1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 /* 12 * period over which we measure -rt task CPU usage in us. 13 * default: 1s 14 */ 15 int sysctl_sched_rt_period = 1000000; 16 17 /* 18 * part of the period that we allow rt tasks to run in us. 19 * default: 0.95s 20 */ 21 int sysctl_sched_rt_runtime = 950000; 22 23 #ifdef CONFIG_SYSCTL 24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, 26 size_t *lenp, loff_t *ppos); 27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, 28 size_t *lenp, loff_t *ppos); 29 static struct ctl_table sched_rt_sysctls[] = { 30 { 31 .procname = "sched_rt_period_us", 32 .data = &sysctl_sched_rt_period, 33 .maxlen = sizeof(int), 34 .mode = 0644, 35 .proc_handler = sched_rt_handler, 36 .extra1 = SYSCTL_ONE, 37 .extra2 = SYSCTL_INT_MAX, 38 }, 39 { 40 .procname = "sched_rt_runtime_us", 41 .data = &sysctl_sched_rt_runtime, 42 .maxlen = sizeof(int), 43 .mode = 0644, 44 .proc_handler = sched_rt_handler, 45 .extra1 = SYSCTL_NEG_ONE, 46 .extra2 = (void *)&sysctl_sched_rt_period, 47 }, 48 { 49 .procname = "sched_rr_timeslice_ms", 50 .data = &sysctl_sched_rr_timeslice, 51 .maxlen = sizeof(int), 52 .mode = 0644, 53 .proc_handler = sched_rr_handler, 54 }, 55 }; 56 57 static int __init sched_rt_sysctl_init(void) 58 { 59 register_sysctl_init("kernel", sched_rt_sysctls); 60 return 0; 61 } 62 late_initcall(sched_rt_sysctl_init); 63 #endif 64 65 void init_rt_rq(struct rt_rq *rt_rq) 66 { 67 struct rt_prio_array *array; 68 int i; 69 70 array = &rt_rq->active; 71 for (i = 0; i < MAX_RT_PRIO; i++) { 72 INIT_LIST_HEAD(array->queue + i); 73 __clear_bit(i, array->bitmap); 74 } 75 /* delimiter for bitsearch: */ 76 __set_bit(MAX_RT_PRIO, array->bitmap); 77 78 #if defined CONFIG_SMP 79 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 80 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 81 rt_rq->overloaded = 0; 82 plist_head_init(&rt_rq->pushable_tasks); 83 #endif /* CONFIG_SMP */ 84 /* We start is dequeued state, because no RT tasks are queued */ 85 rt_rq->rt_queued = 0; 86 87 #ifdef CONFIG_RT_GROUP_SCHED 88 rt_rq->rt_time = 0; 89 rt_rq->rt_throttled = 0; 90 rt_rq->rt_runtime = 0; 91 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 92 #endif 93 } 94 95 #ifdef CONFIG_RT_GROUP_SCHED 96 97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 98 99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 100 { 101 struct rt_bandwidth *rt_b = 102 container_of(timer, struct rt_bandwidth, rt_period_timer); 103 int idle = 0; 104 int overrun; 105 106 raw_spin_lock(&rt_b->rt_runtime_lock); 107 for (;;) { 108 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 109 if (!overrun) 110 break; 111 112 raw_spin_unlock(&rt_b->rt_runtime_lock); 113 idle = do_sched_rt_period_timer(rt_b, overrun); 114 raw_spin_lock(&rt_b->rt_runtime_lock); 115 } 116 if (idle) 117 rt_b->rt_period_active = 0; 118 raw_spin_unlock(&rt_b->rt_runtime_lock); 119 120 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 121 } 122 123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 124 { 125 rt_b->rt_period = ns_to_ktime(period); 126 rt_b->rt_runtime = runtime; 127 128 raw_spin_lock_init(&rt_b->rt_runtime_lock); 129 130 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 131 HRTIMER_MODE_REL_HARD); 132 rt_b->rt_period_timer.function = sched_rt_period_timer; 133 } 134 135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 136 { 137 raw_spin_lock(&rt_b->rt_runtime_lock); 138 if (!rt_b->rt_period_active) { 139 rt_b->rt_period_active = 1; 140 /* 141 * SCHED_DEADLINE updates the bandwidth, as a run away 142 * RT task with a DL task could hog a CPU. But DL does 143 * not reset the period. If a deadline task was running 144 * without an RT task running, it can cause RT tasks to 145 * throttle when they start up. Kick the timer right away 146 * to update the period. 147 */ 148 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 149 hrtimer_start_expires(&rt_b->rt_period_timer, 150 HRTIMER_MODE_ABS_PINNED_HARD); 151 } 152 raw_spin_unlock(&rt_b->rt_runtime_lock); 153 } 154 155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 156 { 157 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 158 return; 159 160 do_start_rt_bandwidth(rt_b); 161 } 162 163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 164 { 165 hrtimer_cancel(&rt_b->rt_period_timer); 166 } 167 168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 169 170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 171 { 172 #ifdef CONFIG_SCHED_DEBUG 173 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 174 #endif 175 return container_of(rt_se, struct task_struct, rt); 176 } 177 178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 179 { 180 return rt_rq->rq; 181 } 182 183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 184 { 185 return rt_se->rt_rq; 186 } 187 188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 189 { 190 struct rt_rq *rt_rq = rt_se->rt_rq; 191 192 return rt_rq->rq; 193 } 194 195 void unregister_rt_sched_group(struct task_group *tg) 196 { 197 if (tg->rt_se) 198 destroy_rt_bandwidth(&tg->rt_bandwidth); 199 } 200 201 void free_rt_sched_group(struct task_group *tg) 202 { 203 int i; 204 205 for_each_possible_cpu(i) { 206 if (tg->rt_rq) 207 kfree(tg->rt_rq[i]); 208 if (tg->rt_se) 209 kfree(tg->rt_se[i]); 210 } 211 212 kfree(tg->rt_rq); 213 kfree(tg->rt_se); 214 } 215 216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 217 struct sched_rt_entity *rt_se, int cpu, 218 struct sched_rt_entity *parent) 219 { 220 struct rq *rq = cpu_rq(cpu); 221 222 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 223 rt_rq->rt_nr_boosted = 0; 224 rt_rq->rq = rq; 225 rt_rq->tg = tg; 226 227 tg->rt_rq[cpu] = rt_rq; 228 tg->rt_se[cpu] = rt_se; 229 230 if (!rt_se) 231 return; 232 233 if (!parent) 234 rt_se->rt_rq = &rq->rt; 235 else 236 rt_se->rt_rq = parent->my_q; 237 238 rt_se->my_q = rt_rq; 239 rt_se->parent = parent; 240 INIT_LIST_HEAD(&rt_se->run_list); 241 } 242 243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 244 { 245 struct rt_rq *rt_rq; 246 struct sched_rt_entity *rt_se; 247 int i; 248 249 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 250 if (!tg->rt_rq) 251 goto err; 252 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 253 if (!tg->rt_se) 254 goto err; 255 256 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0); 257 258 for_each_possible_cpu(i) { 259 rt_rq = kzalloc_node(sizeof(struct rt_rq), 260 GFP_KERNEL, cpu_to_node(i)); 261 if (!rt_rq) 262 goto err; 263 264 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 265 GFP_KERNEL, cpu_to_node(i)); 266 if (!rt_se) 267 goto err_free_rq; 268 269 init_rt_rq(rt_rq); 270 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 271 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 272 } 273 274 return 1; 275 276 err_free_rq: 277 kfree(rt_rq); 278 err: 279 return 0; 280 } 281 282 #else /* CONFIG_RT_GROUP_SCHED */ 283 284 #define rt_entity_is_task(rt_se) (1) 285 286 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 287 { 288 return container_of(rt_se, struct task_struct, rt); 289 } 290 291 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 292 { 293 return container_of(rt_rq, struct rq, rt); 294 } 295 296 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 297 { 298 struct task_struct *p = rt_task_of(rt_se); 299 300 return task_rq(p); 301 } 302 303 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 304 { 305 struct rq *rq = rq_of_rt_se(rt_se); 306 307 return &rq->rt; 308 } 309 310 void unregister_rt_sched_group(struct task_group *tg) { } 311 312 void free_rt_sched_group(struct task_group *tg) { } 313 314 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 315 { 316 return 1; 317 } 318 #endif /* CONFIG_RT_GROUP_SCHED */ 319 320 #ifdef CONFIG_SMP 321 322 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 323 { 324 /* Try to pull RT tasks here if we lower this rq's prio */ 325 return rq->online && rq->rt.highest_prio.curr > prev->prio; 326 } 327 328 static inline int rt_overloaded(struct rq *rq) 329 { 330 return atomic_read(&rq->rd->rto_count); 331 } 332 333 static inline void rt_set_overload(struct rq *rq) 334 { 335 if (!rq->online) 336 return; 337 338 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 339 /* 340 * Make sure the mask is visible before we set 341 * the overload count. That is checked to determine 342 * if we should look at the mask. It would be a shame 343 * if we looked at the mask, but the mask was not 344 * updated yet. 345 * 346 * Matched by the barrier in pull_rt_task(). 347 */ 348 smp_wmb(); 349 atomic_inc(&rq->rd->rto_count); 350 } 351 352 static inline void rt_clear_overload(struct rq *rq) 353 { 354 if (!rq->online) 355 return; 356 357 /* the order here really doesn't matter */ 358 atomic_dec(&rq->rd->rto_count); 359 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 360 } 361 362 static inline int has_pushable_tasks(struct rq *rq) 363 { 364 return !plist_head_empty(&rq->rt.pushable_tasks); 365 } 366 367 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 368 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 369 370 static void push_rt_tasks(struct rq *); 371 static void pull_rt_task(struct rq *); 372 373 static inline void rt_queue_push_tasks(struct rq *rq) 374 { 375 if (!has_pushable_tasks(rq)) 376 return; 377 378 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 379 } 380 381 static inline void rt_queue_pull_task(struct rq *rq) 382 { 383 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 384 } 385 386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 387 { 388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 plist_node_init(&p->pushable_tasks, p->prio); 390 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 391 392 /* Update the highest prio pushable task */ 393 if (p->prio < rq->rt.highest_prio.next) 394 rq->rt.highest_prio.next = p->prio; 395 396 if (!rq->rt.overloaded) { 397 rt_set_overload(rq); 398 rq->rt.overloaded = 1; 399 } 400 } 401 402 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 403 { 404 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 405 406 /* Update the new highest prio pushable task */ 407 if (has_pushable_tasks(rq)) { 408 p = plist_first_entry(&rq->rt.pushable_tasks, 409 struct task_struct, pushable_tasks); 410 rq->rt.highest_prio.next = p->prio; 411 } else { 412 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 413 414 if (rq->rt.overloaded) { 415 rt_clear_overload(rq); 416 rq->rt.overloaded = 0; 417 } 418 } 419 } 420 421 #else 422 423 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 424 { 425 } 426 427 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 428 { 429 } 430 431 static inline void rt_queue_push_tasks(struct rq *rq) 432 { 433 } 434 #endif /* CONFIG_SMP */ 435 436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 438 439 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 440 { 441 return rt_se->on_rq; 442 } 443 444 #ifdef CONFIG_UCLAMP_TASK 445 /* 446 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 447 * settings. 