1286 }
1287 
1288 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1289 {
1290 	struct rq *rq = rq_of_rt_se(rt_se);
1291 
1292 	dequeue_rt_stack(rt_se, flags);
1293 	for_each_sched_rt_entity(rt_se)
1294 		__enqueue_rt_entity(rt_se, flags);
1295 	enqueue_top_rt_rq(&rq->rt);
1296 }
1297 
1298 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1299 {
1300 	struct rq *rq = rq_of_rt_se(rt_se);
1301 
1302 	dequeue_rt_stack(rt_se, flags);
1303 
1304 	for_each_sched_rt_entity(rt_se) {
1305 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1306 
1307 		if (rt_rq && rt_rq->rt_nr_running)
1308 			__enqueue_rt_entity(rt_se, flags);
1309 	}
1310 	enqueue_top_rt_rq(&rq->rt);
1311 }
1312 
1313 /*
1314  * Adding/removing a task to/from a priority array:
1315  */
1316 static void
1317 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319 	struct sched_rt_entity *rt_se = &p->rt;
1320 
1321 	if (flags & ENQUEUE_WAKEUP)
1322 		rt_se->timeout = 0;
1323 
1324 	enqueue_rt_entity(rt_se, flags);
1325 
1326 	if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1327 		enqueue_pushable_task(rq, p);
1328 }
1329 
1330 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1331 {
1332 	struct sched_rt_entity *rt_se = &p->rt;
1333 
1334 	update_curr_rt(rq);
1335 	dequeue_rt_entity(rt_se, flags);
1336 
1337 	dequeue_pushable_task(rq, p);
1338 }
1339 
1340 /*
1341  * Put task to the head or the end of the run list without the overhead of
1342  * dequeue followed by enqueue.
1343  */
1344 static void
1345 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1346 {
1347 	if (on_rt_rq(rt_se)) {
1348 		struct rt_prio_array *array = &rt_rq->active;
1349 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1350 
1351 		if (head)
1352 			list_move(&rt_se->run_list, queue);
1353 		else
1354 			list_move_tail(&rt_se->run_list, queue);
1355 	}
1356 }
1357 
1358 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1359 {
1360 	struct sched_rt_entity *rt_se = &p->rt;
1361 	struct rt_rq *rt_rq;
1362 
1363 	for_each_sched_rt_entity(rt_se) {
1364 		rt_rq = rt_rq_of_se(rt_se);
1365 		requeue_rt_entity(rt_rq, rt_se, head);
1366 	}
1367 }
1368 
1369 static void yield_task_rt(struct rq *rq)
1370 {
1371 	requeue_task_rt(rq, rq->curr, 0);
1372 }
1373 
1374 #ifdef CONFIG_SMP
1375 static int find_lowest_rq(struct task_struct *task);
1376 
1377 static int
1378 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1379 {
1380 	struct task_struct *curr;
1381 	struct rq *rq;
1382 
1383 	/* For anything but wake ups, just return the task_cpu */
1384 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1385 		goto out;
1386 
1387 	rq = cpu_rq(cpu);
1388 
1389 	rcu_read_lock();
1390 	curr = READ_ONCE(rq->curr); /* unlocked access */
1391 
1392 	/*
1393 	 * If the current task on @p's runqueue is an RT task, then
1394 	 * try to see if we can wake this RT task up on another
1395 	 * runqueue. Otherwise simply start this RT task
1396 	 * on its current runqueue.
1397 	 *
1398 	 * We want to avoid overloading runqueues. If the woken
1399 	 * task is a higher priority, then it will stay on this CPU
1400 	 * and the lower prio task should be moved to another CPU.
1401 	 * Even though this will probably make the lower prio task
1402 	 * lose its cache, we do not want to bounce a higher task
1403 	 * around just because it gave up its CPU, perhaps for a
1404 	 * lock?
1405 	 *
1406 	 * For equal prio tasks, we just let the scheduler sort it out.
1407 	 *
1408 	 * Otherwise, just let it ride on the affined RQ and the
1409 	 * post-schedule router will push the preempted task away
1410 	 *
1411 	 * This test is optimistic, if we get it wrong the load-balancer
1412 	 * will have to sort it out.
