1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 /* 12 * period over which we measure -rt task CPU usage in us. 13 * default: 1s 14 */ 15 int sysctl_sched_rt_period = 1000000; 16 17 /* 18 * part of the period that we allow rt tasks to run in us. 19 * default: 0.95s 20 */ 21 int sysctl_sched_rt_runtime = 950000; 22 23 #ifdef CONFIG_SYSCTL 24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, 26 size_t *lenp, loff_t *ppos); 27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, 28 size_t *lenp, loff_t *ppos); 29 static const struct ctl_table sched_rt_sysctls[] = { 30 { 31 .procname = "sched_rt_period_us", 32 .data = &sysctl_sched_rt_period, 33 .maxlen = sizeof(int), 34 .mode = 0644, 35 .proc_handler = sched_rt_handler, 36 .extra1 = SYSCTL_ONE, 37 .extra2 = SYSCTL_INT_MAX, 38 }, 39 { 40 .procname = "sched_rt_runtime_us", 41 .data = &sysctl_sched_rt_runtime, 42 .maxlen = sizeof(int), 43 .mode = 0644, 44 .proc_handler = sched_rt_handler, 45 .extra1 = SYSCTL_NEG_ONE, 46 .extra2 = (void *)&sysctl_sched_rt_period, 47 }, 48 { 49 .procname = "sched_rr_timeslice_ms", 50 .data = &sysctl_sched_rr_timeslice, 51 .maxlen = sizeof(int), 52 .mode = 0644, 53 .proc_handler = sched_rr_handler, 54 }, 55 }; 56 57 static int __init sched_rt_sysctl_init(void) 58 { 59 register_sysctl_init("kernel", sched_rt_sysctls); 60 return 0; 61 } 62 late_initcall(sched_rt_sysctl_init); 63 #endif 64 65 void init_rt_rq(struct rt_rq *rt_rq) 66 { 67 struct rt_prio_array *array; 68 int i; 69 70 array = &rt_rq->active; 71 for (i = 0; i < MAX_RT_PRIO; i++) { 72 INIT_LIST_HEAD(array->queue + i); 73 __clear_bit(i, array->bitmap); 74 } 75 /* delimiter for bitsearch: */ 76 __set_bit(MAX_RT_PRIO, array->bitmap); 77 78 #if defined CONFIG_SMP 79 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 80 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 81 rt_rq->overloaded = 0; 82 plist_head_init(&rt_rq->pushable_tasks); 83 #endif /* CONFIG_SMP */ 84 /* We start is dequeued state, because no RT tasks are queued */ 85 rt_rq->rt_queued = 0; 86 87 #ifdef CONFIG_RT_GROUP_SCHED 88 rt_rq->rt_time = 0; 89 rt_rq->rt_throttled = 0; 90 rt_rq->rt_runtime = 0; 91 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 92 rt_rq->tg = &root_task_group; 93 #endif 94 } 95 96 #ifdef CONFIG_RT_GROUP_SCHED 97 98 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 99 100 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 101 { 102 struct rt_bandwidth *rt_b = 103 container_of(timer, struct rt_bandwidth, rt_period_timer); 104 int idle = 0; 105 int overrun; 106 107 raw_spin_lock(&rt_b->rt_runtime_lock); 108 for (;;) { 109 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 110 if (!overrun) 111 break; 112 113 raw_spin_unlock(&rt_b->rt_runtime_lock); 114 idle = do_sched_rt_period_timer(rt_b, overrun); 115 raw_spin_lock(&rt_b->rt_runtime_lock); 116 } 117 if (idle) 118 rt_b->rt_period_active = 0; 119 raw_spin_unlock(&rt_b->rt_runtime_lock); 120 121 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 122 } 123 124 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 125 { 126 rt_b->rt_period = ns_to_ktime(period); 127 rt_b->rt_runtime = runtime; 128 129 raw_spin_lock_init(&rt_b->rt_runtime_lock); 130 131 hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC, 132 HRTIMER_MODE_REL_HARD); 133 } 134 135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 136 { 137 raw_spin_lock(&rt_b->rt_runtime_lock); 138 if (!rt_b->rt_period_active) { 139 rt_b->rt_period_active = 1; 140 /* 141 * SCHED_DEADLINE updates the bandwidth, as a run away 142 * RT task with a DL task could hog a CPU. But DL does 143 * not reset the period. If a deadline task was running 144 * without an RT task running, it can cause RT tasks to 145 * throttle when they start up. Kick the timer right away 146 * to update the period. 147 */ 148 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 149 hrtimer_start_expires(&rt_b->rt_period_timer, 150 HRTIMER_MODE_ABS_PINNED_HARD); 151 } 152 raw_spin_unlock(&rt_b->rt_runtime_lock); 153 } 154 155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 156 { 157 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 158 return; 159 160 do_start_rt_bandwidth(rt_b); 161 } 162 163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 164 { 165 hrtimer_cancel(&rt_b->rt_period_timer); 166 } 167 168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 169 170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 171 { 172 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 173 174 return container_of(rt_se, struct task_struct, rt); 175 } 176 177 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 178 { 179 /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */ 180 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); 181 return rt_rq->rq; 182 } 183 184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 185 { 186 WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group); 187 return rt_se->rt_rq; 188 } 189 190 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 191 { 192 struct rt_rq *rt_rq = rt_se->rt_rq; 193 194 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); 195 return rt_rq->rq; 196 } 197 198 void unregister_rt_sched_group(struct task_group *tg) 199 { 200 if (!rt_group_sched_enabled()) 201 return; 202 203 if (tg->rt_se) 204 destroy_rt_bandwidth(&tg->rt_bandwidth); 205 } 206 207 void free_rt_sched_group(struct task_group *tg) 208 { 209 int i; 210 211 if (!rt_group_sched_enabled()) 212 return; 213 214 for_each_possible_cpu(i) { 215 if (tg->rt_rq) 216 kfree(tg->rt_rq[i]); 217 if (tg->rt_se) 218 kfree(tg->rt_se[i]); 219 } 220 221 kfree(tg->rt_rq); 222 kfree(tg->rt_se); 223 } 224 225 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 226 struct sched_rt_entity *rt_se, int cpu, 227 struct sched_rt_entity *parent) 228 { 229 struct rq *rq = cpu_rq(cpu); 230 231 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 232 rt_rq->rt_nr_boosted = 0; 233 rt_rq->rq = rq; 234 rt_rq->tg = tg; 235 236 tg->rt_rq[cpu] = rt_rq; 237 tg->rt_se[cpu] = rt_se; 238 239 if (!rt_se) 240 return; 241 242 if (!parent) 243 rt_se->rt_rq = &rq->rt; 244 else 245 rt_se->rt_rq = parent->my_q; 246 247 rt_se->my_q = rt_rq; 248 rt_se->parent = parent; 249 INIT_LIST_HEAD(&rt_se->run_list); 250 } 251 252 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 253 { 254 struct rt_rq *rt_rq; 255 struct sched_rt_entity *rt_se; 256 int i; 257 258 if (!rt_group_sched_enabled()) 259 return 1; 260 261 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 262 if (!tg->rt_rq) 263 goto err; 264 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 265 if (!tg->rt_se) 266 goto err; 267 268 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0); 269 270 for_each_possible_cpu(i) { 271 rt_rq = kzalloc_node(sizeof(struct rt_rq), 272 GFP_KERNEL, cpu_to_node(i)); 273 if (!rt_rq) 274 goto err; 275 276 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 277 GFP_KERNEL, cpu_to_node(i)); 278 if (!rt_se) 279 goto err_free_rq; 280 281 init_rt_rq(rt_rq); 282 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 283 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 284 } 285 286 return 1; 287 288 err_free_rq: 289 kfree(rt_rq); 290 err: 291 return 0; 292 } 293 294 #else /* CONFIG_RT_GROUP_SCHED */ 295 296 #define rt_entity_is_task(rt_se) (1) 297 298 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 299 { 300 return container_of(rt_se, struct task_struct, rt); 301 } 302 303 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 304 { 305 return container_of(rt_rq, struct rq, rt); 306 } 307 308 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 309 { 310 struct task_struct *p = rt_task_of(rt_se); 311 312 return task_rq(p); 313 } 314 315 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 316 { 317 struct rq *rq = rq_of_rt_se(rt_se); 318 319 return &rq->rt; 320 } 321 322 void unregister_rt_sched_group(struct task_group *tg) { } 323 324 void free_rt_sched_group(struct task_group *tg) { } 325 326 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 327 { 328 return 1; 329 } 330 #endif /* CONFIG_RT_GROUP_SCHED */ 331 332 #ifdef CONFIG_SMP 333 334 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 335 { 336 /* Try to pull RT tasks here if we lower this rq's prio */ 337 return rq->online && rq->rt.highest_prio.curr > prev->prio; 338 } 339 340 static inline int rt_overloaded(struct rq *rq) 341 { 342 return atomic_read(&rq->rd->rto_count); 343 } 344 345 static inline void rt_set_overload(struct rq *rq) 346 { 347 if (!rq->online) 348 return; 349 350 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 351 /* 352 * Make sure the mask is visible before we set 353 * the overload count. That is checked to determine 354 * if we should look at the mask. It would be a shame 355 * if we looked at the mask, but the mask was not 356 * updated yet. 357 * 358 * Matched by the barrier in pull_rt_task(). 