xref: /linux/kernel/sched/rt.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 
83 	rt_rq->rt_time = 0;
84 	rt_rq->rt_throttled = 0;
85 	rt_rq->rt_runtime = 0;
86 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
87 }
88 
89 #ifdef CONFIG_RT_GROUP_SCHED
90 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
91 {
92 	hrtimer_cancel(&rt_b->rt_period_timer);
93 }
94 
95 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
96 
97 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
98 {
99 #ifdef CONFIG_SCHED_DEBUG
100 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
101 #endif
102 	return container_of(rt_se, struct task_struct, rt);
103 }
104 
105 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
106 {
107 	return rt_rq->rq;
108 }
109 
110 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
111 {
112 	return rt_se->rt_rq;
113 }
114 
115 void free_rt_sched_group(struct task_group *tg)
116 {
117 	int i;
118 
119 	if (tg->rt_se)
120 		destroy_rt_bandwidth(&tg->rt_bandwidth);
121 
122 	for_each_possible_cpu(i) {
123 		if (tg->rt_rq)
124 			kfree(tg->rt_rq[i]);
125 		if (tg->rt_se)
126 			kfree(tg->rt_se[i]);
127 	}
128 
129 	kfree(tg->rt_rq);
130 	kfree(tg->rt_se);
131 }
132 
133 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
134 		struct sched_rt_entity *rt_se, int cpu,
135 		struct sched_rt_entity *parent)
136 {
137 	struct rq *rq = cpu_rq(cpu);
138 
139 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
140 	rt_rq->rt_nr_boosted = 0;
141 	rt_rq->rq = rq;
142 	rt_rq->tg = tg;
143 
144 	tg->rt_rq[cpu] = rt_rq;
145 	tg->rt_se[cpu] = rt_se;
146 
147 	if (!rt_se)
148 		return;
149 
150 	if (!parent)
151 		rt_se->rt_rq = &rq->rt;
152 	else
153 		rt_se->rt_rq = parent->my_q;
154 
155 	rt_se->my_q = rt_rq;
156 	rt_se->parent = parent;
157 	INIT_LIST_HEAD(&rt_se->run_list);
158 }
159 
160 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
161 {
162 	struct rt_rq *rt_rq;
163 	struct sched_rt_entity *rt_se;
164 	int i;
165 
166 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
167 	if (!tg->rt_rq)
168 		goto err;
169 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
170 	if (!tg->rt_se)
171 		goto err;
172 
173 	init_rt_bandwidth(&tg->rt_bandwidth,
174 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
175 
176 	for_each_possible_cpu(i) {
177 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
178 				     GFP_KERNEL, cpu_to_node(i));
179 		if (!rt_rq)
180 			goto err;
181 
182 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
183 				     GFP_KERNEL, cpu_to_node(i));
184 		if (!rt_se)
185 			goto err_free_rq;
186 
187 		init_rt_rq(rt_rq, cpu_rq(i));
188 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
189 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
190 	}
191 
192 	return 1;
193 
194 err_free_rq:
195 	kfree(rt_rq);
196 err:
197 	return 0;
198 }
199 
200 #else /* CONFIG_RT_GROUP_SCHED */
201 
202 #define rt_entity_is_task(rt_se) (1)
203 
204 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
205 {
206 	return container_of(rt_se, struct task_struct, rt);
207 }
208 
209 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
210 {
211 	return container_of(rt_rq, struct rq, rt);
212 }
213 
214 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
215 {
216 	struct task_struct *p = rt_task_of(rt_se);
217 	struct rq *rq = task_rq(p);
218 
219 	return &rq->rt;
220 }
221 
222 void free_rt_sched_group(struct task_group *tg) { }
223 
224 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
225 {
226 	return 1;
227 }
228 #endif /* CONFIG_RT_GROUP_SCHED */
229 
230 #ifdef CONFIG_SMP
231 
232 static inline int rt_overloaded(struct rq *rq)
233 {
234 	return atomic_read(&rq->rd->rto_count);
235 }
236 
237 static inline void rt_set_overload(struct rq *rq)
238 {
239 	if (!rq->online)
240 		return;
241 
242 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
243 	/*
244 	 * Make sure the mask is visible before we set
245 	 * the overload count. That is checked to determine
246 	 * if we should look at the mask. It would be a shame
247 	 * if we looked at the mask, but the mask was not
248 	 * updated yet.
249 	 */
250 	wmb();
251 	atomic_inc(&rq->rd->rto_count);
252 }
253 
254 static inline void rt_clear_overload(struct rq *rq)
255 {
256 	if (!rq->online)
257 		return;
258 
259 	/* the order here really doesn't matter */
260 	atomic_dec(&rq->rd->rto_count);
261 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
262 }
263 
264 static void update_rt_migration(struct rt_rq *rt_rq)
265 {
266 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
267 		if (!rt_rq->overloaded) {
268 			rt_set_overload(rq_of_rt_rq(rt_rq));
269 			rt_rq->overloaded = 1;
270 		}
271 	} else if (rt_rq->overloaded) {
272 		rt_clear_overload(rq_of_rt_rq(rt_rq));
273 		rt_rq->overloaded = 0;
274 	}
275 }
276 
277 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
278 {
279 	struct task_struct *p;
280 
281 	if (!rt_entity_is_task(rt_se))
282 		return;
283 
284 	p = rt_task_of(rt_se);
285 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
286 
287 	rt_rq->rt_nr_total++;
288 	if (p->nr_cpus_allowed > 1)
289 		rt_rq->rt_nr_migratory++;
290 
291 	update_rt_migration(rt_rq);
292 }
293 
294 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
295 {
296 	struct task_struct *p;
297 
298 	if (!rt_entity_is_task(rt_se))
299 		return;
300 
301 	p = rt_task_of(rt_se);
302 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
303 
304 	rt_rq->rt_nr_total--;
305 	if (p->nr_cpus_allowed > 1)
306 		rt_rq->rt_nr_migratory--;
307 
308 	update_rt_migration(rt_rq);
309 }
310 
311 static inline int has_pushable_tasks(struct rq *rq)
312 {
313 	return !plist_head_empty(&rq->rt.pushable_tasks);
314 }
315 
316 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
317 {
318 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 	plist_node_init(&p->pushable_tasks, p->prio);
320 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
321 
322 	/* Update the highest prio pushable task */
323 	if (p->prio < rq->rt.highest_prio.next)
324 		rq->rt.highest_prio.next = p->prio;
325 }
326 
327 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
328 {
329 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
330 
331 	/* Update the new highest prio pushable task */
332 	if (has_pushable_tasks(rq)) {
333 		p = plist_first_entry(&rq->rt.pushable_tasks,
334 				      struct task_struct, pushable_tasks);
335 		rq->rt.highest_prio.next = p->prio;
336 	} else
337 		rq->rt.highest_prio.next = MAX_RT_PRIO;
338 }
339 
340 #else
341 
342 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
343 {
344 }
345 
346 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
347 {
348 }
349 
350 static inline
351 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
352 {
353 }
354 
355 static inline
356 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