1413 	 */
1414 	if (curr && unlikely(rt_task(curr)) &&
1415 	    (tsk_nr_cpus_allowed(curr) < 2 ||
1416 	     curr->prio <= p->prio)) {
1417 		int target = find_lowest_rq(p);
1418 
1419 		/*
1420 		 * Don't bother moving it if the destination CPU is
1421 		 * not running a lower priority task.
1422 		 */
1423 		if (target != -1 &&
1424 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1425 			cpu = target;
1426 	}
1427 	rcu_read_unlock();
1428 
1429 out:
1430 	return cpu;
1431 }
1432 
1433 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1434 {
1435 	/*
1436 	 * Current can't be migrated, useless to reschedule,
1437 	 * let's hope p can move out.
1438 	 */
1439 	if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1440 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1441 		return;
1442 
1443 	/*
1444 	 * p is migratable, so let's not schedule it and
1445 	 * see if it is pushed or pulled somewhere else.
1446 	 */
1447 	if (tsk_nr_cpus_allowed(p) != 1
1448 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1449 		return;
1450 
1451 	/*
1452 	 * There appears to be other cpus that can accept
1453 	 * current and none to run 'p', so lets reschedule
1454 	 * to try and push current away:
1455 	 */
1456 	requeue_task_rt(rq, p, 1);
1457 	resched_curr(rq);
1458 }
1459 
1460 #endif /* CONFIG_SMP */
1461 
1462 /*
1463  * Preempt the current task with a newly woken task if needed:
1464  */
1465 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1466 {
1467 	if (p->prio < rq->curr->prio) {
1468 		resched_curr(rq);
1469 		return;
1470 	}
1471 
1472 #ifdef CONFIG_SMP
1473 	/*
1474 	 * If:
1475 	 *
1476 	 * - the newly woken task is of equal priority to the current task
1477 	 * - the newly woken task is non-migratable while current is migratable
1478 	 * - current will be preempted on the next reschedule
1479 	 *
1480 	 * we should check to see if current can readily move to a different
1481 	 * cpu.  If so, we will reschedule to allow the push logic to try
1482 	 * to move current somewhere else, making room for our non-migratable
1483 	 * task.
1484 	 */
1485 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1486 		check_preempt_equal_prio(rq, p);
1487 #endif
1488 }
1489 
1490 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1491 						   struct rt_rq *rt_rq)
1492 {
1493 	struct rt_prio_array *array = &rt_rq->active;
1494 	struct sched_rt_entity *next = NULL;
1495 	struct list_head *queue;
1496 	int idx;
1497 
1498 	idx = sched_find_first_bit(array->bitmap);
1499 	BUG_ON(idx >= MAX_RT_PRIO);
1500 
1501 	queue = array->queue + idx;
1502 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1503 
1504 	return next;
1505 }
1506 
1507 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1508 {
1509 	struct sched_rt_entity *rt_se;
1510 	struct task_struct *p;
1511 	struct rt_rq *rt_rq  = &rq->rt;
1512 
1513 	do {
1514 		rt_se = pick_next_rt_entity(rq, rt_rq);
1515 		BUG_ON(!rt_se);
1516 		rt_rq = group_rt_rq(rt_se);
1517 	} while (rt_rq);
1518 
1519 	p = rt_task_of(rt_se);
1520 	p->se.exec_start = rq_clock_task(rq);
1521 
1522 	return p;
1523 }
1524 
1525 static struct task_struct *
1526 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1527 {
1528 	struct task_struct *p;
1529 	struct rt_rq *rt_rq = &rq->rt;
1530 
1531 	if (need_pull_rt_task(rq, prev)) {
1532 		/*
1533 		 * This is OK, because current is on_cpu, which avoids it being
1534 		 * picked for load-balance and preemption/IRQs are still
1535 		 * disabled avoiding further scheduler activity on it and we're
1536 		 * being very careful to re-start the picking loop.
1537 		 */
1538 		lockdep_unpin_lock(&rq->lock, cookie);
1539 		pull_rt_task(rq);
1540 		lockdep_repin_lock(&rq->lock, cookie);
1541 		/*
1542 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1543 		 * means a dl or stop task can slip in, in which case we need
1544 		 * to re-start task selection.
1545 		 */
1546 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1547 			     rq->dl.dl_nr_running))
1548 			return RETRY_TASK;
1549 	}
1550 
1551 	/*
1552 	 * We may dequeue prev's rt_rq in put_prev_task().
1553 	 * So, we update time before rt_nr_running check.