359 */ 360 smp_wmb(); 361 atomic_inc(&rq->rd->rto_count); 362 } 363 364 static inline void rt_clear_overload(struct rq *rq) 365 { 366 if (!rq->online) 367 return; 368 369 /* the order here really doesn't matter */ 370 atomic_dec(&rq->rd->rto_count); 371 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 372 } 373 374 static inline int has_pushable_tasks(struct rq *rq) 375 { 376 return !plist_head_empty(&rq->rt.pushable_tasks); 377 } 378 379 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 380 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 381 382 static void push_rt_tasks(struct rq *); 383 static void pull_rt_task(struct rq *); 384 385 static inline void rt_queue_push_tasks(struct rq *rq) 386 { 387 if (!has_pushable_tasks(rq)) 388 return; 389 390 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 391 } 392 393 static inline void rt_queue_pull_task(struct rq *rq) 394 { 395 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 396 } 397 398 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 399 { 400 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 401 plist_node_init(&p->pushable_tasks, p->prio); 402 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 403 404 /* Update the highest prio pushable task */ 405 if (p->prio < rq->rt.highest_prio.next) 406 rq->rt.highest_prio.next = p->prio; 407 408 if (!rq->rt.overloaded) { 409 rt_set_overload(rq); 410 rq->rt.overloaded = 1; 411 } 412 } 413 414 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 415 { 416 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 417 418 /* Update the new highest prio pushable task */ 419 if (has_pushable_tasks(rq)) { 420 p = plist_first_entry(&rq->rt.pushable_tasks, 421 struct task_struct, pushable_tasks); 422 rq->rt.highest_prio.next = p->prio; 423 } else { 424 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 425 426 if (rq->rt.overloaded) { 427 rt_clear_overload(rq); 428 rq->rt.overloaded = 0; 429 } 430 } 431 } 432 433 #else 434 435 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 436 { 437 } 438 439 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 440 { 441 } 442 443 static inline void rt_queue_push_tasks(struct rq *rq) 444 { 445 } 446 #endif /* CONFIG_SMP */ 447 448 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 449 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 450 451 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 452 { 453 return rt_se->on_rq; 454 } 455 456 #ifdef CONFIG_UCLAMP_TASK 457 /* 458 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 459 * settings. 460 * 461 * This check is only important for heterogeneous systems where uclamp_min value 462 * is higher than the capacity of a @cpu. For non-heterogeneous system this 463 * function will always return true. 464 * 465 * The function will return true if the capacity of the @cpu is >= the 466 * uclamp_min and false otherwise. 467 * 468 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 469 * > uclamp_max. 470 */ 471 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 472 { 473 unsigned int min_cap; 474 unsigned int max_cap; 475 unsigned int cpu_cap; 476 477 /* Only heterogeneous systems can benefit from this check */ 478 if (!sched_asym_cpucap_active()) 479 return true; 480 481 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 482 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 483 484 cpu_cap = arch_scale_cpu_capacity(cpu); 485 486 return cpu_cap >= min(min_cap, max_cap); 487 } 488 #else 489 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 490 { 491 return true; 492 } 493 #endif 494 495 #ifdef CONFIG_RT_GROUP_SCHED 496 497 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 498 { 499 return rt_rq->rt_runtime; 500 } 501 502 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 503 { 504 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 505 } 506 507 typedef struct task_group *rt_rq_iter_t; 508 509 static inline struct task_group *next_task_group(struct task_group *tg) 510 { 511 if (!rt_group_sched_enabled()) { 512 WARN_ON(tg != &root_task_group); 513 return NULL; 514 } 515 516 do { 517 tg = list_entry_rcu(tg->list.next, 518 typeof(struct task_group), list); 519 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 520 521 if (&tg->list == &task_groups) 522 tg = NULL; 523 524 return tg; 525 } 526 527 #define for_each_rt_rq(rt_rq, iter, rq) \ 528 for (iter = &root_task_group; \ 529 iter && (rt_rq = iter->rt_rq[cpu_of(rq)]); \ 530 iter = next_task_group(iter)) 531 532 #define for_each_sched_rt_entity(rt_se) \ 533 for (; rt_se; rt_se = rt_se->parent) 534 535 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 536 { 537 return rt_se->my_q; 538 } 539 540 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 541 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 542 543 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 544 { 545 struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor; 546 struct rq *rq = rq_of_rt_rq(rt_rq); 547 struct sched_rt_entity *rt_se; 548 549 int cpu = cpu_of(rq); 550 551 rt_se = rt_rq->tg->rt_se[cpu]; 552 553 if (rt_rq->rt_nr_running) { 554 if (!rt_se) 555 enqueue_top_rt_rq(rt_rq); 556 else if (!on_rt_rq(rt_se)) 557 enqueue_rt_entity(rt_se, 0); 558 559 if (rt_rq->highest_prio.curr < donor->prio) 560 resched_curr(rq); 561 } 562 } 563 564 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 565 { 566 struct sched_rt_entity *rt_se; 567 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 568 569 rt_se = rt_rq->tg->rt_se[cpu]; 570 571 if (!rt_se) { 572 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 573 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 574 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 575 } 576 else if (on_rt_rq(rt_se)) 577 dequeue_rt_entity(rt_se, 0); 578 } 579 580 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 581 { 582 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 583 } 584 585 static int rt_se_boosted(struct sched_rt_entity *rt_se) 586 { 587 struct rt_rq *rt_rq = group_rt_rq(rt_se); 588 struct task_struct *p; 589 590 if (rt_rq) 591 return !!rt_rq->rt_nr_boosted; 592 593 p = rt_task_of(rt_se); 594 return p->prio != p->normal_prio; 595 } 596 597 #ifdef CONFIG_SMP 598 static inline const struct cpumask *sched_rt_period_mask(void) 599 { 600 return this_rq()->rd->span; 601 } 602 #else 603 static inline const struct cpumask *sched_rt_period_mask(void) 604 { 605 return cpu_online_mask; 606 } 607 #endif 608 609 static inline 610 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 611 { 612 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 613 } 614 615 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 616 { 617 return &rt_rq->tg->rt_bandwidth; 618 } 619 620 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 621 { 622 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 623 624 return (hrtimer_active(&rt_b->rt_period_timer) || 625 rt_rq->rt_time < rt_b->rt_runtime); 626 } 627 628 #ifdef CONFIG_SMP 629 /* 630 * We ran out of runtime, see if we can borrow some from our neighbours. 631 */ 632 static void do_balance_runtime(struct rt_rq *rt_rq) 633 { 634 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 635 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 636 int i, weight; 637 u64 rt_period; 638 639 weight = cpumask_weight(rd->span); 640 641 raw_spin_lock(&rt_b->rt_runtime_lock); 642 rt_period = ktime_to_ns(rt_b->rt_period); 643 for_each_cpu(i, rd->span) { 644 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 645 s64 diff; 646 647 if (iter == rt_rq) 648 continue; 649 650 raw_spin_lock(&iter->rt_runtime_lock); 651 /* 652 * Either all rqs have inf runtime and there's nothing to steal 653 * or __disable_runtime() below sets a specific rq to inf to 654 * indicate its been disabled and disallow stealing. 655 */ 656 if (iter->rt_runtime == RUNTIME_INF) 657 goto next; 658 659 /* 660 * From runqueues with spare time, take 1/n part of their 661 * spare time, but no more than our period. 662 */ 663 diff = iter->rt_runtime - iter->rt_time; 664 if (diff > 0) { 665 diff = div_u64((u64)diff, weight); 666 if (rt_rq->rt_runtime + diff > rt_period) 667 diff = rt_period - rt_rq->rt_runtime; 668 iter->rt_runtime -= diff; 669 rt_rq->rt_runtime += diff; 670 if (rt_rq->rt_runtime == rt_period) { 671 raw_spin_unlock(&iter->rt_runtime_lock); 672 break; 673 } 674 } 675 next: 676 raw_spin_unlock(&iter->rt_runtime_lock); 677 } 678 raw_spin_unlock(&rt_b->rt_runtime_lock); 679 } 680 681 /* 682 * Ensure this RQ takes back all the runtime it lend to its neighbours. 683 */ 684 static void __disable_runtime(struct rq *rq) 685 { 686 struct root_domain *rd = rq->rd; 687 rt_rq_iter_t iter; 688 struct rt_rq *rt_rq; 689 690 if (unlikely(!scheduler_running)) 691 return; 692 693 for_each_rt_rq(rt_rq, iter, rq) { 694 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 695 s64 want; 696 int i; 697 698 raw_spin_lock(&rt_b->rt_runtime_lock); 699 raw_spin_lock(&rt_rq->rt_runtime_lock); 700 /* 701 * Either we're all inf and nobody needs to borrow, or we're 702 * already disabled and thus have nothing to do, or we have 703 * exactly the right amount of runtime to take out. 704 */ 705 if (rt_rq->rt_runtime == RUNTIME_INF || 706 rt_rq->rt_runtime == rt_b->rt_runtime) 707 goto balanced; 708 raw_spin_unlock(&rt_rq->rt_runtime_lock); 709 710 /* 711 * Calculate the difference between what we started out with 712 * and what we current have, that's the amount of runtime 713 * we lend and now have to reclaim. 714 */ 715 want = rt_b->rt_runtime - rt_rq->rt_runtime; 716 717 /* 718 * Greedy reclaim, take back as much as we can. 719 */ 720 for_each_cpu(i, rd->span) { 721 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 722 s64 diff; 723 724 /* 725 * Can't reclaim from ourselves or disabled runqueues. 726 */ 727 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 728 continue; 729 730 raw_spin_lock(&iter->rt_runtime_lock); 731 if (want > 0) { 732 diff = min_t(s64, iter->rt_runtime, want); 733 iter->rt_runtime -= diff; 734 want -= diff; 735 } else { 736 iter->rt_runtime -= want; 737 want -= want; 738 } 739 raw_spin_unlock(&iter->rt_runtime_lock); 740 741 if (!want) 742 break; 743 } 744 745 raw_spin_lock(&rt_rq->rt_runtime_lock); 746 /* 747 * We cannot be left wanting - that would mean some runtime 748 * leaked out of the system. 749 */ 750 WARN_ON_ONCE(want); 751 balanced: 752 /* 753 * Disable all the borrow logic by pretending we have inf 754 * runtime - in which case borrowing doesn't make sense. 