1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 13 14 struct rt_bandwidth def_rt_bandwidth; 15 16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 17 { 18 struct rt_bandwidth *rt_b = 19 container_of(timer, struct rt_bandwidth, rt_period_timer); 20 ktime_t now; 21 int overrun; 22 int idle = 0; 23 24 for (;;) { 25 now = hrtimer_cb_get_time(timer); 26 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 27 28 if (!overrun) 29 break; 30 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 } 33 34 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 35 } 36 37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 38 { 39 rt_b->rt_period = ns_to_ktime(period); 40 rt_b->rt_runtime = runtime; 41 42 raw_spin_lock_init(&rt_b->rt_runtime_lock); 43 44 hrtimer_init(&rt_b->rt_period_timer, 45 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 46 rt_b->rt_period_timer.function = sched_rt_period_timer; 47 } 48 49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 50 { 51 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 52 return; 53 54 if (hrtimer_active(&rt_b->rt_period_timer)) 55 return; 56 57 raw_spin_lock(&rt_b->rt_runtime_lock); 58 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 59 raw_spin_unlock(&rt_b->rt_runtime_lock); 60 } 61 62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 63 { 64 struct rt_prio_array *array; 65 int i; 66 67 array = &rt_rq->active; 68 for (i = 0; i < MAX_RT_PRIO; i++) { 69 INIT_LIST_HEAD(array->queue + i); 70 __clear_bit(i, array->bitmap); 71 } 72 /* delimiter for bitsearch: */ 73 __set_bit(MAX_RT_PRIO, array->bitmap); 74 75 #if defined CONFIG_SMP 76 rt_rq->highest_prio.curr = MAX_RT_PRIO; 77 rt_rq->highest_prio.next = MAX_RT_PRIO; 78 rt_rq->rt_nr_migratory = 0; 79 rt_rq->overloaded = 0; 80 plist_head_init(&rt_rq->pushable_tasks); 81 #endif 82 83 rt_rq->rt_time = 0; 84 rt_rq->rt_throttled = 0; 85 rt_rq->rt_runtime = 0; 86 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 87 } 88 89 #ifdef CONFIG_RT_GROUP_SCHED 90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 91 { 92 hrtimer_cancel(&rt_b->rt_period_timer); 93 } 94 95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 96 97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 98 { 99 #ifdef CONFIG_SCHED_DEBUG 100 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 101 #endif 102 return container_of(rt_se, struct task_struct, rt); 103 } 104 105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 106 { 107 return rt_rq->rq; 108 } 109 110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 111 { 112 return rt_se->rt_rq; 113 } 114 115 void free_rt_sched_group(struct task_group *tg) 116 { 117 int i; 118 119 if (tg->rt_se) 120 destroy_rt_bandwidth(&tg->rt_bandwidth); 121 122 for_each_possible_cpu(i) { 123 if (tg->rt_rq) 124 kfree(tg->rt_rq[i]); 125 if (tg->rt_se) 126 kfree(tg->rt_se[i]); 127 } 128 129 kfree(tg->rt_rq); 130 kfree(tg->rt_se); 131 } 132 133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 134 struct sched_rt_entity *rt_se, int cpu, 135 struct sched_rt_entity *parent) 136 { 137 struct rq *rq = cpu_rq(cpu); 138 139 rt_rq->highest_prio.curr = MAX_RT_PRIO; 140 rt_rq->rt_nr_boosted = 0; 141 rt_rq->rq = rq; 142 rt_rq->tg = tg; 143 144 tg->rt_rq[cpu] = rt_rq; 145 tg->rt_se[cpu] = rt_se; 146 147 if (!rt_se) 148 return; 149 150 if (!parent) 151 rt_se->rt_rq = &rq->rt; 152 else 153 rt_se->rt_rq = parent->my_q; 154 155 rt_se->my_q = rt_rq; 156 rt_se->parent = parent; 157 INIT_LIST_HEAD(&rt_se->run_list); 158 } 159 160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 161 { 162 struct rt_rq *rt_rq; 163 struct sched_rt_entity *rt_se; 164 int i; 165 166 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 167 if (!tg->rt_rq) 168 goto err; 169 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 170 if (!tg->rt_se) 171 goto err; 172 173 init_rt_bandwidth(&tg->rt_bandwidth, 174 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 175 176 for_each_possible_cpu(i) { 177 rt_rq = kzalloc_node(sizeof(struct rt_rq), 178 GFP_KERNEL, cpu_to_node(i)); 179 if (!rt_rq) 180 goto err; 181 182 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 183 GFP_KERNEL, cpu_to_node(i)); 184 if (!rt_se) 185 goto err_free_rq; 186 187 init_rt_rq(rt_rq, cpu_rq(i)); 188 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 189 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 190 } 191 192 return 1; 193 194 err_free_rq: 195 kfree(rt_rq); 196 err: 197 return 0; 198 } 199 200 #else /* CONFIG_RT_GROUP_SCHED */ 201 202 #define rt_entity_is_task(rt_se) (1) 203 204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 205 { 206 return container_of(rt_se, struct task_struct, rt); 207 } 208 209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 210 { 211 return container_of(rt_rq, struct rq, rt); 212 } 213 214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 215 { 216 struct task_struct *p = rt_task_of(rt_se); 217 struct rq *rq = task_rq(p); 218 219 return &rq->rt; 220 } 221 222 void free_rt_sched_group(struct task_group *tg) { } 223 224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 225 { 226 return 1; 227 } 228 #endif /* CONFIG_RT_GROUP_SCHED */ 229 230 #ifdef CONFIG_SMP 231 232 static inline int rt_overloaded(struct rq *rq) 233 { 234 return atomic_read(&rq->rd->rto_count); 235 } 236 237 static inline void rt_set_overload(struct rq *rq) 238 { 239 if (!rq->online) 240 return; 241 242 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 243 /* 244 * Make sure the mask is visible before we set 245 * the overload count. That is checked to determine 246 * if we should look at the mask. It would be a shame 247 * if we looked at the mask, but the mask was not 248 * updated yet. 249 */ 250 wmb(); 251 atomic_inc(&rq->rd->rto_count); 252 } 253 254 static inline void rt_clear_overload(struct rq *rq) 255 { 256 if (!rq->online) 257 return; 258 259 /* the order here really doesn't matter */ 260 atomic_dec(&rq->rd->rto_count); 261 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 262 } 263 264 static void update_rt_migration(struct rt_rq *rt_rq) 265 { 266 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 267 if (!rt_rq->overloaded) { 268 rt_set_overload(rq_of_rt_rq(rt_rq)); 269 rt_rq->overloaded = 1; 270 } 271 } else if (rt_rq->overloaded) { 272 rt_clear_overload(rq_of_rt_rq(rt_rq)); 273 rt_rq->overloaded = 0; 274 } 275 } 276 277 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 278 { 279 struct