1554 	 */
1555 	if (prev->sched_class == &rt_sched_class)
1556 		update_curr_rt(rq);
1557 
1558 	if (!rt_rq->rt_queued)
1559 		return NULL;
1560 
1561 	put_prev_task(rq, prev);
1562 
1563 	p = _pick_next_task_rt(rq);
1564 
1565 	/* The running task is never eligible for pushing */
1566 	dequeue_pushable_task(rq, p);
1567 
1568 	queue_push_tasks(rq);
1569 
1570 	return p;
1571 }
1572 
1573 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1574 {
1575 	update_curr_rt(rq);
1576 
1577 	/*
1578 	 * The previous task needs to be made eligible for pushing
1579 	 * if it is still active
1580 	 */
1581 	if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1582 		enqueue_pushable_task(rq, p);
1583 }
1584 
1585 #ifdef CONFIG_SMP
1586 
1587 /* Only try algorithms three times */
1588 #define RT_MAX_TRIES 3
1589 
1590 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1591 {
1592 	if (!task_running(rq, p) &&
1593 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1594 		return 1;
1595 	return 0;
1596 }
1597 
1598 /*
1599  * Return the highest pushable rq's task, which is suitable to be executed
1600  * on the cpu, NULL otherwise
1601  */
1602 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1603 {
1604 	struct plist_head *head = &rq->rt.pushable_tasks;
1605 	struct task_struct *p;
1606 
1607 	if (!has_pushable_tasks(rq))
1608 		return NULL;
1609 
1610 	plist_for_each_entry(p, head, pushable_tasks) {
1611 		if (pick_rt_task(rq, p, cpu))
1612 			return p;
1613 	}
1614 
1615 	return NULL;
1616 }
1617 
1618 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1619 
1620 static int find_lowest_rq(struct task_struct *task)
1621 {
1622 	struct sched_domain *sd;
1623 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1624 	int this_cpu = smp_processor_id();
1625 	int cpu      = task_cpu(task);
1626 
1627 	/* Make sure the mask is initialized first */
1628 	if (unlikely(!lowest_mask))
1629 		return -1;
1630 
1631 	if (tsk_nr_cpus_allowed(task) == 1)
1632 		return -1; /* No other targets possible */
1633 
1634 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1635 		return -1; /* No targets found */
1636 
1637 	/*
1638 	 * At this point we have built a mask of cpus representing the
1639 	 * lowest priority tasks in the system.  Now we want to elect
1640 	 * the best one based on our affinity and topology.
1641 	 *
1642 	 * We prioritize the last cpu that the task executed on since
1643 	 * it is most likely cache-hot in that location.
1644 	 */
1645 	if (cpumask_test_cpu(cpu, lowest_mask))
1646 		return cpu;
1647 
1648 	/*
1649 	 * Otherwise, we consult the sched_domains span maps to figure
1650 	 * out which cpu is logically closest to our hot cache data.
1651 	 */
1652 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1653 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1654 
1655 	rcu_read_lock();
1656 	for_each_domain(cpu, sd) {
1657 		if (sd->flags & SD_WAKE_AFFINE) {
1658 			int best_cpu;
1659 
1660 			/*
1661 			 * "this_cpu" is cheaper to preempt than a
1662 			 * remote processor.
1663 			 */
1664 			if (this_cpu != -1 &&
1665 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1666 				rcu_read_unlock();
1667 				return this_cpu;
1668 			}
1669 
1670 			best_cpu = cpumask_first_and(lowest_mask,
1671 						     sched_domain_span(sd));
1672 			if (best_cpu < nr_cpu_ids) {
1673 				rcu_read_unlock();
1674 				return best_cpu;
1675 			}
1676 		}
1677 	}
1678 	rcu_read_unlock();
1679 
1680 	/*
1681 	 * And finally, if there were no matches within the domains
1682 	 * just give the caller *something* to work with from the compatible
1683 	 * locations.
1684 	 */
1685 	if (this_cpu != -1)
1686 		return this_cpu;
1687 
1688 	cpu = cpumask_any(lowest_mask);
1689 	if (cpu < nr_cpu_ids)
1690 		return cpu;
1691 	return -1;
1692 }
1693 
1694 /* Will lock the rq it finds */
1695 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1696 {
1697 	struct rq *lowest_rq = NULL;
1698 	int tries;
1699 	int cpu;
1700 
1701 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1702 		cpu = find_lowest_rq(task);
1703 
1704 		if ((cpu == -1) || (cpu == rq->cpu))
1705 			break;
1706 
1707 		lowest_rq = cpu_rq(cpu);
1708 
1709 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1710 			/*
1711 			 * Target rq has tasks of equal or higher priority,
1712 			 * retrying does not release any lock and is unlikely
1713 			 * to yield a different result.
