1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 #include "sched.h" 7 8 #include "pelt.h" 9 10 int sched_rr_timeslice = RR_TIMESLICE; 11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 12 13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 14 15 struct rt_bandwidth def_rt_bandwidth; 16 17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 18 { 19 struct rt_bandwidth *rt_b = 20 container_of(timer, struct rt_bandwidth, rt_period_timer); 21 int idle = 0; 22 int overrun; 23 24 raw_spin_lock(&rt_b->rt_runtime_lock); 25 for (;;) { 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 27 if (!overrun) 28 break; 29 30 raw_spin_unlock(&rt_b->rt_runtime_lock); 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 raw_spin_lock(&rt_b->rt_runtime_lock); 33 } 34 if (idle) 35 rt_b->rt_period_active = 0; 36 raw_spin_unlock(&rt_b->rt_runtime_lock); 37 38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 39 } 40 41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 42 { 43 rt_b->rt_period = ns_to_ktime(period); 44 rt_b->rt_runtime = runtime; 45 46 raw_spin_lock_init(&rt_b->rt_runtime_lock); 47 48 hrtimer_init(&rt_b->rt_period_timer, 49 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 50 rt_b->rt_period_timer.function = sched_rt_period_timer; 51 } 52 53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 54 { 55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 56 return; 57 58 raw_spin_lock(&rt_b->rt_runtime_lock); 59 if (!rt_b->rt_period_active) { 60 rt_b->rt_period_active = 1; 61 /* 62 * SCHED_DEADLINE updates the bandwidth, as a run away 63 * RT task with a DL task could hog a CPU. But DL does 64 * not reset the period. If a deadline task was running 65 * without an RT task running, it can cause RT tasks to 66 * throttle when they start up. Kick the timer right away 67 * to update the period. 68 */ 69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 71 } 72 raw_spin_unlock(&rt_b->rt_runtime_lock); 73 } 74 75 void init_rt_rq(struct rt_rq *rt_rq) 76 { 77 struct rt_prio_array *array; 78 int i; 79 80 array = &rt_rq->active; 81 for (i = 0; i < MAX_RT_PRIO; i++) { 82 INIT_LIST_HEAD(array->queue + i); 83 __clear_bit(i, array->bitmap); 84 } 85 /* delimiter for bitsearch: */ 86 __set_bit(MAX_RT_PRIO, array->bitmap); 87 88 #if defined CONFIG_SMP 89 rt_rq->highest_prio.curr = MAX_RT_PRIO; 90 rt_rq->highest_prio.next = MAX_RT_PRIO; 91 rt_rq->rt_nr_migratory = 0; 92 rt_rq->overloaded = 0; 93 plist_head_init(&rt_rq->pushable_tasks); 94 #endif /* CONFIG_SMP */ 95 /* We start is dequeued state, because no RT tasks are queued */ 96 rt_rq->rt_queued = 0; 97 98 rt_rq->rt_time = 0; 99 rt_rq->rt_throttled = 0; 100 rt_rq->rt_runtime = 0; 101 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 102 } 103 104 #ifdef CONFIG_RT_GROUP_SCHED 105 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 106 { 107 hrtimer_cancel(&rt_b->rt_period_timer); 108 } 109 110 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 111 112 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 113 { 114 #ifdef CONFIG_SCHED_DEBUG 115 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 116 #endif 117 return container_of(rt_se, struct task_struct, rt); 118 } 119 120 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 121 { 122 return rt_rq->rq; 123 } 124 125 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 126 { 127 return rt_se->rt_rq; 128 } 129 130 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 131 { 132 struct rt_rq *rt_rq = rt_se->rt_rq; 133 134 return rt_rq->rq; 135 } 136 137 void free_rt_sched_group(struct task_group *tg) 138 { 139 int i; 140 141 if (tg->rt_se) 142 destroy_rt_bandwidth(&tg->rt_bandwidth); 143 144 for_each_possible_cpu(i) { 145 if (tg->rt_rq) 146 kfree(tg->rt_rq[i]); 147 if (tg->rt_se) 148 kfree(tg->rt_se[i]); 149 } 150 151 kfree(tg->rt_rq); 152 kfree(tg->rt_se); 153 } 154 155 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 156 struct sched_rt_entity *rt_se, int cpu, 157 struct sched_rt_entity *parent) 158 { 159 struct rq *rq = cpu_rq(cpu); 160 161 rt_rq->highest_prio.curr = MAX_RT_PRIO; 162 rt_rq->rt_nr_boosted = 0; 163 rt_rq->rq = rq; 164 rt_rq->tg = tg; 165 166 tg->rt_rq[cpu] = rt_rq; 167 tg->rt_se[cpu] = rt_se; 168 169 if (!rt_se) 170 return; 171 172 if (!parent) 173 rt_se->rt_rq = &rq->rt; 174 else 175 rt_se->rt_rq = parent->my_q; 176 177 rt_se->my_q = rt_rq; 178 rt_se->parent = parent; 179 INIT_LIST_HEAD(&rt_se->run_list); 180 } 181 182 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 183 { 184 struct rt_rq *rt_rq; 185 struct sched_rt_entity *rt_se; 186 int i; 187 188 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 189 if (!tg->rt_rq) 190 goto err; 191 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 192 if (!tg->rt_se) 193 goto err; 194 195 init_rt_bandwidth(&tg->rt_bandwidth, 196 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 197 198 for_each_possible_cpu(i) { 199 rt_rq = kzalloc_node(sizeof(struct rt_rq), 200 GFP_KERNEL, cpu_to_node(i)); 201 if (!rt_rq) 202 goto err; 203 204 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 205 GFP_KERNEL, cpu_to_node(i)); 206 if (!rt_se) 207 goto err_free_rq; 208 209 init_rt_rq(rt_rq); 210 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 211 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 212 } 213 214 return 1; 215 216 err_free_rq: 217 kfree(rt_rq); 218 err: 219 return 0; 220 } 221 222 #else /* CONFIG_RT_GROUP_SCHED */ 223 224 #define rt_entity_is_task(rt_se) (1) 225 226 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 227 { 228 return container_of(rt_se, struct task_struct, rt); 229 } 230 231 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 232 { 233 return container_of(rt_rq, struct rq, rt); 234 } 235 236 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 237 { 238 struct task_struct *p = rt_task_of(rt_se); 239 240 return task_rq(p); 241 } 242 243 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 244 { 245 struct rq *rq = rq_of_rt_se(rt_se); 246 247 return &rq->rt; 248 } 249 250 void free_rt_sched_group(struct task_group *tg) { } 251 252 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 253 { 254 return 1; 255 } 256 #endif /* CONFIG_RT_GROUP_SCHED */ 257 258 #ifdef CONFIG_SMP 259 260 static void pull_rt_task(struct rq *this_rq); 261 262 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 263 { 264 /* Try to pull RT tasks here if we lower this rq's prio */ 265 return rq->rt.highest_prio.curr > prev->prio; 266 } 267 268 static inline int rt_overloaded(struct rq *rq) 269 { 270 return atomic_read(&rq->rd->rto_count); 271 } 272 273 static inline void rt_set_overload(struct rq *rq) 274 { 275 if (!rq->online) 276 return; 277 278 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 279 /* 280 * Make sure the mask is visible before we set 281 * the overload count. That is checked to determine 282 * if we should look at the mask. It would be a shame 283 * if we looked at the mask, but the mask was not 284 * updated yet. 285 * 286 * Matched by the barrier in pull_rt_task(). 287 */ 288 smp_wmb(); 289 atomic_inc(&rq->rd->rto_count); 290 } 291 292 static inline void rt_clear_overload(struct rq *rq) 293 { 294 if (!rq->online) 295 return; 296 297 /* the order here really doesn't matter */ 298 atomic_dec(&rq->rd->rto_count); 299 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 300 } 301 302 static void update_rt_migration(struct rt_rq *rt_rq) 303 { 304 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 305 if (!rt_rq->overloaded) { 306 rt_set_overload(rq_of_rt_rq(rt_rq)); 307 rt_rq->overloaded = 1; 308 } 309 } else if (rt_rq->overloaded) { 310 rt_clear_overload(rq_of_rt_rq(rt_rq)); 311 rt_rq->overloaded = 0; 312 } 313 } 314 315 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 316 { 317 struct task_struct *p; 318 319 if (!rt_entity_is_task(rt_se)) 320 return; 321 322 p = rt_task_of(rt_se); 323 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 324 325 rt_rq->rt_nr_total++; 326 if (p->nr_cpus_allowed > 1) 327 rt_rq->rt_nr_migratory++; 328 329 update_rt_migration(rt_rq); 330 } 331 332 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 333 { 334 struct task_struct *p; 335 336 if (!rt_entity_is_task(rt_se)) 337 return; 338 339 p = rt_task_of(rt_se); 340 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 341 342 rt_rq->rt_nr_total--; 343 if (p->nr_cpus_allowed > 1) 344 rt_rq->rt_nr_migratory--; 345 346 update_rt_migration(rt_rq); 347 } 348 349 static inline int has_pushable_tasks(struct rq *rq) 350 { 351 return !plist_head_empty(&rq->rt.pushable_tasks); 352 } 353 354 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 355 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 356 357 static void push_rt_tasks(struct rq *); 358 static void pull_rt_task(struct rq *); 359 360 static inline void rt_queue_push_tasks(struct rq *rq) 361 { 362 if (!has_pushable_tasks(rq)) 363 return; 364 365 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 366 } 367 368 static inline void rt_queue_pull_task(struct rq *rq) 369 { 370 