task_struct *p; 280 281 if (!rt_entity_is_task(rt_se)) 282 return; 283 284 p = rt_task_of(rt_se); 285 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 286 287 rt_rq->rt_nr_total++; 288 if (p->nr_cpus_allowed > 1) 289 rt_rq->rt_nr_migratory++; 290 291 update_rt_migration(rt_rq); 292 } 293 294 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 295 { 296 struct task_struct *p; 297 298 if (!rt_entity_is_task(rt_se)) 299 return; 300 301 p = rt_task_of(rt_se); 302 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 303 304 rt_rq->rt_nr_total--; 305 if (p->nr_cpus_allowed > 1) 306 rt_rq->rt_nr_migratory--; 307 308 update_rt_migration(rt_rq); 309 } 310 311 static inline int has_pushable_tasks(struct rq *rq) 312 { 313 return !plist_head_empty(&rq->rt.pushable_tasks); 314 } 315 316 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 317 { 318 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 319 plist_node_init(&p->pushable_tasks, p->prio); 320 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 321 322 /* Update the highest prio pushable task */ 323 if (p->prio < rq->rt.highest_prio.next) 324 rq->rt.highest_prio.next = p->prio; 325 } 326 327 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 328 { 329 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 330 331 /* Update the new highest prio pushable task */ 332 if (has_pushable_tasks(rq)) { 333 p = plist_first_entry(&rq->rt.pushable_tasks, 334 struct task_struct, pushable_tasks); 335 rq->rt.highest_prio.next = p->prio; 336 } else 337 rq->rt.highest_prio.next = MAX_RT_PRIO; 338 } 339 340 #else 341 342 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 343 { 344 } 345 346 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 347 { 348 } 349 350 static inline 351 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 352 { 353 } 354 355 static inline 356 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 357 { 358 } 359 360 #endif /* CONFIG_SMP */ 361 362 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 363 { 364 return !list_empty(&rt_se->run_list); 365 } 366 367 #ifdef CONFIG_RT_GROUP_SCHED 368 369 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 370 { 371 if (!rt_rq->tg) 372 return RUNTIME_INF; 373 374 return rt_rq->rt_runtime; 375 } 376 377 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 378 { 379 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 380 } 381 382 typedef struct task_group *rt_rq_iter_t; 383 384 static inline struct task_group *next_task_group(struct task_group *tg) 385 { 386 do { 387 tg = list_entry_rcu(tg->list.next, 388 typeof(struct task_group), list); 389 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 390 391 if (&tg->list == &task_groups) 392 tg = NULL; 393 394 return tg; 395 } 396 397 #define for_each_rt_rq(rt_rq, iter, rq) \ 398 for (iter = container_of(&task_groups, typeof(*iter), list); \ 399 (iter = next_task_group(iter)) && \ 400 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 401 402 #define for_each_sched_rt_entity(rt_se) \ 403 for (; rt_se; rt_se = rt_se->parent) 404 405 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 406 { 407 return rt_se->my_q; 408 } 409 410 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 411 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 412 413 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 414 { 415 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 416 struct sched_rt_entity *rt_se; 417 418 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 419 420 rt_se = rt_rq->tg->rt_se[cpu]; 421 422 if (rt_rq->rt_nr_running) { 423 if (rt_se && !on_rt_rq(rt_se)) 424 enqueue_rt_entity(rt_se, false); 425 if (rt_rq->highest_prio.curr < curr->prio) 426 resched_task(curr); 427 } 428 } 429 430 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 431 { 432 struct sched_rt_entity *rt_se; 433 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 434 435 rt_se = rt_rq->tg->rt_se[cpu]; 436 437 if (rt_se && on_rt_rq(rt_se)) 438 dequeue_rt_entity(rt_se); 439 } 440 441 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 442 { 443 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 444 } 445 446 static int rt_se_boosted(struct sched_rt_entity *rt_se) 447 { 448 struct rt_rq *rt_rq = group_rt_rq(rt_se); 449 struct task_struct *p; 450 451 if (rt_rq) 452 return !!rt_rq->rt_nr_boosted; 453 454 p = rt_task_of(rt_se); 455 return p->prio != p->normal_prio; 456 } 457 458 #ifdef CONFIG_SMP 459 static inline const struct cpumask *sched_rt_period_mask(void) 460 { 461 return this_rq()->rd->span; 462 } 463 #else 464 static inline const struct cpumask *sched_rt_period_mask(void) 465 { 466 return cpu_online_mask; 467 } 468 #endif 469 470 static inline 471 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 472 { 473 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 474 } 475 476 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 477 { 478 return &rt_rq->tg->rt_bandwidth; 479 } 480 481 #else /* !CONFIG_RT_GROUP_SCHED */ 482 483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 484 { 485 return rt_rq->rt_runtime; 486 } 487 488 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 489 { 490 return ktime_to_ns(def_rt_bandwidth.rt_period); 491 } 492 493 typedef struct rt_rq *rt_rq_iter_t; 494 495 #define for_each_rt_rq(rt_rq, iter, rq) \ 496 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 497 498 #define for_each_sched_rt_entity(rt_se) \ 499 for (; rt_se; rt_se = NULL) 500 501 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 502 { 503 return NULL; 504 } 505 506 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 507 { 508 if (rt_rq->rt_nr_running) 509 resched_task(rq_of_rt_rq(rt_rq)->curr); 510 } 511 512 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 513 { 514 } 515 516 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 517 { 518 return rt_rq->rt_throttled; 519 } 520 521 static inline const struct cpumask *sched_rt_period_mask(void) 522 { 523 return cpu_online_mask; 524 } 525 526 static inline 527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 528 { 529 return &cpu_rq(cpu)->rt; 530 } 531 532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 533 { 534 return &def_rt_bandwidth; 535 } 536 537 #endif /* CONFIG_RT_GROUP_SCHED */ 538 539 #ifdef CONFIG_SMP 540 /* 541 * We ran out of runtime, see if we can borrow some from our neighbours. 