357 {
358 }
359 
360 #endif /* CONFIG_SMP */
361 
362 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
363 {
364 	return !list_empty(&rt_se->run_list);
365 }
366 
367 #ifdef CONFIG_RT_GROUP_SCHED
368 
369 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
370 {
371 	if (!rt_rq->tg)
372 		return RUNTIME_INF;
373 
374 	return rt_rq->rt_runtime;
375 }
376 
377 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
378 {
379 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
380 }
381 
382 typedef struct task_group *rt_rq_iter_t;
383 
384 static inline struct task_group *next_task_group(struct task_group *tg)
385 {
386 	do {
387 		tg = list_entry_rcu(tg->list.next,
388 			typeof(struct task_group), list);
389 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
390 
391 	if (&tg->list == &task_groups)
392 		tg = NULL;
393 
394 	return tg;
395 }
396 
397 #define for_each_rt_rq(rt_rq, iter, rq)					\
398 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
399 		(iter = next_task_group(iter)) &&			\
400 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
401 
402 #define for_each_sched_rt_entity(rt_se) \
403 	for (; rt_se; rt_se = rt_se->parent)
404 
405 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
406 {
407 	return rt_se->my_q;
408 }
409 
410 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
411 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
412 
413 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
414 {
415 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
416 	struct sched_rt_entity *rt_se;
417 
418 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
419 
420 	rt_se = rt_rq->tg->rt_se[cpu];
421 
422 	if (rt_rq->rt_nr_running) {
423 		if (rt_se && !on_rt_rq(rt_se))
424 			enqueue_rt_entity(rt_se, false);
425 		if (rt_rq->highest_prio.curr < curr->prio)
426 			resched_task(curr);
427 	}
428 }
429 
430 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
431 {
432 	struct sched_rt_entity *rt_se;
433 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
434 
435 	rt_se = rt_rq->tg->rt_se[cpu];
436 
437 	if (rt_se && on_rt_rq(rt_se))
438 		dequeue_rt_entity(rt_se);
439 }
440 
441 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
442 {
443 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
444 }
445 
446 static int rt_se_boosted(struct sched_rt_entity *rt_se)
447 {
448 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
449 	struct task_struct *p;
450 
451 	if (rt_rq)
452 		return !!rt_rq->rt_nr_boosted;
453 
454 	p = rt_task_of(rt_se);
455 	return p->prio != p->normal_prio;
456 }
457 
458 #ifdef CONFIG_SMP
459 static inline const struct cpumask *sched_rt_period_mask(void)
460 {
461 	return this_rq()->rd->span;
462 }
463 #else
464 static inline const struct cpumask *sched_rt_period_mask(void)
465 {
466 	return cpu_online_mask;
467 }
468 #endif
469 
470 static inline
471 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
472 {
473 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
474 }
475 
476 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
477 {
478 	return &rt_rq->tg->rt_bandwidth;
479 }
480 
481 #else /* !CONFIG_RT_GROUP_SCHED */
482 
483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
484 {
485 	return rt_rq->rt_runtime;
486 }
487 
488 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
489 {
490 	return ktime_to_ns(def_rt_bandwidth.rt_period);
491 }
492 
493 typedef struct rt_rq *rt_rq_iter_t;
494 
495 #define for_each_rt_rq(rt_rq, iter, rq) \
496 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
497 
498 #define for_each_sched_rt_entity(rt_se) \
499 	for (; rt_se; rt_se = NULL)
500 
501 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
502 {
503 	return NULL;
504 }
505 
506 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
507 {
508 	if (rt_rq->rt_nr_running)
509 		resched_task(rq_of_rt_rq(rt_rq)->curr);
510 }
511 
512 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
513 {
514 }
515 
516 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
517 {
518 	return rt_rq->rt_throttled;
519 }
520 
521 static inline const struct cpumask *sched_rt_period_mask(void)
522 {
523 	return cpu_online_mask;
524 }
525 
526 static inline
527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
528 {
529 	return &cpu_rq(cpu)->rt;
530 }
531 
532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533 {
534 	return &def_rt_bandwidth;
535 }
536 
537 #endif /* CONFIG_RT_GROUP_SCHED */
538 
539 #ifdef CONFIG_SMP
540 /*
541  * We ran out of runtime, see if we can borrow some from our neighbours.
542  */
543 static int do_balance_runtime(struct rt_rq *rt_rq)
544 {
545 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
546 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
547 	int i, weight, more = 0;
548 	u64 rt_period;
549 
550 	weight = cpumask_weight(rd->span);
551 
552 	raw_spin_lock(&rt_b->rt_runtime_lock);
553 	rt_period = ktime_to_ns(rt_b->rt_period);
554 	for_each_cpu(i, rd->span) {
555 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
556 		s64 diff;
557 
558 		if (iter == rt_rq)
559 			continue;
560 
561 		raw_spin_lock(&iter->rt_runtime_lock);
562 		/*
563 		 * Either all rqs have inf runtime and there's nothing to steal
564 		 * or __disable_runtime() below sets a specific rq to inf to
565 		 * indicate its been disabled and disalow stealing.
566 		 */
567 		if (iter->rt_runtime == RUNTIME_INF)
568 			goto next;
569 
570 		/*
571 		 * From runqueues with spare time, take 1/n part of their
572 		 * spare time, but no more than our period.
573 		 */
574 		diff = iter->rt_runtime - iter->rt_time;
575 		if (diff > 0) {
576 			diff = div_u64((u64)diff, weight);
577 			if (rt_rq->rt_runtime + diff > rt_period)
578 				diff = rt_period - rt_rq->rt_runtime;
579 			iter->rt_runtime -= diff;
580 			rt_rq->rt_runtime += diff;
581 			more = 1;
582 			if (rt_rq->rt_runtime == rt_period) {
583 				raw_spin_unlock(&iter->rt_runtime_lock);
584 				break;
585 			}
586 		}
587 next:
588 		raw_spin_unlock(&iter->rt_runtime_lock);
589 	}
590 	raw_spin_unlock(&rt_b->rt_runtime_lock);
591 
592 	return more;
593 }
594 
595 /*
596  * Ensure this RQ takes back all the runtime it lend to its neighbours.
597  */
598 static void __disable_runtime(struct rq *rq)
599 {
600 	struct root_domain *rd = rq->rd;
601 	rt_rq_iter_t iter;
602 	struct rt_rq *rt_rq;
603 
604 	if (unlikely(!scheduler_running))
605 		return;
606 
607 	for_each_rt_rq(rt_rq, iter, rq) {
608 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609 		s64 want;
610 		int i;
611 
612 		raw_spin_lock(&rt_b->rt_runtime_lock);
613 		raw_spin_lock(&rt_rq->rt_runtime_lock);
614 		/*
615 		 * Either we're all inf and nobody needs to borrow, or we're
616 		 * already disabled and thus have nothing to do, or we have
617 		 * exactly the right amount of runtime to take out.