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 371 } 372 373 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 374 { 375 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 376 plist_node_init(&p->pushable_tasks, p->prio); 377 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 378 379 /* Update the highest prio pushable task */ 380 if (p->prio < rq->rt.highest_prio.next) 381 rq->rt.highest_prio.next = p->prio; 382 } 383 384 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 385 { 386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 387 388 /* Update the new highest prio pushable task */ 389 if (has_pushable_tasks(rq)) { 390 p = plist_first_entry(&rq->rt.pushable_tasks, 391 struct task_struct, pushable_tasks); 392 rq->rt.highest_prio.next = p->prio; 393 } else 394 rq->rt.highest_prio.next = MAX_RT_PRIO; 395 } 396 397 #else 398 399 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 400 { 401 } 402 403 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 404 { 405 } 406 407 static inline 408 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 409 { 410 } 411 412 static inline 413 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 414 { 415 } 416 417 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 418 { 419 return false; 420 } 421 422 static inline void pull_rt_task(struct rq *this_rq) 423 { 424 } 425 426 static inline void rt_queue_push_tasks(struct rq *rq) 427 { 428 } 429 #endif /* CONFIG_SMP */ 430 431 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 432 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 433 434 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 435 { 436 return rt_se->on_rq; 437 } 438 439 #ifdef CONFIG_RT_GROUP_SCHED 440 441 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 442 { 443 if (!rt_rq->tg) 444 return RUNTIME_INF; 445 446 return rt_rq->rt_runtime; 447 } 448 449 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 450 { 451 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 452 } 453 454 typedef struct task_group *rt_rq_iter_t; 455 456 static inline struct task_group *next_task_group(struct task_group *tg) 457 { 458 do { 459 tg = list_entry_rcu(tg->list.next, 460 typeof(struct task_group), list); 461 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 462 463 if (&tg->list == &task_groups) 464 tg = NULL; 465 466 return tg; 467 } 468 469 #define for_each_rt_rq(rt_rq, iter, rq) \ 470 for (iter = container_of(&task_groups, typeof(*iter), list); \ 471 (iter = next_task_group(iter)) && \ 472 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 473 474 #define for_each_sched_rt_entity(rt_se) \ 475 for (; rt_se; rt_se = rt_se->parent) 476 477 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 478 { 479 return rt_se->my_q; 480 } 481 482 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 483 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 484 485 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 486 { 487 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 488 struct rq *rq = rq_of_rt_rq(rt_rq); 489 struct sched_rt_entity *rt_se; 490 491 int cpu = cpu_of(rq); 492 493 rt_se = rt_rq->tg->rt_se[cpu]; 494 495 if (rt_rq->rt_nr_running) { 496 if (!rt_se) 497 enqueue_top_rt_rq(rt_rq); 498 else if (!on_rt_rq(rt_se)) 499 enqueue_rt_entity(rt_se, 0); 500 501 if (rt_rq->highest_prio.curr < curr->prio) 502 resched_curr(rq); 503 } 504 } 505 506 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 507 { 508 struct sched_rt_entity *rt_se; 509 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 510 511 rt_se = rt_rq->tg->rt_se[cpu]; 512 513 if (!rt_se) { 514 dequeue_top_rt_rq(rt_rq); 515 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 516 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 517 } 518 else if (on_rt_rq(rt_se)) 519 dequeue_rt_entity(rt_se, 0); 520 } 521 522 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 523 { 524 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 525 } 526 527 static int rt_se_boosted(struct sched_rt_entity *rt_se) 528 { 529 struct rt_rq *rt_rq = group_rt_rq(rt_se); 530 struct task_struct *p; 531 532 if (rt_rq) 533 return !!rt_rq->rt_nr_boosted; 534 535 p = rt_task_of(rt_se); 536 return p->prio != p->normal_prio; 537 } 538 539 #ifdef CONFIG_SMP 540 static inline const struct cpumask *sched_rt_period_mask(void) 541 { 542 return this_rq()->rd->span; 543 } 544 #else 545 static inline const struct cpumask *sched_rt_period_mask(void) 546 { 547 return cpu_online_mask; 548 } 549 #endif 550 551 static inline 552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 553 { 554 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 555 } 556 557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 558 { 559 return &rt_rq->tg->rt_bandwidth; 560 } 561 562 #else /* !CONFIG_RT_GROUP_SCHED */ 563 564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 565 { 566 return rt_rq->rt_runtime; 567 } 568 569 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 570 { 571 return ktime_to_ns(def_rt_bandwidth.rt_period); 572 } 573 574 typedef struct rt_rq *rt_rq_iter_t; 575 576 #define for_each_rt_rq(rt_rq, iter, rq) \ 577 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 578 579 #define for_each_sched_rt_entity(rt_se) \ 580 for (; rt_se; rt_se = NULL) 581 582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 583 { 584 return NULL; 585 } 586 587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 588 { 589 struct rq *rq = rq_of_rt_rq(rt_rq); 590 591 if (!rt_rq->rt_nr_running) 592 return; 593 594 enqueue_top_rt_rq(rt_rq); 595 resched_curr(rq); 596 } 597 598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 599 { 600 dequeue_top_rt_rq(rt_rq); 601 } 602 603 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 604 { 605 return rt_rq->rt_throttled; 606 } 607 608 static inline const struct cpumask *sched_rt_period_mask(void) 609 { 610 return cpu_online_mask; 611 } 612 613 static inline 614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 615 { 616 return &cpu_rq(cpu)->rt; 617 } 618 619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 620 { 621 return &def_rt_bandwidth; 622 } 623 624 #endif /* CONFIG_RT_GROUP_SCHED */ 625 626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 627 { 628 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 629 630 return (hrtimer_active(&rt_b->rt_period_timer) || 631 rt_rq->rt_time < rt_b->rt_runtime); 632 } 633 634 #ifdef CONFIG_SMP 635 /* 636 * We ran out of runtime, see if we can borrow some from our neighbours. 637 */ 638 static void do_balance_runtime(struct rt_rq *rt_rq) 639 { 640 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 641 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 642 int i, weight; 643 u64 rt_period; 644 645 weight = cpumask_weight(rd->span); 646 647 raw_spin_lock(&rt_b->rt_runtime_lock); 648 rt_period = ktime_to_ns(rt_b->rt_period); 649 for_each_cpu(i, rd->span) { 650 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 651 s64 diff; 652 653 if (iter == rt_rq) 654 continue; 655 656 raw_spin_lock(&iter->rt_runtime_lock); 657 /* 658 * Either all rqs have inf runtime and there's nothing to steal 659 * or __disable_runtime() below sets a specific rq to inf to 660 * indicate its been disabled and disalow stealing. 661 */ 662 if (iter->rt_runtime == RUNTIME_INF) 663 goto next; 664 665 /* 666 * From runqueues with spare time, take 1/n part of their 667 * spare time, but no more than our period. 668 */ 669 diff = iter->rt_runtime - iter->rt_time; 670 if (diff > 0) { 671 diff = div_u64((u64)diff, weight); 672 if (rt_rq->rt_runtime + diff > rt_period) 673 diff = rt_period - rt_rq->rt_runtime; 674 iter->rt_runtime -= diff; 675 rt_rq->rt_runtime += diff; 676 if (rt_rq->rt_runtime == rt_period) { 677 raw_spin_unlock(&iter->rt_runtime_lock); 678 break; 679 } 680 } 681 next: 682 raw_spin_unlock(&iter->rt_runtime_lock); 683 } 684 raw_spin_unlock(&rt_b->rt_runtime_lock); 685 } 686 687 /* 688 * Ensure this RQ takes back all the runtime it lend to its neighbours. 689 */ 690 static void __disable_runtime(struct rq *rq) 691 { 692 struct root_domain *rd = rq->rd; 693 rt_rq_iter_t iter; 694 struct rt_rq *rt_rq; 695 696 if (unlikely(!scheduler_running)) 697 return; 698 699 for_each_rt_rq(rt_rq, iter, rq) { 700 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 701 s64 want; 702 int i; 703 704 raw_spin_lock(&rt_b->rt_runtime_lock); 705 raw_spin_lock(&rt_rq->rt_runtime_lock); 706 /* 707 * Either we're all inf and nobody needs to borrow, or we're 708 * already disabled and thus have nothing to do, or we have 709 * exactly the right amount of runtime to take out. 710 */ 711 if (rt_rq->rt_runtime == RUNTIME_INF || 712 rt_rq->rt_runtime == rt_b->rt_runtime) 713 goto balanced; 714 raw_spin_unlock(&rt_rq->rt_runtime_lock); 715 716 /* 717 * Calculate the difference between what we started out with 718 * and what we current have, that's the amount of runtime 719 * we lend and now have to reclaim. 