542 */ 543 static int do_balance_runtime(struct rt_rq *rt_rq) 544 { 545 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 546 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 547 int i, weight, more = 0; 548 u64 rt_period; 549 550 weight = cpumask_weight(rd->span); 551 552 raw_spin_lock(&rt_b->rt_runtime_lock); 553 rt_period = ktime_to_ns(rt_b->rt_period); 554 for_each_cpu(i, rd->span) { 555 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 556 s64 diff; 557 558 if (iter == rt_rq) 559 continue; 560 561 raw_spin_lock(&iter->rt_runtime_lock); 562 /* 563 * Either all rqs have inf runtime and there's nothing to steal 564 * or __disable_runtime() below sets a specific rq to inf to 565 * indicate its been disabled and disalow stealing. 566 */ 567 if (iter->rt_runtime == RUNTIME_INF) 568 goto next; 569 570 /* 571 * From runqueues with spare time, take 1/n part of their 572 * spare time, but no more than our period. 573 */ 574 diff = iter->rt_runtime - iter->rt_time; 575 if (diff > 0) { 576 diff = div_u64((u64)diff, weight); 577 if (rt_rq->rt_runtime + diff > rt_period) 578 diff = rt_period - rt_rq->rt_runtime; 579 iter->rt_runtime -= diff; 580 rt_rq->rt_runtime += diff; 581 more = 1; 582 if (rt_rq->rt_runtime == rt_period) { 583 raw_spin_unlock(&iter->rt_runtime_lock); 584 break; 585 } 586 } 587 next: 588 raw_spin_unlock(&iter->rt_runtime_lock); 589 } 590 raw_spin_unlock(&rt_b->rt_runtime_lock); 591 592 return more; 593 } 594 595 /* 596 * Ensure this RQ takes back all the runtime it lend to its neighbours. 597 */ 598 static void __disable_runtime(struct rq *rq) 599 { 600 struct root_domain *rd = rq->rd; 601 rt_rq_iter_t iter; 602 struct rt_rq *rt_rq; 603 604 if (unlikely(!scheduler_running)) 605 return; 606 607 for_each_rt_rq(rt_rq, iter, rq) { 608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 609 s64 want; 610 int i; 611 612 raw_spin_lock(&rt_b->rt_runtime_lock); 613 raw_spin_lock(&rt_rq->rt_runtime_lock); 614 /* 615 * Either we're all inf and nobody needs to borrow, or we're 616 * already disabled and thus have nothing to do, or we have 617 * exactly the right amount of runtime to take out. 618 */ 619 if (rt_rq->rt_runtime == RUNTIME_INF || 620 rt_rq->rt_runtime == rt_b->rt_runtime) 621 goto balanced; 622 raw_spin_unlock(&rt_rq->rt_runtime_lock); 623 624 /* 625 * Calculate the difference between what we started out with 626 * and what we current have, that's the amount of runtime 627 * we lend and now have to reclaim. 628 */ 629 want = rt_b->rt_runtime - rt_rq->rt_runtime; 630 631 /* 632 * Greedy reclaim, take back as much as we can. 633 */ 634 for_each_cpu(i, rd->span) { 635 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 636 s64 diff; 637 638 /* 639 * Can't reclaim from ourselves or disabled runqueues. 640 */ 641 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 642 continue; 643 644 raw_spin_lock(&iter->rt_runtime_lock); 645 if (want > 0) { 646 diff = min_t(s64, iter->rt_runtime, want); 647 iter->rt_runtime -= diff; 648 want -= diff; 649 } else { 650 iter->rt_runtime -= want; 651 want -= want; 652 } 653 raw_spin_unlock(&iter->rt_runtime_lock); 654 655 if (!want) 656 break; 657 } 658 659 raw_spin_lock(&rt_rq->rt_runtime_lock); 660 /* 661 * We cannot be left wanting - that would mean some runtime 662 * leaked out of the system. 663 */ 664 BUG_ON(want); 665 balanced: 666 /* 667 * Disable all the borrow logic by pretending we have inf 668 * runtime - in which case borrowing doesn't make sense. 669 */ 670 rt_rq->rt_runtime = RUNTIME_INF; 671 rt_rq->rt_throttled = 0; 672 raw_spin_unlock(&rt_rq->rt_runtime_lock); 673 raw_spin_unlock(&rt_b->rt_runtime_lock); 674 } 675 } 676 677 static void __enable_runtime(struct rq *rq) 678 { 679 rt_rq_iter_t iter; 680 struct rt_rq *rt_rq; 681 682 if (unlikely(!scheduler_running)) 683 return; 684 685 /* 686 * Reset each runqueue's bandwidth settings 687 */ 688 for_each_rt_rq(rt_rq, iter, rq) { 689 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 690 691 raw_spin_lock(&rt_b->rt_runtime_lock); 692 raw_spin_lock(&rt_rq->rt_runtime_lock); 693 rt_rq->rt_runtime = rt_b->rt_runtime; 694 rt_rq->rt_time = 0; 695 rt_rq->rt_throttled = 0; 696 raw_spin_unlock(&rt_rq->rt_runtime_lock); 697 raw_spin_unlock(&rt_b->rt_runtime_lock); 698 } 699 } 700 701 static int balance_runtime(struct rt_rq *rt_rq) 702 { 703 int more = 0; 704 705 if (!sched_feat(RT_RUNTIME_SHARE)) 706 return more; 707 708 if (rt_rq->rt_time > rt_rq->rt_runtime) { 709 raw_spin_unlock(&rt_rq->rt_runtime_lock); 710 more = do_balance_runtime(rt_rq); 711 raw_spin_lock(&rt_rq->rt_runtime_lock); 712 } 713 714 return more; 715 } 716 #else /* !CONFIG_SMP */ 717 static inline int balance_runtime(struct rt_rq *rt_rq) 718 { 719 return 0; 720 } 721 #endif /* CONFIG_SMP */ 722 723 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 724 { 725 int i, idle = 1, throttled = 0; 726 const struct cpumask *span; 727 728 span = sched_rt_period_mask(); 729 #ifdef CONFIG_RT_GROUP_SCHED 730 /* 731 * FIXME: isolated CPUs should really leave the root task group, 732 * whether they are isolcpus or were isolated via cpusets, lest 733 * the timer run on a CPU which does not service all runqueues, 734 * potentially leaving other CPUs indefinitely throttled. If 735 * isolation is really required, the user will turn the throttle 736 * off to kill the perturbations it causes anyway. Meanwhile, 737 * this maintains functionality for boot and/or troubleshooting. 738 */ 739 if (rt_b == &root_task_group.rt_bandwidth) 740 span = cpu_online_mask; 741 #endif 742 for_each_cpu(i, span) { 743 int enqueue = 0; 744 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 745 struct rq *rq = rq_of_rt_rq(rt_rq); 746 747 raw_spin_lock(&rq->lock); 748 if (rt_rq->rt_time) { 749 u64 runtime; 750 751 raw_spin_lock(&rt_rq->rt_runtime_lock); 752 if (rt_rq->rt_throttled) 753 balance_runtime(rt_rq); 754 runtime = rt_rq->rt_runtime; 755 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 756 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 757 rt_rq->rt_throttled = 0; 758 enqueue = 1; 759 760 /* 761 * Force a clock update if the CPU was idle, 762 * lest wakeup -> unthrottle time accumulate. 