448 * 449 * This check is only important for heterogeneous systems where uclamp_min value 450 * is higher than the capacity of a @cpu. For non-heterogeneous system this 451 * function will always return true. 452 * 453 * The function will return true if the capacity of the @cpu is >= the 454 * uclamp_min and false otherwise. 455 * 456 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 457 * > uclamp_max. 458 */ 459 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 460 { 461 unsigned int min_cap; 462 unsigned int max_cap; 463 unsigned int cpu_cap; 464 465 /* Only heterogeneous systems can benefit from this check */ 466 if (!sched_asym_cpucap_active()) 467 return true; 468 469 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 470 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 471 472 cpu_cap = arch_scale_cpu_capacity(cpu); 473 474 return cpu_cap >= min(min_cap, max_cap); 475 } 476 #else 477 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 478 { 479 return true; 480 } 481 #endif 482 483 #ifdef CONFIG_RT_GROUP_SCHED 484 485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 486 { 487 if (!rt_rq->tg) 488 return RUNTIME_INF; 489 490 return rt_rq->rt_runtime; 491 } 492 493 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 494 { 495 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 496 } 497 498 typedef struct task_group *rt_rq_iter_t; 499 500 static inline struct task_group *next_task_group(struct task_group *tg) 501 { 502 do { 503 tg = list_entry_rcu(tg->list.next, 504 typeof(struct task_group), list); 505 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 506 507 if (&tg->list == &task_groups) 508 tg = NULL; 509 510 return tg; 511 } 512 513 #define for_each_rt_rq(rt_rq, iter, rq) \ 514 for (iter = container_of(&task_groups, typeof(*iter), list); \ 515 (iter = next_task_group(iter)) && \ 516 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 517 518 #define for_each_sched_rt_entity(rt_se) \ 519 for (; rt_se; rt_se = rt_se->parent) 520 521 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 522 { 523 return rt_se->my_q; 524 } 525 526 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 527 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 528 529 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 530 { 531 struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor; 532 struct rq *rq = rq_of_rt_rq(rt_rq); 533 struct sched_rt_entity *rt_se; 534 535 int cpu = cpu_of(rq); 536 537 rt_se = rt_rq->tg->rt_se[cpu]; 538 539 if (rt_rq->rt_nr_running) { 540 if (!rt_se) 541 enqueue_top_rt_rq(rt_rq); 542 else if (!on_rt_rq(rt_se)) 543 enqueue_rt_entity(rt_se, 0); 544 545 if (rt_rq->highest_prio.curr < donor->prio) 546 resched_curr(rq); 547 } 548 } 549 550 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 551 { 552 struct sched_rt_entity *rt_se; 553 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 554 555 rt_se = rt_rq->tg->rt_se[cpu]; 556 557 if (!rt_se) { 558 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 559 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 560 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 561 } 562 else if (on_rt_rq(rt_se)) 563 dequeue_rt_entity(rt_se, 0); 564 } 565 566 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 567 { 568 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 569 } 570 571 static int rt_se_boosted(struct sched_rt_entity *rt_se) 572 { 573 struct rt_rq *rt_rq = group_rt_rq(rt_se); 574 struct task_struct *p; 575 576 if (rt_rq) 577 return !!rt_rq->rt_nr_boosted; 578 579 p = rt_task_of(rt_se); 580 return p->prio != p->normal_prio; 581 } 582 583 #ifdef CONFIG_SMP 584 static inline const struct cpumask *sched_rt_period_mask(void) 585 { 586 return this_rq()->rd->span; 587 } 588 #else 589 static inline const struct cpumask *sched_rt_period_mask(void) 590 { 591 return cpu_online_mask; 592 } 593 #endif 594 595 static inline 596 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 597 { 598 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 599 } 600 601 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 602 { 603 return &rt_rq->tg->rt_bandwidth; 604 } 605 606 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 607 { 608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 609 610 return (hrtimer_active(&rt_b->rt_period_timer) || 611 rt_rq->rt_time < rt_b->rt_runtime); 612 } 613 614 #ifdef CONFIG_SMP 615 /* 616 * We ran out of runtime, see if we can borrow some from our neighbours. 617 */ 618 static void do_balance_runtime(struct rt_rq *rt_rq) 619 { 620 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 621 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 622 int i, weight; 623 u64 rt_period; 624 625 weight = cpumask_weight(rd->span); 626 627 raw_spin_lock(&rt_b->rt_runtime_lock); 628 rt_period = ktime_to_ns(rt_b->rt_period); 629 for_each_cpu(i, rd->span) { 630 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 631 s64 diff; 632 633 if (iter == rt_rq) 634 continue; 635 636 raw_spin_lock(&iter->rt_runtime_lock); 637 /* 638 * Either all rqs have inf runtime and there's nothing to steal 639 * or __disable_runtime() below sets a specific rq to inf to 640 * indicate its been disabled and disallow stealing. 641 */ 642 if (iter->rt_runtime == RUNTIME_INF) 643 goto next; 644 645 /* 646 * From runqueues with spare time, take 1/n part of their 647 * spare time, but no more than our period. 648 */ 649 diff = iter->rt_runtime - iter->rt_time; 650 if (diff > 0) { 651 diff = div_u64((u64)diff, weight); 652 if (rt_rq->rt_runtime + diff > rt_period) 653 diff = rt_period - rt_rq->rt_runtime; 654 iter->rt_runtime -= diff; 655 rt_rq->rt_runtime += diff; 656 if (rt_rq->rt_runtime == rt_period) { 657 raw_spin_unlock(&iter->rt_runtime_lock); 658 break; 659 } 660 } 661 next: 662 raw_spin_unlock(&iter->rt_runtime_lock); 663 } 664 raw_spin_unlock(&rt_b->rt_runtime_lock); 665 } 666 667 /* 668 * Ensure this RQ takes back all the runtime it lend to its neighbours. 669 */ 670 static void __disable_runtime(struct rq *rq) 671 { 672 struct root_domain *rd = rq->rd; 673 rt_rq_iter_t iter; 674 struct rt_rq *rt_rq; 675 676 if (unlikely(!scheduler_running)) 677 return; 678 679 for_each_rt_rq(rt_rq, iter, rq) { 680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 681 s64 want; 682 int i; 683 684 raw_spin_lock(&rt_b->rt_runtime_lock); 685 raw_spin_lock(&rt_rq->rt_runtime_lock); 686 /* 687 * Either we're all inf and nobody needs to borrow, or we're 688 * already disabled and thus have nothing to do, or we have 689 * exactly the right amount of runtime to take out. 690 */ 691 if (rt_rq->rt_runtime == RUNTIME_INF || 692 rt_rq->rt_runtime == rt_b->rt_runtime) 693 goto balanced; 694 raw_spin_unlock(&rt_rq->rt_runtime_lock); 695 696 /* 697 * Calculate the difference between what we started out with 698 * and what we current have, that's the amount of runtime 699 * we lend and now have to reclaim. 700 */ 701 want = rt_b->rt_runtime - rt_rq->rt_runtime; 702 703 /* 704 * Greedy reclaim, take back as much as we can. 705 */ 706 for_each_cpu(i, rd->span) { 707 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 708 s64 diff; 709 710 /* 711 * Can't reclaim from ourselves or disabled runqueues. 712 */ 713 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 714 continue; 715 716 raw_spin_lock(&iter->rt_runtime_lock); 717 if (want > 0) { 718 diff = min_t(s64, iter->rt_runtime, want); 719 iter->rt_runtime -= diff; 720 want -= diff; 721 } else { 722 iter->rt_runtime -= want; 723 want -= want; 724 } 725 raw_spin_unlock(&iter->rt_runtime_lock); 726 727 if (!want) 728 break; 729 } 730 731 raw_spin_lock(&rt_rq->rt_runtime_lock); 732 /* 733 * We cannot be left wanting - that would mean some runtime 734 * leaked out of the system. 735 */ 736 WARN_ON_ONCE(want); 737 balanced: 738 /* 739 * Disable all the borrow logic by pretending we have inf 740 * runtime - in which case borrowing doesn't make sense. 