720 */ 721 want = rt_b->rt_runtime - rt_rq->rt_runtime; 722 723 /* 724 * Greedy reclaim, take back as much as we can. 725 */ 726 for_each_cpu(i, rd->span) { 727 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 728 s64 diff; 729 730 /* 731 * Can't reclaim from ourselves or disabled runqueues. 732 */ 733 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 734 continue; 735 736 raw_spin_lock(&iter->rt_runtime_lock); 737 if (want > 0) { 738 diff = min_t(s64, iter->rt_runtime, want); 739 iter->rt_runtime -= diff; 740 want -= diff; 741 } else { 742 iter->rt_runtime -= want; 743 want -= want; 744 } 745 raw_spin_unlock(&iter->rt_runtime_lock); 746 747 if (!want) 748 break; 749 } 750 751 raw_spin_lock(&rt_rq->rt_runtime_lock); 752 /* 753 * We cannot be left wanting - that would mean some runtime 754 * leaked out of the system. 755 */ 756 BUG_ON(want); 757 balanced: 758 /* 759 * Disable all the borrow logic by pretending we have inf 760 * runtime - in which case borrowing doesn't make sense. 761 */ 762 rt_rq->rt_runtime = RUNTIME_INF; 763 rt_rq->rt_throttled = 0; 764 raw_spin_unlock(&rt_rq->rt_runtime_lock); 765 raw_spin_unlock(&rt_b->rt_runtime_lock); 766 767 /* Make rt_rq available for pick_next_task() */ 768 sched_rt_rq_enqueue(rt_rq); 769 } 770 } 771 772 static void __enable_runtime(struct rq *rq) 773 { 774 rt_rq_iter_t iter; 775 struct rt_rq *rt_rq; 776 777 if (unlikely(!scheduler_running)) 778 return; 779 780 /* 781 * Reset each runqueue's bandwidth settings 782 */ 783 for_each_rt_rq(rt_rq, iter, rq) { 784 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 785 786 raw_spin_lock(&rt_b->rt_runtime_lock); 787 raw_spin_lock(&rt_rq->rt_runtime_lock); 788 rt_rq->rt_runtime = rt_b->rt_runtime; 789 rt_rq->rt_time = 0; 790 rt_rq->rt_throttled = 0; 791 raw_spin_unlock(&rt_rq->rt_runtime_lock); 792 raw_spin_unlock(&rt_b->rt_runtime_lock); 793 } 794 } 795 796 static void balance_runtime(struct rt_rq *rt_rq) 797 { 798 if (!sched_feat(RT_RUNTIME_SHARE)) 799 return; 800 801 if (rt_rq->rt_time > rt_rq->rt_runtime) { 802 raw_spin_unlock(&rt_rq->rt_runtime_lock); 803 do_balance_runtime(rt_rq); 804 raw_spin_lock(&rt_rq->rt_runtime_lock); 805 } 806 } 807 #else /* !CONFIG_SMP */ 808 static inline void balance_runtime(struct rt_rq *rt_rq) {} 809 #endif /* CONFIG_SMP */ 810 811 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 812 { 813 int i, idle = 1, throttled = 0; 814 const struct cpumask *span; 815 816 span = sched_rt_period_mask(); 817 #ifdef CONFIG_RT_GROUP_SCHED 818 /* 819 * FIXME: isolated CPUs should really leave the root task group, 820 * whether they are isolcpus or were isolated via cpusets, lest 821 * the timer run on a CPU which does not service all runqueues, 822 * potentially leaving other CPUs indefinitely throttled. If 823 * isolation is really required, the user will turn the throttle 824 * off to kill the perturbations it causes anyway. Meanwhile, 825 * this maintains functionality for boot and/or troubleshooting. 826 */ 827 if (rt_b == &root_task_group.rt_bandwidth) 828 span = cpu_online_mask; 829 #endif 830 for_each_cpu(i, span) { 831 int enqueue = 0; 832 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 833 struct rq *rq = rq_of_rt_rq(rt_rq); 834 int skip; 835 836 /* 837 * When span == cpu_online_mask, taking each rq->lock 838 * can be time-consuming. Try to avoid it when possible. 839 */ 840 raw_spin_lock(&rt_rq->rt_runtime_lock); 841 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 842 rt_rq->rt_runtime = rt_b->rt_runtime; 843 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 844 raw_spin_unlock(&rt_rq->rt_runtime_lock); 845 if (skip) 846 continue; 847 848 raw_spin_lock(&rq->lock); 849 update_rq_clock(rq); 850 851 if (rt_rq->rt_time) { 852 u64 runtime; 853 854 raw_spin_lock(&rt_rq->rt_runtime_lock); 855 if (rt_rq->rt_throttled) 856 balance_runtime(rt_rq); 857 runtime = rt_rq->rt_runtime; 858 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 859 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 860 rt_rq->rt_throttled = 0; 861 enqueue = 1; 862 863 /* 864 * When we're idle and a woken (rt) task is 865 * throttled check_preempt_curr() will set 866 * skip_update and the time between the wakeup 867 * and this unthrottle will get accounted as 868 * 'runtime'. 869 */ 870 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 871 rq_clock_cancel_skipupdate(rq); 872 } 873 if (rt_rq->rt_time || rt_rq->rt_nr_running) 874 idle = 0; 875 raw_spin_unlock(&rt_rq->rt_runtime_lock); 876 } else if (rt_rq->rt_nr_running) { 877 idle = 0; 878 if (!rt_rq_throttled(rt_rq)) 879 enqueue = 1; 880 } 881 if (rt_rq->rt_throttled) 882 throttled = 1; 883 884 if (enqueue) 885 sched_rt_rq_enqueue(rt_rq); 886 raw_spin_unlock(&rq->lock); 887 } 888 889 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 890 return 1; 891 892 return idle; 893 } 894 895 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 896 { 897 #ifdef CONFIG_RT_GROUP_SCHED 898 struct rt_rq *rt_rq = group_rt_rq(rt_se); 899 900 if (rt_rq) 901 return rt_rq->highest_prio.curr; 902 #endif 903 904 return rt_task_of(rt_se)->prio; 905 } 906 907 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 908 { 909 u64 runtime = sched_rt_runtime(rt_rq); 910 911 if (rt_rq->rt_throttled) 912 return rt_rq_throttled(rt_rq); 913 914 if (runtime >= sched_rt_period(rt_rq)) 915 return 0; 916 917 balance_runtime(rt_rq); 918 runtime = sched_rt_runtime(rt_rq); 919 if (runtime == RUNTIME_INF) 920 return 0; 921 922 if (rt_rq->rt_time > runtime) { 923 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 924 925 /* 926 * Don't actually throttle groups that have no runtime assigned 927 * but accrue some time due to boosting. 928 */ 929 if (likely(rt_b->rt_runtime)) { 930 rt_rq->rt_throttled = 1; 931 printk_deferred_once("sched: RT throttling activated\n"); 932 } else { 933 /* 934 * In case we did anyway, make it go away, 935 * replenishment is a joke, since it will replenish us 936 * with exactly 0 ns. 937 */ 938 rt_rq->rt_time = 0; 939 } 940 941 if (rt_rq_throttled(rt_rq)) { 942 sched_rt_rq_dequeue(rt_rq); 943 return 1; 944 } 945 } 946 947 return 0; 948 } 949 950 /* 951 * Update the current task's runtime statistics. Skip current tasks that 952 * are not in our scheduling class. 953 */ 954 static void update_curr_rt(struct rq *rq) 955 { 956 struct task_struct *curr = rq->curr; 957 struct sched_rt_entity *rt_se = &curr->rt; 958 u64 delta_exec; 959 u64 now; 960 961 if (curr->sched_class != &rt_sched_class) 962 return; 963 964 now = rq_clock_task(rq); 965 delta_exec = now - curr->se.exec_start; 966 if (unlikely((s64)delta_exec <= 0)) 967 return; 968 969 schedstat_set(curr->se.statistics.exec_max, 970 max(curr->se.statistics.exec_max, delta_exec)); 971 972 curr->se.sum_exec_runtime += delta_exec; 973 account_group_exec_runtime(curr, delta_exec); 974 975 curr->se.exec_start = now; 976 cgroup_account_cputime(curr, delta_exec); 977 978 if (!rt_bandwidth_enabled()) 979 return; 980 981 for_each_sched_rt_entity(rt_se) { 982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 983 984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 985 raw_spin_lock(&rt_rq->rt_runtime_lock); 986 rt_rq->rt_time += delta_exec; 987 if (sched_rt_runtime_exceeded(rt_rq)) 988 resched_curr(rq); 989 raw_spin_unlock(&rt_rq->rt_runtime_lock); 990 } 991 } 992 } 993 994 static void 995 dequeue_top_rt_rq(struct rt_rq *rt_rq) 996 { 997 struct rq *rq = rq_of_rt_rq(rt_rq); 998 999 BUG_ON(&rq->rt != rt_rq); 1000 1001 if (!rt_rq->rt_queued) 1002 return; 1003 1004 BUG_ON(!rq->nr_running); 1005 1006 sub_nr_running(rq, rt_rq->rt_nr_running); 1007 rt_rq->rt_queued = 0; 1008 1009 } 1010 1011 static void 1012 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1013 { 1014 struct rq *rq = rq_of_rt_rq(rt_rq); 1015 1016 BUG_ON(&rq->rt != rt_rq); 1017 1018 if (rt_rq->rt_queued) 1019 return; 1020 1021 if (rt_rq_throttled(rt_rq)) 1022 return; 1023 1024 if (rt_rq->rt_nr_running) { 1025 add_nr_running(rq, rt_rq->rt_nr_running); 1026 rt_rq->rt_queued = 1; 1027 } 1028 1029 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1030 cpufreq_update_util(rq, 0); 1031 } 1032 1033 #if defined CONFIG_SMP 1034 1035 static void 1036 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1037 { 1038 struct rq *rq = rq_of_rt_rq(rt_rq); 1039 1040 #ifdef CONFIG_RT_GROUP_SCHED 1041 /* 1042 * Change rq's cpupri only if rt_rq is the top queue. 1043 */ 1044 if (&rq->rt != rt_rq) 1045 return; 1046 #endif 1047 if (rq->online && prio < prev_prio) 1048 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1049 } 1050 1051 static void 1052 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1053 { 1054 struct rq *rq = rq_of_rt_rq(rt_rq); 1055 1056 #ifdef CONFIG_RT_GROUP_SCHED 1057 /* 1058 * Change rq's cpupri only if rt_rq is the top queue. 