618 		 */
619 		if (rt_rq->rt_runtime == RUNTIME_INF ||
620 				rt_rq->rt_runtime == rt_b->rt_runtime)
621 			goto balanced;
622 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
623 
624 		/*
625 		 * Calculate the difference between what we started out with
626 		 * and what we current have, that's the amount of runtime
627 		 * we lend and now have to reclaim.
628 		 */
629 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
630 
631 		/*
632 		 * Greedy reclaim, take back as much as we can.
633 		 */
634 		for_each_cpu(i, rd->span) {
635 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
636 			s64 diff;
637 
638 			/*
639 			 * Can't reclaim from ourselves or disabled runqueues.
640 			 */
641 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
642 				continue;
643 
644 			raw_spin_lock(&iter->rt_runtime_lock);
645 			if (want > 0) {
646 				diff = min_t(s64, iter->rt_runtime, want);
647 				iter->rt_runtime -= diff;
648 				want -= diff;
649 			} else {
650 				iter->rt_runtime -= want;
651 				want -= want;
652 			}
653 			raw_spin_unlock(&iter->rt_runtime_lock);
654 
655 			if (!want)
656 				break;
657 		}
658 
659 		raw_spin_lock(&rt_rq->rt_runtime_lock);
660 		/*
661 		 * We cannot be left wanting - that would mean some runtime
662 		 * leaked out of the system.
663 		 */
664 		BUG_ON(want);
665 balanced:
666 		/*
667 		 * Disable all the borrow logic by pretending we have inf
668 		 * runtime - in which case borrowing doesn't make sense.
669 		 */
670 		rt_rq->rt_runtime = RUNTIME_INF;
671 		rt_rq->rt_throttled = 0;
672 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
673 		raw_spin_unlock(&rt_b->rt_runtime_lock);
674 	}
675 }
676 
677 static void __enable_runtime(struct rq *rq)
678 {
679 	rt_rq_iter_t iter;
680 	struct rt_rq *rt_rq;
681 
682 	if (unlikely(!scheduler_running))
683 		return;
684 
685 	/*
686 	 * Reset each runqueue's bandwidth settings
687 	 */
688 	for_each_rt_rq(rt_rq, iter, rq) {
689 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690 
691 		raw_spin_lock(&rt_b->rt_runtime_lock);
692 		raw_spin_lock(&rt_rq->rt_runtime_lock);
693 		rt_rq->rt_runtime = rt_b->rt_runtime;
694 		rt_rq->rt_time = 0;
695 		rt_rq->rt_throttled = 0;
696 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
697 		raw_spin_unlock(&rt_b->rt_runtime_lock);
698 	}
699 }
700 
701 static int balance_runtime(struct rt_rq *rt_rq)
702 {
703 	int more = 0;
704 
705 	if (!sched_feat(RT_RUNTIME_SHARE))
706 		return more;
707 
708 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
709 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
710 		more = do_balance_runtime(rt_rq);
711 		raw_spin_lock(&rt_rq->rt_runtime_lock);
712 	}
713 
714 	return more;
715 }
716 #else /* !CONFIG_SMP */
717 static inline int balance_runtime(struct rt_rq *rt_rq)
718 {
719 	return 0;
720 }
721 #endif /* CONFIG_SMP */
722 
723 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
724 {
725 	int i, idle = 1, throttled = 0;
726 	const struct cpumask *span;
727 
728 	span = sched_rt_period_mask();
729 #ifdef CONFIG_RT_GROUP_SCHED
730 	/*
731 	 * FIXME: isolated CPUs should really leave the root task group,
732 	 * whether they are isolcpus or were isolated via cpusets, lest
733 	 * the timer run on a CPU which does not service all runqueues,
734 	 * potentially leaving other CPUs indefinitely throttled.  If
735 	 * isolation is really required, the user will turn the throttle
736 	 * off to kill the perturbations it causes anyway.  Meanwhile,
737 	 * this maintains functionality for boot and/or troubleshooting.
738 	 */
739 	if (rt_b == &root_task_group.rt_bandwidth)
740 		span = cpu_online_mask;
741 #endif
742 	for_each_cpu(i, span) {
743 		int enqueue = 0;
744 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
745 		struct rq *rq = rq_of_rt_rq(rt_rq);
746 
747 		raw_spin_lock(&rq->lock);
748 		if (rt_rq->rt_time) {
749 			u64 runtime;
750 
751 			raw_spin_lock(&rt_rq->rt_runtime_lock);
752 			if (rt_rq->rt_throttled)
753 				balance_runtime(rt_rq);
754 			runtime = rt_rq->rt_runtime;
755 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
756 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
757 				rt_rq->rt_throttled = 0;
758 				enqueue = 1;
759 
760 				/*
761 				 * Force a clock update if the CPU was idle,
762 				 * lest wakeup -> unthrottle time accumulate.
763 				 */
764 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
765 					rq->skip_clock_update = -1;
766 			}
767 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
768 				idle = 0;
769 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 		} else if (rt_rq->rt_nr_running) {
771 			idle = 0;
772 			if (!rt_rq_throttled(rt_rq))
773 				enqueue = 1;
774 		}
775 		if (rt_rq->rt_throttled)
776 			throttled = 1;
777 
778 		if (enqueue)
779 			sched_rt_rq_enqueue(rt_rq);
780 		raw_spin_unlock(&rq->lock);
781 	}
782 
783 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
784 		return 1;
785 
786 	return idle;
787 }
788 
789 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
790 {
791 #ifdef CONFIG_RT_GROUP_SCHED
792 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
793 
794 	if (rt_rq)
795 		return rt_rq->highest_prio.curr;
796 #endif
797 
798 	return rt_task_of(rt_se)->prio;
799 }
800 
801 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
802 {
803 	u64 runtime = sched_rt_runtime(rt_rq);
804 
805 	if (rt_rq->rt_throttled)
806 		return rt_rq_throttled(rt_rq);
807 
808 	if (runtime >= sched_rt_period(rt_rq))
809 		return 0;
810 
811 	balance_runtime(rt_rq);
812 	runtime = sched_rt_runtime(rt_rq);
813 	if (runtime == RUNTIME_INF)
814 		return 0;
815 
816 	if (rt_rq->rt_time > runtime) {
817 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
818 
819 		/*
820 		 * Don't actually throttle groups that have no runtime assigned
821 		 * but accrue some time due to boosting.
822 		 */
823 		if (likely(rt_b->rt_runtime)) {
824 			static bool once = false;
825 
826 			rt_rq->rt_throttled = 1;
827 
828 			if (!once) {
829 				once = true;
830 				printk_sched("sched: RT throttling activated\n");
831 			}
832 		} else {
833 			/*
834 			 * In case we did anyway, make it go away,
835 			 * replenishment is a joke, since it will replenish us
836 			 * with exactly 0 ns.
837 			 */
838 			rt_rq->rt_time = 0;
839 		}
840 
841 		if (rt_rq_throttled(rt_rq)) {
842 			sched_rt_rq_dequeue(rt_rq);
843 			return 1;
844 		}
845 	}
846 
847 	return 0;
848 }
849 
850 /*
851  * Update the current task's runtime statistics. Skip current tasks that
852  * are not in our scheduling class.