1714 			 */
1715 			lowest_rq = NULL;
1716 			break;
1717 		}
1718 
1719 		/* if the prio of this runqueue changed, try again */
1720 		if (double_lock_balance(rq, lowest_rq)) {
1721 			/*
1722 			 * We had to unlock the run queue. In
1723 			 * the mean time, task could have
1724 			 * migrated already or had its affinity changed.
1725 			 * Also make sure that it wasn't scheduled on its rq.
1726 			 */
1727 			if (unlikely(task_rq(task) != rq ||
1728 				     !cpumask_test_cpu(lowest_rq->cpu,
1729 						       tsk_cpus_allowed(task)) ||
1730 				     task_running(rq, task) ||
1731 				     !rt_task(task) ||
1732 				     !task_on_rq_queued(task))) {
1733 
1734 				double_unlock_balance(rq, lowest_rq);
1735 				lowest_rq = NULL;
1736 				break;
1737 			}
1738 		}
1739 
1740 		/* If this rq is still suitable use it. */
1741 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1742 			break;
1743 
1744 		/* try again */
1745 		double_unlock_balance(rq, lowest_rq);
1746 		lowest_rq = NULL;
1747 	}
1748 
1749 	return lowest_rq;
1750 }
1751 
1752 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1753 {
1754 	struct task_struct *p;
1755 
1756 	if (!has_pushable_tasks(rq))
1757 		return NULL;
1758 
1759 	p = plist_first_entry(&rq->rt.pushable_tasks,
1760 			      struct task_struct, pushable_tasks);
1761 
1762 	BUG_ON(rq->cpu != task_cpu(p));
1763 	BUG_ON(task_current(rq, p));
1764 	BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1765 
1766 	BUG_ON(!task_on_rq_queued(p));
1767 	BUG_ON(!rt_task(p));
1768 
1769 	return p;
1770 }
1771 
1772 /*
1773  * If the current CPU has more than one RT task, see if the non
1774  * running task can migrate over to a CPU that is running a task
1775  * of lesser priority.
1776  */
1777 static int push_rt_task(struct rq *rq)
1778 {
1779 	struct task_struct *next_task;
1780 	struct rq *lowest_rq;
1781 	int ret = 0;
1782 
1783 	if (!rq->rt.overloaded)
1784 		return 0;
1785 
1786 	next_task = pick_next_pushable_task(rq);
1787 	if (!next_task)
1788 		return 0;
1789 
1790 retry:
1791 	if (unlikely(next_task == rq->curr)) {
1792 		WARN_ON(1);
1793 		return 0;
1794 	}
1795 
1796 	/*
1797 	 * It's possible that the next_task slipped in of
1798 	 * higher priority than current. If that's the case
1799 	 * just reschedule current.
1800 	 */
1801 	if (unlikely(next_task->prio < rq->curr->prio)) {
1802 		resched_curr(rq);
1803 		return 0;
1804 	}
1805 
1806 	/* We might release rq lock */
1807 	get_task_struct(next_task);
1808 
1809 	/* find_lock_lowest_rq locks the rq if found */
1810 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1811 	if (!lowest_rq) {
1812 		struct task_struct *task;
1813 		/*
1814 		 * find_lock_lowest_rq releases rq->lock
1815 		 * so it is possible that next_task has migrated.
1816 		 *
1817 		 * We need to make sure that the task is still on the same
1818 		 * run-queue and is also still the next task eligible for
1819 		 * pushing.
1820 		 */
1821 		task = pick_next_pushable_task(rq);
1822 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1823 			/*
1824 			 * The task hasn't migrated, and is still the next
1825 			 * eligible task, but we failed to find a run-queue
1826 			 * to push it to.  Do not retry in this case, since
1827 			 * other cpus will pull from us when ready.
1828 			 */
1829 			goto out;
1830 		}
1831 
1832 		if (!task)
1833 			/* No more tasks, just exit */
1834 			goto out;
1835 
1836 		/*
1837 		 * Something has shifted, try again.