1059 */ 1060 if (&rq->rt != rt_rq) 1061 return; 1062 #endif 1063 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1064 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1065 } 1066 1067 #else /* CONFIG_SMP */ 1068 1069 static inline 1070 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1071 static inline 1072 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1073 1074 #endif /* CONFIG_SMP */ 1075 1076 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1077 static void 1078 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1079 { 1080 int prev_prio = rt_rq->highest_prio.curr; 1081 1082 if (prio < prev_prio) 1083 rt_rq->highest_prio.curr = prio; 1084 1085 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1086 } 1087 1088 static void 1089 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1090 { 1091 int prev_prio = rt_rq->highest_prio.curr; 1092 1093 if (rt_rq->rt_nr_running) { 1094 1095 WARN_ON(prio < prev_prio); 1096 1097 /* 1098 * This may have been our highest task, and therefore 1099 * we may have some recomputation to do 1100 */ 1101 if (prio == prev_prio) { 1102 struct rt_prio_array *array = &rt_rq->active; 1103 1104 rt_rq->highest_prio.curr = 1105 sched_find_first_bit(array->bitmap); 1106 } 1107 1108 } else 1109 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1110 1111 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1112 } 1113 1114 #else 1115 1116 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1117 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1118 1119 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1120 1121 #ifdef CONFIG_RT_GROUP_SCHED 1122 1123 static void 1124 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1125 { 1126 if (rt_se_boosted(rt_se)) 1127 rt_rq->rt_nr_boosted++; 1128 1129 if (rt_rq->tg) 1130 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1131 } 1132 1133 static void 1134 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1135 { 1136 if (rt_se_boosted(rt_se)) 1137 rt_rq->rt_nr_boosted--; 1138 1139 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1140 } 1141 1142 #else /* CONFIG_RT_GROUP_SCHED */ 1143 1144 static void 1145 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1146 { 1147 start_rt_bandwidth(&def_rt_bandwidth); 1148 } 1149 1150 static inline 1151 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1152 1153 #endif /* CONFIG_RT_GROUP_SCHED */ 1154 1155 static inline 1156 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1157 { 1158 struct rt_rq *group_rq = group_rt_rq(rt_se); 1159 1160 if (group_rq) 1161 return group_rq->rt_nr_running; 1162 else 1163 return 1; 1164 } 1165 1166 static inline 1167 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1168 { 1169 struct rt_rq *group_rq = group_rt_rq(rt_se); 1170 struct task_struct *tsk; 1171 1172 if (group_rq) 1173 return group_rq->rr_nr_running; 1174 1175 tsk = rt_task_of(rt_se); 1176 1177 return (tsk->policy == SCHED_RR) ? 1 : 0; 1178 } 1179 1180 static inline 1181 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1182 { 1183 int prio = rt_se_prio(rt_se); 1184 1185 WARN_ON(!rt_prio(prio)); 1186 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1187 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1188 1189 inc_rt_prio(rt_rq, prio); 1190 inc_rt_migration(rt_se, rt_rq); 1191 inc_rt_group(rt_se, rt_rq); 1192 } 1193 1194 static inline 1195 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1196 { 1197 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1198 WARN_ON(!rt_rq->rt_nr_running); 1199 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1200 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1201 1202 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1203 dec_rt_migration(rt_se, rt_rq); 1204 dec_rt_group(rt_se, rt_rq); 1205 } 1206 1207 /* 1208 * Change rt_se->run_list location unless SAVE && !MOVE 1209 * 1210 * assumes ENQUEUE/DEQUEUE flags match 1211 */ 1212 static inline bool move_entity(unsigned int flags) 1213 { 1214 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1215 return false; 1216 1217 return true; 1218 } 1219 1220 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1221 { 1222 list_del_init(&rt_se->run_list); 1223 1224 if (list_empty(array->queue + rt_se_prio(rt_se))) 1225 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1226 1227 rt_se->on_list = 0; 1228 } 1229 1230 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1231 { 1232 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1233 struct rt_prio_array *array = &rt_rq->active; 1234 struct rt_rq *group_rq = group_rt_rq(rt_se); 1235 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1236 1237 /* 1238 * Don't enqueue the group if its throttled, or when empty. 1239 * The latter is a consequence of the former when a child group 1240 * get throttled and the current group doesn't have any other 1241 * active members. 1242 */ 1243 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1244 if (rt_se->on_list) 1245 __delist_rt_entity(rt_se, array); 1246 return; 1247 } 1248 1249 if (move_entity(flags)) { 1250 WARN_ON_ONCE(rt_se->on_list); 1251 if (flags & ENQUEUE_HEAD) 1252 list_add(&rt_se->run_list, queue); 1253 else 1254 list_add_tail(&rt_se->run_list, queue); 1255 1256 __set_bit(rt_se_prio(rt_se), array->bitmap); 1257 rt_se->on_list = 1; 1258 } 1259 rt_se->on_rq = 1; 1260 1261 inc_rt_tasks(rt_se, rt_rq); 1262 } 1263 1264 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1265 { 1266 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1267 struct rt_prio_array *array = &rt_rq->active; 1268 1269 if (move_entity(flags)) { 1270 WARN_ON_ONCE(!rt_se->on_list); 1271 __delist_rt_entity(rt_se, array); 1272 } 1273 rt_se->on_rq = 0; 1274 1275 dec_rt_tasks(rt_se, rt_rq); 1276 } 1277 1278 /* 1279 * Because the prio of an upper entry depends on the lower 1280 * entries, we must remove entries top - down. 1281 */ 1282 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1283 { 1284 struct sched_rt_entity *back = NULL; 1285 1286 for_each_sched_rt_entity(rt_se) { 1287 rt_se->back = back; 1288 back = rt_se; 1289 } 1290 1291 dequeue_top_rt_rq(rt_rq_of_se(back)); 1292 1293 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1294 if (on_rt_rq(rt_se)) 1295 __dequeue_rt_entity(rt_se, flags); 1296 } 1297 } 1298 1299 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1300 { 1301 struct rq *rq = rq_of_rt_se(rt_se); 1302 1303 dequeue_rt_stack(rt_se, flags); 1304 for_each_sched_rt_entity(rt_se) 1305 __enqueue_rt_entity(rt_se, flags); 1306 enqueue_top_rt_rq(&rq->rt); 1307 } 1308 1309 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1310 { 1311 struct rq *rq = rq_of_rt_se(rt_se); 1312 1313 dequeue_rt_stack(rt_se, flags); 1314 1315 for_each_sched_rt_entity(rt_se) { 1316 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1317 1318 if (rt_rq && rt_rq->rt_nr_running) 1319 __enqueue_rt_entity(rt_se, flags); 1320 } 1321 enqueue_top_rt_rq(&rq->rt); 1322 } 1323 1324 /* 1325 * Adding/removing a task to/from a priority array: 1326 */ 1327 static void 1328 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1329 { 1330 struct sched_rt_entity *rt_se = &p->rt; 1331 1332 if (flags & ENQUEUE_WAKEUP) 1333 rt_se->timeout = 0; 1334 1335 enqueue_rt_entity(rt_se, flags); 1336 1337 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1338 enqueue_pushable_task(rq, p); 1339 } 1340 1341 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1342 { 1343 struct sched_rt_entity *rt_se = &p->rt; 1344 1345 update_curr_rt(rq); 1346 dequeue_rt_entity(rt_se, flags); 1347 1348 dequeue_pushable_task(rq, p); 1349 } 1350 1351 /* 1352 * Put task to the head or the end of the run list without the overhead of 1353 * dequeue followed by enqueue. 1354 */ 1355 static void 1356 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1357 { 1358 if (on_rt_rq(rt_se)) { 1359 struct rt_prio_array *array = &rt_rq->active; 1360 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1361 1362 if (head) 1363 list_move(&rt_se->run_list, queue); 1364 else 1365 list_move_tail(&rt_se->run_list, queue); 1366 } 1367 } 1368 1369 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1370 { 1371 struct sched_rt_entity *rt_se = &p->rt; 1372 struct rt_rq *rt_rq; 1373 1374 for_each_sched_rt_entity(rt_se) { 1375 rt_rq = rt_rq_of_se(rt_se); 1376 requeue_rt_entity(rt_rq, rt_se, head); 1377 } 1378 } 1379 1380 static void yield_task_rt(struct rq *rq) 1381 { 1382 requeue_task_rt(rq, rq->curr, 0); 1383 } 1384 1385 #ifdef CONFIG_SMP 1386 static int find_lowest_rq(struct task_struct *task); 1387 1388 static int 1389 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1390 { 1391 struct task_struct *curr; 1392 struct rq *rq; 1393 1394 /* For anything but wake ups, just return the task_cpu */ 1395 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1396 goto out; 1397 1398 rq = cpu_rq(cpu); 1399 1400 rcu_read_lock(); 1401 curr = READ_ONCE(rq->curr); /* unlocked access */ 1402 1403 /* 1404 * If the current task on @p's runqueue is an RT task, then 1405 * try to see if we can wake this RT task up on another 1406 * runqueue. Otherwise simply start this RT task 1407 * on its current runqueue. 