741 */ 742 rt_rq->rt_runtime = RUNTIME_INF; 743 rt_rq->rt_throttled = 0; 744 raw_spin_unlock(&rt_rq->rt_runtime_lock); 745 raw_spin_unlock(&rt_b->rt_runtime_lock); 746 747 /* Make rt_rq available for pick_next_task() */ 748 sched_rt_rq_enqueue(rt_rq); 749 } 750 } 751 752 static void __enable_runtime(struct rq *rq) 753 { 754 rt_rq_iter_t iter; 755 struct rt_rq *rt_rq; 756 757 if (unlikely(!scheduler_running)) 758 return; 759 760 /* 761 * Reset each runqueue's bandwidth settings 762 */ 763 for_each_rt_rq(rt_rq, iter, rq) { 764 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 765 766 raw_spin_lock(&rt_b->rt_runtime_lock); 767 raw_spin_lock(&rt_rq->rt_runtime_lock); 768 rt_rq->rt_runtime = rt_b->rt_runtime; 769 rt_rq->rt_time = 0; 770 rt_rq->rt_throttled = 0; 771 raw_spin_unlock(&rt_rq->rt_runtime_lock); 772 raw_spin_unlock(&rt_b->rt_runtime_lock); 773 } 774 } 775 776 static void balance_runtime(struct rt_rq *rt_rq) 777 { 778 if (!sched_feat(RT_RUNTIME_SHARE)) 779 return; 780 781 if (rt_rq->rt_time > rt_rq->rt_runtime) { 782 raw_spin_unlock(&rt_rq->rt_runtime_lock); 783 do_balance_runtime(rt_rq); 784 raw_spin_lock(&rt_rq->rt_runtime_lock); 785 } 786 } 787 #else /* !CONFIG_SMP */ 788 static inline void balance_runtime(struct rt_rq *rt_rq) {} 789 #endif /* CONFIG_SMP */ 790 791 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 792 { 793 int i, idle = 1, throttled = 0; 794 const struct cpumask *span; 795 796 span = sched_rt_period_mask(); 797 798 /* 799 * FIXME: isolated CPUs should really leave the root task group, 800 * whether they are isolcpus or were isolated via cpusets, lest 801 * the timer run on a CPU which does not service all runqueues, 802 * potentially leaving other CPUs indefinitely throttled. If 803 * isolation is really required, the user will turn the throttle 804 * off to kill the perturbations it causes anyway. Meanwhile, 805 * this maintains functionality for boot and/or troubleshooting. 806 */ 807 if (rt_b == &root_task_group.rt_bandwidth) 808 span = cpu_online_mask; 809 810 for_each_cpu(i, span) { 811 int enqueue = 0; 812 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 813 struct rq *rq = rq_of_rt_rq(rt_rq); 814 struct rq_flags rf; 815 int skip; 816 817 /* 818 * When span == cpu_online_mask, taking each rq->lock 819 * can be time-consuming. Try to avoid it when possible. 820 */ 821 raw_spin_lock(&rt_rq->rt_runtime_lock); 822 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 823 rt_rq->rt_runtime = rt_b->rt_runtime; 824 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 825 raw_spin_unlock(&rt_rq->rt_runtime_lock); 826 if (skip) 827 continue; 828 829 rq_lock(rq, &rf); 830 update_rq_clock(rq); 831 832 if (rt_rq->rt_time) { 833 u64 runtime; 834 835 raw_spin_lock(&rt_rq->rt_runtime_lock); 836 if (rt_rq->rt_throttled) 837 balance_runtime(rt_rq); 838 runtime = rt_rq->rt_runtime; 839 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 840 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 841 rt_rq->rt_throttled = 0; 842 enqueue = 1; 843 844 /* 845 * When we're idle and a woken (rt) task is 846 * throttled wakeup_preempt() will set 847 * skip_update and the time between the wakeup 848 * and this unthrottle will get accounted as 849 * 'runtime'. 850 */ 851 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 852 rq_clock_cancel_skipupdate(rq); 853 } 854 if (rt_rq->rt_time || rt_rq->rt_nr_running) 855 idle = 0; 856 raw_spin_unlock(&rt_rq->rt_runtime_lock); 857 } else if (rt_rq->rt_nr_running) { 858 idle = 0; 859 if (!rt_rq_throttled(rt_rq)) 860 enqueue = 1; 861 } 862 if (rt_rq->rt_throttled) 863 throttled = 1; 864 865 if (enqueue) 866 sched_rt_rq_enqueue(rt_rq); 867 rq_unlock(rq, &rf); 868 } 869 870 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 871 return 1; 872 873 return idle; 874 } 875 876 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 877 { 878 u64 runtime = sched_rt_runtime(rt_rq); 879 880 if (rt_rq->rt_throttled) 881 return rt_rq_throttled(rt_rq); 882 883 if (runtime >= sched_rt_period(rt_rq)) 884 return 0; 885 886 balance_runtime(rt_rq); 887 runtime = sched_rt_runtime(rt_rq); 888 if (runtime == RUNTIME_INF) 889 return 0; 890 891 if (rt_rq->rt_time > runtime) { 892 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 893 894 /* 895 * Don't actually throttle groups that have no runtime assigned 896 * but accrue some time due to boosting. 897 */ 898 if (likely(rt_b->rt_runtime)) { 899 rt_rq->rt_throttled = 1; 900 printk_deferred_once("sched: RT throttling activated\n"); 901 } else { 902 /* 903 * In case we did anyway, make it go away, 904 * replenishment is a joke, since it will replenish us 905 * with exactly 0 ns. 906 */ 907 rt_rq->rt_time = 0; 908 } 909 910 if (rt_rq_throttled(rt_rq)) { 911 sched_rt_rq_dequeue(rt_rq); 912 return 1; 913 } 914 } 915 916 return 0; 917 } 918 919 #else /* !CONFIG_RT_GROUP_SCHED */ 920 921 typedef struct rt_rq *rt_rq_iter_t; 922 923 #define for_each_rt_rq(rt_rq, iter, rq) \ 924 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 925 926 #define for_each_sched_rt_entity(rt_se) \ 927 for (; rt_se; rt_se = NULL) 928 929 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 930 { 931 return NULL; 932 } 933 934 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 935 { 936 struct rq *rq = rq_of_rt_rq(rt_rq); 937 938 if (!rt_rq->rt_nr_running) 939 return; 940 941 enqueue_top_rt_rq(rt_rq); 942 resched_curr(rq); 943 } 944 945 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 946 { 947 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 948 } 949 950 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 951 { 952 return false; 953 } 954 955 static inline const struct cpumask *sched_rt_period_mask(void) 956 { 957 return cpu_online_mask; 958 } 959 960 static inline 961 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 962 { 963 return &cpu_rq(cpu)->rt; 964 } 965 966 #ifdef CONFIG_SMP 967 static void __enable_runtime(struct rq *rq) { } 968 static void __disable_runtime(struct rq *rq) { } 969 #endif 970 971 #endif /* CONFIG_RT_GROUP_SCHED */ 972 973 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 974 { 975 #ifdef CONFIG_RT_GROUP_SCHED 976 struct rt_rq *rt_rq = group_rt_rq(rt_se); 977 978 if (rt_rq) 979 return rt_rq->highest_prio.curr; 980 #endif 981 982 return rt_task_of(rt_se)->prio; 983 } 984 985 /* 986 * Update the current task's runtime statistics. Skip current tasks that 987 * are not in our scheduling class. 988 */ 989 static void update_curr_rt(struct rq *rq) 990 { 991 struct task_struct *donor = rq->donor; 992 s64 delta_exec; 993 994 if (donor->sched_class != &rt_sched_class) 995 return; 996 997 delta_exec = update_curr_common(rq); 998 if (unlikely(delta_exec <= 0)) 999 return; 1000 1001 #ifdef CONFIG_RT_GROUP_SCHED 1002 struct sched_rt_entity *rt_se = &donor->rt; 1003 1004 if (!rt_bandwidth_enabled()) 1005 return; 1006 1007 for_each_sched_rt_entity(rt_se) { 1008 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1009 int exceeded; 1010 1011 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1012 raw_spin_lock(&rt_rq->rt_runtime_lock); 1013 rt_rq->rt_time += delta_exec; 1014 exceeded = sched_rt_runtime_exceeded(rt_rq); 1015 if (exceeded) 1016 resched_curr(rq); 1017 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1018 if (exceeded) 1019 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1020 } 1021 } 1022 #endif 1023 } 1024 1025 static void 1026 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1027 { 1028 struct rq *rq = rq_of_rt_rq(rt_rq); 1029 1030 BUG_ON(&rq->rt != rt_rq); 1031 1032 if (!rt_rq->rt_queued) 1033 return; 1034 1035 BUG_ON(!rq->nr_running); 1036 1037 sub_nr_running(rq, count); 1038 rt_rq->rt_queued = 0; 1039 1040 } 1041 1042 static void 1043 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1044 { 1045 struct rq *rq = rq_of_rt_rq(rt_rq); 1046 1047 BUG_ON(&rq->rt != rt_rq); 1048 1049 if (rt_rq->rt_queued) 1050 return; 1051 1052 if (rt_rq_throttled(rt_rq)) 1053 return; 1054 1055 if (rt_rq->rt_nr_running) { 1056 add_nr_running(rq, rt_rq->rt_nr_running); 1057 rt_rq->rt_queued = 1; 1058 } 1059 1060 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1061 cpufreq_update_util(rq, 0); 1062 } 1063 1064 #if defined CONFIG_SMP 1065 1066 static void 1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1068 { 1069 struct rq *rq = rq_of_rt_rq(rt_rq); 1070 1071 #ifdef CONFIG_RT_GROUP_SCHED 1072 /* 1073 * Change rq's cpupri only if rt_rq is the top queue. 1074 */ 1075 if (&rq->rt != rt_rq) 1076 return; 1077 #endif 1078 if (rq->online && prio < prev_prio) 1079 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1080 } 1081 1082 static void 1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1084 { 1085 struct rq *rq = rq_of_rt_rq(rt_rq); 1086 1087 #ifdef CONFIG_RT_GROUP_SCHED 1088 /* 1089 * Change rq's cpupri only if rt_rq is the top queue. 1090 */ 1091 if (&rq->rt != rt_rq) 1092 return; 1093 #endif 1094 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1095 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1096 } 1097 1098 #else /* CONFIG_SMP */ 1099 1100 static inline 1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1102 static inline 1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1104 1105 #endif /* CONFIG_SMP */ 1106 1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1108 static void 1109 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1110 { 1111 int prev_prio = rt_rq->highest_prio.curr; 1112 1113 if (prio < prev_prio) 1114 rt_rq->highest_prio.curr = prio; 1115 1116 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1117 } 1118 1119 static void 1120 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1121 { 1122 int prev_prio = rt_rq->highest_prio.curr; 1123 1124 if (rt_rq->rt_nr_running) { 1125 1126 WARN_ON(prio < prev_prio); 1127 1128 /* 1129 * This may have been our highest task, and therefore 1130 * we may have some re-computation to do 1131 */ 1132 if (prio == prev_prio) { 1133 struct rt_prio_array *array = &rt_rq->active; 1134 1135 rt_rq->highest_prio.curr = 1136 sched_find_first_bit(array->bitmap); 1137 } 1138 1139 } else { 1140 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1141 } 1142 1143 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1144 } 1145 1146 #else 1147 1148 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1149 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1150 1151 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1152 1153 #ifdef CONFIG_RT_GROUP_SCHED 1154 1155 static void 1156 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1157 { 1158 if (rt_se_boosted(rt_se)) 1159 rt_rq->rt_nr_boosted++; 1160 1161 if (rt_rq->tg) 1162 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1163 } 1164 1165 static void 1166 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1167 { 1168 if (rt_se_boosted(rt_se)) 1169 rt_rq->rt_nr_boosted--; 1170 1171 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1172 } 1173 1174 #else /* CONFIG_RT_GROUP_SCHED */ 1175 1176 static void 1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1178 { 1179 } 1180 1181 static inline 1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1183 1184 #endif /* CONFIG_RT_GROUP_SCHED */ 1185 1186 static inline 1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1188 { 1189 struct rt_rq *group_rq = group_rt_rq(rt_se); 1190 1191 if (group_rq) 1192 return group_rq->rt_nr_running; 1193 else 1194 return 1; 1195 } 1196 1197 static inline 1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1199 { 1200 struct rt_rq *group_rq = group_rt_rq(rt_se); 1201 struct task_struct *tsk; 1202 1203 if (group_rq) 1204 return group_rq->rr_nr_running; 1205 1206 tsk = rt_task_of(rt_se); 1207 1208 return (tsk->policy == SCHED_RR) ? 