1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 /* 16 * period over which we measure -rt task CPU usage in us. 17 * default: 1s 18 */ 19 int sysctl_sched_rt_period = 1000000; 20 21 /* 22 * part of the period that we allow rt tasks to run in us. 23 * default: 0.95s 24 */ 25 int sysctl_sched_rt_runtime = 950000; 26 27 #ifdef CONFIG_SYSCTL 28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 30 size_t *lenp, loff_t *ppos); 31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 32 size_t *lenp, loff_t *ppos); 33 static struct ctl_table sched_rt_sysctls[] = { 34 { 35 .procname = "sched_rt_period_us", 36 .data = &sysctl_sched_rt_period, 37 .maxlen = sizeof(int), 38 .mode = 0644, 39 .proc_handler = sched_rt_handler, 40 .extra1 = SYSCTL_ONE, 41 .extra2 = SYSCTL_INT_MAX, 42 }, 43 { 44 .procname = "sched_rt_runtime_us", 45 .data = &sysctl_sched_rt_runtime, 46 .maxlen = sizeof(int), 47 .mode = 0644, 48 .proc_handler = sched_rt_handler, 49 .extra1 = SYSCTL_NEG_ONE, 50 .extra2 = (void *)&sysctl_sched_rt_period, 51 }, 52 { 53 .procname = "sched_rr_timeslice_ms", 54 .data = &sysctl_sched_rr_timeslice, 55 .maxlen = sizeof(int), 56 .mode = 0644, 57 .proc_handler = sched_rr_handler, 58 }, 59 {} 60 }; 61 62 static int __init sched_rt_sysctl_init(void) 63 { 64 register_sysctl_init("kernel", sched_rt_sysctls); 65 return 0; 66 } 67 late_initcall(sched_rt_sysctl_init); 68 #endif 69 70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 71 { 72 struct rt_bandwidth *rt_b = 73 container_of(timer, struct rt_bandwidth, rt_period_timer); 74 int idle = 0; 75 int overrun; 76 77 raw_spin_lock(&rt_b->rt_runtime_lock); 78 for (;;) { 79 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 80 if (!overrun) 81 break; 82 83 raw_spin_unlock(&rt_b->rt_runtime_lock); 84 idle = do_sched_rt_period_timer(rt_b, overrun); 85 raw_spin_lock(&rt_b->rt_runtime_lock); 86 } 87 if (idle) 88 rt_b->rt_period_active = 0; 89 raw_spin_unlock(&rt_b->rt_runtime_lock); 90 91 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 92 } 93 94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 95 { 96 rt_b->rt_period = ns_to_ktime(period); 97 rt_b->rt_runtime = runtime; 98 99 raw_spin_lock_init(&rt_b->rt_runtime_lock); 100 101 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 102 HRTIMER_MODE_REL_HARD); 103 rt_b->rt_period_timer.function = sched_rt_period_timer; 104 } 105 106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 107 { 108 raw_spin_lock(&rt_b->rt_runtime_lock); 109 if (!rt_b->rt_period_active) { 110 rt_b->rt_period_active = 1; 111 /* 112 * SCHED_DEADLINE updates the bandwidth, as a run away 113 * RT task with a DL task could hog a CPU. But DL does 114 * not reset the period. If a deadline task was running 115 * without an RT task running, it can cause RT tasks to 116 * throttle when they start up. Kick the timer right away 117 * to update the period. 118 */ 119 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 120 hrtimer_start_expires(&rt_b->rt_period_timer, 121 HRTIMER_MODE_ABS_PINNED_HARD); 122 } 123 raw_spin_unlock(&rt_b->rt_runtime_lock); 124 } 125 126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 127 { 128 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 129 return; 130 131 do_start_rt_bandwidth(rt_b); 132 } 133 134 void init_rt_rq(struct rt_rq *rt_rq) 135 { 136 struct rt_prio_array *array; 137 int i; 138 139 array = &rt_rq->active; 140 for (i = 0; i < MAX_RT_PRIO; i++) { 141 INIT_LIST_HEAD(array->queue + i); 142 __clear_bit(i, array->bitmap); 143 } 144 /* delimiter for bitsearch: */ 145 __set_bit(MAX_RT_PRIO, array->bitmap); 146 147 #if defined CONFIG_SMP 148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 149 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 150 rt_rq->overloaded = 0; 151 plist_head_init(&rt_rq->pushable_tasks); 152 #endif /* CONFIG_SMP */ 153 /* We start is dequeued state, because no RT tasks are queued */ 154 rt_rq->rt_queued = 0; 155 156 rt_rq->rt_time = 0; 157 rt_rq->rt_throttled = 0; 158 rt_rq->rt_runtime = 0; 159 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 160 } 161 162 #ifdef CONFIG_RT_GROUP_SCHED 163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 164 { 165 hrtimer_cancel(&rt_b->rt_period_timer); 166 } 167 168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 169 170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 171 { 172 #ifdef CONFIG_SCHED_DEBUG 173 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 174 #endif 175 return container_of(rt_se, struct task_struct, rt); 176 } 177 178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 179 { 180 return rt_rq->rq; 181 } 182 183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 184 { 185 return rt_se->rt_rq; 186 } 187 188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 189 { 190 struct rt_rq *rt_rq = rt_se->rt_rq; 191 192 return rt_rq->rq; 193 } 194 195 void unregister_rt_sched_group(struct task_group *tg) 196 { 197 if (tg->rt_se) 198 destroy_rt_bandwidth(&tg->rt_bandwidth); 199 200 } 201 202 void free_rt_sched_group(struct task_group *tg) 203 { 204 int i; 205 206 for_each_possible_cpu(i) { 207 if (tg->rt_rq) 208 kfree(tg->rt_rq[i]); 209 if (tg->rt_se) 210 kfree(tg->rt_se[i]); 211 } 212 213 kfree(tg->rt_rq); 214 kfree(tg->rt_se); 215 } 216 217 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 218 struct sched_rt_entity *rt_se, int cpu, 219 struct sched_rt_entity *parent) 220 { 221 struct rq *rq = cpu_rq(cpu); 222 223 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 224 rt_rq->rt_nr_boosted = 0; 225 rt_rq->rq = rq; 226 rt_rq->tg = tg; 227 228 tg->rt_rq[cpu] = rt_rq; 229 tg->rt_se[cpu] = rt_se; 230 231 if (!rt_se) 232 return; 233 234 if (!parent) 235 rt_se->rt_rq = &rq->rt; 236 else 237 rt_se->rt_rq = parent->my_q; 238 239 rt_se->my_q = rt_rq; 240 rt_se->parent = parent; 241 INIT_LIST_HEAD(&rt_se->run_list); 242 } 243 244 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 245 { 246 struct rt_rq *rt_rq; 247 struct sched_rt_entity *rt_se; 248 int i; 249 250 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 251 if (!tg->rt_rq) 252 goto err; 253 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 254 if (!tg->rt_se) 255 goto err; 256 257 init_rt_bandwidth(&tg->rt_bandwidth, 258 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 259 260 for_each_possible_cpu(i) { 261 rt_rq = kzalloc_node(sizeof(struct rt_rq), 262 GFP_KERNEL, cpu_to_node(i)); 263 if (!rt_rq) 264 goto err; 265 266 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 267 GFP_KERNEL, cpu_to_node(i)); 268 if (!rt_se) 269 goto err_free_rq; 270 271 init_rt_rq(rt_rq); 272 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 273 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 274 } 275 276 return 1; 277 278 err_free_rq: 279 kfree(rt_rq); 280 err: 281 return 0; 282 } 283 284 #else /* CONFIG_RT_GROUP_SCHED */ 285 286 #define rt_entity_is_task(rt_se) (1) 287 288 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 289 { 290 return container_of(rt_se, struct task_struct, rt); 291 } 292 293 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 294 { 295 return container_of(rt_rq, struct rq, rt); 296 } 297 298 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 299 { 300 struct task_struct *p = rt_task_of(rt_se); 301 302 return task_rq(p); 303 } 304 305 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 306 { 307 struct rq *rq = rq_of_rt_se(rt_se); 308 309 return &rq->rt; 310 } 311 312 void unregister_rt_sched_group(struct task_group *tg) { } 313 314 void free_rt_sched_group(struct task_group *tg) { } 315 316 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 317 { 318 return 1; 319 } 320 #endif /* CONFIG_RT_GROUP_SCHED */ 321 322 #ifdef CONFIG_SMP 323 324 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 325 { 326 /* Try to pull RT tasks here if we lower this rq's prio */ 327 return rq->online && rq->rt.highest_prio.curr > prev->prio; 328 } 329 330 static inline int rt_overloaded(struct rq *rq) 331 { 332 return atomic_read(&rq->rd->rto_count); 333 } 334 335 static inline void rt_set_overload(struct rq *rq) 336 { 337 if (!rq->online) 338 return; 339 340 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 341 /* 342 * Make sure the mask is visible before we set 343 * the overload count. That is checked to determine 344 * if we should look at the mask. It would be a shame 345 * if we looked at the mask, but the mask was not 346 * updated yet. 347 * 348 * Matched by the barrier in pull_rt_task(). 349 */ 350 smp_wmb(); 351 atomic_inc(&rq->rd->rto_count); 352 } 353 354 static inline void rt_clear_overload(struct rq *rq) 355 { 356 if (!rq->online) 357 return; 358 359 /* the order here really doesn't matter */ 360 atomic_dec(&rq->rd->rto_count); 361 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 362 } 363 364 static inline int has_pushable_tasks(struct rq *rq) 365 { 366 return !plist_head_empty(&rq->rt.pushable_tasks); 367 } 368 369 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 370 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 371 372 static void push_rt_tasks(struct rq *); 373 static void pull_rt_task(struct rq *); 374 375 static inline void rt_queue_push_tasks(struct rq *rq) 376 { 377 if (!has_pushable_tasks(rq)) 378 return; 379 380 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 381 } 382 383 static inline void rt_queue_pull_task(struct rq *rq) 384 { 385 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 386 } 387 388 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 389 { 390 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 391 plist_node_init(&p->pushable_tasks, p->prio); 392 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 393 394 /* Update the highest prio pushable task */ 395 if (p->prio < rq->rt.highest_prio.next) 396 rq->rt.highest_prio.next = p->prio; 397 398 if (!rq->rt.overloaded) { 399 rt_set_overload(rq); 400 rq->rt.overloaded = 1; 401 } 402 } 403 404 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 405 { 406 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 407 408 /* Update the new highest prio pushable task */ 409 if (has_pushable_tasks(rq)) { 410 p = plist_first_entry(&rq->rt.pushable_tasks, 411 struct task_struct, pushable_tasks); 412 rq->rt.highest_prio.next = p->prio; 413 } else { 414 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 415 416 if (rq->rt.overloaded) { 417 rt_clear_overload(rq); 418 rq->rt.overloaded = 0; 419 } 420 } 421 } 422 423 #else 424 425 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 426 { 427 } 428 429 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 430 { 431 } 432 433 static inline void rt_queue_push_tasks(struct rq *rq) 434 { 435 } 436 #endif /* CONFIG_SMP */ 437 438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 440 441 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 442 { 443 return rt_se->on_rq; 444 } 445 446 #ifdef CONFIG_UCLAMP_TASK 447 /* 448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 449 * settings. 