763 */ 764 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 765 rq->skip_clock_update = -1; 766 } 767 if (rt_rq->rt_time || rt_rq->rt_nr_running) 768 idle = 0; 769 raw_spin_unlock(&rt_rq->rt_runtime_lock); 770 } else if (rt_rq->rt_nr_running) { 771 idle = 0; 772 if (!rt_rq_throttled(rt_rq)) 773 enqueue = 1; 774 } 775 if (rt_rq->rt_throttled) 776 throttled = 1; 777 778 if (enqueue) 779 sched_rt_rq_enqueue(rt_rq); 780 raw_spin_unlock(&rq->lock); 781 } 782 783 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 784 return 1; 785 786 return idle; 787 } 788 789 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 790 { 791 #ifdef CONFIG_RT_GROUP_SCHED 792 struct rt_rq *rt_rq = group_rt_rq(rt_se); 793 794 if (rt_rq) 795 return rt_rq->highest_prio.curr; 796 #endif 797 798 return rt_task_of(rt_se)->prio; 799 } 800 801 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 802 { 803 u64 runtime = sched_rt_runtime(rt_rq); 804 805 if (rt_rq->rt_throttled) 806 return rt_rq_throttled(rt_rq); 807 808 if (runtime >= sched_rt_period(rt_rq)) 809 return 0; 810 811 balance_runtime(rt_rq); 812 runtime = sched_rt_runtime(rt_rq); 813 if (runtime == RUNTIME_INF) 814 return 0; 815 816 if (rt_rq->rt_time > runtime) { 817 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 818 819 /* 820 * Don't actually throttle groups that have no runtime assigned 821 * but accrue some time due to boosting. 822 */ 823 if (likely(rt_b->rt_runtime)) { 824 static bool once = false; 825 826 rt_rq->rt_throttled = 1; 827 828 if (!once) { 829 once = true; 830 printk_sched("sched: RT throttling activated\n"); 831 } 832 } else { 833 /* 834 * In case we did anyway, make it go away, 835 * replenishment is a joke, since it will replenish us 836 * with exactly 0 ns. 837 */ 838 rt_rq->rt_time = 0; 839 } 840 841 if (rt_rq_throttled(rt_rq)) { 842 sched_rt_rq_dequeue(rt_rq); 843 return 1; 844 } 845 } 846 847 return 0; 848 } 849 850 /* 851 * Update the current task's runtime statistics. Skip current tasks that 852 * are not in our scheduling class. 853 */ 854 static void update_curr_rt(struct rq *rq) 855 { 856 struct task_struct *curr = rq->curr; 857 struct sched_rt_entity *rt_se = &curr->rt; 858 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 859 u64 delta_exec; 860 861 if (curr->sched_class != &rt_sched_class) 862 return; 863 864 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 865 if (unlikely((s64)delta_exec <= 0)) 866 return; 867 868 schedstat_set(curr->se.statistics.exec_max, 869 max(curr->se.statistics.exec_max, delta_exec)); 870 871 curr->se.sum_exec_runtime += delta_exec; 872 account_group_exec_runtime(curr, delta_exec); 873 874 curr->se.exec_start = rq_clock_task(rq); 875 cpuacct_charge(curr, delta_exec); 876 877 sched_rt_avg_update(rq, delta_exec); 878 879 if (!rt_bandwidth_enabled()) 880 return; 881 882 for_each_sched_rt_entity(rt_se) { 883 rt_rq = rt_rq_of_se(rt_se); 884 885 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 886 raw_spin_lock(&rt_rq->rt_runtime_lock); 887 rt_rq->rt_time += delta_exec; 888 if (sched_rt_runtime_exceeded(rt_rq)) 889 resched_task(curr); 890 raw_spin_unlock(&rt_rq->rt_runtime_lock); 891 } 892 } 893 } 894 895 #if defined CONFIG_SMP 896 897 static void 898 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 899 { 900 struct rq *rq = rq_of_rt_rq(rt_rq); 901 902 if (rq->online && prio < prev_prio) 903 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 904 } 905 906 static void 907 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 908 { 909 struct rq *rq = rq_of_rt_rq(rt_rq); 910 911 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 912 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 913 } 914 915 #else /* CONFIG_SMP */ 916 917 static inline 918 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 919 static inline 920 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 921 922 #endif /* CONFIG_SMP */ 923 924 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 925 static void 926 inc_rt_prio(struct rt_rq *rt_rq, int prio) 927 { 928 int prev_prio = rt_rq->highest_prio.curr; 929 930 if (prio < prev_prio) 931 rt_rq->highest_prio.curr = prio; 932 933 inc_rt_prio_smp(rt_rq, prio, prev_prio); 934 } 935 936 static void 937 dec_rt_prio(struct rt_rq *rt_rq, int prio) 938 { 939 int prev_prio = rt_rq->highest_prio.curr; 940 941 if (rt_rq->rt_nr_running) { 942 943 WARN_ON(prio < prev_prio); 944 945 /* 946 * This may have been our highest task, and therefore 947 * we may have some recomputation to do 948 */ 949 if (prio == prev_prio) { 950 struct rt_prio_array *array = &rt_rq->active; 951 952 rt_rq->highest_prio.curr = 953 sched_find_first_bit(array->bitmap); 954 } 955 956 } else 957 rt_rq->highest_prio.curr = MAX_RT_PRIO; 958 959 dec_rt_prio_smp(rt_rq, prio, prev_prio); 960 } 961 962 #else 963 964 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 965 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 966 967 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 968 969 #ifdef CONFIG_RT_GROUP_SCHED 970 971 static void 972 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 973 { 974 if (rt_se_boosted(rt_se)) 975 rt_rq->rt_nr_boosted++; 976 977 if (rt_rq->tg) 978 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 979 } 980 981 static void 982 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 983 { 984 if (rt_se_boosted(rt_se)) 985 rt_rq->rt_nr_boosted--; 986 987 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 988 } 989 990 #else /* CONFIG_RT_GROUP_SCHED */ 991 992 static void 993 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 994 { 995 start_rt_bandwidth(&def_rt_bandwidth); 996 } 997 998 static inline 999 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1000 1001 #endif /* CONFIG_RT_GROUP_SCHED */ 1002 1003 static inline 1004 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1005 { 1006 int prio = rt_se_prio(rt_se); 1007 1008 WARN_ON(!rt_prio(prio)); 1009 rt_rq->rt_nr_running++; 1010 1011 inc_rt_prio(rt_rq, prio); 1012 inc_rt_migration(rt_se, rt_rq); 1013 inc_rt_group(rt_se, rt_rq); 1014 } 1015 1016 static inline 1017 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1018 { 1019 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1020 WARN_ON(!rt_rq->rt_nr_running); 1021 rt_rq->rt_nr_running--; 1022 1023 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1024 dec_rt_migration(rt_se, rt_rq); 1025 dec_rt_group(rt_se, rt_rq); 1026 } 1027 1028 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1029 { 1030 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1031 struct rt_prio_array *array = &rt_rq->active; 1032 struct rt_rq *group_rq = group_rt_rq(rt_se); 1033 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1034 1035 /* 1036 * Don't enqueue the group if its throttled, or when empty. 