755 */ 756 rt_rq->rt_runtime = RUNTIME_INF; 757 rt_rq->rt_throttled = 0; 758 raw_spin_unlock(&rt_rq->rt_runtime_lock); 759 raw_spin_unlock(&rt_b->rt_runtime_lock); 760 761 /* Make rt_rq available for pick_next_task() */ 762 sched_rt_rq_enqueue(rt_rq); 763 } 764 } 765 766 static void __enable_runtime(struct rq *rq) 767 { 768 rt_rq_iter_t iter; 769 struct rt_rq *rt_rq; 770 771 if (unlikely(!scheduler_running)) 772 return; 773 774 /* 775 * Reset each runqueue's bandwidth settings 776 */ 777 for_each_rt_rq(rt_rq, iter, rq) { 778 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 779 780 raw_spin_lock(&rt_b->rt_runtime_lock); 781 raw_spin_lock(&rt_rq->rt_runtime_lock); 782 rt_rq->rt_runtime = rt_b->rt_runtime; 783 rt_rq->rt_time = 0; 784 rt_rq->rt_throttled = 0; 785 raw_spin_unlock(&rt_rq->rt_runtime_lock); 786 raw_spin_unlock(&rt_b->rt_runtime_lock); 787 } 788 } 789 790 static void balance_runtime(struct rt_rq *rt_rq) 791 { 792 if (!sched_feat(RT_RUNTIME_SHARE)) 793 return; 794 795 if (rt_rq->rt_time > rt_rq->rt_runtime) { 796 raw_spin_unlock(&rt_rq->rt_runtime_lock); 797 do_balance_runtime(rt_rq); 798 raw_spin_lock(&rt_rq->rt_runtime_lock); 799 } 800 } 801 #else /* !CONFIG_SMP */ 802 static inline void balance_runtime(struct rt_rq *rt_rq) {} 803 #endif /* CONFIG_SMP */ 804 805 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 806 { 807 int i, idle = 1, throttled = 0; 808 const struct cpumask *span; 809 810 span = sched_rt_period_mask(); 811 812 /* 813 * FIXME: isolated CPUs should really leave the root task group, 814 * whether they are isolcpus or were isolated via cpusets, lest 815 * the timer run on a CPU which does not service all runqueues, 816 * potentially leaving other CPUs indefinitely throttled. If 817 * isolation is really required, the user will turn the throttle 818 * off to kill the perturbations it causes anyway. Meanwhile, 819 * this maintains functionality for boot and/or troubleshooting. 820 */ 821 if (rt_b == &root_task_group.rt_bandwidth) 822 span = cpu_online_mask; 823 824 for_each_cpu(i, span) { 825 int enqueue = 0; 826 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 827 struct rq *rq = rq_of_rt_rq(rt_rq); 828 struct rq_flags rf; 829 int skip; 830 831 /* 832 * When span == cpu_online_mask, taking each rq->lock 833 * can be time-consuming. Try to avoid it when possible. 834 */ 835 raw_spin_lock(&rt_rq->rt_runtime_lock); 836 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 837 rt_rq->rt_runtime = rt_b->rt_runtime; 838 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 839 raw_spin_unlock(&rt_rq->rt_runtime_lock); 840 if (skip) 841 continue; 842 843 rq_lock(rq, &rf); 844 update_rq_clock(rq); 845 846 if (rt_rq->rt_time) { 847 u64 runtime; 848 849 raw_spin_lock(&rt_rq->rt_runtime_lock); 850 if (rt_rq->rt_throttled) 851 balance_runtime(rt_rq); 852 runtime = rt_rq->rt_runtime; 853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 855 rt_rq->rt_throttled = 0; 856 enqueue = 1; 857 858 /* 859 * When we're idle and a woken (rt) task is 860 * throttled wakeup_preempt() will set 861 * skip_update and the time between the wakeup 862 * and this unthrottle will get accounted as 863 * 'runtime'. 864 */ 865 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 866 rq_clock_cancel_skipupdate(rq); 867 } 868 if (rt_rq->rt_time || rt_rq->rt_nr_running) 869 idle = 0; 870 raw_spin_unlock(&rt_rq->rt_runtime_lock); 871 } else if (rt_rq->rt_nr_running) { 872 idle = 0; 873 if (!rt_rq_throttled(rt_rq)) 874 enqueue = 1; 875 } 876 if (rt_rq->rt_throttled) 877 throttled = 1; 878 879 if (enqueue) 880 sched_rt_rq_enqueue(rt_rq); 881 rq_unlock(rq, &rf); 882 } 883 884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 885 return 1; 886 887 return idle; 888 } 889 890 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 891 { 892 u64 runtime = sched_rt_runtime(rt_rq); 893 894 if (rt_rq->rt_throttled) 895 return rt_rq_throttled(rt_rq); 896 897 if (runtime >= sched_rt_period(rt_rq)) 898 return 0; 899 900 balance_runtime(rt_rq); 901 runtime = sched_rt_runtime(rt_rq); 902 if (runtime == RUNTIME_INF) 903 return 0; 904 905 if (rt_rq->rt_time > runtime) { 906 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 907 908 /* 909 * Don't actually throttle groups that have no runtime assigned 910 * but accrue some time due to boosting. 911 */ 912 if (likely(rt_b->rt_runtime)) { 913 rt_rq->rt_throttled = 1; 914 printk_deferred_once("sched: RT throttling activated\n"); 915 } else { 916 /* 917 * In case we did anyway, make it go away, 918 * replenishment is a joke, since it will replenish us 919 * with exactly 0 ns. 920 */ 921 rt_rq->rt_time = 0; 922 } 923 924 if (rt_rq_throttled(rt_rq)) { 925 sched_rt_rq_dequeue(rt_rq); 926 return 1; 927 } 928 } 929 930 return 0; 931 } 932 933 #else /* !CONFIG_RT_GROUP_SCHED */ 934 935 typedef struct rt_rq *rt_rq_iter_t; 936 937 #define for_each_rt_rq(rt_rq, iter, rq) \ 938 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 939 940 #define for_each_sched_rt_entity(rt_se) \ 941 for (; rt_se; rt_se = NULL) 942 943 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 944 { 945 return NULL; 946 } 947 948 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 949 { 950 struct rq *rq = rq_of_rt_rq(rt_rq); 951 952 if (!rt_rq->rt_nr_running) 953 return; 954 955 enqueue_top_rt_rq(rt_rq); 956 resched_curr(rq); 957 } 958 959 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 960 { 961 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 962 } 963 964 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 965 { 966 return false; 967 } 968 969 static inline const struct cpumask *sched_rt_period_mask(void) 970 { 971 return cpu_online_mask; 972 } 973 974 static inline 975 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 976 { 977 return &cpu_rq(cpu)->rt; 978 } 979 980 #ifdef CONFIG_SMP 981 static void __enable_runtime(struct rq *rq) { } 982 static void __disable_runtime(struct rq *rq) { } 983 #endif 984 985 #endif /* CONFIG_RT_GROUP_SCHED */ 986 987 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 988 { 989 #ifdef CONFIG_RT_GROUP_SCHED 990 struct rt_rq *rt_rq = group_rt_rq(rt_se); 991 992 if (rt_rq) 993 return rt_rq->highest_prio.curr; 994 #endif 995 996 return rt_task_of(rt_se)->prio; 997 } 998 999 /* 1000 * Update the current task's runtime statistics. Skip current tasks that 1001 * are not in our scheduling class. 1002 */ 1003 static void update_curr_rt(struct rq *rq) 1004 { 1005 struct task_struct *donor = rq->donor; 1006 s64 delta_exec; 1007 1008 if (donor->sched_class != &rt_sched_class) 1009 return; 1010 1011 delta_exec = update_curr_common(rq); 1012 if (unlikely(delta_exec <= 0)) 1013 return; 1014 1015 #ifdef CONFIG_RT_GROUP_SCHED 1016 struct sched_rt_entity *rt_se = &donor->rt; 1017 1018 if (!rt_bandwidth_enabled()) 1019 return; 1020 1021 for_each_sched_rt_entity(rt_se) { 1022 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1023 int exceeded; 1024 1025 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1026 raw_spin_lock(&rt_rq->rt_runtime_lock); 1027 rt_rq->rt_time += delta_exec; 1028 exceeded = sched_rt_runtime_exceeded(rt_rq); 1029 if (exceeded) 1030 resched_curr(rq); 1031 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1032 if (exceeded) 1033 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1034 } 1035 } 1036 #endif 1037 } 1038 1039 static void 1040 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1041 { 1042 struct rq *rq = rq_of_rt_rq(rt_rq); 1043 1044 BUG_ON(&rq->rt != rt_rq); 1045 1046 if (!rt_rq->rt_queued) 1047 return; 1048 1049 BUG_ON(!rq->nr_running); 1050 1051 sub_nr_running(rq, count); 1052 rt_rq->rt_queued = 0; 1053 1054 } 1055 1056 static void 1057 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1058 { 1059 struct rq *rq = rq_of_rt_rq(rt_rq); 1060 1061 BUG_ON(&rq->rt != rt_rq); 1062 1063 if (rt_rq->rt_queued) 1064 return; 1065 1066 if (rt_rq_throttled(rt_rq)) 1067 return; 1068 1069 if (rt_rq->rt_nr_running) { 1070 add_nr_running(rq, rt_rq->rt_nr_running); 1071 rt_rq->rt_queued = 1; 1072 } 1073 1074 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1075 cpufreq_update_util(rq, 0); 1076 } 1077 1078 #if defined CONFIG_SMP 1079 1080 static void 1081 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1082 { 1083 struct rq *rq = rq_of_rt_rq(rt_rq); 1084 1085 /* 1086 * Change rq's cpupri only if rt_rq is the top queue. 1087 */ 1088 if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) 1089 return; 1090 1091 if (rq->online && prio < prev_prio) 1092 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1093 } 1094 1095 static void 1096 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1097 { 1098 struct rq *rq = rq_of_rt_rq(rt_rq); 1099 1100 /* 1101 * Change rq's cpupri only if rt_rq is the top queue. 1102 */ 1103 if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq) 1104 return; 1105 1106 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1107 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1108 } 1109 1110 #else /* CONFIG_SMP */ 1111 1112 static inline 1113 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1114 static inline 1115 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1116 1117 #endif /* CONFIG_SMP */ 1118 1119 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1120 static void 1121 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1122 { 1123 int prev_prio = rt_rq->highest_prio.curr; 1124 1125 if (prio < prev_prio) 1126 rt_rq->highest_prio.curr = prio; 1127 1128 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1129 } 1130 1131 static void 1132 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1133 { 1134 int prev_prio = rt_rq->highest_prio.curr; 1135 1136 if (rt_rq->rt_nr_running) { 1137 1138 WARN_ON(prio < prev_prio); 1139 1140 /* 1141 * This may have been our highest task, and therefore 1142 * we may have some re-computation to do 1143 */ 1144 if (prio == prev_prio) { 1145 struct rt_prio_array *array = &rt_rq->active; 1146 1147 rt_rq->highest_prio.curr = 1148 sched_find_first_bit(array->bitmap); 1149 } 1150 1151 } else { 1152 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1153 } 1154 1155 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1156 } 1157 1158 #else 1159 1160 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1161 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1162 1163 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1164 1165 #ifdef CONFIG_RT_GROUP_SCHED 1166 1167 static void 1168 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1169 { 1170 if (rt_se_boosted(rt_se)) 1171 rt_rq->rt_nr_boosted++; 1172 1173 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1174 } 1175 1176 static void 1177 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1178 { 1179 if (rt_se_boosted(rt_se)) 1180 rt_rq->rt_nr_boosted--; 1181 1182 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1183 } 1184 1185 #else /* CONFIG_RT_GROUP_SCHED */ 1186 1187 static void 1188 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1189 { 1190 } 1191 1192 static inline 1193 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1194 1195 #endif /* CONFIG_RT_GROUP_SCHED */ 1196 1197 static inline 1198 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1199 { 1200 struct rt_rq *group_rq = group_rt_rq(rt_se); 1201 1202 if (group_rq) 1203 return group_rq->rt_nr_running; 1204 else 1205 return 1; 1206 } 1207 1208 static inline 1209 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1210 { 1211 struct rt_rq *group_rq = group_rt_rq(rt_se); 1212 struct task_struct *tsk; 1213 1214 if (group_rq) 1215 return group_rq->rr_nr_running; 1216 1217 tsk = rt_task_of(rt_se); 1218 1219 return (tsk->policy == SCHED_RR) ? 