450 * 451 * This check is only important for heterogeneous systems where uclamp_min value 452 * is higher than the capacity of a @cpu. For non-heterogeneous system this 453 * function will always return true. 454 * 455 * The function will return true if the capacity of the @cpu is >= the 456 * uclamp_min and false otherwise. 457 * 458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 459 * > uclamp_max. 460 */ 461 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 462 { 463 unsigned int min_cap; 464 unsigned int max_cap; 465 unsigned int cpu_cap; 466 467 /* Only heterogeneous systems can benefit from this check */ 468 if (!sched_asym_cpucap_active()) 469 return true; 470 471 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 472 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 473 474 cpu_cap = arch_scale_cpu_capacity(cpu); 475 476 return cpu_cap >= min(min_cap, max_cap); 477 } 478 #else 479 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 480 { 481 return true; 482 } 483 #endif 484 485 #ifdef CONFIG_RT_GROUP_SCHED 486 487 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 488 { 489 if (!rt_rq->tg) 490 return RUNTIME_INF; 491 492 return rt_rq->rt_runtime; 493 } 494 495 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 496 { 497 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 498 } 499 500 typedef struct task_group *rt_rq_iter_t; 501 502 static inline struct task_group *next_task_group(struct task_group *tg) 503 { 504 do { 505 tg = list_entry_rcu(tg->list.next, 506 typeof(struct task_group), list); 507 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 508 509 if (&tg->list == &task_groups) 510 tg = NULL; 511 512 return tg; 513 } 514 515 #define for_each_rt_rq(rt_rq, iter, rq) \ 516 for (iter = container_of(&task_groups, typeof(*iter), list); \ 517 (iter = next_task_group(iter)) && \ 518 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 519 520 #define for_each_sched_rt_entity(rt_se) \ 521 for (; rt_se; rt_se = rt_se->parent) 522 523 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 524 { 525 return rt_se->my_q; 526 } 527 528 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 530 531 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 532 { 533 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 534 struct rq *rq = rq_of_rt_rq(rt_rq); 535 struct sched_rt_entity *rt_se; 536 537 int cpu = cpu_of(rq); 538 539 rt_se = rt_rq->tg->rt_se[cpu]; 540 541 if (rt_rq->rt_nr_running) { 542 if (!rt_se) 543 enqueue_top_rt_rq(rt_rq); 544 else if (!on_rt_rq(rt_se)) 545 enqueue_rt_entity(rt_se, 0); 546 547 if (rt_rq->highest_prio.curr < curr->prio) 548 resched_curr(rq); 549 } 550 } 551 552 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 553 { 554 struct sched_rt_entity *rt_se; 555 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 556 557 rt_se = rt_rq->tg->rt_se[cpu]; 558 559 if (!rt_se) { 560 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 561 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 562 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 563 } 564 else if (on_rt_rq(rt_se)) 565 dequeue_rt_entity(rt_se, 0); 566 } 567 568 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 569 { 570 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 571 } 572 573 static int rt_se_boosted(struct sched_rt_entity *rt_se) 574 { 575 struct rt_rq *rt_rq = group_rt_rq(rt_se); 576 struct task_struct *p; 577 578 if (rt_rq) 579 return !!rt_rq->rt_nr_boosted; 580 581 p = rt_task_of(rt_se); 582 return p->prio != p->normal_prio; 583 } 584 585 #ifdef CONFIG_SMP 586 static inline const struct cpumask *sched_rt_period_mask(void) 587 { 588 return this_rq()->rd->span; 589 } 590 #else 591 static inline const struct cpumask *sched_rt_period_mask(void) 592 { 593 return cpu_online_mask; 594 } 595 #endif 596 597 static inline 598 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 599 { 600 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 601 } 602 603 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 604 { 605 return &rt_rq->tg->rt_bandwidth; 606 } 607 608 #else /* !CONFIG_RT_GROUP_SCHED */ 609 610 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 611 { 612 return rt_rq->rt_runtime; 613 } 614 615 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 616 { 617 return ktime_to_ns(def_rt_bandwidth.rt_period); 618 } 619 620 typedef struct rt_rq *rt_rq_iter_t; 621 622 #define for_each_rt_rq(rt_rq, iter, rq) \ 623 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 624 625 #define for_each_sched_rt_entity(rt_se) \ 626 for (; rt_se; rt_se = NULL) 627 628 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 629 { 630 return NULL; 631 } 632 633 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 634 { 635 struct rq *rq = rq_of_rt_rq(rt_rq); 636 637 if (!rt_rq->rt_nr_running) 638 return; 639 640 enqueue_top_rt_rq(rt_rq); 641 resched_curr(rq); 642 } 643 644 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 645 { 646 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 647 } 648 649 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 650 { 651 return rt_rq->rt_throttled; 652 } 653 654 static inline const struct cpumask *sched_rt_period_mask(void) 655 { 656 return cpu_online_mask; 657 } 658 659 static inline 660 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 661 { 662 return &cpu_rq(cpu)->rt; 663 } 664 665 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 666 { 667 return &def_rt_bandwidth; 668 } 669 670 #endif /* CONFIG_RT_GROUP_SCHED */ 671 672 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 673 { 674 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 675 676 return (hrtimer_active(&rt_b->rt_period_timer) || 677 rt_rq->rt_time < rt_b->rt_runtime); 678 } 679 680 #ifdef CONFIG_SMP 681 /* 682 * We ran out of runtime, see if we can borrow some from our neighbours. 683 */ 684 static void do_balance_runtime(struct rt_rq *rt_rq) 685 { 686 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 687 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 688 int i, weight; 689 u64 rt_period; 690 691 weight = cpumask_weight(rd->span); 692 693 raw_spin_lock(&rt_b->rt_runtime_lock); 694 rt_period = ktime_to_ns(rt_b->rt_period); 695 for_each_cpu(i, rd->span) { 696 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 697 s64 diff; 698 699 if (iter == rt_rq) 700 continue; 701 702 raw_spin_lock(&iter->rt_runtime_lock); 703 /* 704 * Either all rqs have inf runtime and there's nothing to steal 705 * or __disable_runtime() below sets a specific rq to inf to 706 * indicate its been disabled and disallow stealing. 707 */ 708 if (iter->rt_runtime == RUNTIME_INF) 709 goto next; 710 711 /* 712 * From runqueues with spare time, take 1/n part of their 713 * spare time, but no more than our period. 714 */ 715 diff = iter->rt_runtime - iter->rt_time; 716 if (diff > 0) { 717 diff = div_u64((u64)diff, weight); 718 if (rt_rq->rt_runtime + diff > rt_period) 719 diff = rt_period - rt_rq->rt_runtime; 720 iter->rt_runtime -= diff; 721 rt_rq->rt_runtime += diff; 722 if (rt_rq->rt_runtime == rt_period) { 723 raw_spin_unlock(&iter->rt_runtime_lock); 724 break; 725 } 726 } 727 next: 728 raw_spin_unlock(&iter->rt_runtime_lock); 729 } 730 raw_spin_unlock(&rt_b->rt_runtime_lock); 731 } 732 733 /* 734 * Ensure this RQ takes back all the runtime it lend to its neighbours. 735 */ 736 static void __disable_runtime(struct rq *rq) 737 { 738 struct root_domain *rd = rq->rd; 739 rt_rq_iter_t iter; 740 struct rt_rq *rt_rq; 741 742 if (unlikely(!scheduler_running)) 743 return; 744 745 for_each_rt_rq(rt_rq, iter, rq) { 746 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 747 s64 want; 748 int i; 749 750 raw_spin_lock(&rt_b->rt_runtime_lock); 751 raw_spin_lock(&rt_rq->rt_runtime_lock); 752 /* 753 * Either we're all inf and nobody needs to borrow, or we're 754 * already disabled and thus have nothing to do, or we have 755 * exactly the right amount of runtime to take out. 756 */ 757 if (rt_rq->rt_runtime == RUNTIME_INF || 758 rt_rq->rt_runtime == rt_b->rt_runtime) 759 goto balanced; 760 raw_spin_unlock(&rt_rq->rt_runtime_lock); 761 762 /* 763 * Calculate the difference between what we started out with 764 * and what we current have, that's the amount of runtime 765 * we lend and now have to reclaim. 766 */ 767 want = rt_b->rt_runtime - rt_rq->rt_runtime; 768 769 /* 770 * Greedy reclaim, take back as much as we can. 771 */ 772 for_each_cpu(i, rd->span) { 773 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 774 s64 diff; 775 776 /* 777 * Can't reclaim from ourselves or disabled runqueues. 778 */ 779 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 780 continue; 781 782 raw_spin_lock(&iter->rt_runtime_lock); 783 if (want > 0) { 784 diff = min_t(s64, iter->rt_runtime, want); 785 iter->rt_runtime -= diff; 786 want -= diff; 787 } else { 788 iter->rt_runtime -= want; 789 want -= want; 790 } 791 raw_spin_unlock(&iter->rt_runtime_lock); 792 793 if (!want) 794 break; 795 } 796 797 raw_spin_lock(&rt_rq->rt_runtime_lock); 798 /* 799 * We cannot be left wanting - that would mean some runtime 800 * leaked out of the system. 