853  */
854 static void update_curr_rt(struct rq *rq)
855 {
856 	struct task_struct *curr = rq->curr;
857 	struct sched_rt_entity *rt_se = &curr->rt;
858 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
859 	u64 delta_exec;
860 
861 	if (curr->sched_class != &rt_sched_class)
862 		return;
863 
864 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
865 	if (unlikely((s64)delta_exec <= 0))
866 		return;
867 
868 	schedstat_set(curr->se.statistics.exec_max,
869 		      max(curr->se.statistics.exec_max, delta_exec));
870 
871 	curr->se.sum_exec_runtime += delta_exec;
872 	account_group_exec_runtime(curr, delta_exec);
873 
874 	curr->se.exec_start = rq_clock_task(rq);
875 	cpuacct_charge(curr, delta_exec);
876 
877 	sched_rt_avg_update(rq, delta_exec);
878 
879 	if (!rt_bandwidth_enabled())
880 		return;
881 
882 	for_each_sched_rt_entity(rt_se) {
883 		rt_rq = rt_rq_of_se(rt_se);
884 
885 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
886 			raw_spin_lock(&rt_rq->rt_runtime_lock);
887 			rt_rq->rt_time += delta_exec;
888 			if (sched_rt_runtime_exceeded(rt_rq))
889 				resched_task(curr);
890 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
891 		}
892 	}
893 }
894 
895 #if defined CONFIG_SMP
896 
897 static void
898 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
899 {
900 	struct rq *rq = rq_of_rt_rq(rt_rq);
901 
902 	if (rq->online && prio < prev_prio)
903 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
904 }
905 
906 static void
907 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
908 {
909 	struct rq *rq = rq_of_rt_rq(rt_rq);
910 
911 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
912 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
913 }
914 
915 #else /* CONFIG_SMP */
916 
917 static inline
918 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
919 static inline
920 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
921 
922 #endif /* CONFIG_SMP */
923 
924 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
925 static void
926 inc_rt_prio(struct rt_rq *rt_rq, int prio)
927 {
928 	int prev_prio = rt_rq->highest_prio.curr;
929 
930 	if (prio < prev_prio)
931 		rt_rq->highest_prio.curr = prio;
932 
933 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
934 }
935 
936 static void
937 dec_rt_prio(struct rt_rq *rt_rq, int prio)
938 {
939 	int prev_prio = rt_rq->highest_prio.curr;
940 
941 	if (rt_rq->rt_nr_running) {
942 
943 		WARN_ON(prio < prev_prio);
944 
945 		/*
946 		 * This may have been our highest task, and therefore
947 		 * we may have some recomputation to do
948 		 */
949 		if (prio == prev_prio) {
950 			struct rt_prio_array *array = &rt_rq->active;
951 
952 			rt_rq->highest_prio.curr =
953 				sched_find_first_bit(array->bitmap);
954 		}
955 
956 	} else
957 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
958 
959 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
960 }
961 
962 #else
963 
964 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
965 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
966 
967 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
968 
969 #ifdef CONFIG_RT_GROUP_SCHED
970 
971 static void
972 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
973 {
974 	if (rt_se_boosted(rt_se))
975 		rt_rq->rt_nr_boosted++;
976 
977 	if (rt_rq->tg)
978 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
979 }
980 
981 static void
982 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
983 {
984 	if (rt_se_boosted(rt_se))
985 		rt_rq->rt_nr_boosted--;
986 
987 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
988 }
989 
990 #else /* CONFIG_RT_GROUP_SCHED */
991 
992 static void
993 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
994 {
995 	start_rt_bandwidth(&def_rt_bandwidth);
996 }
997 
998 static inline
999 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1000 
1001 #endif /* CONFIG_RT_GROUP_SCHED */
1002 
1003 static inline
1004 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1005 {
1006 	int prio = rt_se_prio(rt_se);
1007 
1008 	WARN_ON(!rt_prio(prio));
1009 	rt_rq->rt_nr_running++;
1010 
1011 	inc_rt_prio(rt_rq, prio);
1012 	inc_rt_migration(rt_se, rt_rq);
1013 	inc_rt_group(rt_se, rt_rq);
1014 }
1015 
1016 static inline
1017 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1018 {
1019 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1020 	WARN_ON(!rt_rq->rt_nr_running);
1021 	rt_rq->rt_nr_running--;
1022 
1023 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1024 	dec_rt_migration(rt_se, rt_rq);
1025 	dec_rt_group(rt_se, rt_rq);
1026 }
1027 
1028 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1029 {
1030 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1031 	struct rt_prio_array *array = &rt_rq->active;
1032 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1033 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1034 
1035 	/*
1036 	 * Don't enqueue the group if its throttled, or when empty.
1037 	 * The latter is a consequence of the former when a child group
1038 	 * get throttled and the current group doesn't have any other
1039 	 * active members.
1040 	 */
1041 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1042 		return;
1043 
1044 	if (head)
1045 		list_add(&rt_se->run_list, queue);
1046 	else
1047 		list_add_tail(&rt_se->run_list, queue);
1048 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1049 
1050 	inc_rt_tasks(rt_se, rt_rq);
1051 }
1052 
1053 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1054 {
1055 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1056 	struct rt_prio_array *array = &rt_rq->active;
1057 
1058 	list_del_init(&rt_se->run_list);
1059 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1060 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1061 
1062 	dec_rt_tasks(rt_se, rt_rq);
1063 }
1064 
1065 /*
1066  * Because the prio of an upper entry depends on the lower
1067  * entries, we must remove entries top - down.
1068  */
1069 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1070 {
1071 	struct sched_rt_entity *back = NULL;
1072 
1073 	for_each_sched_rt_entity(rt_se) {
1074 		rt_se->back = back;
1075 		back = rt_se;
1076 	}
1077 
1078 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1079 		if (on_rt_rq(rt_se))
1080 			__dequeue_rt_entity(rt_se);
1081 	}
1082 }
1083 
1084 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1085 {
1086 	dequeue_rt_stack(rt_se);
1087 	for_each_sched_rt_entity(rt_se)
1088 		__enqueue_rt_entity(rt_se, head);
1089 }
1090 
1091 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1092 {
1093 	dequeue_rt_stack(rt_se);
1094 
1095 	for_each_sched_rt_entity(rt_se) {
1096 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1097 
1098 		if (rt_rq && rt_rq->rt_nr_running)
1099 			__enqueue_rt_entity(rt_se, false);
1100 	}
1101 }
1102 
1103 /*
1104  * Adding/removing a task to/from a priority array:
1105  */
1106 static void
1107 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1108 {
1109 	struct sched_rt_entity *rt_se = &p->rt;
1110 
1111 	if (flags & ENQUEUE_WAKEUP)
1112 		rt_se->timeout = 0;
1113 
1114 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1115 
1116 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1117 		enqueue_pushable_task(rq, p);
1118 
1119 	inc_nr_running(rq);
1120 }
1121 
1122 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1123 {
1124 	struct sched_rt_entity *rt_se = &p->rt;
1125 
1126 	update_curr_rt(rq);
1127 	dequeue_rt_entity(rt_se);
1128 
1129 	dequeue_pushable_task(rq, p);
1130 
1131 	dec_nr_running(rq);
1132 }
1133 
1134 /*
1135  * Put task to the head or the end of the run list without the overhead of
1136  * dequeue followed by enqueue.