1037 * The latter is a consequence of the former when a child group 1038 * get throttled and the current group doesn't have any other 1039 * active members. 1040 */ 1041 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1042 return; 1043 1044 if (head) 1045 list_add(&rt_se->run_list, queue); 1046 else 1047 list_add_tail(&rt_se->run_list, queue); 1048 __set_bit(rt_se_prio(rt_se), array->bitmap); 1049 1050 inc_rt_tasks(rt_se, rt_rq); 1051 } 1052 1053 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1054 { 1055 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1056 struct rt_prio_array *array = &rt_rq->active; 1057 1058 list_del_init(&rt_se->run_list); 1059 if (list_empty(array->queue + rt_se_prio(rt_se))) 1060 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1061 1062 dec_rt_tasks(rt_se, rt_rq); 1063 } 1064 1065 /* 1066 * Because the prio of an upper entry depends on the lower 1067 * entries, we must remove entries top - down. 1068 */ 1069 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1070 { 1071 struct sched_rt_entity *back = NULL; 1072 1073 for_each_sched_rt_entity(rt_se) { 1074 rt_se->back = back; 1075 back = rt_se; 1076 } 1077 1078 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1079 if (on_rt_rq(rt_se)) 1080 __dequeue_rt_entity(rt_se); 1081 } 1082 } 1083 1084 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1085 { 1086 dequeue_rt_stack(rt_se); 1087 for_each_sched_rt_entity(rt_se) 1088 __enqueue_rt_entity(rt_se, head); 1089 } 1090 1091 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1092 { 1093 dequeue_rt_stack(rt_se); 1094 1095 for_each_sched_rt_entity(rt_se) { 1096 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1097 1098 if (rt_rq && rt_rq->rt_nr_running) 1099 __enqueue_rt_entity(rt_se, false); 1100 } 1101 } 1102 1103 /* 1104 * Adding/removing a task to/from a priority array: 1105 */ 1106 static void 1107 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1108 { 1109 struct sched_rt_entity *rt_se = &p->rt; 1110 1111 if (flags & ENQUEUE_WAKEUP) 1112 rt_se->timeout = 0; 1113 1114 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1115 1116 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1117 enqueue_pushable_task(rq, p); 1118 1119 inc_nr_running(rq); 1120 } 1121 1122 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1123 { 1124 struct sched_rt_entity *rt_se = &p->rt; 1125 1126 update_curr_rt(rq); 1127 dequeue_rt_entity(rt_se); 1128 1129 dequeue_pushable_task(rq, p); 1130 1131 dec_nr_running(rq); 1132 } 1133 1134 /* 1135 * Put task to the head or the end of the run list without the overhead of 1136 * dequeue followed by enqueue. 1137 */ 1138 static void 1139 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1140 { 1141 if (on_rt_rq(rt_se)) { 1142 struct rt_prio_array *array = &rt_rq->active; 1143 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1144 1145 if (head) 1146 list_move(&rt_se->run_list, queue); 1147 else 1148 list_move_tail(&rt_se->run_list, queue); 1149 } 1150 } 1151 1152 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1153 { 1154 struct sched_rt_entity *rt_se = &p->rt; 1155 struct rt_rq *rt_rq; 1156 1157 for_each_sched_rt_entity(rt_se) { 1158 rt_rq = rt_rq_of_se(rt_se); 1159 requeue_rt_entity(rt_rq, rt_se, head); 1160 } 1161 } 1162 1163 static void yield_task_rt(struct rq *rq) 1164 { 1165 requeue_task_rt(rq, rq->curr, 0); 1166 } 1167 1168 #ifdef CONFIG_SMP 1169 static int find_lowest_rq(struct task_struct *task); 1170 1171 static int 1172 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) 1173 { 1174 struct task_struct *curr; 1175 struct rq *rq; 1176 int cpu; 1177 1178 cpu = task_cpu(p); 1179 1180 if (p->nr_cpus_allowed == 1) 1181 goto out; 1182 1183 /* For anything but wake ups, just return the task_cpu */ 1184 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1185 goto out; 1186 1187 rq = cpu_rq(cpu); 1188 1189 rcu_read_lock(); 1190 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1191 1192 /* 1193 * If the current task on @p's runqueue is an RT task, then 1194 * try to see if we can wake this RT task up on another 1195 * runqueue. Otherwise simply start this RT task 1196 * on its current runqueue. 1197 * 1198 * We want to avoid overloading runqueues. If the woken 1199 * task is a higher priority, then it will stay on this CPU 1200 * and the lower prio task should be moved to another CPU. 1201 * Even though this will probably make the lower prio task 1202 * lose its cache, we do not want to bounce a higher task 1203 * around just because it gave up its CPU, perhaps for a 1204 * lock? 1205 * 1206 * For equal prio tasks, we just let the scheduler sort it out. 1207 * 1208 * Otherwise, just let it ride on the affined RQ and the 1209 * post-schedule router will push the preempted task away 1210 * 1211 * This test is optimistic, if we get it wrong the load-balancer 1212 * will have to sort it out. 1213 */ 1214 if (curr && unlikely(rt_task(curr)) && 1215 (curr->nr_cpus_allowed < 2 || 1216 curr->prio <= p->prio) && 1217 (p->nr_cpus_allowed > 1)) { 1218 int target = find_lowest_rq(p); 1219 1220 if (target != -1) 1221 cpu = target; 1222 } 1223 rcu_read_unlock(); 1224 1225 out: 1226 return cpu; 1227 } 1228 1229 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1230 { 1231 if (rq->curr->nr_cpus_allowed == 1) 1232 return; 1233 1234 if (p->nr_cpus_allowed != 1 1235 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1236 return; 1237 1238 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1239 return; 1240 1241 /* 1242 * There appears to be other cpus that can accept 1243 * current and none to run 'p', so lets reschedule 1244 * to try and push current away: 1245 */ 1246 requeue_task_rt(rq, p, 1); 1247 resched_task(rq->curr); 1248 } 1249 1250 #endif /* CONFIG_SMP */ 1251 1252 /* 1253 * Preempt the current task with a newly woken task if needed: 1254 */ 1255 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1256 { 1257 if (p->prio < rq->curr->prio) { 1258 resched_task(rq->curr); 1259 return; 1260 } 1261 1262 #ifdef CONFIG_SMP 1263 /* 1264 * If: 1265 * 1266 * - the newly woken task is of equal priority to the current task 1267 * - the newly woken task is non-migratable while current is migratable 1268 * - current will be preempted on the next reschedule 1269 * 1270 * we should check to see if current can readily move to a different 1271 * cpu. If so, we will reschedule to