1 : 0; 1209 } 1210 1211 static inline 1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1213 { 1214 int prio = rt_se_prio(rt_se); 1215 1216 WARN_ON(!rt_prio(prio)); 1217 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1218 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1219 1220 inc_rt_prio(rt_rq, prio); 1221 inc_rt_group(rt_se, rt_rq); 1222 } 1223 1224 static inline 1225 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1226 { 1227 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1228 WARN_ON(!rt_rq->rt_nr_running); 1229 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1230 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1231 1232 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1233 dec_rt_group(rt_se, rt_rq); 1234 } 1235 1236 /* 1237 * Change rt_se->run_list location unless SAVE && !MOVE 1238 * 1239 * assumes ENQUEUE/DEQUEUE flags match 1240 */ 1241 static inline bool move_entity(unsigned int flags) 1242 { 1243 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1250 { 1251 list_del_init(&rt_se->run_list); 1252 1253 if (list_empty(array->queue + rt_se_prio(rt_se))) 1254 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1255 1256 rt_se->on_list = 0; 1257 } 1258 1259 static inline struct sched_statistics * 1260 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1261 { 1262 #ifdef CONFIG_RT_GROUP_SCHED 1263 /* schedstats is not supported for rt group. */ 1264 if (!rt_entity_is_task(rt_se)) 1265 return NULL; 1266 #endif 1267 1268 return &rt_task_of(rt_se)->stats; 1269 } 1270 1271 static inline void 1272 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1273 { 1274 struct sched_statistics *stats; 1275 struct task_struct *p = NULL; 1276 1277 if (!schedstat_enabled()) 1278 return; 1279 1280 if (rt_entity_is_task(rt_se)) 1281 p = rt_task_of(rt_se); 1282 1283 stats = __schedstats_from_rt_se(rt_se); 1284 if (!stats) 1285 return; 1286 1287 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1288 } 1289 1290 static inline void 1291 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1292 { 1293 struct sched_statistics *stats; 1294 struct task_struct *p = NULL; 1295 1296 if (!schedstat_enabled()) 1297 return; 1298 1299 if (rt_entity_is_task(rt_se)) 1300 p = rt_task_of(rt_se); 1301 1302 stats = __schedstats_from_rt_se(rt_se); 1303 if (!stats) 1304 return; 1305 1306 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1307 } 1308 1309 static inline void 1310 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1311 int flags) 1312 { 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 if (flags & ENQUEUE_WAKEUP) 1317 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1318 } 1319 1320 static inline void 1321 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1322 { 1323 struct sched_statistics *stats; 1324 struct task_struct *p = NULL; 1325 1326 if (!schedstat_enabled()) 1327 return; 1328 1329 if (rt_entity_is_task(rt_se)) 1330 p = rt_task_of(rt_se); 1331 1332 stats = __schedstats_from_rt_se(rt_se); 1333 if (!stats) 1334 return; 1335 1336 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1337 } 1338 1339 static inline void 1340 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1341 int flags) 1342 { 1343 struct task_struct *p = NULL; 1344 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 if (rt_entity_is_task(rt_se)) 1349 p = rt_task_of(rt_se); 1350 1351 if ((flags & DEQUEUE_SLEEP) && p) { 1352 unsigned int state; 1353 1354 state = READ_ONCE(p->__state); 1355 if (state & TASK_INTERRUPTIBLE) 1356 __schedstat_set(p->stats.sleep_start, 1357 rq_clock(rq_of_rt_rq(rt_rq))); 1358 1359 if (state & TASK_UNINTERRUPTIBLE) 1360 __schedstat_set(p->stats.block_start, 1361 rq_clock(rq_of_rt_rq(rt_rq))); 1362 } 1363 } 1364 1365 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1366 { 1367 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1368 struct rt_prio_array *array = &rt_rq->active; 1369 struct rt_rq *group_rq = group_rt_rq(rt_se); 1370 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1371 1372 /* 1373 * Don't enqueue the group if its throttled, or when empty. 1374 * The latter is a consequence of the former when a child group 1375 * get throttled and the current group doesn't have any other 1376 * active members. 1377 */ 1378 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1379 if (rt_se->on_list) 1380 __delist_rt_entity(rt_se, array); 1381 return; 1382 } 1383 1384 if (move_entity(flags)) { 1385 WARN_ON_ONCE(rt_se->on_list); 1386 if (flags & ENQUEUE_HEAD) 1387 list_add(&rt_se->run_list, queue); 1388 else 1389 list_add_tail(&rt_se->run_list, queue); 1390 1391 __set_bit(rt_se_prio(rt_se), array->bitmap); 1392 rt_se->on_list = 1; 1393 } 1394 rt_se->on_rq = 1; 1395 1396 inc_rt_tasks(rt_se, rt_rq); 1397 } 1398 1399 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1400 { 1401 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1402 struct rt_prio_array *array = &rt_rq->active; 1403 1404 if (move_entity(flags)) { 1405 WARN_ON_ONCE(!rt_se->on_list); 1406 __delist_rt_entity(rt_se, array); 1407 } 1408 rt_se->on_rq = 0; 1409 1410 dec_rt_tasks(rt_se, rt_rq); 1411 } 1412 1413 /* 1414 * Because the prio of an upper entry depends on the lower 1415 * entries, we must remove entries top - down. 1416 */ 1417 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1418 { 1419 struct sched_rt_entity *back = NULL; 1420 unsigned int rt_nr_running; 1421 1422 for_each_sched_rt_entity(rt_se) { 1423 rt_se->back = back; 1424 back = rt_se; 1425 } 1426 1427 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1428 1429 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1430 if (on_rt_rq(rt_se)) 1431 __dequeue_rt_entity(rt_se, flags); 1432 } 1433 1434 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1435 } 1436 1437 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1438 { 1439 struct rq *rq = rq_of_rt_se(rt_se); 1440 1441 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1442 1443 dequeue_rt_stack(rt_se, flags); 1444 for_each_sched_rt_entity(rt_se) 1445 __enqueue_rt_entity(rt_se, flags); 1446 enqueue_top_rt_rq(&rq->rt); 1447 } 1448 1449 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1450 { 1451 struct rq *rq = rq_of_rt_se(rt_se); 1452 1453 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1454 1455 dequeue_rt_stack(rt_se, flags); 1456 1457 for_each_sched_rt_entity(rt_se) { 1458 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1459 1460 if (rt_rq && rt_rq->rt_nr_running) 1461 __enqueue_rt_entity(rt_se, flags); 1462 } 1463 enqueue_top_rt_rq(&rq->rt); 1464 } 1465 1466 /* 1467 * Adding/removing a task to/from a priority array: 1468 */ 1469 static void 1470 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1471 { 1472 struct sched_rt_entity *rt_se = &p->rt; 1473 1474 if (flags & ENQUEUE_WAKEUP) 1475 rt_se->timeout = 0; 1476 1477 check_schedstat_required(); 1478 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1479 1480 enqueue_rt_entity(rt_se, flags); 1481 1482 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1483 enqueue_pushable_task(rq, p); 1484 } 1485 1486 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1487 { 1488 struct sched_rt_entity *rt_se = &p->rt; 1489 1490 update_curr_rt(rq); 1491 dequeue_rt_entity(rt_se, flags); 1492 1493 dequeue_pushable_task(rq, p); 1494 1495 return true; 1496 } 1497 1498 /* 1499 * Put task to the head or the end of the run list without the overhead of 1500 * dequeue followed by enqueue. 1501 */ 1502 static void 1503 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1504 { 1505 if (on_rt_rq(rt_se)) { 1506 struct rt_prio_array *array = &rt_rq->active; 1507 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1508 1509 if (head) 1510 list_move(&rt_se->run_list, queue); 1511 else 1512 list_move_tail(&rt_se->run_list, queue); 1513 } 1514 } 1515 1516 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1517 { 1518 struct sched_rt_entity *rt_se = &p->rt; 1519 struct rt_rq *rt_rq; 1520 1521 for_each_sched_rt_entity(rt_se) { 1522 rt_rq = rt_rq_of_se(rt_se); 1523 requeue_rt_entity(rt_rq, rt_se, head); 1524 } 1525 } 1526 1527 static void yield_task_rt(struct rq *rq) 1528 { 1529 requeue_task_rt(rq, rq->curr, 0); 1530 } 1531 1532 #ifdef CONFIG_SMP 1533 static int find_lowest_rq(struct task_struct *task); 1534 1535 static int 1536 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1537 { 1538 struct task_struct *curr, *donor; 1539 struct rq *rq; 1540 bool test; 1541 1542 /* For anything but wake ups, just return the task_cpu */ 1543 if (!(flags & (WF_TTWU | WF_FORK))) 1544 goto out; 1545 1546 rq = cpu_rq(cpu); 1547 1548 rcu_read_lock(); 1549 curr = READ_ONCE(rq->curr); /* unlocked access */ 1550 donor = READ_ONCE(rq->donor); 1551 1552 /* 1553 * If the current task on @p's runqueue is an RT task, then 1554 * try to see if we can wake this RT task up on another 1555 * runqueue. Otherwise simply start this RT task 1556 * on its current runqueue. 