1838 		 */
1839 		put_task_struct(next_task);
1840 		next_task = task;
1841 		goto retry;
1842 	}
1843 
1844 	deactivate_task(rq, next_task, 0);
1845 	set_task_cpu(next_task, lowest_rq->cpu);
1846 	activate_task(lowest_rq, next_task, 0);
1847 	ret = 1;
1848 
1849 	resched_curr(lowest_rq);
1850 
1851 	double_unlock_balance(rq, lowest_rq);
1852 
1853 out:
1854 	put_task_struct(next_task);
1855 
1856 	return ret;
1857 }
1858 
1859 static void push_rt_tasks(struct rq *rq)
1860 {
1861 	/* push_rt_task will return true if it moved an RT */
1862 	while (push_rt_task(rq))
1863 		;
1864 }
1865 
1866 #ifdef HAVE_RT_PUSH_IPI
1867 /*
1868  * The search for the next cpu always starts at rq->cpu and ends
1869  * when we reach rq->cpu again. It will never return rq->cpu.
1870  * This returns the next cpu to check, or nr_cpu_ids if the loop
1871  * is complete.
1872  *
1873  * rq->rt.push_cpu holds the last cpu returned by this function,
1874  * or if this is the first instance, it must hold rq->cpu.
1875  */
1876 static int rto_next_cpu(struct rq *rq)
1877 {
1878 	int prev_cpu = rq->rt.push_cpu;
1879 	int cpu;
1880 
1881 	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1882 
1883 	/*
1884 	 * If the previous cpu is less than the rq's CPU, then it already
1885 	 * passed the end of the mask, and has started from the beginning.
1886 	 * We end if the next CPU is greater or equal to rq's CPU.
1887 	 */
1888 	if (prev_cpu < rq->cpu) {
1889 		if (cpu >= rq->cpu)
1890 			return nr_cpu_ids;
1891 
1892 	} else if (cpu >= nr_cpu_ids) {
1893 		/*
1894 		 * We passed the end of the mask, start at the beginning.
1895 		 * If the result is greater or equal to the rq's CPU, then
1896 		 * the loop is finished.
1897 		 */
1898 		cpu = cpumask_first(rq->rd->rto_mask);
1899 		if (cpu >= rq->cpu)
1900 			return nr_cpu_ids;
1901 	}
1902 	rq->rt.push_cpu = cpu;
1903 
1904 	/* Return cpu to let the caller know if the loop is finished or not */
1905 	return cpu;
1906 }
1907 
1908 static int find_next_push_cpu(struct rq *rq)
1909 {
1910 	struct rq *next_rq;
1911 	int cpu;
1912 
1913 	while (1) {
1914 		cpu = rto_next_cpu(rq);
1915 		if (cpu >= nr_cpu_ids)
1916 			break;
1917 		next_rq = cpu_rq(cpu);
1918 
1919 		/* Make sure the next rq can push to this rq */
1920 		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1921 			break;
1922 	}
1923 
1924 	return cpu;
1925 }
1926 
1927 #define RT_PUSH_IPI_EXECUTING		1
1928 #define RT_PUSH_IPI_RESTART		2
1929 
1930 static void tell_cpu_to_push(struct rq *rq)
1931 {
1932 	int cpu;
1933 
1934 	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1935 		raw_spin_lock(&rq->rt.push_lock);
1936 		/* Make sure it's still executing */
1937 		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1938 			/*
1939 			 * Tell the IPI to restart the loop as things have
1940 			 * changed since it started.