801 */ 802 WARN_ON_ONCE(want); 803 balanced: 804 /* 805 * Disable all the borrow logic by pretending we have inf 806 * runtime - in which case borrowing doesn't make sense. 807 */ 808 rt_rq->rt_runtime = RUNTIME_INF; 809 rt_rq->rt_throttled = 0; 810 raw_spin_unlock(&rt_rq->rt_runtime_lock); 811 raw_spin_unlock(&rt_b->rt_runtime_lock); 812 813 /* Make rt_rq available for pick_next_task() */ 814 sched_rt_rq_enqueue(rt_rq); 815 } 816 } 817 818 static void __enable_runtime(struct rq *rq) 819 { 820 rt_rq_iter_t iter; 821 struct rt_rq *rt_rq; 822 823 if (unlikely(!scheduler_running)) 824 return; 825 826 /* 827 * Reset each runqueue's bandwidth settings 828 */ 829 for_each_rt_rq(rt_rq, iter, rq) { 830 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 831 832 raw_spin_lock(&rt_b->rt_runtime_lock); 833 raw_spin_lock(&rt_rq->rt_runtime_lock); 834 rt_rq->rt_runtime = rt_b->rt_runtime; 835 rt_rq->rt_time = 0; 836 rt_rq->rt_throttled = 0; 837 raw_spin_unlock(&rt_rq->rt_runtime_lock); 838 raw_spin_unlock(&rt_b->rt_runtime_lock); 839 } 840 } 841 842 static void balance_runtime(struct rt_rq *rt_rq) 843 { 844 if (!sched_feat(RT_RUNTIME_SHARE)) 845 return; 846 847 if (rt_rq->rt_time > rt_rq->rt_runtime) { 848 raw_spin_unlock(&rt_rq->rt_runtime_lock); 849 do_balance_runtime(rt_rq); 850 raw_spin_lock(&rt_rq->rt_runtime_lock); 851 } 852 } 853 #else /* !CONFIG_SMP */ 854 static inline void balance_runtime(struct rt_rq *rt_rq) {} 855 #endif /* CONFIG_SMP */ 856 857 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 858 { 859 int i, idle = 1, throttled = 0; 860 const struct cpumask *span; 861 862 span = sched_rt_period_mask(); 863 #ifdef CONFIG_RT_GROUP_SCHED 864 /* 865 * FIXME: isolated CPUs should really leave the root task group, 866 * whether they are isolcpus or were isolated via cpusets, lest 867 * the timer run on a CPU which does not service all runqueues, 868 * potentially leaving other CPUs indefinitely throttled. If 869 * isolation is really required, the user will turn the throttle 870 * off to kill the perturbations it causes anyway. Meanwhile, 871 * this maintains functionality for boot and/or troubleshooting. 872 */ 873 if (rt_b == &root_task_group.rt_bandwidth) 874 span = cpu_online_mask; 875 #endif 876 for_each_cpu(i, span) { 877 int enqueue = 0; 878 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 879 struct rq *rq = rq_of_rt_rq(rt_rq); 880 struct rq_flags rf; 881 int skip; 882 883 /* 884 * When span == cpu_online_mask, taking each rq->lock 885 * can be time-consuming. Try to avoid it when possible. 886 */ 887 raw_spin_lock(&rt_rq->rt_runtime_lock); 888 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 889 rt_rq->rt_runtime = rt_b->rt_runtime; 890 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 891 raw_spin_unlock(&rt_rq->rt_runtime_lock); 892 if (skip) 893 continue; 894 895 rq_lock(rq, &rf); 896 update_rq_clock(rq); 897 898 if (rt_rq->rt_time) { 899 u64 runtime; 900 901 raw_spin_lock(&rt_rq->rt_runtime_lock); 902 if (rt_rq->rt_throttled) 903 balance_runtime(rt_rq); 904 runtime = rt_rq->rt_runtime; 905 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 906 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 907 rt_rq->rt_throttled = 0; 908 enqueue = 1; 909 910 /* 911 * When we're idle and a woken (rt) task is 912 * throttled wakeup_preempt() will set 913 * skip_update and the time between the wakeup 914 * and this unthrottle will get accounted as 915 * 'runtime'. 916 */ 917 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 918 rq_clock_cancel_skipupdate(rq); 919 } 920 if (rt_rq->rt_time || rt_rq->rt_nr_running) 921 idle = 0; 922 raw_spin_unlock(&rt_rq->rt_runtime_lock); 923 } else if (rt_rq->rt_nr_running) { 924 idle = 0; 925 if (!rt_rq_throttled(rt_rq)) 926 enqueue = 1; 927 } 928 if (rt_rq->rt_throttled) 929 throttled = 1; 930 931 if (enqueue) 932 sched_rt_rq_enqueue(rt_rq); 933 rq_unlock(rq, &rf); 934 } 935 936 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 937 return 1; 938 939 return idle; 940 } 941 942 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 943 { 944 #ifdef CONFIG_RT_GROUP_SCHED 945 struct rt_rq *rt_rq = group_rt_rq(rt_se); 946 947 if (rt_rq) 948 return rt_rq->highest_prio.curr; 949 #endif 950 951 return rt_task_of(rt_se)->prio; 952 } 953 954 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 955 { 956 u64 runtime = sched_rt_runtime(rt_rq); 957 958 if (rt_rq->rt_throttled) 959 return rt_rq_throttled(rt_rq); 960 961 if (runtime >= sched_rt_period(rt_rq)) 962 return 0; 963 964 balance_runtime(rt_rq); 965 runtime = sched_rt_runtime(rt_rq); 966 if (runtime == RUNTIME_INF) 967 return 0; 968 969 if (rt_rq->rt_time > runtime) { 970 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 971 972 /* 973 * Don't actually throttle groups that have no runtime assigned 974 * but accrue some time due to boosting. 975 */ 976 if (likely(rt_b->rt_runtime)) { 977 rt_rq->rt_throttled = 1; 978 printk_deferred_once("sched: RT throttling activated\n"); 979 } else { 980 /* 981 * In case we did anyway, make it go away, 982 * replenishment is a joke, since it will replenish us 983 * with exactly 0 ns. 984 */ 985 rt_rq->rt_time = 0; 986 } 987 988 if (rt_rq_throttled(rt_rq)) { 989 sched_rt_rq_dequeue(rt_rq); 990 return 1; 991 } 992 } 993 994 return 0; 995 } 996 997 /* 998 * Update the current task's runtime statistics. Skip current tasks that 999 * are not in our scheduling class. 1000 */ 1001 static void update_curr_rt(struct rq *rq) 1002 { 1003 struct task_struct *curr = rq->curr; 1004 struct sched_rt_entity *rt_se = &curr->rt; 1005 s64 delta_exec; 1006 1007 if (curr->sched_class != &rt_sched_class) 1008 return; 1009 1010 delta_exec = update_curr_common(rq); 1011 if (unlikely(delta_exec <= 0)) 1012 return; 1013 1014 if (!rt_bandwidth_enabled()) 1015 return; 1016 1017 for_each_sched_rt_entity(rt_se) { 1018 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1019 int exceeded; 1020 1021 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1022 raw_spin_lock(&rt_rq->rt_runtime_lock); 1023 rt_rq->rt_time += delta_exec; 1024 exceeded = sched_rt_runtime_exceeded(rt_rq); 1025 if (exceeded) 1026 resched_curr(rq); 1027 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1028 if (exceeded) 1029 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1030 } 1031 } 1032 } 1033 1034 static void 1035 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1036 { 1037 struct rq *rq = rq_of_rt_rq(rt_rq); 1038 1039 BUG_ON(&rq->rt != rt_rq); 1040 1041 if (!rt_rq->rt_queued) 1042 return; 1043 1044 BUG_ON(!rq->nr_running); 1045 1046 sub_nr_running(rq, count); 1047 rt_rq->rt_queued = 0; 1048 1049 } 1050 1051 static void 1052 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1053 { 1054 struct rq *rq = rq_of_rt_rq(rt_rq); 1055 1056 BUG_ON(&rq->rt != rt_rq); 1057 1058 if (rt_rq->rt_queued) 1059 return; 1060 1061 if (rt_rq_throttled(rt_rq)) 1062 return; 1063 1064 if (rt_rq->rt_nr_running) { 1065 add_nr_running(rq, rt_rq->rt_nr_running); 1066 rt_rq->rt_queued = 1; 1067 } 1068 1069 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1070 cpufreq_update_util(rq, 0); 1071 } 1072 1073 #if defined CONFIG_SMP 1074 1075 static void 1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1077 { 1078 struct rq *rq = rq_of_rt_rq(rt_rq); 1079 1080 #ifdef CONFIG_RT_GROUP_SCHED 1081 /* 1082 * Change rq's cpupri only if rt_rq is the top queue. 1083 */ 1084 if (&rq->rt != rt_rq) 1085 return; 1086 #endif 1087 if (rq->online && prio < prev_prio) 1088 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1089 } 1090 1091 static void 1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1093 { 1094 struct rq *rq = rq_of_rt_rq(rt_rq); 1095 1096 #ifdef CONFIG_RT_GROUP_SCHED 1097 /* 1098 * Change rq's cpupri only if rt_rq is the top queue. 1099 */ 1100 if (&rq->rt != rt_rq) 1101 return; 1102 #endif 1103 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1104 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1105 } 1106 1107 #else /* CONFIG_SMP */ 1108 1109 static inline 1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1111 static inline 1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1113 1114 #endif /* CONFIG_SMP */ 1115 1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1117 static void 1118 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1119 { 1120 int prev_prio = rt_rq->highest_prio.curr; 1121 1122 if (prio < prev_prio) 1123 rt_rq->highest_prio.curr = prio; 1124 1125 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1126 } 1127 1128 static void 1129 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1130 { 1131 int prev_prio = rt_rq->highest_prio.curr; 1132 1133 if (rt_rq->rt_nr_running) { 1134 1135 WARN_ON(prio < prev_prio); 1136 1137 /* 1138 * This may have been our highest task, and therefore 1139 * we may have some recomputation to do 1140 */ 1141 if (prio == prev_prio) { 1142 struct rt_prio_array *array = &rt_rq->active; 1143 1144 rt_rq->highest_prio.curr = 1145 sched_find_first_bit(array->bitmap); 1146 } 1147 1148 } else { 1149 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1150 } 1151 1152 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1153 } 1154 1155 #else 1156 1157 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1158 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1159 1160 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1161 1162 #ifdef CONFIG_RT_GROUP_SCHED 1163 1164 static void 1165 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1166 { 1167 if (rt_se_boosted(rt_se)) 1168 rt_rq->rt_nr_boosted++; 1169 1170 if (rt_rq->tg) 1171 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1172 } 1173 1174 static void 1175 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1176 { 1177 if (rt_se_boosted(rt_se)) 1178 rt_rq->rt_nr_boosted--; 1179 1180 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1181 } 1182 1183 #else /* CONFIG_RT_GROUP_SCHED */ 1184 1185 static void 1186 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1187 { 1188 start_rt_bandwidth(&def_rt_bandwidth); 1189 } 1190 1191 static inline 1192 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1193 1194 #endif /* CONFIG_RT_GROUP_SCHED */ 1195 1196 static inline 1197 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1198 { 1199 struct rt_rq *group_rq = group_rt_rq(rt_se); 1200 1201 if (group_rq) 1202 return group_rq->rt_nr_running; 1203 else 1204 return 1; 1205 } 1206 1207 static inline 1208 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1209 { 1210 struct rt_rq *group_rq = group_rt_rq(rt_se); 1211 struct task_struct *tsk; 1212 1213 if (group_rq) 1214 return group_rq->rr_nr_running; 1215 1216 tsk = rt_task_of(rt_se); 1217 1218 return (tsk->policy == SCHED_RR) ? 