allow the push logic to try 1272 * to move current somewhere else, making room for our non-migratable 1273 * task. 1274 */ 1275 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1276 check_preempt_equal_prio(rq, p); 1277 #endif 1278 } 1279 1280 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1281 struct rt_rq *rt_rq) 1282 { 1283 struct rt_prio_array *array = &rt_rq->active; 1284 struct sched_rt_entity *next = NULL; 1285 struct list_head *queue; 1286 int idx; 1287 1288 idx = sched_find_first_bit(array->bitmap); 1289 BUG_ON(idx >= MAX_RT_PRIO); 1290 1291 queue = array->queue + idx; 1292 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1293 1294 return next; 1295 } 1296 1297 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1298 { 1299 struct sched_rt_entity *rt_se; 1300 struct task_struct *p; 1301 struct rt_rq *rt_rq; 1302 1303 rt_rq = &rq->rt; 1304 1305 if (!rt_rq->rt_nr_running) 1306 return NULL; 1307 1308 if (rt_rq_throttled(rt_rq)) 1309 return NULL; 1310 1311 do { 1312 rt_se = pick_next_rt_entity(rq, rt_rq); 1313 BUG_ON(!rt_se); 1314 rt_rq = group_rt_rq(rt_se); 1315 } while (rt_rq); 1316 1317 p = rt_task_of(rt_se); 1318 p->se.exec_start = rq_clock_task(rq); 1319 1320 return p; 1321 } 1322 1323 static struct task_struct *pick_next_task_rt(struct rq *rq) 1324 { 1325 struct task_struct *p = _pick_next_task_rt(rq); 1326 1327 /* The running task is never eligible for pushing */ 1328 if (p) 1329 dequeue_pushable_task(rq, p); 1330 1331 #ifdef CONFIG_SMP 1332 /* 1333 * We detect this state here so that we can avoid taking the RQ 1334 * lock again later if there is no need to push 1335 */ 1336 rq->post_schedule = has_pushable_tasks(rq); 1337 #endif 1338 1339 return p; 1340 } 1341 1342 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1343 { 1344 update_curr_rt(rq); 1345 1346 /* 1347 * The previous task needs to be made eligible for pushing 1348 * if it is still active 1349 */ 1350 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1351 enqueue_pushable_task(rq, p); 1352 } 1353 1354 #ifdef CONFIG_SMP 1355 1356 /* Only try algorithms three times */ 1357 #define RT_MAX_TRIES 3 1358 1359 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1360 { 1361 if (!task_running(rq, p) && 1362 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1363 return 1; 1364 return 0; 1365 } 1366 1367 /* 1368 * Return the highest pushable rq's task, which is suitable to be executed 1369 * on the cpu, NULL otherwise 1370 */ 1371 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1372 { 1373 struct plist_head *head = &rq->rt.pushable_tasks; 1374 struct task_struct *p; 1375 1376 if (!has_pushable_tasks(rq)) 1377 return NULL; 1378 1379 plist_for_each_entry(p, head, pushable_tasks) { 1380 if (pick_rt_task(rq, p, cpu)) 1381 return p; 1382 } 1383 1384 return NULL; 1385 } 1386 1387 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1388 1389 static int find_lowest_rq(struct task_struct *task) 1390 { 1391 struct sched_domain *sd; 1392 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1393 int this_cpu = smp_processor_id(); 1394 int cpu = task_cpu(task); 1395 1396 /* Make sure the mask is initialized first */ 1397 if (unlikely(!lowest_mask)) 1398 return -1; 1399 1400 if (task->nr_cpus_allowed == 1) 1401 return -1; /* No other targets possible */ 1402 1403 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1404 return -1; /* No targets found */ 1405 1406 /* 1407 * At this point we have built a mask of cpus representing the 1408 * lowest priority tasks in the system. Now we want to elect 1409 * the best one based on our affinity and topology. 1410 * 1411 * We prioritize the last cpu that the task executed on since 1412 * it is most likely cache-hot in that location. 1413 */ 1414 if (cpumask_test_cpu(cpu, lowest_mask)) 1415 return cpu; 1416 1417 /* 1418 * Otherwise, we consult the sched_domains span maps to figure 1419 * out which cpu is logically closest to our hot cache data. 1420 */ 1421 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1422 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1423 1424 rcu_read_lock(); 1425 for_each_domain(cpu, sd) { 1426 if (sd->flags & SD_WAKE_AFFINE) { 1427 int best_cpu; 1428 1429 /* 1430 * "this_cpu" is cheaper to preempt than a 1431 * remote processor. 1432 */ 1433 if (this_cpu != -1 && 1434 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1435 rcu_read_unlock(); 1436 return this_cpu; 1437 } 1438 1439 best_cpu = cpumask_first_and(lowest_mask, 1440 sched_domain_span(sd)); 1441 if (best_cpu < nr_cpu_ids) { 1442 rcu_read_unlock(); 1443 return best_cpu; 1444 } 1445 } 1446 } 1447 rcu_read_unlock(); 1448 1449 /* 1450 * And finally, if there were no matches within the domains 1451 * just give the caller *something* to work with from the compatible 1452 * locations. 1453 */ 1454 if (this_cpu != -1) 1455 return this_cpu; 1456 1457 cpu = cpumask_any(lowest_mask); 1458 if (cpu < nr_cpu_ids) 1459 return cpu; 1460 return -1; 1461 } 1462 1463 /* Will lock the rq it finds */ 1464 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1465 { 1466 struct rq *lowest_rq = NULL; 1467 int tries; 1468 int cpu; 1469 1470 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1471 cpu = find_lowest_rq(task); 1472 1473 if ((cpu == -1) || (cpu == rq->cpu)) 1474 break; 1475 1476 lowest_rq = cpu_rq(cpu); 1477 1478 /* if the prio of this runqueue changed, try again */ 1479 if (double_lock_balance(rq, lowest_rq)) { 1480 /* 1481 * We had to unlock the run queue. In 1482 * the mean time, task could have 1483 * migrated already or had its affinity changed. 1484 * Also make sure that it wasn't scheduled on its rq. 1485 */ 1486 if (unlikely(task_rq(task) != rq || 1487 !cpumask_test_cpu(lowest_rq->cpu, 1488 tsk_cpus_allowed(task)) || 1489 task_running(rq, task) || 1490 !task->on_rq)) { 1491 1492 double_unlock_balance(rq, lowest_rq); 1493 lowest_rq = NULL; 1494 break; 1495 } 1496 } 1497 1498 /* If this rq is still suitable use it. */ 1499 if (lowest_rq->rt.highest_prio.curr > task->prio) 1500 break; 1501 1502 /* try again */ 1503 double_unlock_balance(rq, lowest_rq); 1504 lowest_rq = NULL; 1505 } 1506 1507 return lowest_rq; 1508 } 1509 1510 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1511 { 1512 struct task_struct *p; 1513 1514 if (!has_pushable_tasks(rq)) 1515 return NULL; 1516 1517 p = plist_first_entry(&rq->rt.pushable_tasks, 1518 struct task_struct, pushable_tasks); 1519 1520 BUG_ON(rq->cpu != task_cpu(p)); 1521 BUG_ON(task_current(rq, p)); 1522 BUG_ON(p->nr_cpus_allowed <= 1); 1523 1524 BUG_ON(!p->on_rq); 1525 BUG_ON(!rt_task(p)); 1526 1527 return p; 1528 } 1529 1530 /* 1531 * If the current CPU has more than one RT task, see if the non 1532 * running task can migrate over to a CPU that is running a task 1533 * of lesser priority. 