1557 * 1558 * We want to avoid overloading runqueues. If the woken 1559 * task is a higher priority, then it will stay on this CPU 1560 * and the lower prio task should be moved to another CPU. 1561 * Even though this will probably make the lower prio task 1562 * lose its cache, we do not want to bounce a higher task 1563 * around just because it gave up its CPU, perhaps for a 1564 * lock? 1565 * 1566 * For equal prio tasks, we just let the scheduler sort it out. 1567 * 1568 * Otherwise, just let it ride on the affine RQ and the 1569 * post-schedule router will push the preempted task away 1570 * 1571 * This test is optimistic, if we get it wrong the load-balancer 1572 * will have to sort it out. 1573 * 1574 * We take into account the capacity of the CPU to ensure it fits the 1575 * requirement of the task - which is only important on heterogeneous 1576 * systems like big.LITTLE. 1577 */ 1578 test = curr && 1579 unlikely(rt_task(donor)) && 1580 (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio); 1581 1582 if (test || !rt_task_fits_capacity(p, cpu)) { 1583 int target = find_lowest_rq(p); 1584 1585 /* 1586 * Bail out if we were forcing a migration to find a better 1587 * fitting CPU but our search failed. 1588 */ 1589 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1590 goto out_unlock; 1591 1592 /* 1593 * Don't bother moving it if the destination CPU is 1594 * not running a lower priority task. 1595 */ 1596 if (target != -1 && 1597 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1598 cpu = target; 1599 } 1600 1601 out_unlock: 1602 rcu_read_unlock(); 1603 1604 out: 1605 return cpu; 1606 } 1607 1608 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1609 { 1610 if (rq->curr->nr_cpus_allowed == 1 || 1611 !cpupri_find(&rq->rd->cpupri, rq->donor, NULL)) 1612 return; 1613 1614 /* 1615 * p is migratable, so let's not schedule it and 1616 * see if it is pushed or pulled somewhere else. 1617 */ 1618 if (p->nr_cpus_allowed != 1 && 1619 cpupri_find(&rq->rd->cpupri, p, NULL)) 1620 return; 1621 1622 /* 1623 * There appear to be other CPUs that can accept 1624 * the current task but none can run 'p', so lets reschedule 1625 * to try and push the current task away: 1626 */ 1627 requeue_task_rt(rq, p, 1); 1628 resched_curr(rq); 1629 } 1630 1631 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1632 { 1633 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1634 /* 1635 * This is OK, because current is on_cpu, which avoids it being 1636 * picked for load-balance and preemption/IRQs are still 1637 * disabled avoiding further scheduler activity on it and we've 1638 * not yet started the picking loop. 1639 */ 1640 rq_unpin_lock(rq, rf); 1641 pull_rt_task(rq); 1642 rq_repin_lock(rq, rf); 1643 } 1644 1645 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1646 } 1647 #endif /* CONFIG_SMP */ 1648 1649 /* 1650 * Preempt the current task with a newly woken task if needed: 1651 */ 1652 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) 1653 { 1654 struct task_struct *donor = rq->donor; 1655 1656 if (p->prio < donor->prio) { 1657 resched_curr(rq); 1658 return; 1659 } 1660 1661 #ifdef CONFIG_SMP 1662 /* 1663 * If: 1664 * 1665 * - the newly woken task is of equal priority to the current task 1666 * - the newly woken task is non-migratable while current is migratable 1667 * - current will be preempted on the next reschedule 1668 * 1669 * we should check to see if current can readily move to a different 1670 * cpu. If so, we will reschedule to allow the push logic to try 1671 * to move current somewhere else, making room for our non-migratable 1672 * task. 1673 */ 1674 if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr)) 1675 check_preempt_equal_prio(rq, p); 1676 #endif 1677 } 1678 1679 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1680 { 1681 struct sched_rt_entity *rt_se = &p->rt; 1682 struct rt_rq *rt_rq = &rq->rt; 1683 1684 p->se.exec_start = rq_clock_task(rq); 1685 if (on_rt_rq(&p->rt)) 1686 update_stats_wait_end_rt(rt_rq, rt_se); 1687 1688 /* The running task is never eligible for pushing */ 1689 dequeue_pushable_task(rq, p); 1690 1691 if (!first) 1692 return; 1693 1694 /* 1695 * If prev task was rt, put_prev_task() has already updated the 1696 * utilization. We only care of the case where we start to schedule a 1697 * rt task 1698 */ 1699 if (rq->donor->sched_class != &rt_sched_class) 1700 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1701 1702 rt_queue_push_tasks(rq); 1703 } 1704 1705 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1706 { 1707 struct rt_prio_array *array = &rt_rq->active; 1708 struct sched_rt_entity *next = NULL; 1709 struct list_head *queue; 1710 int idx; 1711 1712 idx = sched_find_first_bit(array->bitmap); 1713 BUG_ON(idx >= MAX_RT_PRIO); 1714 1715 queue = array->queue + idx; 1716 if (SCHED_WARN_ON(list_empty(queue))) 1717 return NULL; 1718 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1719 1720 return next; 1721 } 1722 1723 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1724 { 1725 struct sched_rt_entity *rt_se; 1726 struct rt_rq *rt_rq = &rq->rt; 1727 1728 do { 1729 rt_se = pick_next_rt_entity(rt_rq); 1730 if (unlikely(!rt_se)) 1731 return NULL; 1732 rt_rq = group_rt_rq(rt_se); 1733 } while (rt_rq); 1734 1735 return rt_task_of(rt_se); 1736 } 1737 1738 static struct task_struct *pick_task_rt(struct rq *rq) 1739 { 1740 struct task_struct *p; 1741 1742 if (!sched_rt_runnable(rq)) 1743 return NULL; 1744 1745 p = _pick_next_task_rt(rq); 1746 1747 return p; 1748 } 1749 1750 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next) 1751 { 1752 struct sched_rt_entity *rt_se = &p->rt; 1753 struct rt_rq *rt_rq = &rq->rt; 1754 1755 if (on_rt_rq(&p->rt)) 1756 update_stats_wait_start_rt(rt_rq, rt_se); 1757 1758 update_curr_rt(rq); 1759 1760 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1761 1762 /* 1763 * The previous task needs to be made eligible for pushing 1764 * if it is still active 1765 */ 1766 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1767 enqueue_pushable_task(rq, p); 1768 } 1769 1770 #ifdef CONFIG_SMP 1771 1772 /* Only try algorithms three times */ 1773 #define RT_MAX_TRIES 3 1774 1775 /* 1776 * Return the highest pushable rq's task, which is suitable to be executed 1777 * on the CPU, NULL otherwise 1778 */ 1779 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1780 { 1781 struct plist_head *head = &rq->rt.pushable_tasks; 1782 struct task_struct *p; 1783 1784 if (!has_pushable_tasks(rq)) 1785 return NULL; 1786 1787 plist_for_each_entry(p, head, pushable_tasks) { 1788 if (task_is_pushable(rq, p, cpu)) 1789 return p; 1790 } 1791 1792 return NULL; 1793 } 1794 1795 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1796 1797 static int find_lowest_rq(struct task_struct *task) 1798 { 1799 struct sched_domain *sd; 1800 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1801 int this_cpu = smp_processor_id(); 1802 int cpu = task_cpu(task); 1803 int ret; 1804 1805 /* Make sure the mask is initialized first */ 1806 if (unlikely(!lowest_mask)) 1807 return -1; 1808 1809 if (task->nr_cpus_allowed == 1) 1810 return -1; /* No other targets possible */ 1811 1812 /* 1813 * If we're on asym system ensure we consider the different capacities 1814 * of the CPUs when searching for the lowest_mask. 1815 */ 1816 if (sched_asym_cpucap_active()) { 1817 1818 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1819 task, lowest_mask, 1820 rt_task_fits_capacity); 1821 } else { 1822 1823 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1824 task, lowest_mask); 1825 } 1826 1827 if (!ret) 1828 return -1; /* No targets found */ 1829 1830 /* 1831 * At this point we have built a mask of CPUs representing the 1832 * lowest priority tasks in the system. Now we want to elect 1833 * the best one based on our affinity and topology. 1834 * 1835 * We prioritize the last CPU that the task executed on since 1836 * it is most likely cache-hot in that location. 1837 */ 1838 if (cpumask_test_cpu(cpu, lowest_mask)) 1839 return cpu; 1840 1841 /* 1842 * Otherwise, we consult the sched_domains span maps to figure 1843 * out which CPU is logically closest to our hot cache data. 1844 */ 1845 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1846 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1847 1848 rcu_read_lock(); 1849 for_each_domain(cpu, sd) { 1850 if (sd->flags & SD_WAKE_AFFINE) { 1851 int best_cpu; 1852 1853 /* 1854 * "this_cpu" is cheaper to preempt than a 1855 * remote processor. 1856 */ 1857 if (this_cpu != -1 && 1858 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1859 rcu_read_unlock(); 1860 return this_cpu; 1861 } 1862 1863 best_cpu = cpumask_any_and_distribute(lowest_mask, 1864 sched_domain_span(sd)); 1865 if (best_cpu < nr_cpu_ids) { 1866 rcu_read_unlock(); 1867 return best_cpu; 1868 } 1869 } 1870 } 1871 rcu_read_unlock(); 1872 1873 /* 1874 * And finally, if there were no matches within the domains 1875 * just give the caller *something* to work with from the compatible 1876 * locations. 1877 */ 1878 if (this_cpu != -1) 1879 return this_cpu; 1880 1881 cpu = cpumask_any_distribute(lowest_mask); 1882 if (cpu < nr_cpu_ids) 1883 return cpu; 1884 1885 return -1; 1886 } 1887 1888 /* Will lock the rq it finds */ 1889 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1890 { 1891 struct rq *lowest_rq = NULL; 1892 int tries; 1893 int cpu; 1894 1895 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1896 cpu = find_lowest_rq(task); 1897 1898 if ((cpu == -1) || (cpu == rq->cpu)) 1899 break; 1900 1901 lowest_rq = cpu_rq(cpu); 1902 1903 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1904 /* 1905 * Target rq has tasks of equal or higher priority, 1906 * retrying does not release any lock and is unlikely 1907 * to yield a different result. 