1408 * 1409 * We want to avoid overloading runqueues. If the woken 1410 * task is a higher priority, then it will stay on this CPU 1411 * and the lower prio task should be moved to another CPU. 1412 * Even though this will probably make the lower prio task 1413 * lose its cache, we do not want to bounce a higher task 1414 * around just because it gave up its CPU, perhaps for a 1415 * lock? 1416 * 1417 * For equal prio tasks, we just let the scheduler sort it out. 1418 * 1419 * Otherwise, just let it ride on the affined RQ and the 1420 * post-schedule router will push the preempted task away 1421 * 1422 * This test is optimistic, if we get it wrong the load-balancer 1423 * will have to sort it out. 1424 */ 1425 if (curr && unlikely(rt_task(curr)) && 1426 (curr->nr_cpus_allowed < 2 || 1427 curr->prio <= p->prio)) { 1428 int target = find_lowest_rq(p); 1429 1430 /* 1431 * Don't bother moving it if the destination CPU is 1432 * not running a lower priority task. 1433 */ 1434 if (target != -1 && 1435 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1436 cpu = target; 1437 } 1438 rcu_read_unlock(); 1439 1440 out: 1441 return cpu; 1442 } 1443 1444 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1445 { 1446 /* 1447 * Current can't be migrated, useless to reschedule, 1448 * let's hope p can move out. 1449 */ 1450 if (rq->curr->nr_cpus_allowed == 1 || 1451 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1452 return; 1453 1454 /* 1455 * p is migratable, so let's not schedule it and 1456 * see if it is pushed or pulled somewhere else. 1457 */ 1458 if (p->nr_cpus_allowed != 1 1459 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1460 return; 1461 1462 /* 1463 * There appear to be other CPUs that can accept 1464 * the current task but none can run 'p', so lets reschedule 1465 * to try and push the current task away: 1466 */ 1467 requeue_task_rt(rq, p, 1); 1468 resched_curr(rq); 1469 } 1470 1471 #endif /* CONFIG_SMP */ 1472 1473 /* 1474 * Preempt the current task with a newly woken task if needed: 1475 */ 1476 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1477 { 1478 if (p->prio < rq->curr->prio) { 1479 resched_curr(rq); 1480 return; 1481 } 1482 1483 #ifdef CONFIG_SMP 1484 /* 1485 * If: 1486 * 1487 * - the newly woken task is of equal priority to the current task 1488 * - the newly woken task is non-migratable while current is migratable 1489 * - current will be preempted on the next reschedule 1490 * 1491 * we should check to see if current can readily move to a different 1492 * cpu. If so, we will reschedule to allow the push logic to try 1493 * to move current somewhere else, making room for our non-migratable 1494 * task. 1495 */ 1496 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1497 check_preempt_equal_prio(rq, p); 1498 #endif 1499 } 1500 1501 static inline void set_next_task(struct rq *rq, struct task_struct *p) 1502 { 1503 p->se.exec_start = rq_clock_task(rq); 1504 1505 /* The running task is never eligible for pushing */ 1506 dequeue_pushable_task(rq, p); 1507 } 1508 1509 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1510 struct rt_rq *rt_rq) 1511 { 1512 struct rt_prio_array *array = &rt_rq->active; 1513 struct sched_rt_entity *next = NULL; 1514 struct list_head *queue; 1515 int idx; 1516 1517 idx = sched_find_first_bit(array->bitmap); 1518 BUG_ON(idx >= MAX_RT_PRIO); 1519 1520 queue = array->queue + idx; 1521 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1522 1523 return next; 1524 } 1525 1526 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1527 { 1528 struct sched_rt_entity *rt_se; 1529 struct rt_rq *rt_rq = &rq->rt; 1530 1531 do { 1532 rt_se = pick_next_rt_entity(rq, rt_rq); 1533 BUG_ON(!rt_se); 1534 rt_rq = group_rt_rq(rt_se); 1535 } while (rt_rq); 1536 1537 return rt_task_of(rt_se); 1538 } 1539 1540 static struct task_struct * 1541 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1542 { 1543 struct task_struct *p; 1544 struct rt_rq *rt_rq = &rq->rt; 1545 1546 if (need_pull_rt_task(rq, prev)) { 1547 /* 1548 * This is OK, because current is on_cpu, which avoids it being 1549 * picked for load-balance and preemption/IRQs are still 1550 * disabled avoiding further scheduler activity on it and we're 1551 * being very careful to re-start the picking loop. 1552 */ 1553 rq_unpin_lock(rq, rf); 1554 pull_rt_task(rq); 1555 rq_repin_lock(rq, rf); 1556 /* 1557 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1558 * means a dl or stop task can slip in, in which case we need 1559 * to re-start task selection. 1560 */ 1561 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1562 rq->dl.dl_nr_running)) 1563 return RETRY_TASK; 1564 } 1565 1566 /* 1567 * We may dequeue prev's rt_rq in put_prev_task(). 1568 * So, we update time before rt_queued check. 1569 */ 1570 if (prev->sched_class == &rt_sched_class) 1571 update_curr_rt(rq); 1572 1573 if (!rt_rq->rt_queued) 1574 return NULL; 1575 1576 put_prev_task(rq, prev); 1577 1578 p = _pick_next_task_rt(rq); 1579 1580 set_next_task(rq, p); 1581 1582 rt_queue_push_tasks(rq); 1583 1584 /* 1585 * If prev task was rt, put_prev_task() has already updated the 1586 * utilization. We only care of the case where we start to schedule a 1587 * rt task 1588 */ 1589 if (rq->curr->sched_class != &rt_sched_class) 1590 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1591 1592 return p; 1593 } 1594 1595 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1596 { 1597 update_curr_rt(rq); 1598 1599 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1600 1601 /* 1602 * The previous task needs to be made eligible for pushing 1603 * if it is still active 1604 */ 1605 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1606 enqueue_pushable_task(rq, p); 1607 } 1608 1609 #ifdef CONFIG_SMP 1610 1611 /* Only try algorithms three times */ 1612 #define RT_MAX_TRIES 3 1613 1614 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1615 { 1616 if (!task_running(rq, p) && 1617 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1618 return 1; 1619 1620 return 0; 1621 } 1622 1623 /* 1624 * Return the highest pushable rq's task, which is suitable to be executed 1625 * on the CPU, NULL otherwise 1626 */ 1627 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1628 { 1629 struct plist_head *head = &rq->rt.pushable_tasks; 1630 struct task_struct *p; 1631 1632 if (!has_pushable_tasks(rq)) 1633 return NULL; 1634 1635 plist_for_each_entry(p, head, pushable_tasks) { 1636 if (pick_rt_task(rq, p, cpu)) 1637 return p; 1638 } 1639 1640 return NULL; 1641 } 1642 1643 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1644 1645 static int find_lowest_rq(struct task_struct *task) 1646 { 1647 struct sched_domain *sd; 1648 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1649 int this_cpu = smp_processor_id(); 1650 int cpu = task_cpu(task); 1651 1652 /* Make sure the mask is initialized first */ 1653 if (unlikely(!lowest_mask)) 1654 return -1; 1655 1656 if (task->nr_cpus_allowed == 1) 1657 return -1; /* No other targets possible */ 1658 1659 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1660 return -1; /* No targets found */ 1661 1662 /* 1663 * At this point we have built a mask of CPUs representing the 1664 * lowest priority tasks in the system. Now we want to elect 1665 * the best one based on our affinity and topology. 1666 * 1667 * We prioritize the last CPU that the task executed on since 1668 * it is most likely cache-hot in that location. 1669 */ 1670 if (cpumask_test_cpu(cpu, lowest_mask)) 1671 return cpu; 1672 1673 /* 1674 * Otherwise, we consult the sched_domains span maps to figure 1675 * out which CPU is logically closest to our hot cache data. 1676 */ 1677 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1678 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1679 1680 rcu_read_lock(); 1681 for_each_domain(cpu, sd) { 1682 if (sd->flags & SD_WAKE_AFFINE) { 1683 int best_cpu; 1684 1685 /* 1686 * "this_cpu" is cheaper to preempt than a 1687 * remote processor. 1688 */ 1689 if (this_cpu != -1 && 1690 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1691 rcu_read_unlock(); 1692 return this_cpu; 1693 } 1694 1695 best_cpu = cpumask_first_and(lowest_mask, 1696 sched_domain_span(sd)); 1697 if (best_cpu < nr_cpu_ids) { 1698 rcu_read_unlock(); 1699 return best_cpu; 1700 } 1701 } 1702 } 1703 rcu_read_unlock(); 1704 1705 /* 1706 * And finally, if there were no matches within the domains 1707 * just give the caller *something* to work with from the compatible 1708 * locations. 1709 */ 1710 if (this_cpu != -1) 1711 return this_cpu; 1712 1713 cpu = cpumask_any(lowest_mask); 1714 if (cpu < nr_cpu_ids) 1715 return cpu; 1716 1717 return -1; 1718 } 1719 1720 /* Will lock the rq it finds */ 1721 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1722 { 1723 struct rq *lowest_rq = NULL; 1724 int tries; 1725 int cpu; 1726 1727 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1728 cpu = find_lowest_rq(task); 1729 1730 if ((cpu == -1) || (cpu == rq->cpu)) 1731 break; 1732 1733 lowest_rq = cpu_rq(cpu); 1734 1735 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1736 /* 1737 * Target rq has tasks of equal or higher priority, 1738 * retrying does not release any lock and is unlikely 1739 * to yield a different result. 