1137  */
1138 static void
1139 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1140 {
1141 	if (on_rt_rq(rt_se)) {
1142 		struct rt_prio_array *array = &rt_rq->active;
1143 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1144 
1145 		if (head)
1146 			list_move(&rt_se->run_list, queue);
1147 		else
1148 			list_move_tail(&rt_se->run_list, queue);
1149 	}
1150 }
1151 
1152 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1153 {
1154 	struct sched_rt_entity *rt_se = &p->rt;
1155 	struct rt_rq *rt_rq;
1156 
1157 	for_each_sched_rt_entity(rt_se) {
1158 		rt_rq = rt_rq_of_se(rt_se);
1159 		requeue_rt_entity(rt_rq, rt_se, head);
1160 	}
1161 }
1162 
1163 static void yield_task_rt(struct rq *rq)
1164 {
1165 	requeue_task_rt(rq, rq->curr, 0);
1166 }
1167 
1168 #ifdef CONFIG_SMP
1169 static int find_lowest_rq(struct task_struct *task);
1170 
1171 static int
1172 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1173 {
1174 	struct task_struct *curr;
1175 	struct rq *rq;
1176 	int cpu;
1177 
1178 	cpu = task_cpu(p);
1179 
1180 	if (p->nr_cpus_allowed == 1)
1181 		goto out;
1182 
1183 	/* For anything but wake ups, just return the task_cpu */
1184 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1185 		goto out;
1186 
1187 	rq = cpu_rq(cpu);
1188 
1189 	rcu_read_lock();
1190 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1191 
1192 	/*
1193 	 * If the current task on @p's runqueue is an RT task, then
1194 	 * try to see if we can wake this RT task up on another
1195 	 * runqueue. Otherwise simply start this RT task
1196 	 * on its current runqueue.
1197 	 *
1198 	 * We want to avoid overloading runqueues. If the woken
1199 	 * task is a higher priority, then it will stay on this CPU
1200 	 * and the lower prio task should be moved to another CPU.
1201 	 * Even though this will probably make the lower prio task
1202 	 * lose its cache, we do not want to bounce a higher task
1203 	 * around just because it gave up its CPU, perhaps for a
1204 	 * lock?
1205 	 *
1206 	 * For equal prio tasks, we just let the scheduler sort it out.
1207 	 *
1208 	 * Otherwise, just let it ride on the affined RQ and the
1209 	 * post-schedule router will push the preempted task away
1210 	 *
1211 	 * This test is optimistic, if we get it wrong the load-balancer
1212 	 * will have to sort it out.
1213 	 */
1214 	if (curr && unlikely(rt_task(curr)) &&
1215 	    (curr->nr_cpus_allowed < 2 ||
1216 	     curr->prio <= p->prio) &&
1217 	    (p->nr_cpus_allowed > 1)) {
1218 		int target = find_lowest_rq(p);
1219 
1220 		if (target != -1)
1221 			cpu = target;
1222 	}
1223 	rcu_read_unlock();
1224 
1225 out:
1226 	return cpu;
1227 }
1228 
1229 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1230 {
1231 	if (rq->curr->nr_cpus_allowed == 1)
1232 		return;
1233 
1234 	if (p->nr_cpus_allowed != 1
1235 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1236 		return;
1237 
1238 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1239 		return;
1240 
1241 	/*
1242 	 * There appears to be other cpus that can accept
1243 	 * current and none to run 'p', so lets reschedule
1244 	 * to try and push current away:
1245 	 */
1246 	requeue_task_rt(rq, p, 1);
1247 	resched_task(rq->curr);
1248 }
1249 
1250 #endif /* CONFIG_SMP */
1251 
1252 /*
1253  * Preempt the current task with a newly woken task if needed:
1254  */
1255 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1256 {
1257 	if (p->prio < rq->curr->prio) {
1258 		resched_task(rq->curr);
1259 		return;
1260 	}
1261 
1262 #ifdef CONFIG_SMP
1263 	/*
1264 	 * If:
1265 	 *
1266 	 * - the newly woken task is of equal priority to the current task
1267 	 * - the newly woken task is non-migratable while current is migratable
1268 	 * - current will be preempted on the next reschedule
1269 	 *
1270 	 * we should check to see if current can readily move to a different
1271 	 * cpu.  If so, we will reschedule to allow the push logic to try
1272 	 * to move current somewhere else, making room for our non-migratable
1273 	 * task.
1274 	 */
1275 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1276 		check_preempt_equal_prio(rq, p);
1277 #endif
1278 }
1279 
1280 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1281 						   struct rt_rq *rt_rq)
1282 {
1283 	struct rt_prio_array *array = &rt_rq->active;
1284 	struct sched_rt_entity *next = NULL;
1285 	struct list_head *queue;
1286 	int idx;
1287 
1288 	idx = sched_find_first_bit(array->bitmap);
1289 	BUG_ON(idx >= MAX_RT_PRIO);
1290 
1291 	queue = array->queue + idx;
1292 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1293 
1294 	return next;
1295 }
1296 
1297 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1298 {
1299 	struct sched_rt_entity *rt_se;
1300 	struct task_struct *p;
1301 	struct rt_rq *rt_rq;
1302 
1303 	rt_rq = &rq->rt;
1304 
1305 	if (!rt_rq->rt_nr_running)
1306 		return NULL;
1307 
1308 	if (rt_rq_throttled(rt_rq))
1309 		return NULL;
1310 
1311 	do {
1312 		rt_se = pick_next_rt_entity(rq, rt_rq);
1313 		BUG_ON(!rt_se);
1314 		rt_rq = group_rt_rq(rt_se);
1315 	} while (rt_rq);
1316 
1317 	p = rt_task_of(rt_se);
1318 	p->se.exec_start = rq_clock_task(rq);
1319 
1320 	return p;
1321 }
1322 
1323 static struct task_struct *pick_next_task_rt(struct rq *rq)
1324 {
1325 	struct task_struct *p = _pick_next_task_rt(rq);
1326 
1327 	/* The running task is never eligible for pushing */
1328 	if (p)
1329 		dequeue_pushable_task(rq, p);
1330 
1331 #ifdef CONFIG_SMP
1332 	/*
1333 	 * We detect this state here so that we can avoid taking the RQ
1334 	 * lock again later if there is no need to push
1335 	 */
1336 	rq->post_schedule = has_pushable_tasks(rq);
1337 #endif
1338 
1339 	return p;
1340 }
1341 
1342 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1343 {
1344 	update_curr_rt(rq);
1345 
1346 	/*
1347 	 * The previous task needs to be made eligible for pushing
1348 	 * if it is still active
1349 	 */
1350 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1351 		enqueue_pushable_task(rq, p);
1352 }
1353 
1354 #ifdef CONFIG_SMP
1355 
1356 /* Only try algorithms three times */
1357 #define RT_MAX_TRIES 3
1358 
1359 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1360 {
1361 	if (!task_running(rq, p) &&
1362 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1363 		return 1;
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Return the highest pushable rq's task, which is suitable to be executed
1369  * on the cpu, NULL otherwise
1370  */
1371 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1372 {
1373 	struct plist_head *head = &rq->rt.pushable_tasks;
1374 	struct task_struct *p;
1375 
1376 	if (!has_pushable_tasks(rq))
1377 		return NULL;
1378 
1379 	plist_for_each_entry(p, head, pushable_tasks) {
1380 		if (pick_rt_task(rq, p, cpu))
1381 			return p;
1382 	}
1383 
1384 	return NULL;
1385 }
1386 
1387 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1388 
1389 static int find_lowest_rq(struct task_struct *task)
1390 {
1391 	struct sched_domain *sd;
1392 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1393 	int this_cpu = smp_processor_id();
1394 	int cpu      = task_cpu(task);
1395 
1396 	/* Make sure the mask is initialized first */
1397 	if (unlikely(!lowest_mask))
1398 		return -1;
1399 
1400 	if (task->nr_cpus_allowed == 1)
1401 		return -1; /* No other targets possible */
1402 
1403 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1404 		return -1; /* No targets found */
1405 
1406 	/*
1407 	 * At this point we have built a mask of cpus representing the
1408 	 * lowest priority tasks in the system.  Now we want to elect
1409 	 * the best one based on our affinity and topology.