1908 */ 1909 lowest_rq = NULL; 1910 break; 1911 } 1912 1913 /* if the prio of this runqueue changed, try again */ 1914 if (double_lock_balance(rq, lowest_rq)) { 1915 /* 1916 * We had to unlock the run queue. In 1917 * the mean time, task could have 1918 * migrated already or had its affinity changed. 1919 * Also make sure that it wasn't scheduled on its rq. 1920 * It is possible the task was scheduled, set 1921 * "migrate_disabled" and then got preempted, so we must 1922 * check the task migration disable flag here too. 1923 */ 1924 if (unlikely(task_rq(task) != rq || 1925 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 1926 task_on_cpu(rq, task) || 1927 !rt_task(task) || 1928 is_migration_disabled(task) || 1929 !task_on_rq_queued(task))) { 1930 1931 double_unlock_balance(rq, lowest_rq); 1932 lowest_rq = NULL; 1933 break; 1934 } 1935 } 1936 1937 /* If this rq is still suitable use it. */ 1938 if (lowest_rq->rt.highest_prio.curr > task->prio) 1939 break; 1940 1941 /* try again */ 1942 double_unlock_balance(rq, lowest_rq); 1943 lowest_rq = NULL; 1944 } 1945 1946 return lowest_rq; 1947 } 1948 1949 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1950 { 1951 struct task_struct *p; 1952 1953 if (!has_pushable_tasks(rq)) 1954 return NULL; 1955 1956 p = plist_first_entry(&rq->rt.pushable_tasks, 1957 struct task_struct, pushable_tasks); 1958 1959 BUG_ON(rq->cpu != task_cpu(p)); 1960 BUG_ON(task_current(rq, p)); 1961 BUG_ON(task_current_donor(rq, p)); 1962 BUG_ON(p->nr_cpus_allowed <= 1); 1963 1964 BUG_ON(!task_on_rq_queued(p)); 1965 BUG_ON(!rt_task(p)); 1966 1967 return p; 1968 } 1969 1970 /* 1971 * If the current CPU has more than one RT task, see if the non 1972 * running task can migrate over to a CPU that is running a task 1973 * of lesser priority. 1974 */ 1975 static int push_rt_task(struct rq *rq, bool pull) 1976 { 1977 struct task_struct *next_task; 1978 struct rq *lowest_rq; 1979 int ret = 0; 1980 1981 if (!rq->rt.overloaded) 1982 return 0; 1983 1984 next_task = pick_next_pushable_task(rq); 1985 if (!next_task) 1986 return 0; 1987 1988 retry: 1989 /* 1990 * It's possible that the next_task slipped in of 1991 * higher priority than current. If that's the case 1992 * just reschedule current. 1993 */ 1994 if (unlikely(next_task->prio < rq->donor->prio)) { 1995 resched_curr(rq); 1996 return 0; 1997 } 1998 1999 if (is_migration_disabled(next_task)) { 2000 struct task_struct *push_task = NULL; 2001 int cpu; 2002 2003 if (!pull || rq->push_busy) 2004 return 0; 2005 2006 /* 2007 * Invoking find_lowest_rq() on anything but an RT task doesn't 2008 * make sense. Per the above priority check, curr has to 2009 * be of higher priority than next_task, so no need to 2010 * reschedule when bailing out. 2011 * 2012 * Note that the stoppers are masqueraded as SCHED_FIFO 2013 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2014 */ 2015 if (rq->donor->sched_class != &rt_sched_class) 2016 return 0; 2017 2018 cpu = find_lowest_rq(rq->curr); 2019 if (cpu == -1 || cpu == rq->cpu) 2020 return 0; 2021 2022 /* 2023 * Given we found a CPU with lower priority than @next_task, 2024 * therefore it should be running. However we cannot migrate it 2025 * to this other CPU, instead attempt to push the current 2026 * running task on this CPU away. 2027 */ 2028 push_task = get_push_task(rq); 2029 if (push_task) { 2030 preempt_disable(); 2031 raw_spin_rq_unlock(rq); 2032 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2033 push_task, &rq->push_work); 2034 preempt_enable(); 2035 raw_spin_rq_lock(rq); 2036 } 2037 2038 return 0; 2039 } 2040 2041 if (WARN_ON(next_task == rq->curr)) 2042 return 0; 2043 2044 /* We might release rq lock */ 2045 get_task_struct(next_task); 2046 2047 /* find_lock_lowest_rq locks the rq if found */ 2048 lowest_rq = find_lock_lowest_rq(next_task, rq); 2049 if (!lowest_rq) { 2050 struct task_struct *task; 2051 /* 2052 * find_lock_lowest_rq releases rq->lock 2053 * so it is possible that next_task has migrated. 2054 * 2055 * We need to make sure that the task is still on the same 2056 * run-queue and is also still the next task eligible for 2057 * pushing. 2058 */ 2059 task = pick_next_pushable_task(rq); 2060 if (task == next_task) { 2061 /* 2062 * The task hasn't migrated, and is still the next 2063 * eligible task, but we failed to find a run-queue 2064 * to push it to. Do not retry in this case, since 2065 * other CPUs will pull from us when ready. 2066 */ 2067 goto out; 2068 } 2069 2070 if (!task) 2071 /* No more tasks, just exit */ 2072 goto out; 2073 2074 /* 2075 * Something has shifted, try again. 2076 */ 2077 put_task_struct(next_task); 2078 next_task = task; 2079 goto retry; 2080 } 2081 2082 move_queued_task_locked(rq, lowest_rq, next_task); 2083 resched_curr(lowest_rq); 2084 ret = 1; 2085 2086 double_unlock_balance(rq, lowest_rq); 2087 out: 2088 put_task_struct(next_task); 2089 2090 return ret; 2091 } 2092 2093 static void push_rt_tasks(struct rq *rq) 2094 { 2095 /* push_rt_task will return true if it moved an RT */ 2096 while (push_rt_task(rq, false)) 2097 ; 2098 } 2099 2100 #ifdef HAVE_RT_PUSH_IPI 2101 2102 /* 2103 * When a high priority task schedules out from a CPU and a lower priority 2104 * task is scheduled in, a check is made to see if there's any RT tasks 2105 * on other CPUs that are waiting to run because a higher priority RT task 2106 * is currently running on its CPU. In this case, the CPU with multiple RT 2107 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2108 * up that may be able to run one of its non-running queued RT tasks. 2109 * 2110 * All CPUs with overloaded RT tasks need to be notified as there is currently 2111 * no way to know which of these CPUs have the highest priority task waiting 2112 * to run. Instead of trying to take a spinlock on each of these CPUs, 2113 * which has shown to cause large latency when done on machines with many 2114 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2115 * RT tasks waiting to run. 2116 * 2117 * Just sending an IPI to each of the CPUs is also an issue, as on large 2118 * count CPU machines, this can cause an IPI storm on a CPU, especially 2119 * if its the only CPU with multiple RT tasks queued, and a large number 2120 * of CPUs scheduling a lower priority task at the same time. 2121 * 2122 * Each root domain has its own IRQ work function that can iterate over 2123 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2124 * task must be checked if there's one or many CPUs that are lowering 2125 * their priority, there's a single IRQ work iterator that will try to 2126 * push off RT tasks that are waiting to run. 2127 * 2128 * When a CPU schedules a lower priority task, it will kick off the 2129 * IRQ work iterator that will jump to each CPU with overloaded RT tasks. 2130 * As it only takes the first CPU that schedules a lower priority task 2131 * to start the process, the rto_start variable is incremented and if 2132 * the atomic result is one, then that CPU will try to take the rto_lock. 2133 * This prevents high contention on the lock as the process handles all 2134 * CPUs scheduling lower priority tasks. 2135 * 2136 * All CPUs that are scheduling a lower priority task will increment the 2137 * rt_loop_next variable. This will make sure that the IRQ work iterator 2138 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2139 * priority task, even if the iterator is in the middle of a scan. Incrementing 2140 * the rt_loop_next will cause the iterator to perform another scan. 2141 * 2142 */ 2143 static int rto_next_cpu(struct root_domain *rd) 2144 { 2145 int next; 2146 int cpu; 2147 2148 /* 2149 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2150 * rt_next_cpu() will simply return the first CPU found in 2151 * the rto_mask. 2152 * 2153 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2154 * will return the next CPU found in the rto_mask. 2155 * 2156 * If there are no more CPUs left in the rto_mask, then a check is made 2157 * against rto_loop and rto_loop_next. rto_loop is only updated with 2158 * the rto_lock held, but any CPU may increment the rto_loop_next 2159 * without any locking. 2160 */ 2161 for (;;) { 2162 2163 /* When rto_cpu is -1 this acts like cpumask_first() */ 2164 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2165 2166 rd->rto_cpu = cpu; 2167 2168 if (cpu < nr_cpu_ids) 2169 return cpu; 2170 2171 rd->rto_cpu = -1; 2172 2173 /* 2174 * ACQUIRE ensures we see the @rto_mask changes 2175 * made prior to the @next value observed. 2176 * 2177 * Matches WMB in rt_set_overload(). 2178 */ 2179 next = atomic_read_acquire(&rd->rto_loop_next); 2180 2181 if (rd->rto_loop == next) 2182 break; 2183 2184 rd->rto_loop = next; 2185 } 2186 2187 return -1; 2188 } 2189 2190 static inline bool rto_start_trylock(atomic_t *v) 2191 { 2192 return !atomic_cmpxchg_acquire(v, 0, 1); 2193 } 2194 2195 static inline void rto_start_unlock(atomic_t *v) 2196 { 2197 atomic_set_release(v, 0); 2198 } 2199 2200 static void tell_cpu_to_push(struct rq *rq) 2201 { 2202 int cpu = -1; 2203 2204 /* Keep the loop going if the IPI is currently active */ 2205 atomic_inc(&rq->rd->rto_loop_next); 2206 2207 /* Only one CPU can initiate a loop at a time */ 2208 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2209 return; 2210 2211 raw_spin_lock(&rq->rd->rto_lock); 2212 2213 /* 2214 * The rto_cpu is updated under the lock, if it has a valid CPU 2215 * then the IPI is still running and will continue due to the 2216 * update to loop_next, and nothing needs to be done here. 2217 * Otherwise it is finishing up and an IPI needs to be sent. 2218 */ 2219 if (rq->rd->rto_cpu < 0) 2220 cpu = rto_next_cpu(rq->rd); 2221 2222 raw_spin_unlock(&rq->rd->rto_lock); 2223 2224 rto_start_unlock(&rq->rd->rto_loop_start); 2225 2226 if (cpu >= 0) { 2227 /* Make sure the rd does not get freed while pushing */ 2228 sched_get_rd(rq->rd); 2229 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2230 } 2231 } 2232 2233 /* Called from hardirq context */ 2234 void rto_push_irq_work_func(struct irq_work *work) 2235 { 2236 struct root_domain *rd = 2237 container_of(work, struct root_domain, rto_push_work); 2238 struct rq *rq; 2239 int cpu; 2240 2241 rq = this_rq(); 2242 2243 /* 2244 * We do not need to grab the lock to check for has_pushable_tasks. 