1 : 0; 1220 } 1221 1222 static inline 1223 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1224 { 1225 int prio = rt_se_prio(rt_se); 1226 1227 WARN_ON(!rt_prio(prio)); 1228 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1229 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1230 1231 inc_rt_prio(rt_rq, prio); 1232 inc_rt_group(rt_se, rt_rq); 1233 } 1234 1235 static inline 1236 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1237 { 1238 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1239 WARN_ON(!rt_rq->rt_nr_running); 1240 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1241 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1242 1243 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1244 dec_rt_group(rt_se, rt_rq); 1245 } 1246 1247 /* 1248 * Change rt_se->run_list location unless SAVE && !MOVE 1249 * 1250 * assumes ENQUEUE/DEQUEUE flags match 1251 */ 1252 static inline bool move_entity(unsigned int flags) 1253 { 1254 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1255 return false; 1256 1257 return true; 1258 } 1259 1260 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1261 { 1262 list_del_init(&rt_se->run_list); 1263 1264 if (list_empty(array->queue + rt_se_prio(rt_se))) 1265 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1266 1267 rt_se->on_list = 0; 1268 } 1269 1270 static inline struct sched_statistics * 1271 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1272 { 1273 /* schedstats is not supported for rt group. */ 1274 if (!rt_entity_is_task(rt_se)) 1275 return NULL; 1276 1277 return &rt_task_of(rt_se)->stats; 1278 } 1279 1280 static inline void 1281 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1282 { 1283 struct sched_statistics *stats; 1284 struct task_struct *p = NULL; 1285 1286 if (!schedstat_enabled()) 1287 return; 1288 1289 if (rt_entity_is_task(rt_se)) 1290 p = rt_task_of(rt_se); 1291 1292 stats = __schedstats_from_rt_se(rt_se); 1293 if (!stats) 1294 return; 1295 1296 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1297 } 1298 1299 static inline void 1300 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1301 { 1302 struct sched_statistics *stats; 1303 struct task_struct *p = NULL; 1304 1305 if (!schedstat_enabled()) 1306 return; 1307 1308 if (rt_entity_is_task(rt_se)) 1309 p = rt_task_of(rt_se); 1310 1311 stats = __schedstats_from_rt_se(rt_se); 1312 if (!stats) 1313 return; 1314 1315 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1316 } 1317 1318 static inline void 1319 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1320 int flags) 1321 { 1322 if (!schedstat_enabled()) 1323 return; 1324 1325 if (flags & ENQUEUE_WAKEUP) 1326 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1327 } 1328 1329 static inline void 1330 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1331 { 1332 struct sched_statistics *stats; 1333 struct task_struct *p = NULL; 1334 1335 if (!schedstat_enabled()) 1336 return; 1337 1338 if (rt_entity_is_task(rt_se)) 1339 p = rt_task_of(rt_se); 1340 1341 stats = __schedstats_from_rt_se(rt_se); 1342 if (!stats) 1343 return; 1344 1345 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1346 } 1347 1348 static inline void 1349 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1350 int flags) 1351 { 1352 struct task_struct *p = NULL; 1353 1354 if (!schedstat_enabled()) 1355 return; 1356 1357 if (rt_entity_is_task(rt_se)) 1358 p = rt_task_of(rt_se); 1359 1360 if ((flags & DEQUEUE_SLEEP) && p) { 1361 unsigned int state; 1362 1363 state = READ_ONCE(p->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(p->stats.sleep_start, 1366 rq_clock(rq_of_rt_rq(rt_rq))); 1367 1368 if (state & TASK_UNINTERRUPTIBLE) 1369 __schedstat_set(p->stats.block_start, 1370 rq_clock(rq_of_rt_rq(rt_rq))); 1371 } 1372 } 1373 1374 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1375 { 1376 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1377 struct rt_prio_array *array = &rt_rq->active; 1378 struct rt_rq *group_rq = group_rt_rq(rt_se); 1379 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1380 1381 /* 1382 * Don't enqueue the group if its throttled, or when empty. 1383 * The latter is a consequence of the former when a child group 1384 * get throttled and the current group doesn't have any other 1385 * active members. 1386 */ 1387 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1388 if (rt_se->on_list) 1389 __delist_rt_entity(rt_se, array); 1390 return; 1391 } 1392 1393 if (move_entity(flags)) { 1394 WARN_ON_ONCE(rt_se->on_list); 1395 if (flags & ENQUEUE_HEAD) 1396 list_add(&rt_se->run_list, queue); 1397 else 1398 list_add_tail(&rt_se->run_list, queue); 1399 1400 __set_bit(rt_se_prio(rt_se), array->bitmap); 1401 rt_se->on_list = 1; 1402 } 1403 rt_se->on_rq = 1; 1404 1405 inc_rt_tasks(rt_se, rt_rq); 1406 } 1407 1408 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1409 { 1410 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1411 struct rt_prio_array *array = &rt_rq->active; 1412 1413 if (move_entity(flags)) { 1414 WARN_ON_ONCE(!rt_se->on_list); 1415 __delist_rt_entity(rt_se, array); 1416 } 1417 rt_se->on_rq = 0; 1418 1419 dec_rt_tasks(rt_se, rt_rq); 1420 } 1421 1422 /* 1423 * Because the prio of an upper entry depends on the lower 1424 * entries, we must remove entries top - down. 1425 */ 1426 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1427 { 1428 struct sched_rt_entity *back = NULL; 1429 unsigned int rt_nr_running; 1430 1431 for_each_sched_rt_entity(rt_se) { 1432 rt_se->back = back; 1433 back = rt_se; 1434 } 1435 1436 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1437 1438 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1439 if (on_rt_rq(rt_se)) 1440 __dequeue_rt_entity(rt_se, flags); 1441 } 1442 1443 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1444 } 1445 1446 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1447 { 1448 struct rq *rq = rq_of_rt_se(rt_se); 1449 1450 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1451 1452 dequeue_rt_stack(rt_se, flags); 1453 for_each_sched_rt_entity(rt_se) 1454 __enqueue_rt_entity(rt_se, flags); 1455 enqueue_top_rt_rq(&rq->rt); 1456 } 1457 1458 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1459 { 1460 struct rq *rq = rq_of_rt_se(rt_se); 1461 1462 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1463 1464 dequeue_rt_stack(rt_se, flags); 1465 1466 for_each_sched_rt_entity(rt_se) { 1467 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1468 1469 if (rt_rq && rt_rq->rt_nr_running) 1470 __enqueue_rt_entity(rt_se, flags); 1471 } 1472 enqueue_top_rt_rq(&rq->rt); 1473 } 1474 1475 /* 1476 * Adding/removing a task to/from a priority array: 1477 */ 1478 static void 1479 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1480 { 1481 struct sched_rt_entity *rt_se = &p->rt; 1482 1483 if (flags & ENQUEUE_WAKEUP) 1484 rt_se->timeout = 0; 1485 1486 check_schedstat_required(); 1487 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1488 1489 enqueue_rt_entity(rt_se, flags); 1490 1491 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1492 enqueue_pushable_task(rq, p); 1493 } 1494 1495 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1496 { 1497 struct sched_rt_entity *rt_se = &p->rt; 1498 1499 update_curr_rt(rq); 1500 dequeue_rt_entity(rt_se, flags); 1501 1502 dequeue_pushable_task(rq, p); 1503 1504 return true; 1505 } 1506 1507 /* 1508 * Put task to the head or the end of the run list without the overhead of 1509 * dequeue followed by enqueue. 1510 */ 1511 static void 1512 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1513 { 1514 if (on_rt_rq(rt_se)) { 1515 struct rt_prio_array *array = &rt_rq->active; 1516 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1517 1518 if (head) 1519 list_move(&rt_se->run_list, queue); 1520 else 1521 list_move_tail(&rt_se->run_list, queue); 1522 } 1523 } 1524 1525 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1526 { 1527 struct sched_rt_entity *rt_se = &p->rt; 1528 struct rt_rq *rt_rq; 1529 1530 for_each_sched_rt_entity(rt_se) { 1531 rt_rq = rt_rq_of_se(rt_se); 1532 requeue_rt_entity(rt_rq, rt_se, head); 1533 } 1534 } 1535 1536 static void yield_task_rt(struct rq *rq) 1537 { 1538 requeue_task_rt(rq, rq->curr, 0); 1539 } 1540 1541 #ifdef CONFIG_SMP 1542 static int find_lowest_rq(struct task_struct *task); 1543 1544 static int 1545 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1546 { 1547 struct task_struct *curr, *donor; 1548 struct rq *rq; 1549 bool test; 1550 1551 /* For anything but wake ups, just return the task_cpu */ 1552 if (!