1941 			 */
1942 			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1943 			raw_spin_unlock(&rq->rt.push_lock);
1944 			return;
1945 		}
1946 		raw_spin_unlock(&rq->rt.push_lock);
1947 	}
1948 
1949 	/* When here, there's no IPI going around */
1950 
1951 	rq->rt.push_cpu = rq->cpu;
1952 	cpu = find_next_push_cpu(rq);
1953 	if (cpu >= nr_cpu_ids)
1954 		return;
1955 
1956 	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1957 
1958 	irq_work_queue_on(&rq->rt.push_work, cpu);
1959 }
1960 
1961 /* Called from hardirq context */
1962 static void try_to_push_tasks(void *arg)
1963 {
1964 	struct rt_rq *rt_rq = arg;
1965 	struct rq *rq, *src_rq;
1966 	int this_cpu;
1967 	int cpu;
1968 
1969 	this_cpu = rt_rq->push_cpu;
1970 
1971 	/* Paranoid check */
1972 	BUG_ON(this_cpu != smp_processor_id());
1973 
1974 	rq = cpu_rq(this_cpu);
1975 	src_rq = rq_of_rt_rq(rt_rq);
1976 
1977 again:
1978 	if (has_pushable_tasks(rq)) {
1979 		raw_spin_lock(&rq->lock);
1980 		push_rt_task(rq);
1981 		raw_spin_unlock(&rq->lock);
1982 	}
1983 
1984 	/* Pass the IPI to the next rt overloaded queue */
1985 	raw_spin_lock(&rt_rq->push_lock);
1986 	/*
1987 	 * If the source queue changed since the IPI went out,
1988 	 * we need to restart the search from that CPU again.
1989 	 */
1990 	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1991 		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1992 		rt_rq->push_cpu = src_rq->cpu;
1993 	}
1994 
1995 	cpu = find_next_push_cpu(src_rq);
1996 
1997 	if (cpu >= nr_cpu_ids)
1998 		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1999 	raw_spin_unlock(&rt_rq->push_lock);
2000 
2001 	if (cpu >= nr_cpu_ids)
2002 		return;
2003 
2004 	/*
2005 	 * It is possible that a restart caused this CPU to be
2006 	 * chosen again. Don't bother with an IPI, just see if we
2007 	 * have more to push.
2008 	 */
2009 	if (unlikely(cpu == rq->cpu))
2010 		goto again;
2011 
2012 	/* Try the next RT overloaded CPU */
2013 	irq_work_queue_on(&rt_rq->push_work, cpu);
2014 }
2015 
2016 static void push_irq_work_func(struct irq_work *work)
2017 {
2018 	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2019 
2020 	try_to_push_tasks(rt_rq);
2021 }
2022 #endif /* HAVE_RT_PUSH_IPI */
2023 
2024 static void pull_rt_task(struct rq *this_rq)
2025 {
2026 	int this_cpu = this_rq->cpu, cpu;
2027 	bool resched = false;
2028 	struct task_struct *p;
2029 	struct rq *src_rq;
2030 
2031 	if (likely(!rt_overloaded(this_rq)))
2032 		return;
2033 
2034 	/*
2035 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2036 	 * see overloaded we must also see the rto_mask bit.
2037 	 */
2038 	smp_rmb();
2039 
2040 #ifdef HAVE_RT_PUSH_IPI
2041 	if (sched_feat(RT_PUSH_IPI)) {
2042 		tell_cpu_to_push(this_rq);
2043 		return;
2044 	}
2045 #endif
2046 
2047 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2048 		if (this_cpu == cpu)
2049 			continue;
2050 
2051 		src_rq = cpu_rq(cpu);
2052 
2053 		/*
2054 		 * Don't bother taking the src_rq->lock if the next highest
2055 		 * task is known to be lower-priority than our current task.
2056 		 * This may look racy, but if this value is about to go
2057 		 * logically higher, the src_rq will push this task away.
2058 		 * And if its going logically lower, we do not care
2059 		 */
2060 		if (src_rq->rt.highest_prio.next >=
2061 		    this_rq->rt.highest_prio.curr)
2062 			continue;
2063 
2064 		/*
2065 		 * We can potentially drop this_rq's lock in
2066 		 * double_lock_balance, and another CPU could
2067 		 * alter this_rq
2068 		 */
2069 		double_lock_balance(this_rq, src_rq);
2070 
2071 		/*
2072 		 * We can pull only a task, which is pushable
2073 		 * on its rq, and no others.
2074 		 */
2075 		p = pick_highest_pushable_task(src_rq, this_cpu);
2076 
2077 		/*
2078 		 * Do we have an RT task that preempts
2079 		 * the to-be-scheduled task?
2080 		 */
2081 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2082 			WARN_ON(p == src_rq->curr);
2083 			WARN_ON(!task_on_rq_queued(p));
2084 
2085 			/*
2086 			 * There's a chance that p is higher in priority
2087 			 * than what's currently running on its cpu.