1 : 0; 1219 } 1220 1221 static inline 1222 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1223 { 1224 int prio = rt_se_prio(rt_se); 1225 1226 WARN_ON(!rt_prio(prio)); 1227 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1228 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1229 1230 inc_rt_prio(rt_rq, prio); 1231 inc_rt_group(rt_se, rt_rq); 1232 } 1233 1234 static inline 1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1236 { 1237 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1238 WARN_ON(!rt_rq->rt_nr_running); 1239 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1240 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1241 1242 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1243 dec_rt_group(rt_se, rt_rq); 1244 } 1245 1246 /* 1247 * Change rt_se->run_list location unless SAVE && !MOVE 1248 * 1249 * assumes ENQUEUE/DEQUEUE flags match 1250 */ 1251 static inline bool move_entity(unsigned int flags) 1252 { 1253 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1254 return false; 1255 1256 return true; 1257 } 1258 1259 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1260 { 1261 list_del_init(&rt_se->run_list); 1262 1263 if (list_empty(array->queue + rt_se_prio(rt_se))) 1264 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1265 1266 rt_se->on_list = 0; 1267 } 1268 1269 static inline struct sched_statistics * 1270 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1271 { 1272 #ifdef CONFIG_RT_GROUP_SCHED 1273 /* schedstats is not supported for rt group. */ 1274 if (!rt_entity_is_task(rt_se)) 1275 return NULL; 1276 #endif 1277 1278 return &rt_task_of(rt_se)->stats; 1279 } 1280 1281 static inline void 1282 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 if (rt_entity_is_task(rt_se)) 1291 p = rt_task_of(rt_se); 1292 1293 stats = __schedstats_from_rt_se(rt_se); 1294 if (!stats) 1295 return; 1296 1297 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1298 } 1299 1300 static inline void 1301 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1302 { 1303 struct sched_statistics *stats; 1304 struct task_struct *p = NULL; 1305 1306 if (!schedstat_enabled()) 1307 return; 1308 1309 if (rt_entity_is_task(rt_se)) 1310 p = rt_task_of(rt_se); 1311 1312 stats = __schedstats_from_rt_se(rt_se); 1313 if (!stats) 1314 return; 1315 1316 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1317 } 1318 1319 static inline void 1320 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1321 int flags) 1322 { 1323 if (!schedstat_enabled()) 1324 return; 1325 1326 if (flags & ENQUEUE_WAKEUP) 1327 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1328 } 1329 1330 static inline void 1331 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1332 { 1333 struct sched_statistics *stats; 1334 struct task_struct *p = NULL; 1335 1336 if (!schedstat_enabled()) 1337 return; 1338 1339 if (rt_entity_is_task(rt_se)) 1340 p = rt_task_of(rt_se); 1341 1342 stats = __schedstats_from_rt_se(rt_se); 1343 if (!stats) 1344 return; 1345 1346 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1347 } 1348 1349 static inline void 1350 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1351 int flags) 1352 { 1353 struct task_struct *p = NULL; 1354 1355 if (!schedstat_enabled()) 1356 return; 1357 1358 if (rt_entity_is_task(rt_se)) 1359 p = rt_task_of(rt_se); 1360 1361 if ((flags & DEQUEUE_SLEEP) && p) { 1362 unsigned int state; 1363 1364 state = READ_ONCE(p->__state); 1365 if (state & TASK_INTERRUPTIBLE) 1366 __schedstat_set(p->stats.sleep_start, 1367 rq_clock(rq_of_rt_rq(rt_rq))); 1368 1369 if (state & TASK_UNINTERRUPTIBLE) 1370 __schedstat_set(p->stats.block_start, 1371 rq_clock(rq_of_rt_rq(rt_rq))); 1372 } 1373 } 1374 1375 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1376 { 1377 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1378 struct rt_prio_array *array = &rt_rq->active; 1379 struct rt_rq *group_rq = group_rt_rq(rt_se); 1380 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1381 1382 /* 1383 * Don't enqueue the group if its throttled, or when empty. 1384 * The latter is a consequence of the former when a child group 1385 * get throttled and the current group doesn't have any other 1386 * active members. 1387 */ 1388 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1389 if (rt_se->on_list) 1390 __delist_rt_entity(rt_se, array); 1391 return; 1392 } 1393 1394 if (move_entity(flags)) { 1395 WARN_ON_ONCE(rt_se->on_list); 1396 if (flags & ENQUEUE_HEAD) 1397 list_add(&rt_se->run_list, queue); 1398 else 1399 list_add_tail(&rt_se->run_list, queue); 1400 1401 __set_bit(rt_se_prio(rt_se), array->bitmap); 1402 rt_se->on_list = 1; 1403 } 1404 rt_se->on_rq = 1; 1405 1406 inc_rt_tasks(rt_se, rt_rq); 1407 } 1408 1409 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1410 { 1411 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1412 struct rt_prio_array *array = &rt_rq->active; 1413 1414 if (move_entity(flags)) { 1415 WARN_ON_ONCE(!rt_se->on_list); 1416 __delist_rt_entity(rt_se, array); 1417 } 1418 rt_se->on_rq = 0; 1419 1420 dec_rt_tasks(rt_se, rt_rq); 1421 } 1422 1423 /* 1424 * Because the prio of an upper entry depends on the lower 1425 * entries, we must remove entries top - down. 1426 */ 1427 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1428 { 1429 struct sched_rt_entity *back = NULL; 1430 unsigned int rt_nr_running; 1431 1432 for_each_sched_rt_entity(rt_se) { 1433 rt_se->back = back; 1434 back = rt_se; 1435 } 1436 1437 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1438 1439 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1440 if (on_rt_rq(rt_se)) 1441 __dequeue_rt_entity(rt_se, flags); 1442 } 1443 1444 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1445 } 1446 1447 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1448 { 1449 struct rq *rq = rq_of_rt_se(rt_se); 1450 1451 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1452 1453 dequeue_rt_stack(rt_se, flags); 1454 for_each_sched_rt_entity(rt_se) 1455 __enqueue_rt_entity(rt_se, flags); 1456 enqueue_top_rt_rq(&rq->rt); 1457 } 1458 1459 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1460 { 1461 struct rq *rq = rq_of_rt_se(rt_se); 1462 1463 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1464 1465 dequeue_rt_stack(rt_se, flags); 1466 1467 for_each_sched_rt_entity(rt_se) { 1468 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1469 1470 if (rt_rq && rt_rq->rt_nr_running) 1471 __enqueue_rt_entity(rt_se, flags); 1472 } 1473 enqueue_top_rt_rq(&rq->rt); 1474 } 1475 1476 /* 1477 * Adding/removing a task to/from a priority array: 1478 */ 1479 static void 1480 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1481 { 1482 struct sched_rt_entity *rt_se = &p->rt; 1483 1484 if (flags & ENQUEUE_WAKEUP) 1485 rt_se->timeout = 0; 1486 1487 check_schedstat_required(); 1488 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1489 1490 enqueue_rt_entity(rt_se, flags); 1491 1492 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1493 enqueue_pushable_task(rq, p); 1494 } 1495 1496 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1497 { 1498 struct sched_rt_entity *rt_se = &p->rt; 1499 1500 update_curr_rt(rq); 1501 dequeue_rt_entity(rt_se, flags); 1502 1503 dequeue_pushable_task(rq, p); 1504 } 1505 1506 /* 1507 * Put task to the head or the end of the run list without the overhead of 1508 * dequeue followed by enqueue. 1509 */ 1510 static void 1511 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1512 { 1513 if (on_rt_rq(rt_se)) { 1514 struct rt_prio_array *array = &rt_rq->active; 1515 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1516 1517 if (head) 1518 list_move(&rt_se->run_list, queue); 1519 else 1520 list_move_tail(&rt_se->run_list, queue); 1521 } 1522 } 1523 1524 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1525 { 1526 struct sched_rt_entity *rt_se = &p->rt; 1527 struct rt_rq *rt_rq; 1528 1529 for_each_sched_rt_entity(rt_se) { 1530 rt_rq = rt_rq_of_se(rt_se); 1531 requeue_rt_entity(rt_rq, rt_se, head); 1532 } 1533 } 1534 1535 static void yield_task_rt(struct rq *rq) 1536 { 1537 requeue_task_rt(rq, rq->curr, 0); 1538 } 1539 1540 #ifdef CONFIG_SMP 1541 static int find_lowest_rq(struct task_struct *task); 1542 1543 static int 1544 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1545 { 1546 struct task_struct *curr; 1547 struct rq *rq; 1548 bool test; 1549 1550 /* For anything but wake ups, just return the task_cpu */ 1551 if (!(flags & (WF_TTWU | WF_FORK))) 1552 goto out; 1553 1554 rq = cpu_rq(cpu); 1555 1556 rcu_read_lock(); 1557 curr = READ_ONCE(rq->curr); /* unlocked access */ 1558 1559 /* 1560 * If the current task on @p's runqueue is an RT task, then 1561 * try to see if we can wake this RT task up on another 1562 * runqueue. Otherwise simply start this RT task 1563 * on its current runqueue. 1564 * 1565 * We want to avoid overloading runqueues. If the woken 1566 * task is a higher priority, then it will stay on this CPU 1567 * and the lower prio task should be moved to another CPU. 1568 * Even though this will probably make the lower prio task 1569 * lose its cache, we do not want to bounce a higher task 1570 * around just because it gave up its CPU, perhaps for a 1571 * lock? 1572 * 1573 * For equal prio tasks, we just let the scheduler sort it out. 1574 * 1575 * Otherwise, just let it ride on the affined RQ and the 1576 * post-schedule router will push the preempted task away 1577 * 1578 * This test is optimistic, if we get it wrong the load-balancer 1579 * will have to sort it out. 1580 * 1581 * We take into account the capacity of the CPU to ensure it fits the 1582 * requirement of the task - which is only important on heterogeneous 1583 * systems like big.LITTLE. 