(flags & (WF_TTWU | WF_FORK))) 1553 goto out; 1554 1555 rq = cpu_rq(cpu); 1556 1557 rcu_read_lock(); 1558 curr = READ_ONCE(rq->curr); /* unlocked access */ 1559 donor = READ_ONCE(rq->donor); 1560 1561 /* 1562 * If the current task on @p's runqueue is an RT task, then 1563 * try to see if we can wake this RT task up on another 1564 * runqueue. Otherwise simply start this RT task 1565 * on its current runqueue. 1566 * 1567 * We want to avoid overloading runqueues. If the woken 1568 * task is a higher priority, then it will stay on this CPU 1569 * and the lower prio task should be moved to another CPU. 1570 * Even though this will probably make the lower prio task 1571 * lose its cache, we do not want to bounce a higher task 1572 * around just because it gave up its CPU, perhaps for a 1573 * lock? 1574 * 1575 * For equal prio tasks, we just let the scheduler sort it out. 1576 * 1577 * Otherwise, just let it ride on the affine RQ and the 1578 * post-schedule router will push the preempted task away 1579 * 1580 * This test is optimistic, if we get it wrong the load-balancer 1581 * will have to sort it out. 1582 * 1583 * We take into account the capacity of the CPU to ensure it fits the 1584 * requirement of the task - which is only important on heterogeneous 1585 * systems like big.LITTLE. 1586 */ 1587 test = curr && 1588 unlikely(rt_task(donor)) && 1589 (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio); 1590 1591 if (test || !rt_task_fits_capacity(p, cpu)) { 1592 int target = find_lowest_rq(p); 1593 1594 /* 1595 * Bail out if we were forcing a migration to find a better 1596 * fitting CPU but our search failed. 1597 */ 1598 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1599 goto out_unlock; 1600 1601 /* 1602 * Don't bother moving it if the destination CPU is 1603 * not running a lower priority task. 1604 */ 1605 if (target != -1 && 1606 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1607 cpu = target; 1608 } 1609 1610 out_unlock: 1611 rcu_read_unlock(); 1612 1613 out: 1614 return cpu; 1615 } 1616 1617 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1618 { 1619 if (rq->curr->nr_cpus_allowed == 1 || 1620 !cpupri_find(&rq->rd->cpupri, rq->donor, NULL)) 1621 return; 1622 1623 /* 1624 * p is migratable, so let's not schedule it and 1625 * see if it is pushed or pulled somewhere else. 1626 */ 1627 if (p->nr_cpus_allowed != 1 && 1628 cpupri_find(&rq->rd->cpupri, p, NULL)) 1629 return; 1630 1631 /* 1632 * There appear to be other CPUs that can accept 1633 * the current task but none can run 'p', so lets reschedule 1634 * to try and push the current task away: 1635 */ 1636 requeue_task_rt(rq, p, 1); 1637 resched_curr(rq); 1638 } 1639 1640 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1641 { 1642 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1643 /* 1644 * This is OK, because current is on_cpu, which avoids it being 1645 * picked for load-balance and preemption/IRQs are still 1646 * disabled avoiding further scheduler activity on it and we've 1647 * not yet started the picking loop. 1648 */ 1649 rq_unpin_lock(rq, rf); 1650 pull_rt_task(rq); 1651 rq_repin_lock(rq, rf); 1652 } 1653 1654 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1655 } 1656 #endif /* CONFIG_SMP */ 1657 1658 /* 1659 * Preempt the current task with a newly woken task if needed: 1660 */ 1661 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) 1662 { 1663 struct task_struct *donor = rq->donor; 1664 1665 if (p->prio < donor->prio) { 1666 resched_curr(rq); 1667 return; 1668 } 1669 1670 #ifdef CONFIG_SMP 1671 /* 1672 * If: 1673 * 1674 * - the newly woken task is of equal priority to the current task 1675 * - the newly woken task is non-migratable while current is migratable 1676 * - current will be preempted on the next reschedule 1677 * 1678 * we should check to see if current can readily move to a different 1679 * cpu. If so, we will reschedule to allow the push logic to try 1680 * to move current somewhere else, making room for our non-migratable 1681 * task. 1682 */ 1683 if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr)) 1684 check_preempt_equal_prio(rq, p); 1685 #endif 1686 } 1687 1688 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1689 { 1690 struct sched_rt_entity *rt_se = &p->rt; 1691 struct rt_rq *rt_rq = &rq->rt; 1692 1693 p->se.exec_start = rq_clock_task(rq); 1694 if (on_rt_rq(&p->rt)) 1695 update_stats_wait_end_rt(rt_rq, rt_se); 1696 1697 /* The running task is never eligible for pushing */ 1698 dequeue_pushable_task(rq, p); 1699 1700 if (!first) 1701 return; 1702 1703 /* 1704 * If prev task was rt, put_prev_task() has already updated the 1705 * utilization. We only care of the case where we start to schedule a 1706 * rt task 1707 */ 1708 if (rq->donor->sched_class != &rt_sched_class) 1709 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1710 1711 rt_queue_push_tasks(rq); 1712 } 1713 1714 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1715 { 1716 struct rt_prio_array *array = &rt_rq->active; 1717 struct sched_rt_entity *next = NULL; 1718 struct list_head *queue; 1719 int idx; 1720 1721 idx = sched_find_first_bit(array->bitmap); 1722 BUG_ON(idx >= MAX_RT_PRIO); 1723 1724 queue = array->queue + idx; 1725 if (WARN_ON_ONCE(list_empty(queue))) 1726 return NULL; 1727 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1728 1729 return next; 1730 } 1731 1732 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1733 { 1734 struct sched_rt_entity *rt_se; 1735 struct rt_rq *rt_rq = &rq->rt; 1736 1737 do { 1738 rt_se = pick_next_rt_entity(rt_rq); 1739 if (unlikely(!rt_se)) 1740 return NULL; 1741 rt_rq = group_rt_rq(rt_se); 1742 } while (rt_rq); 1743 1744 return rt_task_of(rt_se); 1745 } 1746 1747 static struct task_struct *pick_task_rt(struct rq *rq) 1748 { 1749 struct task_struct *p; 1750 1751 if (!sched_rt_runnable(rq)) 1752 return NULL; 1753 1754 p = _pick_next_task_rt(rq); 1755 1756 return p; 1757 } 1758 1759 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next) 1760 { 1761 struct sched_rt_entity *rt_se = &p->rt; 1762 struct rt_rq *rt_rq = &rq->rt; 1763 1764 if (on_rt_rq(&p->rt)) 1765 update_stats_wait_start_rt(rt_rq, rt_se); 1766 1767 update_curr_rt(rq); 1768 1769 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1770 1771 /* 1772 * The previous task needs to be made eligible for pushing 1773 * if it is still active 1774 */ 1775 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1776 enqueue_pushable_task(rq, p); 1777 } 1778 1779 #ifdef CONFIG_SMP 1780 1781 /* Only try algorithms three times */ 1782 #define RT_MAX_TRIES 3 1783 1784 /* 1785 * Return the highest pushable rq's task, which is suitable to be executed 1786 * on the CPU, NULL otherwise 1787 */ 1788 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1789 { 1790 struct plist_head *head = &rq->rt.pushable_tasks; 1791 struct task_struct *p; 1792 1793 if (!has_pushable_tasks(rq)) 1794 return NULL; 1795 1796 plist_for_each_entry(p, head, pushable_tasks) { 1797 if (task_is_pushable(rq, p, cpu)) 1798 return p; 1799 } 1800 1801 return NULL; 1802 } 1803 1804 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1805 1806 static int find_lowest_rq(struct task_struct *task) 1807 { 1808 struct sched_domain *sd; 1809 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1810 int this_cpu = smp_processor_id(); 1811 int cpu = task_cpu(task); 1812 int ret; 1813 1814 /* Make sure the mask is initialized first */ 1815 if (unlikely(!lowest_mask)) 1816 return -1; 1817 1818 if (task->nr_cpus_allowed == 1) 1819 return -1; /* No other targets possible */ 1820 1821 /* 1822 * If we're on asym system ensure we consider the different capacities 1823 * of the CPUs when searching for the lowest_mask. 1824 */ 1825 if (sched_asym_cpucap_active()) { 1826 1827 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1828 task, lowest_mask, 1829 rt_task_fits_capacity); 1830 } else { 1831 1832 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1833 task, lowest_mask); 1834 } 1835 1836 if (!ret) 1837 return -1; /* No targets found */ 1838 1839 /* 1840 * At this point we have built a mask of CPUs representing the 1841 * lowest priority tasks in the system. Now we want to elect 1842 * the best one based on our affinity and topology. 1843 * 1844 * We prioritize the last CPU that the task executed on since 1845 * it is most likely cache-hot in that location. 1846 */ 1847 if (cpumask_test_cpu(cpu, lowest_mask)) 1848 return cpu; 1849 1850 /* 1851 * Otherwise, we consult the sched_domains span maps to figure 1852 * out which CPU is logically closest to our hot cache data. 1853 */ 1854 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1855 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1856 1857 rcu_read_lock(); 1858 for_each_domain(cpu, sd) { 1859 if (sd->flags & SD_WAKE_AFFINE) { 1860 int best_cpu; 1861 1862 /* 1863 * "this_cpu" is cheaper to preempt than a 1864 * remote processor. 1865 */ 1866 if (this_cpu != -1 && 1867 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1868 rcu_read_unlock(); 1869 return this_cpu; 1870 } 1871 1872 best_cpu = cpumask_any_and_distribute(lowest_mask, 1873 sched_domain_span(sd)); 1874 if (best_cpu < nr_cpu_ids) { 1875 rcu_read_unlock(); 1876 return best_cpu; 1877 } 1878 } 1879 } 1880 rcu_read_unlock(); 1881 1882 /* 1883 * And finally, if there were no matches within the domains 1884 * just give the caller *something* to work with from the compatible 1885 * locations. 