1534 */ 1535 static int push_rt_task(struct rq *rq) 1536 { 1537 struct task_struct *next_task; 1538 struct rq *lowest_rq; 1539 int ret = 0; 1540 1541 if (!rq->rt.overloaded) 1542 return 0; 1543 1544 next_task = pick_next_pushable_task(rq); 1545 if (!next_task) 1546 return 0; 1547 1548 retry: 1549 if (unlikely(next_task == rq->curr)) { 1550 WARN_ON(1); 1551 return 0; 1552 } 1553 1554 /* 1555 * It's possible that the next_task slipped in of 1556 * higher priority than current. If that's the case 1557 * just reschedule current. 1558 */ 1559 if (unlikely(next_task->prio < rq->curr->prio)) { 1560 resched_task(rq->curr); 1561 return 0; 1562 } 1563 1564 /* We might release rq lock */ 1565 get_task_struct(next_task); 1566 1567 /* find_lock_lowest_rq locks the rq if found */ 1568 lowest_rq = find_lock_lowest_rq(next_task, rq); 1569 if (!lowest_rq) { 1570 struct task_struct *task; 1571 /* 1572 * find_lock_lowest_rq releases rq->lock 1573 * so it is possible that next_task has migrated. 1574 * 1575 * We need to make sure that the task is still on the same 1576 * run-queue and is also still the next task eligible for 1577 * pushing. 1578 */ 1579 task = pick_next_pushable_task(rq); 1580 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1581 /* 1582 * The task hasn't migrated, and is still the next 1583 * eligible task, but we failed to find a run-queue 1584 * to push it to. Do not retry in this case, since 1585 * other cpus will pull from us when ready. 1586 */ 1587 goto out; 1588 } 1589 1590 if (!task) 1591 /* No more tasks, just exit */ 1592 goto out; 1593 1594 /* 1595 * Something has shifted, try again. 1596 */ 1597 put_task_struct(next_task); 1598 next_task = task; 1599 goto retry; 1600 } 1601 1602 deactivate_task(rq, next_task, 0); 1603 set_task_cpu(next_task, lowest_rq->cpu); 1604 activate_task(lowest_rq, next_task, 0); 1605 ret = 1; 1606 1607 resched_task(lowest_rq->curr); 1608 1609 double_unlock_balance(rq, lowest_rq); 1610 1611 out: 1612 put_task_struct(next_task); 1613 1614 return ret; 1615 } 1616 1617 static void push_rt_tasks(struct rq *rq) 1618 { 1619 /* push_rt_task will return true if it moved an RT */ 1620 while (push_rt_task(rq)) 1621 ; 1622 } 1623 1624 static int pull_rt_task(struct rq *this_rq) 1625 { 1626 int this_cpu = this_rq->cpu, ret = 0, cpu; 1627 struct task_struct *p; 1628 struct rq *src_rq; 1629 1630 if (likely(!rt_overloaded(this_rq))) 1631 return 0; 1632 1633 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1634 if (this_cpu == cpu) 1635 continue; 1636 1637 src_rq = cpu_rq(cpu); 1638 1639 /* 1640 * Don't bother taking the src_rq->lock if the next highest 1641 * task is known to be lower-priority than our current task. 1642 * This may look racy, but if this value is about to go 1643 * logically higher, the src_rq will push this task away. 1644 * And if its going logically lower, we do not care 1645 */ 1646 if (src_rq->rt.highest_prio.next >= 1647 this_rq->rt.highest_prio.curr) 1648 continue; 1649 1650 /* 1651 * We can potentially drop this_rq's lock in 1652 * double_lock_balance, and another CPU could 1653 * alter this_rq 1654 */ 1655 double_lock_balance(this_rq, src_rq); 1656 1657 /* 1658 * We can pull only a task, which is pushable 1659 * on its rq, and no others. 1660 */ 1661 p = pick_highest_pushable_task(src_rq, this_cpu); 1662 1663 /* 1664 * Do we have an RT task that preempts 1665 * the to-be-scheduled task? 1666 */ 1667 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1668 WARN_ON(p == src_rq->curr); 1669 WARN_ON(!p->on_rq); 1670 1671 /* 1672 * There's a chance that p is higher in priority 1673 * than what's currently running on its cpu. 1674 * This is just that p is wakeing up and hasn't 1675 * had a chance to schedule. We only pull 1676 * p if it is lower in priority than the 1677 * current task on the run queue 1678 */ 1679 if (p->prio < src_rq->curr->prio) 1680 goto skip; 1681 1682 ret = 1; 1683 1684 deactivate_task(src_rq, p, 0); 1685 set_task_cpu(p, this_cpu); 1686 activate_task(this_rq, p, 0); 1687 /* 1688 * We continue with the search, just in 1689 * case there's an even higher prio task 1690 * in another runqueue. (low likelihood 1691 * but possible) 1692 */ 1693 } 1694 skip: 1695 double_unlock_balance(this_rq, src_rq); 1696 } 1697 1698 return ret; 1699 } 1700 1701 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) 1702 { 1703 /* Try to pull RT tasks here if we lower this rq's prio */ 1704 if (rq->rt.highest_prio.curr > prev->prio) 1705 pull_rt_task(rq); 1706 } 1707 1708 static void post_schedule_rt(struct rq *rq) 1709 { 1710 push_rt_tasks(rq); 1711 } 1712 1713 /* 1714 * If we are not running and we are not going to reschedule soon, we should 1715 * try to push tasks away now 1716 */ 1717 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1718 { 1719 if (!task_running(rq, p) && 1720 !test_tsk_need_resched(rq->curr) && 1721 has_pushable_tasks(rq) && 1722 p->nr_cpus_allowed > 1 && 1723 rt_task(rq->curr) && 1724 (rq->curr->nr_cpus_allowed < 2 || 1725 rq->curr->prio <= p->prio)) 1726 push_rt_tasks(rq); 1727 } 1728 1729 static void set_cpus_allowed_rt(struct task_struct *p, 1730 const struct cpumask *new_mask) 1731 { 1732 struct rq *rq; 1733 int weight; 1734 1735 BUG_ON(!rt_task(p)); 1736 1737 if (!p->on_rq) 1738 return; 1739 1740 weight = cpumask_weight(new_mask); 1741 1742 /* 1743 * Only update if the process changes its state from whether it 1744 * can migrate or not. 1745 */ 1746 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1747 return; 1748 1749 rq = task_rq(p); 1750 1751 /* 1752 * The process used to be able to migrate OR it can now migrate 1753 */ 1754 if (weight <= 1) { 1755 if (!task_current(rq, p)) 1756 dequeue_pushable_task(rq, p); 1757 BUG_ON(!rq->rt.rt_nr_migratory); 1758 rq->rt.rt_nr_migratory--; 1759 } else { 1760 if (!task_current(rq, p)) 1761 enqueue_pushable_task(rq, p); 1762 rq->rt.rt_nr_migratory++; 1763 } 1764 1765 update_rt_migration(&rq->rt); 1766 } 1767 1768 /* Assumes rq->lock is held */ 1769 static void rq_online_rt(struct rq *rq) 1770 { 1771 if (rq->rt.overloaded) 1772 rt_set_overload(rq); 1773 1774 __enable_runtime(rq); 1775 1776 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1777 } 1778 1779 /* Assumes rq->lock is held */ 1780 static void rq_offline_rt(struct rq *rq) 1781 { 1782 if (rq->rt.overloaded) 1783 rt_clear_overload(rq); 1784 1785 __disable_runtime(rq); 1786 1787 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1788 } 1789 1790 /* 1791 * When switch from the rt queue, we bring ourselves to a position 1792 * that we might want to pull RT tasks from other runqueues. 