1584 */ 1585 test = curr && 1586 unlikely(rt_task(curr)) && 1587 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1588 1589 if (test || !rt_task_fits_capacity(p, cpu)) { 1590 int target = find_lowest_rq(p); 1591 1592 /* 1593 * Bail out if we were forcing a migration to find a better 1594 * fitting CPU but our search failed. 1595 */ 1596 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1597 goto out_unlock; 1598 1599 /* 1600 * Don't bother moving it if the destination CPU is 1601 * not running a lower priority task. 1602 */ 1603 if (target != -1 && 1604 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1605 cpu = target; 1606 } 1607 1608 out_unlock: 1609 rcu_read_unlock(); 1610 1611 out: 1612 return cpu; 1613 } 1614 1615 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1616 { 1617 /* 1618 * Current can't be migrated, useless to reschedule, 1619 * let's hope p can move out. 1620 */ 1621 if (rq->curr->nr_cpus_allowed == 1 || 1622 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1623 return; 1624 1625 /* 1626 * p is migratable, so let's not schedule it and 1627 * see if it is pushed or pulled somewhere else. 1628 */ 1629 if (p->nr_cpus_allowed != 1 && 1630 cpupri_find(&rq->rd->cpupri, p, NULL)) 1631 return; 1632 1633 /* 1634 * There appear to be other CPUs that can accept 1635 * the current task but none can run 'p', so lets reschedule 1636 * to try and push the current task away: 1637 */ 1638 requeue_task_rt(rq, p, 1); 1639 resched_curr(rq); 1640 } 1641 1642 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1643 { 1644 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1645 /* 1646 * This is OK, because current is on_cpu, which avoids it being 1647 * picked for load-balance and preemption/IRQs are still 1648 * disabled avoiding further scheduler activity on it and we've 1649 * not yet started the picking loop. 1650 */ 1651 rq_unpin_lock(rq, rf); 1652 pull_rt_task(rq); 1653 rq_repin_lock(rq, rf); 1654 } 1655 1656 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1657 } 1658 #endif /* CONFIG_SMP */ 1659 1660 /* 1661 * Preempt the current task with a newly woken task if needed: 1662 */ 1663 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) 1664 { 1665 if (p->prio < rq->curr->prio) { 1666 resched_curr(rq); 1667 return; 1668 } 1669 1670 #ifdef CONFIG_SMP 1671 /* 1672 * If: 1673 * 1674 * - the newly woken task is of equal priority to the current task 1675 * - the newly woken task is non-migratable while current is migratable 1676 * - current will be preempted on the next reschedule 1677 * 1678 * we should check to see if current can readily move to a different 1679 * cpu. If so, we will reschedule to allow the push logic to try 1680 * to move current somewhere else, making room for our non-migratable 1681 * task. 1682 */ 1683 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1684 check_preempt_equal_prio(rq, p); 1685 #endif 1686 } 1687 1688 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1689 { 1690 struct sched_rt_entity *rt_se = &p->rt; 1691 struct rt_rq *rt_rq = &rq->rt; 1692 1693 p->se.exec_start = rq_clock_task(rq); 1694 if (on_rt_rq(&p->rt)) 1695 update_stats_wait_end_rt(rt_rq, rt_se); 1696 1697 /* The running task is never eligible for pushing */ 1698 dequeue_pushable_task(rq, p); 1699 1700 if (!first) 1701 return; 1702 1703 /* 1704 * If prev task was rt, put_prev_task() has already updated the 1705 * utilization. We only care of the case where we start to schedule a 1706 * rt task 1707 */ 1708 if (rq->curr->sched_class != &rt_sched_class) 1709 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1710 1711 rt_queue_push_tasks(rq); 1712 } 1713 1714 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1715 { 1716 struct rt_prio_array *array = &rt_rq->active; 1717 struct sched_rt_entity *next = NULL; 1718 struct list_head *queue; 1719 int idx; 1720 1721 idx = sched_find_first_bit(array->bitmap); 1722 BUG_ON(idx >= MAX_RT_PRIO); 1723 1724 queue = array->queue + idx; 1725 if (SCHED_WARN_ON(list_empty(queue))) 1726 return NULL; 1727 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1728 1729 return next; 1730 } 1731 1732 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1733 { 1734 struct sched_rt_entity *rt_se; 1735 struct rt_rq *rt_rq = &rq->rt; 1736 1737 do { 1738 rt_se = pick_next_rt_entity(rt_rq); 1739 if (unlikely(!rt_se)) 1740 return NULL; 1741 rt_rq = group_rt_rq(rt_se); 1742 } while (rt_rq); 1743 1744 return rt_task_of(rt_se); 1745 } 1746 1747 static struct task_struct *pick_task_rt(struct rq *rq) 1748 { 1749 struct task_struct *p; 1750 1751 if (!sched_rt_runnable(rq)) 1752 return NULL; 1753 1754 p = _pick_next_task_rt(rq); 1755 1756 return p; 1757 } 1758 1759 static struct task_struct *pick_next_task_rt(struct rq *rq) 1760 { 1761 struct task_struct *p = pick_task_rt(rq); 1762 1763 if (p) 1764 set_next_task_rt(rq, p, true); 1765 1766 return p; 1767 } 1768 1769 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1770 { 1771 struct sched_rt_entity *rt_se = &p->rt; 1772 struct rt_rq *rt_rq = &rq->rt; 1773 1774 if (on_rt_rq(&p->rt)) 1775 update_stats_wait_start_rt(rt_rq, rt_se); 1776 1777 update_curr_rt(rq); 1778 1779 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1780 1781 /* 1782 * The previous task needs to be made eligible for pushing 1783 * if it is still active 1784 */ 1785 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1786 enqueue_pushable_task(rq, p); 1787 } 1788 1789 #ifdef CONFIG_SMP 1790 1791 /* Only try algorithms three times */ 1792 #define RT_MAX_TRIES 3 1793 1794 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1795 { 1796 if (!task_on_cpu(rq, p) && 1797 cpumask_test_cpu(cpu, &p->cpus_mask)) 1798 return 1; 1799 1800 return 0; 1801 } 1802 1803 /* 1804 * Return the highest pushable rq's task, which is suitable to be executed 1805 * on the CPU, NULL otherwise 1806 */ 1807 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1808 { 1809 struct plist_head *head = &rq->rt.pushable_tasks; 1810 struct task_struct *p; 1811 1812 if (!has_pushable_tasks(rq)) 1813 return NULL; 1814 1815 plist_for_each_entry(p, head, pushable_tasks) { 1816 if (pick_rt_task(rq, p, cpu)) 1817 return p; 1818 } 1819 1820 return NULL; 1821 } 1822 1823 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1824 1825 static int find_lowest_rq(struct task_struct *task) 1826 { 1827 struct sched_domain *sd; 1828 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1829 int this_cpu = smp_processor_id(); 1830 int cpu = task_cpu(task); 1831 int ret; 1832 1833 /* Make sure the mask is initialized first */ 1834 if (unlikely(!lowest_mask)) 1835 return -1; 1836 1837 if (task->nr_cpus_allowed == 1) 1838 return -1; /* No other targets possible */ 1839 1840 /* 1841 * If we're on asym system ensure we consider the different capacities 1842 * of the CPUs when searching for the lowest_mask. 1843 */ 1844 if (sched_asym_cpucap_active()) { 1845 1846 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1847 task, lowest_mask, 1848 rt_task_fits_capacity); 1849 } else { 1850 1851 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1852 task, lowest_mask); 1853 } 1854 1855 if (!ret) 1856 return -1; /* No targets found */ 1857 1858 /* 1859 * At this point we have built a mask of CPUs representing the 1860 * lowest priority tasks in the system. Now we want to elect 1861 * the best one based on our affinity and topology. 1862 * 1863 * We prioritize the last CPU that the task executed on since 1864 * it is most likely cache-hot in that location. 1865 */ 1866 if (cpumask_test_cpu(cpu, lowest_mask)) 1867 return cpu; 1868 1869 /* 1870 * Otherwise, we consult the sched_domains span maps to figure 1871 * out which CPU is logically closest to our hot cache data. 1872 */ 1873 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1874 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1875 1876 rcu_read_lock(); 1877 for_each_domain(cpu, sd) { 1878 if (sd->flags & SD_WAKE_AFFINE) { 1879 int best_cpu; 1880 1881 /* 1882 * "this_cpu" is cheaper to preempt than a 1883 * remote processor. 1884 */ 1885 if (this_cpu != -1 && 1886 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1887 rcu_read_unlock(); 1888 return this_cpu; 1889 } 1890 1891 best_cpu = cpumask_any_and_distribute(lowest_mask, 1892 sched_domain_span(sd)); 1893 if (best_cpu < nr_cpu_ids) { 1894 rcu_read_unlock(); 1895 return best_cpu; 1896 } 1897 } 1898 } 1899 rcu_read_unlock(); 1900 1901 /* 1902 * And finally, if there were no matches within the domains 1903 * just give the caller *something* to work with from the compatible 1904 * locations. 1905 */ 1906 if (this_cpu != -1) 1907 return this_cpu; 1908 1909 cpu = cpumask_any_distribute(lowest_mask); 1910 if (cpu < nr_cpu_ids) 1911 return cpu; 1912 1913 return -1; 1914 } 1915 1916 /* Will lock the rq it finds */ 1917 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1918 { 1919 struct rq *lowest_rq = NULL; 1920 int tries; 1921 int cpu; 1922 1923 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1924 cpu = find_lowest_rq(task); 1925 1926 if ((cpu == -1) || (cpu == rq->cpu)) 1927 break; 1928 1929 lowest_rq = cpu_rq(cpu); 1930 1931 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1932 /* 1933 * Target rq has tasks of equal or higher priority, 1934 * retrying does not release any lock and is unlikely 1935 * to yield a different result. 1936 */ 1937 lowest_rq = NULL; 1938 break; 1939 } 1940 1941 /* if the prio of this runqueue changed, try again */ 1942 if (double_lock_balance(rq, lowest_rq)) { 1943 /* 1944 * We had to unlock the run queue. In 1945 * the mean time, task could have 1946 * migrated already or had its affinity changed. 