2245 * When it gets updated, a check is made if a push is possible. 2246 */ 2247 if (has_pushable_tasks(rq)) { 2248 raw_spin_rq_lock(rq); 2249 while (push_rt_task(rq, true)) 2250 ; 2251 raw_spin_rq_unlock(rq); 2252 } 2253 2254 raw_spin_lock(&rd->rto_lock); 2255 2256 /* Pass the IPI to the next rt overloaded queue */ 2257 cpu = rto_next_cpu(rd); 2258 2259 raw_spin_unlock(&rd->rto_lock); 2260 2261 if (cpu < 0) { 2262 sched_put_rd(rd); 2263 return; 2264 } 2265 2266 /* Try the next RT overloaded CPU */ 2267 irq_work_queue_on(&rd->rto_push_work, cpu); 2268 } 2269 #endif /* HAVE_RT_PUSH_IPI */ 2270 2271 static void pull_rt_task(struct rq *this_rq) 2272 { 2273 int this_cpu = this_rq->cpu, cpu; 2274 bool resched = false; 2275 struct task_struct *p, *push_task; 2276 struct rq *src_rq; 2277 int rt_overload_count = rt_overloaded(this_rq); 2278 2279 if (likely(!rt_overload_count)) 2280 return; 2281 2282 /* 2283 * Match the barrier from rt_set_overloaded; this guarantees that if we 2284 * see overloaded we must also see the rto_mask bit. 2285 */ 2286 smp_rmb(); 2287 2288 /* If we are the only overloaded CPU do nothing */ 2289 if (rt_overload_count == 1 && 2290 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2291 return; 2292 2293 #ifdef HAVE_RT_PUSH_IPI 2294 if (sched_feat(RT_PUSH_IPI)) { 2295 tell_cpu_to_push(this_rq); 2296 return; 2297 } 2298 #endif 2299 2300 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2301 if (this_cpu == cpu) 2302 continue; 2303 2304 src_rq = cpu_rq(cpu); 2305 2306 /* 2307 * Don't bother taking the src_rq->lock if the next highest 2308 * task is known to be lower-priority than our current task. 2309 * This may look racy, but if this value is about to go 2310 * logically higher, the src_rq will push this task away. 2311 * And if its going logically lower, we do not care 2312 */ 2313 if (src_rq->rt.highest_prio.next >= 2314 this_rq->rt.highest_prio.curr) 2315 continue; 2316 2317 /* 2318 * We can potentially drop this_rq's lock in 2319 * double_lock_balance, and another CPU could 2320 * alter this_rq 2321 */ 2322 push_task = NULL; 2323 double_lock_balance(this_rq, src_rq); 2324 2325 /* 2326 * We can pull only a task, which is pushable 2327 * on its rq, and no others. 2328 */ 2329 p = pick_highest_pushable_task(src_rq, this_cpu); 2330 2331 /* 2332 * Do we have an RT task that preempts 2333 * the to-be-scheduled task? 2334 */ 2335 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2336 WARN_ON(p == src_rq->curr); 2337 WARN_ON(!task_on_rq_queued(p)); 2338 2339 /* 2340 * There's a chance that p is higher in priority 2341 * than what's currently running on its CPU. 2342 * This is just that p is waking up and hasn't 2343 * had a chance to schedule. We only pull 2344 * p if it is lower in priority than the 2345 * current task on the run queue 2346 */ 2347 if (p->prio < src_rq->donor->prio) 2348 goto skip; 2349 2350 if (is_migration_disabled(p)) { 2351 push_task = get_push_task(src_rq); 2352 } else { 2353 move_queued_task_locked(src_rq, this_rq, p); 2354 resched = true; 2355 } 2356 /* 2357 * We continue with the search, just in 2358 * case there's an even higher prio task 2359 * in another runqueue. (low likelihood 2360 * but possible) 2361 */ 2362 } 2363 skip: 2364 double_unlock_balance(this_rq, src_rq); 2365 2366 if (push_task) { 2367 preempt_disable(); 2368 raw_spin_rq_unlock(this_rq); 2369 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2370 push_task, &src_rq->push_work); 2371 preempt_enable(); 2372 raw_spin_rq_lock(this_rq); 2373 } 2374 } 2375 2376 if (resched) 2377 resched_curr(this_rq); 2378 } 2379 2380 /* 2381 * If we are not running and we are not going to reschedule soon, we should 2382 * try to push tasks away now 2383 */ 2384 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2385 { 2386 bool need_to_push = !task_on_cpu(rq, p) && 2387 !test_tsk_need_resched(rq->curr) && 2388 p->nr_cpus_allowed > 1 && 2389 (dl_task(rq->donor) || rt_task(rq->donor)) && 2390 (rq->curr->nr_cpus_allowed < 2 || 2391 rq->donor->prio <= p->prio); 2392 2393 if (need_to_push) 2394 push_rt_tasks(rq); 2395 } 2396 2397 /* Assumes rq->lock is held */ 2398 static void rq_online_rt(struct rq *rq) 2399 { 2400 if (rq->rt.overloaded) 2401 rt_set_overload(rq); 2402 2403 __enable_runtime(rq); 2404 2405 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2406 } 2407 2408 /* Assumes rq->lock is held */ 2409 static void rq_offline_rt(struct rq *rq) 2410 { 2411 if (rq->rt.overloaded) 2412 rt_clear_overload(rq); 2413 2414 __disable_runtime(rq); 2415 2416 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2417 } 2418 2419 /* 2420 * When switch from the rt queue, we bring ourselves to a position 2421 * that we might want to pull RT tasks from other runqueues. 2422 */ 2423 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2424 { 2425 /* 2426 * If there are other RT tasks then we will reschedule 2427 * and the scheduling of the other RT tasks will handle 2428 * the balancing. But if we are the last RT task 2429 * we may need to handle the pulling of RT tasks 2430 * now. 2431 */ 2432 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2433 return; 2434 2435 rt_queue_pull_task(rq); 2436 } 2437 2438 void __init init_sched_rt_class(void) 2439 { 2440 unsigned int i; 2441 2442 for_each_possible_cpu(i) { 2443 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2444 GFP_KERNEL, cpu_to_node(i)); 2445 } 2446 } 2447 #endif /* CONFIG_SMP */ 2448 2449 /* 2450 * When switching a task to RT, we may overload the runqueue 2451 * with RT tasks. In this case we try to push them off to 2452 * other runqueues. 2453 */ 2454 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2455 { 2456 /* 2457 * If we are running, update the avg_rt tracking, as the running time 2458 * will now on be accounted into the latter. 2459 */ 2460 if (task_current(rq, p)) { 2461 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2462 return; 2463 } 2464 2465 /* 2466 * If we are not running we may need to preempt the current 2467 * running task. If that current running task is also an RT task 2468 * then see if we can move to another run queue. 2469 */ 2470 if (task_on_rq_queued(p)) { 2471 #ifdef CONFIG_SMP 2472 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2473 rt_queue_push_tasks(rq); 2474 #endif /* CONFIG_SMP */ 2475 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq))) 2476 resched_curr(rq); 2477 } 2478 } 2479 2480 /* 2481 * Priority of the task has changed. This may cause 2482 * us to initiate a push or pull. 2483 */ 2484 static void 2485 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2486 { 2487 if (!task_on_rq_queued(p)) 2488 return; 2489 2490 if (task_current_donor(rq, p)) { 2491 #ifdef CONFIG_SMP 2492 /* 2493 * If our priority decreases while running, we 2494 * may need to pull tasks to this runqueue. 2495 */ 2496 if (oldprio < p->prio) 2497 rt_queue_pull_task(rq); 2498 2499 /* 2500 * If there's a higher priority task waiting to run 2501 * then reschedule. 2502 */ 2503 if (p->prio > rq->rt.highest_prio.curr) 2504 resched_curr(rq); 2505 #else 2506 /* For UP simply resched on drop of prio */ 2507 if (oldprio < p->prio) 2508 resched_curr(rq); 2509 #endif /* CONFIG_SMP */ 2510 } else { 2511 /* 2512 * This task is not running, but if it is 2513 * greater than the current running task 2514 * then reschedule. 2515 */ 2516 if (p->prio < rq->donor->prio) 2517 resched_curr(rq); 2518 } 2519 } 2520 2521 #ifdef CONFIG_POSIX_TIMERS 2522 static void watchdog(struct rq *rq, struct task_struct *p) 2523 { 2524 unsigned long soft, hard; 2525 2526 /* max may change after cur was read, this will be fixed next tick */ 2527 soft = task_rlimit(p, RLIMIT_RTTIME); 2528 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2529 2530 if (soft != RLIM_INFINITY) { 2531 unsigned long next; 2532 2533 if (p->rt.watchdog_stamp != jiffies) { 2534 p->rt.timeout++; 2535 p->rt.watchdog_stamp = jiffies; 2536 } 2537 2538 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2539 if (p->rt.timeout > next) { 2540 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2541 p->se.sum_exec_runtime); 2542 } 2543 } 2544 } 2545 #else 2546 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2547 #endif 2548 2549 /* 2550 * scheduler tick hitting a task of our scheduling class. 2551 * 2552 * NOTE: This function can be called remotely by the tick offload that 2553 * goes along full dynticks. Therefore no local assumption can be made 2554 * and everything must be accessed through the @rq and @curr passed in 2555 * parameters. 2556 */ 2557 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2558 { 2559 struct sched_rt_entity *rt_se = &p->rt; 2560 2561 update_curr_rt(rq); 2562 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2563 2564 watchdog(rq, p); 2565 2566 /* 2567 * RR tasks need a special form of time-slice management. 2568 * FIFO tasks have no timeslices. 