2088 			 * This is just that p is wakeing up and hasn't
2089 			 * had a chance to schedule. We only pull
2090 			 * p if it is lower in priority than the
2091 			 * current task on the run queue
2092 			 */
2093 			if (p->prio < src_rq->curr->prio)
2094 				goto skip;
2095 
2096 			resched = true;
2097 
2098 			deactivate_task(src_rq, p, 0);
2099 			set_task_cpu(p, this_cpu);
2100 			activate_task(this_rq, p, 0);
2101 			/*
2102 			 * We continue with the search, just in
2103 			 * case there's an even higher prio task
2104 			 * in another runqueue. (low likelihood
2105 			 * but possible)
2106 			 */
2107 		}
2108 skip:
2109 		double_unlock_balance(this_rq, src_rq);
2110 	}
2111 
2112 	if (resched)
2113 		resched_curr(this_rq);
2114 }
2115 
2116 /*
2117  * If we are not running and we are not going to reschedule soon, we should
2118  * try to push tasks away now
2119  */
2120 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2121 {
2122 	if (!task_running(rq, p) &&
2123 	    !test_tsk_need_resched(rq->curr) &&
2124 	    tsk_nr_cpus_allowed(p) > 1 &&
2125 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2126 	    (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2127 	     rq->curr->prio <= p->prio))
2128 		push_rt_tasks(rq);
2129 }
2130 
2131 /* Assumes rq->lock is held */
2132 static void rq_online_rt(struct rq *rq)
2133 {
2134 	if (rq->rt.overloaded)
2135 		rt_set_overload(rq);
2136 
2137 	__enable_runtime(rq);
2138 
2139 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2140 }
2141 
2142 /* Assumes rq->lock is held */
2143 static void rq_offline_rt(struct rq *rq)
2144 {
2145 	if (rq->rt.overloaded)
2146 		rt_clear_overload(rq);
2147 
2148 	__disable_runtime(rq);
2149 
2150 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2151 }
2152 
2153 /*
2154  * When switch from the rt queue, we bring ourselves to a position
2155  * that we might want to pull RT tasks from other runqueues.
2156  */
2157 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2158 {
2159 	/*
2160 	 * If there are other RT tasks then we will reschedule
2161 	 * and the scheduling of the other RT tasks will handle
2162 	 * the balancing. But if we are the last RT task
2163 	 * we may need to handle the pulling of RT tasks
2164 	 * now.
2165 	 */
2166 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2167 		return;
2168 
2169 	queue_pull_task(rq);
2170 }
2171 
2172 void __init init_sched_rt_class(void)
2173 {
2174 	unsigned int i;
2175 
2176 	for_each_possible_cpu(i) {
2177 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2178 					GFP_KERNEL, cpu_to_node(i));
2179 	}
2180 }
2181 #endif /* CONFIG_SMP */
2182 
2183 /*
2184  * When switching a task to RT, we may overload the runqueue
2185  * with RT tasks. In this case we try to push them off to
2186  * other runqueues.
2187  */
2188 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2189 {
2190 	/*
2191 	 * If we are already running, then there's nothing
2192 	 * that needs to be done. But if we are not running
2193 	 * we may need to preempt the current running task.
2194 	 * If that current running task is also an RT task
2195 	 * then see if we can move to another run queue.
2196 	 */
2197 	if (task_on_rq_queued(p) && rq->curr != p) {
2198 #ifdef CONFIG_SMP
2199 		if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2200 			queue_push_tasks(rq);
2201 #else
2202 		if (p->prio < rq->curr->prio)
2203 			resched_curr(rq);
2204 #endif /* CONFIG_SMP */
2205 	}
2206 }
2207 
2208 /*
2209  * Priority of the task has changed. This may cause
2210  * us to initiate a push or pull.
2211  */
2212 static void
2213 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2214 {
2215 	if (!task_on_rq_queued(p))
2216 		return;
2217 
2218 	if (rq->curr == p) {
2219 #ifdef CONFIG_SMP
2220 		/*
2221 		 * If our priority decreases while running, we
2222 		 * may need to pull tasks to this runqueue.
2223 		 */
2224 		if (oldprio < p->prio)
2225 			queue_pull_task(rq);
2226 
2227 		/*
2228 		 * If there's a higher priority task waiting to run
2229 		 * then reschedule.