1947 * Also make sure that it wasn't scheduled on its rq. 1948 * It is possible the task was scheduled, set 1949 * "migrate_disabled" and then got preempted, so we must 1950 * check the task migration disable flag here too. 1951 */ 1952 if (unlikely(task_rq(task) != rq || 1953 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 1954 task_on_cpu(rq, task) || 1955 !rt_task(task) || 1956 is_migration_disabled(task) || 1957 !task_on_rq_queued(task))) { 1958 1959 double_unlock_balance(rq, lowest_rq); 1960 lowest_rq = NULL; 1961 break; 1962 } 1963 } 1964 1965 /* If this rq is still suitable use it. */ 1966 if (lowest_rq->rt.highest_prio.curr > task->prio) 1967 break; 1968 1969 /* try again */ 1970 double_unlock_balance(rq, lowest_rq); 1971 lowest_rq = NULL; 1972 } 1973 1974 return lowest_rq; 1975 } 1976 1977 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1978 { 1979 struct task_struct *p; 1980 1981 if (!has_pushable_tasks(rq)) 1982 return NULL; 1983 1984 p = plist_first_entry(&rq->rt.pushable_tasks, 1985 struct task_struct, pushable_tasks); 1986 1987 BUG_ON(rq->cpu != task_cpu(p)); 1988 BUG_ON(task_current(rq, p)); 1989 BUG_ON(p->nr_cpus_allowed <= 1); 1990 1991 BUG_ON(!task_on_rq_queued(p)); 1992 BUG_ON(!rt_task(p)); 1993 1994 return p; 1995 } 1996 1997 /* 1998 * If the current CPU has more than one RT task, see if the non 1999 * running task can migrate over to a CPU that is running a task 2000 * of lesser priority. 2001 */ 2002 static int push_rt_task(struct rq *rq, bool pull) 2003 { 2004 struct task_struct *next_task; 2005 struct rq *lowest_rq; 2006 int ret = 0; 2007 2008 if (!rq->rt.overloaded) 2009 return 0; 2010 2011 next_task = pick_next_pushable_task(rq); 2012 if (!next_task) 2013 return 0; 2014 2015 retry: 2016 /* 2017 * It's possible that the next_task slipped in of 2018 * higher priority than current. If that's the case 2019 * just reschedule current. 2020 */ 2021 if (unlikely(next_task->prio < rq->curr->prio)) { 2022 resched_curr(rq); 2023 return 0; 2024 } 2025 2026 if (is_migration_disabled(next_task)) { 2027 struct task_struct *push_task = NULL; 2028 int cpu; 2029 2030 if (!pull || rq->push_busy) 2031 return 0; 2032 2033 /* 2034 * Invoking find_lowest_rq() on anything but an RT task doesn't 2035 * make sense. Per the above priority check, curr has to 2036 * be of higher priority than next_task, so no need to 2037 * reschedule when bailing out. 2038 * 2039 * Note that the stoppers are masqueraded as SCHED_FIFO 2040 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2041 */ 2042 if (rq->curr->sched_class != &rt_sched_class) 2043 return 0; 2044 2045 cpu = find_lowest_rq(rq->curr); 2046 if (cpu == -1 || cpu == rq->cpu) 2047 return 0; 2048 2049 /* 2050 * Given we found a CPU with lower priority than @next_task, 2051 * therefore it should be running. However we cannot migrate it 2052 * to this other CPU, instead attempt to push the current 2053 * running task on this CPU away. 2054 */ 2055 push_task = get_push_task(rq); 2056 if (push_task) { 2057 preempt_disable(); 2058 raw_spin_rq_unlock(rq); 2059 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2060 push_task, &rq->push_work); 2061 preempt_enable(); 2062 raw_spin_rq_lock(rq); 2063 } 2064 2065 return 0; 2066 } 2067 2068 if (WARN_ON(next_task == rq->curr)) 2069 return 0; 2070 2071 /* We might release rq lock */ 2072 get_task_struct(next_task); 2073 2074 /* find_lock_lowest_rq locks the rq if found */ 2075 lowest_rq = find_lock_lowest_rq(next_task, rq); 2076 if (!lowest_rq) { 2077 struct task_struct *task; 2078 /* 2079 * find_lock_lowest_rq releases rq->lock 2080 * so it is possible that next_task has migrated. 2081 * 2082 * We need to make sure that the task is still on the same 2083 * run-queue and is also still the next task eligible for 2084 * pushing. 2085 */ 2086 task = pick_next_pushable_task(rq); 2087 if (task == next_task) { 2088 /* 2089 * The task hasn't migrated, and is still the next 2090 * eligible task, but we failed to find a run-queue 2091 * to push it to. Do not retry in this case, since 2092 * other CPUs will pull from us when ready. 2093 */ 2094 goto out; 2095 } 2096 2097 if (!task) 2098 /* No more tasks, just exit */ 2099 goto out; 2100 2101 /* 2102 * Something has shifted, try again. 2103 */ 2104 put_task_struct(next_task); 2105 next_task = task; 2106 goto retry; 2107 } 2108 2109 deactivate_task(rq, next_task, 0); 2110 set_task_cpu(next_task, lowest_rq->cpu); 2111 activate_task(lowest_rq, next_task, 0); 2112 resched_curr(lowest_rq); 2113 ret = 1; 2114 2115 double_unlock_balance(rq, lowest_rq); 2116 out: 2117 put_task_struct(next_task); 2118 2119 return ret; 2120 } 2121 2122 static void push_rt_tasks(struct rq *rq) 2123 { 2124 /* push_rt_task will return true if it moved an RT */ 2125 while (push_rt_task(rq, false)) 2126 ; 2127 } 2128 2129 #ifdef HAVE_RT_PUSH_IPI 2130 2131 /* 2132 * When a high priority task schedules out from a CPU and a lower priority 2133 * task is scheduled in, a check is made to see if there's any RT tasks 2134 * on other CPUs that are waiting to run because a higher priority RT task 2135 * is currently running on its CPU. In this case, the CPU with multiple RT 2136 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2137 * up that may be able to run one of its non-running queued RT tasks. 2138 * 2139 * All CPUs with overloaded RT tasks need to be notified as there is currently 2140 * no way to know which of these CPUs have the highest priority task waiting 2141 * to run. Instead of trying to take a spinlock on each of these CPUs, 2142 * which has shown to cause large latency when done on machines with many 2143 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2144 * RT tasks waiting to run. 2145 * 2146 * Just sending an IPI to each of the CPUs is also an issue, as on large 2147 * count CPU machines, this can cause an IPI storm on a CPU, especially 2148 * if its the only CPU with multiple RT tasks queued, and a large number 2149 * of CPUs scheduling a lower priority task at the same time. 2150 * 2151 * Each root domain has its own irq work function that can iterate over 2152 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2153 * task must be checked if there's one or many CPUs that are lowering 2154 * their priority, there's a single irq work iterator that will try to 2155 * push off RT tasks that are waiting to run. 2156 * 2157 * When a CPU schedules a lower priority task, it will kick off the 2158 * irq work iterator that will jump to each CPU with overloaded RT tasks. 2159 * As it only takes the first CPU that schedules a lower priority task 2160 * to start the process, the rto_start variable is incremented and if 2161 * the atomic result is one, then that CPU will try to take the rto_lock. 2162 * This prevents high contention on the lock as the process handles all 2163 * CPUs scheduling lower priority tasks. 2164 * 2165 * All CPUs that are scheduling a lower priority task will increment the 2166 * rt_loop_next variable. This will make sure that the irq work iterator 2167 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2168 * priority task, even if the iterator is in the middle of a scan. Incrementing 2169 * the rt_loop_next will cause the iterator to perform another scan. 2170 * 2171 */ 2172 static int rto_next_cpu(struct root_domain *rd) 2173 { 2174 int next; 2175 int cpu; 2176 2177 /* 2178 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2179 * rt_next_cpu() will simply return the first CPU found in 2180 * the rto_mask. 2181 * 2182 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2183 * will return the next CPU found in the rto_mask. 2184 * 2185 * If there are no more CPUs left in the rto_mask, then a check is made 2186 * against rto_loop and rto_loop_next. rto_loop is only updated with 2187 * the rto_lock held, but any CPU may increment the rto_loop_next 2188 * without any locking. 2189 */ 2190 for (;;) { 2191 2192 /* When rto_cpu is -1 this acts like cpumask_first() */ 2193 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2194 2195 rd->rto_cpu = cpu; 2196 2197 if (cpu < nr_cpu_ids) 2198 return cpu; 2199 2200 rd->rto_cpu = -1; 2201 2202 /* 2203 * ACQUIRE ensures we see the @rto_mask changes 2204 * made prior to the @next value observed. 2205 * 2206 * Matches WMB in rt_set_overload(). 2207 */ 2208 next = atomic_read_acquire(&rd->rto_loop_next); 2209 2210 if (rd->rto_loop == next) 2211 break; 2212 2213 rd->rto_loop = next; 2214 } 2215 2216 return -1; 2217 } 2218 2219 static inline bool rto_start_trylock(atomic_t *v) 2220 { 2221 return !atomic_cmpxchg_acquire(v, 0, 1); 2222 } 2223 2224 static inline void rto_start_unlock(atomic_t *v) 2225 { 2226 atomic_set_release(v, 0); 2227 } 2228 2229 static void tell_cpu_to_push(struct rq *rq) 2230 { 2231 int cpu = -1; 2232 2233 /* Keep the loop going if the IPI is currently active */ 2234 atomic_inc(&rq->rd->rto_loop_next); 2235 2236 /* Only one CPU can initiate a loop at a time */ 2237 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2238 return; 2239 2240 raw_spin_lock(&rq->rd->rto_lock); 2241 2242 /* 2243 * The rto_cpu is updated under the lock, if it has a valid CPU 2244 * then the IPI is still running and will continue due to the 2245 * update to loop_next, and nothing needs to be done here. 2246 * Otherwise it is finishing up and an ipi needs to be sent. 2247 */ 2248 if (rq->rd->rto_cpu < 0) 2249 cpu = rto_next_cpu(rq->rd); 2250 2251 raw_spin_unlock(&rq->rd->rto_lock); 2252 2253 rto_start_unlock(&rq->rd->rto_loop_start); 2254 2255 if (cpu >= 0) { 2256 /* Make sure the rd does not get freed while pushing */ 2257 sched_get_rd(rq->rd); 2258 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2259 } 2260 } 2261 2262 /* Called from hardirq context */ 2263 void rto_push_irq_work_func(struct irq_work *work) 2264 { 2265 struct root_domain *rd = 2266 container_of(work, struct root_domain, rto_push_work); 2267 struct rq *rq; 2268 int cpu; 2269 2270 rq = this_rq(); 2271 2272 /* 2273 * We do not need to grab the lock to check for has_pushable_tasks. 