1886 */ 1887 if (this_cpu != -1) 1888 return this_cpu; 1889 1890 cpu = cpumask_any_distribute(lowest_mask); 1891 if (cpu < nr_cpu_ids) 1892 return cpu; 1893 1894 return -1; 1895 } 1896 1897 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1898 { 1899 struct task_struct *p; 1900 1901 if (!has_pushable_tasks(rq)) 1902 return NULL; 1903 1904 p = plist_first_entry(&rq->rt.pushable_tasks, 1905 struct task_struct, pushable_tasks); 1906 1907 BUG_ON(rq->cpu != task_cpu(p)); 1908 BUG_ON(task_current(rq, p)); 1909 BUG_ON(task_current_donor(rq, p)); 1910 BUG_ON(p->nr_cpus_allowed <= 1); 1911 1912 BUG_ON(!task_on_rq_queued(p)); 1913 BUG_ON(!rt_task(p)); 1914 1915 return p; 1916 } 1917 1918 /* Will lock the rq it finds */ 1919 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1920 { 1921 struct rq *lowest_rq = NULL; 1922 int tries; 1923 int cpu; 1924 1925 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1926 cpu = find_lowest_rq(task); 1927 1928 if ((cpu == -1) || (cpu == rq->cpu)) 1929 break; 1930 1931 lowest_rq = cpu_rq(cpu); 1932 1933 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1934 /* 1935 * Target rq has tasks of equal or higher priority, 1936 * retrying does not release any lock and is unlikely 1937 * to yield a different result. 1938 */ 1939 lowest_rq = NULL; 1940 break; 1941 } 1942 1943 /* if the prio of this runqueue changed, try again */ 1944 if (double_lock_balance(rq, lowest_rq)) { 1945 /* 1946 * We had to unlock the run queue. In 1947 * the mean time, task could have 1948 * migrated already or had its affinity changed, 1949 * therefore check if the task is still at the 1950 * head of the pushable tasks list. 1951 * It is possible the task was scheduled, set 1952 * "migrate_disabled" and then got preempted, so we must 1953 * check the task migration disable flag here too. 1954 */ 1955 if (unlikely(is_migration_disabled(task) || 1956 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 1957 task != pick_next_pushable_task(rq))) { 1958 1959 double_unlock_balance(rq, lowest_rq); 1960 lowest_rq = NULL; 1961 break; 1962 } 1963 } 1964 1965 /* If this rq is still suitable use it. */ 1966 if (lowest_rq->rt.highest_prio.curr > task->prio) 1967 break; 1968 1969 /* try again */ 1970 double_unlock_balance(rq, lowest_rq); 1971 lowest_rq = NULL; 1972 } 1973 1974 return lowest_rq; 1975 } 1976 1977 /* 1978 * If the current CPU has more than one RT task, see if the non 1979 * running task can migrate over to a CPU that is running a task 1980 * of lesser priority. 1981 */ 1982 static int push_rt_task(struct rq *rq, bool pull) 1983 { 1984 struct task_struct *next_task; 1985 struct rq *lowest_rq; 1986 int ret = 0; 1987 1988 if (!rq->rt.overloaded) 1989 return 0; 1990 1991 next_task = pick_next_pushable_task(rq); 1992 if (!next_task) 1993 return 0; 1994 1995 retry: 1996 /* 1997 * It's possible that the next_task slipped in of 1998 * higher priority than current. If that's the case 1999 * just reschedule current. 2000 */ 2001 if (unlikely(next_task->prio < rq->donor->prio)) { 2002 resched_curr(rq); 2003 return 0; 2004 } 2005 2006 if (is_migration_disabled(next_task)) { 2007 struct task_struct *push_task = NULL; 2008 int cpu; 2009 2010 if (!pull || rq->push_busy) 2011 return 0; 2012 2013 /* 2014 * Invoking find_lowest_rq() on anything but an RT task doesn't 2015 * make sense. Per the above priority check, curr has to 2016 * be of higher priority than next_task, so no need to 2017 * reschedule when bailing out. 2018 * 2019 * Note that the stoppers are masqueraded as SCHED_FIFO 2020 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2021 */ 2022 if (rq->donor->sched_class != &rt_sched_class) 2023 return 0; 2024 2025 cpu = find_lowest_rq(rq->curr); 2026 if (cpu == -1 || cpu == rq->cpu) 2027 return 0; 2028 2029 /* 2030 * Given we found a CPU with lower priority than @next_task, 2031 * therefore it should be running. However we cannot migrate it 2032 * to this other CPU, instead attempt to push the current 2033 * running task on this CPU away. 2034 */ 2035 push_task = get_push_task(rq); 2036 if (push_task) { 2037 preempt_disable(); 2038 raw_spin_rq_unlock(rq); 2039 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2040 push_task, &rq->push_work); 2041 preempt_enable(); 2042 raw_spin_rq_lock(rq); 2043 } 2044 2045 return 0; 2046 } 2047 2048 if (WARN_ON(next_task == rq->curr)) 2049 return 0; 2050 2051 /* We might release rq lock */ 2052 get_task_struct(next_task); 2053 2054 /* find_lock_lowest_rq locks the rq if found */ 2055 lowest_rq = find_lock_lowest_rq(next_task, rq); 2056 if (!lowest_rq) { 2057 struct task_struct *task; 2058 /* 2059 * find_lock_lowest_rq releases rq->lock 2060 * so it is possible that next_task has migrated. 2061 * 2062 * We need to make sure that the task is still on the same 2063 * run-queue and is also still the next task eligible for 2064 * pushing. 2065 */ 2066 task = pick_next_pushable_task(rq); 2067 if (task == next_task) { 2068 /* 2069 * The task hasn't migrated, and is still the next 2070 * eligible task, but we failed to find a run-queue 2071 * to push it to. Do not retry in this case, since 2072 * other CPUs will pull from us when ready. 2073 */ 2074 goto out; 2075 } 2076 2077 if (!task) 2078 /* No more tasks, just exit */ 2079 goto out; 2080 2081 /* 2082 * Something has shifted, try again. 2083 */ 2084 put_task_struct(next_task); 2085 next_task = task; 2086 goto retry; 2087 } 2088 2089 move_queued_task_locked(rq, lowest_rq, next_task); 2090 resched_curr(lowest_rq); 2091 ret = 1; 2092 2093 double_unlock_balance(rq, lowest_rq); 2094 out: 2095 put_task_struct(next_task); 2096 2097 return ret; 2098 } 2099 2100 static void push_rt_tasks(struct rq *rq) 2101 { 2102 /* push_rt_task will return true if it moved an RT */ 2103 while (push_rt_task(rq, false)) 2104 ; 2105 } 2106 2107 #ifdef HAVE_RT_PUSH_IPI 2108 2109 /* 2110 * When a high priority task schedules out from a CPU and a lower priority 2111 * task is scheduled in, a check is made to see if there's any RT tasks 2112 * on other CPUs that are waiting to run because a higher priority RT task 2113 * is currently running on its CPU. In this case, the CPU with multiple RT 2114 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2115 * up that may be able to run one of its non-running queued RT tasks. 2116 * 2117 * All CPUs with overloaded RT tasks need to be notified as there is currently 2118 * no way to know which of these CPUs have the highest priority task waiting 2119 * to run. Instead of trying to take a spinlock on each of these CPUs, 2120 * which has shown to cause large latency when done on machines with many 2121 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2122 * RT tasks waiting to run. 2123 * 2124 * Just sending an IPI to each of the CPUs is also an issue, as on large 2125 * count CPU machines, this can cause an IPI storm on a CPU, especially 2126 * if its the only CPU with multiple RT tasks queued, and a large number 2127 * of CPUs scheduling a lower priority task at the same time. 2128 * 2129 * Each root domain has its own IRQ work function that can iterate over 2130 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2131 * task must be checked if there's one or many CPUs that are lowering 2132 * their priority, there's a single IRQ work iterator that will try to 2133 * push off RT tasks that are waiting to run. 2134 * 2135 * When a CPU schedules a lower priority task, it will kick off the 2136 * IRQ work iterator that will jump to each CPU with overloaded RT tasks. 2137 * As it only takes the first CPU that schedules a lower priority task 2138 * to start the process, the rto_start variable is incremented and if 2139 * the atomic result is one, then that CPU will try to take the rto_lock. 2140 * This prevents high contention on the lock as the process handles all 2141 * CPUs scheduling lower priority tasks. 2142 * 2143 * All CPUs that are scheduling a lower priority task will increment the 2144 * rt_loop_next variable. This will make sure that the IRQ work iterator 2145 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2146 * priority task, even if the iterator is in the middle of a scan. Incrementing 2147 * the rt_loop_next will cause the iterator to perform another scan. 2148 * 2149 */ 2150 static int rto_next_cpu(struct root_domain *rd) 2151 { 2152 int next; 2153 int cpu; 2154 2155 /* 2156 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2157 * rt_next_cpu() will simply return the first CPU found in 2158 * the rto_mask. 2159 * 2160 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2161 * will return the next CPU found in the rto_mask. 2162 * 2163 * If there are no more CPUs left in the rto_mask, then a check is made 2164 * against rto_loop and rto_loop_next. rto_loop is only updated with 2165 * the rto_lock held, but any CPU may increment the rto_loop_next 2166 * without any locking. 2167 */ 2168 for (;;) { 2169 2170 /* When rto_cpu is -1 this acts like cpumask_first() */ 2171 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2172 2173 rd->rto_cpu = cpu; 2174 2175 if (cpu < nr_cpu_ids) 2176 return cpu; 2177 2178 rd->rto_cpu = -1; 2179 2180 /* 2181 * ACQUIRE ensures we see the @rto_mask changes 2182 * made prior to the @next value observed. 2183 * 2184 * Matches WMB in rt_set_overload(). 2185 */ 2186 next = atomic_read_acquire(&rd->rto_loop_next); 2187 2188 if (rd->rto_loop == next) 2189 break; 2190 2191 rd->rto_loop = next; 2192 } 2193 2194 return -1; 2195 } 2196 2197 static inline bool rto_start_trylock(atomic_t *v) 2198 { 2199 return !atomic_cmpxchg_acquire(v, 0, 1); 2200 } 2201 2202 static inline void rto_start_unlock(atomic_t *v) 2203 { 2204 atomic_set_release(v, 0); 2205 } 2206 2207 static void tell_cpu_to_push(struct rq *rq) 2208 { 2209 int cpu = -1; 2210 2211 /* Keep the loop going if the IPI is currently active */ 2212 atomic_inc(&rq->rd->rto_loop_next); 2213 2214 /* Only one CPU can initiate a loop at a time */ 2215 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2216 return; 2217 2218 raw_spin_lock(&rq->rd->rto_lock); 2219 2220 /* 2221 * The rto_cpu is updated under the lock, if it has a valid CPU 2222 * then the IPI is still running and will continue due to the 2223 * update to loop_next, and nothing needs to be done here. 2224 * Otherwise it is finishing up and an IPI needs to be sent. 2225 */ 2226 if (rq->rd->rto_cpu < 0) 2227 cpu = rto_next_cpu(rq->rd); 2228 2229 raw_spin_unlock(&rq->rd->rto_lock); 2230 2231 rto_start_unlock(&rq->rd->rto_loop_start); 2232 2233 if (cpu >= 0) { 2234 /* Make sure the rd does not get freed while pushing */ 2235 sched_get_rd(rq->rd); 2236 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2237 } 2238 } 2239 2240 /* Called from hardirq context */ 2241 void rto_push_irq_work_func(struct irq_work *work) 2242 { 2243 struct root_domain *rd = 2244 container_of(work, struct root_domain, rto_push_work); 2245 struct rq *rq; 2246 int cpu; 2247 2248 rq = this_rq(); 2249 2250 /* 2251 * We do not need to grab the lock to check for has_pushable_tasks. 