2569 */ 2570 if (p->policy != SCHED_RR) 2571 return; 2572 2573 if (--p->rt.time_slice) 2574 return; 2575 2576 p->rt.time_slice = sched_rr_timeslice; 2577 2578 /* 2579 * Requeue to the end of queue if we (and all of our ancestors) are not 2580 * the only element on the queue 2581 */ 2582 for_each_sched_rt_entity(rt_se) { 2583 if (rt_se->run_list.prev != rt_se->run_list.next) { 2584 requeue_task_rt(rq, p, 0); 2585 resched_curr(rq); 2586 return; 2587 } 2588 } 2589 } 2590 2591 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2592 { 2593 /* 2594 * Time slice is 0 for SCHED_FIFO tasks 2595 */ 2596 if (task->policy == SCHED_RR) 2597 return sched_rr_timeslice; 2598 else 2599 return 0; 2600 } 2601 2602 #ifdef CONFIG_SCHED_CORE 2603 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2604 { 2605 struct rt_rq *rt_rq; 2606 2607 #ifdef CONFIG_RT_GROUP_SCHED 2608 rt_rq = task_group(p)->rt_rq[cpu]; 2609 #else 2610 rt_rq = &cpu_rq(cpu)->rt; 2611 #endif 2612 2613 return rt_rq_throttled(rt_rq); 2614 } 2615 #endif 2616 2617 DEFINE_SCHED_CLASS(rt) = { 2618 2619 .enqueue_task = enqueue_task_rt, 2620 .dequeue_task = dequeue_task_rt, 2621 .yield_task = yield_task_rt, 2622 2623 .wakeup_preempt = wakeup_preempt_rt, 2624 2625 .pick_task = pick_task_rt, 2626 .put_prev_task = put_prev_task_rt, 2627 .set_next_task = set_next_task_rt, 2628 2629 #ifdef CONFIG_SMP 2630 .balance = balance_rt, 2631 .select_task_rq = select_task_rq_rt, 2632 .set_cpus_allowed = set_cpus_allowed_common, 2633 .rq_online = rq_online_rt, 2634 .rq_offline = rq_offline_rt, 2635 .task_woken = task_woken_rt, 2636 .switched_from = switched_from_rt, 2637 .find_lock_rq = find_lock_lowest_rq, 2638 #endif 2639 2640 .task_tick = task_tick_rt, 2641 2642 .get_rr_interval = get_rr_interval_rt, 2643 2644 .prio_changed = prio_changed_rt, 2645 .switched_to = switched_to_rt, 2646 2647 .update_curr = update_curr_rt, 2648 2649 #ifdef CONFIG_SCHED_CORE 2650 .task_is_throttled = task_is_throttled_rt, 2651 #endif 2652 2653 #ifdef CONFIG_UCLAMP_TASK 2654 .uclamp_enabled = 1, 2655 #endif 2656 }; 2657 2658 #ifdef CONFIG_RT_GROUP_SCHED 2659 /* 2660 * Ensure that the real time constraints are schedulable. 2661 */ 2662 static DEFINE_MUTEX(rt_constraints_mutex); 2663 2664 static inline int tg_has_rt_tasks(struct task_group *tg) 2665 { 2666 struct task_struct *task; 2667 struct css_task_iter it; 2668 int ret = 0; 2669 2670 /* 2671 * Autogroups do not have RT tasks; see autogroup_create(). 2672 */ 2673 if (task_group_is_autogroup(tg)) 2674 return 0; 2675 2676 css_task_iter_start(&tg->css, 0, &it); 2677 while (!ret && (task = css_task_iter_next(&it))) 2678 ret |= rt_task(task); 2679 css_task_iter_end(&it); 2680 2681 return ret; 2682 } 2683 2684 struct rt_schedulable_data { 2685 struct task_group *tg; 2686 u64 rt_period; 2687 u64 rt_runtime; 2688 }; 2689 2690 static int tg_rt_schedulable(struct task_group *tg, void *data) 2691 { 2692 struct rt_schedulable_data *d = data; 2693 struct task_group *child; 2694 unsigned long total, sum = 0; 2695 u64 period, runtime; 2696 2697 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2698 runtime = tg->rt_bandwidth.rt_runtime; 2699 2700 if (tg == d->tg) { 2701 period = d->rt_period; 2702 runtime = d->rt_runtime; 2703 } 2704 2705 /* 2706 * Cannot have more runtime than the period. 2707 */ 2708 if (runtime > period && runtime != RUNTIME_INF) 2709 return -EINVAL; 2710 2711 /* 2712 * Ensure we don't starve existing RT tasks if runtime turns zero. 2713 */ 2714 if (rt_bandwidth_enabled() && !runtime && 2715 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2716 return -EBUSY; 2717 2718 total = to_ratio(period, runtime); 2719 2720 /* 2721 * Nobody can have more than the global setting allows. 2722 */ 2723 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2724 return -EINVAL; 2725 2726 /* 2727 * The sum of our children's runtime should not exceed our own. 2728 */ 2729 list_for_each_entry_rcu(child, &tg->children, siblings) { 2730 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2731 runtime = child->rt_bandwidth.rt_runtime; 2732 2733 if (child == d->tg) { 2734 period = d->rt_period; 2735 runtime = d->rt_runtime; 2736 } 2737 2738 sum += to_ratio(period, runtime); 2739 } 2740 2741 if (sum > total) 2742 return -EINVAL; 2743 2744 return 0; 2745 } 2746 2747 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2748 { 2749 int ret; 2750 2751 struct rt_schedulable_data data = { 2752 .tg = tg, 2753 .rt_period = period, 2754 .rt_runtime = runtime, 2755 }; 2756 2757 rcu_read_lock(); 2758 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2759 rcu_read_unlock(); 2760 2761 return ret; 2762 } 2763 2764 static int tg_set_rt_bandwidth(struct task_group *tg, 2765 u64 rt_period, u64 rt_runtime) 2766 { 2767 int i, err = 0; 2768 2769 /* 2770 * Disallowing the root group RT runtime is BAD, it would disallow the 2771 * kernel creating (and or operating) RT threads. 2772 */ 2773 if (tg == &root_task_group && rt_runtime == 0) 2774 return -EINVAL; 2775 2776 /* No period doesn't make any sense. */ 2777 if (rt_period == 0) 2778 return -EINVAL; 2779 2780 /* 2781 * Bound quota to defend quota against overflow during bandwidth shift. 2782 */ 2783 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2784 return -EINVAL; 2785 2786 mutex_lock(&rt_constraints_mutex); 2787 err = __rt_schedulable(tg, rt_period, rt_runtime); 2788 if (err) 2789 goto unlock; 2790 2791 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2792 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2793 tg->rt_bandwidth.rt_runtime = rt_runtime; 2794 2795 for_each_possible_cpu(i) { 2796 struct rt_rq *rt_rq = tg->rt_rq[i]; 2797 2798 raw_spin_lock(&rt_rq->rt_runtime_lock); 2799 rt_rq->rt_runtime = rt_runtime; 2800 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2801 } 2802 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2803 unlock: 2804 mutex_unlock(&rt_constraints_mutex); 2805 2806 return err; 2807 } 2808 2809 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2810 { 2811 u64 rt_runtime, rt_period; 2812 2813 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2814 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2815 if (rt_runtime_us < 0) 2816 rt_runtime = RUNTIME_INF; 2817 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2818 return -EINVAL; 2819 2820 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2821 } 2822 2823 long sched_group_rt_runtime(struct task_group *tg) 2824 { 2825 u64 rt_runtime_us; 2826 2827 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2828 return -1; 2829 2830 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2831 do_div(rt_runtime_us, NSEC_PER_USEC); 2832 return rt_runtime_us; 2833 } 2834 2835 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2836 { 2837 u64 rt_runtime, rt_period; 2838 2839 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2840 return -EINVAL; 2841 2842 rt_period = rt_period_us * NSEC_PER_USEC; 2843 rt_runtime = tg->rt_bandwidth.rt_runtime; 2844 2845 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2846 } 2847 2848 long sched_group_rt_period(struct task_group *tg) 2849 { 2850 u64 rt_period_us; 2851 2852 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2853 do_div(rt_period_us, NSEC_PER_USEC); 2854 return rt_period_us; 2855 } 2856 2857 #ifdef CONFIG_SYSCTL 2858 static int sched_rt_global_constraints(void) 2859 { 2860 int ret = 0; 2861 2862 mutex_lock(&rt_constraints_mutex); 2863 ret = __rt_schedulable(NULL, 0, 0); 2864 mutex_unlock(&rt_constraints_mutex); 2865 2866 return ret; 2867 } 2868 #endif /* CONFIG_SYSCTL */ 2869 2870 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2871 { 2872 /* Don't accept real-time tasks when there is no way for them to run */ 2873 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2874 return 0; 2875 2876 return 1; 2877 } 2878 2879 #else /* !CONFIG_RT_GROUP_SCHED */ 2880 2881 #ifdef CONFIG_SYSCTL 2882 static int sched_rt_global_constraints(void) 2883 { 2884 return 0; 2885 } 2886 #endif /* CONFIG_SYSCTL */ 2887 #endif /* CONFIG_RT_GROUP_SCHED */ 2888 2889 #ifdef CONFIG_SYSCTL 2890 static int sched_rt_global_validate(void) 2891 { 2892 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2893 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2894 ((u64)sysctl_sched_rt_runtime * 2895 NSEC_PER_USEC > max_rt_runtime))) 2896 return -EINVAL; 2897 2898 return 0; 2899 } 2900 2901 static void sched_rt_do_global(void) 2902 { 2903 } 2904 2905 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, 2906 size_t *lenp, loff_t *ppos) 2907 { 2908 int old_period, old_runtime; 2909 static DEFINE_MUTEX(mutex); 2910 int ret; 2911 2912 mutex_lock(&mutex); 2913 old_period = sysctl_sched_rt_period; 2914 old_runtime = sysctl_sched_rt_runtime; 2915 2916 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2917 2918 if (!ret && write) { 2919 ret = sched_rt_global_validate(); 2920 if (ret) 2921 goto undo; 2922 2923 ret = sched_dl_global_validate(); 2924 if (ret) 2925 goto undo; 2926 2927 ret = sched_rt_global_constraints(); 2928 if (ret) 2929 goto undo; 2930 2931 sched_rt_do_global(); 2932 sched_dl_do_global(); 2933 } 2934 if (0) { 2935 undo: 2936 sysctl_sched_rt_period = old_period; 2937 sysctl_sched_rt_runtime = old_runtime; 2938 } 2939 mutex_unlock(&mutex); 2940 2941 return ret; 2942 } 2943 2944 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, 2945 size_t *lenp, loff_t *ppos) 2946 { 2947 int ret; 2948 static DEFINE_MUTEX(mutex); 2949 2950 mutex_lock(&mutex); 2951 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2952 /* 2953 * Make sure that internally we keep jiffies. 2954 * Also, writing zero resets the time-slice to default: 2955 */ 2956 if (!ret && write) { 2957 sched_rr_timeslice = 2958 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2959 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2960 2961 if (sysctl_sched_rr_timeslice <= 0) 2962 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 2963 } 2964 mutex_unlock(&mutex); 2965 2966 return ret; 2967 } 2968 #endif /* CONFIG_SYSCTL */ 2969 2970 #ifdef CONFIG_SCHED_DEBUG 2971 void print_rt_stats(struct seq_file *m, int cpu) 2972 { 2973 rt_rq_iter_t iter; 2974 struct rt_rq *rt_rq; 2975 2976 rcu_read_lock(); 2977 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2978 print_rt_rq(m, cpu, rt_rq); 2979 rcu_read_unlock(); 2980 } 2981 #endif /* CONFIG_SCHED_DEBUG */ 2982