2274 * When it gets updated, a check is made if a push is possible. 2275 */ 2276 if (has_pushable_tasks(rq)) { 2277 raw_spin_rq_lock(rq); 2278 while (push_rt_task(rq, true)) 2279 ; 2280 raw_spin_rq_unlock(rq); 2281 } 2282 2283 raw_spin_lock(&rd->rto_lock); 2284 2285 /* Pass the IPI to the next rt overloaded queue */ 2286 cpu = rto_next_cpu(rd); 2287 2288 raw_spin_unlock(&rd->rto_lock); 2289 2290 if (cpu < 0) { 2291 sched_put_rd(rd); 2292 return; 2293 } 2294 2295 /* Try the next RT overloaded CPU */ 2296 irq_work_queue_on(&rd->rto_push_work, cpu); 2297 } 2298 #endif /* HAVE_RT_PUSH_IPI */ 2299 2300 static void pull_rt_task(struct rq *this_rq) 2301 { 2302 int this_cpu = this_rq->cpu, cpu; 2303 bool resched = false; 2304 struct task_struct *p, *push_task; 2305 struct rq *src_rq; 2306 int rt_overload_count = rt_overloaded(this_rq); 2307 2308 if (likely(!rt_overload_count)) 2309 return; 2310 2311 /* 2312 * Match the barrier from rt_set_overloaded; this guarantees that if we 2313 * see overloaded we must also see the rto_mask bit. 2314 */ 2315 smp_rmb(); 2316 2317 /* If we are the only overloaded CPU do nothing */ 2318 if (rt_overload_count == 1 && 2319 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2320 return; 2321 2322 #ifdef HAVE_RT_PUSH_IPI 2323 if (sched_feat(RT_PUSH_IPI)) { 2324 tell_cpu_to_push(this_rq); 2325 return; 2326 } 2327 #endif 2328 2329 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2330 if (this_cpu == cpu) 2331 continue; 2332 2333 src_rq = cpu_rq(cpu); 2334 2335 /* 2336 * Don't bother taking the src_rq->lock if the next highest 2337 * task is known to be lower-priority than our current task. 2338 * This may look racy, but if this value is about to go 2339 * logically higher, the src_rq will push this task away. 2340 * And if its going logically lower, we do not care 2341 */ 2342 if (src_rq->rt.highest_prio.next >= 2343 this_rq->rt.highest_prio.curr) 2344 continue; 2345 2346 /* 2347 * We can potentially drop this_rq's lock in 2348 * double_lock_balance, and another CPU could 2349 * alter this_rq 2350 */ 2351 push_task = NULL; 2352 double_lock_balance(this_rq, src_rq); 2353 2354 /* 2355 * We can pull only a task, which is pushable 2356 * on its rq, and no others. 2357 */ 2358 p = pick_highest_pushable_task(src_rq, this_cpu); 2359 2360 /* 2361 * Do we have an RT task that preempts 2362 * the to-be-scheduled task? 2363 */ 2364 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2365 WARN_ON(p == src_rq->curr); 2366 WARN_ON(!task_on_rq_queued(p)); 2367 2368 /* 2369 * There's a chance that p is higher in priority 2370 * than what's currently running on its CPU. 2371 * This is just that p is waking up and hasn't 2372 * had a chance to schedule. We only pull 2373 * p if it is lower in priority than the 2374 * current task on the run queue 2375 */ 2376 if (p->prio < src_rq->curr->prio) 2377 goto skip; 2378 2379 if (is_migration_disabled(p)) { 2380 push_task = get_push_task(src_rq); 2381 } else { 2382 deactivate_task(src_rq, p, 0); 2383 set_task_cpu(p, this_cpu); 2384 activate_task(this_rq, p, 0); 2385 resched = true; 2386 } 2387 /* 2388 * We continue with the search, just in 2389 * case there's an even higher prio task 2390 * in another runqueue. (low likelihood 2391 * but possible) 2392 */ 2393 } 2394 skip: 2395 double_unlock_balance(this_rq, src_rq); 2396 2397 if (push_task) { 2398 preempt_disable(); 2399 raw_spin_rq_unlock(this_rq); 2400 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2401 push_task, &src_rq->push_work); 2402 preempt_enable(); 2403 raw_spin_rq_lock(this_rq); 2404 } 2405 } 2406 2407 if (resched) 2408 resched_curr(this_rq); 2409 } 2410 2411 /* 2412 * If we are not running and we are not going to reschedule soon, we should 2413 * try to push tasks away now 2414 */ 2415 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2416 { 2417 bool need_to_push = !task_on_cpu(rq, p) && 2418 !test_tsk_need_resched(rq->curr) && 2419 p->nr_cpus_allowed > 1 && 2420 (dl_task(rq->curr) || rt_task(rq->curr)) && 2421 (rq->curr->nr_cpus_allowed < 2 || 2422 rq->curr->prio <= p->prio); 2423 2424 if (need_to_push) 2425 push_rt_tasks(rq); 2426 } 2427 2428 /* Assumes rq->lock is held */ 2429 static void rq_online_rt(struct rq *rq) 2430 { 2431 if (rq->rt.overloaded) 2432 rt_set_overload(rq); 2433 2434 __enable_runtime(rq); 2435 2436 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2437 } 2438 2439 /* Assumes rq->lock is held */ 2440 static void rq_offline_rt(struct rq *rq) 2441 { 2442 if (rq->rt.overloaded) 2443 rt_clear_overload(rq); 2444 2445 __disable_runtime(rq); 2446 2447 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2448 } 2449 2450 /* 2451 * When switch from the rt queue, we bring ourselves to a position 2452 * that we might want to pull RT tasks from other runqueues. 2453 */ 2454 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2455 { 2456 /* 2457 * If there are other RT tasks then we will reschedule 2458 * and the scheduling of the other RT tasks will handle 2459 * the balancing. But if we are the last RT task 2460 * we may need to handle the pulling of RT tasks 2461 * now. 2462 */ 2463 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2464 return; 2465 2466 rt_queue_pull_task(rq); 2467 } 2468 2469 void __init init_sched_rt_class(void) 2470 { 2471 unsigned int i; 2472 2473 for_each_possible_cpu(i) { 2474 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2475 GFP_KERNEL, cpu_to_node(i)); 2476 } 2477 } 2478 #endif /* CONFIG_SMP */ 2479 2480 /* 2481 * When switching a task to RT, we may overload the runqueue 2482 * with RT tasks. In this case we try to push them off to 2483 * other runqueues. 2484 */ 2485 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2486 { 2487 /* 2488 * If we are running, update the avg_rt tracking, as the running time 2489 * will now on be accounted into the latter. 2490 */ 2491 if (task_current(rq, p)) { 2492 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2493 return; 2494 } 2495 2496 /* 2497 * If we are not running we may need to preempt the current 2498 * running task. If that current running task is also an RT task 2499 * then see if we can move to another run queue. 2500 */ 2501 if (task_on_rq_queued(p)) { 2502 #ifdef CONFIG_SMP 2503 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2504 rt_queue_push_tasks(rq); 2505 #endif /* CONFIG_SMP */ 2506 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2507 resched_curr(rq); 2508 } 2509 } 2510 2511 /* 2512 * Priority of the task has changed. This may cause 2513 * us to initiate a push or pull. 2514 */ 2515 static void 2516 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2517 { 2518 if (!task_on_rq_queued(p)) 2519 return; 2520 2521 if (task_current(rq, p)) { 2522 #ifdef CONFIG_SMP 2523 /* 2524 * If our priority decreases while running, we 2525 * may need to pull tasks to this runqueue. 2526 */ 2527 if (oldprio < p->prio) 2528 rt_queue_pull_task(rq); 2529 2530 /* 2531 * If there's a higher priority task waiting to run 2532 * then reschedule. 2533 */ 2534 if (p->prio > rq->rt.highest_prio.curr) 2535 resched_curr(rq); 2536 #else 2537 /* For UP simply resched on drop of prio */ 2538 if (oldprio < p->prio) 2539 resched_curr(rq); 2540 #endif /* CONFIG_SMP */ 2541 } else { 2542 /* 2543 * This task is not running, but if it is 2544 * greater than the current running task 2545 * then reschedule. 2546 */ 2547 if (p->prio < rq->curr->prio) 2548 resched_curr(rq); 2549 } 2550 } 2551 2552 #ifdef CONFIG_POSIX_TIMERS 2553 static void watchdog(struct rq *rq, struct task_struct *p) 2554 { 2555 unsigned long soft, hard; 2556 2557 /* max may change after cur was read, this will be fixed next tick */ 2558 soft = task_rlimit(p, RLIMIT_RTTIME); 2559 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2560 2561 if (soft != RLIM_INFINITY) { 2562 unsigned long next; 2563 2564 if (p->rt.watchdog_stamp != jiffies) { 2565 p->rt.timeout++; 2566 p->rt.watchdog_stamp = jiffies; 2567 } 2568 2569 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2570 if (p->rt.timeout > next) { 2571 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2572 p->se.sum_exec_runtime); 2573 } 2574 } 2575 } 2576 #else 2577 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2578 #endif 2579 2580 /* 2581 * scheduler tick hitting a task of our scheduling class. 2582 * 2583 * NOTE: This function can be called remotely by the tick offload that 2584 * goes along full dynticks. Therefore no local assumption can be made 2585 * and everything must be accessed through the @rq and @curr passed in 2586 * parameters. 2587 */ 2588 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2589 { 2590 struct sched_rt_entity *rt_se = &p->rt; 2591 2592 update_curr_rt(rq); 2593 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2594 2595 watchdog(rq, p); 2596 2597 /* 2598 * RR tasks need a special form of timeslice management. 2599 * FIFO tasks have no timeslices. 