1410 	 *
1411 	 * We prioritize the last cpu that the task executed on since
1412 	 * it is most likely cache-hot in that location.
1413 	 */
1414 	if (cpumask_test_cpu(cpu, lowest_mask))
1415 		return cpu;
1416 
1417 	/*
1418 	 * Otherwise, we consult the sched_domains span maps to figure
1419 	 * out which cpu is logically closest to our hot cache data.
1420 	 */
1421 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1422 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1423 
1424 	rcu_read_lock();
1425 	for_each_domain(cpu, sd) {
1426 		if (sd->flags & SD_WAKE_AFFINE) {
1427 			int best_cpu;
1428 
1429 			/*
1430 			 * "this_cpu" is cheaper to preempt than a
1431 			 * remote processor.
1432 			 */
1433 			if (this_cpu != -1 &&
1434 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1435 				rcu_read_unlock();
1436 				return this_cpu;
1437 			}
1438 
1439 			best_cpu = cpumask_first_and(lowest_mask,
1440 						     sched_domain_span(sd));
1441 			if (best_cpu < nr_cpu_ids) {
1442 				rcu_read_unlock();
1443 				return best_cpu;
1444 			}
1445 		}
1446 	}
1447 	rcu_read_unlock();
1448 
1449 	/*
1450 	 * And finally, if there were no matches within the domains
1451 	 * just give the caller *something* to work with from the compatible
1452 	 * locations.
1453 	 */
1454 	if (this_cpu != -1)
1455 		return this_cpu;
1456 
1457 	cpu = cpumask_any(lowest_mask);
1458 	if (cpu < nr_cpu_ids)
1459 		return cpu;
1460 	return -1;
1461 }
1462 
1463 /* Will lock the rq it finds */
1464 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1465 {
1466 	struct rq *lowest_rq = NULL;
1467 	int tries;
1468 	int cpu;
1469 
1470 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1471 		cpu = find_lowest_rq(task);
1472 
1473 		if ((cpu == -1) || (cpu == rq->cpu))
1474 			break;
1475 
1476 		lowest_rq = cpu_rq(cpu);
1477 
1478 		/* if the prio of this runqueue changed, try again */
1479 		if (double_lock_balance(rq, lowest_rq)) {
1480 			/*
1481 			 * We had to unlock the run queue. In
1482 			 * the mean time, task could have
1483 			 * migrated already or had its affinity changed.
1484 			 * Also make sure that it wasn't scheduled on its rq.
1485 			 */
1486 			if (unlikely(task_rq(task) != rq ||
1487 				     !cpumask_test_cpu(lowest_rq->cpu,
1488 						       tsk_cpus_allowed(task)) ||
1489 				     task_running(rq, task) ||
1490 				     !task->on_rq)) {
1491 
1492 				double_unlock_balance(rq, lowest_rq);
1493 				lowest_rq = NULL;
1494 				break;
1495 			}
1496 		}
1497 
1498 		/* If this rq is still suitable use it. */
1499 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1500 			break;
1501 
1502 		/* try again */
1503 		double_unlock_balance(rq, lowest_rq);
1504 		lowest_rq = NULL;
1505 	}
1506 
1507 	return lowest_rq;
1508 }
1509 
1510 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1511 {
1512 	struct task_struct *p;
1513 
1514 	if (!has_pushable_tasks(rq))
1515 		return NULL;
1516 
1517 	p = plist_first_entry(&rq->rt.pushable_tasks,
1518 			      struct task_struct, pushable_tasks);
1519 
1520 	BUG_ON(rq->cpu != task_cpu(p));
1521 	BUG_ON(task_current(rq, p));
1522 	BUG_ON(p->nr_cpus_allowed <= 1);
1523 
1524 	BUG_ON(!p->on_rq);
1525 	BUG_ON(!rt_task(p));
1526 
1527 	return p;
1528 }
1529 
1530 /*
1531  * If the current CPU has more than one RT task, see if the non
1532  * running task can migrate over to a CPU that is running a task
1533  * of lesser priority.
1534  */
1535 static int push_rt_task(struct rq *rq)
1536 {
1537 	struct task_struct *next_task;
1538 	struct rq *lowest_rq;
1539 	int ret = 0;
1540 
1541 	if (!rq->rt.overloaded)
1542 		return 0;
1543 
1544 	next_task = pick_next_pushable_task(rq);
1545 	if (!next_task)
1546 		return 0;
1547 
1548 retry:
1549 	if (unlikely(next_task == rq->curr)) {
1550 		WARN_ON(1);
1551 		return 0;
1552 	}
1553 
1554 	/*
1555 	 * It's possible that the next_task slipped in of
1556 	 * higher priority than current. If that's the case
1557 	 * just reschedule current.
1558 	 */
1559 	if (unlikely(next_task->prio < rq->curr->prio)) {
1560 		resched_task(rq->curr);
1561 		return 0;
1562 	}
1563 
1564 	/* We might release rq lock */
1565 	get_task_struct(next_task);
1566 
1567 	/* find_lock_lowest_rq locks the rq if found */
1568 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1569 	if (!lowest_rq) {
1570 		struct task_struct *task;
1571 		/*
1572 		 * find_lock_lowest_rq releases rq->lock
1573 		 * so it is possible that next_task has migrated.
1574 		 *
1575 		 * We need to make sure that the task is still on the same
1576 		 * run-queue and is also still the next task eligible for
1577 		 * pushing.