1740 */ 1741 lowest_rq = NULL; 1742 break; 1743 } 1744 1745 /* if the prio of this runqueue changed, try again */ 1746 if (double_lock_balance(rq, lowest_rq)) { 1747 /* 1748 * We had to unlock the run queue. In 1749 * the mean time, task could have 1750 * migrated already or had its affinity changed. 1751 * Also make sure that it wasn't scheduled on its rq. 1752 */ 1753 if (unlikely(task_rq(task) != rq || 1754 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1755 task_running(rq, task) || 1756 !rt_task(task) || 1757 !task_on_rq_queued(task))) { 1758 1759 double_unlock_balance(rq, lowest_rq); 1760 lowest_rq = NULL; 1761 break; 1762 } 1763 } 1764 1765 /* If this rq is still suitable use it. */ 1766 if (lowest_rq->rt.highest_prio.curr > task->prio) 1767 break; 1768 1769 /* try again */ 1770 double_unlock_balance(rq, lowest_rq); 1771 lowest_rq = NULL; 1772 } 1773 1774 return lowest_rq; 1775 } 1776 1777 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1778 { 1779 struct task_struct *p; 1780 1781 if (!has_pushable_tasks(rq)) 1782 return NULL; 1783 1784 p = plist_first_entry(&rq->rt.pushable_tasks, 1785 struct task_struct, pushable_tasks); 1786 1787 BUG_ON(rq->cpu != task_cpu(p)); 1788 BUG_ON(task_current(rq, p)); 1789 BUG_ON(p->nr_cpus_allowed <= 1); 1790 1791 BUG_ON(!task_on_rq_queued(p)); 1792 BUG_ON(!rt_task(p)); 1793 1794 return p; 1795 } 1796 1797 /* 1798 * If the current CPU has more than one RT task, see if the non 1799 * running task can migrate over to a CPU that is running a task 1800 * of lesser priority. 1801 */ 1802 static int push_rt_task(struct rq *rq) 1803 { 1804 struct task_struct *next_task; 1805 struct rq *lowest_rq; 1806 int ret = 0; 1807 1808 if (!rq->rt.overloaded) 1809 return 0; 1810 1811 next_task = pick_next_pushable_task(rq); 1812 if (!next_task) 1813 return 0; 1814 1815 retry: 1816 if (WARN_ON(next_task == rq->curr)) 1817 return 0; 1818 1819 /* 1820 * It's possible that the next_task slipped in of 1821 * higher priority than current. If that's the case 1822 * just reschedule current. 1823 */ 1824 if (unlikely(next_task->prio < rq->curr->prio)) { 1825 resched_curr(rq); 1826 return 0; 1827 } 1828 1829 /* We might release rq lock */ 1830 get_task_struct(next_task); 1831 1832 /* find_lock_lowest_rq locks the rq if found */ 1833 lowest_rq = find_lock_lowest_rq(next_task, rq); 1834 if (!lowest_rq) { 1835 struct task_struct *task; 1836 /* 1837 * find_lock_lowest_rq releases rq->lock 1838 * so it is possible that next_task has migrated. 1839 * 1840 * We need to make sure that the task is still on the same 1841 * run-queue and is also still the next task eligible for 1842 * pushing. 1843 */ 1844 task = pick_next_pushable_task(rq); 1845 if (task == next_task) { 1846 /* 1847 * The task hasn't migrated, and is still the next 1848 * eligible task, but we failed to find a run-queue 1849 * to push it to. Do not retry in this case, since 1850 * other CPUs will pull from us when ready. 1851 */ 1852 goto out; 1853 } 1854 1855 if (!task) 1856 /* No more tasks, just exit */ 1857 goto out; 1858 1859 /* 1860 * Something has shifted, try again. 1861 */ 1862 put_task_struct(next_task); 1863 next_task = task; 1864 goto retry; 1865 } 1866 1867 deactivate_task(rq, next_task, 0); 1868 set_task_cpu(next_task, lowest_rq->cpu); 1869 activate_task(lowest_rq, next_task, 0); 1870 ret = 1; 1871 1872 resched_curr(lowest_rq); 1873 1874 double_unlock_balance(rq, lowest_rq); 1875 1876 out: 1877 put_task_struct(next_task); 1878 1879 return ret; 1880 } 1881 1882 static void push_rt_tasks(struct rq *rq) 1883 { 1884 /* push_rt_task will return true if it moved an RT */ 1885 while (push_rt_task(rq)) 1886 ; 1887 } 1888 1889 #ifdef HAVE_RT_PUSH_IPI 1890 1891 /* 1892 * When a high priority task schedules out from a CPU and a lower priority 1893 * task is scheduled in, a check is made to see if there's any RT tasks 1894 * on other CPUs that are waiting to run because a higher priority RT task 1895 * is currently running on its CPU. In this case, the CPU with multiple RT 1896 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1897 * up that may be able to run one of its non-running queued RT tasks. 1898 * 1899 * All CPUs with overloaded RT tasks need to be notified as there is currently 1900 * no way to know which of these CPUs have the highest priority task waiting 1901 * to run. Instead of trying to take a spinlock on each of these CPUs, 1902 * which has shown to cause large latency when done on machines with many 1903 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1904 * RT tasks waiting to run. 1905 * 1906 * Just sending an IPI to each of the CPUs is also an issue, as on large 1907 * count CPU machines, this can cause an IPI storm on a CPU, especially 1908 * if its the only CPU with multiple RT tasks queued, and a large number 1909 * of CPUs scheduling a lower priority task at the same time. 1910 * 1911 * Each root domain has its own irq work function that can iterate over 1912 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1913 * tassk must be checked if there's one or many CPUs that are lowering 1914 * their priority, there's a single irq work iterator that will try to 1915 * push off RT tasks that are waiting to run. 1916 * 1917 * When a CPU schedules a lower priority task, it will kick off the 1918 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1919 * As it only takes the first CPU that schedules a lower priority task 1920 * to start the process, the rto_start variable is incremented and if 1921 * the atomic result is one, then that CPU will try to take the rto_lock. 1922 * This prevents high contention on the lock as the process handles all 1923 * CPUs scheduling lower priority tasks. 1924 * 1925 * All CPUs that are scheduling a lower priority task will increment the 1926 * rt_loop_next variable. This will make sure that the irq work iterator 1927 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1928 * priority task, even if the iterator is in the middle of a scan. Incrementing 1929 * the rt_loop_next will cause the iterator to perform another scan. 1930 * 1931 */ 1932 static int rto_next_cpu(struct root_domain *rd) 1933 { 1934 int next; 1935 int cpu; 1936 1937 /* 1938 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1939 * rt_next_cpu() will simply return the first CPU found in 1940 * the rto_mask. 1941 * 1942 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 1943 * will return the next CPU found in the rto_mask. 1944 * 1945 * If there are no more CPUs left in the rto_mask, then a check is made 1946 * against rto_loop and rto_loop_next. rto_loop is only updated with 1947 * the rto_lock held, but any CPU may increment the rto_loop_next 1948 * without any locking. 1949 */ 1950 for (;;) { 1951 1952 /* When rto_cpu is -1 this acts like cpumask_first() */ 1953 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1954 1955 rd->rto_cpu = cpu; 1956 1957 if (cpu < nr_cpu_ids) 1958 return cpu; 1959 1960 rd->rto_cpu = -1; 1961 1962 /* 1963 * ACQUIRE ensures we see the @rto_mask changes 1964 * made prior to the @next value observed. 1965 * 1966 * Matches WMB in rt_set_overload(). 1967 */ 1968 next = atomic_read_acquire(&rd->rto_loop_next); 1969 1970 if (rd->rto_loop == next) 1971 break; 1972 1973 rd->rto_loop = next; 1974 } 1975 1976 return -1; 1977 } 1978 1979 static inline bool rto_start_trylock(atomic_t *v) 1980 { 1981 return !atomic_cmpxchg_acquire(v, 0, 1); 1982 } 1983 1984 static inline void rto_start_unlock(atomic_t *v) 1985 { 1986 atomic_set_release(v, 0); 1987 } 1988 1989 static void tell_cpu_to_push(struct rq *rq) 1990 { 1991 int cpu = -1; 1992 1993 /* Keep the loop going if the IPI is currently active */ 1994 atomic_inc(&rq->rd->rto_loop_next); 1995 1996 /* Only one CPU can initiate a loop at a time */ 1997 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1998 return; 1999 2000 raw_spin_lock(&rq->rd->rto_lock); 2001 2002 /* 2003 * The rto_cpu is updated under the lock, if it has a valid CPU 2004 * then the IPI is still running and will continue due to the 2005 * update to loop_next, and nothing needs to be done here. 2006 * Otherwise it is finishing up and an ipi needs to be sent. 2007 */ 2008 if (rq->rd->rto_cpu < 0) 2009 cpu = rto_next_cpu(rq->rd); 2010 2011 raw_spin_unlock(&rq->rd->rto_lock); 2012 2013 rto_start_unlock(&rq->rd->rto_loop_start); 2014 2015 if (cpu >= 0) { 2016 /* Make sure the rd does not get freed while pushing */ 2017 sched_get_rd(rq->rd); 2018 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2019 } 2020 } 2021 2022 /* Called from hardirq context */ 2023 void rto_push_irq_work_func(struct irq_work *work) 2024 { 2025 struct root_domain *rd = 2026 container_of(work, struct root_domain, rto_push_work); 2027 struct rq *rq; 2028 int cpu; 2029 2030 rq = this_rq(); 2031 2032 /* 2033 * We do not need to grab the lock to check for has_pushable_tasks. 2034 * When it gets updated, a check is made if a push is possible. 