2600 */ 2601 if (p->policy != SCHED_RR) 2602 return; 2603 2604 if (--p->rt.time_slice) 2605 return; 2606 2607 p->rt.time_slice = sched_rr_timeslice; 2608 2609 /* 2610 * Requeue to the end of queue if we (and all of our ancestors) are not 2611 * the only element on the queue 2612 */ 2613 for_each_sched_rt_entity(rt_se) { 2614 if (rt_se->run_list.prev != rt_se->run_list.next) { 2615 requeue_task_rt(rq, p, 0); 2616 resched_curr(rq); 2617 return; 2618 } 2619 } 2620 } 2621 2622 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2623 { 2624 /* 2625 * Time slice is 0 for SCHED_FIFO tasks 2626 */ 2627 if (task->policy == SCHED_RR) 2628 return sched_rr_timeslice; 2629 else 2630 return 0; 2631 } 2632 2633 #ifdef CONFIG_SCHED_CORE 2634 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2635 { 2636 struct rt_rq *rt_rq; 2637 2638 #ifdef CONFIG_RT_GROUP_SCHED 2639 rt_rq = task_group(p)->rt_rq[cpu]; 2640 #else 2641 rt_rq = &cpu_rq(cpu)->rt; 2642 #endif 2643 2644 return rt_rq_throttled(rt_rq); 2645 } 2646 #endif 2647 2648 DEFINE_SCHED_CLASS(rt) = { 2649 2650 .enqueue_task = enqueue_task_rt, 2651 .dequeue_task = dequeue_task_rt, 2652 .yield_task = yield_task_rt, 2653 2654 .wakeup_preempt = wakeup_preempt_rt, 2655 2656 .pick_next_task = pick_next_task_rt, 2657 .put_prev_task = put_prev_task_rt, 2658 .set_next_task = set_next_task_rt, 2659 2660 #ifdef CONFIG_SMP 2661 .balance = balance_rt, 2662 .pick_task = pick_task_rt, 2663 .select_task_rq = select_task_rq_rt, 2664 .set_cpus_allowed = set_cpus_allowed_common, 2665 .rq_online = rq_online_rt, 2666 .rq_offline = rq_offline_rt, 2667 .task_woken = task_woken_rt, 2668 .switched_from = switched_from_rt, 2669 .find_lock_rq = find_lock_lowest_rq, 2670 #endif 2671 2672 .task_tick = task_tick_rt, 2673 2674 .get_rr_interval = get_rr_interval_rt, 2675 2676 .prio_changed = prio_changed_rt, 2677 .switched_to = switched_to_rt, 2678 2679 .update_curr = update_curr_rt, 2680 2681 #ifdef CONFIG_SCHED_CORE 2682 .task_is_throttled = task_is_throttled_rt, 2683 #endif 2684 2685 #ifdef CONFIG_UCLAMP_TASK 2686 .uclamp_enabled = 1, 2687 #endif 2688 }; 2689 2690 #ifdef CONFIG_RT_GROUP_SCHED 2691 /* 2692 * Ensure that the real time constraints are schedulable. 2693 */ 2694 static DEFINE_MUTEX(rt_constraints_mutex); 2695 2696 static inline int tg_has_rt_tasks(struct task_group *tg) 2697 { 2698 struct task_struct *task; 2699 struct css_task_iter it; 2700 int ret = 0; 2701 2702 /* 2703 * Autogroups do not have RT tasks; see autogroup_create(). 2704 */ 2705 if (task_group_is_autogroup(tg)) 2706 return 0; 2707 2708 css_task_iter_start(&tg->css, 0, &it); 2709 while (!ret && (task = css_task_iter_next(&it))) 2710 ret |= rt_task(task); 2711 css_task_iter_end(&it); 2712 2713 return ret; 2714 } 2715 2716 struct rt_schedulable_data { 2717 struct task_group *tg; 2718 u64 rt_period; 2719 u64 rt_runtime; 2720 }; 2721 2722 static int tg_rt_schedulable(struct task_group *tg, void *data) 2723 { 2724 struct rt_schedulable_data *d = data; 2725 struct task_group *child; 2726 unsigned long total, sum = 0; 2727 u64 period, runtime; 2728 2729 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2730 runtime = tg->rt_bandwidth.rt_runtime; 2731 2732 if (tg == d->tg) { 2733 period = d->rt_period; 2734 runtime = d->rt_runtime; 2735 } 2736 2737 /* 2738 * Cannot have more runtime than the period. 2739 */ 2740 if (runtime > period && runtime != RUNTIME_INF) 2741 return -EINVAL; 2742 2743 /* 2744 * Ensure we don't starve existing RT tasks if runtime turns zero. 2745 */ 2746 if (rt_bandwidth_enabled() && !runtime && 2747 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2748 return -EBUSY; 2749 2750 total = to_ratio(period, runtime); 2751 2752 /* 2753 * Nobody can have more than the global setting allows. 2754 */ 2755 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2756 return -EINVAL; 2757 2758 /* 2759 * The sum of our children's runtime should not exceed our own. 2760 */ 2761 list_for_each_entry_rcu(child, &tg->children, siblings) { 2762 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2763 runtime = child->rt_bandwidth.rt_runtime; 2764 2765 if (child == d->tg) { 2766 period = d->rt_period; 2767 runtime = d->rt_runtime; 2768 } 2769 2770 sum += to_ratio(period, runtime); 2771 } 2772 2773 if (sum > total) 2774 return -EINVAL; 2775 2776 return 0; 2777 } 2778 2779 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2780 { 2781 int ret; 2782 2783 struct rt_schedulable_data data = { 2784 .tg = tg, 2785 .rt_period = period, 2786 .rt_runtime = runtime, 2787 }; 2788 2789 rcu_read_lock(); 2790 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2791 rcu_read_unlock(); 2792 2793 return ret; 2794 } 2795 2796 static int tg_set_rt_bandwidth(struct task_group *tg, 2797 u64 rt_period, u64 rt_runtime) 2798 { 2799 int i, err = 0; 2800 2801 /* 2802 * Disallowing the root group RT runtime is BAD, it would disallow the 2803 * kernel creating (and or operating) RT threads. 2804 */ 2805 if (tg == &root_task_group && rt_runtime == 0) 2806 return -EINVAL; 2807 2808 /* No period doesn't make any sense. */ 2809 if (rt_period == 0) 2810 return -EINVAL; 2811 2812 /* 2813 * Bound quota to defend quota against overflow during bandwidth shift. 2814 */ 2815 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2816 return -EINVAL; 2817 2818 mutex_lock(&rt_constraints_mutex); 2819 err = __rt_schedulable(tg, rt_period, rt_runtime); 2820 if (err) 2821 goto unlock; 2822 2823 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2824 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2825 tg->rt_bandwidth.rt_runtime = rt_runtime; 2826 2827 for_each_possible_cpu(i) { 2828 struct rt_rq *rt_rq = tg->rt_rq[i]; 2829 2830 raw_spin_lock(&rt_rq->rt_runtime_lock); 2831 rt_rq->rt_runtime = rt_runtime; 2832 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2833 } 2834 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2835 unlock: 2836 mutex_unlock(&rt_constraints_mutex); 2837 2838 return err; 2839 } 2840 2841 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2842 { 2843 u64 rt_runtime, rt_period; 2844 2845 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2846 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2847 if (rt_runtime_us < 0) 2848 rt_runtime = RUNTIME_INF; 2849 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2850 return -EINVAL; 2851 2852 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2853 } 2854 2855 long sched_group_rt_runtime(struct task_group *tg) 2856 { 2857 u64 rt_runtime_us; 2858 2859 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2860 return -1; 2861 2862 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2863 do_div(rt_runtime_us, NSEC_PER_USEC); 2864 return rt_runtime_us; 2865 } 2866 2867 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2868 { 2869 u64 rt_runtime, rt_period; 2870 2871 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2872 return -EINVAL; 2873 2874 rt_period = rt_period_us * NSEC_PER_USEC; 2875 rt_runtime = tg->rt_bandwidth.rt_runtime; 2876 2877 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2878 } 2879 2880 long sched_group_rt_period(struct task_group *tg) 2881 { 2882 u64 rt_period_us; 2883 2884 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2885 do_div(rt_period_us, NSEC_PER_USEC); 2886 return rt_period_us; 2887 } 2888 2889 #ifdef CONFIG_SYSCTL 2890 static int sched_rt_global_constraints(void) 2891 { 2892 int ret = 0; 2893 2894 mutex_lock(&rt_constraints_mutex); 2895 ret = __rt_schedulable(NULL, 0, 0); 2896 mutex_unlock(&rt_constraints_mutex); 2897 2898 return ret; 2899 } 2900 #endif /* CONFIG_SYSCTL */ 2901 2902 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2903 { 2904 /* Don't accept realtime tasks when there is no way for them to run */ 2905 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2906 return 0; 2907 2908 return 1; 2909 } 2910 2911 #else /* !CONFIG_RT_GROUP_SCHED */ 2912 2913 #ifdef CONFIG_SYSCTL 2914 static int sched_rt_global_constraints(void) 2915 { 2916 unsigned long flags; 2917 int i; 2918 2919 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2920 for_each_possible_cpu(i) { 2921 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2922 2923 raw_spin_lock(&rt_rq->rt_runtime_lock); 2924 rt_rq->rt_runtime = global_rt_runtime(); 2925 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2926 } 2927 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2928 2929 return 0; 2930 } 2931 #endif /* CONFIG_SYSCTL */ 2932 #endif /* CONFIG_RT_GROUP_SCHED */ 2933 2934 #ifdef CONFIG_SYSCTL 2935 static int sched_rt_global_validate(void) 2936 { 2937 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2938 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2939 ((u64)sysctl_sched_rt_runtime * 2940 NSEC_PER_USEC > max_rt_runtime))) 2941 return -EINVAL; 2942 2943 return 0; 2944 } 2945 2946 static void sched_rt_do_global(void) 2947 { 2948 unsigned long flags; 2949 2950 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2951 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2952 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2953 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2954 } 2955 2956 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 2957 size_t *lenp, loff_t *ppos) 2958 { 2959 int old_period, old_runtime; 2960 static DEFINE_MUTEX(mutex); 2961 int ret; 2962 2963 mutex_lock(&mutex); 2964 old_period = sysctl_sched_rt_period; 2965 old_runtime = sysctl_sched_rt_runtime; 2966 2967 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2968 2969 if (!ret && write) { 2970 ret = sched_rt_global_validate(); 2971 if (ret) 2972 goto undo; 2973 2974 ret = sched_dl_global_validate(); 2975 if (ret) 2976 goto undo; 2977 2978 ret = sched_rt_global_constraints(); 2979 if (ret) 2980 goto undo; 2981 2982 sched_rt_do_global(); 2983 sched_dl_do_global(); 2984 } 2985 if (0) { 2986 undo: 2987 sysctl_sched_rt_period = old_period; 2988 sysctl_sched_rt_runtime = old_runtime; 2989 } 2990 mutex_unlock(&mutex); 2991 2992 return ret; 2993 } 2994 2995 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 2996 size_t *lenp, loff_t *ppos) 2997 { 2998 int ret; 2999 static DEFINE_MUTEX(mutex); 3000 3001 mutex_lock(&mutex); 3002 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3003 /* 3004 * Make sure that internally we keep jiffies. 3005 * Also, writing zero resets the timeslice to default: 3006 */ 3007 if (!ret && write) { 3008 sched_rr_timeslice = 3009 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 3010 msecs_to_jiffies(sysctl_sched_rr_timeslice); 3011 3012 if (sysctl_sched_rr_timeslice <= 0) 3013 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 3014 } 3015 mutex_unlock(&mutex); 3016 3017 return ret; 3018 } 3019 #endif /* CONFIG_SYSCTL */ 3020 3021 #ifdef CONFIG_SCHED_DEBUG 3022 void print_rt_stats(struct seq_file *m, int cpu) 3023 { 3024 rt_rq_iter_t iter; 3025 struct rt_rq *rt_rq; 3026 3027 rcu_read_lock(); 3028 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 3029 print_rt_rq(m, cpu, rt_rq); 3030 rcu_read_unlock(); 3031 } 3032 #endif /* CONFIG_SCHED_DEBUG */ 3033