2252 * When it gets updated, a check is made if a push is possible. 2253 */ 2254 if (has_pushable_tasks(rq)) { 2255 raw_spin_rq_lock(rq); 2256 while (push_rt_task(rq, true)) 2257 ; 2258 raw_spin_rq_unlock(rq); 2259 } 2260 2261 raw_spin_lock(&rd->rto_lock); 2262 2263 /* Pass the IPI to the next rt overloaded queue */ 2264 cpu = rto_next_cpu(rd); 2265 2266 raw_spin_unlock(&rd->rto_lock); 2267 2268 if (cpu < 0) { 2269 sched_put_rd(rd); 2270 return; 2271 } 2272 2273 /* Try the next RT overloaded CPU */ 2274 irq_work_queue_on(&rd->rto_push_work, cpu); 2275 } 2276 #endif /* HAVE_RT_PUSH_IPI */ 2277 2278 static void pull_rt_task(struct rq *this_rq) 2279 { 2280 int this_cpu = this_rq->cpu, cpu; 2281 bool resched = false; 2282 struct task_struct *p, *push_task; 2283 struct rq *src_rq; 2284 int rt_overload_count = rt_overloaded(this_rq); 2285 2286 if (likely(!rt_overload_count)) 2287 return; 2288 2289 /* 2290 * Match the barrier from rt_set_overloaded; this guarantees that if we 2291 * see overloaded we must also see the rto_mask bit. 2292 */ 2293 smp_rmb(); 2294 2295 /* If we are the only overloaded CPU do nothing */ 2296 if (rt_overload_count == 1 && 2297 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2298 return; 2299 2300 #ifdef HAVE_RT_PUSH_IPI 2301 if (sched_feat(RT_PUSH_IPI)) { 2302 tell_cpu_to_push(this_rq); 2303 return; 2304 } 2305 #endif 2306 2307 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2308 if (this_cpu == cpu) 2309 continue; 2310 2311 src_rq = cpu_rq(cpu); 2312 2313 /* 2314 * Don't bother taking the src_rq->lock if the next highest 2315 * task is known to be lower-priority than our current task. 2316 * This may look racy, but if this value is about to go 2317 * logically higher, the src_rq will push this task away. 2318 * And if its going logically lower, we do not care 2319 */ 2320 if (src_rq->rt.highest_prio.next >= 2321 this_rq->rt.highest_prio.curr) 2322 continue; 2323 2324 /* 2325 * We can potentially drop this_rq's lock in 2326 * double_lock_balance, and another CPU could 2327 * alter this_rq 2328 */ 2329 push_task = NULL; 2330 double_lock_balance(this_rq, src_rq); 2331 2332 /* 2333 * We can pull only a task, which is pushable 2334 * on its rq, and no others. 2335 */ 2336 p = pick_highest_pushable_task(src_rq, this_cpu); 2337 2338 /* 2339 * Do we have an RT task that preempts 2340 * the to-be-scheduled task? 2341 */ 2342 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2343 WARN_ON(p == src_rq->curr); 2344 WARN_ON(!task_on_rq_queued(p)); 2345 2346 /* 2347 * There's a chance that p is higher in priority 2348 * than what's currently running on its CPU. 2349 * This is just that p is waking up and hasn't 2350 * had a chance to schedule. We only pull 2351 * p if it is lower in priority than the 2352 * current task on the run queue 2353 */ 2354 if (p->prio < src_rq->donor->prio) 2355 goto skip; 2356 2357 if (is_migration_disabled(p)) { 2358 push_task = get_push_task(src_rq); 2359 } else { 2360 move_queued_task_locked(src_rq, this_rq, p); 2361 resched = true; 2362 } 2363 /* 2364 * We continue with the search, just in 2365 * case there's an even higher prio task 2366 * in another runqueue. (low likelihood 2367 * but possible) 2368 */ 2369 } 2370 skip: 2371 double_unlock_balance(this_rq, src_rq); 2372 2373 if (push_task) { 2374 preempt_disable(); 2375 raw_spin_rq_unlock(this_rq); 2376 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2377 push_task, &src_rq->push_work); 2378 preempt_enable(); 2379 raw_spin_rq_lock(this_rq); 2380 } 2381 } 2382 2383 if (resched) 2384 resched_curr(this_rq); 2385 } 2386 2387 /* 2388 * If we are not running and we are not going to reschedule soon, we should 2389 * try to push tasks away now 2390 */ 2391 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2392 { 2393 bool need_to_push = !task_on_cpu(rq, p) && 2394 !test_tsk_need_resched(rq->curr) && 2395 p->nr_cpus_allowed > 1 && 2396 (dl_task(rq->donor) || rt_task(rq->donor)) && 2397 (rq->curr->nr_cpus_allowed < 2 || 2398 rq->donor->prio <= p->prio); 2399 2400 if (need_to_push) 2401 push_rt_tasks(rq); 2402 } 2403 2404 /* Assumes rq->lock is held */ 2405 static void rq_online_rt(struct rq *rq) 2406 { 2407 if (rq->rt.overloaded) 2408 rt_set_overload(rq); 2409 2410 __enable_runtime(rq); 2411 2412 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2413 } 2414 2415 /* Assumes rq->lock is held */ 2416 static void rq_offline_rt(struct rq *rq) 2417 { 2418 if (rq->rt.overloaded) 2419 rt_clear_overload(rq); 2420 2421 __disable_runtime(rq); 2422 2423 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2424 } 2425 2426 /* 2427 * When switch from the rt queue, we bring ourselves to a position 2428 * that we might want to pull RT tasks from other runqueues. 2429 */ 2430 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2431 { 2432 /* 2433 * If there are other RT tasks then we will reschedule 2434 * and the scheduling of the other RT tasks will handle 2435 * the balancing. But if we are the last RT task 2436 * we may need to handle the pulling of RT tasks 2437 * now. 2438 */ 2439 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2440 return; 2441 2442 rt_queue_pull_task(rq); 2443 } 2444 2445 void __init init_sched_rt_class(void) 2446 { 2447 unsigned int i; 2448 2449 for_each_possible_cpu(i) { 2450 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2451 GFP_KERNEL, cpu_to_node(i)); 2452 } 2453 } 2454 #endif /* CONFIG_SMP */ 2455 2456 /* 2457 * When switching a task to RT, we may overload the runqueue 2458 * with RT tasks. In this case we try to push them off to 2459 * other runqueues. 2460 */ 2461 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2462 { 2463 /* 2464 * If we are running, update the avg_rt tracking, as the running time 2465 * will now on be accounted into the latter. 2466 */ 2467 if (task_current(rq, p)) { 2468 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2469 return; 2470 } 2471 2472 /* 2473 * If we are not running we may need to preempt the current 2474 * running task. If that current running task is also an RT task 2475 * then see if we can move to another run queue. 2476 */ 2477 if (task_on_rq_queued(p)) { 2478 #ifdef CONFIG_SMP 2479 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2480 rt_queue_push_tasks(rq); 2481 #endif /* CONFIG_SMP */ 2482 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq))) 2483 resched_curr(rq); 2484 } 2485 } 2486 2487 /* 2488 * Priority of the task has changed. This may cause 2489 * us to initiate a push or pull. 2490 */ 2491 static void 2492 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2493 { 2494 if (!task_on_rq_queued(p)) 2495 return; 2496 2497 if (task_current_donor(rq, p)) { 2498 #ifdef CONFIG_SMP 2499 /* 2500 * If our priority decreases while running, we 2501 * may need to pull tasks to this runqueue. 2502 */ 2503 if (oldprio < p->prio) 2504 rt_queue_pull_task(rq); 2505 2506 /* 2507 * If there's a higher priority task waiting to run 2508 * then reschedule. 2509 */ 2510 if (p->prio > rq->rt.highest_prio.curr) 2511 resched_curr(rq); 2512 #else 2513 /* For UP simply resched on drop of prio */ 2514 if (oldprio < p->prio) 2515 resched_curr(rq); 2516 #endif /* CONFIG_SMP */ 2517 } else { 2518 /* 2519 * This task is not running, but if it is 2520 * greater than the current running task 2521 * then reschedule. 2522 */ 2523 if (p->prio < rq->donor->prio) 2524 resched_curr(rq); 2525 } 2526 } 2527 2528 #ifdef CONFIG_POSIX_TIMERS 2529 static void watchdog(struct rq *rq, struct task_struct *p) 2530 { 2531 unsigned long soft, hard; 2532 2533 /* max may change after cur was read, this will be fixed next tick */ 2534 soft = task_rlimit(p, RLIMIT_RTTIME); 2535 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2536 2537 if (soft != RLIM_INFINITY) { 2538 unsigned long next; 2539 2540 if (p->rt.watchdog_stamp != jiffies) { 2541 p->rt.timeout++; 2542 p->rt.watchdog_stamp = jiffies; 2543 } 2544 2545 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2546 if (p->rt.timeout > next) { 2547 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2548 p->se.sum_exec_runtime); 2549 } 2550 } 2551 } 2552 #else 2553 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2554 #endif 2555 2556 /* 2557 * scheduler tick hitting a task of our scheduling class. 2558 * 2559 * NOTE: This function can be called remotely by the tick offload that 2560 * goes along full dynticks. Therefore no local assumption can be made 2561 * and everything must be accessed through the @rq and @curr passed in 2562 * parameters. 2563 */ 2564 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2565 { 2566 struct sched_rt_entity *rt_se = &p->rt; 2567 2568 update_curr_rt(rq); 2569 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2570 2571 watchdog(rq, p); 2572 2573 /* 2574 * RR tasks need a special form of time-slice management. 2575 * FIFO tasks have no timeslices. 