2035 */ 2036 if (has_pushable_tasks(rq)) { 2037 raw_spin_lock(&rq->lock); 2038 push_rt_tasks(rq); 2039 raw_spin_unlock(&rq->lock); 2040 } 2041 2042 raw_spin_lock(&rd->rto_lock); 2043 2044 /* Pass the IPI to the next rt overloaded queue */ 2045 cpu = rto_next_cpu(rd); 2046 2047 raw_spin_unlock(&rd->rto_lock); 2048 2049 if (cpu < 0) { 2050 sched_put_rd(rd); 2051 return; 2052 } 2053 2054 /* Try the next RT overloaded CPU */ 2055 irq_work_queue_on(&rd->rto_push_work, cpu); 2056 } 2057 #endif /* HAVE_RT_PUSH_IPI */ 2058 2059 static void pull_rt_task(struct rq *this_rq) 2060 { 2061 int this_cpu = this_rq->cpu, cpu; 2062 bool resched = false; 2063 struct task_struct *p; 2064 struct rq *src_rq; 2065 int rt_overload_count = rt_overloaded(this_rq); 2066 2067 if (likely(!rt_overload_count)) 2068 return; 2069 2070 /* 2071 * Match the barrier from rt_set_overloaded; this guarantees that if we 2072 * see overloaded we must also see the rto_mask bit. 2073 */ 2074 smp_rmb(); 2075 2076 /* If we are the only overloaded CPU do nothing */ 2077 if (rt_overload_count == 1 && 2078 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2079 return; 2080 2081 #ifdef HAVE_RT_PUSH_IPI 2082 if (sched_feat(RT_PUSH_IPI)) { 2083 tell_cpu_to_push(this_rq); 2084 return; 2085 } 2086 #endif 2087 2088 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2089 if (this_cpu == cpu) 2090 continue; 2091 2092 src_rq = cpu_rq(cpu); 2093 2094 /* 2095 * Don't bother taking the src_rq->lock if the next highest 2096 * task is known to be lower-priority than our current task. 2097 * This may look racy, but if this value is about to go 2098 * logically higher, the src_rq will push this task away. 2099 * And if its going logically lower, we do not care 2100 */ 2101 if (src_rq->rt.highest_prio.next >= 2102 this_rq->rt.highest_prio.curr) 2103 continue; 2104 2105 /* 2106 * We can potentially drop this_rq's lock in 2107 * double_lock_balance, and another CPU could 2108 * alter this_rq 2109 */ 2110 double_lock_balance(this_rq, src_rq); 2111 2112 /* 2113 * We can pull only a task, which is pushable 2114 * on its rq, and no others. 2115 */ 2116 p = pick_highest_pushable_task(src_rq, this_cpu); 2117 2118 /* 2119 * Do we have an RT task that preempts 2120 * the to-be-scheduled task? 2121 */ 2122 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2123 WARN_ON(p == src_rq->curr); 2124 WARN_ON(!task_on_rq_queued(p)); 2125 2126 /* 2127 * There's a chance that p is higher in priority 2128 * than what's currently running on its CPU. 2129 * This is just that p is wakeing up and hasn't 2130 * had a chance to schedule. We only pull 2131 * p if it is lower in priority than the 2132 * current task on the run queue 2133 */ 2134 if (p->prio < src_rq->curr->prio) 2135 goto skip; 2136 2137 resched = true; 2138 2139 deactivate_task(src_rq, p, 0); 2140 set_task_cpu(p, this_cpu); 2141 activate_task(this_rq, p, 0); 2142 /* 2143 * We continue with the search, just in 2144 * case there's an even higher prio task 2145 * in another runqueue. (low likelihood 2146 * but possible) 2147 */ 2148 } 2149 skip: 2150 double_unlock_balance(this_rq, src_rq); 2151 } 2152 2153 if (resched) 2154 resched_curr(this_rq); 2155 } 2156 2157 /* 2158 * If we are not running and we are not going to reschedule soon, we should 2159 * try to push tasks away now 2160 */ 2161 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2162 { 2163 if (!task_running(rq, p) && 2164 !test_tsk_need_resched(rq->curr) && 2165 p->nr_cpus_allowed > 1 && 2166 (dl_task(rq->curr) || rt_task(rq->curr)) && 2167 (rq->curr->nr_cpus_allowed < 2 || 2168 rq->curr->prio <= p->prio)) 2169 push_rt_tasks(rq); 2170 } 2171 2172 /* Assumes rq->lock is held */ 2173 static void rq_online_rt(struct rq *rq) 2174 { 2175 if (rq->rt.overloaded) 2176 rt_set_overload(rq); 2177 2178 __enable_runtime(rq); 2179 2180 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2181 } 2182 2183 /* Assumes rq->lock is held */ 2184 static void rq_offline_rt(struct rq *rq) 2185 { 2186 if (rq->rt.overloaded) 2187 rt_clear_overload(rq); 2188 2189 __disable_runtime(rq); 2190 2191 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2192 } 2193 2194 /* 2195 * When switch from the rt queue, we bring ourselves to a position 2196 * that we might want to pull RT tasks from other runqueues. 2197 */ 2198 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2199 { 2200 /* 2201 * If there are other RT tasks then we will reschedule 2202 * and the scheduling of the other RT tasks will handle 2203 * the balancing. But if we are the last RT task 2204 * we may need to handle the pulling of RT tasks 2205 * now. 2206 */ 2207 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2208 return; 2209 2210 rt_queue_pull_task(rq); 2211 } 2212 2213 void __init init_sched_rt_class(void) 2214 { 2215 unsigned int i; 2216 2217 for_each_possible_cpu(i) { 2218 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2219 GFP_KERNEL, cpu_to_node(i)); 2220 } 2221 } 2222 #endif /* CONFIG_SMP */ 2223 2224 /* 2225 * When switching a task to RT, we may overload the runqueue 2226 * with RT tasks. In this case we try to push them off to 2227 * other runqueues. 2228 */ 2229 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2230 { 2231 /* 2232 * If we are already running, then there's nothing 2233 * that needs to be done. But if we are not running 2234 * we may need to preempt the current running task. 2235 * If that current running task is also an RT task 2236 * then see if we can move to another run queue. 2237 */ 2238 if (task_on_rq_queued(p) && rq->curr != p) { 2239 #ifdef CONFIG_SMP 2240 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2241 rt_queue_push_tasks(rq); 2242 #endif /* CONFIG_SMP */ 2243 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2244 resched_curr(rq); 2245 } 2246 } 2247 2248 /* 2249 * Priority of the task has changed. This may cause 2250 * us to initiate a push or pull. 2251 */ 2252 static void 2253 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2254 { 2255 if (!task_on_rq_queued(p)) 2256 return; 2257 2258 if (rq->curr == p) { 2259 #ifdef CONFIG_SMP 2260 /* 2261 * If our priority decreases while running, we 2262 * may need to pull tasks to this runqueue. 2263 */ 2264 if (oldprio < p->prio) 2265 rt_queue_pull_task(rq); 2266 2267 /* 2268 * If there's a higher priority task waiting to run 2269 * then reschedule. 2270 */ 2271 if (p->prio > rq->rt.highest_prio.curr) 2272 resched_curr(rq); 2273 #else 2274 /* For UP simply resched on drop of prio */ 2275 if (oldprio < p->prio) 2276 resched_curr(rq); 2277 #endif /* CONFIG_SMP */ 2278 } else { 2279 /* 2280 * This task is not running, but if it is 2281 * greater than the current running task 2282 * then reschedule. 2283 */ 2284 if (p->prio < rq->curr->prio) 2285 resched_curr(rq); 2286 } 2287 } 2288 2289 #ifdef CONFIG_POSIX_TIMERS 2290 static void watchdog(struct rq *rq, struct task_struct *p) 2291 { 2292 unsigned long soft, hard; 2293 2294 /* max may change after cur was read, this will be fixed next tick */ 2295 soft = task_rlimit(p, RLIMIT_RTTIME); 2296 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2297 2298 if (soft != RLIM_INFINITY) { 2299 unsigned long next; 2300 2301 if (p->rt.watchdog_stamp != jiffies) { 2302 p->rt.timeout++; 2303 p->rt.watchdog_stamp = jiffies; 2304 } 2305 2306 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2307 if (p->rt.timeout > next) 2308 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2309 } 2310 } 2311 #else 2312 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2313 #endif 2314 2315 /* 2316 * scheduler tick hitting a task of our scheduling class. 2317 * 2318 * NOTE: This function can be called remotely by the tick offload that 2319 * goes along full dynticks. Therefore no local assumption can be made 2320 * and everything must be accessed through the @rq and @curr passed in 2321 * parameters. 2322 */ 2323 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2324 { 2325 struct sched_rt_entity *rt_se = &p->rt; 2326 2327 update_curr_rt(rq); 2328 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2329 2330 watchdog(rq, p); 2331 2332 /* 2333 * RR tasks need a special form of timeslice management. 2334 * FIFO tasks have no timeslices. 2335 */ 2336 if (p->policy != SCHED_RR) 2337 return; 2338 2339 if (--p->rt.time_slice) 2340 return; 2341 2342 p->rt.time_slice = sched_rr_timeslice; 2343 2344 /* 2345 * Requeue to the end of queue if we (and all of our ancestors) are not 2346 * the only element on the queue 2347 */ 2348 for_each_sched_rt_entity(rt_se) { 2349 if (rt_se->run_list.prev != rt_se->run_list.next) { 2350 requeue_task_rt(rq, p, 0); 2351 resched_curr(rq); 2352 return; 2353 } 2354 } 2355 } 2356 2357 static void set_curr_task_rt(struct rq *rq) 2358 { 2359 set_next_task(rq, rq->curr); 2360 } 2361 2362 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2363 { 2364 /* 2365 * Time slice is 0 for SCHED_FIFO tasks 2366 */ 2367 if (task->policy == SCHED_RR) 2368 return sched_rr_timeslice; 2369 else 2370 return 0; 2371 } 2372 2373 const struct sched_class rt_sched_class = { 2374 .next = &fair_sched_class, 2375 .enqueue_task = enqueue_task_rt, 2376 .dequeue_task = dequeue_task_rt, 2377 .yield_task = yield_task_rt, 2378 2379 .check_preempt_curr = check_preempt_curr_rt, 2380 2381 .pick_next_task = pick_next_task_rt, 2382 .put_prev_task = put_prev_task_rt, 2383 2384 #ifdef CONFIG_SMP 2385 .select_task_rq = select_task_rq_rt, 2386 2387 .set_cpus_allowed = set_cpus_allowed_common, 2388 .rq_online = rq_online_rt, 2389 .rq_offline = rq_offline_rt, 2390 .task_woken = task_woken_rt, 2391 .switched_from = switched_from_rt, 2392 #endif 2393 2394 .set_curr_task = set_curr_task_rt, 2395 .task_tick = task_tick_rt, 2396 2397 .get_rr_interval = get_rr_interval_rt, 2398 2399 .prio_changed = prio_changed_rt, 2400 .switched_to = switched_to_rt, 2401 2402 .update_curr = update_curr_rt, 2403 }; 2404 2405 #ifdef CONFIG_RT_GROUP_SCHED 2406 /* 2407 * Ensure that the real time constraints are schedulable. 