1793 */ 1794 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1795 { 1796 /* 1797 * If there are other RT tasks then we will reschedule 1798 * and the scheduling of the other RT tasks will handle 1799 * the balancing. But if we are the last RT task 1800 * we may need to handle the pulling of RT tasks 1801 * now. 1802 */ 1803 if (!p->on_rq || rq->rt.rt_nr_running) 1804 return; 1805 1806 if (pull_rt_task(rq)) 1807 resched_task(rq->curr); 1808 } 1809 1810 void init_sched_rt_class(void) 1811 { 1812 unsigned int i; 1813 1814 for_each_possible_cpu(i) { 1815 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1816 GFP_KERNEL, cpu_to_node(i)); 1817 } 1818 } 1819 #endif /* CONFIG_SMP */ 1820 1821 /* 1822 * When switching a task to RT, we may overload the runqueue 1823 * with RT tasks. In this case we try to push them off to 1824 * other runqueues. 1825 */ 1826 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1827 { 1828 int check_resched = 1; 1829 1830 /* 1831 * If we are already running, then there's nothing 1832 * that needs to be done. But if we are not running 1833 * we may need to preempt the current running task. 1834 * If that current running task is also an RT task 1835 * then see if we can move to another run queue. 1836 */ 1837 if (p->on_rq && rq->curr != p) { 1838 #ifdef CONFIG_SMP 1839 if (rq->rt.overloaded && push_rt_task(rq) && 1840 /* Don't resched if we changed runqueues */ 1841 rq != task_rq(p)) 1842 check_resched = 0; 1843 #endif /* CONFIG_SMP */ 1844 if (check_resched && p->prio < rq->curr->prio) 1845 resched_task(rq->curr); 1846 } 1847 } 1848 1849 /* 1850 * Priority of the task has changed. This may cause 1851 * us to initiate a push or pull. 1852 */ 1853 static void 1854 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1855 { 1856 if (!p->on_rq) 1857 return; 1858 1859 if (rq->curr == p) { 1860 #ifdef CONFIG_SMP 1861 /* 1862 * If our priority decreases while running, we 1863 * may need to pull tasks to this runqueue. 1864 */ 1865 if (oldprio < p->prio) 1866 pull_rt_task(rq); 1867 /* 1868 * If there's a higher priority task waiting to run 1869 * then reschedule. Note, the above pull_rt_task 1870 * can release the rq lock and p could migrate. 1871 * Only reschedule if p is still on the same runqueue. 1872 */ 1873 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 1874 resched_task(p); 1875 #else 1876 /* For UP simply resched on drop of prio */ 1877 if (oldprio < p->prio) 1878 resched_task(p); 1879 #endif /* CONFIG_SMP */ 1880 } else { 1881 /* 1882 * This task is not running, but if it is 1883 * greater than the current running task 1884 * then reschedule. 1885 */ 1886 if (p->prio < rq->curr->prio) 1887 resched_task(rq->curr); 1888 } 1889 } 1890 1891 static void watchdog(struct rq *rq, struct task_struct *p) 1892 { 1893 unsigned long soft, hard; 1894 1895 /* max may change after cur was read, this will be fixed next tick */ 1896 soft = task_rlimit(p, RLIMIT_RTTIME); 1897 hard = task_rlimit_max(p, RLIMIT_RTTIME); 1898 1899 if (soft != RLIM_INFINITY) { 1900 unsigned long next; 1901 1902 if (p->rt.watchdog_stamp != jiffies) { 1903 p->rt.timeout++; 1904 p->rt.watchdog_stamp = jiffies; 1905 } 1906 1907 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1908 if (p->rt.timeout > next) 1909 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1910 } 1911 } 1912 1913 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 1914 { 1915 struct sched_rt_entity *rt_se = &p->rt; 1916 1917 update_curr_rt(rq); 1918 1919 watchdog(rq, p); 1920 1921 /* 1922 * RR tasks need a special form of timeslice management. 1923 * FIFO tasks have no timeslices. 1924 */ 1925 if (p->policy != SCHED_RR) 1926 return; 1927 1928 if (--p->rt.time_slice) 1929 return; 1930 1931 p->rt.time_slice = sched_rr_timeslice; 1932 1933 /* 1934 * Requeue to the end of queue if we (and all of our ancestors) are the 1935 * only element on the queue 1936 */ 1937 for_each_sched_rt_entity(rt_se) { 1938 if (rt_se->run_list.prev != rt_se->run_list.next) { 1939 requeue_task_rt(rq, p, 0); 1940 set_tsk_need_resched(p); 1941 return; 1942 } 1943 } 1944 } 1945 1946 static void set_curr_task_rt(struct rq *rq) 1947 { 1948 struct task_struct *p = rq->curr; 1949 1950 p->se.exec_start = rq_clock_task(rq); 1951 1952 /* The running task is never eligible for pushing */ 1953 dequeue_pushable_task(rq, p); 1954 } 1955 1956 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 1957 { 1958 /* 1959 * Time slice is 0 for SCHED_FIFO tasks 1960 */ 1961 if (task->policy == SCHED_RR) 1962 return sched_rr_timeslice; 1963 else 1964 return 0; 1965 } 1966 1967 const struct sched_class rt_sched_class = { 1968 .next = &fair_sched_class, 1969 .enqueue_task = enqueue_task_rt, 1970 .dequeue_task = dequeue_task_rt, 1971 .yield_task = yield_task_rt, 1972 1973 .check_preempt_curr = check_preempt_curr_rt, 1974 1975 .pick_next_task = pick_next_task_rt, 1976 .put_prev_task = put_prev_task_rt, 1977 1978 #ifdef CONFIG_SMP 1979 .select_task_rq = select_task_rq_rt, 1980 1981 .set_cpus_allowed = set_cpus_allowed_rt, 1982 .rq_online = rq_online_rt, 1983 .rq_offline = rq_offline_rt, 1984 .pre_schedule = pre_schedule_rt, 1985 .post_schedule = post_schedule_rt, 1986 .task_woken = task_woken_rt, 1987 .switched_from = switched_from_rt, 1988 #endif 1989 1990 .set_curr_task = set_curr_task_rt, 1991 .task_tick = task_tick_rt, 1992 1993 .get_rr_interval = get_rr_interval_rt, 1994 1995 .prio_changed = prio_changed_rt, 1996 .switched_to = switched_to_rt, 1997 }; 1998 1999 #ifdef CONFIG_SCHED_DEBUG 2000 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2001 2002 void print_rt_stats(struct seq_file *m, int cpu) 2003 { 2004 rt_rq_iter_t iter; 2005 struct rt_rq *rt_rq; 2006 2007 rcu_read_lock(); 2008 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2009 print_rt_rq(m, cpu, rt_rq); 2010 rcu_read_unlock(); 2011 } 2012 #endif /* CONFIG_SCHED_DEBUG */ 2013