1578 		 */
1579 		task = pick_next_pushable_task(rq);
1580 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1581 			/*
1582 			 * The task hasn't migrated, and is still the next
1583 			 * eligible task, but we failed to find a run-queue
1584 			 * to push it to.  Do not retry in this case, since
1585 			 * other cpus will pull from us when ready.
1586 			 */
1587 			goto out;
1588 		}
1589 
1590 		if (!task)
1591 			/* No more tasks, just exit */
1592 			goto out;
1593 
1594 		/*
1595 		 * Something has shifted, try again.
1596 		 */
1597 		put_task_struct(next_task);
1598 		next_task = task;
1599 		goto retry;
1600 	}
1601 
1602 	deactivate_task(rq, next_task, 0);
1603 	set_task_cpu(next_task, lowest_rq->cpu);
1604 	activate_task(lowest_rq, next_task, 0);
1605 	ret = 1;
1606 
1607 	resched_task(lowest_rq->curr);
1608 
1609 	double_unlock_balance(rq, lowest_rq);
1610 
1611 out:
1612 	put_task_struct(next_task);
1613 
1614 	return ret;
1615 }
1616 
1617 static void push_rt_tasks(struct rq *rq)
1618 {
1619 	/* push_rt_task will return true if it moved an RT */
1620 	while (push_rt_task(rq))
1621 		;
1622 }
1623 
1624 static int pull_rt_task(struct rq *this_rq)
1625 {
1626 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1627 	struct task_struct *p;
1628 	struct rq *src_rq;
1629 
1630 	if (likely(!rt_overloaded(this_rq)))
1631 		return 0;
1632 
1633 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1634 		if (this_cpu == cpu)
1635 			continue;
1636 
1637 		src_rq = cpu_rq(cpu);
1638 
1639 		/*
1640 		 * Don't bother taking the src_rq->lock if the next highest
1641 		 * task is known to be lower-priority than our current task.
1642 		 * This may look racy, but if this value is about to go
1643 		 * logically higher, the src_rq will push this task away.
1644 		 * And if its going logically lower, we do not care
1645 		 */
1646 		if (src_rq->rt.highest_prio.next >=
1647 		    this_rq->rt.highest_prio.curr)
1648 			continue;
1649 
1650 		/*
1651 		 * We can potentially drop this_rq's lock in
1652 		 * double_lock_balance, and another CPU could
1653 		 * alter this_rq
1654 		 */
1655 		double_lock_balance(this_rq, src_rq);
1656 
1657 		/*
1658 		 * We can pull only a task, which is pushable
1659 		 * on its rq, and no others.
1660 		 */
1661 		p = pick_highest_pushable_task(src_rq, this_cpu);
1662 
1663 		/*
1664 		 * Do we have an RT task that preempts
1665 		 * the to-be-scheduled task?
1666 		 */
1667 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1668 			WARN_ON(p == src_rq->curr);
1669 			WARN_ON(!p->on_rq);
1670 
1671 			/*
1672 			 * There's a chance that p is higher in priority
1673 			 * than what's currently running on its cpu.
1674 			 * This is just that p is wakeing up and hasn't
1675 			 * had a chance to schedule. We only pull
1676 			 * p if it is lower in priority than the
1677 			 * current task on the run queue
1678 			 */
1679 			if (p->prio < src_rq->curr->prio)
1680 				goto skip;
1681 
1682 			ret = 1;
1683 
1684 			deactivate_task(src_rq, p, 0);
1685 			set_task_cpu(p, this_cpu);
1686 			activate_task(this_rq, p, 0);
1687 			/*
1688 			 * We continue with the search, just in
1689 			 * case there's an even higher prio task
1690 			 * in another runqueue. (low likelihood
1691 			 * but possible)
1692 			 */
1693 		}
1694 skip:
1695 		double_unlock_balance(this_rq, src_rq);
1696 	}
1697 
1698 	return ret;
1699 }
1700 
1701 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1702 {
1703 	/* Try to pull RT tasks here if we lower this rq's prio */
1704 	if (rq->rt.highest_prio.curr > prev->prio)
1705 		pull_rt_task(rq);
1706 }
1707 
1708 static void post_schedule_rt(struct rq *rq)
1709 {
1710 	push_rt_tasks(rq);
1711 }
1712 
1713 /*
1714  * If we are not running and we are not going to reschedule soon, we should
1715  * try to push tasks away now
1716  */
1717 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1718 {
1719 	if (!task_running(rq, p) &&
1720 	    !test_tsk_need_resched(rq->curr) &&
1721 	    has_pushable_tasks(rq) &&
1722 	    p->nr_cpus_allowed > 1 &&
1723 	    rt_task(rq->curr) &&
1724 	    (rq->curr->nr_cpus_allowed < 2 ||
1725 	     rq->curr->prio <= p->prio))
1726 		push_rt_tasks(rq);
1727 }
1728 
1729 static void set_cpus_allowed_rt(struct task_struct *p,
1730 				const struct cpumask *new_mask)
1731 {
1732 	struct rq *rq;
1733 	int weight;
1734 
1735 	BUG_ON(!rt_task(p));
1736 
1737 	if (!p->on_rq)
1738 		return;
1739 
1740 	weight = cpumask_weight(new_mask);
1741 
1742 	/*
1743 	 * Only update if the process changes its state from whether it
1744 	 * can migrate or not.
1745 	 */
1746 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1747 		return;
1748 
1749 	rq = task_rq(p);
1750 
1751 	/*
1752 	 * The process used to be able to migrate OR it can now migrate
1753 	 */
1754 	if (weight <= 1) {
1755 		if (!task_current(rq, p))
1756 			dequeue_pushable_task(rq, p);
1757 		BUG_ON(!rq->rt.rt_nr_migratory);
1758 		rq->rt.rt_nr_migratory--;
1759 	} else {
1760 		if (!task_current(rq, p))
1761 			enqueue_pushable_task(rq, p);
1762 		rq->rt.rt_nr_migratory++;
1763 	}
1764 
1765 	update_rt_migration(&rq->rt);
1766 }
1767 
1768 /* Assumes rq->lock is held */
1769 static void rq_online_rt(struct rq *rq)
1770 {
1771 	if (rq->rt.overloaded)
1772 		rt_set_overload(rq);
1773 
1774 	__enable_runtime(rq);
1775 
1776 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1777 }
1778 
1779 /* Assumes rq->lock is held */
1780 static void rq_offline_rt(struct rq *rq)
1781 {
1782 	if (rq->rt.overloaded)
1783 		rt_clear_overload(rq);
1784 
1785 	__disable_runtime(rq);
1786 
1787 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1788 }
1789 
1790 /*
1791  * When switch from the rt queue, we bring ourselves to a position
1792  * that we might want to pull RT tasks from other runqueues.
1793  */
1794 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1795 {
1796 	/*
1797 	 * If there are other RT tasks then we will reschedule
1798 	 * and the scheduling of the other RT tasks will handle
1799 	 * the balancing. But if we are the last RT task
1800 	 * we may need to handle the pulling of RT tasks
1801 	 * now.