2230 		 */
2231 		if (p->prio > rq->rt.highest_prio.curr)
2232 			resched_curr(rq);
2233 #else
2234 		/* For UP simply resched on drop of prio */
2235 		if (oldprio < p->prio)
2236 			resched_curr(rq);
2237 #endif /* CONFIG_SMP */
2238 	} else {
2239 		/*
2240 		 * This task is not running, but if it is
2241 		 * greater than the current running task
2242 		 * then reschedule.
2243 		 */
2244 		if (p->prio < rq->curr->prio)
2245 			resched_curr(rq);
2246 	}
2247 }
2248 
2249 static void watchdog(struct rq *rq, struct task_struct *p)
2250 {
2251 	unsigned long soft, hard;
2252 
2253 	/* max may change after cur was read, this will be fixed next tick */
2254 	soft = task_rlimit(p, RLIMIT_RTTIME);
2255 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2256 
2257 	if (soft != RLIM_INFINITY) {
2258 		unsigned long next;
2259 
2260 		if (p->rt.watchdog_stamp != jiffies) {
2261 			p->rt.timeout++;
2262 			p->rt.watchdog_stamp = jiffies;
2263 		}
2264 
2265 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2266 		if (p->rt.timeout > next)
2267 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2268 	}
2269 }
2270 
2271 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2272 {
2273 	struct sched_rt_entity *rt_se = &p->rt;
2274 
2275 	update_curr_rt(rq);
2276 
2277 	watchdog(rq, p);
2278 
2279 	/*
2280 	 * RR tasks need a special form of timeslice management.
2281 	 * FIFO tasks have no timeslices.
2282 	 */
2283 	if (p->policy != SCHED_RR)
2284 		return;
2285 
2286 	if (--p->rt.time_slice)
2287 		return;
2288 
2289 	p->rt.time_slice = sched_rr_timeslice;
2290 
2291 	/*
2292 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2293 	 * the only element on the queue
2294 	 */
2295 	for_each_sched_rt_entity(rt_se) {
2296 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2297 			requeue_task_rt(rq, p, 0);
2298 			resched_curr(rq);
2299 			return;
2300 		}
2301 	}
2302 }
2303 
2304 static void set_curr_task_rt(struct rq *rq)
2305 {
2306 	struct task_struct *p = rq->curr;
2307 
2308 	p->se.exec_start = rq_clock_task(rq);
2309 
2310 	/* The running task is never eligible for pushing */
2311 	dequeue_pushable_task(rq, p);
2312 }
2313 
2314 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2315 {
2316 	/*
2317 	 * Time slice is 0 for SCHED_FIFO tasks
2318 	 */
2319 	if (task->policy == SCHED_RR)
2320 		return sched_rr_timeslice;
2321 	else
2322 		return 0;
2323 }
2324 
2325 const struct sched_class rt_sched_class = {
2326 	.next			= &fair_sched_class,
2327 	.enqueue_task		= enqueue_task_rt,
2328 	.dequeue_task		= dequeue_task_rt,
2329 	.yield_task		= yield_task_rt,
2330 
2331 	.check_preempt_curr	= check_preempt_curr_rt,
2332 
2333 	.pick_next_task		= pick_next_task_rt,
2334 	.put_prev_task		= put_prev_task_rt,
2335 
2336 #ifdef CONFIG_SMP
2337 	.select_task_rq		= select_task_rq_rt,
2338 
2339 	.set_cpus_allowed       = set_cpus_allowed_common,
2340 	.rq_online              = rq_online_rt,
2341 	.rq_offline             = rq_offline_rt,
2342 	.task_woken		= task_woken_rt,
2343 	.switched_from		= switched_from_rt,
2344 #endif
2345 
2346 	.set_curr_task          = set_curr_task_rt,
2347 	.task_tick		= task_tick_rt,
2348 
2349 	.get_rr_interval	= get_rr_interval_rt,
2350 
2351 	.prio_changed		= prio_changed_rt,
2352 	.switched_to		= switched_to_rt,
2353 
2354 	.update_curr		= update_curr_rt,
2355 };
2356 
2357 #ifdef CONFIG_SCHED_DEBUG
2358 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2359 
2360 void print_rt_stats(struct seq_file *m, int cpu)
2361 {
2362 	rt_rq_iter_t iter;
2363 	struct rt_rq *rt_rq;
2364 
2365 	rcu_read_lock();
2366 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2367 		print_rt_rq(m, cpu, rt_rq);
2368 	rcu_read_unlock();
2369 }
2370 #endif /* CONFIG_SCHED_DEBUG */
2371