2576 */ 2577 if (p->policy != SCHED_RR) 2578 return; 2579 2580 if (--p->rt.time_slice) 2581 return; 2582 2583 p->rt.time_slice = sched_rr_timeslice; 2584 2585 /* 2586 * Requeue to the end of queue if we (and all of our ancestors) are not 2587 * the only element on the queue 2588 */ 2589 for_each_sched_rt_entity(rt_se) { 2590 if (rt_se->run_list.prev != rt_se->run_list.next) { 2591 requeue_task_rt(rq, p, 0); 2592 resched_curr(rq); 2593 return; 2594 } 2595 } 2596 } 2597 2598 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2599 { 2600 /* 2601 * Time slice is 0 for SCHED_FIFO tasks 2602 */ 2603 if (task->policy == SCHED_RR) 2604 return sched_rr_timeslice; 2605 else 2606 return 0; 2607 } 2608 2609 #ifdef CONFIG_SCHED_CORE 2610 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2611 { 2612 struct rt_rq *rt_rq; 2613 2614 #ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq 2615 rt_rq = task_group(p)->rt_rq[cpu]; 2616 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group); 2617 #else 2618 rt_rq = &cpu_rq(cpu)->rt; 2619 #endif 2620 2621 return rt_rq_throttled(rt_rq); 2622 } 2623 #endif 2624 2625 DEFINE_SCHED_CLASS(rt) = { 2626 2627 .enqueue_task = enqueue_task_rt, 2628 .dequeue_task = dequeue_task_rt, 2629 .yield_task = yield_task_rt, 2630 2631 .wakeup_preempt = wakeup_preempt_rt, 2632 2633 .pick_task = pick_task_rt, 2634 .put_prev_task = put_prev_task_rt, 2635 .set_next_task = set_next_task_rt, 2636 2637 #ifdef CONFIG_SMP 2638 .balance = balance_rt, 2639 .select_task_rq = select_task_rq_rt, 2640 .set_cpus_allowed = set_cpus_allowed_common, 2641 .rq_online = rq_online_rt, 2642 .rq_offline = rq_offline_rt, 2643 .task_woken = task_woken_rt, 2644 .switched_from = switched_from_rt, 2645 .find_lock_rq = find_lock_lowest_rq, 2646 #endif 2647 2648 .task_tick = task_tick_rt, 2649 2650 .get_rr_interval = get_rr_interval_rt, 2651 2652 .prio_changed = prio_changed_rt, 2653 .switched_to = switched_to_rt, 2654 2655 .update_curr = update_curr_rt, 2656 2657 #ifdef CONFIG_SCHED_CORE 2658 .task_is_throttled = task_is_throttled_rt, 2659 #endif 2660 2661 #ifdef CONFIG_UCLAMP_TASK 2662 .uclamp_enabled = 1, 2663 #endif 2664 }; 2665 2666 #ifdef CONFIG_RT_GROUP_SCHED 2667 /* 2668 * Ensure that the real time constraints are schedulable. 2669 */ 2670 static DEFINE_MUTEX(rt_constraints_mutex); 2671 2672 static inline int tg_has_rt_tasks(struct task_group *tg) 2673 { 2674 struct task_struct *task; 2675 struct css_task_iter it; 2676 int ret = 0; 2677 2678 /* 2679 * Autogroups do not have RT tasks; see autogroup_create(). 2680 */ 2681 if (task_group_is_autogroup(tg)) 2682 return 0; 2683 2684 css_task_iter_start(&tg->css, 0, &it); 2685 while (!ret && (task = css_task_iter_next(&it))) 2686 ret |= rt_task(task); 2687 css_task_iter_end(&it); 2688 2689 return ret; 2690 } 2691 2692 struct rt_schedulable_data { 2693 struct task_group *tg; 2694 u64 rt_period; 2695 u64 rt_runtime; 2696 }; 2697 2698 static int tg_rt_schedulable(struct task_group *tg, void *data) 2699 { 2700 struct rt_schedulable_data *d = data; 2701 struct task_group *child; 2702 unsigned long total, sum = 0; 2703 u64 period, runtime; 2704 2705 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2706 runtime = tg->rt_bandwidth.rt_runtime; 2707 2708 if (tg == d->tg) { 2709 period = d->rt_period; 2710 runtime = d->rt_runtime; 2711 } 2712 2713 /* 2714 * Cannot have more runtime than the period. 2715 */ 2716 if (runtime > period && runtime != RUNTIME_INF) 2717 return -EINVAL; 2718 2719 /* 2720 * Ensure we don't starve existing RT tasks if runtime turns zero. 2721 */ 2722 if (rt_bandwidth_enabled() && !runtime && 2723 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2724 return -EBUSY; 2725 2726 if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group)) 2727 return -EBUSY; 2728 2729 total = to_ratio(period, runtime); 2730 2731 /* 2732 * Nobody can have more than the global setting allows. 2733 */ 2734 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2735 return -EINVAL; 2736 2737 /* 2738 * The sum of our children's runtime should not exceed our own. 2739 */ 2740 list_for_each_entry_rcu(child, &tg->children, siblings) { 2741 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2742 runtime = child->rt_bandwidth.rt_runtime; 2743 2744 if (child == d->tg) { 2745 period = d->rt_period; 2746 runtime = d->rt_runtime; 2747 } 2748 2749 sum += to_ratio(period, runtime); 2750 } 2751 2752 if (sum > total) 2753 return -EINVAL; 2754 2755 return 0; 2756 } 2757 2758 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2759 { 2760 int ret; 2761 2762 struct rt_schedulable_data data = { 2763 .tg = tg, 2764 .rt_period = period, 2765 .rt_runtime = runtime, 2766 }; 2767 2768 rcu_read_lock(); 2769 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2770 rcu_read_unlock(); 2771 2772 return ret; 2773 } 2774 2775 static int tg_set_rt_bandwidth(struct task_group *tg, 2776 u64 rt_period, u64 rt_runtime) 2777 { 2778 int i, err = 0; 2779 2780 /* 2781 * Disallowing the root group RT runtime is BAD, it would disallow the 2782 * kernel creating (and or operating) RT threads. 2783 */ 2784 if (tg == &root_task_group && rt_runtime == 0) 2785 return -EINVAL; 2786 2787 /* No period doesn't make any sense. */ 2788 if (rt_period == 0) 2789 return -EINVAL; 2790 2791 /* 2792 * Bound quota to defend quota against overflow during bandwidth shift. 2793 */ 2794 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2795 return -EINVAL; 2796 2797 mutex_lock(&rt_constraints_mutex); 2798 err = __rt_schedulable(tg, rt_period, rt_runtime); 2799 if (err) 2800 goto unlock; 2801 2802 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2803 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2804 tg->rt_bandwidth.rt_runtime = rt_runtime; 2805 2806 for_each_possible_cpu(i) { 2807 struct rt_rq *rt_rq = tg->rt_rq[i]; 2808 2809 raw_spin_lock(&rt_rq->rt_runtime_lock); 2810 rt_rq->rt_runtime = rt_runtime; 2811 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2812 } 2813 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2814 unlock: 2815 mutex_unlock(&rt_constraints_mutex); 2816 2817 return err; 2818 } 2819 2820 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2821 { 2822 u64 rt_runtime, rt_period; 2823 2824 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2825 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2826 if (rt_runtime_us < 0) 2827 rt_runtime = RUNTIME_INF; 2828 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2829 return -EINVAL; 2830 2831 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2832 } 2833 2834 long sched_group_rt_runtime(struct task_group *tg) 2835 { 2836 u64 rt_runtime_us; 2837 2838 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2839 return -1; 2840 2841 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2842 do_div(rt_runtime_us, NSEC_PER_USEC); 2843 return rt_runtime_us; 2844 } 2845 2846 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2847 { 2848 u64 rt_runtime, rt_period; 2849 2850 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2851 return -EINVAL; 2852 2853 rt_period = rt_period_us * NSEC_PER_USEC; 2854 rt_runtime = tg->rt_bandwidth.rt_runtime; 2855 2856 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2857 } 2858 2859 long sched_group_rt_period(struct task_group *tg) 2860 { 2861 u64 rt_period_us; 2862 2863 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2864 do_div(rt_period_us, NSEC_PER_USEC); 2865 return rt_period_us; 2866 } 2867 2868 #ifdef CONFIG_SYSCTL 2869 static int sched_rt_global_constraints(void) 2870 { 2871 int ret = 0; 2872 2873 mutex_lock(&rt_constraints_mutex); 2874 ret = __rt_schedulable(NULL, 0, 0); 2875 mutex_unlock(&rt_constraints_mutex); 2876 2877 return ret; 2878 } 2879 #endif /* CONFIG_SYSCTL */ 2880 2881 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2882 { 2883 /* Don't accept real-time tasks when there is no way for them to run */ 2884 if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2885 return 0; 2886 2887 return 1; 2888 } 2889 2890 #else /* !CONFIG_RT_GROUP_SCHED */ 2891 2892 #ifdef CONFIG_SYSCTL 2893 static int sched_rt_global_constraints(void) 2894 { 2895 return 0; 2896 } 2897 #endif /* CONFIG_SYSCTL */ 2898 #endif /* CONFIG_RT_GROUP_SCHED */ 2899 2900 #ifdef CONFIG_SYSCTL 2901 static int sched_rt_global_validate(void) 2902 { 2903 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2904 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2905 ((u64)sysctl_sched_rt_runtime * 2906 NSEC_PER_USEC > max_rt_runtime))) 2907 return -EINVAL; 2908 2909 return 0; 2910 } 2911 2912 static void sched_rt_do_global(void) 2913 { 2914 } 2915 2916 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, 2917 size_t *lenp, loff_t *ppos) 2918 { 2919 int old_period, old_runtime; 2920 static DEFINE_MUTEX(mutex); 2921 int ret; 2922 2923 mutex_lock(&mutex); 2924 sched_domains_mutex_lock(); 2925 old_period = sysctl_sched_rt_period; 2926 old_runtime = sysctl_sched_rt_runtime; 2927 2928 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2929 2930 if (!ret && write) { 2931 ret = sched_rt_global_validate(); 2932 if (ret) 2933 goto undo; 2934 2935 ret = sched_dl_global_validate(); 2936 if (ret) 2937 goto undo; 2938 2939 ret = sched_rt_global_constraints(); 2940 if (ret) 2941 goto undo; 2942 2943 sched_rt_do_global(); 2944 sched_dl_do_global(); 2945 } 2946 if (0) { 2947 undo: 2948 sysctl_sched_rt_period = old_period; 2949 sysctl_sched_rt_runtime = old_runtime; 2950 } 2951 sched_domains_mutex_unlock(); 2952 mutex_unlock(&mutex); 2953 2954 return ret; 2955 } 2956 2957 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, 2958 size_t *lenp, loff_t *ppos) 2959 { 2960 int ret; 2961 static DEFINE_MUTEX(mutex); 2962 2963 mutex_lock(&mutex); 2964 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2965 /* 2966 * Make sure that internally we keep jiffies. 2967 * Also, writing zero resets the time-slice to default: 2968 */ 2969 if (!ret && write) { 2970 sched_rr_timeslice = 2971 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2972 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2973 2974 if (sysctl_sched_rr_timeslice <= 0) 2975 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 2976 } 2977 mutex_unlock(&mutex); 2978 2979 return ret; 2980 } 2981 #endif /* CONFIG_SYSCTL */ 2982 2983 void print_rt_stats(struct seq_file *m, int cpu) 2984 { 2985 rt_rq_iter_t iter; 2986 struct rt_rq *rt_rq; 2987 2988 rcu_read_lock(); 2989 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2990 print_rt_rq(m, cpu, rt_rq); 2991 rcu_read_unlock(); 2992 } 2993