1802 	 */
1803 	if (!p->on_rq || rq->rt.rt_nr_running)
1804 		return;
1805 
1806 	if (pull_rt_task(rq))
1807 		resched_task(rq->curr);
1808 }
1809 
1810 void init_sched_rt_class(void)
1811 {
1812 	unsigned int i;
1813 
1814 	for_each_possible_cpu(i) {
1815 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1816 					GFP_KERNEL, cpu_to_node(i));
1817 	}
1818 }
1819 #endif /* CONFIG_SMP */
1820 
1821 /*
1822  * When switching a task to RT, we may overload the runqueue
1823  * with RT tasks. In this case we try to push them off to
1824  * other runqueues.
1825  */
1826 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1827 {
1828 	int check_resched = 1;
1829 
1830 	/*
1831 	 * If we are already running, then there's nothing
1832 	 * that needs to be done. But if we are not running
1833 	 * we may need to preempt the current running task.
1834 	 * If that current running task is also an RT task
1835 	 * then see if we can move to another run queue.
1836 	 */
1837 	if (p->on_rq && rq->curr != p) {
1838 #ifdef CONFIG_SMP
1839 		if (rq->rt.overloaded && push_rt_task(rq) &&
1840 		    /* Don't resched if we changed runqueues */
1841 		    rq != task_rq(p))
1842 			check_resched = 0;
1843 #endif /* CONFIG_SMP */
1844 		if (check_resched && p->prio < rq->curr->prio)
1845 			resched_task(rq->curr);
1846 	}
1847 }
1848 
1849 /*
1850  * Priority of the task has changed. This may cause
1851  * us to initiate a push or pull.
1852  */
1853 static void
1854 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1855 {
1856 	if (!p->on_rq)
1857 		return;
1858 
1859 	if (rq->curr == p) {
1860 #ifdef CONFIG_SMP
1861 		/*
1862 		 * If our priority decreases while running, we
1863 		 * may need to pull tasks to this runqueue.
1864 		 */
1865 		if (oldprio < p->prio)
1866 			pull_rt_task(rq);
1867 		/*
1868 		 * If there's a higher priority task waiting to run
1869 		 * then reschedule. Note, the above pull_rt_task
1870 		 * can release the rq lock and p could migrate.
1871 		 * Only reschedule if p is still on the same runqueue.
1872 		 */
1873 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1874 			resched_task(p);
1875 #else
1876 		/* For UP simply resched on drop of prio */
1877 		if (oldprio < p->prio)
1878 			resched_task(p);
1879 #endif /* CONFIG_SMP */
1880 	} else {
1881 		/*
1882 		 * This task is not running, but if it is
1883 		 * greater than the current running task
1884 		 * then reschedule.
1885 		 */
1886 		if (p->prio < rq->curr->prio)
1887 			resched_task(rq->curr);
1888 	}
1889 }
1890 
1891 static void watchdog(struct rq *rq, struct task_struct *p)
1892 {
1893 	unsigned long soft, hard;
1894 
1895 	/* max may change after cur was read, this will be fixed next tick */
1896 	soft = task_rlimit(p, RLIMIT_RTTIME);
1897 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1898 
1899 	if (soft != RLIM_INFINITY) {
1900 		unsigned long next;
1901 
1902 		if (p->rt.watchdog_stamp != jiffies) {
1903 			p->rt.timeout++;
1904 			p->rt.watchdog_stamp = jiffies;
1905 		}
1906 
1907 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1908 		if (p->rt.timeout > next)
1909 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1910 	}
1911 }
1912 
1913 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1914 {
1915 	struct sched_rt_entity *rt_se = &p->rt;
1916 
1917 	update_curr_rt(rq);
1918 
1919 	watchdog(rq, p);
1920 
1921 	/*
1922 	 * RR tasks need a special form of timeslice management.
1923 	 * FIFO tasks have no timeslices.
1924 	 */
1925 	if (p->policy != SCHED_RR)
1926 		return;
1927 
1928 	if (--p->rt.time_slice)
1929 		return;
1930 
1931 	p->rt.time_slice = sched_rr_timeslice;
1932 
1933 	/*
1934 	 * Requeue to the end of queue if we (and all of our ancestors) are the
1935 	 * only element on the queue
1936 	 */
1937 	for_each_sched_rt_entity(rt_se) {
1938 		if (rt_se->run_list.prev != rt_se->run_list.next) {
1939 			requeue_task_rt(rq, p, 0);
1940 			set_tsk_need_resched(p);
1941 			return;
1942 		}
1943 	}
1944 }
1945 
1946 static void set_curr_task_rt(struct rq *rq)
1947 {
1948 	struct task_struct *p = rq->curr;
1949 
1950 	p->se.exec_start = rq_clock_task(rq);
1951 
1952 	/* The running task is never eligible for pushing */
1953 	dequeue_pushable_task(rq, p);
1954 }
1955 
1956 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1957 {
1958 	/*
1959 	 * Time slice is 0 for SCHED_FIFO tasks
1960 	 */
1961 	if (task->policy == SCHED_RR)
1962 		return sched_rr_timeslice;
1963 	else
1964 		return 0;
1965 }
1966 
1967 const struct sched_class rt_sched_class = {
1968 	.next			= &fair_sched_class,
1969 	.enqueue_task		= enqueue_task_rt,
1970 	.dequeue_task		= dequeue_task_rt,
1971 	.yield_task		= yield_task_rt,
1972 
1973 	.check_preempt_curr	= check_preempt_curr_rt,
1974 
1975 	.pick_next_task		= pick_next_task_rt,
1976 	.put_prev_task		= put_prev_task_rt,
1977 
1978 #ifdef CONFIG_SMP
1979 	.select_task_rq		= select_task_rq_rt,
1980 
1981 	.set_cpus_allowed       = set_cpus_allowed_rt,
1982 	.rq_online              = rq_online_rt,
1983 	.rq_offline             = rq_offline_rt,
1984 	.pre_schedule		= pre_schedule_rt,
1985 	.post_schedule		= post_schedule_rt,
1986 	.task_woken		= task_woken_rt,
1987 	.switched_from		= switched_from_rt,
1988 #endif
1989 
1990 	.set_curr_task          = set_curr_task_rt,
1991 	.task_tick		= task_tick_rt,
1992 
1993 	.get_rr_interval	= get_rr_interval_rt,
1994 
1995 	.prio_changed		= prio_changed_rt,
1996 	.switched_to		= switched_to_rt,
1997 };
1998 
1999 #ifdef CONFIG_SCHED_DEBUG
2000 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2001 
2002 void print_rt_stats(struct seq_file *m, int cpu)
2003 {
2004 	rt_rq_iter_t iter;
2005 	struct rt_rq *rt_rq;
2006 
2007 	rcu_read_lock();
2008 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2009 		print_rt_rq(m, cpu, rt_rq);
2010 	rcu_read_unlock();
2011 }
2012 #endif /* CONFIG_SCHED_DEBUG */
2013