2408 */ 2409 static DEFINE_MUTEX(rt_constraints_mutex); 2410 2411 /* Must be called with tasklist_lock held */ 2412 static inline int tg_has_rt_tasks(struct task_group *tg) 2413 { 2414 struct task_struct *g, *p; 2415 2416 /* 2417 * Autogroups do not have RT tasks; see autogroup_create(). 2418 */ 2419 if (task_group_is_autogroup(tg)) 2420 return 0; 2421 2422 for_each_process_thread(g, p) { 2423 if (rt_task(p) && task_group(p) == tg) 2424 return 1; 2425 } 2426 2427 return 0; 2428 } 2429 2430 struct rt_schedulable_data { 2431 struct task_group *tg; 2432 u64 rt_period; 2433 u64 rt_runtime; 2434 }; 2435 2436 static int tg_rt_schedulable(struct task_group *tg, void *data) 2437 { 2438 struct rt_schedulable_data *d = data; 2439 struct task_group *child; 2440 unsigned long total, sum = 0; 2441 u64 period, runtime; 2442 2443 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2444 runtime = tg->rt_bandwidth.rt_runtime; 2445 2446 if (tg == d->tg) { 2447 period = d->rt_period; 2448 runtime = d->rt_runtime; 2449 } 2450 2451 /* 2452 * Cannot have more runtime than the period. 2453 */ 2454 if (runtime > period && runtime != RUNTIME_INF) 2455 return -EINVAL; 2456 2457 /* 2458 * Ensure we don't starve existing RT tasks. 2459 */ 2460 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2461 return -EBUSY; 2462 2463 total = to_ratio(period, runtime); 2464 2465 /* 2466 * Nobody can have more than the global setting allows. 2467 */ 2468 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2469 return -EINVAL; 2470 2471 /* 2472 * The sum of our children's runtime should not exceed our own. 2473 */ 2474 list_for_each_entry_rcu(child, &tg->children, siblings) { 2475 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2476 runtime = child->rt_bandwidth.rt_runtime; 2477 2478 if (child == d->tg) { 2479 period = d->rt_period; 2480 runtime = d->rt_runtime; 2481 } 2482 2483 sum += to_ratio(period, runtime); 2484 } 2485 2486 if (sum > total) 2487 return -EINVAL; 2488 2489 return 0; 2490 } 2491 2492 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2493 { 2494 int ret; 2495 2496 struct rt_schedulable_data data = { 2497 .tg = tg, 2498 .rt_period = period, 2499 .rt_runtime = runtime, 2500 }; 2501 2502 rcu_read_lock(); 2503 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2504 rcu_read_unlock(); 2505 2506 return ret; 2507 } 2508 2509 static int tg_set_rt_bandwidth(struct task_group *tg, 2510 u64 rt_period, u64 rt_runtime) 2511 { 2512 int i, err = 0; 2513 2514 /* 2515 * Disallowing the root group RT runtime is BAD, it would disallow the 2516 * kernel creating (and or operating) RT threads. 2517 */ 2518 if (tg == &root_task_group && rt_runtime == 0) 2519 return -EINVAL; 2520 2521 /* No period doesn't make any sense. */ 2522 if (rt_period == 0) 2523 return -EINVAL; 2524 2525 mutex_lock(&rt_constraints_mutex); 2526 read_lock(&tasklist_lock); 2527 err = __rt_schedulable(tg, rt_period, rt_runtime); 2528 if (err) 2529 goto unlock; 2530 2531 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2532 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2533 tg->rt_bandwidth.rt_runtime = rt_runtime; 2534 2535 for_each_possible_cpu(i) { 2536 struct rt_rq *rt_rq = tg->rt_rq[i]; 2537 2538 raw_spin_lock(&rt_rq->rt_runtime_lock); 2539 rt_rq->rt_runtime = rt_runtime; 2540 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2541 } 2542 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2543 unlock: 2544 read_unlock(&tasklist_lock); 2545 mutex_unlock(&rt_constraints_mutex); 2546 2547 return err; 2548 } 2549 2550 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2551 { 2552 u64 rt_runtime, rt_period; 2553 2554 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2555 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2556 if (rt_runtime_us < 0) 2557 rt_runtime = RUNTIME_INF; 2558 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2559 return -EINVAL; 2560 2561 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2562 } 2563 2564 long sched_group_rt_runtime(struct task_group *tg) 2565 { 2566 u64 rt_runtime_us; 2567 2568 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2569 return -1; 2570 2571 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2572 do_div(rt_runtime_us, NSEC_PER_USEC); 2573 return rt_runtime_us; 2574 } 2575 2576 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2577 { 2578 u64 rt_runtime, rt_period; 2579 2580 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2581 return -EINVAL; 2582 2583 rt_period = rt_period_us * NSEC_PER_USEC; 2584 rt_runtime = tg->rt_bandwidth.rt_runtime; 2585 2586 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2587 } 2588 2589 long sched_group_rt_period(struct task_group *tg) 2590 { 2591 u64 rt_period_us; 2592 2593 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2594 do_div(rt_period_us, NSEC_PER_USEC); 2595 return rt_period_us; 2596 } 2597 2598 static int sched_rt_global_constraints(void) 2599 { 2600 int ret = 0; 2601 2602 mutex_lock(&rt_constraints_mutex); 2603 read_lock(&tasklist_lock); 2604 ret = __rt_schedulable(NULL, 0, 0); 2605 read_unlock(&tasklist_lock); 2606 mutex_unlock(&rt_constraints_mutex); 2607 2608 return ret; 2609 } 2610 2611 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2612 { 2613 /* Don't accept realtime tasks when there is no way for them to run */ 2614 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2615 return 0; 2616 2617 return 1; 2618 } 2619 2620 #else /* !CONFIG_RT_GROUP_SCHED */ 2621 static int sched_rt_global_constraints(void) 2622 { 2623 unsigned long flags; 2624 int i; 2625 2626 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2627 for_each_possible_cpu(i) { 2628 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2629 2630 raw_spin_lock(&rt_rq->rt_runtime_lock); 2631 rt_rq->rt_runtime = global_rt_runtime(); 2632 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2633 } 2634 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2635 2636 return 0; 2637 } 2638 #endif /* CONFIG_RT_GROUP_SCHED */ 2639 2640 static int sched_rt_global_validate(void) 2641 { 2642 if (sysctl_sched_rt_period <= 0) 2643 return -EINVAL; 2644 2645 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2646 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2647 return -EINVAL; 2648 2649 return 0; 2650 } 2651 2652 static void sched_rt_do_global(void) 2653 { 2654 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2655 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2656 } 2657 2658 int sched_rt_handler(struct ctl_table *table, int write, 2659 void __user *buffer, size_t *lenp, 2660 loff_t *ppos) 2661 { 2662 int old_period, old_runtime; 2663 static DEFINE_MUTEX(mutex); 2664 int ret; 2665 2666 mutex_lock(&mutex); 2667 old_period = sysctl_sched_rt_period; 2668 old_runtime = sysctl_sched_rt_runtime; 2669 2670 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2671 2672 if (!ret && write) { 2673 ret = sched_rt_global_validate(); 2674 if (ret) 2675 goto undo; 2676 2677 ret = sched_dl_global_validate(); 2678 if (ret) 2679 goto undo; 2680 2681 ret = sched_rt_global_constraints(); 2682 if (ret) 2683 goto undo; 2684 2685 sched_rt_do_global(); 2686 sched_dl_do_global(); 2687 } 2688 if (0) { 2689 undo: 2690 sysctl_sched_rt_period = old_period; 2691 sysctl_sched_rt_runtime = old_runtime; 2692 } 2693 mutex_unlock(&mutex); 2694 2695 return ret; 2696 } 2697 2698 int sched_rr_handler(struct ctl_table *table, int write, 2699 void __user *buffer, size_t *lenp, 2700 loff_t *ppos) 2701 { 2702 int ret; 2703 static DEFINE_MUTEX(mutex); 2704 2705 mutex_lock(&mutex); 2706 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2707 /* 2708 * Make sure that internally we keep jiffies. 2709 * Also, writing zero resets the timeslice to default: 2710 */ 2711 if (!ret && write) { 2712 sched_rr_timeslice = 2713 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2714 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2715 } 2716 mutex_unlock(&mutex); 2717 2718 return ret; 2719 } 2720 2721 #ifdef CONFIG_SCHED_DEBUG 2722 void print_rt_stats(struct seq_file *m, int cpu) 2723 { 2724 rt_rq_iter_t iter; 2725 struct rt_rq *rt_rq; 2726 2727 rcu_read_lock(); 2728 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2729 print_rt_rq(m, cpu, rt_rq); 2730 rcu_read_unlock(); 2731 } 2732 #endif /* CONFIG_SCHED_DEBUG */ 2733